dm table: ensure targets are aligned to logical_block_size
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / drivers / md / dm-table.c
blob535fdaf2473da9fac4c6c986257eb0fce904d0fe
1 /*
2 * Copyright (C) 2001 Sistina Software (UK) Limited.
3 * Copyright (C) 2004-2008 Red Hat, Inc. All rights reserved.
5 * This file is released under the GPL.
6 */
8 #include "dm.h"
10 #include <linux/module.h>
11 #include <linux/vmalloc.h>
12 #include <linux/blkdev.h>
13 #include <linux/namei.h>
14 #include <linux/ctype.h>
15 #include <linux/slab.h>
16 #include <linux/interrupt.h>
17 #include <linux/mutex.h>
18 #include <linux/delay.h>
19 #include <asm/atomic.h>
21 #define DM_MSG_PREFIX "table"
23 #define MAX_DEPTH 16
24 #define NODE_SIZE L1_CACHE_BYTES
25 #define KEYS_PER_NODE (NODE_SIZE / sizeof(sector_t))
26 #define CHILDREN_PER_NODE (KEYS_PER_NODE + 1)
29 * The table has always exactly one reference from either mapped_device->map
30 * or hash_cell->new_map. This reference is not counted in table->holders.
31 * A pair of dm_create_table/dm_destroy_table functions is used for table
32 * creation/destruction.
34 * Temporary references from the other code increase table->holders. A pair
35 * of dm_table_get/dm_table_put functions is used to manipulate it.
37 * When the table is about to be destroyed, we wait for table->holders to
38 * drop to zero.
41 struct dm_table {
42 struct mapped_device *md;
43 atomic_t holders;
45 /* btree table */
46 unsigned int depth;
47 unsigned int counts[MAX_DEPTH]; /* in nodes */
48 sector_t *index[MAX_DEPTH];
50 unsigned int num_targets;
51 unsigned int num_allocated;
52 sector_t *highs;
53 struct dm_target *targets;
56 * Indicates the rw permissions for the new logical
57 * device. This should be a combination of FMODE_READ
58 * and FMODE_WRITE.
60 fmode_t mode;
62 /* a list of devices used by this table */
63 struct list_head devices;
66 * These are optimistic limits taken from all the
67 * targets, some targets will need smaller limits.
69 struct io_restrictions limits;
71 /* events get handed up using this callback */
72 void (*event_fn)(void *);
73 void *event_context;
77 * Similar to ceiling(log_size(n))
79 static unsigned int int_log(unsigned int n, unsigned int base)
81 int result = 0;
83 while (n > 1) {
84 n = dm_div_up(n, base);
85 result++;
88 return result;
92 * Returns the minimum that is _not_ zero, unless both are zero.
94 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
97 * Combine two io_restrictions, always taking the lower value.
99 static void combine_restrictions_low(struct io_restrictions *lhs,
100 struct io_restrictions *rhs)
102 lhs->max_sectors =
103 min_not_zero(lhs->max_sectors, rhs->max_sectors);
105 lhs->max_phys_segments =
106 min_not_zero(lhs->max_phys_segments, rhs->max_phys_segments);
108 lhs->max_hw_segments =
109 min_not_zero(lhs->max_hw_segments, rhs->max_hw_segments);
111 lhs->logical_block_size = max(lhs->logical_block_size,
112 rhs->logical_block_size);
114 lhs->max_segment_size =
115 min_not_zero(lhs->max_segment_size, rhs->max_segment_size);
117 lhs->max_hw_sectors =
118 min_not_zero(lhs->max_hw_sectors, rhs->max_hw_sectors);
120 lhs->seg_boundary_mask =
121 min_not_zero(lhs->seg_boundary_mask, rhs->seg_boundary_mask);
123 lhs->bounce_pfn = min_not_zero(lhs->bounce_pfn, rhs->bounce_pfn);
125 lhs->no_cluster |= rhs->no_cluster;
129 * Calculate the index of the child node of the n'th node k'th key.
131 static inline unsigned int get_child(unsigned int n, unsigned int k)
133 return (n * CHILDREN_PER_NODE) + k;
137 * Return the n'th node of level l from table t.
139 static inline sector_t *get_node(struct dm_table *t,
140 unsigned int l, unsigned int n)
142 return t->index[l] + (n * KEYS_PER_NODE);
146 * Return the highest key that you could lookup from the n'th
147 * node on level l of the btree.
149 static sector_t high(struct dm_table *t, unsigned int l, unsigned int n)
151 for (; l < t->depth - 1; l++)
152 n = get_child(n, CHILDREN_PER_NODE - 1);
154 if (n >= t->counts[l])
155 return (sector_t) - 1;
157 return get_node(t, l, n)[KEYS_PER_NODE - 1];
161 * Fills in a level of the btree based on the highs of the level
162 * below it.
164 static int setup_btree_index(unsigned int l, struct dm_table *t)
166 unsigned int n, k;
167 sector_t *node;
169 for (n = 0U; n < t->counts[l]; n++) {
170 node = get_node(t, l, n);
172 for (k = 0U; k < KEYS_PER_NODE; k++)
173 node[k] = high(t, l + 1, get_child(n, k));
176 return 0;
179 void *dm_vcalloc(unsigned long nmemb, unsigned long elem_size)
181 unsigned long size;
182 void *addr;
185 * Check that we're not going to overflow.
187 if (nmemb > (ULONG_MAX / elem_size))
188 return NULL;
190 size = nmemb * elem_size;
191 addr = vmalloc(size);
192 if (addr)
193 memset(addr, 0, size);
195 return addr;
199 * highs, and targets are managed as dynamic arrays during a
200 * table load.
202 static int alloc_targets(struct dm_table *t, unsigned int num)
204 sector_t *n_highs;
205 struct dm_target *n_targets;
206 int n = t->num_targets;
209 * Allocate both the target array and offset array at once.
210 * Append an empty entry to catch sectors beyond the end of
211 * the device.
213 n_highs = (sector_t *) dm_vcalloc(num + 1, sizeof(struct dm_target) +
214 sizeof(sector_t));
215 if (!n_highs)
216 return -ENOMEM;
218 n_targets = (struct dm_target *) (n_highs + num);
220 if (n) {
221 memcpy(n_highs, t->highs, sizeof(*n_highs) * n);
222 memcpy(n_targets, t->targets, sizeof(*n_targets) * n);
225 memset(n_highs + n, -1, sizeof(*n_highs) * (num - n));
226 vfree(t->highs);
228 t->num_allocated = num;
229 t->highs = n_highs;
230 t->targets = n_targets;
232 return 0;
235 int dm_table_create(struct dm_table **result, fmode_t mode,
236 unsigned num_targets, struct mapped_device *md)
238 struct dm_table *t = kzalloc(sizeof(*t), GFP_KERNEL);
240 if (!t)
241 return -ENOMEM;
243 INIT_LIST_HEAD(&t->devices);
244 atomic_set(&t->holders, 0);
246 if (!num_targets)
247 num_targets = KEYS_PER_NODE;
249 num_targets = dm_round_up(num_targets, KEYS_PER_NODE);
251 if (alloc_targets(t, num_targets)) {
252 kfree(t);
253 t = NULL;
254 return -ENOMEM;
257 t->mode = mode;
258 t->md = md;
259 *result = t;
260 return 0;
263 static void free_devices(struct list_head *devices)
265 struct list_head *tmp, *next;
267 list_for_each_safe(tmp, next, devices) {
268 struct dm_dev_internal *dd =
269 list_entry(tmp, struct dm_dev_internal, list);
270 DMWARN("dm_table_destroy: dm_put_device call missing for %s",
271 dd->dm_dev.name);
272 kfree(dd);
276 void dm_table_destroy(struct dm_table *t)
278 unsigned int i;
280 while (atomic_read(&t->holders))
281 msleep(1);
282 smp_mb();
284 /* free the indexes (see dm_table_complete) */
285 if (t->depth >= 2)
286 vfree(t->index[t->depth - 2]);
288 /* free the targets */
289 for (i = 0; i < t->num_targets; i++) {
290 struct dm_target *tgt = t->targets + i;
292 if (tgt->type->dtr)
293 tgt->type->dtr(tgt);
295 dm_put_target_type(tgt->type);
298 vfree(t->highs);
300 /* free the device list */
301 if (t->devices.next != &t->devices)
302 free_devices(&t->devices);
304 kfree(t);
307 void dm_table_get(struct dm_table *t)
309 atomic_inc(&t->holders);
312 void dm_table_put(struct dm_table *t)
314 if (!t)
315 return;
317 smp_mb__before_atomic_dec();
318 atomic_dec(&t->holders);
322 * Checks to see if we need to extend highs or targets.
324 static inline int check_space(struct dm_table *t)
326 if (t->num_targets >= t->num_allocated)
327 return alloc_targets(t, t->num_allocated * 2);
329 return 0;
333 * See if we've already got a device in the list.
335 static struct dm_dev_internal *find_device(struct list_head *l, dev_t dev)
337 struct dm_dev_internal *dd;
339 list_for_each_entry (dd, l, list)
340 if (dd->dm_dev.bdev->bd_dev == dev)
341 return dd;
343 return NULL;
347 * Open a device so we can use it as a map destination.
349 static int open_dev(struct dm_dev_internal *d, dev_t dev,
350 struct mapped_device *md)
352 static char *_claim_ptr = "I belong to device-mapper";
353 struct block_device *bdev;
355 int r;
357 BUG_ON(d->dm_dev.bdev);
359 bdev = open_by_devnum(dev, d->dm_dev.mode);
360 if (IS_ERR(bdev))
361 return PTR_ERR(bdev);
362 r = bd_claim_by_disk(bdev, _claim_ptr, dm_disk(md));
363 if (r)
364 blkdev_put(bdev, d->dm_dev.mode);
365 else
366 d->dm_dev.bdev = bdev;
367 return r;
371 * Close a device that we've been using.
373 static void close_dev(struct dm_dev_internal *d, struct mapped_device *md)
375 if (!d->dm_dev.bdev)
376 return;
378 bd_release_from_disk(d->dm_dev.bdev, dm_disk(md));
379 blkdev_put(d->dm_dev.bdev, d->dm_dev.mode);
380 d->dm_dev.bdev = NULL;
384 * If possible, this checks an area of a destination device is valid.
386 static int device_area_is_valid(struct dm_target *ti, struct block_device *bdev,
387 sector_t start, sector_t len)
389 sector_t dev_size = i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
390 unsigned short logical_block_size_sectors =
391 ti->limits.logical_block_size >> SECTOR_SHIFT;
392 char b[BDEVNAME_SIZE];
394 if (!dev_size)
395 return 1;
397 if ((start >= dev_size) || (start + len > dev_size)) {
398 DMWARN("%s: %s too small for target",
399 dm_device_name(ti->table->md), bdevname(bdev, b));
400 return 0;
403 if (logical_block_size_sectors <= 1)
404 return 1;
406 if (start & (logical_block_size_sectors - 1)) {
407 DMWARN("%s: start=%llu not aligned to h/w "
408 "logical block size %hu of %s",
409 dm_device_name(ti->table->md),
410 (unsigned long long)start,
411 ti->limits.logical_block_size, bdevname(bdev, b));
412 return 0;
415 if (len & (logical_block_size_sectors - 1)) {
416 DMWARN("%s: len=%llu not aligned to h/w "
417 "logical block size %hu of %s",
418 dm_device_name(ti->table->md),
419 (unsigned long long)len,
420 ti->limits.logical_block_size, bdevname(bdev, b));
421 return 0;
424 return 1;
428 * This upgrades the mode on an already open dm_dev, being
429 * careful to leave things as they were if we fail to reopen the
430 * device and not to touch the existing bdev field in case
431 * it is accessed concurrently inside dm_table_any_congested().
433 static int upgrade_mode(struct dm_dev_internal *dd, fmode_t new_mode,
434 struct mapped_device *md)
436 int r;
437 struct dm_dev_internal dd_new, dd_old;
439 dd_new = dd_old = *dd;
441 dd_new.dm_dev.mode |= new_mode;
442 dd_new.dm_dev.bdev = NULL;
444 r = open_dev(&dd_new, dd->dm_dev.bdev->bd_dev, md);
445 if (r)
446 return r;
448 dd->dm_dev.mode |= new_mode;
449 close_dev(&dd_old, md);
451 return 0;
455 * Add a device to the list, or just increment the usage count if
456 * it's already present.
458 static int __table_get_device(struct dm_table *t, struct dm_target *ti,
459 const char *path, sector_t start, sector_t len,
460 fmode_t mode, struct dm_dev **result)
462 int r;
463 dev_t uninitialized_var(dev);
464 struct dm_dev_internal *dd;
465 unsigned int major, minor;
467 BUG_ON(!t);
469 if (sscanf(path, "%u:%u", &major, &minor) == 2) {
470 /* Extract the major/minor numbers */
471 dev = MKDEV(major, minor);
472 if (MAJOR(dev) != major || MINOR(dev) != minor)
473 return -EOVERFLOW;
474 } else {
475 /* convert the path to a device */
476 struct block_device *bdev = lookup_bdev(path);
478 if (IS_ERR(bdev))
479 return PTR_ERR(bdev);
480 dev = bdev->bd_dev;
481 bdput(bdev);
484 dd = find_device(&t->devices, dev);
485 if (!dd) {
486 dd = kmalloc(sizeof(*dd), GFP_KERNEL);
487 if (!dd)
488 return -ENOMEM;
490 dd->dm_dev.mode = mode;
491 dd->dm_dev.bdev = NULL;
493 if ((r = open_dev(dd, dev, t->md))) {
494 kfree(dd);
495 return r;
498 format_dev_t(dd->dm_dev.name, dev);
500 atomic_set(&dd->count, 0);
501 list_add(&dd->list, &t->devices);
503 } else if (dd->dm_dev.mode != (mode | dd->dm_dev.mode)) {
504 r = upgrade_mode(dd, mode, t->md);
505 if (r)
506 return r;
508 atomic_inc(&dd->count);
510 *result = &dd->dm_dev;
511 return 0;
514 void dm_set_device_limits(struct dm_target *ti, struct block_device *bdev)
516 struct request_queue *q = bdev_get_queue(bdev);
517 struct io_restrictions *rs = &ti->limits;
518 char b[BDEVNAME_SIZE];
520 if (unlikely(!q)) {
521 DMWARN("%s: Cannot set limits for nonexistent device %s",
522 dm_device_name(ti->table->md), bdevname(bdev, b));
523 return;
527 * Combine the device limits low.
529 * FIXME: if we move an io_restriction struct
530 * into q this would just be a call to
531 * combine_restrictions_low()
533 rs->max_sectors =
534 min_not_zero(rs->max_sectors, queue_max_sectors(q));
537 * Check if merge fn is supported.
538 * If not we'll force DM to use PAGE_SIZE or
539 * smaller I/O, just to be safe.
542 if (q->merge_bvec_fn && !ti->type->merge)
543 rs->max_sectors =
544 min_not_zero(rs->max_sectors,
545 (unsigned int) (PAGE_SIZE >> 9));
547 rs->max_phys_segments =
548 min_not_zero(rs->max_phys_segments,
549 queue_max_phys_segments(q));
551 rs->max_hw_segments =
552 min_not_zero(rs->max_hw_segments, queue_max_hw_segments(q));
554 rs->logical_block_size = max(rs->logical_block_size,
555 queue_logical_block_size(q));
557 rs->max_segment_size =
558 min_not_zero(rs->max_segment_size, queue_max_segment_size(q));
560 rs->max_hw_sectors =
561 min_not_zero(rs->max_hw_sectors, queue_max_hw_sectors(q));
563 rs->seg_boundary_mask =
564 min_not_zero(rs->seg_boundary_mask,
565 queue_segment_boundary(q));
567 rs->bounce_pfn = min_not_zero(rs->bounce_pfn, queue_bounce_pfn(q));
569 rs->no_cluster |= !test_bit(QUEUE_FLAG_CLUSTER, &q->queue_flags);
571 EXPORT_SYMBOL_GPL(dm_set_device_limits);
573 int dm_get_device(struct dm_target *ti, const char *path, sector_t start,
574 sector_t len, fmode_t mode, struct dm_dev **result)
576 int r = __table_get_device(ti->table, ti, path,
577 start, len, mode, result);
579 if (r)
580 return r;
582 dm_set_device_limits(ti, (*result)->bdev);
584 if (!device_area_is_valid(ti, (*result)->bdev, start, len)) {
585 dm_put_device(ti, *result);
586 *result = NULL;
587 return -EINVAL;
590 return r;
594 * Decrement a devices use count and remove it if necessary.
596 void dm_put_device(struct dm_target *ti, struct dm_dev *d)
598 struct dm_dev_internal *dd = container_of(d, struct dm_dev_internal,
599 dm_dev);
601 if (atomic_dec_and_test(&dd->count)) {
602 close_dev(dd, ti->table->md);
603 list_del(&dd->list);
604 kfree(dd);
609 * Checks to see if the target joins onto the end of the table.
611 static int adjoin(struct dm_table *table, struct dm_target *ti)
613 struct dm_target *prev;
615 if (!table->num_targets)
616 return !ti->begin;
618 prev = &table->targets[table->num_targets - 1];
619 return (ti->begin == (prev->begin + prev->len));
623 * Used to dynamically allocate the arg array.
625 static char **realloc_argv(unsigned *array_size, char **old_argv)
627 char **argv;
628 unsigned new_size;
630 new_size = *array_size ? *array_size * 2 : 64;
631 argv = kmalloc(new_size * sizeof(*argv), GFP_KERNEL);
632 if (argv) {
633 memcpy(argv, old_argv, *array_size * sizeof(*argv));
634 *array_size = new_size;
637 kfree(old_argv);
638 return argv;
642 * Destructively splits up the argument list to pass to ctr.
644 int dm_split_args(int *argc, char ***argvp, char *input)
646 char *start, *end = input, *out, **argv = NULL;
647 unsigned array_size = 0;
649 *argc = 0;
651 if (!input) {
652 *argvp = NULL;
653 return 0;
656 argv = realloc_argv(&array_size, argv);
657 if (!argv)
658 return -ENOMEM;
660 while (1) {
661 start = end;
663 /* Skip whitespace */
664 while (*start && isspace(*start))
665 start++;
667 if (!*start)
668 break; /* success, we hit the end */
670 /* 'out' is used to remove any back-quotes */
671 end = out = start;
672 while (*end) {
673 /* Everything apart from '\0' can be quoted */
674 if (*end == '\\' && *(end + 1)) {
675 *out++ = *(end + 1);
676 end += 2;
677 continue;
680 if (isspace(*end))
681 break; /* end of token */
683 *out++ = *end++;
686 /* have we already filled the array ? */
687 if ((*argc + 1) > array_size) {
688 argv = realloc_argv(&array_size, argv);
689 if (!argv)
690 return -ENOMEM;
693 /* we know this is whitespace */
694 if (*end)
695 end++;
697 /* terminate the string and put it in the array */
698 *out = '\0';
699 argv[*argc] = start;
700 (*argc)++;
703 *argvp = argv;
704 return 0;
707 static void check_for_valid_limits(struct io_restrictions *rs)
709 if (!rs->max_sectors)
710 rs->max_sectors = SAFE_MAX_SECTORS;
711 if (!rs->max_hw_sectors)
712 rs->max_hw_sectors = SAFE_MAX_SECTORS;
713 if (!rs->max_phys_segments)
714 rs->max_phys_segments = MAX_PHYS_SEGMENTS;
715 if (!rs->max_hw_segments)
716 rs->max_hw_segments = MAX_HW_SEGMENTS;
717 if (!rs->logical_block_size)
718 rs->logical_block_size = 1 << SECTOR_SHIFT;
719 if (!rs->max_segment_size)
720 rs->max_segment_size = MAX_SEGMENT_SIZE;
721 if (!rs->seg_boundary_mask)
722 rs->seg_boundary_mask = BLK_SEG_BOUNDARY_MASK;
723 if (!rs->bounce_pfn)
724 rs->bounce_pfn = -1;
727 int dm_table_add_target(struct dm_table *t, const char *type,
728 sector_t start, sector_t len, char *params)
730 int r = -EINVAL, argc;
731 char **argv;
732 struct dm_target *tgt;
734 if ((r = check_space(t)))
735 return r;
737 tgt = t->targets + t->num_targets;
738 memset(tgt, 0, sizeof(*tgt));
740 if (!len) {
741 DMERR("%s: zero-length target", dm_device_name(t->md));
742 return -EINVAL;
745 tgt->type = dm_get_target_type(type);
746 if (!tgt->type) {
747 DMERR("%s: %s: unknown target type", dm_device_name(t->md),
748 type);
749 return -EINVAL;
752 tgt->table = t;
753 tgt->begin = start;
754 tgt->len = len;
755 tgt->error = "Unknown error";
758 * Does this target adjoin the previous one ?
760 if (!adjoin(t, tgt)) {
761 tgt->error = "Gap in table";
762 r = -EINVAL;
763 goto bad;
766 r = dm_split_args(&argc, &argv, params);
767 if (r) {
768 tgt->error = "couldn't split parameters (insufficient memory)";
769 goto bad;
772 r = tgt->type->ctr(tgt, argc, argv);
773 kfree(argv);
774 if (r)
775 goto bad;
777 t->highs[t->num_targets++] = tgt->begin + tgt->len - 1;
779 /* FIXME: the plan is to combine high here and then have
780 * the merge fn apply the target level restrictions. */
781 combine_restrictions_low(&t->limits, &tgt->limits);
782 return 0;
784 bad:
785 DMERR("%s: %s: %s", dm_device_name(t->md), type, tgt->error);
786 dm_put_target_type(tgt->type);
787 return r;
790 static int setup_indexes(struct dm_table *t)
792 int i;
793 unsigned int total = 0;
794 sector_t *indexes;
796 /* allocate the space for *all* the indexes */
797 for (i = t->depth - 2; i >= 0; i--) {
798 t->counts[i] = dm_div_up(t->counts[i + 1], CHILDREN_PER_NODE);
799 total += t->counts[i];
802 indexes = (sector_t *) dm_vcalloc(total, (unsigned long) NODE_SIZE);
803 if (!indexes)
804 return -ENOMEM;
806 /* set up internal nodes, bottom-up */
807 for (i = t->depth - 2; i >= 0; i--) {
808 t->index[i] = indexes;
809 indexes += (KEYS_PER_NODE * t->counts[i]);
810 setup_btree_index(i, t);
813 return 0;
817 * Builds the btree to index the map.
819 int dm_table_complete(struct dm_table *t)
821 int r = 0;
822 unsigned int leaf_nodes;
824 check_for_valid_limits(&t->limits);
826 /* how many indexes will the btree have ? */
827 leaf_nodes = dm_div_up(t->num_targets, KEYS_PER_NODE);
828 t->depth = 1 + int_log(leaf_nodes, CHILDREN_PER_NODE);
830 /* leaf layer has already been set up */
831 t->counts[t->depth - 1] = leaf_nodes;
832 t->index[t->depth - 1] = t->highs;
834 if (t->depth >= 2)
835 r = setup_indexes(t);
837 return r;
840 static DEFINE_MUTEX(_event_lock);
841 void dm_table_event_callback(struct dm_table *t,
842 void (*fn)(void *), void *context)
844 mutex_lock(&_event_lock);
845 t->event_fn = fn;
846 t->event_context = context;
847 mutex_unlock(&_event_lock);
850 void dm_table_event(struct dm_table *t)
853 * You can no longer call dm_table_event() from interrupt
854 * context, use a bottom half instead.
856 BUG_ON(in_interrupt());
858 mutex_lock(&_event_lock);
859 if (t->event_fn)
860 t->event_fn(t->event_context);
861 mutex_unlock(&_event_lock);
864 sector_t dm_table_get_size(struct dm_table *t)
866 return t->num_targets ? (t->highs[t->num_targets - 1] + 1) : 0;
869 struct dm_target *dm_table_get_target(struct dm_table *t, unsigned int index)
871 if (index >= t->num_targets)
872 return NULL;
874 return t->targets + index;
878 * Search the btree for the correct target.
880 * Caller should check returned pointer with dm_target_is_valid()
881 * to trap I/O beyond end of device.
883 struct dm_target *dm_table_find_target(struct dm_table *t, sector_t sector)
885 unsigned int l, n = 0, k = 0;
886 sector_t *node;
888 for (l = 0; l < t->depth; l++) {
889 n = get_child(n, k);
890 node = get_node(t, l, n);
892 for (k = 0; k < KEYS_PER_NODE; k++)
893 if (node[k] >= sector)
894 break;
897 return &t->targets[(KEYS_PER_NODE * n) + k];
901 * Set the integrity profile for this device if all devices used have
902 * matching profiles.
904 static void dm_table_set_integrity(struct dm_table *t)
906 struct list_head *devices = dm_table_get_devices(t);
907 struct dm_dev_internal *prev = NULL, *dd = NULL;
909 if (!blk_get_integrity(dm_disk(t->md)))
910 return;
912 list_for_each_entry(dd, devices, list) {
913 if (prev &&
914 blk_integrity_compare(prev->dm_dev.bdev->bd_disk,
915 dd->dm_dev.bdev->bd_disk) < 0) {
916 DMWARN("%s: integrity not set: %s and %s mismatch",
917 dm_device_name(t->md),
918 prev->dm_dev.bdev->bd_disk->disk_name,
919 dd->dm_dev.bdev->bd_disk->disk_name);
920 goto no_integrity;
922 prev = dd;
925 if (!prev || !bdev_get_integrity(prev->dm_dev.bdev))
926 goto no_integrity;
928 blk_integrity_register(dm_disk(t->md),
929 bdev_get_integrity(prev->dm_dev.bdev));
931 return;
933 no_integrity:
934 blk_integrity_register(dm_disk(t->md), NULL);
936 return;
939 void dm_table_set_restrictions(struct dm_table *t, struct request_queue *q)
942 * Make sure we obey the optimistic sub devices
943 * restrictions.
945 blk_queue_max_sectors(q, t->limits.max_sectors);
946 blk_queue_max_phys_segments(q, t->limits.max_phys_segments);
947 blk_queue_max_hw_segments(q, t->limits.max_hw_segments);
948 blk_queue_logical_block_size(q, t->limits.logical_block_size);
949 blk_queue_max_segment_size(q, t->limits.max_segment_size);
950 blk_queue_max_hw_sectors(q, t->limits.max_hw_sectors);
951 blk_queue_segment_boundary(q, t->limits.seg_boundary_mask);
952 blk_queue_bounce_limit(q, t->limits.bounce_pfn);
954 if (t->limits.no_cluster)
955 queue_flag_clear_unlocked(QUEUE_FLAG_CLUSTER, q);
956 else
957 queue_flag_set_unlocked(QUEUE_FLAG_CLUSTER, q);
959 dm_table_set_integrity(t);
962 unsigned int dm_table_get_num_targets(struct dm_table *t)
964 return t->num_targets;
967 struct list_head *dm_table_get_devices(struct dm_table *t)
969 return &t->devices;
972 fmode_t dm_table_get_mode(struct dm_table *t)
974 return t->mode;
977 static void suspend_targets(struct dm_table *t, unsigned postsuspend)
979 int i = t->num_targets;
980 struct dm_target *ti = t->targets;
982 while (i--) {
983 if (postsuspend) {
984 if (ti->type->postsuspend)
985 ti->type->postsuspend(ti);
986 } else if (ti->type->presuspend)
987 ti->type->presuspend(ti);
989 ti++;
993 void dm_table_presuspend_targets(struct dm_table *t)
995 if (!t)
996 return;
998 suspend_targets(t, 0);
1001 void dm_table_postsuspend_targets(struct dm_table *t)
1003 if (!t)
1004 return;
1006 suspend_targets(t, 1);
1009 int dm_table_resume_targets(struct dm_table *t)
1011 int i, r = 0;
1013 for (i = 0; i < t->num_targets; i++) {
1014 struct dm_target *ti = t->targets + i;
1016 if (!ti->type->preresume)
1017 continue;
1019 r = ti->type->preresume(ti);
1020 if (r)
1021 return r;
1024 for (i = 0; i < t->num_targets; i++) {
1025 struct dm_target *ti = t->targets + i;
1027 if (ti->type->resume)
1028 ti->type->resume(ti);
1031 return 0;
1034 int dm_table_any_congested(struct dm_table *t, int bdi_bits)
1036 struct dm_dev_internal *dd;
1037 struct list_head *devices = dm_table_get_devices(t);
1038 int r = 0;
1040 list_for_each_entry(dd, devices, list) {
1041 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1042 char b[BDEVNAME_SIZE];
1044 if (likely(q))
1045 r |= bdi_congested(&q->backing_dev_info, bdi_bits);
1046 else
1047 DMWARN_LIMIT("%s: any_congested: nonexistent device %s",
1048 dm_device_name(t->md),
1049 bdevname(dd->dm_dev.bdev, b));
1052 return r;
1055 void dm_table_unplug_all(struct dm_table *t)
1057 struct dm_dev_internal *dd;
1058 struct list_head *devices = dm_table_get_devices(t);
1060 list_for_each_entry(dd, devices, list) {
1061 struct request_queue *q = bdev_get_queue(dd->dm_dev.bdev);
1062 char b[BDEVNAME_SIZE];
1064 if (likely(q))
1065 blk_unplug(q);
1066 else
1067 DMWARN_LIMIT("%s: Cannot unplug nonexistent device %s",
1068 dm_device_name(t->md),
1069 bdevname(dd->dm_dev.bdev, b));
1073 struct mapped_device *dm_table_get_md(struct dm_table *t)
1075 dm_get(t->md);
1077 return t->md;
1080 EXPORT_SYMBOL(dm_vcalloc);
1081 EXPORT_SYMBOL(dm_get_device);
1082 EXPORT_SYMBOL(dm_put_device);
1083 EXPORT_SYMBOL(dm_table_event);
1084 EXPORT_SYMBOL(dm_table_get_size);
1085 EXPORT_SYMBOL(dm_table_get_mode);
1086 EXPORT_SYMBOL(dm_table_get_md);
1087 EXPORT_SYMBOL(dm_table_put);
1088 EXPORT_SYMBOL(dm_table_get);
1089 EXPORT_SYMBOL(dm_table_unplug_all);