2 * Functions related to setting various queue properties from drivers
4 #include <linux/kernel.h>
5 #include <linux/module.h>
6 #include <linux/init.h>
8 #include <linux/blkdev.h>
9 #include <linux/bootmem.h> /* for max_pfn/max_low_pfn */
10 #include <linux/gcd.h>
14 unsigned long blk_max_low_pfn
;
15 EXPORT_SYMBOL(blk_max_low_pfn
);
17 unsigned long blk_max_pfn
;
20 * blk_queue_prep_rq - set a prepare_request function for queue
22 * @pfn: prepare_request function
24 * It's possible for a queue to register a prepare_request callback which
25 * is invoked before the request is handed to the request_fn. The goal of
26 * the function is to prepare a request for I/O, it can be used to build a
27 * cdb from the request data for instance.
30 void blk_queue_prep_rq(struct request_queue
*q
, prep_rq_fn
*pfn
)
34 EXPORT_SYMBOL(blk_queue_prep_rq
);
37 * blk_queue_merge_bvec - set a merge_bvec function for queue
39 * @mbfn: merge_bvec_fn
41 * Usually queues have static limitations on the max sectors or segments that
42 * we can put in a request. Stacking drivers may have some settings that
43 * are dynamic, and thus we have to query the queue whether it is ok to
44 * add a new bio_vec to a bio at a given offset or not. If the block device
45 * has such limitations, it needs to register a merge_bvec_fn to control
46 * the size of bio's sent to it. Note that a block device *must* allow a
47 * single page to be added to an empty bio. The block device driver may want
48 * to use the bio_split() function to deal with these bio's. By default
49 * no merge_bvec_fn is defined for a queue, and only the fixed limits are
52 void blk_queue_merge_bvec(struct request_queue
*q
, merge_bvec_fn
*mbfn
)
54 q
->merge_bvec_fn
= mbfn
;
56 EXPORT_SYMBOL(blk_queue_merge_bvec
);
58 void blk_queue_softirq_done(struct request_queue
*q
, softirq_done_fn
*fn
)
60 q
->softirq_done_fn
= fn
;
62 EXPORT_SYMBOL(blk_queue_softirq_done
);
64 void blk_queue_rq_timeout(struct request_queue
*q
, unsigned int timeout
)
66 q
->rq_timeout
= timeout
;
68 EXPORT_SYMBOL_GPL(blk_queue_rq_timeout
);
70 void blk_queue_rq_timed_out(struct request_queue
*q
, rq_timed_out_fn
*fn
)
72 q
->rq_timed_out_fn
= fn
;
74 EXPORT_SYMBOL_GPL(blk_queue_rq_timed_out
);
76 void blk_queue_lld_busy(struct request_queue
*q
, lld_busy_fn
*fn
)
80 EXPORT_SYMBOL_GPL(blk_queue_lld_busy
);
83 * blk_set_default_limits - reset limits to default values
84 * @lim: the queue_limits structure to reset
87 * Returns a queue_limit struct to its default state. Can be used by
88 * stacking drivers like DM that stage table swaps and reuse an
89 * existing device queue.
91 void blk_set_default_limits(struct queue_limits
*lim
)
93 lim
->max_phys_segments
= MAX_PHYS_SEGMENTS
;
94 lim
->max_hw_segments
= MAX_HW_SEGMENTS
;
95 lim
->seg_boundary_mask
= BLK_SEG_BOUNDARY_MASK
;
96 lim
->max_segment_size
= MAX_SEGMENT_SIZE
;
97 lim
->max_sectors
= BLK_DEF_MAX_SECTORS
;
98 lim
->max_hw_sectors
= INT_MAX
;
99 lim
->max_discard_sectors
= SAFE_MAX_SECTORS
;
100 lim
->logical_block_size
= lim
->physical_block_size
= lim
->io_min
= 512;
101 lim
->bounce_pfn
= (unsigned long)(BLK_BOUNCE_ANY
>> PAGE_SHIFT
);
102 lim
->alignment_offset
= 0;
107 EXPORT_SYMBOL(blk_set_default_limits
);
110 * blk_queue_make_request - define an alternate make_request function for a device
111 * @q: the request queue for the device to be affected
112 * @mfn: the alternate make_request function
115 * The normal way for &struct bios to be passed to a device
116 * driver is for them to be collected into requests on a request
117 * queue, and then to allow the device driver to select requests
118 * off that queue when it is ready. This works well for many block
119 * devices. However some block devices (typically virtual devices
120 * such as md or lvm) do not benefit from the processing on the
121 * request queue, and are served best by having the requests passed
122 * directly to them. This can be achieved by providing a function
123 * to blk_queue_make_request().
126 * The driver that does this *must* be able to deal appropriately
127 * with buffers in "highmemory". This can be accomplished by either calling
128 * __bio_kmap_atomic() to get a temporary kernel mapping, or by calling
129 * blk_queue_bounce() to create a buffer in normal memory.
131 void blk_queue_make_request(struct request_queue
*q
, make_request_fn
*mfn
)
136 q
->nr_requests
= BLKDEV_MAX_RQ
;
138 q
->make_request_fn
= mfn
;
139 blk_queue_dma_alignment(q
, 511);
140 blk_queue_congestion_threshold(q
);
141 q
->nr_batching
= BLK_BATCH_REQ
;
143 q
->unplug_thresh
= 4; /* hmm */
144 q
->unplug_delay
= (3 * HZ
) / 1000; /* 3 milliseconds */
145 if (q
->unplug_delay
== 0)
148 q
->unplug_timer
.function
= blk_unplug_timeout
;
149 q
->unplug_timer
.data
= (unsigned long)q
;
151 blk_set_default_limits(&q
->limits
);
152 blk_queue_max_sectors(q
, SAFE_MAX_SECTORS
);
155 * If the caller didn't supply a lock, fall back to our embedded
159 q
->queue_lock
= &q
->__queue_lock
;
162 * by default assume old behaviour and bounce for any highmem page
164 blk_queue_bounce_limit(q
, BLK_BOUNCE_HIGH
);
166 EXPORT_SYMBOL(blk_queue_make_request
);
169 * blk_queue_bounce_limit - set bounce buffer limit for queue
170 * @q: the request queue for the device
171 * @dma_mask: the maximum address the device can handle
174 * Different hardware can have different requirements as to what pages
175 * it can do I/O directly to. A low level driver can call
176 * blk_queue_bounce_limit to have lower memory pages allocated as bounce
177 * buffers for doing I/O to pages residing above @dma_mask.
179 void blk_queue_bounce_limit(struct request_queue
*q
, u64 dma_mask
)
181 unsigned long b_pfn
= dma_mask
>> PAGE_SHIFT
;
184 q
->bounce_gfp
= GFP_NOIO
;
185 #if BITS_PER_LONG == 64
187 * Assume anything <= 4GB can be handled by IOMMU. Actually
188 * some IOMMUs can handle everything, but I don't know of a
189 * way to test this here.
191 if (b_pfn
< (min_t(u64
, 0xffffffffUL
, BLK_BOUNCE_HIGH
) >> PAGE_SHIFT
))
193 q
->limits
.bounce_pfn
= max_low_pfn
;
195 if (b_pfn
< blk_max_low_pfn
)
197 q
->limits
.bounce_pfn
= b_pfn
;
200 init_emergency_isa_pool();
201 q
->bounce_gfp
= GFP_NOIO
| GFP_DMA
;
202 q
->limits
.bounce_pfn
= b_pfn
;
205 EXPORT_SYMBOL(blk_queue_bounce_limit
);
208 * blk_queue_max_sectors - set max sectors for a request for this queue
209 * @q: the request queue for the device
210 * @max_sectors: max sectors in the usual 512b unit
213 * Enables a low level driver to set an upper limit on the size of
216 void blk_queue_max_sectors(struct request_queue
*q
, unsigned int max_sectors
)
218 if ((max_sectors
<< 9) < PAGE_CACHE_SIZE
) {
219 max_sectors
= 1 << (PAGE_CACHE_SHIFT
- 9);
220 printk(KERN_INFO
"%s: set to minimum %d\n",
221 __func__
, max_sectors
);
224 if (BLK_DEF_MAX_SECTORS
> max_sectors
)
225 q
->limits
.max_hw_sectors
= q
->limits
.max_sectors
= max_sectors
;
227 q
->limits
.max_sectors
= BLK_DEF_MAX_SECTORS
;
228 q
->limits
.max_hw_sectors
= max_sectors
;
231 EXPORT_SYMBOL(blk_queue_max_sectors
);
233 void blk_queue_max_hw_sectors(struct request_queue
*q
, unsigned int max_sectors
)
235 if (BLK_DEF_MAX_SECTORS
> max_sectors
)
236 q
->limits
.max_hw_sectors
= BLK_DEF_MAX_SECTORS
;
238 q
->limits
.max_hw_sectors
= max_sectors
;
240 EXPORT_SYMBOL(blk_queue_max_hw_sectors
);
243 * blk_queue_max_discard_sectors - set max sectors for a single discard
244 * @q: the request queue for the device
245 * @max_discard: maximum number of sectors to discard
247 void blk_queue_max_discard_sectors(struct request_queue
*q
,
248 unsigned int max_discard_sectors
)
250 q
->limits
.max_discard_sectors
= max_discard_sectors
;
252 EXPORT_SYMBOL(blk_queue_max_discard_sectors
);
255 * blk_queue_max_phys_segments - set max phys segments for a request for this queue
256 * @q: the request queue for the device
257 * @max_segments: max number of segments
260 * Enables a low level driver to set an upper limit on the number of
261 * physical data segments in a request. This would be the largest sized
262 * scatter list the driver could handle.
264 void blk_queue_max_phys_segments(struct request_queue
*q
,
265 unsigned short max_segments
)
269 printk(KERN_INFO
"%s: set to minimum %d\n",
270 __func__
, max_segments
);
273 q
->limits
.max_phys_segments
= max_segments
;
275 EXPORT_SYMBOL(blk_queue_max_phys_segments
);
278 * blk_queue_max_hw_segments - set max hw segments for a request for this queue
279 * @q: the request queue for the device
280 * @max_segments: max number of segments
283 * Enables a low level driver to set an upper limit on the number of
284 * hw data segments in a request. This would be the largest number of
285 * address/length pairs the host adapter can actually give at once
288 void blk_queue_max_hw_segments(struct request_queue
*q
,
289 unsigned short max_segments
)
293 printk(KERN_INFO
"%s: set to minimum %d\n",
294 __func__
, max_segments
);
297 q
->limits
.max_hw_segments
= max_segments
;
299 EXPORT_SYMBOL(blk_queue_max_hw_segments
);
302 * blk_queue_max_segment_size - set max segment size for blk_rq_map_sg
303 * @q: the request queue for the device
304 * @max_size: max size of segment in bytes
307 * Enables a low level driver to set an upper limit on the size of a
310 void blk_queue_max_segment_size(struct request_queue
*q
, unsigned int max_size
)
312 if (max_size
< PAGE_CACHE_SIZE
) {
313 max_size
= PAGE_CACHE_SIZE
;
314 printk(KERN_INFO
"%s: set to minimum %d\n",
318 q
->limits
.max_segment_size
= max_size
;
320 EXPORT_SYMBOL(blk_queue_max_segment_size
);
323 * blk_queue_logical_block_size - set logical block size for the queue
324 * @q: the request queue for the device
325 * @size: the logical block size, in bytes
328 * This should be set to the lowest possible block size that the
329 * storage device can address. The default of 512 covers most
332 void blk_queue_logical_block_size(struct request_queue
*q
, unsigned short size
)
334 q
->limits
.logical_block_size
= size
;
336 if (q
->limits
.physical_block_size
< size
)
337 q
->limits
.physical_block_size
= size
;
339 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
340 q
->limits
.io_min
= q
->limits
.physical_block_size
;
342 EXPORT_SYMBOL(blk_queue_logical_block_size
);
345 * blk_queue_physical_block_size - set physical block size for the queue
346 * @q: the request queue for the device
347 * @size: the physical block size, in bytes
350 * This should be set to the lowest possible sector size that the
351 * hardware can operate on without reverting to read-modify-write
354 void blk_queue_physical_block_size(struct request_queue
*q
, unsigned short size
)
356 q
->limits
.physical_block_size
= size
;
358 if (q
->limits
.physical_block_size
< q
->limits
.logical_block_size
)
359 q
->limits
.physical_block_size
= q
->limits
.logical_block_size
;
361 if (q
->limits
.io_min
< q
->limits
.physical_block_size
)
362 q
->limits
.io_min
= q
->limits
.physical_block_size
;
364 EXPORT_SYMBOL(blk_queue_physical_block_size
);
367 * blk_queue_alignment_offset - set physical block alignment offset
368 * @q: the request queue for the device
369 * @offset: alignment offset in bytes
372 * Some devices are naturally misaligned to compensate for things like
373 * the legacy DOS partition table 63-sector offset. Low-level drivers
374 * should call this function for devices whose first sector is not
377 void blk_queue_alignment_offset(struct request_queue
*q
, unsigned int offset
)
379 q
->limits
.alignment_offset
=
380 offset
& (q
->limits
.physical_block_size
- 1);
381 q
->limits
.misaligned
= 0;
383 EXPORT_SYMBOL(blk_queue_alignment_offset
);
386 * blk_limits_io_min - set minimum request size for a device
387 * @limits: the queue limits
388 * @min: smallest I/O size in bytes
391 * Some devices have an internal block size bigger than the reported
392 * hardware sector size. This function can be used to signal the
393 * smallest I/O the device can perform without incurring a performance
396 void blk_limits_io_min(struct queue_limits
*limits
, unsigned int min
)
398 limits
->io_min
= min
;
400 if (limits
->io_min
< limits
->logical_block_size
)
401 limits
->io_min
= limits
->logical_block_size
;
403 if (limits
->io_min
< limits
->physical_block_size
)
404 limits
->io_min
= limits
->physical_block_size
;
406 EXPORT_SYMBOL(blk_limits_io_min
);
409 * blk_queue_io_min - set minimum request size for the queue
410 * @q: the request queue for the device
411 * @min: smallest I/O size in bytes
414 * Storage devices may report a granularity or preferred minimum I/O
415 * size which is the smallest request the device can perform without
416 * incurring a performance penalty. For disk drives this is often the
417 * physical block size. For RAID arrays it is often the stripe chunk
418 * size. A properly aligned multiple of minimum_io_size is the
419 * preferred request size for workloads where a high number of I/O
420 * operations is desired.
422 void blk_queue_io_min(struct request_queue
*q
, unsigned int min
)
424 blk_limits_io_min(&q
->limits
, min
);
426 EXPORT_SYMBOL(blk_queue_io_min
);
429 * blk_limits_io_opt - set optimal request size for a device
430 * @limits: the queue limits
431 * @opt: smallest I/O size in bytes
434 * Storage devices may report an optimal I/O size, which is the
435 * device's preferred unit for sustained I/O. This is rarely reported
436 * for disk drives. For RAID arrays it is usually the stripe width or
437 * the internal track size. A properly aligned multiple of
438 * optimal_io_size is the preferred request size for workloads where
439 * sustained throughput is desired.
441 void blk_limits_io_opt(struct queue_limits
*limits
, unsigned int opt
)
443 limits
->io_opt
= opt
;
445 EXPORT_SYMBOL(blk_limits_io_opt
);
448 * blk_queue_io_opt - set optimal request size for the queue
449 * @q: the request queue for the device
450 * @opt: optimal request size in bytes
453 * Storage devices may report an optimal I/O size, which is the
454 * device's preferred unit for sustained I/O. This is rarely reported
455 * for disk drives. For RAID arrays it is usually the stripe width or
456 * the internal track size. A properly aligned multiple of
457 * optimal_io_size is the preferred request size for workloads where
458 * sustained throughput is desired.
460 void blk_queue_io_opt(struct request_queue
*q
, unsigned int opt
)
462 blk_limits_io_opt(&q
->limits
, opt
);
464 EXPORT_SYMBOL(blk_queue_io_opt
);
467 * Returns the minimum that is _not_ zero, unless both are zero.
469 #define min_not_zero(l, r) (l == 0) ? r : ((r == 0) ? l : min(l, r))
472 * blk_queue_stack_limits - inherit underlying queue limits for stacked drivers
473 * @t: the stacking driver (top)
474 * @b: the underlying device (bottom)
476 void blk_queue_stack_limits(struct request_queue
*t
, struct request_queue
*b
)
478 blk_stack_limits(&t
->limits
, &b
->limits
, 0);
482 else if (!test_bit(QUEUE_FLAG_CLUSTER
, &b
->queue_flags
)) {
484 spin_lock_irqsave(t
->queue_lock
, flags
);
485 queue_flag_clear(QUEUE_FLAG_CLUSTER
, t
);
486 spin_unlock_irqrestore(t
->queue_lock
, flags
);
489 EXPORT_SYMBOL(blk_queue_stack_limits
);
492 * blk_stack_limits - adjust queue_limits for stacked devices
493 * @t: the stacking driver limits (top)
494 * @b: the underlying queue limits (bottom)
495 * @offset: offset to beginning of data within component device
498 * Merges two queue_limit structs. Returns 0 if alignment didn't
499 * change. Returns -1 if adding the bottom device caused
502 int blk_stack_limits(struct queue_limits
*t
, struct queue_limits
*b
,
505 t
->max_sectors
= min_not_zero(t
->max_sectors
, b
->max_sectors
);
506 t
->max_hw_sectors
= min_not_zero(t
->max_hw_sectors
, b
->max_hw_sectors
);
507 t
->bounce_pfn
= min_not_zero(t
->bounce_pfn
, b
->bounce_pfn
);
509 t
->seg_boundary_mask
= min_not_zero(t
->seg_boundary_mask
,
510 b
->seg_boundary_mask
);
512 t
->max_phys_segments
= min_not_zero(t
->max_phys_segments
,
513 b
->max_phys_segments
);
515 t
->max_hw_segments
= min_not_zero(t
->max_hw_segments
,
518 t
->max_segment_size
= min_not_zero(t
->max_segment_size
,
519 b
->max_segment_size
);
521 t
->logical_block_size
= max(t
->logical_block_size
,
522 b
->logical_block_size
);
524 t
->physical_block_size
= max(t
->physical_block_size
,
525 b
->physical_block_size
);
527 t
->io_min
= max(t
->io_min
, b
->io_min
);
528 t
->no_cluster
|= b
->no_cluster
;
530 /* Bottom device offset aligned? */
532 (offset
& (b
->physical_block_size
- 1)) != b
->alignment_offset
) {
537 /* If top has no alignment offset, inherit from bottom */
538 if (!t
->alignment_offset
)
539 t
->alignment_offset
=
540 b
->alignment_offset
& (b
->physical_block_size
- 1);
542 /* Top device aligned on logical block boundary? */
543 if (t
->alignment_offset
& (t
->logical_block_size
- 1)) {
548 /* Find lcm() of optimal I/O size */
549 if (t
->io_opt
&& b
->io_opt
)
550 t
->io_opt
= (t
->io_opt
* b
->io_opt
) / gcd(t
->io_opt
, b
->io_opt
);
552 t
->io_opt
= b
->io_opt
;
554 /* Verify that optimal I/O size is a multiple of io_min */
555 if (t
->io_min
&& t
->io_opt
% t
->io_min
)
560 EXPORT_SYMBOL(blk_stack_limits
);
563 * disk_stack_limits - adjust queue limits for stacked drivers
564 * @disk: MD/DM gendisk (top)
565 * @bdev: the underlying block device (bottom)
566 * @offset: offset to beginning of data within component device
569 * Merges the limits for two queues. Returns 0 if alignment
570 * didn't change. Returns -1 if adding the bottom device caused
573 void disk_stack_limits(struct gendisk
*disk
, struct block_device
*bdev
,
576 struct request_queue
*t
= disk
->queue
;
577 struct request_queue
*b
= bdev_get_queue(bdev
);
579 offset
+= get_start_sect(bdev
) << 9;
581 if (blk_stack_limits(&t
->limits
, &b
->limits
, offset
) < 0) {
582 char top
[BDEVNAME_SIZE
], bottom
[BDEVNAME_SIZE
];
584 disk_name(disk
, 0, top
);
585 bdevname(bdev
, bottom
);
587 printk(KERN_NOTICE
"%s: Warning: Device %s is misaligned\n",
593 else if (!test_bit(QUEUE_FLAG_CLUSTER
, &b
->queue_flags
)) {
596 spin_lock_irqsave(t
->queue_lock
, flags
);
597 if (!test_bit(QUEUE_FLAG_CLUSTER
, &b
->queue_flags
))
598 queue_flag_clear(QUEUE_FLAG_CLUSTER
, t
);
599 spin_unlock_irqrestore(t
->queue_lock
, flags
);
602 EXPORT_SYMBOL(disk_stack_limits
);
605 * blk_queue_dma_pad - set pad mask
606 * @q: the request queue for the device
611 * Appending pad buffer to a request modifies the last entry of a
612 * scatter list such that it includes the pad buffer.
614 void blk_queue_dma_pad(struct request_queue
*q
, unsigned int mask
)
616 q
->dma_pad_mask
= mask
;
618 EXPORT_SYMBOL(blk_queue_dma_pad
);
621 * blk_queue_update_dma_pad - update pad mask
622 * @q: the request queue for the device
625 * Update dma pad mask.
627 * Appending pad buffer to a request modifies the last entry of a
628 * scatter list such that it includes the pad buffer.
630 void blk_queue_update_dma_pad(struct request_queue
*q
, unsigned int mask
)
632 if (mask
> q
->dma_pad_mask
)
633 q
->dma_pad_mask
= mask
;
635 EXPORT_SYMBOL(blk_queue_update_dma_pad
);
638 * blk_queue_dma_drain - Set up a drain buffer for excess dma.
639 * @q: the request queue for the device
640 * @dma_drain_needed: fn which returns non-zero if drain is necessary
641 * @buf: physically contiguous buffer
642 * @size: size of the buffer in bytes
644 * Some devices have excess DMA problems and can't simply discard (or
645 * zero fill) the unwanted piece of the transfer. They have to have a
646 * real area of memory to transfer it into. The use case for this is
647 * ATAPI devices in DMA mode. If the packet command causes a transfer
648 * bigger than the transfer size some HBAs will lock up if there
649 * aren't DMA elements to contain the excess transfer. What this API
650 * does is adjust the queue so that the buf is always appended
651 * silently to the scatterlist.
653 * Note: This routine adjusts max_hw_segments to make room for
654 * appending the drain buffer. If you call
655 * blk_queue_max_hw_segments() or blk_queue_max_phys_segments() after
656 * calling this routine, you must set the limit to one fewer than your
657 * device can support otherwise there won't be room for the drain
660 int blk_queue_dma_drain(struct request_queue
*q
,
661 dma_drain_needed_fn
*dma_drain_needed
,
662 void *buf
, unsigned int size
)
664 if (queue_max_hw_segments(q
) < 2 || queue_max_phys_segments(q
) < 2)
666 /* make room for appending the drain */
667 blk_queue_max_hw_segments(q
, queue_max_hw_segments(q
) - 1);
668 blk_queue_max_phys_segments(q
, queue_max_phys_segments(q
) - 1);
669 q
->dma_drain_needed
= dma_drain_needed
;
670 q
->dma_drain_buffer
= buf
;
671 q
->dma_drain_size
= size
;
675 EXPORT_SYMBOL_GPL(blk_queue_dma_drain
);
678 * blk_queue_segment_boundary - set boundary rules for segment merging
679 * @q: the request queue for the device
680 * @mask: the memory boundary mask
682 void blk_queue_segment_boundary(struct request_queue
*q
, unsigned long mask
)
684 if (mask
< PAGE_CACHE_SIZE
- 1) {
685 mask
= PAGE_CACHE_SIZE
- 1;
686 printk(KERN_INFO
"%s: set to minimum %lx\n",
690 q
->limits
.seg_boundary_mask
= mask
;
692 EXPORT_SYMBOL(blk_queue_segment_boundary
);
695 * blk_queue_dma_alignment - set dma length and memory alignment
696 * @q: the request queue for the device
697 * @mask: alignment mask
700 * set required memory and length alignment for direct dma transactions.
701 * this is used when building direct io requests for the queue.
704 void blk_queue_dma_alignment(struct request_queue
*q
, int mask
)
706 q
->dma_alignment
= mask
;
708 EXPORT_SYMBOL(blk_queue_dma_alignment
);
711 * blk_queue_update_dma_alignment - update dma length and memory alignment
712 * @q: the request queue for the device
713 * @mask: alignment mask
716 * update required memory and length alignment for direct dma transactions.
717 * If the requested alignment is larger than the current alignment, then
718 * the current queue alignment is updated to the new value, otherwise it
719 * is left alone. The design of this is to allow multiple objects
720 * (driver, device, transport etc) to set their respective
721 * alignments without having them interfere.
724 void blk_queue_update_dma_alignment(struct request_queue
*q
, int mask
)
726 BUG_ON(mask
> PAGE_SIZE
);
728 if (mask
> q
->dma_alignment
)
729 q
->dma_alignment
= mask
;
731 EXPORT_SYMBOL(blk_queue_update_dma_alignment
);
733 static int __init
blk_settings_init(void)
735 blk_max_low_pfn
= max_low_pfn
- 1;
736 blk_max_pfn
= max_pfn
- 1;
739 subsys_initcall(blk_settings_init
);