2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/idr.h>
17 #include <linux/file.h>
18 #include <linux/poll.h>
19 #include <linux/slab.h>
20 #include <linux/hash.h>
21 #include <linux/sysfs.h>
22 #include <linux/dcache.h>
23 #include <linux/percpu.h>
24 #include <linux/ptrace.h>
25 #include <linux/reboot.h>
26 #include <linux/vmstat.h>
27 #include <linux/device.h>
28 #include <linux/vmalloc.h>
29 #include <linux/hardirq.h>
30 #include <linux/rculist.h>
31 #include <linux/uaccess.h>
32 #include <linux/syscalls.h>
33 #include <linux/anon_inodes.h>
34 #include <linux/kernel_stat.h>
35 #include <linux/perf_event.h>
36 #include <linux/ftrace_event.h>
37 #include <linux/hw_breakpoint.h>
39 #include <asm/irq_regs.h>
44 EVENT_ALL
= EVENT_FLEXIBLE
| EVENT_PINNED
,
47 atomic_t perf_task_events __read_mostly
;
48 static atomic_t nr_mmap_events __read_mostly
;
49 static atomic_t nr_comm_events __read_mostly
;
50 static atomic_t nr_task_events __read_mostly
;
52 static LIST_HEAD(pmus
);
53 static DEFINE_MUTEX(pmus_lock
);
54 static struct srcu_struct pmus_srcu
;
57 * perf event paranoia level:
58 * -1 - not paranoid at all
59 * 0 - disallow raw tracepoint access for unpriv
60 * 1 - disallow cpu events for unpriv
61 * 2 - disallow kernel profiling for unpriv
63 int sysctl_perf_event_paranoid __read_mostly
= 1;
65 int sysctl_perf_event_mlock __read_mostly
= 512; /* 'free' kb per user */
68 * max perf event sample rate
70 int sysctl_perf_event_sample_rate __read_mostly
= 100000;
72 static atomic64_t perf_event_id
;
74 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
75 enum event_type_t event_type
);
77 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
78 enum event_type_t event_type
);
80 void __weak
perf_event_print_debug(void) { }
82 extern __weak
const char *perf_pmu_name(void)
87 static inline u64
perf_clock(void)
92 void perf_pmu_disable(struct pmu
*pmu
)
94 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
96 pmu
->pmu_disable(pmu
);
99 void perf_pmu_enable(struct pmu
*pmu
)
101 int *count
= this_cpu_ptr(pmu
->pmu_disable_count
);
103 pmu
->pmu_enable(pmu
);
106 static DEFINE_PER_CPU(struct list_head
, rotation_list
);
109 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
110 * because they're strictly cpu affine and rotate_start is called with IRQs
111 * disabled, while rotate_context is called from IRQ context.
113 static void perf_pmu_rotate_start(struct pmu
*pmu
)
115 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
116 struct list_head
*head
= &__get_cpu_var(rotation_list
);
118 WARN_ON(!irqs_disabled());
120 if (list_empty(&cpuctx
->rotation_list
))
121 list_add(&cpuctx
->rotation_list
, head
);
124 static void get_ctx(struct perf_event_context
*ctx
)
126 WARN_ON(!atomic_inc_not_zero(&ctx
->refcount
));
129 static void free_ctx(struct rcu_head
*head
)
131 struct perf_event_context
*ctx
;
133 ctx
= container_of(head
, struct perf_event_context
, rcu_head
);
137 static void put_ctx(struct perf_event_context
*ctx
)
139 if (atomic_dec_and_test(&ctx
->refcount
)) {
141 put_ctx(ctx
->parent_ctx
);
143 put_task_struct(ctx
->task
);
144 call_rcu(&ctx
->rcu_head
, free_ctx
);
148 static void unclone_ctx(struct perf_event_context
*ctx
)
150 if (ctx
->parent_ctx
) {
151 put_ctx(ctx
->parent_ctx
);
152 ctx
->parent_ctx
= NULL
;
156 static u32
perf_event_pid(struct perf_event
*event
, struct task_struct
*p
)
159 * only top level events have the pid namespace they were created in
162 event
= event
->parent
;
164 return task_tgid_nr_ns(p
, event
->ns
);
167 static u32
perf_event_tid(struct perf_event
*event
, struct task_struct
*p
)
170 * only top level events have the pid namespace they were created in
173 event
= event
->parent
;
175 return task_pid_nr_ns(p
, event
->ns
);
179 * If we inherit events we want to return the parent event id
182 static u64
primary_event_id(struct perf_event
*event
)
187 id
= event
->parent
->id
;
193 * Get the perf_event_context for a task and lock it.
194 * This has to cope with with the fact that until it is locked,
195 * the context could get moved to another task.
197 static struct perf_event_context
*
198 perf_lock_task_context(struct task_struct
*task
, int ctxn
, unsigned long *flags
)
200 struct perf_event_context
*ctx
;
204 ctx
= rcu_dereference(task
->perf_event_ctxp
[ctxn
]);
207 * If this context is a clone of another, it might
208 * get swapped for another underneath us by
209 * perf_event_task_sched_out, though the
210 * rcu_read_lock() protects us from any context
211 * getting freed. Lock the context and check if it
212 * got swapped before we could get the lock, and retry
213 * if so. If we locked the right context, then it
214 * can't get swapped on us any more.
216 raw_spin_lock_irqsave(&ctx
->lock
, *flags
);
217 if (ctx
!= rcu_dereference(task
->perf_event_ctxp
[ctxn
])) {
218 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
222 if (!atomic_inc_not_zero(&ctx
->refcount
)) {
223 raw_spin_unlock_irqrestore(&ctx
->lock
, *flags
);
232 * Get the context for a task and increment its pin_count so it
233 * can't get swapped to another task. This also increments its
234 * reference count so that the context can't get freed.
236 static struct perf_event_context
*
237 perf_pin_task_context(struct task_struct
*task
, int ctxn
)
239 struct perf_event_context
*ctx
;
242 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
245 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
250 static void perf_unpin_context(struct perf_event_context
*ctx
)
254 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
256 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
261 * Update the record of the current time in a context.
263 static void update_context_time(struct perf_event_context
*ctx
)
265 u64 now
= perf_clock();
267 ctx
->time
+= now
- ctx
->timestamp
;
268 ctx
->timestamp
= now
;
271 static u64
perf_event_time(struct perf_event
*event
)
273 struct perf_event_context
*ctx
= event
->ctx
;
274 return ctx
? ctx
->time
: 0;
278 * Update the total_time_enabled and total_time_running fields for a event.
280 static void update_event_times(struct perf_event
*event
)
282 struct perf_event_context
*ctx
= event
->ctx
;
285 if (event
->state
< PERF_EVENT_STATE_INACTIVE
||
286 event
->group_leader
->state
< PERF_EVENT_STATE_INACTIVE
)
290 run_end
= perf_event_time(event
);
292 run_end
= event
->tstamp_stopped
;
294 event
->total_time_enabled
= run_end
- event
->tstamp_enabled
;
296 if (event
->state
== PERF_EVENT_STATE_INACTIVE
)
297 run_end
= event
->tstamp_stopped
;
299 run_end
= perf_event_time(event
);
301 event
->total_time_running
= run_end
- event
->tstamp_running
;
305 * Update total_time_enabled and total_time_running for all events in a group.
307 static void update_group_times(struct perf_event
*leader
)
309 struct perf_event
*event
;
311 update_event_times(leader
);
312 list_for_each_entry(event
, &leader
->sibling_list
, group_entry
)
313 update_event_times(event
);
316 static struct list_head
*
317 ctx_group_list(struct perf_event
*event
, struct perf_event_context
*ctx
)
319 if (event
->attr
.pinned
)
320 return &ctx
->pinned_groups
;
322 return &ctx
->flexible_groups
;
326 * Add a event from the lists for its context.
327 * Must be called with ctx->mutex and ctx->lock held.
330 list_add_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
332 WARN_ON_ONCE(event
->attach_state
& PERF_ATTACH_CONTEXT
);
333 event
->attach_state
|= PERF_ATTACH_CONTEXT
;
336 * If we're a stand alone event or group leader, we go to the context
337 * list, group events are kept attached to the group so that
338 * perf_group_detach can, at all times, locate all siblings.
340 if (event
->group_leader
== event
) {
341 struct list_head
*list
;
343 if (is_software_event(event
))
344 event
->group_flags
|= PERF_GROUP_SOFTWARE
;
346 list
= ctx_group_list(event
, ctx
);
347 list_add_tail(&event
->group_entry
, list
);
350 list_add_rcu(&event
->event_entry
, &ctx
->event_list
);
352 perf_pmu_rotate_start(ctx
->pmu
);
354 if (event
->attr
.inherit_stat
)
359 * Called at perf_event creation and when events are attached/detached from a
362 static void perf_event__read_size(struct perf_event
*event
)
364 int entry
= sizeof(u64
); /* value */
368 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
371 if (event
->attr
.read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
374 if (event
->attr
.read_format
& PERF_FORMAT_ID
)
375 entry
+= sizeof(u64
);
377 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
) {
378 nr
+= event
->group_leader
->nr_siblings
;
383 event
->read_size
= size
;
386 static void perf_event__header_size(struct perf_event
*event
)
388 struct perf_sample_data
*data
;
389 u64 sample_type
= event
->attr
.sample_type
;
392 perf_event__read_size(event
);
394 if (sample_type
& PERF_SAMPLE_IP
)
395 size
+= sizeof(data
->ip
);
397 if (sample_type
& PERF_SAMPLE_ADDR
)
398 size
+= sizeof(data
->addr
);
400 if (sample_type
& PERF_SAMPLE_PERIOD
)
401 size
+= sizeof(data
->period
);
403 if (sample_type
& PERF_SAMPLE_READ
)
404 size
+= event
->read_size
;
406 event
->header_size
= size
;
409 static void perf_event__id_header_size(struct perf_event
*event
)
411 struct perf_sample_data
*data
;
412 u64 sample_type
= event
->attr
.sample_type
;
415 if (sample_type
& PERF_SAMPLE_TID
)
416 size
+= sizeof(data
->tid_entry
);
418 if (sample_type
& PERF_SAMPLE_TIME
)
419 size
+= sizeof(data
->time
);
421 if (sample_type
& PERF_SAMPLE_ID
)
422 size
+= sizeof(data
->id
);
424 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
425 size
+= sizeof(data
->stream_id
);
427 if (sample_type
& PERF_SAMPLE_CPU
)
428 size
+= sizeof(data
->cpu_entry
);
430 event
->id_header_size
= size
;
433 static void perf_group_attach(struct perf_event
*event
)
435 struct perf_event
*group_leader
= event
->group_leader
, *pos
;
438 * We can have double attach due to group movement in perf_event_open.
440 if (event
->attach_state
& PERF_ATTACH_GROUP
)
443 event
->attach_state
|= PERF_ATTACH_GROUP
;
445 if (group_leader
== event
)
448 if (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
&&
449 !is_software_event(event
))
450 group_leader
->group_flags
&= ~PERF_GROUP_SOFTWARE
;
452 list_add_tail(&event
->group_entry
, &group_leader
->sibling_list
);
453 group_leader
->nr_siblings
++;
455 perf_event__header_size(group_leader
);
457 list_for_each_entry(pos
, &group_leader
->sibling_list
, group_entry
)
458 perf_event__header_size(pos
);
462 * Remove a event from the lists for its context.
463 * Must be called with ctx->mutex and ctx->lock held.
466 list_del_event(struct perf_event
*event
, struct perf_event_context
*ctx
)
469 * We can have double detach due to exit/hot-unplug + close.
471 if (!(event
->attach_state
& PERF_ATTACH_CONTEXT
))
474 event
->attach_state
&= ~PERF_ATTACH_CONTEXT
;
477 if (event
->attr
.inherit_stat
)
480 list_del_rcu(&event
->event_entry
);
482 if (event
->group_leader
== event
)
483 list_del_init(&event
->group_entry
);
485 update_group_times(event
);
488 * If event was in error state, then keep it
489 * that way, otherwise bogus counts will be
490 * returned on read(). The only way to get out
491 * of error state is by explicit re-enabling
494 if (event
->state
> PERF_EVENT_STATE_OFF
)
495 event
->state
= PERF_EVENT_STATE_OFF
;
498 static void perf_group_detach(struct perf_event
*event
)
500 struct perf_event
*sibling
, *tmp
;
501 struct list_head
*list
= NULL
;
504 * We can have double detach due to exit/hot-unplug + close.
506 if (!(event
->attach_state
& PERF_ATTACH_GROUP
))
509 event
->attach_state
&= ~PERF_ATTACH_GROUP
;
512 * If this is a sibling, remove it from its group.
514 if (event
->group_leader
!= event
) {
515 list_del_init(&event
->group_entry
);
516 event
->group_leader
->nr_siblings
--;
520 if (!list_empty(&event
->group_entry
))
521 list
= &event
->group_entry
;
524 * If this was a group event with sibling events then
525 * upgrade the siblings to singleton events by adding them
526 * to whatever list we are on.
528 list_for_each_entry_safe(sibling
, tmp
, &event
->sibling_list
, group_entry
) {
530 list_move_tail(&sibling
->group_entry
, list
);
531 sibling
->group_leader
= sibling
;
533 /* Inherit group flags from the previous leader */
534 sibling
->group_flags
= event
->group_flags
;
538 perf_event__header_size(event
->group_leader
);
540 list_for_each_entry(tmp
, &event
->group_leader
->sibling_list
, group_entry
)
541 perf_event__header_size(tmp
);
545 event_filter_match(struct perf_event
*event
)
547 return event
->cpu
== -1 || event
->cpu
== smp_processor_id();
551 event_sched_out(struct perf_event
*event
,
552 struct perf_cpu_context
*cpuctx
,
553 struct perf_event_context
*ctx
)
555 u64 tstamp
= perf_event_time(event
);
558 * An event which could not be activated because of
559 * filter mismatch still needs to have its timings
560 * maintained, otherwise bogus information is return
561 * via read() for time_enabled, time_running:
563 if (event
->state
== PERF_EVENT_STATE_INACTIVE
564 && !event_filter_match(event
)) {
565 delta
= ctx
->time
- event
->tstamp_stopped
;
566 event
->tstamp_running
+= delta
;
567 event
->tstamp_stopped
= tstamp
;
570 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
573 event
->state
= PERF_EVENT_STATE_INACTIVE
;
574 if (event
->pending_disable
) {
575 event
->pending_disable
= 0;
576 event
->state
= PERF_EVENT_STATE_OFF
;
578 event
->tstamp_stopped
= tstamp
;
579 event
->pmu
->del(event
, 0);
582 if (!is_software_event(event
))
583 cpuctx
->active_oncpu
--;
585 if (event
->attr
.exclusive
|| !cpuctx
->active_oncpu
)
586 cpuctx
->exclusive
= 0;
590 group_sched_out(struct perf_event
*group_event
,
591 struct perf_cpu_context
*cpuctx
,
592 struct perf_event_context
*ctx
)
594 struct perf_event
*event
;
595 int state
= group_event
->state
;
597 event_sched_out(group_event
, cpuctx
, ctx
);
600 * Schedule out siblings (if any):
602 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
)
603 event_sched_out(event
, cpuctx
, ctx
);
605 if (state
== PERF_EVENT_STATE_ACTIVE
&& group_event
->attr
.exclusive
)
606 cpuctx
->exclusive
= 0;
609 static inline struct perf_cpu_context
*
610 __get_cpu_context(struct perf_event_context
*ctx
)
612 return this_cpu_ptr(ctx
->pmu
->pmu_cpu_context
);
616 * Cross CPU call to remove a performance event
618 * We disable the event on the hardware level first. After that we
619 * remove it from the context list.
621 static void __perf_event_remove_from_context(void *info
)
623 struct perf_event
*event
= info
;
624 struct perf_event_context
*ctx
= event
->ctx
;
625 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
628 * If this is a task context, we need to check whether it is
629 * the current task context of this cpu. If not it has been
630 * scheduled out before the smp call arrived.
632 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
635 raw_spin_lock(&ctx
->lock
);
637 event_sched_out(event
, cpuctx
, ctx
);
639 list_del_event(event
, ctx
);
641 raw_spin_unlock(&ctx
->lock
);
646 * Remove the event from a task's (or a CPU's) list of events.
648 * Must be called with ctx->mutex held.
650 * CPU events are removed with a smp call. For task events we only
651 * call when the task is on a CPU.
653 * If event->ctx is a cloned context, callers must make sure that
654 * every task struct that event->ctx->task could possibly point to
655 * remains valid. This is OK when called from perf_release since
656 * that only calls us on the top-level context, which can't be a clone.
657 * When called from perf_event_exit_task, it's OK because the
658 * context has been detached from its task.
660 static void perf_event_remove_from_context(struct perf_event
*event
)
662 struct perf_event_context
*ctx
= event
->ctx
;
663 struct task_struct
*task
= ctx
->task
;
667 * Per cpu events are removed via an smp call and
668 * the removal is always successful.
670 smp_call_function_single(event
->cpu
,
671 __perf_event_remove_from_context
,
677 task_oncpu_function_call(task
, __perf_event_remove_from_context
,
680 raw_spin_lock_irq(&ctx
->lock
);
682 * If the context is active we need to retry the smp call.
684 if (ctx
->nr_active
&& !list_empty(&event
->group_entry
)) {
685 raw_spin_unlock_irq(&ctx
->lock
);
690 * The lock prevents that this context is scheduled in so we
691 * can remove the event safely, if the call above did not
694 if (!list_empty(&event
->group_entry
))
695 list_del_event(event
, ctx
);
696 raw_spin_unlock_irq(&ctx
->lock
);
700 * Cross CPU call to disable a performance event
702 static void __perf_event_disable(void *info
)
704 struct perf_event
*event
= info
;
705 struct perf_event_context
*ctx
= event
->ctx
;
706 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
709 * If this is a per-task event, need to check whether this
710 * event's task is the current task on this cpu.
712 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
715 raw_spin_lock(&ctx
->lock
);
718 * If the event is on, turn it off.
719 * If it is in error state, leave it in error state.
721 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
) {
722 update_context_time(ctx
);
723 update_group_times(event
);
724 if (event
== event
->group_leader
)
725 group_sched_out(event
, cpuctx
, ctx
);
727 event_sched_out(event
, cpuctx
, ctx
);
728 event
->state
= PERF_EVENT_STATE_OFF
;
731 raw_spin_unlock(&ctx
->lock
);
737 * If event->ctx is a cloned context, callers must make sure that
738 * every task struct that event->ctx->task could possibly point to
739 * remains valid. This condition is satisifed when called through
740 * perf_event_for_each_child or perf_event_for_each because they
741 * hold the top-level event's child_mutex, so any descendant that
742 * goes to exit will block in sync_child_event.
743 * When called from perf_pending_event it's OK because event->ctx
744 * is the current context on this CPU and preemption is disabled,
745 * hence we can't get into perf_event_task_sched_out for this context.
747 void perf_event_disable(struct perf_event
*event
)
749 struct perf_event_context
*ctx
= event
->ctx
;
750 struct task_struct
*task
= ctx
->task
;
754 * Disable the event on the cpu that it's on
756 smp_call_function_single(event
->cpu
, __perf_event_disable
,
762 task_oncpu_function_call(task
, __perf_event_disable
, event
);
764 raw_spin_lock_irq(&ctx
->lock
);
766 * If the event is still active, we need to retry the cross-call.
768 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
769 raw_spin_unlock_irq(&ctx
->lock
);
774 * Since we have the lock this context can't be scheduled
775 * in, so we can change the state safely.
777 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
778 update_group_times(event
);
779 event
->state
= PERF_EVENT_STATE_OFF
;
782 raw_spin_unlock_irq(&ctx
->lock
);
785 #define MAX_INTERRUPTS (~0ULL)
787 static void perf_log_throttle(struct perf_event
*event
, int enable
);
790 event_sched_in(struct perf_event
*event
,
791 struct perf_cpu_context
*cpuctx
,
792 struct perf_event_context
*ctx
)
794 u64 tstamp
= perf_event_time(event
);
796 if (event
->state
<= PERF_EVENT_STATE_OFF
)
799 event
->state
= PERF_EVENT_STATE_ACTIVE
;
800 event
->oncpu
= smp_processor_id();
803 * Unthrottle events, since we scheduled we might have missed several
804 * ticks already, also for a heavily scheduling task there is little
805 * guarantee it'll get a tick in a timely manner.
807 if (unlikely(event
->hw
.interrupts
== MAX_INTERRUPTS
)) {
808 perf_log_throttle(event
, 1);
809 event
->hw
.interrupts
= 0;
813 * The new state must be visible before we turn it on in the hardware:
817 if (event
->pmu
->add(event
, PERF_EF_START
)) {
818 event
->state
= PERF_EVENT_STATE_INACTIVE
;
823 event
->tstamp_running
+= tstamp
- event
->tstamp_stopped
;
825 event
->shadow_ctx_time
= tstamp
- ctx
->timestamp
;
827 if (!is_software_event(event
))
828 cpuctx
->active_oncpu
++;
831 if (event
->attr
.exclusive
)
832 cpuctx
->exclusive
= 1;
838 group_sched_in(struct perf_event
*group_event
,
839 struct perf_cpu_context
*cpuctx
,
840 struct perf_event_context
*ctx
)
842 struct perf_event
*event
, *partial_group
= NULL
;
843 struct pmu
*pmu
= group_event
->pmu
;
845 bool simulate
= false;
847 if (group_event
->state
== PERF_EVENT_STATE_OFF
)
852 if (event_sched_in(group_event
, cpuctx
, ctx
)) {
853 pmu
->cancel_txn(pmu
);
858 * Schedule in siblings as one group (if any):
860 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
861 if (event_sched_in(event
, cpuctx
, ctx
)) {
862 partial_group
= event
;
867 if (!pmu
->commit_txn(pmu
))
872 * Groups can be scheduled in as one unit only, so undo any
873 * partial group before returning:
874 * The events up to the failed event are scheduled out normally,
875 * tstamp_stopped will be updated.
877 * The failed events and the remaining siblings need to have
878 * their timings updated as if they had gone thru event_sched_in()
879 * and event_sched_out(). This is required to get consistent timings
880 * across the group. This also takes care of the case where the group
881 * could never be scheduled by ensuring tstamp_stopped is set to mark
882 * the time the event was actually stopped, such that time delta
883 * calculation in update_event_times() is correct.
885 list_for_each_entry(event
, &group_event
->sibling_list
, group_entry
) {
886 if (event
== partial_group
)
890 event
->tstamp_running
+= now
- event
->tstamp_stopped
;
891 event
->tstamp_stopped
= now
;
893 event_sched_out(event
, cpuctx
, ctx
);
896 event_sched_out(group_event
, cpuctx
, ctx
);
898 pmu
->cancel_txn(pmu
);
904 * Work out whether we can put this event group on the CPU now.
906 static int group_can_go_on(struct perf_event
*event
,
907 struct perf_cpu_context
*cpuctx
,
911 * Groups consisting entirely of software events can always go on.
913 if (event
->group_flags
& PERF_GROUP_SOFTWARE
)
916 * If an exclusive group is already on, no other hardware
919 if (cpuctx
->exclusive
)
922 * If this group is exclusive and there are already
923 * events on the CPU, it can't go on.
925 if (event
->attr
.exclusive
&& cpuctx
->active_oncpu
)
928 * Otherwise, try to add it if all previous groups were able
934 static void add_event_to_ctx(struct perf_event
*event
,
935 struct perf_event_context
*ctx
)
937 u64 tstamp
= perf_event_time(event
);
939 list_add_event(event
, ctx
);
940 perf_group_attach(event
);
941 event
->tstamp_enabled
= tstamp
;
942 event
->tstamp_running
= tstamp
;
943 event
->tstamp_stopped
= tstamp
;
947 * Cross CPU call to install and enable a performance event
949 * Must be called with ctx->mutex held
951 static void __perf_install_in_context(void *info
)
953 struct perf_event
*event
= info
;
954 struct perf_event_context
*ctx
= event
->ctx
;
955 struct perf_event
*leader
= event
->group_leader
;
956 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
960 * If this is a task context, we need to check whether it is
961 * the current task context of this cpu. If not it has been
962 * scheduled out before the smp call arrived.
963 * Or possibly this is the right context but it isn't
964 * on this cpu because it had no events.
966 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
967 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
969 cpuctx
->task_ctx
= ctx
;
972 raw_spin_lock(&ctx
->lock
);
974 update_context_time(ctx
);
976 add_event_to_ctx(event
, ctx
);
978 if (!event_filter_match(event
))
982 * Don't put the event on if it is disabled or if
983 * it is in a group and the group isn't on.
985 if (event
->state
!= PERF_EVENT_STATE_INACTIVE
||
986 (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
))
990 * An exclusive event can't go on if there are already active
991 * hardware events, and no hardware event can go on if there
992 * is already an exclusive event on.
994 if (!group_can_go_on(event
, cpuctx
, 1))
997 err
= event_sched_in(event
, cpuctx
, ctx
);
1001 * This event couldn't go on. If it is in a group
1002 * then we have to pull the whole group off.
1003 * If the event group is pinned then put it in error state.
1005 if (leader
!= event
)
1006 group_sched_out(leader
, cpuctx
, ctx
);
1007 if (leader
->attr
.pinned
) {
1008 update_group_times(leader
);
1009 leader
->state
= PERF_EVENT_STATE_ERROR
;
1014 raw_spin_unlock(&ctx
->lock
);
1018 * Attach a performance event to a context
1020 * First we add the event to the list with the hardware enable bit
1021 * in event->hw_config cleared.
1023 * If the event is attached to a task which is on a CPU we use a smp
1024 * call to enable it in the task context. The task might have been
1025 * scheduled away, but we check this in the smp call again.
1027 * Must be called with ctx->mutex held.
1030 perf_install_in_context(struct perf_event_context
*ctx
,
1031 struct perf_event
*event
,
1034 struct task_struct
*task
= ctx
->task
;
1040 * Per cpu events are installed via an smp call and
1041 * the install is always successful.
1043 smp_call_function_single(cpu
, __perf_install_in_context
,
1049 task_oncpu_function_call(task
, __perf_install_in_context
,
1052 raw_spin_lock_irq(&ctx
->lock
);
1054 * we need to retry the smp call.
1056 if (ctx
->is_active
&& list_empty(&event
->group_entry
)) {
1057 raw_spin_unlock_irq(&ctx
->lock
);
1062 * The lock prevents that this context is scheduled in so we
1063 * can add the event safely, if it the call above did not
1066 if (list_empty(&event
->group_entry
))
1067 add_event_to_ctx(event
, ctx
);
1068 raw_spin_unlock_irq(&ctx
->lock
);
1072 * Put a event into inactive state and update time fields.
1073 * Enabling the leader of a group effectively enables all
1074 * the group members that aren't explicitly disabled, so we
1075 * have to update their ->tstamp_enabled also.
1076 * Note: this works for group members as well as group leaders
1077 * since the non-leader members' sibling_lists will be empty.
1079 static void __perf_event_mark_enabled(struct perf_event
*event
,
1080 struct perf_event_context
*ctx
)
1082 struct perf_event
*sub
;
1083 u64 tstamp
= perf_event_time(event
);
1085 event
->state
= PERF_EVENT_STATE_INACTIVE
;
1086 event
->tstamp_enabled
= tstamp
- event
->total_time_enabled
;
1087 list_for_each_entry(sub
, &event
->sibling_list
, group_entry
) {
1088 if (sub
->state
>= PERF_EVENT_STATE_INACTIVE
)
1089 sub
->tstamp_enabled
= tstamp
- sub
->total_time_enabled
;
1094 * Cross CPU call to enable a performance event
1096 static void __perf_event_enable(void *info
)
1098 struct perf_event
*event
= info
;
1099 struct perf_event_context
*ctx
= event
->ctx
;
1100 struct perf_event
*leader
= event
->group_leader
;
1101 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1105 * If this is a per-task event, need to check whether this
1106 * event's task is the current task on this cpu.
1108 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
) {
1109 if (cpuctx
->task_ctx
|| ctx
->task
!= current
)
1111 cpuctx
->task_ctx
= ctx
;
1114 raw_spin_lock(&ctx
->lock
);
1116 update_context_time(ctx
);
1118 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1120 __perf_event_mark_enabled(event
, ctx
);
1122 if (!event_filter_match(event
))
1126 * If the event is in a group and isn't the group leader,
1127 * then don't put it on unless the group is on.
1129 if (leader
!= event
&& leader
->state
!= PERF_EVENT_STATE_ACTIVE
)
1132 if (!group_can_go_on(event
, cpuctx
, 1)) {
1135 if (event
== leader
)
1136 err
= group_sched_in(event
, cpuctx
, ctx
);
1138 err
= event_sched_in(event
, cpuctx
, ctx
);
1143 * If this event can't go on and it's part of a
1144 * group, then the whole group has to come off.
1146 if (leader
!= event
)
1147 group_sched_out(leader
, cpuctx
, ctx
);
1148 if (leader
->attr
.pinned
) {
1149 update_group_times(leader
);
1150 leader
->state
= PERF_EVENT_STATE_ERROR
;
1155 raw_spin_unlock(&ctx
->lock
);
1161 * If event->ctx is a cloned context, callers must make sure that
1162 * every task struct that event->ctx->task could possibly point to
1163 * remains valid. This condition is satisfied when called through
1164 * perf_event_for_each_child or perf_event_for_each as described
1165 * for perf_event_disable.
1167 void perf_event_enable(struct perf_event
*event
)
1169 struct perf_event_context
*ctx
= event
->ctx
;
1170 struct task_struct
*task
= ctx
->task
;
1174 * Enable the event on the cpu that it's on
1176 smp_call_function_single(event
->cpu
, __perf_event_enable
,
1181 raw_spin_lock_irq(&ctx
->lock
);
1182 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1186 * If the event is in error state, clear that first.
1187 * That way, if we see the event in error state below, we
1188 * know that it has gone back into error state, as distinct
1189 * from the task having been scheduled away before the
1190 * cross-call arrived.
1192 if (event
->state
== PERF_EVENT_STATE_ERROR
)
1193 event
->state
= PERF_EVENT_STATE_OFF
;
1196 raw_spin_unlock_irq(&ctx
->lock
);
1197 task_oncpu_function_call(task
, __perf_event_enable
, event
);
1199 raw_spin_lock_irq(&ctx
->lock
);
1202 * If the context is active and the event is still off,
1203 * we need to retry the cross-call.
1205 if (ctx
->is_active
&& event
->state
== PERF_EVENT_STATE_OFF
)
1209 * Since we have the lock this context can't be scheduled
1210 * in, so we can change the state safely.
1212 if (event
->state
== PERF_EVENT_STATE_OFF
)
1213 __perf_event_mark_enabled(event
, ctx
);
1216 raw_spin_unlock_irq(&ctx
->lock
);
1219 static int perf_event_refresh(struct perf_event
*event
, int refresh
)
1222 * not supported on inherited events
1224 if (event
->attr
.inherit
|| !is_sampling_event(event
))
1227 atomic_add(refresh
, &event
->event_limit
);
1228 perf_event_enable(event
);
1233 static void ctx_sched_out(struct perf_event_context
*ctx
,
1234 struct perf_cpu_context
*cpuctx
,
1235 enum event_type_t event_type
)
1237 struct perf_event
*event
;
1239 raw_spin_lock(&ctx
->lock
);
1240 perf_pmu_disable(ctx
->pmu
);
1242 if (likely(!ctx
->nr_events
))
1244 update_context_time(ctx
);
1246 if (!ctx
->nr_active
)
1249 if (event_type
& EVENT_PINNED
) {
1250 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
)
1251 group_sched_out(event
, cpuctx
, ctx
);
1254 if (event_type
& EVENT_FLEXIBLE
) {
1255 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
)
1256 group_sched_out(event
, cpuctx
, ctx
);
1259 perf_pmu_enable(ctx
->pmu
);
1260 raw_spin_unlock(&ctx
->lock
);
1264 * Test whether two contexts are equivalent, i.e. whether they
1265 * have both been cloned from the same version of the same context
1266 * and they both have the same number of enabled events.
1267 * If the number of enabled events is the same, then the set
1268 * of enabled events should be the same, because these are both
1269 * inherited contexts, therefore we can't access individual events
1270 * in them directly with an fd; we can only enable/disable all
1271 * events via prctl, or enable/disable all events in a family
1272 * via ioctl, which will have the same effect on both contexts.
1274 static int context_equiv(struct perf_event_context
*ctx1
,
1275 struct perf_event_context
*ctx2
)
1277 return ctx1
->parent_ctx
&& ctx1
->parent_ctx
== ctx2
->parent_ctx
1278 && ctx1
->parent_gen
== ctx2
->parent_gen
1279 && !ctx1
->pin_count
&& !ctx2
->pin_count
;
1282 static void __perf_event_sync_stat(struct perf_event
*event
,
1283 struct perf_event
*next_event
)
1287 if (!event
->attr
.inherit_stat
)
1291 * Update the event value, we cannot use perf_event_read()
1292 * because we're in the middle of a context switch and have IRQs
1293 * disabled, which upsets smp_call_function_single(), however
1294 * we know the event must be on the current CPU, therefore we
1295 * don't need to use it.
1297 switch (event
->state
) {
1298 case PERF_EVENT_STATE_ACTIVE
:
1299 event
->pmu
->read(event
);
1302 case PERF_EVENT_STATE_INACTIVE
:
1303 update_event_times(event
);
1311 * In order to keep per-task stats reliable we need to flip the event
1312 * values when we flip the contexts.
1314 value
= local64_read(&next_event
->count
);
1315 value
= local64_xchg(&event
->count
, value
);
1316 local64_set(&next_event
->count
, value
);
1318 swap(event
->total_time_enabled
, next_event
->total_time_enabled
);
1319 swap(event
->total_time_running
, next_event
->total_time_running
);
1322 * Since we swizzled the values, update the user visible data too.
1324 perf_event_update_userpage(event
);
1325 perf_event_update_userpage(next_event
);
1328 #define list_next_entry(pos, member) \
1329 list_entry(pos->member.next, typeof(*pos), member)
1331 static void perf_event_sync_stat(struct perf_event_context
*ctx
,
1332 struct perf_event_context
*next_ctx
)
1334 struct perf_event
*event
, *next_event
;
1339 update_context_time(ctx
);
1341 event
= list_first_entry(&ctx
->event_list
,
1342 struct perf_event
, event_entry
);
1344 next_event
= list_first_entry(&next_ctx
->event_list
,
1345 struct perf_event
, event_entry
);
1347 while (&event
->event_entry
!= &ctx
->event_list
&&
1348 &next_event
->event_entry
!= &next_ctx
->event_list
) {
1350 __perf_event_sync_stat(event
, next_event
);
1352 event
= list_next_entry(event
, event_entry
);
1353 next_event
= list_next_entry(next_event
, event_entry
);
1357 void perf_event_context_sched_out(struct task_struct
*task
, int ctxn
,
1358 struct task_struct
*next
)
1360 struct perf_event_context
*ctx
= task
->perf_event_ctxp
[ctxn
];
1361 struct perf_event_context
*next_ctx
;
1362 struct perf_event_context
*parent
;
1363 struct perf_cpu_context
*cpuctx
;
1369 cpuctx
= __get_cpu_context(ctx
);
1370 if (!cpuctx
->task_ctx
)
1374 parent
= rcu_dereference(ctx
->parent_ctx
);
1375 next_ctx
= next
->perf_event_ctxp
[ctxn
];
1376 if (parent
&& next_ctx
&&
1377 rcu_dereference(next_ctx
->parent_ctx
) == parent
) {
1379 * Looks like the two contexts are clones, so we might be
1380 * able to optimize the context switch. We lock both
1381 * contexts and check that they are clones under the
1382 * lock (including re-checking that neither has been
1383 * uncloned in the meantime). It doesn't matter which
1384 * order we take the locks because no other cpu could
1385 * be trying to lock both of these tasks.
1387 raw_spin_lock(&ctx
->lock
);
1388 raw_spin_lock_nested(&next_ctx
->lock
, SINGLE_DEPTH_NESTING
);
1389 if (context_equiv(ctx
, next_ctx
)) {
1391 * XXX do we need a memory barrier of sorts
1392 * wrt to rcu_dereference() of perf_event_ctxp
1394 task
->perf_event_ctxp
[ctxn
] = next_ctx
;
1395 next
->perf_event_ctxp
[ctxn
] = ctx
;
1397 next_ctx
->task
= task
;
1400 perf_event_sync_stat(ctx
, next_ctx
);
1402 raw_spin_unlock(&next_ctx
->lock
);
1403 raw_spin_unlock(&ctx
->lock
);
1408 ctx_sched_out(ctx
, cpuctx
, EVENT_ALL
);
1409 cpuctx
->task_ctx
= NULL
;
1413 #define for_each_task_context_nr(ctxn) \
1414 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1417 * Called from scheduler to remove the events of the current task,
1418 * with interrupts disabled.
1420 * We stop each event and update the event value in event->count.
1422 * This does not protect us against NMI, but disable()
1423 * sets the disabled bit in the control field of event _before_
1424 * accessing the event control register. If a NMI hits, then it will
1425 * not restart the event.
1427 void __perf_event_task_sched_out(struct task_struct
*task
,
1428 struct task_struct
*next
)
1432 for_each_task_context_nr(ctxn
)
1433 perf_event_context_sched_out(task
, ctxn
, next
);
1436 static void task_ctx_sched_out(struct perf_event_context
*ctx
,
1437 enum event_type_t event_type
)
1439 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1441 if (!cpuctx
->task_ctx
)
1444 if (WARN_ON_ONCE(ctx
!= cpuctx
->task_ctx
))
1447 ctx_sched_out(ctx
, cpuctx
, event_type
);
1448 cpuctx
->task_ctx
= NULL
;
1452 * Called with IRQs disabled
1454 static void cpu_ctx_sched_out(struct perf_cpu_context
*cpuctx
,
1455 enum event_type_t event_type
)
1457 ctx_sched_out(&cpuctx
->ctx
, cpuctx
, event_type
);
1461 ctx_pinned_sched_in(struct perf_event_context
*ctx
,
1462 struct perf_cpu_context
*cpuctx
)
1464 struct perf_event
*event
;
1466 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
1467 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1469 if (!event_filter_match(event
))
1472 if (group_can_go_on(event
, cpuctx
, 1))
1473 group_sched_in(event
, cpuctx
, ctx
);
1476 * If this pinned group hasn't been scheduled,
1477 * put it in error state.
1479 if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1480 update_group_times(event
);
1481 event
->state
= PERF_EVENT_STATE_ERROR
;
1487 ctx_flexible_sched_in(struct perf_event_context
*ctx
,
1488 struct perf_cpu_context
*cpuctx
)
1490 struct perf_event
*event
;
1493 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
1494 /* Ignore events in OFF or ERROR state */
1495 if (event
->state
<= PERF_EVENT_STATE_OFF
)
1498 * Listen to the 'cpu' scheduling filter constraint
1501 if (!event_filter_match(event
))
1504 if (group_can_go_on(event
, cpuctx
, can_add_hw
)) {
1505 if (group_sched_in(event
, cpuctx
, ctx
))
1512 ctx_sched_in(struct perf_event_context
*ctx
,
1513 struct perf_cpu_context
*cpuctx
,
1514 enum event_type_t event_type
)
1516 raw_spin_lock(&ctx
->lock
);
1518 if (likely(!ctx
->nr_events
))
1521 ctx
->timestamp
= perf_clock();
1524 * First go through the list and put on any pinned groups
1525 * in order to give them the best chance of going on.
1527 if (event_type
& EVENT_PINNED
)
1528 ctx_pinned_sched_in(ctx
, cpuctx
);
1530 /* Then walk through the lower prio flexible groups */
1531 if (event_type
& EVENT_FLEXIBLE
)
1532 ctx_flexible_sched_in(ctx
, cpuctx
);
1535 raw_spin_unlock(&ctx
->lock
);
1538 static void cpu_ctx_sched_in(struct perf_cpu_context
*cpuctx
,
1539 enum event_type_t event_type
)
1541 struct perf_event_context
*ctx
= &cpuctx
->ctx
;
1543 ctx_sched_in(ctx
, cpuctx
, event_type
);
1546 static void task_ctx_sched_in(struct perf_event_context
*ctx
,
1547 enum event_type_t event_type
)
1549 struct perf_cpu_context
*cpuctx
;
1551 cpuctx
= __get_cpu_context(ctx
);
1552 if (cpuctx
->task_ctx
== ctx
)
1555 ctx_sched_in(ctx
, cpuctx
, event_type
);
1556 cpuctx
->task_ctx
= ctx
;
1559 void perf_event_context_sched_in(struct perf_event_context
*ctx
)
1561 struct perf_cpu_context
*cpuctx
;
1563 cpuctx
= __get_cpu_context(ctx
);
1564 if (cpuctx
->task_ctx
== ctx
)
1567 perf_pmu_disable(ctx
->pmu
);
1569 * We want to keep the following priority order:
1570 * cpu pinned (that don't need to move), task pinned,
1571 * cpu flexible, task flexible.
1573 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
1575 ctx_sched_in(ctx
, cpuctx
, EVENT_PINNED
);
1576 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
);
1577 ctx_sched_in(ctx
, cpuctx
, EVENT_FLEXIBLE
);
1579 cpuctx
->task_ctx
= ctx
;
1582 * Since these rotations are per-cpu, we need to ensure the
1583 * cpu-context we got scheduled on is actually rotating.
1585 perf_pmu_rotate_start(ctx
->pmu
);
1586 perf_pmu_enable(ctx
->pmu
);
1590 * Called from scheduler to add the events of the current task
1591 * with interrupts disabled.
1593 * We restore the event value and then enable it.
1595 * This does not protect us against NMI, but enable()
1596 * sets the enabled bit in the control field of event _before_
1597 * accessing the event control register. If a NMI hits, then it will
1598 * keep the event running.
1600 void __perf_event_task_sched_in(struct task_struct
*task
)
1602 struct perf_event_context
*ctx
;
1605 for_each_task_context_nr(ctxn
) {
1606 ctx
= task
->perf_event_ctxp
[ctxn
];
1610 perf_event_context_sched_in(ctx
);
1614 static u64
perf_calculate_period(struct perf_event
*event
, u64 nsec
, u64 count
)
1616 u64 frequency
= event
->attr
.sample_freq
;
1617 u64 sec
= NSEC_PER_SEC
;
1618 u64 divisor
, dividend
;
1620 int count_fls
, nsec_fls
, frequency_fls
, sec_fls
;
1622 count_fls
= fls64(count
);
1623 nsec_fls
= fls64(nsec
);
1624 frequency_fls
= fls64(frequency
);
1628 * We got @count in @nsec, with a target of sample_freq HZ
1629 * the target period becomes:
1632 * period = -------------------
1633 * @nsec * sample_freq
1638 * Reduce accuracy by one bit such that @a and @b converge
1639 * to a similar magnitude.
1641 #define REDUCE_FLS(a, b) \
1643 if (a##_fls > b##_fls) { \
1653 * Reduce accuracy until either term fits in a u64, then proceed with
1654 * the other, so that finally we can do a u64/u64 division.
1656 while (count_fls
+ sec_fls
> 64 && nsec_fls
+ frequency_fls
> 64) {
1657 REDUCE_FLS(nsec
, frequency
);
1658 REDUCE_FLS(sec
, count
);
1661 if (count_fls
+ sec_fls
> 64) {
1662 divisor
= nsec
* frequency
;
1664 while (count_fls
+ sec_fls
> 64) {
1665 REDUCE_FLS(count
, sec
);
1669 dividend
= count
* sec
;
1671 dividend
= count
* sec
;
1673 while (nsec_fls
+ frequency_fls
> 64) {
1674 REDUCE_FLS(nsec
, frequency
);
1678 divisor
= nsec
* frequency
;
1684 return div64_u64(dividend
, divisor
);
1687 static void perf_adjust_period(struct perf_event
*event
, u64 nsec
, u64 count
)
1689 struct hw_perf_event
*hwc
= &event
->hw
;
1690 s64 period
, sample_period
;
1693 period
= perf_calculate_period(event
, nsec
, count
);
1695 delta
= (s64
)(period
- hwc
->sample_period
);
1696 delta
= (delta
+ 7) / 8; /* low pass filter */
1698 sample_period
= hwc
->sample_period
+ delta
;
1703 hwc
->sample_period
= sample_period
;
1705 if (local64_read(&hwc
->period_left
) > 8*sample_period
) {
1706 event
->pmu
->stop(event
, PERF_EF_UPDATE
);
1707 local64_set(&hwc
->period_left
, 0);
1708 event
->pmu
->start(event
, PERF_EF_RELOAD
);
1712 static void perf_ctx_adjust_freq(struct perf_event_context
*ctx
, u64 period
)
1714 struct perf_event
*event
;
1715 struct hw_perf_event
*hwc
;
1716 u64 interrupts
, now
;
1719 raw_spin_lock(&ctx
->lock
);
1720 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
1721 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
1724 if (!event_filter_match(event
))
1729 interrupts
= hwc
->interrupts
;
1730 hwc
->interrupts
= 0;
1733 * unthrottle events on the tick
1735 if (interrupts
== MAX_INTERRUPTS
) {
1736 perf_log_throttle(event
, 1);
1737 event
->pmu
->start(event
, 0);
1740 if (!event
->attr
.freq
|| !event
->attr
.sample_freq
)
1743 event
->pmu
->read(event
);
1744 now
= local64_read(&event
->count
);
1745 delta
= now
- hwc
->freq_count_stamp
;
1746 hwc
->freq_count_stamp
= now
;
1749 perf_adjust_period(event
, period
, delta
);
1751 raw_spin_unlock(&ctx
->lock
);
1755 * Round-robin a context's events:
1757 static void rotate_ctx(struct perf_event_context
*ctx
)
1759 raw_spin_lock(&ctx
->lock
);
1762 * Rotate the first entry last of non-pinned groups. Rotation might be
1763 * disabled by the inheritance code.
1765 if (!ctx
->rotate_disable
)
1766 list_rotate_left(&ctx
->flexible_groups
);
1768 raw_spin_unlock(&ctx
->lock
);
1772 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1773 * because they're strictly cpu affine and rotate_start is called with IRQs
1774 * disabled, while rotate_context is called from IRQ context.
1776 static void perf_rotate_context(struct perf_cpu_context
*cpuctx
)
1778 u64 interval
= (u64
)cpuctx
->jiffies_interval
* TICK_NSEC
;
1779 struct perf_event_context
*ctx
= NULL
;
1780 int rotate
= 0, remove
= 1;
1782 if (cpuctx
->ctx
.nr_events
) {
1784 if (cpuctx
->ctx
.nr_events
!= cpuctx
->ctx
.nr_active
)
1788 ctx
= cpuctx
->task_ctx
;
1789 if (ctx
&& ctx
->nr_events
) {
1791 if (ctx
->nr_events
!= ctx
->nr_active
)
1795 perf_pmu_disable(cpuctx
->ctx
.pmu
);
1796 perf_ctx_adjust_freq(&cpuctx
->ctx
, interval
);
1798 perf_ctx_adjust_freq(ctx
, interval
);
1803 cpu_ctx_sched_out(cpuctx
, EVENT_FLEXIBLE
);
1805 task_ctx_sched_out(ctx
, EVENT_FLEXIBLE
);
1807 rotate_ctx(&cpuctx
->ctx
);
1811 cpu_ctx_sched_in(cpuctx
, EVENT_FLEXIBLE
);
1813 task_ctx_sched_in(ctx
, EVENT_FLEXIBLE
);
1817 list_del_init(&cpuctx
->rotation_list
);
1819 perf_pmu_enable(cpuctx
->ctx
.pmu
);
1822 void perf_event_task_tick(void)
1824 struct list_head
*head
= &__get_cpu_var(rotation_list
);
1825 struct perf_cpu_context
*cpuctx
, *tmp
;
1827 WARN_ON(!irqs_disabled());
1829 list_for_each_entry_safe(cpuctx
, tmp
, head
, rotation_list
) {
1830 if (cpuctx
->jiffies_interval
== 1 ||
1831 !(jiffies
% cpuctx
->jiffies_interval
))
1832 perf_rotate_context(cpuctx
);
1836 static int event_enable_on_exec(struct perf_event
*event
,
1837 struct perf_event_context
*ctx
)
1839 if (!event
->attr
.enable_on_exec
)
1842 event
->attr
.enable_on_exec
= 0;
1843 if (event
->state
>= PERF_EVENT_STATE_INACTIVE
)
1846 __perf_event_mark_enabled(event
, ctx
);
1852 * Enable all of a task's events that have been marked enable-on-exec.
1853 * This expects task == current.
1855 static void perf_event_enable_on_exec(struct perf_event_context
*ctx
)
1857 struct perf_event
*event
;
1858 unsigned long flags
;
1862 local_irq_save(flags
);
1863 if (!ctx
|| !ctx
->nr_events
)
1866 task_ctx_sched_out(ctx
, EVENT_ALL
);
1868 raw_spin_lock(&ctx
->lock
);
1870 list_for_each_entry(event
, &ctx
->pinned_groups
, group_entry
) {
1871 ret
= event_enable_on_exec(event
, ctx
);
1876 list_for_each_entry(event
, &ctx
->flexible_groups
, group_entry
) {
1877 ret
= event_enable_on_exec(event
, ctx
);
1883 * Unclone this context if we enabled any event.
1888 raw_spin_unlock(&ctx
->lock
);
1890 perf_event_context_sched_in(ctx
);
1892 local_irq_restore(flags
);
1896 * Cross CPU call to read the hardware event
1898 static void __perf_event_read(void *info
)
1900 struct perf_event
*event
= info
;
1901 struct perf_event_context
*ctx
= event
->ctx
;
1902 struct perf_cpu_context
*cpuctx
= __get_cpu_context(ctx
);
1905 * If this is a task context, we need to check whether it is
1906 * the current task context of this cpu. If not it has been
1907 * scheduled out before the smp call arrived. In that case
1908 * event->count would have been updated to a recent sample
1909 * when the event was scheduled out.
1911 if (ctx
->task
&& cpuctx
->task_ctx
!= ctx
)
1914 raw_spin_lock(&ctx
->lock
);
1916 update_context_time(ctx
);
1917 update_event_times(event
);
1918 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
1919 event
->pmu
->read(event
);
1920 raw_spin_unlock(&ctx
->lock
);
1923 static inline u64
perf_event_count(struct perf_event
*event
)
1925 return local64_read(&event
->count
) + atomic64_read(&event
->child_count
);
1928 static u64
perf_event_read(struct perf_event
*event
)
1931 * If event is enabled and currently active on a CPU, update the
1932 * value in the event structure:
1934 if (event
->state
== PERF_EVENT_STATE_ACTIVE
) {
1935 smp_call_function_single(event
->oncpu
,
1936 __perf_event_read
, event
, 1);
1937 } else if (event
->state
== PERF_EVENT_STATE_INACTIVE
) {
1938 struct perf_event_context
*ctx
= event
->ctx
;
1939 unsigned long flags
;
1941 raw_spin_lock_irqsave(&ctx
->lock
, flags
);
1943 * may read while context is not active
1944 * (e.g., thread is blocked), in that case
1945 * we cannot update context time
1948 update_context_time(ctx
);
1949 update_event_times(event
);
1950 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
1953 return perf_event_count(event
);
1960 struct callchain_cpus_entries
{
1961 struct rcu_head rcu_head
;
1962 struct perf_callchain_entry
*cpu_entries
[0];
1965 static DEFINE_PER_CPU(int, callchain_recursion
[PERF_NR_CONTEXTS
]);
1966 static atomic_t nr_callchain_events
;
1967 static DEFINE_MUTEX(callchain_mutex
);
1968 struct callchain_cpus_entries
*callchain_cpus_entries
;
1971 __weak
void perf_callchain_kernel(struct perf_callchain_entry
*entry
,
1972 struct pt_regs
*regs
)
1976 __weak
void perf_callchain_user(struct perf_callchain_entry
*entry
,
1977 struct pt_regs
*regs
)
1981 static void release_callchain_buffers_rcu(struct rcu_head
*head
)
1983 struct callchain_cpus_entries
*entries
;
1986 entries
= container_of(head
, struct callchain_cpus_entries
, rcu_head
);
1988 for_each_possible_cpu(cpu
)
1989 kfree(entries
->cpu_entries
[cpu
]);
1994 static void release_callchain_buffers(void)
1996 struct callchain_cpus_entries
*entries
;
1998 entries
= callchain_cpus_entries
;
1999 rcu_assign_pointer(callchain_cpus_entries
, NULL
);
2000 call_rcu(&entries
->rcu_head
, release_callchain_buffers_rcu
);
2003 static int alloc_callchain_buffers(void)
2007 struct callchain_cpus_entries
*entries
;
2010 * We can't use the percpu allocation API for data that can be
2011 * accessed from NMI. Use a temporary manual per cpu allocation
2012 * until that gets sorted out.
2014 size
= offsetof(struct callchain_cpus_entries
, cpu_entries
[nr_cpu_ids
]);
2016 entries
= kzalloc(size
, GFP_KERNEL
);
2020 size
= sizeof(struct perf_callchain_entry
) * PERF_NR_CONTEXTS
;
2022 for_each_possible_cpu(cpu
) {
2023 entries
->cpu_entries
[cpu
] = kmalloc_node(size
, GFP_KERNEL
,
2025 if (!entries
->cpu_entries
[cpu
])
2029 rcu_assign_pointer(callchain_cpus_entries
, entries
);
2034 for_each_possible_cpu(cpu
)
2035 kfree(entries
->cpu_entries
[cpu
]);
2041 static int get_callchain_buffers(void)
2046 mutex_lock(&callchain_mutex
);
2048 count
= atomic_inc_return(&nr_callchain_events
);
2049 if (WARN_ON_ONCE(count
< 1)) {
2055 /* If the allocation failed, give up */
2056 if (!callchain_cpus_entries
)
2061 err
= alloc_callchain_buffers();
2063 release_callchain_buffers();
2065 mutex_unlock(&callchain_mutex
);
2070 static void put_callchain_buffers(void)
2072 if (atomic_dec_and_mutex_lock(&nr_callchain_events
, &callchain_mutex
)) {
2073 release_callchain_buffers();
2074 mutex_unlock(&callchain_mutex
);
2078 static int get_recursion_context(int *recursion
)
2086 else if (in_softirq())
2091 if (recursion
[rctx
])
2100 static inline void put_recursion_context(int *recursion
, int rctx
)
2106 static struct perf_callchain_entry
*get_callchain_entry(int *rctx
)
2109 struct callchain_cpus_entries
*entries
;
2111 *rctx
= get_recursion_context(__get_cpu_var(callchain_recursion
));
2115 entries
= rcu_dereference(callchain_cpus_entries
);
2119 cpu
= smp_processor_id();
2121 return &entries
->cpu_entries
[cpu
][*rctx
];
2125 put_callchain_entry(int rctx
)
2127 put_recursion_context(__get_cpu_var(callchain_recursion
), rctx
);
2130 static struct perf_callchain_entry
*perf_callchain(struct pt_regs
*regs
)
2133 struct perf_callchain_entry
*entry
;
2136 entry
= get_callchain_entry(&rctx
);
2145 if (!user_mode(regs
)) {
2146 perf_callchain_store(entry
, PERF_CONTEXT_KERNEL
);
2147 perf_callchain_kernel(entry
, regs
);
2149 regs
= task_pt_regs(current
);
2155 perf_callchain_store(entry
, PERF_CONTEXT_USER
);
2156 perf_callchain_user(entry
, regs
);
2160 put_callchain_entry(rctx
);
2166 * Initialize the perf_event context in a task_struct:
2168 static void __perf_event_init_context(struct perf_event_context
*ctx
)
2170 raw_spin_lock_init(&ctx
->lock
);
2171 mutex_init(&ctx
->mutex
);
2172 INIT_LIST_HEAD(&ctx
->pinned_groups
);
2173 INIT_LIST_HEAD(&ctx
->flexible_groups
);
2174 INIT_LIST_HEAD(&ctx
->event_list
);
2175 atomic_set(&ctx
->refcount
, 1);
2178 static struct perf_event_context
*
2179 alloc_perf_context(struct pmu
*pmu
, struct task_struct
*task
)
2181 struct perf_event_context
*ctx
;
2183 ctx
= kzalloc(sizeof(struct perf_event_context
), GFP_KERNEL
);
2187 __perf_event_init_context(ctx
);
2190 get_task_struct(task
);
2197 static struct task_struct
*
2198 find_lively_task_by_vpid(pid_t vpid
)
2200 struct task_struct
*task
;
2207 task
= find_task_by_vpid(vpid
);
2209 get_task_struct(task
);
2213 return ERR_PTR(-ESRCH
);
2215 /* Reuse ptrace permission checks for now. */
2217 if (!ptrace_may_access(task
, PTRACE_MODE_READ
))
2222 put_task_struct(task
);
2223 return ERR_PTR(err
);
2227 static struct perf_event_context
*
2228 find_get_context(struct pmu
*pmu
, struct task_struct
*task
, int cpu
)
2230 struct perf_event_context
*ctx
;
2231 struct perf_cpu_context
*cpuctx
;
2232 unsigned long flags
;
2236 /* Must be root to operate on a CPU event: */
2237 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN
))
2238 return ERR_PTR(-EACCES
);
2241 * We could be clever and allow to attach a event to an
2242 * offline CPU and activate it when the CPU comes up, but
2245 if (!cpu_online(cpu
))
2246 return ERR_PTR(-ENODEV
);
2248 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
2256 ctxn
= pmu
->task_ctx_nr
;
2261 ctx
= perf_lock_task_context(task
, ctxn
, &flags
);
2264 raw_spin_unlock_irqrestore(&ctx
->lock
, flags
);
2268 ctx
= alloc_perf_context(pmu
, task
);
2276 mutex_lock(&task
->perf_event_mutex
);
2278 * If it has already passed perf_event_exit_task().
2279 * we must see PF_EXITING, it takes this mutex too.
2281 if (task
->flags
& PF_EXITING
)
2283 else if (task
->perf_event_ctxp
[ctxn
])
2286 rcu_assign_pointer(task
->perf_event_ctxp
[ctxn
], ctx
);
2287 mutex_unlock(&task
->perf_event_mutex
);
2289 if (unlikely(err
)) {
2290 put_task_struct(task
);
2302 return ERR_PTR(err
);
2305 static void perf_event_free_filter(struct perf_event
*event
);
2307 static void free_event_rcu(struct rcu_head
*head
)
2309 struct perf_event
*event
;
2311 event
= container_of(head
, struct perf_event
, rcu_head
);
2313 put_pid_ns(event
->ns
);
2314 perf_event_free_filter(event
);
2318 static void perf_buffer_put(struct perf_buffer
*buffer
);
2320 static void free_event(struct perf_event
*event
)
2322 irq_work_sync(&event
->pending
);
2324 if (!event
->parent
) {
2325 if (event
->attach_state
& PERF_ATTACH_TASK
)
2326 jump_label_dec(&perf_task_events
);
2327 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
2328 atomic_dec(&nr_mmap_events
);
2329 if (event
->attr
.comm
)
2330 atomic_dec(&nr_comm_events
);
2331 if (event
->attr
.task
)
2332 atomic_dec(&nr_task_events
);
2333 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
)
2334 put_callchain_buffers();
2337 if (event
->buffer
) {
2338 perf_buffer_put(event
->buffer
);
2339 event
->buffer
= NULL
;
2343 event
->destroy(event
);
2346 put_ctx(event
->ctx
);
2348 call_rcu(&event
->rcu_head
, free_event_rcu
);
2351 int perf_event_release_kernel(struct perf_event
*event
)
2353 struct perf_event_context
*ctx
= event
->ctx
;
2356 * Remove from the PMU, can't get re-enabled since we got
2357 * here because the last ref went.
2359 perf_event_disable(event
);
2361 WARN_ON_ONCE(ctx
->parent_ctx
);
2363 * There are two ways this annotation is useful:
2365 * 1) there is a lock recursion from perf_event_exit_task
2366 * see the comment there.
2368 * 2) there is a lock-inversion with mmap_sem through
2369 * perf_event_read_group(), which takes faults while
2370 * holding ctx->mutex, however this is called after
2371 * the last filedesc died, so there is no possibility
2372 * to trigger the AB-BA case.
2374 mutex_lock_nested(&ctx
->mutex
, SINGLE_DEPTH_NESTING
);
2375 raw_spin_lock_irq(&ctx
->lock
);
2376 perf_group_detach(event
);
2377 list_del_event(event
, ctx
);
2378 raw_spin_unlock_irq(&ctx
->lock
);
2379 mutex_unlock(&ctx
->mutex
);
2385 EXPORT_SYMBOL_GPL(perf_event_release_kernel
);
2388 * Called when the last reference to the file is gone.
2390 static int perf_release(struct inode
*inode
, struct file
*file
)
2392 struct perf_event
*event
= file
->private_data
;
2393 struct task_struct
*owner
;
2395 file
->private_data
= NULL
;
2398 owner
= ACCESS_ONCE(event
->owner
);
2400 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2401 * !owner it means the list deletion is complete and we can indeed
2402 * free this event, otherwise we need to serialize on
2403 * owner->perf_event_mutex.
2405 smp_read_barrier_depends();
2408 * Since delayed_put_task_struct() also drops the last
2409 * task reference we can safely take a new reference
2410 * while holding the rcu_read_lock().
2412 get_task_struct(owner
);
2417 mutex_lock(&owner
->perf_event_mutex
);
2419 * We have to re-check the event->owner field, if it is cleared
2420 * we raced with perf_event_exit_task(), acquiring the mutex
2421 * ensured they're done, and we can proceed with freeing the
2425 list_del_init(&event
->owner_entry
);
2426 mutex_unlock(&owner
->perf_event_mutex
);
2427 put_task_struct(owner
);
2430 return perf_event_release_kernel(event
);
2433 u64
perf_event_read_value(struct perf_event
*event
, u64
*enabled
, u64
*running
)
2435 struct perf_event
*child
;
2441 mutex_lock(&event
->child_mutex
);
2442 total
+= perf_event_read(event
);
2443 *enabled
+= event
->total_time_enabled
+
2444 atomic64_read(&event
->child_total_time_enabled
);
2445 *running
+= event
->total_time_running
+
2446 atomic64_read(&event
->child_total_time_running
);
2448 list_for_each_entry(child
, &event
->child_list
, child_list
) {
2449 total
+= perf_event_read(child
);
2450 *enabled
+= child
->total_time_enabled
;
2451 *running
+= child
->total_time_running
;
2453 mutex_unlock(&event
->child_mutex
);
2457 EXPORT_SYMBOL_GPL(perf_event_read_value
);
2459 static int perf_event_read_group(struct perf_event
*event
,
2460 u64 read_format
, char __user
*buf
)
2462 struct perf_event
*leader
= event
->group_leader
, *sub
;
2463 int n
= 0, size
= 0, ret
= -EFAULT
;
2464 struct perf_event_context
*ctx
= leader
->ctx
;
2466 u64 count
, enabled
, running
;
2468 mutex_lock(&ctx
->mutex
);
2469 count
= perf_event_read_value(leader
, &enabled
, &running
);
2471 values
[n
++] = 1 + leader
->nr_siblings
;
2472 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
2473 values
[n
++] = enabled
;
2474 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
2475 values
[n
++] = running
;
2476 values
[n
++] = count
;
2477 if (read_format
& PERF_FORMAT_ID
)
2478 values
[n
++] = primary_event_id(leader
);
2480 size
= n
* sizeof(u64
);
2482 if (copy_to_user(buf
, values
, size
))
2487 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
2490 values
[n
++] = perf_event_read_value(sub
, &enabled
, &running
);
2491 if (read_format
& PERF_FORMAT_ID
)
2492 values
[n
++] = primary_event_id(sub
);
2494 size
= n
* sizeof(u64
);
2496 if (copy_to_user(buf
+ ret
, values
, size
)) {
2504 mutex_unlock(&ctx
->mutex
);
2509 static int perf_event_read_one(struct perf_event
*event
,
2510 u64 read_format
, char __user
*buf
)
2512 u64 enabled
, running
;
2516 values
[n
++] = perf_event_read_value(event
, &enabled
, &running
);
2517 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
2518 values
[n
++] = enabled
;
2519 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
2520 values
[n
++] = running
;
2521 if (read_format
& PERF_FORMAT_ID
)
2522 values
[n
++] = primary_event_id(event
);
2524 if (copy_to_user(buf
, values
, n
* sizeof(u64
)))
2527 return n
* sizeof(u64
);
2531 * Read the performance event - simple non blocking version for now
2534 perf_read_hw(struct perf_event
*event
, char __user
*buf
, size_t count
)
2536 u64 read_format
= event
->attr
.read_format
;
2540 * Return end-of-file for a read on a event that is in
2541 * error state (i.e. because it was pinned but it couldn't be
2542 * scheduled on to the CPU at some point).
2544 if (event
->state
== PERF_EVENT_STATE_ERROR
)
2547 if (count
< event
->read_size
)
2550 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2551 if (read_format
& PERF_FORMAT_GROUP
)
2552 ret
= perf_event_read_group(event
, read_format
, buf
);
2554 ret
= perf_event_read_one(event
, read_format
, buf
);
2560 perf_read(struct file
*file
, char __user
*buf
, size_t count
, loff_t
*ppos
)
2562 struct perf_event
*event
= file
->private_data
;
2564 return perf_read_hw(event
, buf
, count
);
2567 static unsigned int perf_poll(struct file
*file
, poll_table
*wait
)
2569 struct perf_event
*event
= file
->private_data
;
2570 struct perf_buffer
*buffer
;
2571 unsigned int events
= POLL_HUP
;
2574 buffer
= rcu_dereference(event
->buffer
);
2576 events
= atomic_xchg(&buffer
->poll
, 0);
2579 poll_wait(file
, &event
->waitq
, wait
);
2584 static void perf_event_reset(struct perf_event
*event
)
2586 (void)perf_event_read(event
);
2587 local64_set(&event
->count
, 0);
2588 perf_event_update_userpage(event
);
2592 * Holding the top-level event's child_mutex means that any
2593 * descendant process that has inherited this event will block
2594 * in sync_child_event if it goes to exit, thus satisfying the
2595 * task existence requirements of perf_event_enable/disable.
2597 static void perf_event_for_each_child(struct perf_event
*event
,
2598 void (*func
)(struct perf_event
*))
2600 struct perf_event
*child
;
2602 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
2603 mutex_lock(&event
->child_mutex
);
2605 list_for_each_entry(child
, &event
->child_list
, child_list
)
2607 mutex_unlock(&event
->child_mutex
);
2610 static void perf_event_for_each(struct perf_event
*event
,
2611 void (*func
)(struct perf_event
*))
2613 struct perf_event_context
*ctx
= event
->ctx
;
2614 struct perf_event
*sibling
;
2616 WARN_ON_ONCE(ctx
->parent_ctx
);
2617 mutex_lock(&ctx
->mutex
);
2618 event
= event
->group_leader
;
2620 perf_event_for_each_child(event
, func
);
2622 list_for_each_entry(sibling
, &event
->sibling_list
, group_entry
)
2623 perf_event_for_each_child(event
, func
);
2624 mutex_unlock(&ctx
->mutex
);
2627 static int perf_event_period(struct perf_event
*event
, u64 __user
*arg
)
2629 struct perf_event_context
*ctx
= event
->ctx
;
2633 if (!is_sampling_event(event
))
2636 if (copy_from_user(&value
, arg
, sizeof(value
)))
2642 raw_spin_lock_irq(&ctx
->lock
);
2643 if (event
->attr
.freq
) {
2644 if (value
> sysctl_perf_event_sample_rate
) {
2649 event
->attr
.sample_freq
= value
;
2651 event
->attr
.sample_period
= value
;
2652 event
->hw
.sample_period
= value
;
2655 raw_spin_unlock_irq(&ctx
->lock
);
2660 static const struct file_operations perf_fops
;
2662 static struct perf_event
*perf_fget_light(int fd
, int *fput_needed
)
2666 file
= fget_light(fd
, fput_needed
);
2668 return ERR_PTR(-EBADF
);
2670 if (file
->f_op
!= &perf_fops
) {
2671 fput_light(file
, *fput_needed
);
2673 return ERR_PTR(-EBADF
);
2676 return file
->private_data
;
2679 static int perf_event_set_output(struct perf_event
*event
,
2680 struct perf_event
*output_event
);
2681 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
);
2683 static long perf_ioctl(struct file
*file
, unsigned int cmd
, unsigned long arg
)
2685 struct perf_event
*event
= file
->private_data
;
2686 void (*func
)(struct perf_event
*);
2690 case PERF_EVENT_IOC_ENABLE
:
2691 func
= perf_event_enable
;
2693 case PERF_EVENT_IOC_DISABLE
:
2694 func
= perf_event_disable
;
2696 case PERF_EVENT_IOC_RESET
:
2697 func
= perf_event_reset
;
2700 case PERF_EVENT_IOC_REFRESH
:
2701 return perf_event_refresh(event
, arg
);
2703 case PERF_EVENT_IOC_PERIOD
:
2704 return perf_event_period(event
, (u64 __user
*)arg
);
2706 case PERF_EVENT_IOC_SET_OUTPUT
:
2708 struct perf_event
*output_event
= NULL
;
2709 int fput_needed
= 0;
2713 output_event
= perf_fget_light(arg
, &fput_needed
);
2714 if (IS_ERR(output_event
))
2715 return PTR_ERR(output_event
);
2718 ret
= perf_event_set_output(event
, output_event
);
2720 fput_light(output_event
->filp
, fput_needed
);
2725 case PERF_EVENT_IOC_SET_FILTER
:
2726 return perf_event_set_filter(event
, (void __user
*)arg
);
2732 if (flags
& PERF_IOC_FLAG_GROUP
)
2733 perf_event_for_each(event
, func
);
2735 perf_event_for_each_child(event
, func
);
2740 int perf_event_task_enable(void)
2742 struct perf_event
*event
;
2744 mutex_lock(¤t
->perf_event_mutex
);
2745 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2746 perf_event_for_each_child(event
, perf_event_enable
);
2747 mutex_unlock(¤t
->perf_event_mutex
);
2752 int perf_event_task_disable(void)
2754 struct perf_event
*event
;
2756 mutex_lock(¤t
->perf_event_mutex
);
2757 list_for_each_entry(event
, ¤t
->perf_event_list
, owner_entry
)
2758 perf_event_for_each_child(event
, perf_event_disable
);
2759 mutex_unlock(¤t
->perf_event_mutex
);
2764 #ifndef PERF_EVENT_INDEX_OFFSET
2765 # define PERF_EVENT_INDEX_OFFSET 0
2768 static int perf_event_index(struct perf_event
*event
)
2770 if (event
->hw
.state
& PERF_HES_STOPPED
)
2773 if (event
->state
!= PERF_EVENT_STATE_ACTIVE
)
2776 return event
->hw
.idx
+ 1 - PERF_EVENT_INDEX_OFFSET
;
2780 * Callers need to ensure there can be no nesting of this function, otherwise
2781 * the seqlock logic goes bad. We can not serialize this because the arch
2782 * code calls this from NMI context.
2784 void perf_event_update_userpage(struct perf_event
*event
)
2786 struct perf_event_mmap_page
*userpg
;
2787 struct perf_buffer
*buffer
;
2790 buffer
= rcu_dereference(event
->buffer
);
2794 userpg
= buffer
->user_page
;
2797 * Disable preemption so as to not let the corresponding user-space
2798 * spin too long if we get preempted.
2803 userpg
->index
= perf_event_index(event
);
2804 userpg
->offset
= perf_event_count(event
);
2805 if (event
->state
== PERF_EVENT_STATE_ACTIVE
)
2806 userpg
->offset
-= local64_read(&event
->hw
.prev_count
);
2808 userpg
->time_enabled
= event
->total_time_enabled
+
2809 atomic64_read(&event
->child_total_time_enabled
);
2811 userpg
->time_running
= event
->total_time_running
+
2812 atomic64_read(&event
->child_total_time_running
);
2821 static unsigned long perf_data_size(struct perf_buffer
*buffer
);
2824 perf_buffer_init(struct perf_buffer
*buffer
, long watermark
, int flags
)
2826 long max_size
= perf_data_size(buffer
);
2829 buffer
->watermark
= min(max_size
, watermark
);
2831 if (!buffer
->watermark
)
2832 buffer
->watermark
= max_size
/ 2;
2834 if (flags
& PERF_BUFFER_WRITABLE
)
2835 buffer
->writable
= 1;
2837 atomic_set(&buffer
->refcount
, 1);
2840 #ifndef CONFIG_PERF_USE_VMALLOC
2843 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2846 static struct page
*
2847 perf_mmap_to_page(struct perf_buffer
*buffer
, unsigned long pgoff
)
2849 if (pgoff
> buffer
->nr_pages
)
2853 return virt_to_page(buffer
->user_page
);
2855 return virt_to_page(buffer
->data_pages
[pgoff
- 1]);
2858 static void *perf_mmap_alloc_page(int cpu
)
2863 node
= (cpu
== -1) ? cpu
: cpu_to_node(cpu
);
2864 page
= alloc_pages_node(node
, GFP_KERNEL
| __GFP_ZERO
, 0);
2868 return page_address(page
);
2871 static struct perf_buffer
*
2872 perf_buffer_alloc(int nr_pages
, long watermark
, int cpu
, int flags
)
2874 struct perf_buffer
*buffer
;
2878 size
= sizeof(struct perf_buffer
);
2879 size
+= nr_pages
* sizeof(void *);
2881 buffer
= kzalloc(size
, GFP_KERNEL
);
2885 buffer
->user_page
= perf_mmap_alloc_page(cpu
);
2886 if (!buffer
->user_page
)
2887 goto fail_user_page
;
2889 for (i
= 0; i
< nr_pages
; i
++) {
2890 buffer
->data_pages
[i
] = perf_mmap_alloc_page(cpu
);
2891 if (!buffer
->data_pages
[i
])
2892 goto fail_data_pages
;
2895 buffer
->nr_pages
= nr_pages
;
2897 perf_buffer_init(buffer
, watermark
, flags
);
2902 for (i
--; i
>= 0; i
--)
2903 free_page((unsigned long)buffer
->data_pages
[i
]);
2905 free_page((unsigned long)buffer
->user_page
);
2914 static void perf_mmap_free_page(unsigned long addr
)
2916 struct page
*page
= virt_to_page((void *)addr
);
2918 page
->mapping
= NULL
;
2922 static void perf_buffer_free(struct perf_buffer
*buffer
)
2926 perf_mmap_free_page((unsigned long)buffer
->user_page
);
2927 for (i
= 0; i
< buffer
->nr_pages
; i
++)
2928 perf_mmap_free_page((unsigned long)buffer
->data_pages
[i
]);
2932 static inline int page_order(struct perf_buffer
*buffer
)
2940 * Back perf_mmap() with vmalloc memory.
2942 * Required for architectures that have d-cache aliasing issues.
2945 static inline int page_order(struct perf_buffer
*buffer
)
2947 return buffer
->page_order
;
2950 static struct page
*
2951 perf_mmap_to_page(struct perf_buffer
*buffer
, unsigned long pgoff
)
2953 if (pgoff
> (1UL << page_order(buffer
)))
2956 return vmalloc_to_page((void *)buffer
->user_page
+ pgoff
* PAGE_SIZE
);
2959 static void perf_mmap_unmark_page(void *addr
)
2961 struct page
*page
= vmalloc_to_page(addr
);
2963 page
->mapping
= NULL
;
2966 static void perf_buffer_free_work(struct work_struct
*work
)
2968 struct perf_buffer
*buffer
;
2972 buffer
= container_of(work
, struct perf_buffer
, work
);
2973 nr
= 1 << page_order(buffer
);
2975 base
= buffer
->user_page
;
2976 for (i
= 0; i
< nr
+ 1; i
++)
2977 perf_mmap_unmark_page(base
+ (i
* PAGE_SIZE
));
2983 static void perf_buffer_free(struct perf_buffer
*buffer
)
2985 schedule_work(&buffer
->work
);
2988 static struct perf_buffer
*
2989 perf_buffer_alloc(int nr_pages
, long watermark
, int cpu
, int flags
)
2991 struct perf_buffer
*buffer
;
2995 size
= sizeof(struct perf_buffer
);
2996 size
+= sizeof(void *);
2998 buffer
= kzalloc(size
, GFP_KERNEL
);
3002 INIT_WORK(&buffer
->work
, perf_buffer_free_work
);
3004 all_buf
= vmalloc_user((nr_pages
+ 1) * PAGE_SIZE
);
3008 buffer
->user_page
= all_buf
;
3009 buffer
->data_pages
[0] = all_buf
+ PAGE_SIZE
;
3010 buffer
->page_order
= ilog2(nr_pages
);
3011 buffer
->nr_pages
= 1;
3013 perf_buffer_init(buffer
, watermark
, flags
);
3026 static unsigned long perf_data_size(struct perf_buffer
*buffer
)
3028 return buffer
->nr_pages
<< (PAGE_SHIFT
+ page_order(buffer
));
3031 static int perf_mmap_fault(struct vm_area_struct
*vma
, struct vm_fault
*vmf
)
3033 struct perf_event
*event
= vma
->vm_file
->private_data
;
3034 struct perf_buffer
*buffer
;
3035 int ret
= VM_FAULT_SIGBUS
;
3037 if (vmf
->flags
& FAULT_FLAG_MKWRITE
) {
3038 if (vmf
->pgoff
== 0)
3044 buffer
= rcu_dereference(event
->buffer
);
3048 if (vmf
->pgoff
&& (vmf
->flags
& FAULT_FLAG_WRITE
))
3051 vmf
->page
= perf_mmap_to_page(buffer
, vmf
->pgoff
);
3055 get_page(vmf
->page
);
3056 vmf
->page
->mapping
= vma
->vm_file
->f_mapping
;
3057 vmf
->page
->index
= vmf
->pgoff
;
3066 static void perf_buffer_free_rcu(struct rcu_head
*rcu_head
)
3068 struct perf_buffer
*buffer
;
3070 buffer
= container_of(rcu_head
, struct perf_buffer
, rcu_head
);
3071 perf_buffer_free(buffer
);
3074 static struct perf_buffer
*perf_buffer_get(struct perf_event
*event
)
3076 struct perf_buffer
*buffer
;
3079 buffer
= rcu_dereference(event
->buffer
);
3081 if (!atomic_inc_not_zero(&buffer
->refcount
))
3089 static void perf_buffer_put(struct perf_buffer
*buffer
)
3091 if (!atomic_dec_and_test(&buffer
->refcount
))
3094 call_rcu(&buffer
->rcu_head
, perf_buffer_free_rcu
);
3097 static void perf_mmap_open(struct vm_area_struct
*vma
)
3099 struct perf_event
*event
= vma
->vm_file
->private_data
;
3101 atomic_inc(&event
->mmap_count
);
3104 static void perf_mmap_close(struct vm_area_struct
*vma
)
3106 struct perf_event
*event
= vma
->vm_file
->private_data
;
3108 if (atomic_dec_and_mutex_lock(&event
->mmap_count
, &event
->mmap_mutex
)) {
3109 unsigned long size
= perf_data_size(event
->buffer
);
3110 struct user_struct
*user
= event
->mmap_user
;
3111 struct perf_buffer
*buffer
= event
->buffer
;
3113 atomic_long_sub((size
>> PAGE_SHIFT
) + 1, &user
->locked_vm
);
3114 vma
->vm_mm
->locked_vm
-= event
->mmap_locked
;
3115 rcu_assign_pointer(event
->buffer
, NULL
);
3116 mutex_unlock(&event
->mmap_mutex
);
3118 perf_buffer_put(buffer
);
3123 static const struct vm_operations_struct perf_mmap_vmops
= {
3124 .open
= perf_mmap_open
,
3125 .close
= perf_mmap_close
,
3126 .fault
= perf_mmap_fault
,
3127 .page_mkwrite
= perf_mmap_fault
,
3130 static int perf_mmap(struct file
*file
, struct vm_area_struct
*vma
)
3132 struct perf_event
*event
= file
->private_data
;
3133 unsigned long user_locked
, user_lock_limit
;
3134 struct user_struct
*user
= current_user();
3135 unsigned long locked
, lock_limit
;
3136 struct perf_buffer
*buffer
;
3137 unsigned long vma_size
;
3138 unsigned long nr_pages
;
3139 long user_extra
, extra
;
3140 int ret
= 0, flags
= 0;
3143 * Don't allow mmap() of inherited per-task counters. This would
3144 * create a performance issue due to all children writing to the
3147 if (event
->cpu
== -1 && event
->attr
.inherit
)
3150 if (!(vma
->vm_flags
& VM_SHARED
))
3153 vma_size
= vma
->vm_end
- vma
->vm_start
;
3154 nr_pages
= (vma_size
/ PAGE_SIZE
) - 1;
3157 * If we have buffer pages ensure they're a power-of-two number, so we
3158 * can do bitmasks instead of modulo.
3160 if (nr_pages
!= 0 && !is_power_of_2(nr_pages
))
3163 if (vma_size
!= PAGE_SIZE
* (1 + nr_pages
))
3166 if (vma
->vm_pgoff
!= 0)
3169 WARN_ON_ONCE(event
->ctx
->parent_ctx
);
3170 mutex_lock(&event
->mmap_mutex
);
3171 if (event
->buffer
) {
3172 if (event
->buffer
->nr_pages
== nr_pages
)
3173 atomic_inc(&event
->buffer
->refcount
);
3179 user_extra
= nr_pages
+ 1;
3180 user_lock_limit
= sysctl_perf_event_mlock
>> (PAGE_SHIFT
- 10);
3183 * Increase the limit linearly with more CPUs:
3185 user_lock_limit
*= num_online_cpus();
3187 user_locked
= atomic_long_read(&user
->locked_vm
) + user_extra
;
3190 if (user_locked
> user_lock_limit
)
3191 extra
= user_locked
- user_lock_limit
;
3193 lock_limit
= rlimit(RLIMIT_MEMLOCK
);
3194 lock_limit
>>= PAGE_SHIFT
;
3195 locked
= vma
->vm_mm
->locked_vm
+ extra
;
3197 if ((locked
> lock_limit
) && perf_paranoid_tracepoint_raw() &&
3198 !capable(CAP_IPC_LOCK
)) {
3203 WARN_ON(event
->buffer
);
3205 if (vma
->vm_flags
& VM_WRITE
)
3206 flags
|= PERF_BUFFER_WRITABLE
;
3208 buffer
= perf_buffer_alloc(nr_pages
, event
->attr
.wakeup_watermark
,
3214 rcu_assign_pointer(event
->buffer
, buffer
);
3216 atomic_long_add(user_extra
, &user
->locked_vm
);
3217 event
->mmap_locked
= extra
;
3218 event
->mmap_user
= get_current_user();
3219 vma
->vm_mm
->locked_vm
+= event
->mmap_locked
;
3223 atomic_inc(&event
->mmap_count
);
3224 mutex_unlock(&event
->mmap_mutex
);
3226 vma
->vm_flags
|= VM_RESERVED
;
3227 vma
->vm_ops
= &perf_mmap_vmops
;
3232 static int perf_fasync(int fd
, struct file
*filp
, int on
)
3234 struct inode
*inode
= filp
->f_path
.dentry
->d_inode
;
3235 struct perf_event
*event
= filp
->private_data
;
3238 mutex_lock(&inode
->i_mutex
);
3239 retval
= fasync_helper(fd
, filp
, on
, &event
->fasync
);
3240 mutex_unlock(&inode
->i_mutex
);
3248 static const struct file_operations perf_fops
= {
3249 .llseek
= no_llseek
,
3250 .release
= perf_release
,
3253 .unlocked_ioctl
= perf_ioctl
,
3254 .compat_ioctl
= perf_ioctl
,
3256 .fasync
= perf_fasync
,
3262 * If there's data, ensure we set the poll() state and publish everything
3263 * to user-space before waking everybody up.
3266 void perf_event_wakeup(struct perf_event
*event
)
3268 wake_up_all(&event
->waitq
);
3270 if (event
->pending_kill
) {
3271 kill_fasync(&event
->fasync
, SIGIO
, event
->pending_kill
);
3272 event
->pending_kill
= 0;
3276 static void perf_pending_event(struct irq_work
*entry
)
3278 struct perf_event
*event
= container_of(entry
,
3279 struct perf_event
, pending
);
3281 if (event
->pending_disable
) {
3282 event
->pending_disable
= 0;
3283 __perf_event_disable(event
);
3286 if (event
->pending_wakeup
) {
3287 event
->pending_wakeup
= 0;
3288 perf_event_wakeup(event
);
3293 * We assume there is only KVM supporting the callbacks.
3294 * Later on, we might change it to a list if there is
3295 * another virtualization implementation supporting the callbacks.
3297 struct perf_guest_info_callbacks
*perf_guest_cbs
;
3299 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
3301 perf_guest_cbs
= cbs
;
3304 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks
);
3306 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks
*cbs
)
3308 perf_guest_cbs
= NULL
;
3311 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks
);
3316 static bool perf_output_space(struct perf_buffer
*buffer
, unsigned long tail
,
3317 unsigned long offset
, unsigned long head
)
3321 if (!buffer
->writable
)
3324 mask
= perf_data_size(buffer
) - 1;
3326 offset
= (offset
- tail
) & mask
;
3327 head
= (head
- tail
) & mask
;
3329 if ((int)(head
- offset
) < 0)
3335 static void perf_output_wakeup(struct perf_output_handle
*handle
)
3337 atomic_set(&handle
->buffer
->poll
, POLL_IN
);
3340 handle
->event
->pending_wakeup
= 1;
3341 irq_work_queue(&handle
->event
->pending
);
3343 perf_event_wakeup(handle
->event
);
3347 * We need to ensure a later event_id doesn't publish a head when a former
3348 * event isn't done writing. However since we need to deal with NMIs we
3349 * cannot fully serialize things.
3351 * We only publish the head (and generate a wakeup) when the outer-most
3354 static void perf_output_get_handle(struct perf_output_handle
*handle
)
3356 struct perf_buffer
*buffer
= handle
->buffer
;
3359 local_inc(&buffer
->nest
);
3360 handle
->wakeup
= local_read(&buffer
->wakeup
);
3363 static void perf_output_put_handle(struct perf_output_handle
*handle
)
3365 struct perf_buffer
*buffer
= handle
->buffer
;
3369 head
= local_read(&buffer
->head
);
3372 * IRQ/NMI can happen here, which means we can miss a head update.
3375 if (!local_dec_and_test(&buffer
->nest
))
3379 * Publish the known good head. Rely on the full barrier implied
3380 * by atomic_dec_and_test() order the buffer->head read and this
3383 buffer
->user_page
->data_head
= head
;
3386 * Now check if we missed an update, rely on the (compiler)
3387 * barrier in atomic_dec_and_test() to re-read buffer->head.
3389 if (unlikely(head
!= local_read(&buffer
->head
))) {
3390 local_inc(&buffer
->nest
);
3394 if (handle
->wakeup
!= local_read(&buffer
->wakeup
))
3395 perf_output_wakeup(handle
);
3401 __always_inline
void perf_output_copy(struct perf_output_handle
*handle
,
3402 const void *buf
, unsigned int len
)
3405 unsigned long size
= min_t(unsigned long, handle
->size
, len
);
3407 memcpy(handle
->addr
, buf
, size
);
3410 handle
->addr
+= size
;
3412 handle
->size
-= size
;
3413 if (!handle
->size
) {
3414 struct perf_buffer
*buffer
= handle
->buffer
;
3417 handle
->page
&= buffer
->nr_pages
- 1;
3418 handle
->addr
= buffer
->data_pages
[handle
->page
];
3419 handle
->size
= PAGE_SIZE
<< page_order(buffer
);
3424 static void __perf_event_header__init_id(struct perf_event_header
*header
,
3425 struct perf_sample_data
*data
,
3426 struct perf_event
*event
)
3428 u64 sample_type
= event
->attr
.sample_type
;
3430 data
->type
= sample_type
;
3431 header
->size
+= event
->id_header_size
;
3433 if (sample_type
& PERF_SAMPLE_TID
) {
3434 /* namespace issues */
3435 data
->tid_entry
.pid
= perf_event_pid(event
, current
);
3436 data
->tid_entry
.tid
= perf_event_tid(event
, current
);
3439 if (sample_type
& PERF_SAMPLE_TIME
)
3440 data
->time
= perf_clock();
3442 if (sample_type
& PERF_SAMPLE_ID
)
3443 data
->id
= primary_event_id(event
);
3445 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
3446 data
->stream_id
= event
->id
;
3448 if (sample_type
& PERF_SAMPLE_CPU
) {
3449 data
->cpu_entry
.cpu
= raw_smp_processor_id();
3450 data
->cpu_entry
.reserved
= 0;
3454 static void perf_event_header__init_id(struct perf_event_header
*header
,
3455 struct perf_sample_data
*data
,
3456 struct perf_event
*event
)
3458 if (event
->attr
.sample_id_all
)
3459 __perf_event_header__init_id(header
, data
, event
);
3462 static void __perf_event__output_id_sample(struct perf_output_handle
*handle
,
3463 struct perf_sample_data
*data
)
3465 u64 sample_type
= data
->type
;
3467 if (sample_type
& PERF_SAMPLE_TID
)
3468 perf_output_put(handle
, data
->tid_entry
);
3470 if (sample_type
& PERF_SAMPLE_TIME
)
3471 perf_output_put(handle
, data
->time
);
3473 if (sample_type
& PERF_SAMPLE_ID
)
3474 perf_output_put(handle
, data
->id
);
3476 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
3477 perf_output_put(handle
, data
->stream_id
);
3479 if (sample_type
& PERF_SAMPLE_CPU
)
3480 perf_output_put(handle
, data
->cpu_entry
);
3483 static void perf_event__output_id_sample(struct perf_event
*event
,
3484 struct perf_output_handle
*handle
,
3485 struct perf_sample_data
*sample
)
3487 if (event
->attr
.sample_id_all
)
3488 __perf_event__output_id_sample(handle
, sample
);
3491 int perf_output_begin(struct perf_output_handle
*handle
,
3492 struct perf_event
*event
, unsigned int size
,
3493 int nmi
, int sample
)
3495 struct perf_buffer
*buffer
;
3496 unsigned long tail
, offset
, head
;
3498 struct perf_sample_data sample_data
;
3500 struct perf_event_header header
;
3507 * For inherited events we send all the output towards the parent.
3510 event
= event
->parent
;
3512 buffer
= rcu_dereference(event
->buffer
);
3516 handle
->buffer
= buffer
;
3517 handle
->event
= event
;
3519 handle
->sample
= sample
;
3521 if (!buffer
->nr_pages
)
3524 have_lost
= local_read(&buffer
->lost
);
3526 lost_event
.header
.size
= sizeof(lost_event
);
3527 perf_event_header__init_id(&lost_event
.header
, &sample_data
,
3529 size
+= lost_event
.header
.size
;
3532 perf_output_get_handle(handle
);
3536 * Userspace could choose to issue a mb() before updating the
3537 * tail pointer. So that all reads will be completed before the
3540 tail
= ACCESS_ONCE(buffer
->user_page
->data_tail
);
3542 offset
= head
= local_read(&buffer
->head
);
3544 if (unlikely(!perf_output_space(buffer
, tail
, offset
, head
)))
3546 } while (local_cmpxchg(&buffer
->head
, offset
, head
) != offset
);
3548 if (head
- local_read(&buffer
->wakeup
) > buffer
->watermark
)
3549 local_add(buffer
->watermark
, &buffer
->wakeup
);
3551 handle
->page
= offset
>> (PAGE_SHIFT
+ page_order(buffer
));
3552 handle
->page
&= buffer
->nr_pages
- 1;
3553 handle
->size
= offset
& ((PAGE_SIZE
<< page_order(buffer
)) - 1);
3554 handle
->addr
= buffer
->data_pages
[handle
->page
];
3555 handle
->addr
+= handle
->size
;
3556 handle
->size
= (PAGE_SIZE
<< page_order(buffer
)) - handle
->size
;
3559 lost_event
.header
.type
= PERF_RECORD_LOST
;
3560 lost_event
.header
.misc
= 0;
3561 lost_event
.id
= event
->id
;
3562 lost_event
.lost
= local_xchg(&buffer
->lost
, 0);
3564 perf_output_put(handle
, lost_event
);
3565 perf_event__output_id_sample(event
, handle
, &sample_data
);
3571 local_inc(&buffer
->lost
);
3572 perf_output_put_handle(handle
);
3579 void perf_output_end(struct perf_output_handle
*handle
)
3581 struct perf_event
*event
= handle
->event
;
3582 struct perf_buffer
*buffer
= handle
->buffer
;
3584 int wakeup_events
= event
->attr
.wakeup_events
;
3586 if (handle
->sample
&& wakeup_events
) {
3587 int events
= local_inc_return(&buffer
->events
);
3588 if (events
>= wakeup_events
) {
3589 local_sub(wakeup_events
, &buffer
->events
);
3590 local_inc(&buffer
->wakeup
);
3594 perf_output_put_handle(handle
);
3598 static void perf_output_read_one(struct perf_output_handle
*handle
,
3599 struct perf_event
*event
,
3600 u64 enabled
, u64 running
)
3602 u64 read_format
= event
->attr
.read_format
;
3606 values
[n
++] = perf_event_count(event
);
3607 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
) {
3608 values
[n
++] = enabled
+
3609 atomic64_read(&event
->child_total_time_enabled
);
3611 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
) {
3612 values
[n
++] = running
+
3613 atomic64_read(&event
->child_total_time_running
);
3615 if (read_format
& PERF_FORMAT_ID
)
3616 values
[n
++] = primary_event_id(event
);
3618 perf_output_copy(handle
, values
, n
* sizeof(u64
));
3622 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3624 static void perf_output_read_group(struct perf_output_handle
*handle
,
3625 struct perf_event
*event
,
3626 u64 enabled
, u64 running
)
3628 struct perf_event
*leader
= event
->group_leader
, *sub
;
3629 u64 read_format
= event
->attr
.read_format
;
3633 values
[n
++] = 1 + leader
->nr_siblings
;
3635 if (read_format
& PERF_FORMAT_TOTAL_TIME_ENABLED
)
3636 values
[n
++] = enabled
;
3638 if (read_format
& PERF_FORMAT_TOTAL_TIME_RUNNING
)
3639 values
[n
++] = running
;
3641 if (leader
!= event
)
3642 leader
->pmu
->read(leader
);
3644 values
[n
++] = perf_event_count(leader
);
3645 if (read_format
& PERF_FORMAT_ID
)
3646 values
[n
++] = primary_event_id(leader
);
3648 perf_output_copy(handle
, values
, n
* sizeof(u64
));
3650 list_for_each_entry(sub
, &leader
->sibling_list
, group_entry
) {
3654 sub
->pmu
->read(sub
);
3656 values
[n
++] = perf_event_count(sub
);
3657 if (read_format
& PERF_FORMAT_ID
)
3658 values
[n
++] = primary_event_id(sub
);
3660 perf_output_copy(handle
, values
, n
* sizeof(u64
));
3664 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3665 PERF_FORMAT_TOTAL_TIME_RUNNING)
3667 static void perf_output_read(struct perf_output_handle
*handle
,
3668 struct perf_event
*event
)
3670 u64 enabled
= 0, running
= 0, now
, ctx_time
;
3671 u64 read_format
= event
->attr
.read_format
;
3674 * compute total_time_enabled, total_time_running
3675 * based on snapshot values taken when the event
3676 * was last scheduled in.
3678 * we cannot simply called update_context_time()
3679 * because of locking issue as we are called in
3682 if (read_format
& PERF_FORMAT_TOTAL_TIMES
) {
3684 ctx_time
= event
->shadow_ctx_time
+ now
;
3685 enabled
= ctx_time
- event
->tstamp_enabled
;
3686 running
= ctx_time
- event
->tstamp_running
;
3689 if (event
->attr
.read_format
& PERF_FORMAT_GROUP
)
3690 perf_output_read_group(handle
, event
, enabled
, running
);
3692 perf_output_read_one(handle
, event
, enabled
, running
);
3695 void perf_output_sample(struct perf_output_handle
*handle
,
3696 struct perf_event_header
*header
,
3697 struct perf_sample_data
*data
,
3698 struct perf_event
*event
)
3700 u64 sample_type
= data
->type
;
3702 perf_output_put(handle
, *header
);
3704 if (sample_type
& PERF_SAMPLE_IP
)
3705 perf_output_put(handle
, data
->ip
);
3707 if (sample_type
& PERF_SAMPLE_TID
)
3708 perf_output_put(handle
, data
->tid_entry
);
3710 if (sample_type
& PERF_SAMPLE_TIME
)
3711 perf_output_put(handle
, data
->time
);
3713 if (sample_type
& PERF_SAMPLE_ADDR
)
3714 perf_output_put(handle
, data
->addr
);
3716 if (sample_type
& PERF_SAMPLE_ID
)
3717 perf_output_put(handle
, data
->id
);
3719 if (sample_type
& PERF_SAMPLE_STREAM_ID
)
3720 perf_output_put(handle
, data
->stream_id
);
3722 if (sample_type
& PERF_SAMPLE_CPU
)
3723 perf_output_put(handle
, data
->cpu_entry
);
3725 if (sample_type
& PERF_SAMPLE_PERIOD
)
3726 perf_output_put(handle
, data
->period
);
3728 if (sample_type
& PERF_SAMPLE_READ
)
3729 perf_output_read(handle
, event
);
3731 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3732 if (data
->callchain
) {
3735 if (data
->callchain
)
3736 size
+= data
->callchain
->nr
;
3738 size
*= sizeof(u64
);
3740 perf_output_copy(handle
, data
->callchain
, size
);
3743 perf_output_put(handle
, nr
);
3747 if (sample_type
& PERF_SAMPLE_RAW
) {
3749 perf_output_put(handle
, data
->raw
->size
);
3750 perf_output_copy(handle
, data
->raw
->data
,
3757 .size
= sizeof(u32
),
3760 perf_output_put(handle
, raw
);
3765 void perf_prepare_sample(struct perf_event_header
*header
,
3766 struct perf_sample_data
*data
,
3767 struct perf_event
*event
,
3768 struct pt_regs
*regs
)
3770 u64 sample_type
= event
->attr
.sample_type
;
3772 header
->type
= PERF_RECORD_SAMPLE
;
3773 header
->size
= sizeof(*header
) + event
->header_size
;
3776 header
->misc
|= perf_misc_flags(regs
);
3778 __perf_event_header__init_id(header
, data
, event
);
3780 if (sample_type
& PERF_SAMPLE_IP
)
3781 data
->ip
= perf_instruction_pointer(regs
);
3783 if (sample_type
& PERF_SAMPLE_CALLCHAIN
) {
3786 data
->callchain
= perf_callchain(regs
);
3788 if (data
->callchain
)
3789 size
+= data
->callchain
->nr
;
3791 header
->size
+= size
* sizeof(u64
);
3794 if (sample_type
& PERF_SAMPLE_RAW
) {
3795 int size
= sizeof(u32
);
3798 size
+= data
->raw
->size
;
3800 size
+= sizeof(u32
);
3802 WARN_ON_ONCE(size
& (sizeof(u64
)-1));
3803 header
->size
+= size
;
3807 static void perf_event_output(struct perf_event
*event
, int nmi
,
3808 struct perf_sample_data
*data
,
3809 struct pt_regs
*regs
)
3811 struct perf_output_handle handle
;
3812 struct perf_event_header header
;
3814 /* protect the callchain buffers */
3817 perf_prepare_sample(&header
, data
, event
, regs
);
3819 if (perf_output_begin(&handle
, event
, header
.size
, nmi
, 1))
3822 perf_output_sample(&handle
, &header
, data
, event
);
3824 perf_output_end(&handle
);
3834 struct perf_read_event
{
3835 struct perf_event_header header
;
3842 perf_event_read_event(struct perf_event
*event
,
3843 struct task_struct
*task
)
3845 struct perf_output_handle handle
;
3846 struct perf_sample_data sample
;
3847 struct perf_read_event read_event
= {
3849 .type
= PERF_RECORD_READ
,
3851 .size
= sizeof(read_event
) + event
->read_size
,
3853 .pid
= perf_event_pid(event
, task
),
3854 .tid
= perf_event_tid(event
, task
),
3858 perf_event_header__init_id(&read_event
.header
, &sample
, event
);
3859 ret
= perf_output_begin(&handle
, event
, read_event
.header
.size
, 0, 0);
3863 perf_output_put(&handle
, read_event
);
3864 perf_output_read(&handle
, event
);
3865 perf_event__output_id_sample(event
, &handle
, &sample
);
3867 perf_output_end(&handle
);
3871 * task tracking -- fork/exit
3873 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3876 struct perf_task_event
{
3877 struct task_struct
*task
;
3878 struct perf_event_context
*task_ctx
;
3881 struct perf_event_header header
;
3891 static void perf_event_task_output(struct perf_event
*event
,
3892 struct perf_task_event
*task_event
)
3894 struct perf_output_handle handle
;
3895 struct perf_sample_data sample
;
3896 struct task_struct
*task
= task_event
->task
;
3897 int ret
, size
= task_event
->event_id
.header
.size
;
3899 perf_event_header__init_id(&task_event
->event_id
.header
, &sample
, event
);
3901 ret
= perf_output_begin(&handle
, event
,
3902 task_event
->event_id
.header
.size
, 0, 0);
3906 task_event
->event_id
.pid
= perf_event_pid(event
, task
);
3907 task_event
->event_id
.ppid
= perf_event_pid(event
, current
);
3909 task_event
->event_id
.tid
= perf_event_tid(event
, task
);
3910 task_event
->event_id
.ptid
= perf_event_tid(event
, current
);
3912 perf_output_put(&handle
, task_event
->event_id
);
3914 perf_event__output_id_sample(event
, &handle
, &sample
);
3916 perf_output_end(&handle
);
3918 task_event
->event_id
.header
.size
= size
;
3921 static int perf_event_task_match(struct perf_event
*event
)
3923 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
3926 if (!event_filter_match(event
))
3929 if (event
->attr
.comm
|| event
->attr
.mmap
||
3930 event
->attr
.mmap_data
|| event
->attr
.task
)
3936 static void perf_event_task_ctx(struct perf_event_context
*ctx
,
3937 struct perf_task_event
*task_event
)
3939 struct perf_event
*event
;
3941 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
3942 if (perf_event_task_match(event
))
3943 perf_event_task_output(event
, task_event
);
3947 static void perf_event_task_event(struct perf_task_event
*task_event
)
3949 struct perf_cpu_context
*cpuctx
;
3950 struct perf_event_context
*ctx
;
3955 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
3956 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
3957 if (cpuctx
->active_pmu
!= pmu
)
3959 perf_event_task_ctx(&cpuctx
->ctx
, task_event
);
3961 ctx
= task_event
->task_ctx
;
3963 ctxn
= pmu
->task_ctx_nr
;
3966 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
3969 perf_event_task_ctx(ctx
, task_event
);
3971 put_cpu_ptr(pmu
->pmu_cpu_context
);
3976 static void perf_event_task(struct task_struct
*task
,
3977 struct perf_event_context
*task_ctx
,
3980 struct perf_task_event task_event
;
3982 if (!atomic_read(&nr_comm_events
) &&
3983 !atomic_read(&nr_mmap_events
) &&
3984 !atomic_read(&nr_task_events
))
3987 task_event
= (struct perf_task_event
){
3989 .task_ctx
= task_ctx
,
3992 .type
= new ? PERF_RECORD_FORK
: PERF_RECORD_EXIT
,
3994 .size
= sizeof(task_event
.event_id
),
4000 .time
= perf_clock(),
4004 perf_event_task_event(&task_event
);
4007 void perf_event_fork(struct task_struct
*task
)
4009 perf_event_task(task
, NULL
, 1);
4016 struct perf_comm_event
{
4017 struct task_struct
*task
;
4022 struct perf_event_header header
;
4029 static void perf_event_comm_output(struct perf_event
*event
,
4030 struct perf_comm_event
*comm_event
)
4032 struct perf_output_handle handle
;
4033 struct perf_sample_data sample
;
4034 int size
= comm_event
->event_id
.header
.size
;
4037 perf_event_header__init_id(&comm_event
->event_id
.header
, &sample
, event
);
4038 ret
= perf_output_begin(&handle
, event
,
4039 comm_event
->event_id
.header
.size
, 0, 0);
4044 comm_event
->event_id
.pid
= perf_event_pid(event
, comm_event
->task
);
4045 comm_event
->event_id
.tid
= perf_event_tid(event
, comm_event
->task
);
4047 perf_output_put(&handle
, comm_event
->event_id
);
4048 perf_output_copy(&handle
, comm_event
->comm
,
4049 comm_event
->comm_size
);
4051 perf_event__output_id_sample(event
, &handle
, &sample
);
4053 perf_output_end(&handle
);
4055 comm_event
->event_id
.header
.size
= size
;
4058 static int perf_event_comm_match(struct perf_event
*event
)
4060 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
4063 if (!event_filter_match(event
))
4066 if (event
->attr
.comm
)
4072 static void perf_event_comm_ctx(struct perf_event_context
*ctx
,
4073 struct perf_comm_event
*comm_event
)
4075 struct perf_event
*event
;
4077 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
4078 if (perf_event_comm_match(event
))
4079 perf_event_comm_output(event
, comm_event
);
4083 static void perf_event_comm_event(struct perf_comm_event
*comm_event
)
4085 struct perf_cpu_context
*cpuctx
;
4086 struct perf_event_context
*ctx
;
4087 char comm
[TASK_COMM_LEN
];
4092 memset(comm
, 0, sizeof(comm
));
4093 strlcpy(comm
, comm_event
->task
->comm
, sizeof(comm
));
4094 size
= ALIGN(strlen(comm
)+1, sizeof(u64
));
4096 comm_event
->comm
= comm
;
4097 comm_event
->comm_size
= size
;
4099 comm_event
->event_id
.header
.size
= sizeof(comm_event
->event_id
) + size
;
4101 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
4102 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
4103 if (cpuctx
->active_pmu
!= pmu
)
4105 perf_event_comm_ctx(&cpuctx
->ctx
, comm_event
);
4107 ctxn
= pmu
->task_ctx_nr
;
4111 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
4113 perf_event_comm_ctx(ctx
, comm_event
);
4115 put_cpu_ptr(pmu
->pmu_cpu_context
);
4120 void perf_event_comm(struct task_struct
*task
)
4122 struct perf_comm_event comm_event
;
4123 struct perf_event_context
*ctx
;
4126 for_each_task_context_nr(ctxn
) {
4127 ctx
= task
->perf_event_ctxp
[ctxn
];
4131 perf_event_enable_on_exec(ctx
);
4134 if (!atomic_read(&nr_comm_events
))
4137 comm_event
= (struct perf_comm_event
){
4143 .type
= PERF_RECORD_COMM
,
4152 perf_event_comm_event(&comm_event
);
4159 struct perf_mmap_event
{
4160 struct vm_area_struct
*vma
;
4162 const char *file_name
;
4166 struct perf_event_header header
;
4176 static void perf_event_mmap_output(struct perf_event
*event
,
4177 struct perf_mmap_event
*mmap_event
)
4179 struct perf_output_handle handle
;
4180 struct perf_sample_data sample
;
4181 int size
= mmap_event
->event_id
.header
.size
;
4184 perf_event_header__init_id(&mmap_event
->event_id
.header
, &sample
, event
);
4185 ret
= perf_output_begin(&handle
, event
,
4186 mmap_event
->event_id
.header
.size
, 0, 0);
4190 mmap_event
->event_id
.pid
= perf_event_pid(event
, current
);
4191 mmap_event
->event_id
.tid
= perf_event_tid(event
, current
);
4193 perf_output_put(&handle
, mmap_event
->event_id
);
4194 perf_output_copy(&handle
, mmap_event
->file_name
,
4195 mmap_event
->file_size
);
4197 perf_event__output_id_sample(event
, &handle
, &sample
);
4199 perf_output_end(&handle
);
4201 mmap_event
->event_id
.header
.size
= size
;
4204 static int perf_event_mmap_match(struct perf_event
*event
,
4205 struct perf_mmap_event
*mmap_event
,
4208 if (event
->state
< PERF_EVENT_STATE_INACTIVE
)
4211 if (!event_filter_match(event
))
4214 if ((!executable
&& event
->attr
.mmap_data
) ||
4215 (executable
&& event
->attr
.mmap
))
4221 static void perf_event_mmap_ctx(struct perf_event_context
*ctx
,
4222 struct perf_mmap_event
*mmap_event
,
4225 struct perf_event
*event
;
4227 list_for_each_entry_rcu(event
, &ctx
->event_list
, event_entry
) {
4228 if (perf_event_mmap_match(event
, mmap_event
, executable
))
4229 perf_event_mmap_output(event
, mmap_event
);
4233 static void perf_event_mmap_event(struct perf_mmap_event
*mmap_event
)
4235 struct perf_cpu_context
*cpuctx
;
4236 struct perf_event_context
*ctx
;
4237 struct vm_area_struct
*vma
= mmap_event
->vma
;
4238 struct file
*file
= vma
->vm_file
;
4246 memset(tmp
, 0, sizeof(tmp
));
4250 * d_path works from the end of the buffer backwards, so we
4251 * need to add enough zero bytes after the string to handle
4252 * the 64bit alignment we do later.
4254 buf
= kzalloc(PATH_MAX
+ sizeof(u64
), GFP_KERNEL
);
4256 name
= strncpy(tmp
, "//enomem", sizeof(tmp
));
4259 name
= d_path(&file
->f_path
, buf
, PATH_MAX
);
4261 name
= strncpy(tmp
, "//toolong", sizeof(tmp
));
4265 if (arch_vma_name(mmap_event
->vma
)) {
4266 name
= strncpy(tmp
, arch_vma_name(mmap_event
->vma
),
4272 name
= strncpy(tmp
, "[vdso]", sizeof(tmp
));
4274 } else if (vma
->vm_start
<= vma
->vm_mm
->start_brk
&&
4275 vma
->vm_end
>= vma
->vm_mm
->brk
) {
4276 name
= strncpy(tmp
, "[heap]", sizeof(tmp
));
4278 } else if (vma
->vm_start
<= vma
->vm_mm
->start_stack
&&
4279 vma
->vm_end
>= vma
->vm_mm
->start_stack
) {
4280 name
= strncpy(tmp
, "[stack]", sizeof(tmp
));
4284 name
= strncpy(tmp
, "//anon", sizeof(tmp
));
4289 size
= ALIGN(strlen(name
)+1, sizeof(u64
));
4291 mmap_event
->file_name
= name
;
4292 mmap_event
->file_size
= size
;
4294 mmap_event
->event_id
.header
.size
= sizeof(mmap_event
->event_id
) + size
;
4297 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
4298 cpuctx
= get_cpu_ptr(pmu
->pmu_cpu_context
);
4299 if (cpuctx
->active_pmu
!= pmu
)
4301 perf_event_mmap_ctx(&cpuctx
->ctx
, mmap_event
,
4302 vma
->vm_flags
& VM_EXEC
);
4304 ctxn
= pmu
->task_ctx_nr
;
4308 ctx
= rcu_dereference(current
->perf_event_ctxp
[ctxn
]);
4310 perf_event_mmap_ctx(ctx
, mmap_event
,
4311 vma
->vm_flags
& VM_EXEC
);
4314 put_cpu_ptr(pmu
->pmu_cpu_context
);
4321 void perf_event_mmap(struct vm_area_struct
*vma
)
4323 struct perf_mmap_event mmap_event
;
4325 if (!atomic_read(&nr_mmap_events
))
4328 mmap_event
= (struct perf_mmap_event
){
4334 .type
= PERF_RECORD_MMAP
,
4335 .misc
= PERF_RECORD_MISC_USER
,
4340 .start
= vma
->vm_start
,
4341 .len
= vma
->vm_end
- vma
->vm_start
,
4342 .pgoff
= (u64
)vma
->vm_pgoff
<< PAGE_SHIFT
,
4346 perf_event_mmap_event(&mmap_event
);
4350 * IRQ throttle logging
4353 static void perf_log_throttle(struct perf_event
*event
, int enable
)
4355 struct perf_output_handle handle
;
4356 struct perf_sample_data sample
;
4360 struct perf_event_header header
;
4364 } throttle_event
= {
4366 .type
= PERF_RECORD_THROTTLE
,
4368 .size
= sizeof(throttle_event
),
4370 .time
= perf_clock(),
4371 .id
= primary_event_id(event
),
4372 .stream_id
= event
->id
,
4376 throttle_event
.header
.type
= PERF_RECORD_UNTHROTTLE
;
4378 perf_event_header__init_id(&throttle_event
.header
, &sample
, event
);
4380 ret
= perf_output_begin(&handle
, event
,
4381 throttle_event
.header
.size
, 1, 0);
4385 perf_output_put(&handle
, throttle_event
);
4386 perf_event__output_id_sample(event
, &handle
, &sample
);
4387 perf_output_end(&handle
);
4391 * Generic event overflow handling, sampling.
4394 static int __perf_event_overflow(struct perf_event
*event
, int nmi
,
4395 int throttle
, struct perf_sample_data
*data
,
4396 struct pt_regs
*regs
)
4398 int events
= atomic_read(&event
->event_limit
);
4399 struct hw_perf_event
*hwc
= &event
->hw
;
4403 * Non-sampling counters might still use the PMI to fold short
4404 * hardware counters, ignore those.
4406 if (unlikely(!is_sampling_event(event
)))
4412 if (hwc
->interrupts
!= MAX_INTERRUPTS
) {
4414 if (HZ
* hwc
->interrupts
>
4415 (u64
)sysctl_perf_event_sample_rate
) {
4416 hwc
->interrupts
= MAX_INTERRUPTS
;
4417 perf_log_throttle(event
, 0);
4422 * Keep re-disabling events even though on the previous
4423 * pass we disabled it - just in case we raced with a
4424 * sched-in and the event got enabled again:
4430 if (event
->attr
.freq
) {
4431 u64 now
= perf_clock();
4432 s64 delta
= now
- hwc
->freq_time_stamp
;
4434 hwc
->freq_time_stamp
= now
;
4436 if (delta
> 0 && delta
< 2*TICK_NSEC
)
4437 perf_adjust_period(event
, delta
, hwc
->last_period
);
4441 * XXX event_limit might not quite work as expected on inherited
4445 event
->pending_kill
= POLL_IN
;
4446 if (events
&& atomic_dec_and_test(&event
->event_limit
)) {
4448 event
->pending_kill
= POLL_HUP
;
4450 event
->pending_disable
= 1;
4451 irq_work_queue(&event
->pending
);
4453 perf_event_disable(event
);
4456 if (event
->overflow_handler
)
4457 event
->overflow_handler(event
, nmi
, data
, regs
);
4459 perf_event_output(event
, nmi
, data
, regs
);
4464 int perf_event_overflow(struct perf_event
*event
, int nmi
,
4465 struct perf_sample_data
*data
,
4466 struct pt_regs
*regs
)
4468 return __perf_event_overflow(event
, nmi
, 1, data
, regs
);
4472 * Generic software event infrastructure
4475 struct swevent_htable
{
4476 struct swevent_hlist
*swevent_hlist
;
4477 struct mutex hlist_mutex
;
4480 /* Recursion avoidance in each contexts */
4481 int recursion
[PERF_NR_CONTEXTS
];
4484 static DEFINE_PER_CPU(struct swevent_htable
, swevent_htable
);
4487 * We directly increment event->count and keep a second value in
4488 * event->hw.period_left to count intervals. This period event
4489 * is kept in the range [-sample_period, 0] so that we can use the
4493 static u64
perf_swevent_set_period(struct perf_event
*event
)
4495 struct hw_perf_event
*hwc
= &event
->hw
;
4496 u64 period
= hwc
->last_period
;
4500 hwc
->last_period
= hwc
->sample_period
;
4503 old
= val
= local64_read(&hwc
->period_left
);
4507 nr
= div64_u64(period
+ val
, period
);
4508 offset
= nr
* period
;
4510 if (local64_cmpxchg(&hwc
->period_left
, old
, val
) != old
)
4516 static void perf_swevent_overflow(struct perf_event
*event
, u64 overflow
,
4517 int nmi
, struct perf_sample_data
*data
,
4518 struct pt_regs
*regs
)
4520 struct hw_perf_event
*hwc
= &event
->hw
;
4523 data
->period
= event
->hw
.last_period
;
4525 overflow
= perf_swevent_set_period(event
);
4527 if (hwc
->interrupts
== MAX_INTERRUPTS
)
4530 for (; overflow
; overflow
--) {
4531 if (__perf_event_overflow(event
, nmi
, throttle
,
4534 * We inhibit the overflow from happening when
4535 * hwc->interrupts == MAX_INTERRUPTS.
4543 static void perf_swevent_event(struct perf_event
*event
, u64 nr
,
4544 int nmi
, struct perf_sample_data
*data
,
4545 struct pt_regs
*regs
)
4547 struct hw_perf_event
*hwc
= &event
->hw
;
4549 local64_add(nr
, &event
->count
);
4554 if (!is_sampling_event(event
))
4557 if (nr
== 1 && hwc
->sample_period
== 1 && !event
->attr
.freq
)
4558 return perf_swevent_overflow(event
, 1, nmi
, data
, regs
);
4560 if (local64_add_negative(nr
, &hwc
->period_left
))
4563 perf_swevent_overflow(event
, 0, nmi
, data
, regs
);
4566 static int perf_exclude_event(struct perf_event
*event
,
4567 struct pt_regs
*regs
)
4569 if (event
->hw
.state
& PERF_HES_STOPPED
)
4573 if (event
->attr
.exclude_user
&& user_mode(regs
))
4576 if (event
->attr
.exclude_kernel
&& !user_mode(regs
))
4583 static int perf_swevent_match(struct perf_event
*event
,
4584 enum perf_type_id type
,
4586 struct perf_sample_data
*data
,
4587 struct pt_regs
*regs
)
4589 if (event
->attr
.type
!= type
)
4592 if (event
->attr
.config
!= event_id
)
4595 if (perf_exclude_event(event
, regs
))
4601 static inline u64
swevent_hash(u64 type
, u32 event_id
)
4603 u64 val
= event_id
| (type
<< 32);
4605 return hash_64(val
, SWEVENT_HLIST_BITS
);
4608 static inline struct hlist_head
*
4609 __find_swevent_head(struct swevent_hlist
*hlist
, u64 type
, u32 event_id
)
4611 u64 hash
= swevent_hash(type
, event_id
);
4613 return &hlist
->heads
[hash
];
4616 /* For the read side: events when they trigger */
4617 static inline struct hlist_head
*
4618 find_swevent_head_rcu(struct swevent_htable
*swhash
, u64 type
, u32 event_id
)
4620 struct swevent_hlist
*hlist
;
4622 hlist
= rcu_dereference(swhash
->swevent_hlist
);
4626 return __find_swevent_head(hlist
, type
, event_id
);
4629 /* For the event head insertion and removal in the hlist */
4630 static inline struct hlist_head
*
4631 find_swevent_head(struct swevent_htable
*swhash
, struct perf_event
*event
)
4633 struct swevent_hlist
*hlist
;
4634 u32 event_id
= event
->attr
.config
;
4635 u64 type
= event
->attr
.type
;
4638 * Event scheduling is always serialized against hlist allocation
4639 * and release. Which makes the protected version suitable here.
4640 * The context lock guarantees that.
4642 hlist
= rcu_dereference_protected(swhash
->swevent_hlist
,
4643 lockdep_is_held(&event
->ctx
->lock
));
4647 return __find_swevent_head(hlist
, type
, event_id
);
4650 static void do_perf_sw_event(enum perf_type_id type
, u32 event_id
,
4652 struct perf_sample_data
*data
,
4653 struct pt_regs
*regs
)
4655 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4656 struct perf_event
*event
;
4657 struct hlist_node
*node
;
4658 struct hlist_head
*head
;
4661 head
= find_swevent_head_rcu(swhash
, type
, event_id
);
4665 hlist_for_each_entry_rcu(event
, node
, head
, hlist_entry
) {
4666 if (perf_swevent_match(event
, type
, event_id
, data
, regs
))
4667 perf_swevent_event(event
, nr
, nmi
, data
, regs
);
4673 int perf_swevent_get_recursion_context(void)
4675 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4677 return get_recursion_context(swhash
->recursion
);
4679 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context
);
4681 inline void perf_swevent_put_recursion_context(int rctx
)
4683 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4685 put_recursion_context(swhash
->recursion
, rctx
);
4688 void __perf_sw_event(u32 event_id
, u64 nr
, int nmi
,
4689 struct pt_regs
*regs
, u64 addr
)
4691 struct perf_sample_data data
;
4694 preempt_disable_notrace();
4695 rctx
= perf_swevent_get_recursion_context();
4699 perf_sample_data_init(&data
, addr
);
4701 do_perf_sw_event(PERF_TYPE_SOFTWARE
, event_id
, nr
, nmi
, &data
, regs
);
4703 perf_swevent_put_recursion_context(rctx
);
4704 preempt_enable_notrace();
4707 static void perf_swevent_read(struct perf_event
*event
)
4711 static int perf_swevent_add(struct perf_event
*event
, int flags
)
4713 struct swevent_htable
*swhash
= &__get_cpu_var(swevent_htable
);
4714 struct hw_perf_event
*hwc
= &event
->hw
;
4715 struct hlist_head
*head
;
4717 if (is_sampling_event(event
)) {
4718 hwc
->last_period
= hwc
->sample_period
;
4719 perf_swevent_set_period(event
);
4722 hwc
->state
= !(flags
& PERF_EF_START
);
4724 head
= find_swevent_head(swhash
, event
);
4725 if (WARN_ON_ONCE(!head
))
4728 hlist_add_head_rcu(&event
->hlist_entry
, head
);
4733 static void perf_swevent_del(struct perf_event
*event
, int flags
)
4735 hlist_del_rcu(&event
->hlist_entry
);
4738 static void perf_swevent_start(struct perf_event
*event
, int flags
)
4740 event
->hw
.state
= 0;
4743 static void perf_swevent_stop(struct perf_event
*event
, int flags
)
4745 event
->hw
.state
= PERF_HES_STOPPED
;
4748 /* Deref the hlist from the update side */
4749 static inline struct swevent_hlist
*
4750 swevent_hlist_deref(struct swevent_htable
*swhash
)
4752 return rcu_dereference_protected(swhash
->swevent_hlist
,
4753 lockdep_is_held(&swhash
->hlist_mutex
));
4756 static void swevent_hlist_release_rcu(struct rcu_head
*rcu_head
)
4758 struct swevent_hlist
*hlist
;
4760 hlist
= container_of(rcu_head
, struct swevent_hlist
, rcu_head
);
4764 static void swevent_hlist_release(struct swevent_htable
*swhash
)
4766 struct swevent_hlist
*hlist
= swevent_hlist_deref(swhash
);
4771 rcu_assign_pointer(swhash
->swevent_hlist
, NULL
);
4772 call_rcu(&hlist
->rcu_head
, swevent_hlist_release_rcu
);
4775 static void swevent_hlist_put_cpu(struct perf_event
*event
, int cpu
)
4777 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
4779 mutex_lock(&swhash
->hlist_mutex
);
4781 if (!--swhash
->hlist_refcount
)
4782 swevent_hlist_release(swhash
);
4784 mutex_unlock(&swhash
->hlist_mutex
);
4787 static void swevent_hlist_put(struct perf_event
*event
)
4791 if (event
->cpu
!= -1) {
4792 swevent_hlist_put_cpu(event
, event
->cpu
);
4796 for_each_possible_cpu(cpu
)
4797 swevent_hlist_put_cpu(event
, cpu
);
4800 static int swevent_hlist_get_cpu(struct perf_event
*event
, int cpu
)
4802 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
4805 mutex_lock(&swhash
->hlist_mutex
);
4807 if (!swevent_hlist_deref(swhash
) && cpu_online(cpu
)) {
4808 struct swevent_hlist
*hlist
;
4810 hlist
= kzalloc(sizeof(*hlist
), GFP_KERNEL
);
4815 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
4817 swhash
->hlist_refcount
++;
4819 mutex_unlock(&swhash
->hlist_mutex
);
4824 static int swevent_hlist_get(struct perf_event
*event
)
4827 int cpu
, failed_cpu
;
4829 if (event
->cpu
!= -1)
4830 return swevent_hlist_get_cpu(event
, event
->cpu
);
4833 for_each_possible_cpu(cpu
) {
4834 err
= swevent_hlist_get_cpu(event
, cpu
);
4844 for_each_possible_cpu(cpu
) {
4845 if (cpu
== failed_cpu
)
4847 swevent_hlist_put_cpu(event
, cpu
);
4854 atomic_t perf_swevent_enabled
[PERF_COUNT_SW_MAX
];
4856 static void sw_perf_event_destroy(struct perf_event
*event
)
4858 u64 event_id
= event
->attr
.config
;
4860 WARN_ON(event
->parent
);
4862 jump_label_dec(&perf_swevent_enabled
[event_id
]);
4863 swevent_hlist_put(event
);
4866 static int perf_swevent_init(struct perf_event
*event
)
4868 int event_id
= event
->attr
.config
;
4870 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
4874 case PERF_COUNT_SW_CPU_CLOCK
:
4875 case PERF_COUNT_SW_TASK_CLOCK
:
4882 if (event_id
>= PERF_COUNT_SW_MAX
)
4885 if (!event
->parent
) {
4888 err
= swevent_hlist_get(event
);
4892 jump_label_inc(&perf_swevent_enabled
[event_id
]);
4893 event
->destroy
= sw_perf_event_destroy
;
4899 static struct pmu perf_swevent
= {
4900 .task_ctx_nr
= perf_sw_context
,
4902 .event_init
= perf_swevent_init
,
4903 .add
= perf_swevent_add
,
4904 .del
= perf_swevent_del
,
4905 .start
= perf_swevent_start
,
4906 .stop
= perf_swevent_stop
,
4907 .read
= perf_swevent_read
,
4910 #ifdef CONFIG_EVENT_TRACING
4912 static int perf_tp_filter_match(struct perf_event
*event
,
4913 struct perf_sample_data
*data
)
4915 void *record
= data
->raw
->data
;
4917 if (likely(!event
->filter
) || filter_match_preds(event
->filter
, record
))
4922 static int perf_tp_event_match(struct perf_event
*event
,
4923 struct perf_sample_data
*data
,
4924 struct pt_regs
*regs
)
4927 * All tracepoints are from kernel-space.
4929 if (event
->attr
.exclude_kernel
)
4932 if (!perf_tp_filter_match(event
, data
))
4938 void perf_tp_event(u64 addr
, u64 count
, void *record
, int entry_size
,
4939 struct pt_regs
*regs
, struct hlist_head
*head
, int rctx
)
4941 struct perf_sample_data data
;
4942 struct perf_event
*event
;
4943 struct hlist_node
*node
;
4945 struct perf_raw_record raw
= {
4950 perf_sample_data_init(&data
, addr
);
4953 hlist_for_each_entry_rcu(event
, node
, head
, hlist_entry
) {
4954 if (perf_tp_event_match(event
, &data
, regs
))
4955 perf_swevent_event(event
, count
, 1, &data
, regs
);
4958 perf_swevent_put_recursion_context(rctx
);
4960 EXPORT_SYMBOL_GPL(perf_tp_event
);
4962 static void tp_perf_event_destroy(struct perf_event
*event
)
4964 perf_trace_destroy(event
);
4967 static int perf_tp_event_init(struct perf_event
*event
)
4971 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
4974 err
= perf_trace_init(event
);
4978 event
->destroy
= tp_perf_event_destroy
;
4983 static struct pmu perf_tracepoint
= {
4984 .task_ctx_nr
= perf_sw_context
,
4986 .event_init
= perf_tp_event_init
,
4987 .add
= perf_trace_add
,
4988 .del
= perf_trace_del
,
4989 .start
= perf_swevent_start
,
4990 .stop
= perf_swevent_stop
,
4991 .read
= perf_swevent_read
,
4994 static inline void perf_tp_register(void)
4996 perf_pmu_register(&perf_tracepoint
, "tracepoint", PERF_TYPE_TRACEPOINT
);
4999 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
5004 if (event
->attr
.type
!= PERF_TYPE_TRACEPOINT
)
5007 filter_str
= strndup_user(arg
, PAGE_SIZE
);
5008 if (IS_ERR(filter_str
))
5009 return PTR_ERR(filter_str
);
5011 ret
= ftrace_profile_set_filter(event
, event
->attr
.config
, filter_str
);
5017 static void perf_event_free_filter(struct perf_event
*event
)
5019 ftrace_profile_free_filter(event
);
5024 static inline void perf_tp_register(void)
5028 static int perf_event_set_filter(struct perf_event
*event
, void __user
*arg
)
5033 static void perf_event_free_filter(struct perf_event
*event
)
5037 #endif /* CONFIG_EVENT_TRACING */
5039 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5040 void perf_bp_event(struct perf_event
*bp
, void *data
)
5042 struct perf_sample_data sample
;
5043 struct pt_regs
*regs
= data
;
5045 perf_sample_data_init(&sample
, bp
->attr
.bp_addr
);
5047 if (!bp
->hw
.state
&& !perf_exclude_event(bp
, regs
))
5048 perf_swevent_event(bp
, 1, 1, &sample
, regs
);
5053 * hrtimer based swevent callback
5056 static enum hrtimer_restart
perf_swevent_hrtimer(struct hrtimer
*hrtimer
)
5058 enum hrtimer_restart ret
= HRTIMER_RESTART
;
5059 struct perf_sample_data data
;
5060 struct pt_regs
*regs
;
5061 struct perf_event
*event
;
5064 event
= container_of(hrtimer
, struct perf_event
, hw
.hrtimer
);
5065 event
->pmu
->read(event
);
5067 perf_sample_data_init(&data
, 0);
5068 data
.period
= event
->hw
.last_period
;
5069 regs
= get_irq_regs();
5071 if (regs
&& !perf_exclude_event(event
, regs
)) {
5072 if (!(event
->attr
.exclude_idle
&& current
->pid
== 0))
5073 if (perf_event_overflow(event
, 0, &data
, regs
))
5074 ret
= HRTIMER_NORESTART
;
5077 period
= max_t(u64
, 10000, event
->hw
.sample_period
);
5078 hrtimer_forward_now(hrtimer
, ns_to_ktime(period
));
5083 static void perf_swevent_start_hrtimer(struct perf_event
*event
)
5085 struct hw_perf_event
*hwc
= &event
->hw
;
5088 if (!is_sampling_event(event
))
5091 hrtimer_init(&hwc
->hrtimer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
5092 hwc
->hrtimer
.function
= perf_swevent_hrtimer
;
5094 period
= local64_read(&hwc
->period_left
);
5099 local64_set(&hwc
->period_left
, 0);
5101 period
= max_t(u64
, 10000, hwc
->sample_period
);
5103 __hrtimer_start_range_ns(&hwc
->hrtimer
,
5104 ns_to_ktime(period
), 0,
5105 HRTIMER_MODE_REL_PINNED
, 0);
5108 static void perf_swevent_cancel_hrtimer(struct perf_event
*event
)
5110 struct hw_perf_event
*hwc
= &event
->hw
;
5112 if (is_sampling_event(event
)) {
5113 ktime_t remaining
= hrtimer_get_remaining(&hwc
->hrtimer
);
5114 local64_set(&hwc
->period_left
, ktime_to_ns(remaining
));
5116 hrtimer_cancel(&hwc
->hrtimer
);
5121 * Software event: cpu wall time clock
5124 static void cpu_clock_event_update(struct perf_event
*event
)
5129 now
= local_clock();
5130 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
5131 local64_add(now
- prev
, &event
->count
);
5134 static void cpu_clock_event_start(struct perf_event
*event
, int flags
)
5136 local64_set(&event
->hw
.prev_count
, local_clock());
5137 perf_swevent_start_hrtimer(event
);
5140 static void cpu_clock_event_stop(struct perf_event
*event
, int flags
)
5142 perf_swevent_cancel_hrtimer(event
);
5143 cpu_clock_event_update(event
);
5146 static int cpu_clock_event_add(struct perf_event
*event
, int flags
)
5148 if (flags
& PERF_EF_START
)
5149 cpu_clock_event_start(event
, flags
);
5154 static void cpu_clock_event_del(struct perf_event
*event
, int flags
)
5156 cpu_clock_event_stop(event
, flags
);
5159 static void cpu_clock_event_read(struct perf_event
*event
)
5161 cpu_clock_event_update(event
);
5164 static int cpu_clock_event_init(struct perf_event
*event
)
5166 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
5169 if (event
->attr
.config
!= PERF_COUNT_SW_CPU_CLOCK
)
5175 static struct pmu perf_cpu_clock
= {
5176 .task_ctx_nr
= perf_sw_context
,
5178 .event_init
= cpu_clock_event_init
,
5179 .add
= cpu_clock_event_add
,
5180 .del
= cpu_clock_event_del
,
5181 .start
= cpu_clock_event_start
,
5182 .stop
= cpu_clock_event_stop
,
5183 .read
= cpu_clock_event_read
,
5187 * Software event: task time clock
5190 static void task_clock_event_update(struct perf_event
*event
, u64 now
)
5195 prev
= local64_xchg(&event
->hw
.prev_count
, now
);
5197 local64_add(delta
, &event
->count
);
5200 static void task_clock_event_start(struct perf_event
*event
, int flags
)
5202 local64_set(&event
->hw
.prev_count
, event
->ctx
->time
);
5203 perf_swevent_start_hrtimer(event
);
5206 static void task_clock_event_stop(struct perf_event
*event
, int flags
)
5208 perf_swevent_cancel_hrtimer(event
);
5209 task_clock_event_update(event
, event
->ctx
->time
);
5212 static int task_clock_event_add(struct perf_event
*event
, int flags
)
5214 if (flags
& PERF_EF_START
)
5215 task_clock_event_start(event
, flags
);
5220 static void task_clock_event_del(struct perf_event
*event
, int flags
)
5222 task_clock_event_stop(event
, PERF_EF_UPDATE
);
5225 static void task_clock_event_read(struct perf_event
*event
)
5230 update_context_time(event
->ctx
);
5231 time
= event
->ctx
->time
;
5233 u64 now
= perf_clock();
5234 u64 delta
= now
- event
->ctx
->timestamp
;
5235 time
= event
->ctx
->time
+ delta
;
5238 task_clock_event_update(event
, time
);
5241 static int task_clock_event_init(struct perf_event
*event
)
5243 if (event
->attr
.type
!= PERF_TYPE_SOFTWARE
)
5246 if (event
->attr
.config
!= PERF_COUNT_SW_TASK_CLOCK
)
5252 static struct pmu perf_task_clock
= {
5253 .task_ctx_nr
= perf_sw_context
,
5255 .event_init
= task_clock_event_init
,
5256 .add
= task_clock_event_add
,
5257 .del
= task_clock_event_del
,
5258 .start
= task_clock_event_start
,
5259 .stop
= task_clock_event_stop
,
5260 .read
= task_clock_event_read
,
5263 static void perf_pmu_nop_void(struct pmu
*pmu
)
5267 static int perf_pmu_nop_int(struct pmu
*pmu
)
5272 static void perf_pmu_start_txn(struct pmu
*pmu
)
5274 perf_pmu_disable(pmu
);
5277 static int perf_pmu_commit_txn(struct pmu
*pmu
)
5279 perf_pmu_enable(pmu
);
5283 static void perf_pmu_cancel_txn(struct pmu
*pmu
)
5285 perf_pmu_enable(pmu
);
5289 * Ensures all contexts with the same task_ctx_nr have the same
5290 * pmu_cpu_context too.
5292 static void *find_pmu_context(int ctxn
)
5299 list_for_each_entry(pmu
, &pmus
, entry
) {
5300 if (pmu
->task_ctx_nr
== ctxn
)
5301 return pmu
->pmu_cpu_context
;
5307 static void update_pmu_context(struct pmu
*pmu
, struct pmu
*old_pmu
)
5311 for_each_possible_cpu(cpu
) {
5312 struct perf_cpu_context
*cpuctx
;
5314 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
5316 if (cpuctx
->active_pmu
== old_pmu
)
5317 cpuctx
->active_pmu
= pmu
;
5321 static void free_pmu_context(struct pmu
*pmu
)
5325 mutex_lock(&pmus_lock
);
5327 * Like a real lame refcount.
5329 list_for_each_entry(i
, &pmus
, entry
) {
5330 if (i
->pmu_cpu_context
== pmu
->pmu_cpu_context
) {
5331 update_pmu_context(i
, pmu
);
5336 free_percpu(pmu
->pmu_cpu_context
);
5338 mutex_unlock(&pmus_lock
);
5340 static struct idr pmu_idr
;
5343 type_show(struct device
*dev
, struct device_attribute
*attr
, char *page
)
5345 struct pmu
*pmu
= dev_get_drvdata(dev
);
5347 return snprintf(page
, PAGE_SIZE
-1, "%d\n", pmu
->type
);
5350 static struct device_attribute pmu_dev_attrs
[] = {
5355 static int pmu_bus_running
;
5356 static struct bus_type pmu_bus
= {
5357 .name
= "event_source",
5358 .dev_attrs
= pmu_dev_attrs
,
5361 static void pmu_dev_release(struct device
*dev
)
5366 static int pmu_dev_alloc(struct pmu
*pmu
)
5370 pmu
->dev
= kzalloc(sizeof(struct device
), GFP_KERNEL
);
5374 device_initialize(pmu
->dev
);
5375 ret
= dev_set_name(pmu
->dev
, "%s", pmu
->name
);
5379 dev_set_drvdata(pmu
->dev
, pmu
);
5380 pmu
->dev
->bus
= &pmu_bus
;
5381 pmu
->dev
->release
= pmu_dev_release
;
5382 ret
= device_add(pmu
->dev
);
5390 put_device(pmu
->dev
);
5394 static struct lock_class_key cpuctx_mutex
;
5396 int perf_pmu_register(struct pmu
*pmu
, char *name
, int type
)
5400 mutex_lock(&pmus_lock
);
5402 pmu
->pmu_disable_count
= alloc_percpu(int);
5403 if (!pmu
->pmu_disable_count
)
5412 int err
= idr_pre_get(&pmu_idr
, GFP_KERNEL
);
5416 err
= idr_get_new_above(&pmu_idr
, pmu
, PERF_TYPE_MAX
, &type
);
5424 if (pmu_bus_running
) {
5425 ret
= pmu_dev_alloc(pmu
);
5431 pmu
->pmu_cpu_context
= find_pmu_context(pmu
->task_ctx_nr
);
5432 if (pmu
->pmu_cpu_context
)
5433 goto got_cpu_context
;
5435 pmu
->pmu_cpu_context
= alloc_percpu(struct perf_cpu_context
);
5436 if (!pmu
->pmu_cpu_context
)
5439 for_each_possible_cpu(cpu
) {
5440 struct perf_cpu_context
*cpuctx
;
5442 cpuctx
= per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
);
5443 __perf_event_init_context(&cpuctx
->ctx
);
5444 lockdep_set_class(&cpuctx
->ctx
.mutex
, &cpuctx_mutex
);
5445 cpuctx
->ctx
.type
= cpu_context
;
5446 cpuctx
->ctx
.pmu
= pmu
;
5447 cpuctx
->jiffies_interval
= 1;
5448 INIT_LIST_HEAD(&cpuctx
->rotation_list
);
5449 cpuctx
->active_pmu
= pmu
;
5453 if (!pmu
->start_txn
) {
5454 if (pmu
->pmu_enable
) {
5456 * If we have pmu_enable/pmu_disable calls, install
5457 * transaction stubs that use that to try and batch
5458 * hardware accesses.
5460 pmu
->start_txn
= perf_pmu_start_txn
;
5461 pmu
->commit_txn
= perf_pmu_commit_txn
;
5462 pmu
->cancel_txn
= perf_pmu_cancel_txn
;
5464 pmu
->start_txn
= perf_pmu_nop_void
;
5465 pmu
->commit_txn
= perf_pmu_nop_int
;
5466 pmu
->cancel_txn
= perf_pmu_nop_void
;
5470 if (!pmu
->pmu_enable
) {
5471 pmu
->pmu_enable
= perf_pmu_nop_void
;
5472 pmu
->pmu_disable
= perf_pmu_nop_void
;
5475 list_add_rcu(&pmu
->entry
, &pmus
);
5478 mutex_unlock(&pmus_lock
);
5483 device_del(pmu
->dev
);
5484 put_device(pmu
->dev
);
5487 if (pmu
->type
>= PERF_TYPE_MAX
)
5488 idr_remove(&pmu_idr
, pmu
->type
);
5491 free_percpu(pmu
->pmu_disable_count
);
5495 void perf_pmu_unregister(struct pmu
*pmu
)
5497 mutex_lock(&pmus_lock
);
5498 list_del_rcu(&pmu
->entry
);
5499 mutex_unlock(&pmus_lock
);
5502 * We dereference the pmu list under both SRCU and regular RCU, so
5503 * synchronize against both of those.
5505 synchronize_srcu(&pmus_srcu
);
5508 free_percpu(pmu
->pmu_disable_count
);
5509 if (pmu
->type
>= PERF_TYPE_MAX
)
5510 idr_remove(&pmu_idr
, pmu
->type
);
5511 device_del(pmu
->dev
);
5512 put_device(pmu
->dev
);
5513 free_pmu_context(pmu
);
5516 struct pmu
*perf_init_event(struct perf_event
*event
)
5518 struct pmu
*pmu
= NULL
;
5521 idx
= srcu_read_lock(&pmus_srcu
);
5524 pmu
= idr_find(&pmu_idr
, event
->attr
.type
);
5529 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
5530 int ret
= pmu
->event_init(event
);
5534 if (ret
!= -ENOENT
) {
5539 pmu
= ERR_PTR(-ENOENT
);
5541 srcu_read_unlock(&pmus_srcu
, idx
);
5547 * Allocate and initialize a event structure
5549 static struct perf_event
*
5550 perf_event_alloc(struct perf_event_attr
*attr
, int cpu
,
5551 struct task_struct
*task
,
5552 struct perf_event
*group_leader
,
5553 struct perf_event
*parent_event
,
5554 perf_overflow_handler_t overflow_handler
)
5557 struct perf_event
*event
;
5558 struct hw_perf_event
*hwc
;
5561 if ((unsigned)cpu
>= nr_cpu_ids
) {
5562 if (!task
|| cpu
!= -1)
5563 return ERR_PTR(-EINVAL
);
5566 event
= kzalloc(sizeof(*event
), GFP_KERNEL
);
5568 return ERR_PTR(-ENOMEM
);
5571 * Single events are their own group leaders, with an
5572 * empty sibling list:
5575 group_leader
= event
;
5577 mutex_init(&event
->child_mutex
);
5578 INIT_LIST_HEAD(&event
->child_list
);
5580 INIT_LIST_HEAD(&event
->group_entry
);
5581 INIT_LIST_HEAD(&event
->event_entry
);
5582 INIT_LIST_HEAD(&event
->sibling_list
);
5583 init_waitqueue_head(&event
->waitq
);
5584 init_irq_work(&event
->pending
, perf_pending_event
);
5586 mutex_init(&event
->mmap_mutex
);
5589 event
->attr
= *attr
;
5590 event
->group_leader
= group_leader
;
5594 event
->parent
= parent_event
;
5596 event
->ns
= get_pid_ns(current
->nsproxy
->pid_ns
);
5597 event
->id
= atomic64_inc_return(&perf_event_id
);
5599 event
->state
= PERF_EVENT_STATE_INACTIVE
;
5602 event
->attach_state
= PERF_ATTACH_TASK
;
5603 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5605 * hw_breakpoint is a bit difficult here..
5607 if (attr
->type
== PERF_TYPE_BREAKPOINT
)
5608 event
->hw
.bp_target
= task
;
5612 if (!overflow_handler
&& parent_event
)
5613 overflow_handler
= parent_event
->overflow_handler
;
5615 event
->overflow_handler
= overflow_handler
;
5618 event
->state
= PERF_EVENT_STATE_OFF
;
5623 hwc
->sample_period
= attr
->sample_period
;
5624 if (attr
->freq
&& attr
->sample_freq
)
5625 hwc
->sample_period
= 1;
5626 hwc
->last_period
= hwc
->sample_period
;
5628 local64_set(&hwc
->period_left
, hwc
->sample_period
);
5631 * we currently do not support PERF_FORMAT_GROUP on inherited events
5633 if (attr
->inherit
&& (attr
->read_format
& PERF_FORMAT_GROUP
))
5636 pmu
= perf_init_event(event
);
5642 else if (IS_ERR(pmu
))
5647 put_pid_ns(event
->ns
);
5649 return ERR_PTR(err
);
5654 if (!event
->parent
) {
5655 if (event
->attach_state
& PERF_ATTACH_TASK
)
5656 jump_label_inc(&perf_task_events
);
5657 if (event
->attr
.mmap
|| event
->attr
.mmap_data
)
5658 atomic_inc(&nr_mmap_events
);
5659 if (event
->attr
.comm
)
5660 atomic_inc(&nr_comm_events
);
5661 if (event
->attr
.task
)
5662 atomic_inc(&nr_task_events
);
5663 if (event
->attr
.sample_type
& PERF_SAMPLE_CALLCHAIN
) {
5664 err
= get_callchain_buffers();
5667 return ERR_PTR(err
);
5675 static int perf_copy_attr(struct perf_event_attr __user
*uattr
,
5676 struct perf_event_attr
*attr
)
5681 if (!access_ok(VERIFY_WRITE
, uattr
, PERF_ATTR_SIZE_VER0
))
5685 * zero the full structure, so that a short copy will be nice.
5687 memset(attr
, 0, sizeof(*attr
));
5689 ret
= get_user(size
, &uattr
->size
);
5693 if (size
> PAGE_SIZE
) /* silly large */
5696 if (!size
) /* abi compat */
5697 size
= PERF_ATTR_SIZE_VER0
;
5699 if (size
< PERF_ATTR_SIZE_VER0
)
5703 * If we're handed a bigger struct than we know of,
5704 * ensure all the unknown bits are 0 - i.e. new
5705 * user-space does not rely on any kernel feature
5706 * extensions we dont know about yet.
5708 if (size
> sizeof(*attr
)) {
5709 unsigned char __user
*addr
;
5710 unsigned char __user
*end
;
5713 addr
= (void __user
*)uattr
+ sizeof(*attr
);
5714 end
= (void __user
*)uattr
+ size
;
5716 for (; addr
< end
; addr
++) {
5717 ret
= get_user(val
, addr
);
5723 size
= sizeof(*attr
);
5726 ret
= copy_from_user(attr
, uattr
, size
);
5731 * If the type exists, the corresponding creation will verify
5734 if (attr
->type
>= PERF_TYPE_MAX
)
5737 if (attr
->__reserved_1
)
5740 if (attr
->sample_type
& ~(PERF_SAMPLE_MAX
-1))
5743 if (attr
->read_format
& ~(PERF_FORMAT_MAX
-1))
5750 put_user(sizeof(*attr
), &uattr
->size
);
5756 perf_event_set_output(struct perf_event
*event
, struct perf_event
*output_event
)
5758 struct perf_buffer
*buffer
= NULL
, *old_buffer
= NULL
;
5764 /* don't allow circular references */
5765 if (event
== output_event
)
5769 * Don't allow cross-cpu buffers
5771 if (output_event
->cpu
!= event
->cpu
)
5775 * If its not a per-cpu buffer, it must be the same task.
5777 if (output_event
->cpu
== -1 && output_event
->ctx
!= event
->ctx
)
5781 mutex_lock(&event
->mmap_mutex
);
5782 /* Can't redirect output if we've got an active mmap() */
5783 if (atomic_read(&event
->mmap_count
))
5787 /* get the buffer we want to redirect to */
5788 buffer
= perf_buffer_get(output_event
);
5793 old_buffer
= event
->buffer
;
5794 rcu_assign_pointer(event
->buffer
, buffer
);
5797 mutex_unlock(&event
->mmap_mutex
);
5800 perf_buffer_put(old_buffer
);
5806 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5808 * @attr_uptr: event_id type attributes for monitoring/sampling
5811 * @group_fd: group leader event fd
5813 SYSCALL_DEFINE5(perf_event_open
,
5814 struct perf_event_attr __user
*, attr_uptr
,
5815 pid_t
, pid
, int, cpu
, int, group_fd
, unsigned long, flags
)
5817 struct perf_event
*group_leader
= NULL
, *output_event
= NULL
;
5818 struct perf_event
*event
, *sibling
;
5819 struct perf_event_attr attr
;
5820 struct perf_event_context
*ctx
;
5821 struct file
*event_file
= NULL
;
5822 struct file
*group_file
= NULL
;
5823 struct task_struct
*task
= NULL
;
5827 int fput_needed
= 0;
5830 /* for future expandability... */
5831 if (flags
& ~(PERF_FLAG_FD_NO_GROUP
| PERF_FLAG_FD_OUTPUT
))
5834 err
= perf_copy_attr(attr_uptr
, &attr
);
5838 if (!attr
.exclude_kernel
) {
5839 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN
))
5844 if (attr
.sample_freq
> sysctl_perf_event_sample_rate
)
5848 event_fd
= get_unused_fd_flags(O_RDWR
);
5852 if (group_fd
!= -1) {
5853 group_leader
= perf_fget_light(group_fd
, &fput_needed
);
5854 if (IS_ERR(group_leader
)) {
5855 err
= PTR_ERR(group_leader
);
5858 group_file
= group_leader
->filp
;
5859 if (flags
& PERF_FLAG_FD_OUTPUT
)
5860 output_event
= group_leader
;
5861 if (flags
& PERF_FLAG_FD_NO_GROUP
)
5862 group_leader
= NULL
;
5866 task
= find_lively_task_by_vpid(pid
);
5868 err
= PTR_ERR(task
);
5873 event
= perf_event_alloc(&attr
, cpu
, task
, group_leader
, NULL
, NULL
);
5874 if (IS_ERR(event
)) {
5875 err
= PTR_ERR(event
);
5880 * Special case software events and allow them to be part of
5881 * any hardware group.
5886 (is_software_event(event
) != is_software_event(group_leader
))) {
5887 if (is_software_event(event
)) {
5889 * If event and group_leader are not both a software
5890 * event, and event is, then group leader is not.
5892 * Allow the addition of software events to !software
5893 * groups, this is safe because software events never
5896 pmu
= group_leader
->pmu
;
5897 } else if (is_software_event(group_leader
) &&
5898 (group_leader
->group_flags
& PERF_GROUP_SOFTWARE
)) {
5900 * In case the group is a pure software group, and we
5901 * try to add a hardware event, move the whole group to
5902 * the hardware context.
5909 * Get the target context (task or percpu):
5911 ctx
= find_get_context(pmu
, task
, cpu
);
5918 * Look up the group leader (we will attach this event to it):
5924 * Do not allow a recursive hierarchy (this new sibling
5925 * becoming part of another group-sibling):
5927 if (group_leader
->group_leader
!= group_leader
)
5930 * Do not allow to attach to a group in a different
5931 * task or CPU context:
5934 if (group_leader
->ctx
->type
!= ctx
->type
)
5937 if (group_leader
->ctx
!= ctx
)
5942 * Only a group leader can be exclusive or pinned
5944 if (attr
.exclusive
|| attr
.pinned
)
5949 err
= perf_event_set_output(event
, output_event
);
5954 event_file
= anon_inode_getfile("[perf_event]", &perf_fops
, event
, O_RDWR
);
5955 if (IS_ERR(event_file
)) {
5956 err
= PTR_ERR(event_file
);
5961 struct perf_event_context
*gctx
= group_leader
->ctx
;
5963 mutex_lock(&gctx
->mutex
);
5964 perf_event_remove_from_context(group_leader
);
5965 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
5967 perf_event_remove_from_context(sibling
);
5970 mutex_unlock(&gctx
->mutex
);
5974 event
->filp
= event_file
;
5975 WARN_ON_ONCE(ctx
->parent_ctx
);
5976 mutex_lock(&ctx
->mutex
);
5979 perf_install_in_context(ctx
, group_leader
, cpu
);
5981 list_for_each_entry(sibling
, &group_leader
->sibling_list
,
5983 perf_install_in_context(ctx
, sibling
, cpu
);
5988 perf_install_in_context(ctx
, event
, cpu
);
5990 mutex_unlock(&ctx
->mutex
);
5992 event
->owner
= current
;
5994 mutex_lock(¤t
->perf_event_mutex
);
5995 list_add_tail(&event
->owner_entry
, ¤t
->perf_event_list
);
5996 mutex_unlock(¤t
->perf_event_mutex
);
5999 * Precalculate sample_data sizes
6001 perf_event__header_size(event
);
6002 perf_event__id_header_size(event
);
6005 * Drop the reference on the group_event after placing the
6006 * new event on the sibling_list. This ensures destruction
6007 * of the group leader will find the pointer to itself in
6008 * perf_group_detach().
6010 fput_light(group_file
, fput_needed
);
6011 fd_install(event_fd
, event_file
);
6020 put_task_struct(task
);
6022 fput_light(group_file
, fput_needed
);
6024 put_unused_fd(event_fd
);
6029 * perf_event_create_kernel_counter
6031 * @attr: attributes of the counter to create
6032 * @cpu: cpu in which the counter is bound
6033 * @task: task to profile (NULL for percpu)
6036 perf_event_create_kernel_counter(struct perf_event_attr
*attr
, int cpu
,
6037 struct task_struct
*task
,
6038 perf_overflow_handler_t overflow_handler
)
6040 struct perf_event_context
*ctx
;
6041 struct perf_event
*event
;
6045 * Get the target context (task or percpu):
6048 event
= perf_event_alloc(attr
, cpu
, task
, NULL
, NULL
, overflow_handler
);
6049 if (IS_ERR(event
)) {
6050 err
= PTR_ERR(event
);
6054 ctx
= find_get_context(event
->pmu
, task
, cpu
);
6061 WARN_ON_ONCE(ctx
->parent_ctx
);
6062 mutex_lock(&ctx
->mutex
);
6063 perf_install_in_context(ctx
, event
, cpu
);
6065 mutex_unlock(&ctx
->mutex
);
6072 return ERR_PTR(err
);
6074 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter
);
6076 static void sync_child_event(struct perf_event
*child_event
,
6077 struct task_struct
*child
)
6079 struct perf_event
*parent_event
= child_event
->parent
;
6082 if (child_event
->attr
.inherit_stat
)
6083 perf_event_read_event(child_event
, child
);
6085 child_val
= perf_event_count(child_event
);
6088 * Add back the child's count to the parent's count:
6090 atomic64_add(child_val
, &parent_event
->child_count
);
6091 atomic64_add(child_event
->total_time_enabled
,
6092 &parent_event
->child_total_time_enabled
);
6093 atomic64_add(child_event
->total_time_running
,
6094 &parent_event
->child_total_time_running
);
6097 * Remove this event from the parent's list
6099 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
6100 mutex_lock(&parent_event
->child_mutex
);
6101 list_del_init(&child_event
->child_list
);
6102 mutex_unlock(&parent_event
->child_mutex
);
6105 * Release the parent event, if this was the last
6108 fput(parent_event
->filp
);
6112 __perf_event_exit_task(struct perf_event
*child_event
,
6113 struct perf_event_context
*child_ctx
,
6114 struct task_struct
*child
)
6116 struct perf_event
*parent_event
;
6118 perf_event_remove_from_context(child_event
);
6120 parent_event
= child_event
->parent
;
6122 * It can happen that parent exits first, and has events
6123 * that are still around due to the child reference. These
6124 * events need to be zapped - but otherwise linger.
6127 sync_child_event(child_event
, child
);
6128 free_event(child_event
);
6132 static void perf_event_exit_task_context(struct task_struct
*child
, int ctxn
)
6134 struct perf_event
*child_event
, *tmp
;
6135 struct perf_event_context
*child_ctx
;
6136 unsigned long flags
;
6138 if (likely(!child
->perf_event_ctxp
[ctxn
])) {
6139 perf_event_task(child
, NULL
, 0);
6143 local_irq_save(flags
);
6145 * We can't reschedule here because interrupts are disabled,
6146 * and either child is current or it is a task that can't be
6147 * scheduled, so we are now safe from rescheduling changing
6150 child_ctx
= rcu_dereference_raw(child
->perf_event_ctxp
[ctxn
]);
6151 task_ctx_sched_out(child_ctx
, EVENT_ALL
);
6154 * Take the context lock here so that if find_get_context is
6155 * reading child->perf_event_ctxp, we wait until it has
6156 * incremented the context's refcount before we do put_ctx below.
6158 raw_spin_lock(&child_ctx
->lock
);
6159 child
->perf_event_ctxp
[ctxn
] = NULL
;
6161 * If this context is a clone; unclone it so it can't get
6162 * swapped to another process while we're removing all
6163 * the events from it.
6165 unclone_ctx(child_ctx
);
6166 update_context_time(child_ctx
);
6167 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
6170 * Report the task dead after unscheduling the events so that we
6171 * won't get any samples after PERF_RECORD_EXIT. We can however still
6172 * get a few PERF_RECORD_READ events.
6174 perf_event_task(child
, child_ctx
, 0);
6177 * We can recurse on the same lock type through:
6179 * __perf_event_exit_task()
6180 * sync_child_event()
6181 * fput(parent_event->filp)
6183 * mutex_lock(&ctx->mutex)
6185 * But since its the parent context it won't be the same instance.
6187 mutex_lock(&child_ctx
->mutex
);
6190 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->pinned_groups
,
6192 __perf_event_exit_task(child_event
, child_ctx
, child
);
6194 list_for_each_entry_safe(child_event
, tmp
, &child_ctx
->flexible_groups
,
6196 __perf_event_exit_task(child_event
, child_ctx
, child
);
6199 * If the last event was a group event, it will have appended all
6200 * its siblings to the list, but we obtained 'tmp' before that which
6201 * will still point to the list head terminating the iteration.
6203 if (!list_empty(&child_ctx
->pinned_groups
) ||
6204 !list_empty(&child_ctx
->flexible_groups
))
6207 mutex_unlock(&child_ctx
->mutex
);
6213 * When a child task exits, feed back event values to parent events.
6215 void perf_event_exit_task(struct task_struct
*child
)
6217 struct perf_event
*event
, *tmp
;
6220 mutex_lock(&child
->perf_event_mutex
);
6221 list_for_each_entry_safe(event
, tmp
, &child
->perf_event_list
,
6223 list_del_init(&event
->owner_entry
);
6226 * Ensure the list deletion is visible before we clear
6227 * the owner, closes a race against perf_release() where
6228 * we need to serialize on the owner->perf_event_mutex.
6231 event
->owner
= NULL
;
6233 mutex_unlock(&child
->perf_event_mutex
);
6235 for_each_task_context_nr(ctxn
)
6236 perf_event_exit_task_context(child
, ctxn
);
6239 static void perf_free_event(struct perf_event
*event
,
6240 struct perf_event_context
*ctx
)
6242 struct perf_event
*parent
= event
->parent
;
6244 if (WARN_ON_ONCE(!parent
))
6247 mutex_lock(&parent
->child_mutex
);
6248 list_del_init(&event
->child_list
);
6249 mutex_unlock(&parent
->child_mutex
);
6253 perf_group_detach(event
);
6254 list_del_event(event
, ctx
);
6259 * free an unexposed, unused context as created by inheritance by
6260 * perf_event_init_task below, used by fork() in case of fail.
6262 void perf_event_free_task(struct task_struct
*task
)
6264 struct perf_event_context
*ctx
;
6265 struct perf_event
*event
, *tmp
;
6268 for_each_task_context_nr(ctxn
) {
6269 ctx
= task
->perf_event_ctxp
[ctxn
];
6273 mutex_lock(&ctx
->mutex
);
6275 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
,
6277 perf_free_event(event
, ctx
);
6279 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
,
6281 perf_free_event(event
, ctx
);
6283 if (!list_empty(&ctx
->pinned_groups
) ||
6284 !list_empty(&ctx
->flexible_groups
))
6287 mutex_unlock(&ctx
->mutex
);
6293 void perf_event_delayed_put(struct task_struct
*task
)
6297 for_each_task_context_nr(ctxn
)
6298 WARN_ON_ONCE(task
->perf_event_ctxp
[ctxn
]);
6302 * inherit a event from parent task to child task:
6304 static struct perf_event
*
6305 inherit_event(struct perf_event
*parent_event
,
6306 struct task_struct
*parent
,
6307 struct perf_event_context
*parent_ctx
,
6308 struct task_struct
*child
,
6309 struct perf_event
*group_leader
,
6310 struct perf_event_context
*child_ctx
)
6312 struct perf_event
*child_event
;
6313 unsigned long flags
;
6316 * Instead of creating recursive hierarchies of events,
6317 * we link inherited events back to the original parent,
6318 * which has a filp for sure, which we use as the reference
6321 if (parent_event
->parent
)
6322 parent_event
= parent_event
->parent
;
6324 child_event
= perf_event_alloc(&parent_event
->attr
,
6327 group_leader
, parent_event
,
6329 if (IS_ERR(child_event
))
6334 * Make the child state follow the state of the parent event,
6335 * not its attr.disabled bit. We hold the parent's mutex,
6336 * so we won't race with perf_event_{en, dis}able_family.
6338 if (parent_event
->state
>= PERF_EVENT_STATE_INACTIVE
)
6339 child_event
->state
= PERF_EVENT_STATE_INACTIVE
;
6341 child_event
->state
= PERF_EVENT_STATE_OFF
;
6343 if (parent_event
->attr
.freq
) {
6344 u64 sample_period
= parent_event
->hw
.sample_period
;
6345 struct hw_perf_event
*hwc
= &child_event
->hw
;
6347 hwc
->sample_period
= sample_period
;
6348 hwc
->last_period
= sample_period
;
6350 local64_set(&hwc
->period_left
, sample_period
);
6353 child_event
->ctx
= child_ctx
;
6354 child_event
->overflow_handler
= parent_event
->overflow_handler
;
6357 * Precalculate sample_data sizes
6359 perf_event__header_size(child_event
);
6360 perf_event__id_header_size(child_event
);
6363 * Link it up in the child's context:
6365 raw_spin_lock_irqsave(&child_ctx
->lock
, flags
);
6366 add_event_to_ctx(child_event
, child_ctx
);
6367 raw_spin_unlock_irqrestore(&child_ctx
->lock
, flags
);
6370 * Get a reference to the parent filp - we will fput it
6371 * when the child event exits. This is safe to do because
6372 * we are in the parent and we know that the filp still
6373 * exists and has a nonzero count:
6375 atomic_long_inc(&parent_event
->filp
->f_count
);
6378 * Link this into the parent event's child list
6380 WARN_ON_ONCE(parent_event
->ctx
->parent_ctx
);
6381 mutex_lock(&parent_event
->child_mutex
);
6382 list_add_tail(&child_event
->child_list
, &parent_event
->child_list
);
6383 mutex_unlock(&parent_event
->child_mutex
);
6388 static int inherit_group(struct perf_event
*parent_event
,
6389 struct task_struct
*parent
,
6390 struct perf_event_context
*parent_ctx
,
6391 struct task_struct
*child
,
6392 struct perf_event_context
*child_ctx
)
6394 struct perf_event
*leader
;
6395 struct perf_event
*sub
;
6396 struct perf_event
*child_ctr
;
6398 leader
= inherit_event(parent_event
, parent
, parent_ctx
,
6399 child
, NULL
, child_ctx
);
6401 return PTR_ERR(leader
);
6402 list_for_each_entry(sub
, &parent_event
->sibling_list
, group_entry
) {
6403 child_ctr
= inherit_event(sub
, parent
, parent_ctx
,
6404 child
, leader
, child_ctx
);
6405 if (IS_ERR(child_ctr
))
6406 return PTR_ERR(child_ctr
);
6412 inherit_task_group(struct perf_event
*event
, struct task_struct
*parent
,
6413 struct perf_event_context
*parent_ctx
,
6414 struct task_struct
*child
, int ctxn
,
6418 struct perf_event_context
*child_ctx
;
6420 if (!event
->attr
.inherit
) {
6425 child_ctx
= child
->perf_event_ctxp
[ctxn
];
6428 * This is executed from the parent task context, so
6429 * inherit events that have been marked for cloning.
6430 * First allocate and initialize a context for the
6434 child_ctx
= alloc_perf_context(event
->pmu
, child
);
6438 child
->perf_event_ctxp
[ctxn
] = child_ctx
;
6441 ret
= inherit_group(event
, parent
, parent_ctx
,
6451 * Initialize the perf_event context in task_struct
6453 int perf_event_init_context(struct task_struct
*child
, int ctxn
)
6455 struct perf_event_context
*child_ctx
, *parent_ctx
;
6456 struct perf_event_context
*cloned_ctx
;
6457 struct perf_event
*event
;
6458 struct task_struct
*parent
= current
;
6459 int inherited_all
= 1;
6460 unsigned long flags
;
6463 if (likely(!parent
->perf_event_ctxp
[ctxn
]))
6467 * If the parent's context is a clone, pin it so it won't get
6470 parent_ctx
= perf_pin_task_context(parent
, ctxn
);
6473 * No need to check if parent_ctx != NULL here; since we saw
6474 * it non-NULL earlier, the only reason for it to become NULL
6475 * is if we exit, and since we're currently in the middle of
6476 * a fork we can't be exiting at the same time.
6480 * Lock the parent list. No need to lock the child - not PID
6481 * hashed yet and not running, so nobody can access it.
6483 mutex_lock(&parent_ctx
->mutex
);
6486 * We dont have to disable NMIs - we are only looking at
6487 * the list, not manipulating it:
6489 list_for_each_entry(event
, &parent_ctx
->pinned_groups
, group_entry
) {
6490 ret
= inherit_task_group(event
, parent
, parent_ctx
,
6491 child
, ctxn
, &inherited_all
);
6497 * We can't hold ctx->lock when iterating the ->flexible_group list due
6498 * to allocations, but we need to prevent rotation because
6499 * rotate_ctx() will change the list from interrupt context.
6501 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
6502 parent_ctx
->rotate_disable
= 1;
6503 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
6505 list_for_each_entry(event
, &parent_ctx
->flexible_groups
, group_entry
) {
6506 ret
= inherit_task_group(event
, parent
, parent_ctx
,
6507 child
, ctxn
, &inherited_all
);
6512 raw_spin_lock_irqsave(&parent_ctx
->lock
, flags
);
6513 parent_ctx
->rotate_disable
= 0;
6515 child_ctx
= child
->perf_event_ctxp
[ctxn
];
6517 if (child_ctx
&& inherited_all
) {
6519 * Mark the child context as a clone of the parent
6520 * context, or of whatever the parent is a clone of.
6522 * Note that if the parent is a clone, the holding of
6523 * parent_ctx->lock avoids it from being uncloned.
6525 cloned_ctx
= parent_ctx
->parent_ctx
;
6527 child_ctx
->parent_ctx
= cloned_ctx
;
6528 child_ctx
->parent_gen
= parent_ctx
->parent_gen
;
6530 child_ctx
->parent_ctx
= parent_ctx
;
6531 child_ctx
->parent_gen
= parent_ctx
->generation
;
6533 get_ctx(child_ctx
->parent_ctx
);
6536 raw_spin_unlock_irqrestore(&parent_ctx
->lock
, flags
);
6537 mutex_unlock(&parent_ctx
->mutex
);
6539 perf_unpin_context(parent_ctx
);
6545 * Initialize the perf_event context in task_struct
6547 int perf_event_init_task(struct task_struct
*child
)
6551 memset(child
->perf_event_ctxp
, 0, sizeof(child
->perf_event_ctxp
));
6552 mutex_init(&child
->perf_event_mutex
);
6553 INIT_LIST_HEAD(&child
->perf_event_list
);
6555 for_each_task_context_nr(ctxn
) {
6556 ret
= perf_event_init_context(child
, ctxn
);
6564 static void __init
perf_event_init_all_cpus(void)
6566 struct swevent_htable
*swhash
;
6569 for_each_possible_cpu(cpu
) {
6570 swhash
= &per_cpu(swevent_htable
, cpu
);
6571 mutex_init(&swhash
->hlist_mutex
);
6572 INIT_LIST_HEAD(&per_cpu(rotation_list
, cpu
));
6576 static void __cpuinit
perf_event_init_cpu(int cpu
)
6578 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6580 mutex_lock(&swhash
->hlist_mutex
);
6581 if (swhash
->hlist_refcount
> 0) {
6582 struct swevent_hlist
*hlist
;
6584 hlist
= kzalloc_node(sizeof(*hlist
), GFP_KERNEL
, cpu_to_node(cpu
));
6586 rcu_assign_pointer(swhash
->swevent_hlist
, hlist
);
6588 mutex_unlock(&swhash
->hlist_mutex
);
6591 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6592 static void perf_pmu_rotate_stop(struct pmu
*pmu
)
6594 struct perf_cpu_context
*cpuctx
= this_cpu_ptr(pmu
->pmu_cpu_context
);
6596 WARN_ON(!irqs_disabled());
6598 list_del_init(&cpuctx
->rotation_list
);
6601 static void __perf_event_exit_context(void *__info
)
6603 struct perf_event_context
*ctx
= __info
;
6604 struct perf_event
*event
, *tmp
;
6606 perf_pmu_rotate_stop(ctx
->pmu
);
6608 list_for_each_entry_safe(event
, tmp
, &ctx
->pinned_groups
, group_entry
)
6609 __perf_event_remove_from_context(event
);
6610 list_for_each_entry_safe(event
, tmp
, &ctx
->flexible_groups
, group_entry
)
6611 __perf_event_remove_from_context(event
);
6614 static void perf_event_exit_cpu_context(int cpu
)
6616 struct perf_event_context
*ctx
;
6620 idx
= srcu_read_lock(&pmus_srcu
);
6621 list_for_each_entry_rcu(pmu
, &pmus
, entry
) {
6622 ctx
= &per_cpu_ptr(pmu
->pmu_cpu_context
, cpu
)->ctx
;
6624 mutex_lock(&ctx
->mutex
);
6625 smp_call_function_single(cpu
, __perf_event_exit_context
, ctx
, 1);
6626 mutex_unlock(&ctx
->mutex
);
6628 srcu_read_unlock(&pmus_srcu
, idx
);
6631 static void perf_event_exit_cpu(int cpu
)
6633 struct swevent_htable
*swhash
= &per_cpu(swevent_htable
, cpu
);
6635 mutex_lock(&swhash
->hlist_mutex
);
6636 swevent_hlist_release(swhash
);
6637 mutex_unlock(&swhash
->hlist_mutex
);
6639 perf_event_exit_cpu_context(cpu
);
6642 static inline void perf_event_exit_cpu(int cpu
) { }
6646 perf_reboot(struct notifier_block
*notifier
, unsigned long val
, void *v
)
6650 for_each_online_cpu(cpu
)
6651 perf_event_exit_cpu(cpu
);
6657 * Run the perf reboot notifier at the very last possible moment so that
6658 * the generic watchdog code runs as long as possible.
6660 static struct notifier_block perf_reboot_notifier
= {
6661 .notifier_call
= perf_reboot
,
6662 .priority
= INT_MIN
,
6665 static int __cpuinit
6666 perf_cpu_notify(struct notifier_block
*self
, unsigned long action
, void *hcpu
)
6668 unsigned int cpu
= (long)hcpu
;
6670 switch (action
& ~CPU_TASKS_FROZEN
) {
6672 case CPU_UP_PREPARE
:
6673 case CPU_DOWN_FAILED
:
6674 perf_event_init_cpu(cpu
);
6677 case CPU_UP_CANCELED
:
6678 case CPU_DOWN_PREPARE
:
6679 perf_event_exit_cpu(cpu
);
6689 void __init
perf_event_init(void)
6695 perf_event_init_all_cpus();
6696 init_srcu_struct(&pmus_srcu
);
6697 perf_pmu_register(&perf_swevent
, "software", PERF_TYPE_SOFTWARE
);
6698 perf_pmu_register(&perf_cpu_clock
, NULL
, -1);
6699 perf_pmu_register(&perf_task_clock
, NULL
, -1);
6701 perf_cpu_notifier(perf_cpu_notify
);
6702 register_reboot_notifier(&perf_reboot_notifier
);
6704 ret
= init_hw_breakpoint();
6705 WARN(ret
, "hw_breakpoint initialization failed with: %d", ret
);
6708 static int __init
perf_event_sysfs_init(void)
6713 mutex_lock(&pmus_lock
);
6715 ret
= bus_register(&pmu_bus
);
6719 list_for_each_entry(pmu
, &pmus
, entry
) {
6720 if (!pmu
->name
|| pmu
->type
< 0)
6723 ret
= pmu_dev_alloc(pmu
);
6724 WARN(ret
, "Failed to register pmu: %s, reason %d\n", pmu
->name
, ret
);
6726 pmu_bus_running
= 1;
6730 mutex_unlock(&pmus_lock
);
6734 device_initcall(perf_event_sysfs_init
);