1 #ifndef __ASM_SH64_PGTABLE_H
2 #define __ASM_SH64_PGTABLE_H
4 #include <asm-generic/4level-fixup.h>
7 * This file is subject to the terms and conditions of the GNU General Public
8 * License. See the file "COPYING" in the main directory of this archive
11 * include/asm-sh64/pgtable.h
13 * Copyright (C) 2000, 2001 Paolo Alberelli
14 * Copyright (C) 2003, 2004 Paul Mundt
15 * Copyright (C) 2003, 2004 Richard Curnow
17 * This file contains the functions and defines necessary to modify and use
18 * the SuperH page table tree.
22 #include <asm/processor.h>
24 #include <linux/threads.h>
26 struct vm_area_struct
;
28 extern void paging_init(void);
30 /* We provide our own get_unmapped_area to avoid cache synonym issue */
31 #define HAVE_ARCH_UNMAPPED_AREA
34 * Basically we have the same two-level (which is the logical three level
35 * Linux page table layout folded) page tables as the i386.
39 * ZERO_PAGE is a global shared page that is always zero: used
40 * for zero-mapped memory areas etc..
42 extern unsigned char empty_zero_page
[PAGE_SIZE
];
43 #define ZERO_PAGE(vaddr) (mem_map + MAP_NR(empty_zero_page))
45 #endif /* !__ASSEMBLY__ */
48 * NEFF and NPHYS related defines.
49 * FIXME : These need to be model-dependent. For now this is OK, SH5-101 and SH5-103
50 * implement 32 bits effective and 32 bits physical. But future implementations may
54 #define NEFF_SIGN (1LL << (NEFF - 1))
55 #define NEFF_MASK (-1LL << NEFF)
58 #define NPHYS_SIGN (1LL << (NPHYS - 1))
59 #define NPHYS_MASK (-1LL << NPHYS)
61 /* Typically 2-level is sufficient up to 32 bits of virtual address space, beyond
62 that 3-level would be appropriate. */
63 #if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
64 /* For 4k pages, this contains 512 entries, i.e. 9 bits worth of address. */
65 #define PTRS_PER_PTE ((1<<PAGE_SHIFT)/sizeof(unsigned long long))
66 #define PTE_MAGNITUDE 3 /* sizeof(unsigned long long) magnit. */
67 #define PTE_SHIFT PAGE_SHIFT
68 #define PTE_BITS (PAGE_SHIFT - PTE_MAGNITUDE)
71 #define PGDIR_SHIFT (PTE_SHIFT + PTE_BITS)
72 #define PGD_BITS (NEFF - PGDIR_SHIFT)
73 #define PTRS_PER_PGD (1<<PGD_BITS)
75 /* middle level: PMD. This doesn't do anything for the 2-level case. */
76 #define PTRS_PER_PMD (1)
78 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
79 #define PGDIR_MASK (~(PGDIR_SIZE-1))
80 #define PMD_SHIFT PGDIR_SHIFT
81 #define PMD_SIZE PGDIR_SIZE
82 #define PMD_MASK PGDIR_MASK
84 #elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
86 * three-level asymmetric paging structure: PGD is top level.
87 * The asymmetry comes from 32-bit pointers and 64-bit PTEs.
89 /* bottom level: PTE. It's 9 bits = 512 pointers */
90 #define PTRS_PER_PTE ((1<<PAGE_SHIFT)/sizeof(unsigned long long))
91 #define PTE_MAGNITUDE 3 /* sizeof(unsigned long long) magnit. */
92 #define PTE_SHIFT PAGE_SHIFT
93 #define PTE_BITS (PAGE_SHIFT - PTE_MAGNITUDE)
95 /* middle level: PMD. It's 10 bits = 1024 pointers */
96 #define PTRS_PER_PMD ((1<<PAGE_SHIFT)/sizeof(unsigned long long *))
97 #define PMD_MAGNITUDE 2 /* sizeof(unsigned long long *) magnit. */
98 #define PMD_SHIFT (PTE_SHIFT + PTE_BITS)
99 #define PMD_BITS (PAGE_SHIFT - PMD_MAGNITUDE)
101 /* top level: PMD. It's 1 bit = 2 pointers */
102 #define PGDIR_SHIFT (PMD_SHIFT + PMD_BITS)
103 #define PGD_BITS (NEFF - PGDIR_SHIFT)
104 #define PTRS_PER_PGD (1<<PGD_BITS)
106 #define PMD_SIZE (1UL << PMD_SHIFT)
107 #define PMD_MASK (~(PMD_SIZE-1))
108 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
109 #define PGDIR_MASK (~(PGDIR_SIZE-1))
112 #error "No defined number of page table levels"
118 #define pte_ERROR(e) \
119 printk("%s:%d: bad pte %016Lx.\n", __FILE__, __LINE__, pte_val(e))
120 #define pmd_ERROR(e) \
121 printk("%s:%d: bad pmd %08lx.\n", __FILE__, __LINE__, pmd_val(e))
122 #define pgd_ERROR(e) \
123 printk("%s:%d: bad pgd %08lx.\n", __FILE__, __LINE__, pgd_val(e))
126 * Table setting routines. Used within arch/mm only.
128 #define set_pgd(pgdptr, pgdval) (*(pgdptr) = pgdval)
129 #define set_pmd(pmdptr, pmdval) (*(pmdptr) = pmdval)
131 static __inline__
void set_pte(pte_t
*pteptr
, pte_t pteval
)
133 unsigned long long x
= ((unsigned long long) pteval
.pte
);
134 unsigned long long *xp
= (unsigned long long *) pteptr
;
136 * Sign-extend based on NPHYS.
138 *(xp
) = (x
& NPHYS_SIGN
) ? (x
| NPHYS_MASK
) : x
;
140 #define set_pte_at(mm,addr,ptep,pteval) set_pte(ptep,pteval)
142 static __inline__
void pmd_set(pmd_t
*pmdp
,pte_t
*ptep
)
144 pmd_val(*pmdp
) = (unsigned long) ptep
;
148 * PGD defines. Top level.
151 /* To find an entry in a generic PGD. */
152 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
153 #define __pgd_offset(address) pgd_index(address)
154 #define pgd_offset(mm, address) ((mm)->pgd+pgd_index(address))
156 /* To find an entry in a kernel PGD. */
157 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
160 * PGD level access routines.
163 * There's no need to use physical addresses since the tree walk is all
164 * in performed in software, until the PTE translation.
167 * A PGD entry can be uninitialized (_PGD_UNUSED), generically bad,
168 * clear (_PGD_EMPTY), present. When present, lower 3 nibbles contain
169 * _KERNPG_TABLE. Being a kernel virtual pointer also bit 31 must
170 * be 1. Assuming an arbitrary clear value of bit 31 set to 0 and
171 * lower 3 nibbles set to 0xFFF (_PGD_EMPTY) any other value is a
172 * bad pgd that must be notified via printk().
175 #define _PGD_EMPTY 0x0
177 #if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
178 static inline int pgd_none(pgd_t pgd
) { return 0; }
179 static inline int pgd_bad(pgd_t pgd
) { return 0; }
180 #define pgd_present(pgd) ((pgd_val(pgd) & _PAGE_PRESENT) ? 1 : 0)
181 #define pgd_clear(xx) do { } while(0)
183 #elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
184 #define pgd_present(pgd_entry) (1)
185 #define pgd_none(pgd_entry) (pgd_val((pgd_entry)) == _PGD_EMPTY)
186 /* TODO: Think later about what a useful definition of 'bad' would be now. */
187 #define pgd_bad(pgd_entry) (0)
188 #define pgd_clear(pgd_entry_p) (set_pgd((pgd_entry_p), __pgd(_PGD_EMPTY)))
193 #define pgd_page_vaddr(pgd_entry) ((unsigned long) (pgd_val(pgd_entry) & PAGE_MASK))
194 #define pgd_page(pgd) (virt_to_page(pgd_val(pgd)))
198 * PMD defines. Middle level.
201 /* PGD to PMD dereferencing */
202 #if defined(CONFIG_SH64_PGTABLE_2_LEVEL)
203 static inline pmd_t
* pmd_offset(pgd_t
* dir
, unsigned long address
)
205 return (pmd_t
*) dir
;
207 #elif defined(CONFIG_SH64_PGTABLE_3_LEVEL)
208 #define __pmd_offset(address) \
209 (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
210 #define pmd_offset(dir, addr) \
211 ((pmd_t *) ((pgd_val(*(dir))) & PAGE_MASK) + __pmd_offset((addr)))
215 * PMD level access routines. Same notes as above.
217 #define _PMD_EMPTY 0x0
218 /* Either the PMD is empty or present, it's not paged out */
219 #define pmd_present(pmd_entry) (pmd_val(pmd_entry) & _PAGE_PRESENT)
220 #define pmd_clear(pmd_entry_p) (set_pmd((pmd_entry_p), __pmd(_PMD_EMPTY)))
221 #define pmd_none(pmd_entry) (pmd_val((pmd_entry)) == _PMD_EMPTY)
222 #define pmd_bad(pmd_entry) ((pmd_val(pmd_entry) & (~PAGE_MASK & ~_PAGE_USER)) != _KERNPG_TABLE)
224 #define pmd_page_vaddr(pmd_entry) \
225 ((unsigned long) __va(pmd_val(pmd_entry) & PAGE_MASK))
227 #define pmd_page(pmd) \
228 (virt_to_page(pmd_val(pmd)))
230 /* PMD to PTE dereferencing */
231 #define pte_index(address) \
232 ((address >> PAGE_SHIFT) & (PTRS_PER_PTE - 1))
234 #define pte_offset_kernel(dir, addr) \
235 ((pte_t *) ((pmd_val(*(dir))) & PAGE_MASK) + pte_index((addr)))
237 #define pte_offset_map(dir,addr) pte_offset_kernel(dir, addr)
238 #define pte_offset_map_nested(dir,addr) pte_offset_kernel(dir, addr)
239 #define pte_unmap(pte) do { } while (0)
240 #define pte_unmap_nested(pte) do { } while (0)
243 #define USER_PTRS_PER_PGD ((TASK_SIZE+PGDIR_SIZE-1)/PGDIR_SIZE)
244 #define FIRST_USER_ADDRESS 0
247 #define VMALLOC_END 0xff000000
248 #define VMALLOC_START 0xf0000000
249 #define VMALLOC_VMADDR(x) ((unsigned long)(x))
251 #define IOBASE_VADDR 0xff000000
252 #define IOBASE_END 0xffffffff
255 * PTEL coherent flags.
256 * See Chapter 17 ST50 CPU Core Volume 1, Architecture.
258 /* The bits that are required in the SH-5 TLB are placed in the h/w-defined
259 positions, to avoid expensive bit shuffling on every refill. The remaining
260 bits are used for s/w purposes and masked out on each refill.
262 Note, the PTE slots are used to hold data of type swp_entry_t when a page is
263 swapped out. Only the _PAGE_PRESENT flag is significant when the page is
264 swapped out, and it must be placed so that it doesn't overlap either the
265 type or offset fields of swp_entry_t. For x86, offset is at [31:8] and type
266 at [6:1], with _PAGE_PRESENT at bit 0 for both pte_t and swp_entry_t. This
267 scheme doesn't map to SH-5 because bit [0] controls cacheability. So bit
268 [2] is used for _PAGE_PRESENT and the type field of swp_entry_t is split
269 into 2 pieces. That is handled by SWP_ENTRY and SWP_TYPE below. */
270 #define _PAGE_WT 0x001 /* CB0: if cacheable, 1->write-thru, 0->write-back */
271 #define _PAGE_DEVICE 0x001 /* CB0: if uncacheable, 1->device (i.e. no write-combining or reordering at bus level) */
272 #define _PAGE_CACHABLE 0x002 /* CB1: uncachable/cachable */
273 #define _PAGE_PRESENT 0x004 /* software: page referenced */
274 #define _PAGE_FILE 0x004 /* software: only when !present */
275 #define _PAGE_SIZE0 0x008 /* SZ0-bit : size of page */
276 #define _PAGE_SIZE1 0x010 /* SZ1-bit : size of page */
277 #define _PAGE_SHARED 0x020 /* software: reflects PTEH's SH */
278 #define _PAGE_READ 0x040 /* PR0-bit : read access allowed */
279 #define _PAGE_EXECUTE 0x080 /* PR1-bit : execute access allowed */
280 #define _PAGE_WRITE 0x100 /* PR2-bit : write access allowed */
281 #define _PAGE_USER 0x200 /* PR3-bit : user space access allowed */
282 #define _PAGE_DIRTY 0x400 /* software: page accessed in write */
283 #define _PAGE_ACCESSED 0x800 /* software: page referenced */
285 /* Mask which drops software flags */
286 #define _PAGE_FLAGS_HARDWARE_MASK 0xfffffffffffff3dbLL
291 #if defined(CONFIG_HUGETLB_PAGE_SIZE_64K)
292 #define _PAGE_SZHUGE (_PAGE_SIZE0)
293 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_1MB)
294 #define _PAGE_SZHUGE (_PAGE_SIZE1)
295 #elif defined(CONFIG_HUGETLB_PAGE_SIZE_512MB)
296 #define _PAGE_SZHUGE (_PAGE_SIZE0 | _PAGE_SIZE1)
300 * Default flags for a Kernel page.
301 * This is fundametally also SHARED because the main use of this define
302 * (other than for PGD/PMD entries) is for the VMALLOC pool which is
305 * _PAGE_EXECUTE is required for modules
308 #define _KERNPG_TABLE (_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
310 _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_DIRTY | \
313 /* Default flags for a User page */
314 #define _PAGE_TABLE (_KERNPG_TABLE | _PAGE_USER)
316 #define _PAGE_CHG_MASK (PTE_MASK | _PAGE_ACCESSED | _PAGE_DIRTY)
318 #define PAGE_NONE __pgprot(_PAGE_CACHABLE | _PAGE_ACCESSED)
319 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
320 _PAGE_CACHABLE | _PAGE_ACCESSED | _PAGE_USER | \
322 /* We need to include PAGE_EXECUTE in PAGE_COPY because it is the default
323 * protection mode for the stack. */
324 #define PAGE_COPY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \
325 _PAGE_ACCESSED | _PAGE_USER | _PAGE_EXECUTE)
326 #define PAGE_READONLY __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_CACHABLE | \
327 _PAGE_ACCESSED | _PAGE_USER)
328 #define PAGE_KERNEL __pgprot(_KERNPG_TABLE)
332 * In ST50 we have full permissions (Read/Write/Execute/Shared).
333 * Just match'em all. These are for mmap(), therefore all at least
334 * User/Cachable/Present/Accessed. No point in making Fault on Write.
336 #define __MMAP_COMMON (_PAGE_PRESENT | _PAGE_USER | _PAGE_CACHABLE | _PAGE_ACCESSED)
338 #define __P000 __pgprot(__MMAP_COMMON)
339 #define __P001 __pgprot(__MMAP_COMMON | _PAGE_READ)
340 #define __P010 __pgprot(__MMAP_COMMON)
341 #define __P011 __pgprot(__MMAP_COMMON | _PAGE_READ)
342 #define __P100 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE)
343 #define __P101 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ)
344 #define __P110 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE)
345 #define __P111 __pgprot(__MMAP_COMMON | _PAGE_EXECUTE | _PAGE_READ)
347 #define __S000 __pgprot(__MMAP_COMMON | _PAGE_SHARED)
348 #define __S001 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ)
349 #define __S010 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_WRITE)
350 #define __S011 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_READ | _PAGE_WRITE)
351 #define __S100 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE)
352 #define __S101 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ)
353 #define __S110 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_WRITE)
354 #define __S111 __pgprot(__MMAP_COMMON | _PAGE_SHARED | _PAGE_EXECUTE | _PAGE_READ | _PAGE_WRITE)
356 /* Make it a device mapping for maximum safety (e.g. for mapping device
357 registers into user-space via /dev/map). */
358 #define pgprot_noncached(x) __pgprot(((x).pgprot & ~(_PAGE_CACHABLE)) | _PAGE_DEVICE)
359 #define pgprot_writecombine(prot) __pgprot(pgprot_val(prot) & ~_PAGE_CACHABLE)
362 * Handling allocation failures during page table setup.
364 extern void __handle_bad_pmd_kernel(pmd_t
* pmd
);
365 #define __handle_bad_pmd(x) __handle_bad_pmd_kernel(x)
368 * PTE level access routines.
371 * It's the tree walk leaf. This is physical address to be stored.
374 * Regarding the choice of _PTE_EMPTY:
376 We must choose a bit pattern that cannot be valid, whether or not the page
377 is present. bit[2]==1 => present, bit[2]==0 => swapped out. If swapped
378 out, bits [31:8], [6:3], [1:0] are under swapper control, so only bit[7] is
379 left for us to select. If we force bit[7]==0 when swapped out, we could use
380 the combination bit[7,2]=2'b10 to indicate an empty PTE. Alternatively, if
381 we force bit[7]==1 when swapped out, we can use all zeroes to indicate
382 empty. This is convenient, because the page tables get cleared to zero
383 when they are allocated.
386 #define _PTE_EMPTY 0x0
387 #define pte_present(x) (pte_val(x) & _PAGE_PRESENT)
388 #define pte_clear(mm,addr,xp) (set_pte_at(mm, addr, xp, __pte(_PTE_EMPTY)))
389 #define pte_none(x) (pte_val(x) == _PTE_EMPTY)
392 * Some definitions to translate between mem_map, PTEs, and page
397 * Given a PTE, return the index of the mem_map[] entry corresponding
398 * to the page frame the PTE. Get the absolute physical address, make
399 * a relative physical address and translate it to an index.
401 #define pte_pagenr(x) (((unsigned long) (pte_val(x)) - \
402 __MEMORY_START) >> PAGE_SHIFT)
405 * Given a PTE, return the "struct page *".
407 #define pte_page(x) (mem_map + pte_pagenr(x))
410 * Return number of (down rounded) MB corresponding to x pages.
412 #define pages_to_mb(x) ((x) >> (20-PAGE_SHIFT))
416 * The following have defined behavior only work if pte_present() is true.
418 static inline int pte_dirty(pte_t pte
){ return pte_val(pte
) & _PAGE_DIRTY
; }
419 static inline int pte_young(pte_t pte
){ return pte_val(pte
) & _PAGE_ACCESSED
; }
420 static inline int pte_file(pte_t pte
) { return pte_val(pte
) & _PAGE_FILE
; }
421 static inline int pte_write(pte_t pte
){ return pte_val(pte
) & _PAGE_WRITE
; }
423 static inline pte_t
pte_wrprotect(pte_t pte
) { set_pte(&pte
, __pte(pte_val(pte
) & ~_PAGE_WRITE
)); return pte
; }
424 static inline pte_t
pte_mkclean(pte_t pte
) { set_pte(&pte
, __pte(pte_val(pte
) & ~_PAGE_DIRTY
)); return pte
; }
425 static inline pte_t
pte_mkold(pte_t pte
) { set_pte(&pte
, __pte(pte_val(pte
) & ~_PAGE_ACCESSED
)); return pte
; }
426 static inline pte_t
pte_mkwrite(pte_t pte
) { set_pte(&pte
, __pte(pte_val(pte
) | _PAGE_WRITE
)); return pte
; }
427 static inline pte_t
pte_mkdirty(pte_t pte
) { set_pte(&pte
, __pte(pte_val(pte
) | _PAGE_DIRTY
)); return pte
; }
428 static inline pte_t
pte_mkyoung(pte_t pte
) { set_pte(&pte
, __pte(pte_val(pte
) | _PAGE_ACCESSED
)); return pte
; }
429 static inline pte_t
pte_mkhuge(pte_t pte
) { set_pte(&pte
, __pte(pte_val(pte
) | _PAGE_SZHUGE
)); return pte
; }
433 * Conversion functions: convert a page and protection to a page entry.
435 * extern pte_t mk_pte(struct page *page, pgprot_t pgprot)
437 #define mk_pte(page,pgprot) \
441 set_pte(&__pte, __pte((((page)-mem_map) << PAGE_SHIFT) | \
442 __MEMORY_START | pgprot_val((pgprot)))); \
447 * This takes a (absolute) physical page address that is used
448 * by the remapping functions
450 #define mk_pte_phys(physpage, pgprot) \
451 ({ pte_t __pte; set_pte(&__pte, __pte(physpage | pgprot_val(pgprot))); __pte; })
453 static inline pte_t
pte_modify(pte_t pte
, pgprot_t newprot
)
454 { set_pte(&pte
, __pte((pte_val(pte
) & _PAGE_CHG_MASK
) | pgprot_val(newprot
))); return pte
; }
456 typedef pte_t
*pte_addr_t
;
457 #define pgtable_cache_init() do { } while (0)
459 extern void update_mmu_cache(struct vm_area_struct
* vma
,
460 unsigned long address
, pte_t pte
);
462 /* Encode and decode a swap entry */
463 #define __swp_type(x) (((x).val & 3) + (((x).val >> 1) & 0x3c))
464 #define __swp_offset(x) ((x).val >> 8)
465 #define __swp_entry(type, offset) ((swp_entry_t) { ((offset << 8) + ((type & 0x3c) << 1) + (type & 3)) })
466 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
467 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
469 /* Encode and decode a nonlinear file mapping entry */
470 #define PTE_FILE_MAX_BITS 29
471 #define pte_to_pgoff(pte) (pte_val(pte))
472 #define pgoff_to_pte(off) ((pte_t) { (off) | _PAGE_FILE })
474 /* Needs to be defined here and not in linux/mm.h, as it is arch dependent */
475 #define PageSkip(page) (0)
476 #define kern_addr_valid(addr) (1)
478 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
479 remap_pfn_range(vma, vaddr, pfn, size, prot)
481 #endif /* !__ASSEMBLY__ */
484 * No page table caches to initialise
486 #define pgtable_cache_init() do { } while (0)
488 #define pte_pfn(x) (((unsigned long)((x).pte)) >> PAGE_SHIFT)
489 #define pfn_pte(pfn, prot) __pte(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
490 #define pfn_pmd(pfn, prot) __pmd(((pfn) << PAGE_SHIFT) | pgprot_val(prot))
492 extern pgd_t swapper_pg_dir
[PTRS_PER_PGD
];
494 #include <asm-generic/pgtable.h>
496 #endif /* __ASM_SH64_PGTABLE_H */