2 * linux/kernel/time/tick-sched.c
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
8 * No idle tick implementation for low and high resolution timers
10 * Started by: Thomas Gleixner and Ingo Molnar
12 * Distribute under GPLv2.
14 #include <linux/cpu.h>
15 #include <linux/err.h>
16 #include <linux/hrtimer.h>
17 #include <linux/interrupt.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/percpu.h>
20 #include <linux/profile.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
24 #include <asm/irq_regs.h>
26 #include "tick-internal.h"
29 * Per cpu nohz control structure
31 static DEFINE_PER_CPU(struct tick_sched
, tick_cpu_sched
);
34 * The time, when the last jiffy update happened. Protected by xtime_lock.
36 static ktime_t last_jiffies_update
;
38 struct tick_sched
*tick_get_tick_sched(int cpu
)
40 return &per_cpu(tick_cpu_sched
, cpu
);
44 * Must be called with interrupts disabled !
46 static void tick_do_update_jiffies64(ktime_t now
)
48 unsigned long ticks
= 0;
52 * Do a quick check without holding xtime_lock:
54 delta
= ktime_sub(now
, last_jiffies_update
);
55 if (delta
.tv64
< tick_period
.tv64
)
58 /* Reevalute with xtime_lock held */
59 write_seqlock(&xtime_lock
);
61 delta
= ktime_sub(now
, last_jiffies_update
);
62 if (delta
.tv64
>= tick_period
.tv64
) {
64 delta
= ktime_sub(delta
, tick_period
);
65 last_jiffies_update
= ktime_add(last_jiffies_update
,
68 /* Slow path for long timeouts */
69 if (unlikely(delta
.tv64
>= tick_period
.tv64
)) {
70 s64 incr
= ktime_to_ns(tick_period
);
72 ticks
= ktime_divns(delta
, incr
);
74 last_jiffies_update
= ktime_add_ns(last_jiffies_update
,
79 /* Keep the tick_next_period variable up to date */
80 tick_next_period
= ktime_add(last_jiffies_update
, tick_period
);
82 write_sequnlock(&xtime_lock
);
86 * Initialize and return retrieve the jiffies update.
88 static ktime_t
tick_init_jiffy_update(void)
92 write_seqlock(&xtime_lock
);
93 /* Did we start the jiffies update yet ? */
94 if (last_jiffies_update
.tv64
== 0)
95 last_jiffies_update
= tick_next_period
;
96 period
= last_jiffies_update
;
97 write_sequnlock(&xtime_lock
);
102 * NOHZ - aka dynamic tick functionality
108 static int tick_nohz_enabled __read_mostly
= 1;
111 * Enable / Disable tickless mode
113 static int __init
setup_tick_nohz(char *str
)
115 if (!strcmp(str
, "off"))
116 tick_nohz_enabled
= 0;
117 else if (!strcmp(str
, "on"))
118 tick_nohz_enabled
= 1;
124 __setup("nohz=", setup_tick_nohz
);
127 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
129 * Called from interrupt entry when the CPU was idle
131 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
132 * must be updated. Otherwise an interrupt handler could use a stale jiffy
133 * value. We do this unconditionally on any cpu, as we don't know whether the
134 * cpu, which has the update task assigned is in a long sleep.
136 static void tick_nohz_update_jiffies(ktime_t now
)
138 int cpu
= smp_processor_id();
139 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
142 cpumask_clear_cpu(cpu
, nohz_cpu_mask
);
143 ts
->idle_waketime
= now
;
145 local_irq_save(flags
);
146 tick_do_update_jiffies64(now
);
147 local_irq_restore(flags
);
149 touch_softlockup_watchdog();
153 * Updates the per cpu time idle statistics counters
156 update_ts_time_stats(int cpu
, struct tick_sched
*ts
, ktime_t now
, u64
*last_update_time
)
160 if (ts
->idle_active
) {
161 delta
= ktime_sub(now
, ts
->idle_entrytime
);
162 ts
->idle_sleeptime
= ktime_add(ts
->idle_sleeptime
, delta
);
163 if (nr_iowait_cpu(cpu
) > 0)
164 ts
->iowait_sleeptime
= ktime_add(ts
->iowait_sleeptime
, delta
);
165 ts
->idle_entrytime
= now
;
168 if (last_update_time
)
169 *last_update_time
= ktime_to_us(now
);
173 static void tick_nohz_stop_idle(int cpu
, ktime_t now
)
175 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
177 update_ts_time_stats(cpu
, ts
, now
, NULL
);
180 sched_clock_idle_wakeup_event(0);
183 static ktime_t
tick_nohz_start_idle(int cpu
, struct tick_sched
*ts
)
189 update_ts_time_stats(cpu
, ts
, now
, NULL
);
191 ts
->idle_entrytime
= now
;
193 sched_clock_idle_sleep_event();
198 * get_cpu_idle_time_us - get the total idle time of a cpu
199 * @cpu: CPU number to query
200 * @last_update_time: variable to store update time in
202 * Return the cummulative idle time (since boot) for a given
203 * CPU, in microseconds. The idle time returned includes
204 * the iowait time (unlike what "top" and co report).
206 * This time is measured via accounting rather than sampling,
207 * and is as accurate as ktime_get() is.
209 * This function returns -1 if NOHZ is not enabled.
211 u64
get_cpu_idle_time_us(int cpu
, u64
*last_update_time
)
213 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
215 if (!tick_nohz_enabled
)
218 update_ts_time_stats(cpu
, ts
, ktime_get(), last_update_time
);
220 return ktime_to_us(ts
->idle_sleeptime
);
222 EXPORT_SYMBOL_GPL(get_cpu_idle_time_us
);
225 * get_cpu_iowait_time_us - get the total iowait time of a cpu
226 * @cpu: CPU number to query
227 * @last_update_time: variable to store update time in
229 * Return the cummulative iowait time (since boot) for a given
230 * CPU, in microseconds.
232 * This time is measured via accounting rather than sampling,
233 * and is as accurate as ktime_get() is.
235 * This function returns -1 if NOHZ is not enabled.
237 u64
get_cpu_iowait_time_us(int cpu
, u64
*last_update_time
)
239 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
241 if (!tick_nohz_enabled
)
244 update_ts_time_stats(cpu
, ts
, ktime_get(), last_update_time
);
246 return ktime_to_us(ts
->iowait_sleeptime
);
248 EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us
);
251 * tick_nohz_stop_sched_tick - stop the idle tick from the idle task
253 * When the next event is more than a tick into the future, stop the idle tick
254 * Called either from the idle loop or from irq_exit() when an idle period was
255 * just interrupted by an interrupt which did not cause a reschedule.
257 void tick_nohz_stop_sched_tick(int inidle
)
259 unsigned long seq
, last_jiffies
, next_jiffies
, delta_jiffies
, flags
;
260 struct tick_sched
*ts
;
261 ktime_t last_update
, expires
, now
;
262 struct clock_event_device
*dev
= __get_cpu_var(tick_cpu_device
).evtdev
;
266 local_irq_save(flags
);
268 cpu
= smp_processor_id();
269 ts
= &per_cpu(tick_cpu_sched
, cpu
);
272 * Call to tick_nohz_start_idle stops the last_update_time from being
273 * updated. Thus, it must not be called in the event we are called from
274 * irq_exit() with the prior state different than idle.
276 if (!inidle
&& !ts
->inidle
)
280 * Set ts->inidle unconditionally. Even if the system did not
281 * switch to NOHZ mode the cpu frequency governers rely on the
282 * update of the idle time accounting in tick_nohz_start_idle().
286 now
= tick_nohz_start_idle(cpu
, ts
);
289 * If this cpu is offline and it is the one which updates
290 * jiffies, then give up the assignment and let it be taken by
291 * the cpu which runs the tick timer next. If we don't drop
292 * this here the jiffies might be stale and do_timer() never
295 if (unlikely(!cpu_online(cpu
))) {
296 if (cpu
== tick_do_timer_cpu
)
297 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
300 if (unlikely(ts
->nohz_mode
== NOHZ_MODE_INACTIVE
))
306 if (unlikely(local_softirq_pending() && cpu_online(cpu
))) {
307 static int ratelimit
;
309 if (ratelimit
< 10) {
310 printk(KERN_ERR
"NOHZ: local_softirq_pending %02x\n",
311 (unsigned int) local_softirq_pending());
318 /* Read jiffies and the time when jiffies were updated last */
320 seq
= read_seqbegin(&xtime_lock
);
321 last_update
= last_jiffies_update
;
322 last_jiffies
= jiffies
;
323 time_delta
= timekeeping_max_deferment();
324 } while (read_seqretry(&xtime_lock
, seq
));
326 if (rcu_needs_cpu(cpu
) || printk_needs_cpu(cpu
) ||
327 arch_needs_cpu(cpu
)) {
328 next_jiffies
= last_jiffies
+ 1;
331 /* Get the next timer wheel timer */
332 next_jiffies
= get_next_timer_interrupt(last_jiffies
);
333 delta_jiffies
= next_jiffies
- last_jiffies
;
336 * Do not stop the tick, if we are only one off
337 * or if the cpu is required for rcu
339 if (!ts
->tick_stopped
&& delta_jiffies
== 1)
342 /* Schedule the tick, if we are at least one jiffie off */
343 if ((long)delta_jiffies
>= 1) {
346 * If this cpu is the one which updates jiffies, then
347 * give up the assignment and let it be taken by the
348 * cpu which runs the tick timer next, which might be
349 * this cpu as well. If we don't drop this here the
350 * jiffies might be stale and do_timer() never
351 * invoked. Keep track of the fact that it was the one
352 * which had the do_timer() duty last. If this cpu is
353 * the one which had the do_timer() duty last, we
354 * limit the sleep time to the timekeeping
355 * max_deferement value which we retrieved
356 * above. Otherwise we can sleep as long as we want.
358 if (cpu
== tick_do_timer_cpu
) {
359 tick_do_timer_cpu
= TICK_DO_TIMER_NONE
;
360 ts
->do_timer_last
= 1;
361 } else if (tick_do_timer_cpu
!= TICK_DO_TIMER_NONE
) {
362 time_delta
= KTIME_MAX
;
363 ts
->do_timer_last
= 0;
364 } else if (!ts
->do_timer_last
) {
365 time_delta
= KTIME_MAX
;
369 * calculate the expiry time for the next timer wheel
370 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
371 * that there is no timer pending or at least extremely
372 * far into the future (12 days for HZ=1000). In this
373 * case we set the expiry to the end of time.
375 if (likely(delta_jiffies
< NEXT_TIMER_MAX_DELTA
)) {
377 * Calculate the time delta for the next timer event.
378 * If the time delta exceeds the maximum time delta
379 * permitted by the current clocksource then adjust
380 * the time delta accordingly to ensure the
381 * clocksource does not wrap.
383 time_delta
= min_t(u64
, time_delta
,
384 tick_period
.tv64
* delta_jiffies
);
387 if (time_delta
< KTIME_MAX
)
388 expires
= ktime_add_ns(last_update
, time_delta
);
390 expires
.tv64
= KTIME_MAX
;
392 if (delta_jiffies
> 1)
393 cpumask_set_cpu(cpu
, nohz_cpu_mask
);
395 /* Skip reprogram of event if its not changed */
396 if (ts
->tick_stopped
&& ktime_equal(expires
, dev
->next_event
))
400 * nohz_stop_sched_tick can be called several times before
401 * the nohz_restart_sched_tick is called. This happens when
402 * interrupts arrive which do not cause a reschedule. In the
403 * first call we save the current tick time, so we can restart
404 * the scheduler tick in nohz_restart_sched_tick.
406 if (!ts
->tick_stopped
) {
407 select_nohz_load_balancer(1);
409 ts
->idle_tick
= hrtimer_get_expires(&ts
->sched_timer
);
410 ts
->tick_stopped
= 1;
411 ts
->idle_jiffies
= last_jiffies
;
418 ts
->idle_expires
= expires
;
421 * If the expiration time == KTIME_MAX, then
422 * in this case we simply stop the tick timer.
424 if (unlikely(expires
.tv64
== KTIME_MAX
)) {
425 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
)
426 hrtimer_cancel(&ts
->sched_timer
);
430 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
) {
431 hrtimer_start(&ts
->sched_timer
, expires
,
432 HRTIMER_MODE_ABS_PINNED
);
433 /* Check, if the timer was already in the past */
434 if (hrtimer_active(&ts
->sched_timer
))
436 } else if (!tick_program_event(expires
, 0))
439 * We are past the event already. So we crossed a
440 * jiffie boundary. Update jiffies and raise the
443 tick_do_update_jiffies64(ktime_get());
444 cpumask_clear_cpu(cpu
, nohz_cpu_mask
);
446 raise_softirq_irqoff(TIMER_SOFTIRQ
);
448 ts
->next_jiffies
= next_jiffies
;
449 ts
->last_jiffies
= last_jiffies
;
450 ts
->sleep_length
= ktime_sub(dev
->next_event
, now
);
452 local_irq_restore(flags
);
456 * tick_nohz_get_sleep_length - return the length of the current sleep
458 * Called from power state control code with interrupts disabled
460 ktime_t
tick_nohz_get_sleep_length(void)
462 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
464 return ts
->sleep_length
;
467 static void tick_nohz_restart(struct tick_sched
*ts
, ktime_t now
)
469 hrtimer_cancel(&ts
->sched_timer
);
470 hrtimer_set_expires(&ts
->sched_timer
, ts
->idle_tick
);
473 /* Forward the time to expire in the future */
474 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
476 if (ts
->nohz_mode
== NOHZ_MODE_HIGHRES
) {
477 hrtimer_start_expires(&ts
->sched_timer
,
478 HRTIMER_MODE_ABS_PINNED
);
479 /* Check, if the timer was already in the past */
480 if (hrtimer_active(&ts
->sched_timer
))
483 if (!tick_program_event(
484 hrtimer_get_expires(&ts
->sched_timer
), 0))
487 /* Update jiffies and reread time */
488 tick_do_update_jiffies64(now
);
494 * tick_nohz_restart_sched_tick - restart the idle tick from the idle task
496 * Restart the idle tick when the CPU is woken up from idle
498 void tick_nohz_restart_sched_tick(void)
500 int cpu
= smp_processor_id();
501 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
502 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
508 if (ts
->idle_active
|| (ts
->inidle
&& ts
->tick_stopped
))
512 tick_nohz_stop_idle(cpu
, now
);
514 if (!ts
->inidle
|| !ts
->tick_stopped
) {
524 /* Update jiffies first */
525 select_nohz_load_balancer(0);
526 tick_do_update_jiffies64(now
);
527 cpumask_clear_cpu(cpu
, nohz_cpu_mask
);
529 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
531 * We stopped the tick in idle. Update process times would miss the
532 * time we slept as update_process_times does only a 1 tick
533 * accounting. Enforce that this is accounted to idle !
535 ticks
= jiffies
- ts
->idle_jiffies
;
537 * We might be one off. Do not randomly account a huge number of ticks!
539 if (ticks
&& ticks
< LONG_MAX
)
540 account_idle_ticks(ticks
);
543 touch_softlockup_watchdog();
545 * Cancel the scheduled timer and restore the tick
547 ts
->tick_stopped
= 0;
548 ts
->idle_exittime
= now
;
550 tick_nohz_restart(ts
, now
);
555 static int tick_nohz_reprogram(struct tick_sched
*ts
, ktime_t now
)
557 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
558 return tick_program_event(hrtimer_get_expires(&ts
->sched_timer
), 0);
562 * The nohz low res interrupt handler
564 static void tick_nohz_handler(struct clock_event_device
*dev
)
566 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
567 struct pt_regs
*regs
= get_irq_regs();
568 int cpu
= smp_processor_id();
569 ktime_t now
= ktime_get();
571 dev
->next_event
.tv64
= KTIME_MAX
;
574 * Check if the do_timer duty was dropped. We don't care about
575 * concurrency: This happens only when the cpu in charge went
576 * into a long sleep. If two cpus happen to assign themself to
577 * this duty, then the jiffies update is still serialized by
580 if (unlikely(tick_do_timer_cpu
== TICK_DO_TIMER_NONE
))
581 tick_do_timer_cpu
= cpu
;
583 /* Check, if the jiffies need an update */
584 if (tick_do_timer_cpu
== cpu
)
585 tick_do_update_jiffies64(now
);
588 * When we are idle and the tick is stopped, we have to touch
589 * the watchdog as we might not schedule for a really long
590 * time. This happens on complete idle SMP systems while
591 * waiting on the login prompt. We also increment the "start
592 * of idle" jiffy stamp so the idle accounting adjustment we
593 * do when we go busy again does not account too much ticks.
595 if (ts
->tick_stopped
) {
596 touch_softlockup_watchdog();
600 update_process_times(user_mode(regs
));
601 profile_tick(CPU_PROFILING
);
603 while (tick_nohz_reprogram(ts
, now
)) {
605 tick_do_update_jiffies64(now
);
610 * tick_nohz_switch_to_nohz - switch to nohz mode
612 static void tick_nohz_switch_to_nohz(void)
614 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
617 if (!tick_nohz_enabled
)
621 if (tick_switch_to_oneshot(tick_nohz_handler
)) {
626 ts
->nohz_mode
= NOHZ_MODE_LOWRES
;
629 * Recycle the hrtimer in ts, so we can share the
630 * hrtimer_forward with the highres code.
632 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
633 /* Get the next period */
634 next
= tick_init_jiffy_update();
637 hrtimer_set_expires(&ts
->sched_timer
, next
);
638 if (!tick_program_event(next
, 0))
640 next
= ktime_add(next
, tick_period
);
644 printk(KERN_INFO
"Switched to NOHz mode on CPU #%d\n", smp_processor_id());
648 * When NOHZ is enabled and the tick is stopped, we need to kick the
649 * tick timer from irq_enter() so that the jiffies update is kept
650 * alive during long running softirqs. That's ugly as hell, but
651 * correctness is key even if we need to fix the offending softirq in
654 * Note, this is different to tick_nohz_restart. We just kick the
655 * timer and do not touch the other magic bits which need to be done
658 static void tick_nohz_kick_tick(int cpu
, ktime_t now
)
661 /* Switch back to 2.6.27 behaviour */
663 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
667 * Do not touch the tick device, when the next expiry is either
668 * already reached or less/equal than the tick period.
670 delta
= ktime_sub(hrtimer_get_expires(&ts
->sched_timer
), now
);
671 if (delta
.tv64
<= tick_period
.tv64
)
674 tick_nohz_restart(ts
, now
);
678 static inline void tick_check_nohz(int cpu
)
680 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
683 if (!ts
->idle_active
&& !ts
->tick_stopped
)
687 tick_nohz_stop_idle(cpu
, now
);
688 if (ts
->tick_stopped
) {
689 tick_nohz_update_jiffies(now
);
690 tick_nohz_kick_tick(cpu
, now
);
696 static inline void tick_nohz_switch_to_nohz(void) { }
697 static inline void tick_check_nohz(int cpu
) { }
702 * Called from irq_enter to notify about the possible interruption of idle()
704 void tick_check_idle(int cpu
)
706 tick_check_oneshot_broadcast(cpu
);
707 tick_check_nohz(cpu
);
711 * High resolution timer specific code
713 #ifdef CONFIG_HIGH_RES_TIMERS
715 * We rearm the timer until we get disabled by the idle code.
716 * Called with interrupts disabled and timer->base->cpu_base->lock held.
718 static enum hrtimer_restart
tick_sched_timer(struct hrtimer
*timer
)
720 struct tick_sched
*ts
=
721 container_of(timer
, struct tick_sched
, sched_timer
);
722 struct pt_regs
*regs
= get_irq_regs();
723 ktime_t now
= ktime_get();
724 int cpu
= smp_processor_id();
728 * Check if the do_timer duty was dropped. We don't care about
729 * concurrency: This happens only when the cpu in charge went
730 * into a long sleep. If two cpus happen to assign themself to
731 * this duty, then the jiffies update is still serialized by
734 if (unlikely(tick_do_timer_cpu
== TICK_DO_TIMER_NONE
))
735 tick_do_timer_cpu
= cpu
;
738 /* Check, if the jiffies need an update */
739 if (tick_do_timer_cpu
== cpu
)
740 tick_do_update_jiffies64(now
);
743 * Do not call, when we are not in irq context and have
744 * no valid regs pointer
748 * When we are idle and the tick is stopped, we have to touch
749 * the watchdog as we might not schedule for a really long
750 * time. This happens on complete idle SMP systems while
751 * waiting on the login prompt. We also increment the "start of
752 * idle" jiffy stamp so the idle accounting adjustment we do
753 * when we go busy again does not account too much ticks.
755 if (ts
->tick_stopped
) {
756 touch_softlockup_watchdog();
759 update_process_times(user_mode(regs
));
760 profile_tick(CPU_PROFILING
);
763 hrtimer_forward(timer
, now
, tick_period
);
765 return HRTIMER_RESTART
;
769 * tick_setup_sched_timer - setup the tick emulation timer
771 void tick_setup_sched_timer(void)
773 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
774 ktime_t now
= ktime_get();
777 * Emulate tick processing via per-CPU hrtimers:
779 hrtimer_init(&ts
->sched_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_ABS
);
780 ts
->sched_timer
.function
= tick_sched_timer
;
782 /* Get the next period (per cpu) */
783 hrtimer_set_expires(&ts
->sched_timer
, tick_init_jiffy_update());
786 hrtimer_forward(&ts
->sched_timer
, now
, tick_period
);
787 hrtimer_start_expires(&ts
->sched_timer
,
788 HRTIMER_MODE_ABS_PINNED
);
789 /* Check, if the timer was already in the past */
790 if (hrtimer_active(&ts
->sched_timer
))
796 if (tick_nohz_enabled
) {
797 ts
->nohz_mode
= NOHZ_MODE_HIGHRES
;
798 printk(KERN_INFO
"Switched to NOHz mode on CPU #%d\n", smp_processor_id());
802 #endif /* HIGH_RES_TIMERS */
804 #if defined CONFIG_NO_HZ || defined CONFIG_HIGH_RES_TIMERS
805 void tick_cancel_sched_timer(int cpu
)
807 struct tick_sched
*ts
= &per_cpu(tick_cpu_sched
, cpu
);
809 # ifdef CONFIG_HIGH_RES_TIMERS
810 if (ts
->sched_timer
.base
)
811 hrtimer_cancel(&ts
->sched_timer
);
814 ts
->nohz_mode
= NOHZ_MODE_INACTIVE
;
819 * Async notification about clocksource changes
821 void tick_clock_notify(void)
825 for_each_possible_cpu(cpu
)
826 set_bit(0, &per_cpu(tick_cpu_sched
, cpu
).check_clocks
);
830 * Async notification about clock event changes
832 void tick_oneshot_notify(void)
834 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
836 set_bit(0, &ts
->check_clocks
);
840 * Check, if a change happened, which makes oneshot possible.
842 * Called cyclic from the hrtimer softirq (driven by the timer
843 * softirq) allow_nohz signals, that we can switch into low-res nohz
844 * mode, because high resolution timers are disabled (either compile
847 int tick_check_oneshot_change(int allow_nohz
)
849 struct tick_sched
*ts
= &__get_cpu_var(tick_cpu_sched
);
851 if (!test_and_clear_bit(0, &ts
->check_clocks
))
854 if (ts
->nohz_mode
!= NOHZ_MODE_INACTIVE
)
857 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
863 tick_nohz_switch_to_nohz();