4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
6 * Swap reorganised 29.12.95, Stephen Tweedie.
7 * kswapd added: 7.1.96 sct
8 * Removed kswapd_ctl limits, and swap out as many pages as needed
9 * to bring the system back to freepages.high: 2.4.97, Rik van Riel.
10 * Zone aware kswapd started 02/00, Kanoj Sarcar (kanoj@sgi.com).
11 * Multiqueue VM started 5.8.00, Rik van Riel.
15 #include <linux/module.h>
16 #include <linux/slab.h>
17 #include <linux/kernel_stat.h>
18 #include <linux/swap.h>
19 #include <linux/pagemap.h>
20 #include <linux/init.h>
21 #include <linux/highmem.h>
22 #include <linux/vmstat.h>
23 #include <linux/file.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/buffer_head.h> /* for try_to_release_page(),
27 buffer_heads_over_limit */
28 #include <linux/mm_inline.h>
29 #include <linux/pagevec.h>
30 #include <linux/backing-dev.h>
31 #include <linux/rmap.h>
32 #include <linux/topology.h>
33 #include <linux/cpu.h>
34 #include <linux/cpuset.h>
35 #include <linux/notifier.h>
36 #include <linux/rwsem.h>
37 #include <linux/delay.h>
38 #include <linux/kthread.h>
39 #include <linux/freezer.h>
40 #include <linux/memcontrol.h>
41 #include <linux/delayacct.h>
42 #include <linux/sysctl.h>
44 #include <asm/tlbflush.h>
45 #include <asm/div64.h>
47 #include <linux/swapops.h>
52 /* Incremented by the number of inactive pages that were scanned */
53 unsigned long nr_scanned
;
55 /* Number of pages freed so far during a call to shrink_zones() */
56 unsigned long nr_reclaimed
;
58 /* This context's GFP mask */
63 /* Can mapped pages be reclaimed? */
66 /* This context's SWAP_CLUSTER_MAX. If freeing memory for
67 * suspend, we effectively ignore SWAP_CLUSTER_MAX.
68 * In this context, it doesn't matter that we scan the
69 * whole list at once. */
74 int all_unreclaimable
;
78 /* Which cgroup do we reclaim from */
79 struct mem_cgroup
*mem_cgroup
;
82 * Nodemask of nodes allowed by the caller. If NULL, all nodes
87 /* Pluggable isolate pages callback */
88 unsigned long (*isolate_pages
)(unsigned long nr
, struct list_head
*dst
,
89 unsigned long *scanned
, int order
, int mode
,
90 struct zone
*z
, struct mem_cgroup
*mem_cont
,
91 int active
, int file
);
94 #define lru_to_page(_head) (list_entry((_head)->prev, struct page, lru))
96 #ifdef ARCH_HAS_PREFETCH
97 #define prefetch_prev_lru_page(_page, _base, _field) \
99 if ((_page)->lru.prev != _base) { \
102 prev = lru_to_page(&(_page->lru)); \
103 prefetch(&prev->_field); \
107 #define prefetch_prev_lru_page(_page, _base, _field) do { } while (0)
110 #ifdef ARCH_HAS_PREFETCHW
111 #define prefetchw_prev_lru_page(_page, _base, _field) \
113 if ((_page)->lru.prev != _base) { \
116 prev = lru_to_page(&(_page->lru)); \
117 prefetchw(&prev->_field); \
121 #define prefetchw_prev_lru_page(_page, _base, _field) do { } while (0)
125 * From 0 .. 100. Higher means more swappy.
127 int vm_swappiness
= 60;
128 long vm_total_pages
; /* The total number of pages which the VM controls */
130 static LIST_HEAD(shrinker_list
);
131 static DECLARE_RWSEM(shrinker_rwsem
);
133 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
134 #define scanning_global_lru(sc) (!(sc)->mem_cgroup)
136 #define scanning_global_lru(sc) (1)
139 static struct zone_reclaim_stat
*get_reclaim_stat(struct zone
*zone
,
140 struct scan_control
*sc
)
142 if (!scanning_global_lru(sc
))
143 return mem_cgroup_get_reclaim_stat(sc
->mem_cgroup
, zone
);
145 return &zone
->reclaim_stat
;
148 static unsigned long zone_nr_pages(struct zone
*zone
, struct scan_control
*sc
,
151 if (!scanning_global_lru(sc
))
152 return mem_cgroup_zone_nr_pages(sc
->mem_cgroup
, zone
, lru
);
154 return zone_page_state(zone
, NR_LRU_BASE
+ lru
);
159 * Add a shrinker callback to be called from the vm
161 void register_shrinker(struct shrinker
*shrinker
)
164 down_write(&shrinker_rwsem
);
165 list_add_tail(&shrinker
->list
, &shrinker_list
);
166 up_write(&shrinker_rwsem
);
168 EXPORT_SYMBOL(register_shrinker
);
173 void unregister_shrinker(struct shrinker
*shrinker
)
175 down_write(&shrinker_rwsem
);
176 list_del(&shrinker
->list
);
177 up_write(&shrinker_rwsem
);
179 EXPORT_SYMBOL(unregister_shrinker
);
181 #define SHRINK_BATCH 128
183 * Call the shrink functions to age shrinkable caches
185 * Here we assume it costs one seek to replace a lru page and that it also
186 * takes a seek to recreate a cache object. With this in mind we age equal
187 * percentages of the lru and ageable caches. This should balance the seeks
188 * generated by these structures.
190 * If the vm encountered mapped pages on the LRU it increase the pressure on
191 * slab to avoid swapping.
193 * We do weird things to avoid (scanned*seeks*entries) overflowing 32 bits.
195 * `lru_pages' represents the number of on-LRU pages in all the zones which
196 * are eligible for the caller's allocation attempt. It is used for balancing
197 * slab reclaim versus page reclaim.
199 * Returns the number of slab objects which we shrunk.
201 unsigned long shrink_slab(unsigned long scanned
, gfp_t gfp_mask
,
202 unsigned long lru_pages
)
204 struct shrinker
*shrinker
;
205 unsigned long ret
= 0;
208 scanned
= SWAP_CLUSTER_MAX
;
210 if (!down_read_trylock(&shrinker_rwsem
))
211 return 1; /* Assume we'll be able to shrink next time */
213 list_for_each_entry(shrinker
, &shrinker_list
, list
) {
214 unsigned long long delta
;
215 unsigned long total_scan
;
216 unsigned long max_pass
= (*shrinker
->shrink
)(0, gfp_mask
);
218 delta
= (4 * scanned
) / shrinker
->seeks
;
220 do_div(delta
, lru_pages
+ 1);
221 shrinker
->nr
+= delta
;
222 if (shrinker
->nr
< 0) {
223 printk(KERN_ERR
"shrink_slab: %pF negative objects to "
225 shrinker
->shrink
, shrinker
->nr
);
226 shrinker
->nr
= max_pass
;
230 * Avoid risking looping forever due to too large nr value:
231 * never try to free more than twice the estimate number of
234 if (shrinker
->nr
> max_pass
* 2)
235 shrinker
->nr
= max_pass
* 2;
237 total_scan
= shrinker
->nr
;
240 while (total_scan
>= SHRINK_BATCH
) {
241 long this_scan
= SHRINK_BATCH
;
245 nr_before
= (*shrinker
->shrink
)(0, gfp_mask
);
246 shrink_ret
= (*shrinker
->shrink
)(this_scan
, gfp_mask
);
247 if (shrink_ret
== -1)
249 if (shrink_ret
< nr_before
)
250 ret
+= nr_before
- shrink_ret
;
251 count_vm_events(SLABS_SCANNED
, this_scan
);
252 total_scan
-= this_scan
;
257 shrinker
->nr
+= total_scan
;
259 up_read(&shrinker_rwsem
);
263 /* Called without lock on whether page is mapped, so answer is unstable */
264 static inline int page_mapping_inuse(struct page
*page
)
266 struct address_space
*mapping
;
268 /* Page is in somebody's page tables. */
269 if (page_mapped(page
))
272 /* Be more reluctant to reclaim swapcache than pagecache */
273 if (PageSwapCache(page
))
276 mapping
= page_mapping(page
);
280 /* File is mmap'd by somebody? */
281 return mapping_mapped(mapping
);
284 static inline int is_page_cache_freeable(struct page
*page
)
286 return page_count(page
) - !!page_has_private(page
) == 2;
289 static int may_write_to_queue(struct backing_dev_info
*bdi
)
291 if (current
->flags
& PF_SWAPWRITE
)
293 if (!bdi_write_congested(bdi
))
295 if (bdi
== current
->backing_dev_info
)
301 * We detected a synchronous write error writing a page out. Probably
302 * -ENOSPC. We need to propagate that into the address_space for a subsequent
303 * fsync(), msync() or close().
305 * The tricky part is that after writepage we cannot touch the mapping: nothing
306 * prevents it from being freed up. But we have a ref on the page and once
307 * that page is locked, the mapping is pinned.
309 * We're allowed to run sleeping lock_page() here because we know the caller has
312 static void handle_write_error(struct address_space
*mapping
,
313 struct page
*page
, int error
)
316 if (page_mapping(page
) == mapping
)
317 mapping_set_error(mapping
, error
);
321 /* Request for sync pageout. */
327 /* possible outcome of pageout() */
329 /* failed to write page out, page is locked */
331 /* move page to the active list, page is locked */
333 /* page has been sent to the disk successfully, page is unlocked */
335 /* page is clean and locked */
340 * pageout is called by shrink_page_list() for each dirty page.
341 * Calls ->writepage().
343 static pageout_t
pageout(struct page
*page
, struct address_space
*mapping
,
344 enum pageout_io sync_writeback
)
347 * If the page is dirty, only perform writeback if that write
348 * will be non-blocking. To prevent this allocation from being
349 * stalled by pagecache activity. But note that there may be
350 * stalls if we need to run get_block(). We could test
351 * PagePrivate for that.
353 * If this process is currently in generic_file_write() against
354 * this page's queue, we can perform writeback even if that
357 * If the page is swapcache, write it back even if that would
358 * block, for some throttling. This happens by accident, because
359 * swap_backing_dev_info is bust: it doesn't reflect the
360 * congestion state of the swapdevs. Easy to fix, if needed.
361 * See swapfile.c:page_queue_congested().
363 if (!is_page_cache_freeable(page
))
367 * Some data journaling orphaned pages can have
368 * page->mapping == NULL while being dirty with clean buffers.
370 if (page_has_private(page
)) {
371 if (try_to_free_buffers(page
)) {
372 ClearPageDirty(page
);
373 printk("%s: orphaned page\n", __func__
);
379 if (mapping
->a_ops
->writepage
== NULL
)
380 return PAGE_ACTIVATE
;
381 if (!may_write_to_queue(mapping
->backing_dev_info
))
384 if (clear_page_dirty_for_io(page
)) {
386 struct writeback_control wbc
= {
387 .sync_mode
= WB_SYNC_NONE
,
388 .nr_to_write
= SWAP_CLUSTER_MAX
,
390 .range_end
= LLONG_MAX
,
395 SetPageReclaim(page
);
396 res
= mapping
->a_ops
->writepage(page
, &wbc
);
398 handle_write_error(mapping
, page
, res
);
399 if (res
== AOP_WRITEPAGE_ACTIVATE
) {
400 ClearPageReclaim(page
);
401 return PAGE_ACTIVATE
;
405 * Wait on writeback if requested to. This happens when
406 * direct reclaiming a large contiguous area and the
407 * first attempt to free a range of pages fails.
409 if (PageWriteback(page
) && sync_writeback
== PAGEOUT_IO_SYNC
)
410 wait_on_page_writeback(page
);
412 if (!PageWriteback(page
)) {
413 /* synchronous write or broken a_ops? */
414 ClearPageReclaim(page
);
416 inc_zone_page_state(page
, NR_VMSCAN_WRITE
);
424 * Same as remove_mapping, but if the page is removed from the mapping, it
425 * gets returned with a refcount of 0.
427 static int __remove_mapping(struct address_space
*mapping
, struct page
*page
)
429 BUG_ON(!PageLocked(page
));
430 BUG_ON(mapping
!= page_mapping(page
));
432 spin_lock_irq(&mapping
->tree_lock
);
434 * The non racy check for a busy page.
436 * Must be careful with the order of the tests. When someone has
437 * a ref to the page, it may be possible that they dirty it then
438 * drop the reference. So if PageDirty is tested before page_count
439 * here, then the following race may occur:
441 * get_user_pages(&page);
442 * [user mapping goes away]
444 * !PageDirty(page) [good]
445 * SetPageDirty(page);
447 * !page_count(page) [good, discard it]
449 * [oops, our write_to data is lost]
451 * Reversing the order of the tests ensures such a situation cannot
452 * escape unnoticed. The smp_rmb is needed to ensure the page->flags
453 * load is not satisfied before that of page->_count.
455 * Note that if SetPageDirty is always performed via set_page_dirty,
456 * and thus under tree_lock, then this ordering is not required.
458 if (!page_freeze_refs(page
, 2))
460 /* note: atomic_cmpxchg in page_freeze_refs provides the smp_rmb */
461 if (unlikely(PageDirty(page
))) {
462 page_unfreeze_refs(page
, 2);
466 if (PageSwapCache(page
)) {
467 swp_entry_t swap
= { .val
= page_private(page
) };
468 __delete_from_swap_cache(page
);
469 spin_unlock_irq(&mapping
->tree_lock
);
472 __remove_from_page_cache(page
);
473 spin_unlock_irq(&mapping
->tree_lock
);
479 spin_unlock_irq(&mapping
->tree_lock
);
484 * Attempt to detach a locked page from its ->mapping. If it is dirty or if
485 * someone else has a ref on the page, abort and return 0. If it was
486 * successfully detached, return 1. Assumes the caller has a single ref on
489 int remove_mapping(struct address_space
*mapping
, struct page
*page
)
491 if (__remove_mapping(mapping
, page
)) {
493 * Unfreezing the refcount with 1 rather than 2 effectively
494 * drops the pagecache ref for us without requiring another
497 page_unfreeze_refs(page
, 1);
504 * putback_lru_page - put previously isolated page onto appropriate LRU list
505 * @page: page to be put back to appropriate lru list
507 * Add previously isolated @page to appropriate LRU list.
508 * Page may still be unevictable for other reasons.
510 * lru_lock must not be held, interrupts must be enabled.
512 #ifdef CONFIG_UNEVICTABLE_LRU
513 void putback_lru_page(struct page
*page
)
516 int active
= !!TestClearPageActive(page
);
517 int was_unevictable
= PageUnevictable(page
);
519 VM_BUG_ON(PageLRU(page
));
522 ClearPageUnevictable(page
);
524 if (page_evictable(page
, NULL
)) {
526 * For evictable pages, we can use the cache.
527 * In event of a race, worst case is we end up with an
528 * unevictable page on [in]active list.
529 * We know how to handle that.
531 lru
= active
+ page_is_file_cache(page
);
532 lru_cache_add_lru(page
, lru
);
535 * Put unevictable pages directly on zone's unevictable
538 lru
= LRU_UNEVICTABLE
;
539 add_page_to_unevictable_list(page
);
543 * page's status can change while we move it among lru. If an evictable
544 * page is on unevictable list, it never be freed. To avoid that,
545 * check after we added it to the list, again.
547 if (lru
== LRU_UNEVICTABLE
&& page_evictable(page
, NULL
)) {
548 if (!isolate_lru_page(page
)) {
552 /* This means someone else dropped this page from LRU
553 * So, it will be freed or putback to LRU again. There is
554 * nothing to do here.
558 if (was_unevictable
&& lru
!= LRU_UNEVICTABLE
)
559 count_vm_event(UNEVICTABLE_PGRESCUED
);
560 else if (!was_unevictable
&& lru
== LRU_UNEVICTABLE
)
561 count_vm_event(UNEVICTABLE_PGCULLED
);
563 put_page(page
); /* drop ref from isolate */
566 #else /* CONFIG_UNEVICTABLE_LRU */
568 void putback_lru_page(struct page
*page
)
571 VM_BUG_ON(PageLRU(page
));
573 lru
= !!TestClearPageActive(page
) + page_is_file_cache(page
);
574 lru_cache_add_lru(page
, lru
);
577 #endif /* CONFIG_UNEVICTABLE_LRU */
581 * shrink_page_list() returns the number of reclaimed pages
583 static unsigned long shrink_page_list(struct list_head
*page_list
,
584 struct scan_control
*sc
,
585 enum pageout_io sync_writeback
)
587 LIST_HEAD(ret_pages
);
588 struct pagevec freed_pvec
;
590 unsigned long nr_reclaimed
= 0;
594 pagevec_init(&freed_pvec
, 1);
595 while (!list_empty(page_list
)) {
596 struct address_space
*mapping
;
603 page
= lru_to_page(page_list
);
604 list_del(&page
->lru
);
606 if (!trylock_page(page
))
609 VM_BUG_ON(PageActive(page
));
613 if (unlikely(!page_evictable(page
, NULL
)))
616 if (!sc
->may_unmap
&& page_mapped(page
))
619 /* Double the slab pressure for mapped and swapcache pages */
620 if (page_mapped(page
) || PageSwapCache(page
))
623 may_enter_fs
= (sc
->gfp_mask
& __GFP_FS
) ||
624 (PageSwapCache(page
) && (sc
->gfp_mask
& __GFP_IO
));
626 if (PageWriteback(page
)) {
628 * Synchronous reclaim is performed in two passes,
629 * first an asynchronous pass over the list to
630 * start parallel writeback, and a second synchronous
631 * pass to wait for the IO to complete. Wait here
632 * for any page for which writeback has already
635 if (sync_writeback
== PAGEOUT_IO_SYNC
&& may_enter_fs
)
636 wait_on_page_writeback(page
);
641 referenced
= page_referenced(page
, 1, sc
->mem_cgroup
);
642 /* In active use or really unfreeable? Activate it. */
643 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
&&
644 referenced
&& page_mapping_inuse(page
))
645 goto activate_locked
;
648 * Anonymous process memory has backing store?
649 * Try to allocate it some swap space here.
651 if (PageAnon(page
) && !PageSwapCache(page
)) {
652 if (!(sc
->gfp_mask
& __GFP_IO
))
654 if (!add_to_swap(page
))
655 goto activate_locked
;
659 mapping
= page_mapping(page
);
662 * The page is mapped into the page tables of one or more
663 * processes. Try to unmap it here.
665 if (page_mapped(page
) && mapping
) {
666 switch (try_to_unmap(page
, 0)) {
668 goto activate_locked
;
674 ; /* try to free the page below */
678 if (PageDirty(page
)) {
679 if (sc
->order
<= PAGE_ALLOC_COSTLY_ORDER
&& referenced
)
683 if (!sc
->may_writepage
)
686 /* Page is dirty, try to write it out here */
687 switch (pageout(page
, mapping
, sync_writeback
)) {
691 goto activate_locked
;
693 if (PageWriteback(page
) || PageDirty(page
))
696 * A synchronous write - probably a ramdisk. Go
697 * ahead and try to reclaim the page.
699 if (!trylock_page(page
))
701 if (PageDirty(page
) || PageWriteback(page
))
703 mapping
= page_mapping(page
);
705 ; /* try to free the page below */
710 * If the page has buffers, try to free the buffer mappings
711 * associated with this page. If we succeed we try to free
714 * We do this even if the page is PageDirty().
715 * try_to_release_page() does not perform I/O, but it is
716 * possible for a page to have PageDirty set, but it is actually
717 * clean (all its buffers are clean). This happens if the
718 * buffers were written out directly, with submit_bh(). ext3
719 * will do this, as well as the blockdev mapping.
720 * try_to_release_page() will discover that cleanness and will
721 * drop the buffers and mark the page clean - it can be freed.
723 * Rarely, pages can have buffers and no ->mapping. These are
724 * the pages which were not successfully invalidated in
725 * truncate_complete_page(). We try to drop those buffers here
726 * and if that worked, and the page is no longer mapped into
727 * process address space (page_count == 1) it can be freed.
728 * Otherwise, leave the page on the LRU so it is swappable.
730 if (page_has_private(page
)) {
731 if (!try_to_release_page(page
, sc
->gfp_mask
))
732 goto activate_locked
;
733 if (!mapping
&& page_count(page
) == 1) {
735 if (put_page_testzero(page
))
739 * rare race with speculative reference.
740 * the speculative reference will free
741 * this page shortly, so we may
742 * increment nr_reclaimed here (and
743 * leave it off the LRU).
751 if (!mapping
|| !__remove_mapping(mapping
, page
))
755 * At this point, we have no other references and there is
756 * no way to pick any more up (removed from LRU, removed
757 * from pagecache). Can use non-atomic bitops now (and
758 * we obviously don't have to worry about waking up a process
759 * waiting on the page lock, because there are no references.
761 __clear_page_locked(page
);
764 if (!pagevec_add(&freed_pvec
, page
)) {
765 __pagevec_free(&freed_pvec
);
766 pagevec_reinit(&freed_pvec
);
771 if (PageSwapCache(page
))
772 try_to_free_swap(page
);
774 putback_lru_page(page
);
778 /* Not a candidate for swapping, so reclaim swap space. */
779 if (PageSwapCache(page
) && vm_swap_full())
780 try_to_free_swap(page
);
781 VM_BUG_ON(PageActive(page
));
787 list_add(&page
->lru
, &ret_pages
);
788 VM_BUG_ON(PageLRU(page
) || PageUnevictable(page
));
790 list_splice(&ret_pages
, page_list
);
791 if (pagevec_count(&freed_pvec
))
792 __pagevec_free(&freed_pvec
);
793 count_vm_events(PGACTIVATE
, pgactivate
);
797 /* LRU Isolation modes. */
798 #define ISOLATE_INACTIVE 0 /* Isolate inactive pages. */
799 #define ISOLATE_ACTIVE 1 /* Isolate active pages. */
800 #define ISOLATE_BOTH 2 /* Isolate both active and inactive pages. */
803 * Attempt to remove the specified page from its LRU. Only take this page
804 * if it is of the appropriate PageActive status. Pages which are being
805 * freed elsewhere are also ignored.
807 * page: page to consider
808 * mode: one of the LRU isolation modes defined above
810 * returns 0 on success, -ve errno on failure.
812 int __isolate_lru_page(struct page
*page
, int mode
, int file
)
816 /* Only take pages on the LRU. */
821 * When checking the active state, we need to be sure we are
822 * dealing with comparible boolean values. Take the logical not
825 if (mode
!= ISOLATE_BOTH
&& (!PageActive(page
) != !mode
))
828 if (mode
!= ISOLATE_BOTH
&& (!page_is_file_cache(page
) != !file
))
832 * When this function is being called for lumpy reclaim, we
833 * initially look into all LRU pages, active, inactive and
834 * unevictable; only give shrink_page_list evictable pages.
836 if (PageUnevictable(page
))
841 if (likely(get_page_unless_zero(page
))) {
843 * Be careful not to clear PageLRU until after we're
844 * sure the page is not being freed elsewhere -- the
845 * page release code relies on it.
849 mem_cgroup_del_lru(page
);
856 * zone->lru_lock is heavily contended. Some of the functions that
857 * shrink the lists perform better by taking out a batch of pages
858 * and working on them outside the LRU lock.
860 * For pagecache intensive workloads, this function is the hottest
861 * spot in the kernel (apart from copy_*_user functions).
863 * Appropriate locks must be held before calling this function.
865 * @nr_to_scan: The number of pages to look through on the list.
866 * @src: The LRU list to pull pages off.
867 * @dst: The temp list to put pages on to.
868 * @scanned: The number of pages that were scanned.
869 * @order: The caller's attempted allocation order
870 * @mode: One of the LRU isolation modes
871 * @file: True [1] if isolating file [!anon] pages
873 * returns how many pages were moved onto *@dst.
875 static unsigned long isolate_lru_pages(unsigned long nr_to_scan
,
876 struct list_head
*src
, struct list_head
*dst
,
877 unsigned long *scanned
, int order
, int mode
, int file
)
879 unsigned long nr_taken
= 0;
882 for (scan
= 0; scan
< nr_to_scan
&& !list_empty(src
); scan
++) {
885 unsigned long end_pfn
;
886 unsigned long page_pfn
;
889 page
= lru_to_page(src
);
890 prefetchw_prev_lru_page(page
, src
, flags
);
892 VM_BUG_ON(!PageLRU(page
));
894 switch (__isolate_lru_page(page
, mode
, file
)) {
896 list_move(&page
->lru
, dst
);
901 /* else it is being freed elsewhere */
902 list_move(&page
->lru
, src
);
913 * Attempt to take all pages in the order aligned region
914 * surrounding the tag page. Only take those pages of
915 * the same active state as that tag page. We may safely
916 * round the target page pfn down to the requested order
917 * as the mem_map is guarenteed valid out to MAX_ORDER,
918 * where that page is in a different zone we will detect
919 * it from its zone id and abort this block scan.
921 zone_id
= page_zone_id(page
);
922 page_pfn
= page_to_pfn(page
);
923 pfn
= page_pfn
& ~((1 << order
) - 1);
924 end_pfn
= pfn
+ (1 << order
);
925 for (; pfn
< end_pfn
; pfn
++) {
926 struct page
*cursor_page
;
928 /* The target page is in the block, ignore it. */
929 if (unlikely(pfn
== page_pfn
))
932 /* Avoid holes within the zone. */
933 if (unlikely(!pfn_valid_within(pfn
)))
936 cursor_page
= pfn_to_page(pfn
);
938 /* Check that we have not crossed a zone boundary. */
939 if (unlikely(page_zone_id(cursor_page
) != zone_id
))
941 switch (__isolate_lru_page(cursor_page
, mode
, file
)) {
943 list_move(&cursor_page
->lru
, dst
);
949 /* else it is being freed elsewhere */
950 list_move(&cursor_page
->lru
, src
);
952 break; /* ! on LRU or wrong list */
961 static unsigned long isolate_pages_global(unsigned long nr
,
962 struct list_head
*dst
,
963 unsigned long *scanned
, int order
,
964 int mode
, struct zone
*z
,
965 struct mem_cgroup
*mem_cont
,
966 int active
, int file
)
973 return isolate_lru_pages(nr
, &z
->lru
[lru
].list
, dst
, scanned
, order
,
978 * clear_active_flags() is a helper for shrink_active_list(), clearing
979 * any active bits from the pages in the list.
981 static unsigned long clear_active_flags(struct list_head
*page_list
,
988 list_for_each_entry(page
, page_list
, lru
) {
989 lru
= page_is_file_cache(page
);
990 if (PageActive(page
)) {
992 ClearPageActive(page
);
1002 * isolate_lru_page - tries to isolate a page from its LRU list
1003 * @page: page to isolate from its LRU list
1005 * Isolates a @page from an LRU list, clears PageLRU and adjusts the
1006 * vmstat statistic corresponding to whatever LRU list the page was on.
1008 * Returns 0 if the page was removed from an LRU list.
1009 * Returns -EBUSY if the page was not on an LRU list.
1011 * The returned page will have PageLRU() cleared. If it was found on
1012 * the active list, it will have PageActive set. If it was found on
1013 * the unevictable list, it will have the PageUnevictable bit set. That flag
1014 * may need to be cleared by the caller before letting the page go.
1016 * The vmstat statistic corresponding to the list on which the page was
1017 * found will be decremented.
1020 * (1) Must be called with an elevated refcount on the page. This is a
1021 * fundamentnal difference from isolate_lru_pages (which is called
1022 * without a stable reference).
1023 * (2) the lru_lock must not be held.
1024 * (3) interrupts must be enabled.
1026 int isolate_lru_page(struct page
*page
)
1030 if (PageLRU(page
)) {
1031 struct zone
*zone
= page_zone(page
);
1033 spin_lock_irq(&zone
->lru_lock
);
1034 if (PageLRU(page
) && get_page_unless_zero(page
)) {
1035 int lru
= page_lru(page
);
1039 del_page_from_lru_list(zone
, page
, lru
);
1041 spin_unlock_irq(&zone
->lru_lock
);
1047 * shrink_inactive_list() is a helper for shrink_zone(). It returns the number
1048 * of reclaimed pages
1050 static unsigned long shrink_inactive_list(unsigned long max_scan
,
1051 struct zone
*zone
, struct scan_control
*sc
,
1052 int priority
, int file
)
1054 LIST_HEAD(page_list
);
1055 struct pagevec pvec
;
1056 unsigned long nr_scanned
= 0;
1057 unsigned long nr_reclaimed
= 0;
1058 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1060 pagevec_init(&pvec
, 1);
1063 spin_lock_irq(&zone
->lru_lock
);
1066 unsigned long nr_taken
;
1067 unsigned long nr_scan
;
1068 unsigned long nr_freed
;
1069 unsigned long nr_active
;
1070 unsigned int count
[NR_LRU_LISTS
] = { 0, };
1071 int mode
= ISOLATE_INACTIVE
;
1074 * If we need a large contiguous chunk of memory, or have
1075 * trouble getting a small set of contiguous pages, we
1076 * will reclaim both active and inactive pages.
1078 * We use the same threshold as pageout congestion_wait below.
1080 if (sc
->order
> PAGE_ALLOC_COSTLY_ORDER
)
1081 mode
= ISOLATE_BOTH
;
1082 else if (sc
->order
&& priority
< DEF_PRIORITY
- 2)
1083 mode
= ISOLATE_BOTH
;
1085 nr_taken
= sc
->isolate_pages(sc
->swap_cluster_max
,
1086 &page_list
, &nr_scan
, sc
->order
, mode
,
1087 zone
, sc
->mem_cgroup
, 0, file
);
1088 nr_active
= clear_active_flags(&page_list
, count
);
1089 __count_vm_events(PGDEACTIVATE
, nr_active
);
1091 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
,
1092 -count
[LRU_ACTIVE_FILE
]);
1093 __mod_zone_page_state(zone
, NR_INACTIVE_FILE
,
1094 -count
[LRU_INACTIVE_FILE
]);
1095 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
,
1096 -count
[LRU_ACTIVE_ANON
]);
1097 __mod_zone_page_state(zone
, NR_INACTIVE_ANON
,
1098 -count
[LRU_INACTIVE_ANON
]);
1100 if (scanning_global_lru(sc
))
1101 zone
->pages_scanned
+= nr_scan
;
1103 reclaim_stat
->recent_scanned
[0] += count
[LRU_INACTIVE_ANON
];
1104 reclaim_stat
->recent_scanned
[0] += count
[LRU_ACTIVE_ANON
];
1105 reclaim_stat
->recent_scanned
[1] += count
[LRU_INACTIVE_FILE
];
1106 reclaim_stat
->recent_scanned
[1] += count
[LRU_ACTIVE_FILE
];
1108 spin_unlock_irq(&zone
->lru_lock
);
1110 nr_scanned
+= nr_scan
;
1111 nr_freed
= shrink_page_list(&page_list
, sc
, PAGEOUT_IO_ASYNC
);
1114 * If we are direct reclaiming for contiguous pages and we do
1115 * not reclaim everything in the list, try again and wait
1116 * for IO to complete. This will stall high-order allocations
1117 * but that should be acceptable to the caller
1119 if (nr_freed
< nr_taken
&& !current_is_kswapd() &&
1120 sc
->order
> PAGE_ALLOC_COSTLY_ORDER
) {
1121 congestion_wait(WRITE
, HZ
/10);
1124 * The attempt at page out may have made some
1125 * of the pages active, mark them inactive again.
1127 nr_active
= clear_active_flags(&page_list
, count
);
1128 count_vm_events(PGDEACTIVATE
, nr_active
);
1130 nr_freed
+= shrink_page_list(&page_list
, sc
,
1134 nr_reclaimed
+= nr_freed
;
1135 local_irq_disable();
1136 if (current_is_kswapd()) {
1137 __count_zone_vm_events(PGSCAN_KSWAPD
, zone
, nr_scan
);
1138 __count_vm_events(KSWAPD_STEAL
, nr_freed
);
1139 } else if (scanning_global_lru(sc
))
1140 __count_zone_vm_events(PGSCAN_DIRECT
, zone
, nr_scan
);
1142 __count_zone_vm_events(PGSTEAL
, zone
, nr_freed
);
1147 spin_lock(&zone
->lru_lock
);
1149 * Put back any unfreeable pages.
1151 while (!list_empty(&page_list
)) {
1153 page
= lru_to_page(&page_list
);
1154 VM_BUG_ON(PageLRU(page
));
1155 list_del(&page
->lru
);
1156 if (unlikely(!page_evictable(page
, NULL
))) {
1157 spin_unlock_irq(&zone
->lru_lock
);
1158 putback_lru_page(page
);
1159 spin_lock_irq(&zone
->lru_lock
);
1163 lru
= page_lru(page
);
1164 add_page_to_lru_list(zone
, page
, lru
);
1165 if (PageActive(page
)) {
1166 int file
= !!page_is_file_cache(page
);
1167 reclaim_stat
->recent_rotated
[file
]++;
1169 if (!pagevec_add(&pvec
, page
)) {
1170 spin_unlock_irq(&zone
->lru_lock
);
1171 __pagevec_release(&pvec
);
1172 spin_lock_irq(&zone
->lru_lock
);
1175 } while (nr_scanned
< max_scan
);
1176 spin_unlock(&zone
->lru_lock
);
1179 pagevec_release(&pvec
);
1180 return nr_reclaimed
;
1184 * We are about to scan this zone at a certain priority level. If that priority
1185 * level is smaller (ie: more urgent) than the previous priority, then note
1186 * that priority level within the zone. This is done so that when the next
1187 * process comes in to scan this zone, it will immediately start out at this
1188 * priority level rather than having to build up its own scanning priority.
1189 * Here, this priority affects only the reclaim-mapped threshold.
1191 static inline void note_zone_scanning_priority(struct zone
*zone
, int priority
)
1193 if (priority
< zone
->prev_priority
)
1194 zone
->prev_priority
= priority
;
1198 * This moves pages from the active list to the inactive list.
1200 * We move them the other way if the page is referenced by one or more
1201 * processes, from rmap.
1203 * If the pages are mostly unmapped, the processing is fast and it is
1204 * appropriate to hold zone->lru_lock across the whole operation. But if
1205 * the pages are mapped, the processing is slow (page_referenced()) so we
1206 * should drop zone->lru_lock around each page. It's impossible to balance
1207 * this, so instead we remove the pages from the LRU while processing them.
1208 * It is safe to rely on PG_active against the non-LRU pages in here because
1209 * nobody will play with that bit on a non-LRU page.
1211 * The downside is that we have to touch page->_count against each page.
1212 * But we had to alter page->flags anyway.
1216 static void shrink_active_list(unsigned long nr_pages
, struct zone
*zone
,
1217 struct scan_control
*sc
, int priority
, int file
)
1219 unsigned long pgmoved
;
1220 int pgdeactivate
= 0;
1221 unsigned long pgscanned
;
1222 LIST_HEAD(l_hold
); /* The pages which were snipped off */
1223 LIST_HEAD(l_inactive
);
1225 struct pagevec pvec
;
1227 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1230 spin_lock_irq(&zone
->lru_lock
);
1231 pgmoved
= sc
->isolate_pages(nr_pages
, &l_hold
, &pgscanned
, sc
->order
,
1232 ISOLATE_ACTIVE
, zone
,
1233 sc
->mem_cgroup
, 1, file
);
1235 * zone->pages_scanned is used for detect zone's oom
1236 * mem_cgroup remembers nr_scan by itself.
1238 if (scanning_global_lru(sc
)) {
1239 zone
->pages_scanned
+= pgscanned
;
1241 reclaim_stat
->recent_scanned
[!!file
] += pgmoved
;
1244 __mod_zone_page_state(zone
, NR_ACTIVE_FILE
, -pgmoved
);
1246 __mod_zone_page_state(zone
, NR_ACTIVE_ANON
, -pgmoved
);
1247 spin_unlock_irq(&zone
->lru_lock
);
1250 while (!list_empty(&l_hold
)) {
1252 page
= lru_to_page(&l_hold
);
1253 list_del(&page
->lru
);
1255 if (unlikely(!page_evictable(page
, NULL
))) {
1256 putback_lru_page(page
);
1260 /* page_referenced clears PageReferenced */
1261 if (page_mapping_inuse(page
) &&
1262 page_referenced(page
, 0, sc
->mem_cgroup
))
1265 list_add(&page
->lru
, &l_inactive
);
1269 * Move the pages to the [file or anon] inactive list.
1271 pagevec_init(&pvec
, 1);
1272 lru
= LRU_BASE
+ file
* LRU_FILE
;
1274 spin_lock_irq(&zone
->lru_lock
);
1276 * Count referenced pages from currently used mappings as
1277 * rotated, even though they are moved to the inactive list.
1278 * This helps balance scan pressure between file and anonymous
1279 * pages in get_scan_ratio.
1281 reclaim_stat
->recent_rotated
[!!file
] += pgmoved
;
1284 while (!list_empty(&l_inactive
)) {
1285 page
= lru_to_page(&l_inactive
);
1286 prefetchw_prev_lru_page(page
, &l_inactive
, flags
);
1287 VM_BUG_ON(PageLRU(page
));
1289 VM_BUG_ON(!PageActive(page
));
1290 ClearPageActive(page
);
1292 list_move(&page
->lru
, &zone
->lru
[lru
].list
);
1293 mem_cgroup_add_lru_list(page
, lru
);
1295 if (!pagevec_add(&pvec
, page
)) {
1296 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1297 spin_unlock_irq(&zone
->lru_lock
);
1298 pgdeactivate
+= pgmoved
;
1300 if (buffer_heads_over_limit
)
1301 pagevec_strip(&pvec
);
1302 __pagevec_release(&pvec
);
1303 spin_lock_irq(&zone
->lru_lock
);
1306 __mod_zone_page_state(zone
, NR_LRU_BASE
+ lru
, pgmoved
);
1307 pgdeactivate
+= pgmoved
;
1308 __count_zone_vm_events(PGREFILL
, zone
, pgscanned
);
1309 __count_vm_events(PGDEACTIVATE
, pgdeactivate
);
1310 spin_unlock_irq(&zone
->lru_lock
);
1311 if (buffer_heads_over_limit
)
1312 pagevec_strip(&pvec
);
1313 pagevec_release(&pvec
);
1316 static int inactive_anon_is_low_global(struct zone
*zone
)
1318 unsigned long active
, inactive
;
1320 active
= zone_page_state(zone
, NR_ACTIVE_ANON
);
1321 inactive
= zone_page_state(zone
, NR_INACTIVE_ANON
);
1323 if (inactive
* zone
->inactive_ratio
< active
)
1330 * inactive_anon_is_low - check if anonymous pages need to be deactivated
1331 * @zone: zone to check
1332 * @sc: scan control of this context
1334 * Returns true if the zone does not have enough inactive anon pages,
1335 * meaning some active anon pages need to be deactivated.
1337 static int inactive_anon_is_low(struct zone
*zone
, struct scan_control
*sc
)
1341 if (scanning_global_lru(sc
))
1342 low
= inactive_anon_is_low_global(zone
);
1344 low
= mem_cgroup_inactive_anon_is_low(sc
->mem_cgroup
);
1348 static unsigned long shrink_list(enum lru_list lru
, unsigned long nr_to_scan
,
1349 struct zone
*zone
, struct scan_control
*sc
, int priority
)
1351 int file
= is_file_lru(lru
);
1353 if (lru
== LRU_ACTIVE_FILE
) {
1354 shrink_active_list(nr_to_scan
, zone
, sc
, priority
, file
);
1358 if (lru
== LRU_ACTIVE_ANON
&& inactive_anon_is_low(zone
, sc
)) {
1359 shrink_active_list(nr_to_scan
, zone
, sc
, priority
, file
);
1362 return shrink_inactive_list(nr_to_scan
, zone
, sc
, priority
, file
);
1366 * Determine how aggressively the anon and file LRU lists should be
1367 * scanned. The relative value of each set of LRU lists is determined
1368 * by looking at the fraction of the pages scanned we did rotate back
1369 * onto the active list instead of evict.
1371 * percent[0] specifies how much pressure to put on ram/swap backed
1372 * memory, while percent[1] determines pressure on the file LRUs.
1374 static void get_scan_ratio(struct zone
*zone
, struct scan_control
*sc
,
1375 unsigned long *percent
)
1377 unsigned long anon
, file
, free
;
1378 unsigned long anon_prio
, file_prio
;
1379 unsigned long ap
, fp
;
1380 struct zone_reclaim_stat
*reclaim_stat
= get_reclaim_stat(zone
, sc
);
1382 /* If we have no swap space, do not bother scanning anon pages. */
1383 if (nr_swap_pages
<= 0) {
1389 anon
= zone_nr_pages(zone
, sc
, LRU_ACTIVE_ANON
) +
1390 zone_nr_pages(zone
, sc
, LRU_INACTIVE_ANON
);
1391 file
= zone_nr_pages(zone
, sc
, LRU_ACTIVE_FILE
) +
1392 zone_nr_pages(zone
, sc
, LRU_INACTIVE_FILE
);
1394 if (scanning_global_lru(sc
)) {
1395 free
= zone_page_state(zone
, NR_FREE_PAGES
);
1396 /* If we have very few page cache pages,
1397 force-scan anon pages. */
1398 if (unlikely(file
+ free
<= zone
->pages_high
)) {
1406 * OK, so we have swap space and a fair amount of page cache
1407 * pages. We use the recently rotated / recently scanned
1408 * ratios to determine how valuable each cache is.
1410 * Because workloads change over time (and to avoid overflow)
1411 * we keep these statistics as a floating average, which ends
1412 * up weighing recent references more than old ones.
1414 * anon in [0], file in [1]
1416 if (unlikely(reclaim_stat
->recent_scanned
[0] > anon
/ 4)) {
1417 spin_lock_irq(&zone
->lru_lock
);
1418 reclaim_stat
->recent_scanned
[0] /= 2;
1419 reclaim_stat
->recent_rotated
[0] /= 2;
1420 spin_unlock_irq(&zone
->lru_lock
);
1423 if (unlikely(reclaim_stat
->recent_scanned
[1] > file
/ 4)) {
1424 spin_lock_irq(&zone
->lru_lock
);
1425 reclaim_stat
->recent_scanned
[1] /= 2;
1426 reclaim_stat
->recent_rotated
[1] /= 2;
1427 spin_unlock_irq(&zone
->lru_lock
);
1431 * With swappiness at 100, anonymous and file have the same priority.
1432 * This scanning priority is essentially the inverse of IO cost.
1434 anon_prio
= sc
->swappiness
;
1435 file_prio
= 200 - sc
->swappiness
;
1438 * The amount of pressure on anon vs file pages is inversely
1439 * proportional to the fraction of recently scanned pages on
1440 * each list that were recently referenced and in active use.
1442 ap
= (anon_prio
+ 1) * (reclaim_stat
->recent_scanned
[0] + 1);
1443 ap
/= reclaim_stat
->recent_rotated
[0] + 1;
1445 fp
= (file_prio
+ 1) * (reclaim_stat
->recent_scanned
[1] + 1);
1446 fp
/= reclaim_stat
->recent_rotated
[1] + 1;
1448 /* Normalize to percentages */
1449 percent
[0] = 100 * ap
/ (ap
+ fp
+ 1);
1450 percent
[1] = 100 - percent
[0];
1455 * This is a basic per-zone page freer. Used by both kswapd and direct reclaim.
1457 static void shrink_zone(int priority
, struct zone
*zone
,
1458 struct scan_control
*sc
)
1460 unsigned long nr
[NR_LRU_LISTS
];
1461 unsigned long nr_to_scan
;
1462 unsigned long percent
[2]; /* anon @ 0; file @ 1 */
1464 unsigned long nr_reclaimed
= sc
->nr_reclaimed
;
1465 unsigned long swap_cluster_max
= sc
->swap_cluster_max
;
1467 get_scan_ratio(zone
, sc
, percent
);
1469 for_each_evictable_lru(l
) {
1470 int file
= is_file_lru(l
);
1473 scan
= zone_nr_pages(zone
, sc
, l
);
1476 scan
= (scan
* percent
[file
]) / 100;
1478 if (scanning_global_lru(sc
)) {
1479 zone
->lru
[l
].nr_scan
+= scan
;
1480 nr
[l
] = zone
->lru
[l
].nr_scan
;
1481 if (nr
[l
] >= swap_cluster_max
)
1482 zone
->lru
[l
].nr_scan
= 0;
1489 while (nr
[LRU_INACTIVE_ANON
] || nr
[LRU_ACTIVE_FILE
] ||
1490 nr
[LRU_INACTIVE_FILE
]) {
1491 for_each_evictable_lru(l
) {
1493 nr_to_scan
= min(nr
[l
], swap_cluster_max
);
1494 nr
[l
] -= nr_to_scan
;
1496 nr_reclaimed
+= shrink_list(l
, nr_to_scan
,
1497 zone
, sc
, priority
);
1501 * On large memory systems, scan >> priority can become
1502 * really large. This is fine for the starting priority;
1503 * we want to put equal scanning pressure on each zone.
1504 * However, if the VM has a harder time of freeing pages,
1505 * with multiple processes reclaiming pages, the total
1506 * freeing target can get unreasonably large.
1508 if (nr_reclaimed
> swap_cluster_max
&&
1509 priority
< DEF_PRIORITY
&& !current_is_kswapd())
1513 sc
->nr_reclaimed
= nr_reclaimed
;
1516 * Even if we did not try to evict anon pages at all, we want to
1517 * rebalance the anon lru active/inactive ratio.
1519 if (inactive_anon_is_low(zone
, sc
))
1520 shrink_active_list(SWAP_CLUSTER_MAX
, zone
, sc
, priority
, 0);
1522 throttle_vm_writeout(sc
->gfp_mask
);
1526 * This is the direct reclaim path, for page-allocating processes. We only
1527 * try to reclaim pages from zones which will satisfy the caller's allocation
1530 * We reclaim from a zone even if that zone is over pages_high. Because:
1531 * a) The caller may be trying to free *extra* pages to satisfy a higher-order
1533 * b) The zones may be over pages_high but they must go *over* pages_high to
1534 * satisfy the `incremental min' zone defense algorithm.
1536 * If a zone is deemed to be full of pinned pages then just give it a light
1537 * scan then give up on it.
1539 static void shrink_zones(int priority
, struct zonelist
*zonelist
,
1540 struct scan_control
*sc
)
1542 enum zone_type high_zoneidx
= gfp_zone(sc
->gfp_mask
);
1546 sc
->all_unreclaimable
= 1;
1547 for_each_zone_zonelist_nodemask(zone
, z
, zonelist
, high_zoneidx
,
1549 if (!populated_zone(zone
))
1552 * Take care memory controller reclaiming has small influence
1555 if (scanning_global_lru(sc
)) {
1556 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1558 note_zone_scanning_priority(zone
, priority
);
1560 if (zone_is_all_unreclaimable(zone
) &&
1561 priority
!= DEF_PRIORITY
)
1562 continue; /* Let kswapd poll it */
1563 sc
->all_unreclaimable
= 0;
1566 * Ignore cpuset limitation here. We just want to reduce
1567 * # of used pages by us regardless of memory shortage.
1569 sc
->all_unreclaimable
= 0;
1570 mem_cgroup_note_reclaim_priority(sc
->mem_cgroup
,
1574 shrink_zone(priority
, zone
, sc
);
1579 * This is the main entry point to direct page reclaim.
1581 * If a full scan of the inactive list fails to free enough memory then we
1582 * are "out of memory" and something needs to be killed.
1584 * If the caller is !__GFP_FS then the probability of a failure is reasonably
1585 * high - the zone may be full of dirty or under-writeback pages, which this
1586 * caller can't do much about. We kick pdflush and take explicit naps in the
1587 * hope that some of these pages can be written. But if the allocating task
1588 * holds filesystem locks which prevent writeout this might not work, and the
1589 * allocation attempt will fail.
1591 * returns: 0, if no pages reclaimed
1592 * else, the number of pages reclaimed
1594 static unsigned long do_try_to_free_pages(struct zonelist
*zonelist
,
1595 struct scan_control
*sc
)
1598 unsigned long ret
= 0;
1599 unsigned long total_scanned
= 0;
1600 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1601 unsigned long lru_pages
= 0;
1604 enum zone_type high_zoneidx
= gfp_zone(sc
->gfp_mask
);
1606 delayacct_freepages_start();
1608 if (scanning_global_lru(sc
))
1609 count_vm_event(ALLOCSTALL
);
1611 * mem_cgroup will not do shrink_slab.
1613 if (scanning_global_lru(sc
)) {
1614 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1616 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1619 lru_pages
+= zone_lru_pages(zone
);
1623 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1626 disable_swap_token();
1627 shrink_zones(priority
, zonelist
, sc
);
1629 * Don't shrink slabs when reclaiming memory from
1630 * over limit cgroups
1632 if (scanning_global_lru(sc
)) {
1633 shrink_slab(sc
->nr_scanned
, sc
->gfp_mask
, lru_pages
);
1634 if (reclaim_state
) {
1635 sc
->nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1636 reclaim_state
->reclaimed_slab
= 0;
1639 total_scanned
+= sc
->nr_scanned
;
1640 if (sc
->nr_reclaimed
>= sc
->swap_cluster_max
) {
1641 ret
= sc
->nr_reclaimed
;
1646 * Try to write back as many pages as we just scanned. This
1647 * tends to cause slow streaming writers to write data to the
1648 * disk smoothly, at the dirtying rate, which is nice. But
1649 * that's undesirable in laptop mode, where we *want* lumpy
1650 * writeout. So in laptop mode, write out the whole world.
1652 if (total_scanned
> sc
->swap_cluster_max
+
1653 sc
->swap_cluster_max
/ 2) {
1654 wakeup_pdflush(laptop_mode
? 0 : total_scanned
);
1655 sc
->may_writepage
= 1;
1658 /* Take a nap, wait for some writeback to complete */
1659 if (sc
->nr_scanned
&& priority
< DEF_PRIORITY
- 2)
1660 congestion_wait(WRITE
, HZ
/10);
1662 /* top priority shrink_zones still had more to do? don't OOM, then */
1663 if (!sc
->all_unreclaimable
&& scanning_global_lru(sc
))
1664 ret
= sc
->nr_reclaimed
;
1667 * Now that we've scanned all the zones at this priority level, note
1668 * that level within the zone so that the next thread which performs
1669 * scanning of this zone will immediately start out at this priority
1670 * level. This affects only the decision whether or not to bring
1671 * mapped pages onto the inactive list.
1676 if (scanning_global_lru(sc
)) {
1677 for_each_zone_zonelist(zone
, z
, zonelist
, high_zoneidx
) {
1679 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
1682 zone
->prev_priority
= priority
;
1685 mem_cgroup_record_reclaim_priority(sc
->mem_cgroup
, priority
);
1687 delayacct_freepages_end();
1692 unsigned long try_to_free_pages(struct zonelist
*zonelist
, int order
,
1693 gfp_t gfp_mask
, nodemask_t
*nodemask
)
1695 struct scan_control sc
= {
1696 .gfp_mask
= gfp_mask
,
1697 .may_writepage
= !laptop_mode
,
1698 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1700 .swappiness
= vm_swappiness
,
1703 .isolate_pages
= isolate_pages_global
,
1704 .nodemask
= nodemask
,
1707 return do_try_to_free_pages(zonelist
, &sc
);
1710 #ifdef CONFIG_CGROUP_MEM_RES_CTLR
1712 unsigned long try_to_free_mem_cgroup_pages(struct mem_cgroup
*mem_cont
,
1715 unsigned int swappiness
)
1717 struct scan_control sc
= {
1718 .may_writepage
= !laptop_mode
,
1720 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1721 .swappiness
= swappiness
,
1723 .mem_cgroup
= mem_cont
,
1724 .isolate_pages
= mem_cgroup_isolate_pages
,
1725 .nodemask
= NULL
, /* we don't care the placement */
1727 struct zonelist
*zonelist
;
1732 sc
.gfp_mask
= (gfp_mask
& GFP_RECLAIM_MASK
) |
1733 (GFP_HIGHUSER_MOVABLE
& ~GFP_RECLAIM_MASK
);
1734 zonelist
= NODE_DATA(numa_node_id())->node_zonelists
;
1735 return do_try_to_free_pages(zonelist
, &sc
);
1740 * For kswapd, balance_pgdat() will work across all this node's zones until
1741 * they are all at pages_high.
1743 * Returns the number of pages which were actually freed.
1745 * There is special handling here for zones which are full of pinned pages.
1746 * This can happen if the pages are all mlocked, or if they are all used by
1747 * device drivers (say, ZONE_DMA). Or if they are all in use by hugetlb.
1748 * What we do is to detect the case where all pages in the zone have been
1749 * scanned twice and there has been zero successful reclaim. Mark the zone as
1750 * dead and from now on, only perform a short scan. Basically we're polling
1751 * the zone for when the problem goes away.
1753 * kswapd scans the zones in the highmem->normal->dma direction. It skips
1754 * zones which have free_pages > pages_high, but once a zone is found to have
1755 * free_pages <= pages_high, we scan that zone and the lower zones regardless
1756 * of the number of free pages in the lower zones. This interoperates with
1757 * the page allocator fallback scheme to ensure that aging of pages is balanced
1760 static unsigned long balance_pgdat(pg_data_t
*pgdat
, int order
)
1765 unsigned long total_scanned
;
1766 struct reclaim_state
*reclaim_state
= current
->reclaim_state
;
1767 struct scan_control sc
= {
1768 .gfp_mask
= GFP_KERNEL
,
1770 .swap_cluster_max
= SWAP_CLUSTER_MAX
,
1771 .swappiness
= vm_swappiness
,
1774 .isolate_pages
= isolate_pages_global
,
1777 * temp_priority is used to remember the scanning priority at which
1778 * this zone was successfully refilled to free_pages == pages_high.
1780 int temp_priority
[MAX_NR_ZONES
];
1784 sc
.nr_reclaimed
= 0;
1785 sc
.may_writepage
= !laptop_mode
;
1786 count_vm_event(PAGEOUTRUN
);
1788 for (i
= 0; i
< pgdat
->nr_zones
; i
++)
1789 temp_priority
[i
] = DEF_PRIORITY
;
1791 for (priority
= DEF_PRIORITY
; priority
>= 0; priority
--) {
1792 int end_zone
= 0; /* Inclusive. 0 = ZONE_DMA */
1793 unsigned long lru_pages
= 0;
1795 /* The swap token gets in the way of swapout... */
1797 disable_swap_token();
1802 * Scan in the highmem->dma direction for the highest
1803 * zone which needs scanning
1805 for (i
= pgdat
->nr_zones
- 1; i
>= 0; i
--) {
1806 struct zone
*zone
= pgdat
->node_zones
+ i
;
1808 if (!populated_zone(zone
))
1811 if (zone_is_all_unreclaimable(zone
) &&
1812 priority
!= DEF_PRIORITY
)
1816 * Do some background aging of the anon list, to give
1817 * pages a chance to be referenced before reclaiming.
1819 if (inactive_anon_is_low(zone
, &sc
))
1820 shrink_active_list(SWAP_CLUSTER_MAX
, zone
,
1823 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1832 for (i
= 0; i
<= end_zone
; i
++) {
1833 struct zone
*zone
= pgdat
->node_zones
+ i
;
1835 lru_pages
+= zone_lru_pages(zone
);
1839 * Now scan the zone in the dma->highmem direction, stopping
1840 * at the last zone which needs scanning.
1842 * We do this because the page allocator works in the opposite
1843 * direction. This prevents the page allocator from allocating
1844 * pages behind kswapd's direction of progress, which would
1845 * cause too much scanning of the lower zones.
1847 for (i
= 0; i
<= end_zone
; i
++) {
1848 struct zone
*zone
= pgdat
->node_zones
+ i
;
1851 if (!populated_zone(zone
))
1854 if (zone_is_all_unreclaimable(zone
) &&
1855 priority
!= DEF_PRIORITY
)
1858 if (!zone_watermark_ok(zone
, order
, zone
->pages_high
,
1861 temp_priority
[i
] = priority
;
1863 note_zone_scanning_priority(zone
, priority
);
1865 * We put equal pressure on every zone, unless one
1866 * zone has way too many pages free already.
1868 if (!zone_watermark_ok(zone
, order
, 8*zone
->pages_high
,
1870 shrink_zone(priority
, zone
, &sc
);
1871 reclaim_state
->reclaimed_slab
= 0;
1872 nr_slab
= shrink_slab(sc
.nr_scanned
, GFP_KERNEL
,
1874 sc
.nr_reclaimed
+= reclaim_state
->reclaimed_slab
;
1875 total_scanned
+= sc
.nr_scanned
;
1876 if (zone_is_all_unreclaimable(zone
))
1878 if (nr_slab
== 0 && zone
->pages_scanned
>=
1879 (zone_lru_pages(zone
) * 6))
1881 ZONE_ALL_UNRECLAIMABLE
);
1883 * If we've done a decent amount of scanning and
1884 * the reclaim ratio is low, start doing writepage
1885 * even in laptop mode
1887 if (total_scanned
> SWAP_CLUSTER_MAX
* 2 &&
1888 total_scanned
> sc
.nr_reclaimed
+ sc
.nr_reclaimed
/ 2)
1889 sc
.may_writepage
= 1;
1892 break; /* kswapd: all done */
1894 * OK, kswapd is getting into trouble. Take a nap, then take
1895 * another pass across the zones.
1897 if (total_scanned
&& priority
< DEF_PRIORITY
- 2)
1898 congestion_wait(WRITE
, HZ
/10);
1901 * We do this so kswapd doesn't build up large priorities for
1902 * example when it is freeing in parallel with allocators. It
1903 * matches the direct reclaim path behaviour in terms of impact
1904 * on zone->*_priority.
1906 if (sc
.nr_reclaimed
>= SWAP_CLUSTER_MAX
)
1911 * Note within each zone the priority level at which this zone was
1912 * brought into a happy state. So that the next thread which scans this
1913 * zone will start out at that priority level.
1915 for (i
= 0; i
< pgdat
->nr_zones
; i
++) {
1916 struct zone
*zone
= pgdat
->node_zones
+ i
;
1918 zone
->prev_priority
= temp_priority
[i
];
1920 if (!all_zones_ok
) {
1926 * Fragmentation may mean that the system cannot be
1927 * rebalanced for high-order allocations in all zones.
1928 * At this point, if nr_reclaimed < SWAP_CLUSTER_MAX,
1929 * it means the zones have been fully scanned and are still
1930 * not balanced. For high-order allocations, there is
1931 * little point trying all over again as kswapd may
1934 * Instead, recheck all watermarks at order-0 as they
1935 * are the most important. If watermarks are ok, kswapd will go
1936 * back to sleep. High-order users can still perform direct
1937 * reclaim if they wish.
1939 if (sc
.nr_reclaimed
< SWAP_CLUSTER_MAX
)
1940 order
= sc
.order
= 0;
1945 return sc
.nr_reclaimed
;
1949 * The background pageout daemon, started as a kernel thread
1950 * from the init process.
1952 * This basically trickles out pages so that we have _some_
1953 * free memory available even if there is no other activity
1954 * that frees anything up. This is needed for things like routing
1955 * etc, where we otherwise might have all activity going on in
1956 * asynchronous contexts that cannot page things out.
1958 * If there are applications that are active memory-allocators
1959 * (most normal use), this basically shouldn't matter.
1961 static int kswapd(void *p
)
1963 unsigned long order
;
1964 pg_data_t
*pgdat
= (pg_data_t
*)p
;
1965 struct task_struct
*tsk
= current
;
1967 struct reclaim_state reclaim_state
= {
1968 .reclaimed_slab
= 0,
1970 node_to_cpumask_ptr(cpumask
, pgdat
->node_id
);
1972 lockdep_set_current_reclaim_state(GFP_KERNEL
);
1974 if (!cpumask_empty(cpumask
))
1975 set_cpus_allowed_ptr(tsk
, cpumask
);
1976 current
->reclaim_state
= &reclaim_state
;
1979 * Tell the memory management that we're a "memory allocator",
1980 * and that if we need more memory we should get access to it
1981 * regardless (see "__alloc_pages()"). "kswapd" should
1982 * never get caught in the normal page freeing logic.
1984 * (Kswapd normally doesn't need memory anyway, but sometimes
1985 * you need a small amount of memory in order to be able to
1986 * page out something else, and this flag essentially protects
1987 * us from recursively trying to free more memory as we're
1988 * trying to free the first piece of memory in the first place).
1990 tsk
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
| PF_KSWAPD
;
1995 unsigned long new_order
;
1997 prepare_to_wait(&pgdat
->kswapd_wait
, &wait
, TASK_INTERRUPTIBLE
);
1998 new_order
= pgdat
->kswapd_max_order
;
1999 pgdat
->kswapd_max_order
= 0;
2000 if (order
< new_order
) {
2002 * Don't sleep if someone wants a larger 'order'
2007 if (!freezing(current
))
2010 order
= pgdat
->kswapd_max_order
;
2012 finish_wait(&pgdat
->kswapd_wait
, &wait
);
2014 if (!try_to_freeze()) {
2015 /* We can speed up thawing tasks if we don't call
2016 * balance_pgdat after returning from the refrigerator
2018 balance_pgdat(pgdat
, order
);
2025 * A zone is low on free memory, so wake its kswapd task to service it.
2027 void wakeup_kswapd(struct zone
*zone
, int order
)
2031 if (!populated_zone(zone
))
2034 pgdat
= zone
->zone_pgdat
;
2035 if (zone_watermark_ok(zone
, order
, zone
->pages_low
, 0, 0))
2037 if (pgdat
->kswapd_max_order
< order
)
2038 pgdat
->kswapd_max_order
= order
;
2039 if (!cpuset_zone_allowed_hardwall(zone
, GFP_KERNEL
))
2041 if (!waitqueue_active(&pgdat
->kswapd_wait
))
2043 wake_up_interruptible(&pgdat
->kswapd_wait
);
2046 unsigned long global_lru_pages(void)
2048 return global_page_state(NR_ACTIVE_ANON
)
2049 + global_page_state(NR_ACTIVE_FILE
)
2050 + global_page_state(NR_INACTIVE_ANON
)
2051 + global_page_state(NR_INACTIVE_FILE
);
2056 * Helper function for shrink_all_memory(). Tries to reclaim 'nr_pages' pages
2057 * from LRU lists system-wide, for given pass and priority.
2059 * For pass > 3 we also try to shrink the LRU lists that contain a few pages
2061 static void shrink_all_zones(unsigned long nr_pages
, int prio
,
2062 int pass
, struct scan_control
*sc
)
2065 unsigned long nr_reclaimed
= 0;
2067 for_each_populated_zone(zone
) {
2070 if (zone_is_all_unreclaimable(zone
) && prio
!= DEF_PRIORITY
)
2073 for_each_evictable_lru(l
) {
2074 enum zone_stat_item ls
= NR_LRU_BASE
+ l
;
2075 unsigned long lru_pages
= zone_page_state(zone
, ls
);
2077 /* For pass = 0, we don't shrink the active list */
2078 if (pass
== 0 && (l
== LRU_ACTIVE_ANON
||
2079 l
== LRU_ACTIVE_FILE
))
2082 zone
->lru
[l
].nr_scan
+= (lru_pages
>> prio
) + 1;
2083 if (zone
->lru
[l
].nr_scan
>= nr_pages
|| pass
> 3) {
2084 unsigned long nr_to_scan
;
2086 zone
->lru
[l
].nr_scan
= 0;
2087 nr_to_scan
= min(nr_pages
, lru_pages
);
2088 nr_reclaimed
+= shrink_list(l
, nr_to_scan
, zone
,
2090 if (nr_reclaimed
>= nr_pages
) {
2091 sc
->nr_reclaimed
= nr_reclaimed
;
2097 sc
->nr_reclaimed
= nr_reclaimed
;
2101 * Try to free `nr_pages' of memory, system-wide, and return the number of
2104 * Rather than trying to age LRUs the aim is to preserve the overall
2105 * LRU order by reclaiming preferentially
2106 * inactive > active > active referenced > active mapped
2108 unsigned long shrink_all_memory(unsigned long nr_pages
)
2110 unsigned long lru_pages
, nr_slab
;
2112 struct reclaim_state reclaim_state
;
2113 struct scan_control sc
= {
2114 .gfp_mask
= GFP_KERNEL
,
2117 .isolate_pages
= isolate_pages_global
,
2120 current
->reclaim_state
= &reclaim_state
;
2122 lru_pages
= global_lru_pages();
2123 nr_slab
= global_page_state(NR_SLAB_RECLAIMABLE
);
2124 /* If slab caches are huge, it's better to hit them first */
2125 while (nr_slab
>= lru_pages
) {
2126 reclaim_state
.reclaimed_slab
= 0;
2127 shrink_slab(nr_pages
, sc
.gfp_mask
, lru_pages
);
2128 if (!reclaim_state
.reclaimed_slab
)
2131 sc
.nr_reclaimed
+= reclaim_state
.reclaimed_slab
;
2132 if (sc
.nr_reclaimed
>= nr_pages
)
2135 nr_slab
-= reclaim_state
.reclaimed_slab
;
2139 * We try to shrink LRUs in 5 passes:
2140 * 0 = Reclaim from inactive_list only
2141 * 1 = Reclaim from active list but don't reclaim mapped
2142 * 2 = 2nd pass of type 1
2143 * 3 = Reclaim mapped (normal reclaim)
2144 * 4 = 2nd pass of type 3
2146 for (pass
= 0; pass
< 5; pass
++) {
2149 /* Force reclaiming mapped pages in the passes #3 and #4 */
2153 for (prio
= DEF_PRIORITY
; prio
>= 0; prio
--) {
2154 unsigned long nr_to_scan
= nr_pages
- sc
.nr_reclaimed
;
2157 sc
.swap_cluster_max
= nr_to_scan
;
2158 shrink_all_zones(nr_to_scan
, prio
, pass
, &sc
);
2159 if (sc
.nr_reclaimed
>= nr_pages
)
2162 reclaim_state
.reclaimed_slab
= 0;
2163 shrink_slab(sc
.nr_scanned
, sc
.gfp_mask
,
2164 global_lru_pages());
2165 sc
.nr_reclaimed
+= reclaim_state
.reclaimed_slab
;
2166 if (sc
.nr_reclaimed
>= nr_pages
)
2169 if (sc
.nr_scanned
&& prio
< DEF_PRIORITY
- 2)
2170 congestion_wait(WRITE
, HZ
/ 10);
2175 * If sc.nr_reclaimed = 0, we could not shrink LRUs, but there may be
2176 * something in slab caches
2178 if (!sc
.nr_reclaimed
) {
2180 reclaim_state
.reclaimed_slab
= 0;
2181 shrink_slab(nr_pages
, sc
.gfp_mask
, global_lru_pages());
2182 sc
.nr_reclaimed
+= reclaim_state
.reclaimed_slab
;
2183 } while (sc
.nr_reclaimed
< nr_pages
&&
2184 reclaim_state
.reclaimed_slab
> 0);
2189 current
->reclaim_state
= NULL
;
2191 return sc
.nr_reclaimed
;
2195 /* It's optimal to keep kswapds on the same CPUs as their memory, but
2196 not required for correctness. So if the last cpu in a node goes
2197 away, we get changed to run anywhere: as the first one comes back,
2198 restore their cpu bindings. */
2199 static int __devinit
cpu_callback(struct notifier_block
*nfb
,
2200 unsigned long action
, void *hcpu
)
2204 if (action
== CPU_ONLINE
|| action
== CPU_ONLINE_FROZEN
) {
2205 for_each_node_state(nid
, N_HIGH_MEMORY
) {
2206 pg_data_t
*pgdat
= NODE_DATA(nid
);
2207 node_to_cpumask_ptr(mask
, pgdat
->node_id
);
2209 if (cpumask_any_and(cpu_online_mask
, mask
) < nr_cpu_ids
)
2210 /* One of our CPUs online: restore mask */
2211 set_cpus_allowed_ptr(pgdat
->kswapd
, mask
);
2218 * This kswapd start function will be called by init and node-hot-add.
2219 * On node-hot-add, kswapd will moved to proper cpus if cpus are hot-added.
2221 int kswapd_run(int nid
)
2223 pg_data_t
*pgdat
= NODE_DATA(nid
);
2229 pgdat
->kswapd
= kthread_run(kswapd
, pgdat
, "kswapd%d", nid
);
2230 if (IS_ERR(pgdat
->kswapd
)) {
2231 /* failure at boot is fatal */
2232 BUG_ON(system_state
== SYSTEM_BOOTING
);
2233 printk("Failed to start kswapd on node %d\n",nid
);
2239 static int __init
kswapd_init(void)
2244 for_each_node_state(nid
, N_HIGH_MEMORY
)
2246 hotcpu_notifier(cpu_callback
, 0);
2250 module_init(kswapd_init
)
2256 * If non-zero call zone_reclaim when the number of free pages falls below
2259 int zone_reclaim_mode __read_mostly
;
2261 #define RECLAIM_OFF 0
2262 #define RECLAIM_ZONE (1<<0) /* Run shrink_inactive_list on the zone */
2263 #define RECLAIM_WRITE (1<<1) /* Writeout pages during reclaim */
2264 #define RECLAIM_SWAP (1<<2) /* Swap pages out during reclaim */
2267 * Priority for ZONE_RECLAIM. This determines the fraction of pages
2268 * of a node considered for each zone_reclaim. 4 scans 1/16th of
2271 #define ZONE_RECLAIM_PRIORITY 4
2274 * Percentage of pages in a zone that must be unmapped for zone_reclaim to
2277 int sysctl_min_unmapped_ratio
= 1;
2280 * If the number of slab pages in a zone grows beyond this percentage then
2281 * slab reclaim needs to occur.
2283 int sysctl_min_slab_ratio
= 5;
2286 * Try to free up some pages from this zone through reclaim.
2288 static int __zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2290 /* Minimum pages needed in order to stay on node */
2291 const unsigned long nr_pages
= 1 << order
;
2292 struct task_struct
*p
= current
;
2293 struct reclaim_state reclaim_state
;
2295 struct scan_control sc
= {
2296 .may_writepage
= !!(zone_reclaim_mode
& RECLAIM_WRITE
),
2297 .may_unmap
= !!(zone_reclaim_mode
& RECLAIM_SWAP
),
2298 .swap_cluster_max
= max_t(unsigned long, nr_pages
,
2300 .gfp_mask
= gfp_mask
,
2301 .swappiness
= vm_swappiness
,
2303 .isolate_pages
= isolate_pages_global
,
2305 unsigned long slab_reclaimable
;
2307 disable_swap_token();
2310 * We need to be able to allocate from the reserves for RECLAIM_SWAP
2311 * and we also need to be able to write out pages for RECLAIM_WRITE
2314 p
->flags
|= PF_MEMALLOC
| PF_SWAPWRITE
;
2315 reclaim_state
.reclaimed_slab
= 0;
2316 p
->reclaim_state
= &reclaim_state
;
2318 if (zone_page_state(zone
, NR_FILE_PAGES
) -
2319 zone_page_state(zone
, NR_FILE_MAPPED
) >
2320 zone
->min_unmapped_pages
) {
2322 * Free memory by calling shrink zone with increasing
2323 * priorities until we have enough memory freed.
2325 priority
= ZONE_RECLAIM_PRIORITY
;
2327 note_zone_scanning_priority(zone
, priority
);
2328 shrink_zone(priority
, zone
, &sc
);
2330 } while (priority
>= 0 && sc
.nr_reclaimed
< nr_pages
);
2333 slab_reclaimable
= zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2334 if (slab_reclaimable
> zone
->min_slab_pages
) {
2336 * shrink_slab() does not currently allow us to determine how
2337 * many pages were freed in this zone. So we take the current
2338 * number of slab pages and shake the slab until it is reduced
2339 * by the same nr_pages that we used for reclaiming unmapped
2342 * Note that shrink_slab will free memory on all zones and may
2345 while (shrink_slab(sc
.nr_scanned
, gfp_mask
, order
) &&
2346 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
) >
2347 slab_reclaimable
- nr_pages
)
2351 * Update nr_reclaimed by the number of slab pages we
2352 * reclaimed from this zone.
2354 sc
.nr_reclaimed
+= slab_reclaimable
-
2355 zone_page_state(zone
, NR_SLAB_RECLAIMABLE
);
2358 p
->reclaim_state
= NULL
;
2359 current
->flags
&= ~(PF_MEMALLOC
| PF_SWAPWRITE
);
2360 return sc
.nr_reclaimed
>= nr_pages
;
2363 int zone_reclaim(struct zone
*zone
, gfp_t gfp_mask
, unsigned int order
)
2369 * Zone reclaim reclaims unmapped file backed pages and
2370 * slab pages if we are over the defined limits.
2372 * A small portion of unmapped file backed pages is needed for
2373 * file I/O otherwise pages read by file I/O will be immediately
2374 * thrown out if the zone is overallocated. So we do not reclaim
2375 * if less than a specified percentage of the zone is used by
2376 * unmapped file backed pages.
2378 if (zone_page_state(zone
, NR_FILE_PAGES
) -
2379 zone_page_state(zone
, NR_FILE_MAPPED
) <= zone
->min_unmapped_pages
2380 && zone_page_state(zone
, NR_SLAB_RECLAIMABLE
)
2381 <= zone
->min_slab_pages
)
2384 if (zone_is_all_unreclaimable(zone
))
2388 * Do not scan if the allocation should not be delayed.
2390 if (!(gfp_mask
& __GFP_WAIT
) || (current
->flags
& PF_MEMALLOC
))
2394 * Only run zone reclaim on the local zone or on zones that do not
2395 * have associated processors. This will favor the local processor
2396 * over remote processors and spread off node memory allocations
2397 * as wide as possible.
2399 node_id
= zone_to_nid(zone
);
2400 if (node_state(node_id
, N_CPU
) && node_id
!= numa_node_id())
2403 if (zone_test_and_set_flag(zone
, ZONE_RECLAIM_LOCKED
))
2405 ret
= __zone_reclaim(zone
, gfp_mask
, order
);
2406 zone_clear_flag(zone
, ZONE_RECLAIM_LOCKED
);
2412 #ifdef CONFIG_UNEVICTABLE_LRU
2414 * page_evictable - test whether a page is evictable
2415 * @page: the page to test
2416 * @vma: the VMA in which the page is or will be mapped, may be NULL
2418 * Test whether page is evictable--i.e., should be placed on active/inactive
2419 * lists vs unevictable list. The vma argument is !NULL when called from the
2420 * fault path to determine how to instantate a new page.
2422 * Reasons page might not be evictable:
2423 * (1) page's mapping marked unevictable
2424 * (2) page is part of an mlocked VMA
2427 int page_evictable(struct page
*page
, struct vm_area_struct
*vma
)
2430 if (mapping_unevictable(page_mapping(page
)))
2433 if (PageMlocked(page
) || (vma
&& is_mlocked_vma(vma
, page
)))
2440 * check_move_unevictable_page - check page for evictability and move to appropriate zone lru list
2441 * @page: page to check evictability and move to appropriate lru list
2442 * @zone: zone page is in
2444 * Checks a page for evictability and moves the page to the appropriate
2447 * Restrictions: zone->lru_lock must be held, page must be on LRU and must
2448 * have PageUnevictable set.
2450 static void check_move_unevictable_page(struct page
*page
, struct zone
*zone
)
2452 VM_BUG_ON(PageActive(page
));
2455 ClearPageUnevictable(page
);
2456 if (page_evictable(page
, NULL
)) {
2457 enum lru_list l
= LRU_INACTIVE_ANON
+ page_is_file_cache(page
);
2459 __dec_zone_state(zone
, NR_UNEVICTABLE
);
2460 list_move(&page
->lru
, &zone
->lru
[l
].list
);
2461 mem_cgroup_move_lists(page
, LRU_UNEVICTABLE
, l
);
2462 __inc_zone_state(zone
, NR_INACTIVE_ANON
+ l
);
2463 __count_vm_event(UNEVICTABLE_PGRESCUED
);
2466 * rotate unevictable list
2468 SetPageUnevictable(page
);
2469 list_move(&page
->lru
, &zone
->lru
[LRU_UNEVICTABLE
].list
);
2470 mem_cgroup_rotate_lru_list(page
, LRU_UNEVICTABLE
);
2471 if (page_evictable(page
, NULL
))
2477 * scan_mapping_unevictable_pages - scan an address space for evictable pages
2478 * @mapping: struct address_space to scan for evictable pages
2480 * Scan all pages in mapping. Check unevictable pages for
2481 * evictability and move them to the appropriate zone lru list.
2483 void scan_mapping_unevictable_pages(struct address_space
*mapping
)
2486 pgoff_t end
= (i_size_read(mapping
->host
) + PAGE_CACHE_SIZE
- 1) >>
2489 struct pagevec pvec
;
2491 if (mapping
->nrpages
== 0)
2494 pagevec_init(&pvec
, 0);
2495 while (next
< end
&&
2496 pagevec_lookup(&pvec
, mapping
, next
, PAGEVEC_SIZE
)) {
2502 for (i
= 0; i
< pagevec_count(&pvec
); i
++) {
2503 struct page
*page
= pvec
.pages
[i
];
2504 pgoff_t page_index
= page
->index
;
2505 struct zone
*pagezone
= page_zone(page
);
2508 if (page_index
> next
)
2512 if (pagezone
!= zone
) {
2514 spin_unlock_irq(&zone
->lru_lock
);
2516 spin_lock_irq(&zone
->lru_lock
);
2519 if (PageLRU(page
) && PageUnevictable(page
))
2520 check_move_unevictable_page(page
, zone
);
2523 spin_unlock_irq(&zone
->lru_lock
);
2524 pagevec_release(&pvec
);
2526 count_vm_events(UNEVICTABLE_PGSCANNED
, pg_scanned
);
2532 * scan_zone_unevictable_pages - check unevictable list for evictable pages
2533 * @zone - zone of which to scan the unevictable list
2535 * Scan @zone's unevictable LRU lists to check for pages that have become
2536 * evictable. Move those that have to @zone's inactive list where they
2537 * become candidates for reclaim, unless shrink_inactive_zone() decides
2538 * to reactivate them. Pages that are still unevictable are rotated
2539 * back onto @zone's unevictable list.
2541 #define SCAN_UNEVICTABLE_BATCH_SIZE 16UL /* arbitrary lock hold batch size */
2542 static void scan_zone_unevictable_pages(struct zone
*zone
)
2544 struct list_head
*l_unevictable
= &zone
->lru
[LRU_UNEVICTABLE
].list
;
2546 unsigned long nr_to_scan
= zone_page_state(zone
, NR_UNEVICTABLE
);
2548 while (nr_to_scan
> 0) {
2549 unsigned long batch_size
= min(nr_to_scan
,
2550 SCAN_UNEVICTABLE_BATCH_SIZE
);
2552 spin_lock_irq(&zone
->lru_lock
);
2553 for (scan
= 0; scan
< batch_size
; scan
++) {
2554 struct page
*page
= lru_to_page(l_unevictable
);
2556 if (!trylock_page(page
))
2559 prefetchw_prev_lru_page(page
, l_unevictable
, flags
);
2561 if (likely(PageLRU(page
) && PageUnevictable(page
)))
2562 check_move_unevictable_page(page
, zone
);
2566 spin_unlock_irq(&zone
->lru_lock
);
2568 nr_to_scan
-= batch_size
;
2574 * scan_all_zones_unevictable_pages - scan all unevictable lists for evictable pages
2576 * A really big hammer: scan all zones' unevictable LRU lists to check for
2577 * pages that have become evictable. Move those back to the zones'
2578 * inactive list where they become candidates for reclaim.
2579 * This occurs when, e.g., we have unswappable pages on the unevictable lists,
2580 * and we add swap to the system. As such, it runs in the context of a task
2581 * that has possibly/probably made some previously unevictable pages
2584 static void scan_all_zones_unevictable_pages(void)
2588 for_each_zone(zone
) {
2589 scan_zone_unevictable_pages(zone
);
2594 * scan_unevictable_pages [vm] sysctl handler. On demand re-scan of
2595 * all nodes' unevictable lists for evictable pages
2597 unsigned long scan_unevictable_pages
;
2599 int scan_unevictable_handler(struct ctl_table
*table
, int write
,
2600 struct file
*file
, void __user
*buffer
,
2601 size_t *length
, loff_t
*ppos
)
2603 proc_doulongvec_minmax(table
, write
, file
, buffer
, length
, ppos
);
2605 if (write
&& *(unsigned long *)table
->data
)
2606 scan_all_zones_unevictable_pages();
2608 scan_unevictable_pages
= 0;
2613 * per node 'scan_unevictable_pages' attribute. On demand re-scan of
2614 * a specified node's per zone unevictable lists for evictable pages.
2617 static ssize_t
read_scan_unevictable_node(struct sys_device
*dev
,
2618 struct sysdev_attribute
*attr
,
2621 return sprintf(buf
, "0\n"); /* always zero; should fit... */
2624 static ssize_t
write_scan_unevictable_node(struct sys_device
*dev
,
2625 struct sysdev_attribute
*attr
,
2626 const char *buf
, size_t count
)
2628 struct zone
*node_zones
= NODE_DATA(dev
->id
)->node_zones
;
2631 unsigned long req
= strict_strtoul(buf
, 10, &res
);
2634 return 1; /* zero is no-op */
2636 for (zone
= node_zones
; zone
- node_zones
< MAX_NR_ZONES
; ++zone
) {
2637 if (!populated_zone(zone
))
2639 scan_zone_unevictable_pages(zone
);
2645 static SYSDEV_ATTR(scan_unevictable_pages
, S_IRUGO
| S_IWUSR
,
2646 read_scan_unevictable_node
,
2647 write_scan_unevictable_node
);
2649 int scan_unevictable_register_node(struct node
*node
)
2651 return sysdev_create_file(&node
->sysdev
, &attr_scan_unevictable_pages
);
2654 void scan_unevictable_unregister_node(struct node
*node
)
2656 sysdev_remove_file(&node
->sysdev
, &attr_scan_unevictable_pages
);