2 * Copyright (C) 2008 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/sched.h>
20 #include <linux/slab.h>
22 #include "transaction.h"
25 #include "print-tree.h"
29 /* magic values for the inode_only field in btrfs_log_inode:
31 * LOG_INODE_ALL means to log everything
32 * LOG_INODE_EXISTS means to log just enough to recreate the inode
35 #define LOG_INODE_ALL 0
36 #define LOG_INODE_EXISTS 1
39 * directory trouble cases
41 * 1) on rename or unlink, if the inode being unlinked isn't in the fsync
42 * log, we must force a full commit before doing an fsync of the directory
43 * where the unlink was done.
44 * ---> record transid of last unlink/rename per directory
48 * rename foo/some_dir foo2/some_dir
50 * fsync foo/some_dir/some_file
52 * The fsync above will unlink the original some_dir without recording
53 * it in its new location (foo2). After a crash, some_dir will be gone
54 * unless the fsync of some_file forces a full commit
56 * 2) we must log any new names for any file or dir that is in the fsync
57 * log. ---> check inode while renaming/linking.
59 * 2a) we must log any new names for any file or dir during rename
60 * when the directory they are being removed from was logged.
61 * ---> check inode and old parent dir during rename
63 * 2a is actually the more important variant. With the extra logging
64 * a crash might unlink the old name without recreating the new one
66 * 3) after a crash, we must go through any directories with a link count
67 * of zero and redo the rm -rf
74 * The directory f1 was fully removed from the FS, but fsync was never
75 * called on f1, only its parent dir. After a crash the rm -rf must
76 * be replayed. This must be able to recurse down the entire
77 * directory tree. The inode link count fixup code takes care of the
82 * stages for the tree walking. The first
83 * stage (0) is to only pin down the blocks we find
84 * the second stage (1) is to make sure that all the inodes
85 * we find in the log are created in the subvolume.
87 * The last stage is to deal with directories and links and extents
88 * and all the other fun semantics
90 #define LOG_WALK_PIN_ONLY 0
91 #define LOG_WALK_REPLAY_INODES 1
92 #define LOG_WALK_REPLAY_ALL 2
94 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
95 struct btrfs_root
*root
, struct inode
*inode
,
97 static int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
98 struct btrfs_root
*root
,
99 struct btrfs_path
*path
, u64 objectid
);
100 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
101 struct btrfs_root
*root
,
102 struct btrfs_root
*log
,
103 struct btrfs_path
*path
,
104 u64 dirid
, int del_all
);
107 * tree logging is a special write ahead log used to make sure that
108 * fsyncs and O_SYNCs can happen without doing full tree commits.
110 * Full tree commits are expensive because they require commonly
111 * modified blocks to be recowed, creating many dirty pages in the
112 * extent tree an 4x-6x higher write load than ext3.
114 * Instead of doing a tree commit on every fsync, we use the
115 * key ranges and transaction ids to find items for a given file or directory
116 * that have changed in this transaction. Those items are copied into
117 * a special tree (one per subvolume root), that tree is written to disk
118 * and then the fsync is considered complete.
120 * After a crash, items are copied out of the log-tree back into the
121 * subvolume tree. Any file data extents found are recorded in the extent
122 * allocation tree, and the log-tree freed.
124 * The log tree is read three times, once to pin down all the extents it is
125 * using in ram and once, once to create all the inodes logged in the tree
126 * and once to do all the other items.
130 * start a sub transaction and setup the log tree
131 * this increments the log tree writer count to make the people
132 * syncing the tree wait for us to finish
134 static int start_log_trans(struct btrfs_trans_handle
*trans
,
135 struct btrfs_root
*root
)
140 mutex_lock(&root
->log_mutex
);
141 if (root
->log_root
) {
142 if (!root
->log_start_pid
) {
143 root
->log_start_pid
= current
->pid
;
144 root
->log_multiple_pids
= false;
145 } else if (root
->log_start_pid
!= current
->pid
) {
146 root
->log_multiple_pids
= true;
150 atomic_inc(&root
->log_writers
);
151 mutex_unlock(&root
->log_mutex
);
154 root
->log_multiple_pids
= false;
155 root
->log_start_pid
= current
->pid
;
156 mutex_lock(&root
->fs_info
->tree_log_mutex
);
157 if (!root
->fs_info
->log_root_tree
) {
158 ret
= btrfs_init_log_root_tree(trans
, root
->fs_info
);
162 if (err
== 0 && !root
->log_root
) {
163 ret
= btrfs_add_log_tree(trans
, root
);
167 mutex_unlock(&root
->fs_info
->tree_log_mutex
);
169 atomic_inc(&root
->log_writers
);
170 mutex_unlock(&root
->log_mutex
);
175 * returns 0 if there was a log transaction running and we were able
176 * to join, or returns -ENOENT if there were not transactions
179 static int join_running_log_trans(struct btrfs_root
*root
)
187 mutex_lock(&root
->log_mutex
);
188 if (root
->log_root
) {
190 atomic_inc(&root
->log_writers
);
192 mutex_unlock(&root
->log_mutex
);
197 * This either makes the current running log transaction wait
198 * until you call btrfs_end_log_trans() or it makes any future
199 * log transactions wait until you call btrfs_end_log_trans()
201 int btrfs_pin_log_trans(struct btrfs_root
*root
)
205 mutex_lock(&root
->log_mutex
);
206 atomic_inc(&root
->log_writers
);
207 mutex_unlock(&root
->log_mutex
);
212 * indicate we're done making changes to the log tree
213 * and wake up anyone waiting to do a sync
215 int btrfs_end_log_trans(struct btrfs_root
*root
)
217 if (atomic_dec_and_test(&root
->log_writers
)) {
219 if (waitqueue_active(&root
->log_writer_wait
))
220 wake_up(&root
->log_writer_wait
);
227 * the walk control struct is used to pass state down the chain when
228 * processing the log tree. The stage field tells us which part
229 * of the log tree processing we are currently doing. The others
230 * are state fields used for that specific part
232 struct walk_control
{
233 /* should we free the extent on disk when done? This is used
234 * at transaction commit time while freeing a log tree
238 /* should we write out the extent buffer? This is used
239 * while flushing the log tree to disk during a sync
243 /* should we wait for the extent buffer io to finish? Also used
244 * while flushing the log tree to disk for a sync
248 /* pin only walk, we record which extents on disk belong to the
253 /* what stage of the replay code we're currently in */
256 /* the root we are currently replaying */
257 struct btrfs_root
*replay_dest
;
259 /* the trans handle for the current replay */
260 struct btrfs_trans_handle
*trans
;
262 /* the function that gets used to process blocks we find in the
263 * tree. Note the extent_buffer might not be up to date when it is
264 * passed in, and it must be checked or read if you need the data
267 int (*process_func
)(struct btrfs_root
*log
, struct extent_buffer
*eb
,
268 struct walk_control
*wc
, u64 gen
);
272 * process_func used to pin down extents, write them or wait on them
274 static int process_one_buffer(struct btrfs_root
*log
,
275 struct extent_buffer
*eb
,
276 struct walk_control
*wc
, u64 gen
)
279 btrfs_pin_extent(log
->fs_info
->extent_root
,
280 eb
->start
, eb
->len
, 0);
282 if (btrfs_buffer_uptodate(eb
, gen
)) {
284 btrfs_write_tree_block(eb
);
286 btrfs_wait_tree_block_writeback(eb
);
292 * Item overwrite used by replay and tree logging. eb, slot and key all refer
293 * to the src data we are copying out.
295 * root is the tree we are copying into, and path is a scratch
296 * path for use in this function (it should be released on entry and
297 * will be released on exit).
299 * If the key is already in the destination tree the existing item is
300 * overwritten. If the existing item isn't big enough, it is extended.
301 * If it is too large, it is truncated.
303 * If the key isn't in the destination yet, a new item is inserted.
305 static noinline
int overwrite_item(struct btrfs_trans_handle
*trans
,
306 struct btrfs_root
*root
,
307 struct btrfs_path
*path
,
308 struct extent_buffer
*eb
, int slot
,
309 struct btrfs_key
*key
)
313 u64 saved_i_size
= 0;
314 int save_old_i_size
= 0;
315 unsigned long src_ptr
;
316 unsigned long dst_ptr
;
317 int overwrite_root
= 0;
319 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
322 item_size
= btrfs_item_size_nr(eb
, slot
);
323 src_ptr
= btrfs_item_ptr_offset(eb
, slot
);
325 /* look for the key in the destination tree */
326 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
330 u32 dst_size
= btrfs_item_size_nr(path
->nodes
[0],
332 if (dst_size
!= item_size
)
335 if (item_size
== 0) {
336 btrfs_release_path(path
);
339 dst_copy
= kmalloc(item_size
, GFP_NOFS
);
340 src_copy
= kmalloc(item_size
, GFP_NOFS
);
341 if (!dst_copy
|| !src_copy
) {
342 btrfs_release_path(path
);
348 read_extent_buffer(eb
, src_copy
, src_ptr
, item_size
);
350 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
351 read_extent_buffer(path
->nodes
[0], dst_copy
, dst_ptr
,
353 ret
= memcmp(dst_copy
, src_copy
, item_size
);
358 * they have the same contents, just return, this saves
359 * us from cowing blocks in the destination tree and doing
360 * extra writes that may not have been done by a previous
364 btrfs_release_path(path
);
370 btrfs_release_path(path
);
371 /* try to insert the key into the destination tree */
372 ret
= btrfs_insert_empty_item(trans
, root
, path
,
375 /* make sure any existing item is the correct size */
376 if (ret
== -EEXIST
) {
378 found_size
= btrfs_item_size_nr(path
->nodes
[0],
380 if (found_size
> item_size
) {
381 btrfs_truncate_item(trans
, root
, path
, item_size
, 1);
382 } else if (found_size
< item_size
) {
383 ret
= btrfs_extend_item(trans
, root
, path
,
384 item_size
- found_size
);
389 dst_ptr
= btrfs_item_ptr_offset(path
->nodes
[0],
392 /* don't overwrite an existing inode if the generation number
393 * was logged as zero. This is done when the tree logging code
394 * is just logging an inode to make sure it exists after recovery.
396 * Also, don't overwrite i_size on directories during replay.
397 * log replay inserts and removes directory items based on the
398 * state of the tree found in the subvolume, and i_size is modified
401 if (key
->type
== BTRFS_INODE_ITEM_KEY
&& ret
== -EEXIST
) {
402 struct btrfs_inode_item
*src_item
;
403 struct btrfs_inode_item
*dst_item
;
405 src_item
= (struct btrfs_inode_item
*)src_ptr
;
406 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
408 if (btrfs_inode_generation(eb
, src_item
) == 0)
411 if (overwrite_root
&&
412 S_ISDIR(btrfs_inode_mode(eb
, src_item
)) &&
413 S_ISDIR(btrfs_inode_mode(path
->nodes
[0], dst_item
))) {
415 saved_i_size
= btrfs_inode_size(path
->nodes
[0],
420 copy_extent_buffer(path
->nodes
[0], eb
, dst_ptr
,
423 if (save_old_i_size
) {
424 struct btrfs_inode_item
*dst_item
;
425 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
426 btrfs_set_inode_size(path
->nodes
[0], dst_item
, saved_i_size
);
429 /* make sure the generation is filled in */
430 if (key
->type
== BTRFS_INODE_ITEM_KEY
) {
431 struct btrfs_inode_item
*dst_item
;
432 dst_item
= (struct btrfs_inode_item
*)dst_ptr
;
433 if (btrfs_inode_generation(path
->nodes
[0], dst_item
) == 0) {
434 btrfs_set_inode_generation(path
->nodes
[0], dst_item
,
439 btrfs_mark_buffer_dirty(path
->nodes
[0]);
440 btrfs_release_path(path
);
445 * simple helper to read an inode off the disk from a given root
446 * This can only be called for subvolume roots and not for the log
448 static noinline
struct inode
*read_one_inode(struct btrfs_root
*root
,
451 struct btrfs_key key
;
454 key
.objectid
= objectid
;
455 key
.type
= BTRFS_INODE_ITEM_KEY
;
457 inode
= btrfs_iget(root
->fs_info
->sb
, &key
, root
, NULL
);
460 } else if (is_bad_inode(inode
)) {
467 /* replays a single extent in 'eb' at 'slot' with 'key' into the
468 * subvolume 'root'. path is released on entry and should be released
471 * extents in the log tree have not been allocated out of the extent
472 * tree yet. So, this completes the allocation, taking a reference
473 * as required if the extent already exists or creating a new extent
474 * if it isn't in the extent allocation tree yet.
476 * The extent is inserted into the file, dropping any existing extents
477 * from the file that overlap the new one.
479 static noinline
int replay_one_extent(struct btrfs_trans_handle
*trans
,
480 struct btrfs_root
*root
,
481 struct btrfs_path
*path
,
482 struct extent_buffer
*eb
, int slot
,
483 struct btrfs_key
*key
)
486 u64 mask
= root
->sectorsize
- 1;
489 u64 start
= key
->offset
;
491 struct btrfs_file_extent_item
*item
;
492 struct inode
*inode
= NULL
;
496 item
= btrfs_item_ptr(eb
, slot
, struct btrfs_file_extent_item
);
497 found_type
= btrfs_file_extent_type(eb
, item
);
499 if (found_type
== BTRFS_FILE_EXTENT_REG
||
500 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)
501 extent_end
= start
+ btrfs_file_extent_num_bytes(eb
, item
);
502 else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
503 size
= btrfs_file_extent_inline_len(eb
, item
);
504 extent_end
= (start
+ size
+ mask
) & ~mask
;
510 inode
= read_one_inode(root
, key
->objectid
);
517 * first check to see if we already have this extent in the
518 * file. This must be done before the btrfs_drop_extents run
519 * so we don't try to drop this extent.
521 ret
= btrfs_lookup_file_extent(trans
, root
, path
, btrfs_ino(inode
),
525 (found_type
== BTRFS_FILE_EXTENT_REG
||
526 found_type
== BTRFS_FILE_EXTENT_PREALLOC
)) {
527 struct btrfs_file_extent_item cmp1
;
528 struct btrfs_file_extent_item cmp2
;
529 struct btrfs_file_extent_item
*existing
;
530 struct extent_buffer
*leaf
;
532 leaf
= path
->nodes
[0];
533 existing
= btrfs_item_ptr(leaf
, path
->slots
[0],
534 struct btrfs_file_extent_item
);
536 read_extent_buffer(eb
, &cmp1
, (unsigned long)item
,
538 read_extent_buffer(leaf
, &cmp2
, (unsigned long)existing
,
542 * we already have a pointer to this exact extent,
543 * we don't have to do anything
545 if (memcmp(&cmp1
, &cmp2
, sizeof(cmp1
)) == 0) {
546 btrfs_release_path(path
);
550 btrfs_release_path(path
);
552 saved_nbytes
= inode_get_bytes(inode
);
553 /* drop any overlapping extents */
554 ret
= btrfs_drop_extents(trans
, inode
, start
, extent_end
,
558 if (found_type
== BTRFS_FILE_EXTENT_REG
||
559 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
561 unsigned long dest_offset
;
562 struct btrfs_key ins
;
564 ret
= btrfs_insert_empty_item(trans
, root
, path
, key
,
567 dest_offset
= btrfs_item_ptr_offset(path
->nodes
[0],
569 copy_extent_buffer(path
->nodes
[0], eb
, dest_offset
,
570 (unsigned long)item
, sizeof(*item
));
572 ins
.objectid
= btrfs_file_extent_disk_bytenr(eb
, item
);
573 ins
.offset
= btrfs_file_extent_disk_num_bytes(eb
, item
);
574 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
575 offset
= key
->offset
- btrfs_file_extent_offset(eb
, item
);
577 if (ins
.objectid
> 0) {
580 LIST_HEAD(ordered_sums
);
582 * is this extent already allocated in the extent
583 * allocation tree? If so, just add a reference
585 ret
= btrfs_lookup_extent(root
, ins
.objectid
,
588 ret
= btrfs_inc_extent_ref(trans
, root
,
589 ins
.objectid
, ins
.offset
,
590 0, root
->root_key
.objectid
,
591 key
->objectid
, offset
);
595 * insert the extent pointer in the extent
598 ret
= btrfs_alloc_logged_file_extent(trans
,
599 root
, root
->root_key
.objectid
,
600 key
->objectid
, offset
, &ins
);
603 btrfs_release_path(path
);
605 if (btrfs_file_extent_compression(eb
, item
)) {
606 csum_start
= ins
.objectid
;
607 csum_end
= csum_start
+ ins
.offset
;
609 csum_start
= ins
.objectid
+
610 btrfs_file_extent_offset(eb
, item
);
611 csum_end
= csum_start
+
612 btrfs_file_extent_num_bytes(eb
, item
);
615 ret
= btrfs_lookup_csums_range(root
->log_root
,
616 csum_start
, csum_end
- 1,
619 while (!list_empty(&ordered_sums
)) {
620 struct btrfs_ordered_sum
*sums
;
621 sums
= list_entry(ordered_sums
.next
,
622 struct btrfs_ordered_sum
,
624 ret
= btrfs_csum_file_blocks(trans
,
625 root
->fs_info
->csum_root
,
628 list_del(&sums
->list
);
632 btrfs_release_path(path
);
634 } else if (found_type
== BTRFS_FILE_EXTENT_INLINE
) {
635 /* inline extents are easy, we just overwrite them */
636 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
640 inode_set_bytes(inode
, saved_nbytes
);
641 btrfs_update_inode(trans
, root
, inode
);
649 * when cleaning up conflicts between the directory names in the
650 * subvolume, directory names in the log and directory names in the
651 * inode back references, we may have to unlink inodes from directories.
653 * This is a helper function to do the unlink of a specific directory
656 static noinline
int drop_one_dir_item(struct btrfs_trans_handle
*trans
,
657 struct btrfs_root
*root
,
658 struct btrfs_path
*path
,
660 struct btrfs_dir_item
*di
)
665 struct extent_buffer
*leaf
;
666 struct btrfs_key location
;
669 leaf
= path
->nodes
[0];
671 btrfs_dir_item_key_to_cpu(leaf
, di
, &location
);
672 name_len
= btrfs_dir_name_len(leaf
, di
);
673 name
= kmalloc(name_len
, GFP_NOFS
);
677 read_extent_buffer(leaf
, name
, (unsigned long)(di
+ 1), name_len
);
678 btrfs_release_path(path
);
680 inode
= read_one_inode(root
, location
.objectid
);
686 ret
= link_to_fixup_dir(trans
, root
, path
, location
.objectid
);
689 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
, name
, name_len
);
698 * helper function to see if a given name and sequence number found
699 * in an inode back reference are already in a directory and correctly
700 * point to this inode
702 static noinline
int inode_in_dir(struct btrfs_root
*root
,
703 struct btrfs_path
*path
,
704 u64 dirid
, u64 objectid
, u64 index
,
705 const char *name
, int name_len
)
707 struct btrfs_dir_item
*di
;
708 struct btrfs_key location
;
711 di
= btrfs_lookup_dir_index_item(NULL
, root
, path
, dirid
,
712 index
, name
, name_len
, 0);
713 if (di
&& !IS_ERR(di
)) {
714 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
715 if (location
.objectid
!= objectid
)
719 btrfs_release_path(path
);
721 di
= btrfs_lookup_dir_item(NULL
, root
, path
, dirid
, name
, name_len
, 0);
722 if (di
&& !IS_ERR(di
)) {
723 btrfs_dir_item_key_to_cpu(path
->nodes
[0], di
, &location
);
724 if (location
.objectid
!= objectid
)
730 btrfs_release_path(path
);
735 * helper function to check a log tree for a named back reference in
736 * an inode. This is used to decide if a back reference that is
737 * found in the subvolume conflicts with what we find in the log.
739 * inode backreferences may have multiple refs in a single item,
740 * during replay we process one reference at a time, and we don't
741 * want to delete valid links to a file from the subvolume if that
742 * link is also in the log.
744 static noinline
int backref_in_log(struct btrfs_root
*log
,
745 struct btrfs_key
*key
,
746 char *name
, int namelen
)
748 struct btrfs_path
*path
;
749 struct btrfs_inode_ref
*ref
;
751 unsigned long ptr_end
;
752 unsigned long name_ptr
;
758 path
= btrfs_alloc_path();
762 ret
= btrfs_search_slot(NULL
, log
, key
, path
, 0, 0);
766 item_size
= btrfs_item_size_nr(path
->nodes
[0], path
->slots
[0]);
767 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
768 ptr_end
= ptr
+ item_size
;
769 while (ptr
< ptr_end
) {
770 ref
= (struct btrfs_inode_ref
*)ptr
;
771 found_name_len
= btrfs_inode_ref_name_len(path
->nodes
[0], ref
);
772 if (found_name_len
== namelen
) {
773 name_ptr
= (unsigned long)(ref
+ 1);
774 ret
= memcmp_extent_buffer(path
->nodes
[0], name
,
781 ptr
= (unsigned long)(ref
+ 1) + found_name_len
;
784 btrfs_free_path(path
);
790 * replay one inode back reference item found in the log tree.
791 * eb, slot and key refer to the buffer and key found in the log tree.
792 * root is the destination we are replaying into, and path is for temp
793 * use by this function. (it should be released on return).
795 static noinline
int add_inode_ref(struct btrfs_trans_handle
*trans
,
796 struct btrfs_root
*root
,
797 struct btrfs_root
*log
,
798 struct btrfs_path
*path
,
799 struct extent_buffer
*eb
, int slot
,
800 struct btrfs_key
*key
)
802 struct btrfs_inode_ref
*ref
;
803 struct btrfs_dir_item
*di
;
806 unsigned long ref_ptr
;
807 unsigned long ref_end
;
814 * it is possible that we didn't log all the parent directories
815 * for a given inode. If we don't find the dir, just don't
816 * copy the back ref in. The link count fixup code will take
819 dir
= read_one_inode(root
, key
->offset
);
823 inode
= read_one_inode(root
, key
->objectid
);
829 ref_ptr
= btrfs_item_ptr_offset(eb
, slot
);
830 ref_end
= ref_ptr
+ btrfs_item_size_nr(eb
, slot
);
833 ref
= (struct btrfs_inode_ref
*)ref_ptr
;
835 namelen
= btrfs_inode_ref_name_len(eb
, ref
);
836 name
= kmalloc(namelen
, GFP_NOFS
);
839 read_extent_buffer(eb
, name
, (unsigned long)(ref
+ 1), namelen
);
841 /* if we already have a perfect match, we're done */
842 if (inode_in_dir(root
, path
, btrfs_ino(dir
), btrfs_ino(inode
),
843 btrfs_inode_ref_index(eb
, ref
),
849 * look for a conflicting back reference in the metadata.
850 * if we find one we have to unlink that name of the file
851 * before we add our new link. Later on, we overwrite any
852 * existing back reference, and we don't want to create
853 * dangling pointers in the directory.
859 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
863 struct btrfs_inode_ref
*victim_ref
;
865 unsigned long ptr_end
;
866 struct extent_buffer
*leaf
= path
->nodes
[0];
868 /* are we trying to overwrite a back ref for the root directory
869 * if so, just jump out, we're done
871 if (key
->objectid
== key
->offset
)
874 /* check all the names in this back reference to see
875 * if they are in the log. if so, we allow them to stay
876 * otherwise they must be unlinked as a conflict
878 ptr
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
879 ptr_end
= ptr
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
880 while (ptr
< ptr_end
) {
881 victim_ref
= (struct btrfs_inode_ref
*)ptr
;
882 victim_name_len
= btrfs_inode_ref_name_len(leaf
,
884 victim_name
= kmalloc(victim_name_len
, GFP_NOFS
);
885 BUG_ON(!victim_name
);
887 read_extent_buffer(leaf
, victim_name
,
888 (unsigned long)(victim_ref
+ 1),
891 if (!backref_in_log(log
, key
, victim_name
,
893 btrfs_inc_nlink(inode
);
894 btrfs_release_path(path
);
896 ret
= btrfs_unlink_inode(trans
, root
, dir
,
901 ptr
= (unsigned long)(victim_ref
+ 1) + victim_name_len
;
906 * NOTE: we have searched root tree and checked the
907 * coresponding ref, it does not need to check again.
911 btrfs_release_path(path
);
913 /* look for a conflicting sequence number */
914 di
= btrfs_lookup_dir_index_item(trans
, root
, path
, btrfs_ino(dir
),
915 btrfs_inode_ref_index(eb
, ref
),
917 if (di
&& !IS_ERR(di
)) {
918 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
921 btrfs_release_path(path
);
923 /* look for a conflicing name */
924 di
= btrfs_lookup_dir_item(trans
, root
, path
, btrfs_ino(dir
),
926 if (di
&& !IS_ERR(di
)) {
927 ret
= drop_one_dir_item(trans
, root
, path
, dir
, di
);
930 btrfs_release_path(path
);
933 /* insert our name */
934 ret
= btrfs_add_link(trans
, dir
, inode
, name
, namelen
, 0,
935 btrfs_inode_ref_index(eb
, ref
));
938 btrfs_update_inode(trans
, root
, inode
);
941 ref_ptr
= (unsigned long)(ref
+ 1) + namelen
;
943 if (ref_ptr
< ref_end
)
946 /* finally write the back reference in the inode */
947 ret
= overwrite_item(trans
, root
, path
, eb
, slot
, key
);
951 btrfs_release_path(path
);
957 static int insert_orphan_item(struct btrfs_trans_handle
*trans
,
958 struct btrfs_root
*root
, u64 offset
)
961 ret
= btrfs_find_orphan_item(root
, offset
);
963 ret
= btrfs_insert_orphan_item(trans
, root
, offset
);
969 * There are a few corners where the link count of the file can't
970 * be properly maintained during replay. So, instead of adding
971 * lots of complexity to the log code, we just scan the backrefs
972 * for any file that has been through replay.
974 * The scan will update the link count on the inode to reflect the
975 * number of back refs found. If it goes down to zero, the iput
976 * will free the inode.
978 static noinline
int fixup_inode_link_count(struct btrfs_trans_handle
*trans
,
979 struct btrfs_root
*root
,
982 struct btrfs_path
*path
;
984 struct btrfs_key key
;
987 unsigned long ptr_end
;
989 u64 ino
= btrfs_ino(inode
);
992 key
.type
= BTRFS_INODE_REF_KEY
;
993 key
.offset
= (u64
)-1;
995 path
= btrfs_alloc_path();
1000 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1004 if (path
->slots
[0] == 0)
1008 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
1010 if (key
.objectid
!= ino
||
1011 key
.type
!= BTRFS_INODE_REF_KEY
)
1013 ptr
= btrfs_item_ptr_offset(path
->nodes
[0], path
->slots
[0]);
1014 ptr_end
= ptr
+ btrfs_item_size_nr(path
->nodes
[0],
1016 while (ptr
< ptr_end
) {
1017 struct btrfs_inode_ref
*ref
;
1019 ref
= (struct btrfs_inode_ref
*)ptr
;
1020 name_len
= btrfs_inode_ref_name_len(path
->nodes
[0],
1022 ptr
= (unsigned long)(ref
+ 1) + name_len
;
1026 if (key
.offset
== 0)
1029 btrfs_release_path(path
);
1031 btrfs_release_path(path
);
1032 if (nlink
!= inode
->i_nlink
) {
1033 inode
->i_nlink
= nlink
;
1034 btrfs_update_inode(trans
, root
, inode
);
1036 BTRFS_I(inode
)->index_cnt
= (u64
)-1;
1038 if (inode
->i_nlink
== 0) {
1039 if (S_ISDIR(inode
->i_mode
)) {
1040 ret
= replay_dir_deletes(trans
, root
, NULL
, path
,
1044 ret
= insert_orphan_item(trans
, root
, ino
);
1047 btrfs_free_path(path
);
1052 static noinline
int fixup_inode_link_counts(struct btrfs_trans_handle
*trans
,
1053 struct btrfs_root
*root
,
1054 struct btrfs_path
*path
)
1057 struct btrfs_key key
;
1058 struct inode
*inode
;
1060 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1061 key
.type
= BTRFS_ORPHAN_ITEM_KEY
;
1062 key
.offset
= (u64
)-1;
1064 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1069 if (path
->slots
[0] == 0)
1074 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1075 if (key
.objectid
!= BTRFS_TREE_LOG_FIXUP_OBJECTID
||
1076 key
.type
!= BTRFS_ORPHAN_ITEM_KEY
)
1079 ret
= btrfs_del_item(trans
, root
, path
);
1083 btrfs_release_path(path
);
1084 inode
= read_one_inode(root
, key
.offset
);
1088 ret
= fixup_inode_link_count(trans
, root
, inode
);
1094 * fixup on a directory may create new entries,
1095 * make sure we always look for the highset possible
1098 key
.offset
= (u64
)-1;
1102 btrfs_release_path(path
);
1108 * record a given inode in the fixup dir so we can check its link
1109 * count when replay is done. The link count is incremented here
1110 * so the inode won't go away until we check it
1112 static noinline
int link_to_fixup_dir(struct btrfs_trans_handle
*trans
,
1113 struct btrfs_root
*root
,
1114 struct btrfs_path
*path
,
1117 struct btrfs_key key
;
1119 struct inode
*inode
;
1121 inode
= read_one_inode(root
, objectid
);
1125 key
.objectid
= BTRFS_TREE_LOG_FIXUP_OBJECTID
;
1126 btrfs_set_key_type(&key
, BTRFS_ORPHAN_ITEM_KEY
);
1127 key
.offset
= objectid
;
1129 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1131 btrfs_release_path(path
);
1133 btrfs_inc_nlink(inode
);
1134 btrfs_update_inode(trans
, root
, inode
);
1135 } else if (ret
== -EEXIST
) {
1146 * when replaying the log for a directory, we only insert names
1147 * for inodes that actually exist. This means an fsync on a directory
1148 * does not implicitly fsync all the new files in it
1150 static noinline
int insert_one_name(struct btrfs_trans_handle
*trans
,
1151 struct btrfs_root
*root
,
1152 struct btrfs_path
*path
,
1153 u64 dirid
, u64 index
,
1154 char *name
, int name_len
, u8 type
,
1155 struct btrfs_key
*location
)
1157 struct inode
*inode
;
1161 inode
= read_one_inode(root
, location
->objectid
);
1165 dir
= read_one_inode(root
, dirid
);
1170 ret
= btrfs_add_link(trans
, dir
, inode
, name
, name_len
, 1, index
);
1172 /* FIXME, put inode into FIXUP list */
1180 * take a single entry in a log directory item and replay it into
1183 * if a conflicting item exists in the subdirectory already,
1184 * the inode it points to is unlinked and put into the link count
1187 * If a name from the log points to a file or directory that does
1188 * not exist in the FS, it is skipped. fsyncs on directories
1189 * do not force down inodes inside that directory, just changes to the
1190 * names or unlinks in a directory.
1192 static noinline
int replay_one_name(struct btrfs_trans_handle
*trans
,
1193 struct btrfs_root
*root
,
1194 struct btrfs_path
*path
,
1195 struct extent_buffer
*eb
,
1196 struct btrfs_dir_item
*di
,
1197 struct btrfs_key
*key
)
1201 struct btrfs_dir_item
*dst_di
;
1202 struct btrfs_key found_key
;
1203 struct btrfs_key log_key
;
1209 dir
= read_one_inode(root
, key
->objectid
);
1213 name_len
= btrfs_dir_name_len(eb
, di
);
1214 name
= kmalloc(name_len
, GFP_NOFS
);
1218 log_type
= btrfs_dir_type(eb
, di
);
1219 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1222 btrfs_dir_item_key_to_cpu(eb
, di
, &log_key
);
1223 exists
= btrfs_lookup_inode(trans
, root
, path
, &log_key
, 0);
1228 btrfs_release_path(path
);
1230 if (key
->type
== BTRFS_DIR_ITEM_KEY
) {
1231 dst_di
= btrfs_lookup_dir_item(trans
, root
, path
, key
->objectid
,
1233 } else if (key
->type
== BTRFS_DIR_INDEX_KEY
) {
1234 dst_di
= btrfs_lookup_dir_index_item(trans
, root
, path
,
1241 if (IS_ERR_OR_NULL(dst_di
)) {
1242 /* we need a sequence number to insert, so we only
1243 * do inserts for the BTRFS_DIR_INDEX_KEY types
1245 if (key
->type
!= BTRFS_DIR_INDEX_KEY
)
1250 btrfs_dir_item_key_to_cpu(path
->nodes
[0], dst_di
, &found_key
);
1251 /* the existing item matches the logged item */
1252 if (found_key
.objectid
== log_key
.objectid
&&
1253 found_key
.type
== log_key
.type
&&
1254 found_key
.offset
== log_key
.offset
&&
1255 btrfs_dir_type(path
->nodes
[0], dst_di
) == log_type
) {
1260 * don't drop the conflicting directory entry if the inode
1261 * for the new entry doesn't exist
1266 ret
= drop_one_dir_item(trans
, root
, path
, dir
, dst_di
);
1269 if (key
->type
== BTRFS_DIR_INDEX_KEY
)
1272 btrfs_release_path(path
);
1278 btrfs_release_path(path
);
1279 ret
= insert_one_name(trans
, root
, path
, key
->objectid
, key
->offset
,
1280 name
, name_len
, log_type
, &log_key
);
1282 BUG_ON(ret
&& ret
!= -ENOENT
);
1287 * find all the names in a directory item and reconcile them into
1288 * the subvolume. Only BTRFS_DIR_ITEM_KEY types will have more than
1289 * one name in a directory item, but the same code gets used for
1290 * both directory index types
1292 static noinline
int replay_one_dir_item(struct btrfs_trans_handle
*trans
,
1293 struct btrfs_root
*root
,
1294 struct btrfs_path
*path
,
1295 struct extent_buffer
*eb
, int slot
,
1296 struct btrfs_key
*key
)
1299 u32 item_size
= btrfs_item_size_nr(eb
, slot
);
1300 struct btrfs_dir_item
*di
;
1303 unsigned long ptr_end
;
1305 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1306 ptr_end
= ptr
+ item_size
;
1307 while (ptr
< ptr_end
) {
1308 di
= (struct btrfs_dir_item
*)ptr
;
1309 if (verify_dir_item(root
, eb
, di
))
1311 name_len
= btrfs_dir_name_len(eb
, di
);
1312 ret
= replay_one_name(trans
, root
, path
, eb
, di
, key
);
1314 ptr
= (unsigned long)(di
+ 1);
1321 * directory replay has two parts. There are the standard directory
1322 * items in the log copied from the subvolume, and range items
1323 * created in the log while the subvolume was logged.
1325 * The range items tell us which parts of the key space the log
1326 * is authoritative for. During replay, if a key in the subvolume
1327 * directory is in a logged range item, but not actually in the log
1328 * that means it was deleted from the directory before the fsync
1329 * and should be removed.
1331 static noinline
int find_dir_range(struct btrfs_root
*root
,
1332 struct btrfs_path
*path
,
1333 u64 dirid
, int key_type
,
1334 u64
*start_ret
, u64
*end_ret
)
1336 struct btrfs_key key
;
1338 struct btrfs_dir_log_item
*item
;
1342 if (*start_ret
== (u64
)-1)
1345 key
.objectid
= dirid
;
1346 key
.type
= key_type
;
1347 key
.offset
= *start_ret
;
1349 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
1353 if (path
->slots
[0] == 0)
1358 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1360 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1364 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1365 struct btrfs_dir_log_item
);
1366 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1368 if (*start_ret
>= key
.offset
&& *start_ret
<= found_end
) {
1370 *start_ret
= key
.offset
;
1371 *end_ret
= found_end
;
1376 /* check the next slot in the tree to see if it is a valid item */
1377 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1378 if (path
->slots
[0] >= nritems
) {
1379 ret
= btrfs_next_leaf(root
, path
);
1386 btrfs_item_key_to_cpu(path
->nodes
[0], &key
, path
->slots
[0]);
1388 if (key
.type
!= key_type
|| key
.objectid
!= dirid
) {
1392 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
1393 struct btrfs_dir_log_item
);
1394 found_end
= btrfs_dir_log_end(path
->nodes
[0], item
);
1395 *start_ret
= key
.offset
;
1396 *end_ret
= found_end
;
1399 btrfs_release_path(path
);
1404 * this looks for a given directory item in the log. If the directory
1405 * item is not in the log, the item is removed and the inode it points
1408 static noinline
int check_item_in_log(struct btrfs_trans_handle
*trans
,
1409 struct btrfs_root
*root
,
1410 struct btrfs_root
*log
,
1411 struct btrfs_path
*path
,
1412 struct btrfs_path
*log_path
,
1414 struct btrfs_key
*dir_key
)
1417 struct extent_buffer
*eb
;
1420 struct btrfs_dir_item
*di
;
1421 struct btrfs_dir_item
*log_di
;
1424 unsigned long ptr_end
;
1426 struct inode
*inode
;
1427 struct btrfs_key location
;
1430 eb
= path
->nodes
[0];
1431 slot
= path
->slots
[0];
1432 item_size
= btrfs_item_size_nr(eb
, slot
);
1433 ptr
= btrfs_item_ptr_offset(eb
, slot
);
1434 ptr_end
= ptr
+ item_size
;
1435 while (ptr
< ptr_end
) {
1436 di
= (struct btrfs_dir_item
*)ptr
;
1437 if (verify_dir_item(root
, eb
, di
)) {
1442 name_len
= btrfs_dir_name_len(eb
, di
);
1443 name
= kmalloc(name_len
, GFP_NOFS
);
1448 read_extent_buffer(eb
, name
, (unsigned long)(di
+ 1),
1451 if (log
&& dir_key
->type
== BTRFS_DIR_ITEM_KEY
) {
1452 log_di
= btrfs_lookup_dir_item(trans
, log
, log_path
,
1455 } else if (log
&& dir_key
->type
== BTRFS_DIR_INDEX_KEY
) {
1456 log_di
= btrfs_lookup_dir_index_item(trans
, log
,
1462 if (IS_ERR_OR_NULL(log_di
)) {
1463 btrfs_dir_item_key_to_cpu(eb
, di
, &location
);
1464 btrfs_release_path(path
);
1465 btrfs_release_path(log_path
);
1466 inode
= read_one_inode(root
, location
.objectid
);
1472 ret
= link_to_fixup_dir(trans
, root
,
1473 path
, location
.objectid
);
1475 btrfs_inc_nlink(inode
);
1476 ret
= btrfs_unlink_inode(trans
, root
, dir
, inode
,
1482 /* there might still be more names under this key
1483 * check and repeat if required
1485 ret
= btrfs_search_slot(NULL
, root
, dir_key
, path
,
1492 btrfs_release_path(log_path
);
1495 ptr
= (unsigned long)(di
+ 1);
1500 btrfs_release_path(path
);
1501 btrfs_release_path(log_path
);
1506 * deletion replay happens before we copy any new directory items
1507 * out of the log or out of backreferences from inodes. It
1508 * scans the log to find ranges of keys that log is authoritative for,
1509 * and then scans the directory to find items in those ranges that are
1510 * not present in the log.
1512 * Anything we don't find in the log is unlinked and removed from the
1515 static noinline
int replay_dir_deletes(struct btrfs_trans_handle
*trans
,
1516 struct btrfs_root
*root
,
1517 struct btrfs_root
*log
,
1518 struct btrfs_path
*path
,
1519 u64 dirid
, int del_all
)
1523 int key_type
= BTRFS_DIR_LOG_ITEM_KEY
;
1525 struct btrfs_key dir_key
;
1526 struct btrfs_key found_key
;
1527 struct btrfs_path
*log_path
;
1530 dir_key
.objectid
= dirid
;
1531 dir_key
.type
= BTRFS_DIR_ITEM_KEY
;
1532 log_path
= btrfs_alloc_path();
1536 dir
= read_one_inode(root
, dirid
);
1537 /* it isn't an error if the inode isn't there, that can happen
1538 * because we replay the deletes before we copy in the inode item
1542 btrfs_free_path(log_path
);
1550 range_end
= (u64
)-1;
1552 ret
= find_dir_range(log
, path
, dirid
, key_type
,
1553 &range_start
, &range_end
);
1558 dir_key
.offset
= range_start
;
1561 ret
= btrfs_search_slot(NULL
, root
, &dir_key
, path
,
1566 nritems
= btrfs_header_nritems(path
->nodes
[0]);
1567 if (path
->slots
[0] >= nritems
) {
1568 ret
= btrfs_next_leaf(root
, path
);
1572 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
1574 if (found_key
.objectid
!= dirid
||
1575 found_key
.type
!= dir_key
.type
)
1578 if (found_key
.offset
> range_end
)
1581 ret
= check_item_in_log(trans
, root
, log
, path
,
1585 if (found_key
.offset
== (u64
)-1)
1587 dir_key
.offset
= found_key
.offset
+ 1;
1589 btrfs_release_path(path
);
1590 if (range_end
== (u64
)-1)
1592 range_start
= range_end
+ 1;
1597 if (key_type
== BTRFS_DIR_LOG_ITEM_KEY
) {
1598 key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
1599 dir_key
.type
= BTRFS_DIR_INDEX_KEY
;
1600 btrfs_release_path(path
);
1604 btrfs_release_path(path
);
1605 btrfs_free_path(log_path
);
1611 * the process_func used to replay items from the log tree. This
1612 * gets called in two different stages. The first stage just looks
1613 * for inodes and makes sure they are all copied into the subvolume.
1615 * The second stage copies all the other item types from the log into
1616 * the subvolume. The two stage approach is slower, but gets rid of
1617 * lots of complexity around inodes referencing other inodes that exist
1618 * only in the log (references come from either directory items or inode
1621 static int replay_one_buffer(struct btrfs_root
*log
, struct extent_buffer
*eb
,
1622 struct walk_control
*wc
, u64 gen
)
1625 struct btrfs_path
*path
;
1626 struct btrfs_root
*root
= wc
->replay_dest
;
1627 struct btrfs_key key
;
1632 btrfs_read_buffer(eb
, gen
);
1634 level
= btrfs_header_level(eb
);
1639 path
= btrfs_alloc_path();
1642 nritems
= btrfs_header_nritems(eb
);
1643 for (i
= 0; i
< nritems
; i
++) {
1644 btrfs_item_key_to_cpu(eb
, &key
, i
);
1646 /* inode keys are done during the first stage */
1647 if (key
.type
== BTRFS_INODE_ITEM_KEY
&&
1648 wc
->stage
== LOG_WALK_REPLAY_INODES
) {
1649 struct btrfs_inode_item
*inode_item
;
1652 inode_item
= btrfs_item_ptr(eb
, i
,
1653 struct btrfs_inode_item
);
1654 mode
= btrfs_inode_mode(eb
, inode_item
);
1655 if (S_ISDIR(mode
)) {
1656 ret
= replay_dir_deletes(wc
->trans
,
1657 root
, log
, path
, key
.objectid
, 0);
1660 ret
= overwrite_item(wc
->trans
, root
, path
,
1664 /* for regular files, make sure corresponding
1665 * orhpan item exist. extents past the new EOF
1666 * will be truncated later by orphan cleanup.
1668 if (S_ISREG(mode
)) {
1669 ret
= insert_orphan_item(wc
->trans
, root
,
1674 ret
= link_to_fixup_dir(wc
->trans
, root
,
1675 path
, key
.objectid
);
1678 if (wc
->stage
< LOG_WALK_REPLAY_ALL
)
1681 /* these keys are simply copied */
1682 if (key
.type
== BTRFS_XATTR_ITEM_KEY
) {
1683 ret
= overwrite_item(wc
->trans
, root
, path
,
1686 } else if (key
.type
== BTRFS_INODE_REF_KEY
) {
1687 ret
= add_inode_ref(wc
->trans
, root
, log
, path
,
1689 BUG_ON(ret
&& ret
!= -ENOENT
);
1690 } else if (key
.type
== BTRFS_EXTENT_DATA_KEY
) {
1691 ret
= replay_one_extent(wc
->trans
, root
, path
,
1694 } else if (key
.type
== BTRFS_DIR_ITEM_KEY
||
1695 key
.type
== BTRFS_DIR_INDEX_KEY
) {
1696 ret
= replay_one_dir_item(wc
->trans
, root
, path
,
1701 btrfs_free_path(path
);
1705 static noinline
int walk_down_log_tree(struct btrfs_trans_handle
*trans
,
1706 struct btrfs_root
*root
,
1707 struct btrfs_path
*path
, int *level
,
1708 struct walk_control
*wc
)
1713 struct extent_buffer
*next
;
1714 struct extent_buffer
*cur
;
1715 struct extent_buffer
*parent
;
1719 WARN_ON(*level
< 0);
1720 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1722 while (*level
> 0) {
1723 WARN_ON(*level
< 0);
1724 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1725 cur
= path
->nodes
[*level
];
1727 if (btrfs_header_level(cur
) != *level
)
1730 if (path
->slots
[*level
] >=
1731 btrfs_header_nritems(cur
))
1734 bytenr
= btrfs_node_blockptr(cur
, path
->slots
[*level
]);
1735 ptr_gen
= btrfs_node_ptr_generation(cur
, path
->slots
[*level
]);
1736 blocksize
= btrfs_level_size(root
, *level
- 1);
1738 parent
= path
->nodes
[*level
];
1739 root_owner
= btrfs_header_owner(parent
);
1741 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
1746 wc
->process_func(root
, next
, wc
, ptr_gen
);
1748 path
->slots
[*level
]++;
1750 btrfs_read_buffer(next
, ptr_gen
);
1752 btrfs_tree_lock(next
);
1753 clean_tree_block(trans
, root
, next
);
1754 btrfs_set_lock_blocking(next
);
1755 btrfs_wait_tree_block_writeback(next
);
1756 btrfs_tree_unlock(next
);
1758 WARN_ON(root_owner
!=
1759 BTRFS_TREE_LOG_OBJECTID
);
1760 ret
= btrfs_free_reserved_extent(root
,
1764 free_extent_buffer(next
);
1767 btrfs_read_buffer(next
, ptr_gen
);
1769 WARN_ON(*level
<= 0);
1770 if (path
->nodes
[*level
-1])
1771 free_extent_buffer(path
->nodes
[*level
-1]);
1772 path
->nodes
[*level
-1] = next
;
1773 *level
= btrfs_header_level(next
);
1774 path
->slots
[*level
] = 0;
1777 WARN_ON(*level
< 0);
1778 WARN_ON(*level
>= BTRFS_MAX_LEVEL
);
1780 path
->slots
[*level
] = btrfs_header_nritems(path
->nodes
[*level
]);
1786 static noinline
int walk_up_log_tree(struct btrfs_trans_handle
*trans
,
1787 struct btrfs_root
*root
,
1788 struct btrfs_path
*path
, int *level
,
1789 struct walk_control
*wc
)
1796 for (i
= *level
; i
< BTRFS_MAX_LEVEL
- 1 && path
->nodes
[i
]; i
++) {
1797 slot
= path
->slots
[i
];
1798 if (slot
+ 1 < btrfs_header_nritems(path
->nodes
[i
])) {
1801 WARN_ON(*level
== 0);
1804 struct extent_buffer
*parent
;
1805 if (path
->nodes
[*level
] == root
->node
)
1806 parent
= path
->nodes
[*level
];
1808 parent
= path
->nodes
[*level
+ 1];
1810 root_owner
= btrfs_header_owner(parent
);
1811 wc
->process_func(root
, path
->nodes
[*level
], wc
,
1812 btrfs_header_generation(path
->nodes
[*level
]));
1814 struct extent_buffer
*next
;
1816 next
= path
->nodes
[*level
];
1818 btrfs_tree_lock(next
);
1819 clean_tree_block(trans
, root
, next
);
1820 btrfs_set_lock_blocking(next
);
1821 btrfs_wait_tree_block_writeback(next
);
1822 btrfs_tree_unlock(next
);
1824 WARN_ON(root_owner
!= BTRFS_TREE_LOG_OBJECTID
);
1825 ret
= btrfs_free_reserved_extent(root
,
1826 path
->nodes
[*level
]->start
,
1827 path
->nodes
[*level
]->len
);
1830 free_extent_buffer(path
->nodes
[*level
]);
1831 path
->nodes
[*level
] = NULL
;
1839 * drop the reference count on the tree rooted at 'snap'. This traverses
1840 * the tree freeing any blocks that have a ref count of zero after being
1843 static int walk_log_tree(struct btrfs_trans_handle
*trans
,
1844 struct btrfs_root
*log
, struct walk_control
*wc
)
1849 struct btrfs_path
*path
;
1853 path
= btrfs_alloc_path();
1857 level
= btrfs_header_level(log
->node
);
1859 path
->nodes
[level
] = log
->node
;
1860 extent_buffer_get(log
->node
);
1861 path
->slots
[level
] = 0;
1864 wret
= walk_down_log_tree(trans
, log
, path
, &level
, wc
);
1870 wret
= walk_up_log_tree(trans
, log
, path
, &level
, wc
);
1877 /* was the root node processed? if not, catch it here */
1878 if (path
->nodes
[orig_level
]) {
1879 wc
->process_func(log
, path
->nodes
[orig_level
], wc
,
1880 btrfs_header_generation(path
->nodes
[orig_level
]));
1882 struct extent_buffer
*next
;
1884 next
= path
->nodes
[orig_level
];
1886 btrfs_tree_lock(next
);
1887 clean_tree_block(trans
, log
, next
);
1888 btrfs_set_lock_blocking(next
);
1889 btrfs_wait_tree_block_writeback(next
);
1890 btrfs_tree_unlock(next
);
1892 WARN_ON(log
->root_key
.objectid
!=
1893 BTRFS_TREE_LOG_OBJECTID
);
1894 ret
= btrfs_free_reserved_extent(log
, next
->start
,
1900 for (i
= 0; i
<= orig_level
; i
++) {
1901 if (path
->nodes
[i
]) {
1902 free_extent_buffer(path
->nodes
[i
]);
1903 path
->nodes
[i
] = NULL
;
1906 btrfs_free_path(path
);
1911 * helper function to update the item for a given subvolumes log root
1912 * in the tree of log roots
1914 static int update_log_root(struct btrfs_trans_handle
*trans
,
1915 struct btrfs_root
*log
)
1919 if (log
->log_transid
== 1) {
1920 /* insert root item on the first sync */
1921 ret
= btrfs_insert_root(trans
, log
->fs_info
->log_root_tree
,
1922 &log
->root_key
, &log
->root_item
);
1924 ret
= btrfs_update_root(trans
, log
->fs_info
->log_root_tree
,
1925 &log
->root_key
, &log
->root_item
);
1930 static int wait_log_commit(struct btrfs_trans_handle
*trans
,
1931 struct btrfs_root
*root
, unsigned long transid
)
1934 int index
= transid
% 2;
1937 * we only allow two pending log transactions at a time,
1938 * so we know that if ours is more than 2 older than the
1939 * current transaction, we're done
1942 prepare_to_wait(&root
->log_commit_wait
[index
],
1943 &wait
, TASK_UNINTERRUPTIBLE
);
1944 mutex_unlock(&root
->log_mutex
);
1946 if (root
->fs_info
->last_trans_log_full_commit
!=
1947 trans
->transid
&& root
->log_transid
< transid
+ 2 &&
1948 atomic_read(&root
->log_commit
[index
]))
1951 finish_wait(&root
->log_commit_wait
[index
], &wait
);
1952 mutex_lock(&root
->log_mutex
);
1953 } while (root
->log_transid
< transid
+ 2 &&
1954 atomic_read(&root
->log_commit
[index
]));
1958 static int wait_for_writer(struct btrfs_trans_handle
*trans
,
1959 struct btrfs_root
*root
)
1962 while (atomic_read(&root
->log_writers
)) {
1963 prepare_to_wait(&root
->log_writer_wait
,
1964 &wait
, TASK_UNINTERRUPTIBLE
);
1965 mutex_unlock(&root
->log_mutex
);
1966 if (root
->fs_info
->last_trans_log_full_commit
!=
1967 trans
->transid
&& atomic_read(&root
->log_writers
))
1969 mutex_lock(&root
->log_mutex
);
1970 finish_wait(&root
->log_writer_wait
, &wait
);
1976 * btrfs_sync_log does sends a given tree log down to the disk and
1977 * updates the super blocks to record it. When this call is done,
1978 * you know that any inodes previously logged are safely on disk only
1981 * Any other return value means you need to call btrfs_commit_transaction.
1982 * Some of the edge cases for fsyncing directories that have had unlinks
1983 * or renames done in the past mean that sometimes the only safe
1984 * fsync is to commit the whole FS. When btrfs_sync_log returns -EAGAIN,
1985 * that has happened.
1987 int btrfs_sync_log(struct btrfs_trans_handle
*trans
,
1988 struct btrfs_root
*root
)
1994 struct btrfs_root
*log
= root
->log_root
;
1995 struct btrfs_root
*log_root_tree
= root
->fs_info
->log_root_tree
;
1996 unsigned long log_transid
= 0;
1998 mutex_lock(&root
->log_mutex
);
1999 index1
= root
->log_transid
% 2;
2000 if (atomic_read(&root
->log_commit
[index1
])) {
2001 wait_log_commit(trans
, root
, root
->log_transid
);
2002 mutex_unlock(&root
->log_mutex
);
2005 atomic_set(&root
->log_commit
[index1
], 1);
2007 /* wait for previous tree log sync to complete */
2008 if (atomic_read(&root
->log_commit
[(index1
+ 1) % 2]))
2009 wait_log_commit(trans
, root
, root
->log_transid
- 1);
2012 unsigned long batch
= root
->log_batch
;
2013 if (root
->log_multiple_pids
) {
2014 mutex_unlock(&root
->log_mutex
);
2015 schedule_timeout_uninterruptible(1);
2016 mutex_lock(&root
->log_mutex
);
2018 wait_for_writer(trans
, root
);
2019 if (batch
== root
->log_batch
)
2023 /* bail out if we need to do a full commit */
2024 if (root
->fs_info
->last_trans_log_full_commit
== trans
->transid
) {
2026 mutex_unlock(&root
->log_mutex
);
2030 log_transid
= root
->log_transid
;
2031 if (log_transid
% 2 == 0)
2032 mark
= EXTENT_DIRTY
;
2036 /* we start IO on all the marked extents here, but we don't actually
2037 * wait for them until later.
2039 ret
= btrfs_write_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2042 btrfs_set_root_node(&log
->root_item
, log
->node
);
2044 root
->log_batch
= 0;
2045 root
->log_transid
++;
2046 log
->log_transid
= root
->log_transid
;
2047 root
->log_start_pid
= 0;
2050 * IO has been started, blocks of the log tree have WRITTEN flag set
2051 * in their headers. new modifications of the log will be written to
2052 * new positions. so it's safe to allow log writers to go in.
2054 mutex_unlock(&root
->log_mutex
);
2056 mutex_lock(&log_root_tree
->log_mutex
);
2057 log_root_tree
->log_batch
++;
2058 atomic_inc(&log_root_tree
->log_writers
);
2059 mutex_unlock(&log_root_tree
->log_mutex
);
2061 ret
= update_log_root(trans
, log
);
2063 mutex_lock(&log_root_tree
->log_mutex
);
2064 if (atomic_dec_and_test(&log_root_tree
->log_writers
)) {
2066 if (waitqueue_active(&log_root_tree
->log_writer_wait
))
2067 wake_up(&log_root_tree
->log_writer_wait
);
2071 BUG_ON(ret
!= -ENOSPC
);
2072 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
2073 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2074 mutex_unlock(&log_root_tree
->log_mutex
);
2079 index2
= log_root_tree
->log_transid
% 2;
2080 if (atomic_read(&log_root_tree
->log_commit
[index2
])) {
2081 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2082 wait_log_commit(trans
, log_root_tree
,
2083 log_root_tree
->log_transid
);
2084 mutex_unlock(&log_root_tree
->log_mutex
);
2088 atomic_set(&log_root_tree
->log_commit
[index2
], 1);
2090 if (atomic_read(&log_root_tree
->log_commit
[(index2
+ 1) % 2])) {
2091 wait_log_commit(trans
, log_root_tree
,
2092 log_root_tree
->log_transid
- 1);
2095 wait_for_writer(trans
, log_root_tree
);
2098 * now that we've moved on to the tree of log tree roots,
2099 * check the full commit flag again
2101 if (root
->fs_info
->last_trans_log_full_commit
== trans
->transid
) {
2102 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2103 mutex_unlock(&log_root_tree
->log_mutex
);
2105 goto out_wake_log_root
;
2108 ret
= btrfs_write_and_wait_marked_extents(log_root_tree
,
2109 &log_root_tree
->dirty_log_pages
,
2110 EXTENT_DIRTY
| EXTENT_NEW
);
2112 btrfs_wait_marked_extents(log
, &log
->dirty_log_pages
, mark
);
2114 btrfs_set_super_log_root(&root
->fs_info
->super_for_commit
,
2115 log_root_tree
->node
->start
);
2116 btrfs_set_super_log_root_level(&root
->fs_info
->super_for_commit
,
2117 btrfs_header_level(log_root_tree
->node
));
2119 log_root_tree
->log_batch
= 0;
2120 log_root_tree
->log_transid
++;
2123 mutex_unlock(&log_root_tree
->log_mutex
);
2126 * nobody else is going to jump in and write the the ctree
2127 * super here because the log_commit atomic below is protecting
2128 * us. We must be called with a transaction handle pinning
2129 * the running transaction open, so a full commit can't hop
2130 * in and cause problems either.
2132 btrfs_scrub_pause_super(root
);
2133 write_ctree_super(trans
, root
->fs_info
->tree_root
, 1);
2134 btrfs_scrub_continue_super(root
);
2137 mutex_lock(&root
->log_mutex
);
2138 if (root
->last_log_commit
< log_transid
)
2139 root
->last_log_commit
= log_transid
;
2140 mutex_unlock(&root
->log_mutex
);
2143 atomic_set(&log_root_tree
->log_commit
[index2
], 0);
2145 if (waitqueue_active(&log_root_tree
->log_commit_wait
[index2
]))
2146 wake_up(&log_root_tree
->log_commit_wait
[index2
]);
2148 atomic_set(&root
->log_commit
[index1
], 0);
2150 if (waitqueue_active(&root
->log_commit_wait
[index1
]))
2151 wake_up(&root
->log_commit_wait
[index1
]);
2155 static void free_log_tree(struct btrfs_trans_handle
*trans
,
2156 struct btrfs_root
*log
)
2161 struct walk_control wc
= {
2163 .process_func
= process_one_buffer
2166 ret
= walk_log_tree(trans
, log
, &wc
);
2170 ret
= find_first_extent_bit(&log
->dirty_log_pages
,
2171 0, &start
, &end
, EXTENT_DIRTY
| EXTENT_NEW
);
2175 clear_extent_bits(&log
->dirty_log_pages
, start
, end
,
2176 EXTENT_DIRTY
| EXTENT_NEW
, GFP_NOFS
);
2179 free_extent_buffer(log
->node
);
2184 * free all the extents used by the tree log. This should be called
2185 * at commit time of the full transaction
2187 int btrfs_free_log(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
)
2189 if (root
->log_root
) {
2190 free_log_tree(trans
, root
->log_root
);
2191 root
->log_root
= NULL
;
2196 int btrfs_free_log_root_tree(struct btrfs_trans_handle
*trans
,
2197 struct btrfs_fs_info
*fs_info
)
2199 if (fs_info
->log_root_tree
) {
2200 free_log_tree(trans
, fs_info
->log_root_tree
);
2201 fs_info
->log_root_tree
= NULL
;
2207 * If both a file and directory are logged, and unlinks or renames are
2208 * mixed in, we have a few interesting corners:
2210 * create file X in dir Y
2211 * link file X to X.link in dir Y
2213 * unlink file X but leave X.link
2216 * After a crash we would expect only X.link to exist. But file X
2217 * didn't get fsync'd again so the log has back refs for X and X.link.
2219 * We solve this by removing directory entries and inode backrefs from the
2220 * log when a file that was logged in the current transaction is
2221 * unlinked. Any later fsync will include the updated log entries, and
2222 * we'll be able to reconstruct the proper directory items from backrefs.
2224 * This optimizations allows us to avoid relogging the entire inode
2225 * or the entire directory.
2227 int btrfs_del_dir_entries_in_log(struct btrfs_trans_handle
*trans
,
2228 struct btrfs_root
*root
,
2229 const char *name
, int name_len
,
2230 struct inode
*dir
, u64 index
)
2232 struct btrfs_root
*log
;
2233 struct btrfs_dir_item
*di
;
2234 struct btrfs_path
*path
;
2238 u64 dir_ino
= btrfs_ino(dir
);
2240 if (BTRFS_I(dir
)->logged_trans
< trans
->transid
)
2243 ret
= join_running_log_trans(root
);
2247 mutex_lock(&BTRFS_I(dir
)->log_mutex
);
2249 log
= root
->log_root
;
2250 path
= btrfs_alloc_path();
2256 di
= btrfs_lookup_dir_item(trans
, log
, path
, dir_ino
,
2257 name
, name_len
, -1);
2263 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2264 bytes_del
+= name_len
;
2267 btrfs_release_path(path
);
2268 di
= btrfs_lookup_dir_index_item(trans
, log
, path
, dir_ino
,
2269 index
, name
, name_len
, -1);
2275 ret
= btrfs_delete_one_dir_name(trans
, log
, path
, di
);
2276 bytes_del
+= name_len
;
2280 /* update the directory size in the log to reflect the names
2284 struct btrfs_key key
;
2286 key
.objectid
= dir_ino
;
2288 key
.type
= BTRFS_INODE_ITEM_KEY
;
2289 btrfs_release_path(path
);
2291 ret
= btrfs_search_slot(trans
, log
, &key
, path
, 0, 1);
2297 struct btrfs_inode_item
*item
;
2300 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2301 struct btrfs_inode_item
);
2302 i_size
= btrfs_inode_size(path
->nodes
[0], item
);
2303 if (i_size
> bytes_del
)
2304 i_size
-= bytes_del
;
2307 btrfs_set_inode_size(path
->nodes
[0], item
, i_size
);
2308 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2311 btrfs_release_path(path
);
2314 btrfs_free_path(path
);
2316 mutex_unlock(&BTRFS_I(dir
)->log_mutex
);
2317 if (ret
== -ENOSPC
) {
2318 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
2321 btrfs_end_log_trans(root
);
2326 /* see comments for btrfs_del_dir_entries_in_log */
2327 int btrfs_del_inode_ref_in_log(struct btrfs_trans_handle
*trans
,
2328 struct btrfs_root
*root
,
2329 const char *name
, int name_len
,
2330 struct inode
*inode
, u64 dirid
)
2332 struct btrfs_root
*log
;
2336 if (BTRFS_I(inode
)->logged_trans
< trans
->transid
)
2339 ret
= join_running_log_trans(root
);
2342 log
= root
->log_root
;
2343 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
2345 ret
= btrfs_del_inode_ref(trans
, log
, name
, name_len
, btrfs_ino(inode
),
2347 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
2348 if (ret
== -ENOSPC
) {
2349 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
2352 btrfs_end_log_trans(root
);
2358 * creates a range item in the log for 'dirid'. first_offset and
2359 * last_offset tell us which parts of the key space the log should
2360 * be considered authoritative for.
2362 static noinline
int insert_dir_log_key(struct btrfs_trans_handle
*trans
,
2363 struct btrfs_root
*log
,
2364 struct btrfs_path
*path
,
2365 int key_type
, u64 dirid
,
2366 u64 first_offset
, u64 last_offset
)
2369 struct btrfs_key key
;
2370 struct btrfs_dir_log_item
*item
;
2372 key
.objectid
= dirid
;
2373 key
.offset
= first_offset
;
2374 if (key_type
== BTRFS_DIR_ITEM_KEY
)
2375 key
.type
= BTRFS_DIR_LOG_ITEM_KEY
;
2377 key
.type
= BTRFS_DIR_LOG_INDEX_KEY
;
2378 ret
= btrfs_insert_empty_item(trans
, log
, path
, &key
, sizeof(*item
));
2382 item
= btrfs_item_ptr(path
->nodes
[0], path
->slots
[0],
2383 struct btrfs_dir_log_item
);
2384 btrfs_set_dir_log_end(path
->nodes
[0], item
, last_offset
);
2385 btrfs_mark_buffer_dirty(path
->nodes
[0]);
2386 btrfs_release_path(path
);
2391 * log all the items included in the current transaction for a given
2392 * directory. This also creates the range items in the log tree required
2393 * to replay anything deleted before the fsync
2395 static noinline
int log_dir_items(struct btrfs_trans_handle
*trans
,
2396 struct btrfs_root
*root
, struct inode
*inode
,
2397 struct btrfs_path
*path
,
2398 struct btrfs_path
*dst_path
, int key_type
,
2399 u64 min_offset
, u64
*last_offset_ret
)
2401 struct btrfs_key min_key
;
2402 struct btrfs_key max_key
;
2403 struct btrfs_root
*log
= root
->log_root
;
2404 struct extent_buffer
*src
;
2409 u64 first_offset
= min_offset
;
2410 u64 last_offset
= (u64
)-1;
2411 u64 ino
= btrfs_ino(inode
);
2413 log
= root
->log_root
;
2414 max_key
.objectid
= ino
;
2415 max_key
.offset
= (u64
)-1;
2416 max_key
.type
= key_type
;
2418 min_key
.objectid
= ino
;
2419 min_key
.type
= key_type
;
2420 min_key
.offset
= min_offset
;
2422 path
->keep_locks
= 1;
2424 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
2425 path
, 0, trans
->transid
);
2428 * we didn't find anything from this transaction, see if there
2429 * is anything at all
2431 if (ret
!= 0 || min_key
.objectid
!= ino
|| min_key
.type
!= key_type
) {
2432 min_key
.objectid
= ino
;
2433 min_key
.type
= key_type
;
2434 min_key
.offset
= (u64
)-1;
2435 btrfs_release_path(path
);
2436 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
2438 btrfs_release_path(path
);
2441 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
2443 /* if ret == 0 there are items for this type,
2444 * create a range to tell us the last key of this type.
2445 * otherwise, there are no items in this directory after
2446 * *min_offset, and we create a range to indicate that.
2449 struct btrfs_key tmp
;
2450 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
,
2452 if (key_type
== tmp
.type
)
2453 first_offset
= max(min_offset
, tmp
.offset
) + 1;
2458 /* go backward to find any previous key */
2459 ret
= btrfs_previous_item(root
, path
, ino
, key_type
);
2461 struct btrfs_key tmp
;
2462 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
2463 if (key_type
== tmp
.type
) {
2464 first_offset
= tmp
.offset
;
2465 ret
= overwrite_item(trans
, log
, dst_path
,
2466 path
->nodes
[0], path
->slots
[0],
2474 btrfs_release_path(path
);
2476 /* find the first key from this transaction again */
2477 ret
= btrfs_search_slot(NULL
, root
, &min_key
, path
, 0, 0);
2484 * we have a block from this transaction, log every item in it
2485 * from our directory
2488 struct btrfs_key tmp
;
2489 src
= path
->nodes
[0];
2490 nritems
= btrfs_header_nritems(src
);
2491 for (i
= path
->slots
[0]; i
< nritems
; i
++) {
2492 btrfs_item_key_to_cpu(src
, &min_key
, i
);
2494 if (min_key
.objectid
!= ino
|| min_key
.type
!= key_type
)
2496 ret
= overwrite_item(trans
, log
, dst_path
, src
, i
,
2503 path
->slots
[0] = nritems
;
2506 * look ahead to the next item and see if it is also
2507 * from this directory and from this transaction
2509 ret
= btrfs_next_leaf(root
, path
);
2511 last_offset
= (u64
)-1;
2514 btrfs_item_key_to_cpu(path
->nodes
[0], &tmp
, path
->slots
[0]);
2515 if (tmp
.objectid
!= ino
|| tmp
.type
!= key_type
) {
2516 last_offset
= (u64
)-1;
2519 if (btrfs_header_generation(path
->nodes
[0]) != trans
->transid
) {
2520 ret
= overwrite_item(trans
, log
, dst_path
,
2521 path
->nodes
[0], path
->slots
[0],
2526 last_offset
= tmp
.offset
;
2531 btrfs_release_path(path
);
2532 btrfs_release_path(dst_path
);
2535 *last_offset_ret
= last_offset
;
2537 * insert the log range keys to indicate where the log
2540 ret
= insert_dir_log_key(trans
, log
, path
, key_type
,
2541 ino
, first_offset
, last_offset
);
2549 * logging directories is very similar to logging inodes, We find all the items
2550 * from the current transaction and write them to the log.
2552 * The recovery code scans the directory in the subvolume, and if it finds a
2553 * key in the range logged that is not present in the log tree, then it means
2554 * that dir entry was unlinked during the transaction.
2556 * In order for that scan to work, we must include one key smaller than
2557 * the smallest logged by this transaction and one key larger than the largest
2558 * key logged by this transaction.
2560 static noinline
int log_directory_changes(struct btrfs_trans_handle
*trans
,
2561 struct btrfs_root
*root
, struct inode
*inode
,
2562 struct btrfs_path
*path
,
2563 struct btrfs_path
*dst_path
)
2568 int key_type
= BTRFS_DIR_ITEM_KEY
;
2574 ret
= log_dir_items(trans
, root
, inode
, path
,
2575 dst_path
, key_type
, min_key
,
2579 if (max_key
== (u64
)-1)
2581 min_key
= max_key
+ 1;
2584 if (key_type
== BTRFS_DIR_ITEM_KEY
) {
2585 key_type
= BTRFS_DIR_INDEX_KEY
;
2592 * a helper function to drop items from the log before we relog an
2593 * inode. max_key_type indicates the highest item type to remove.
2594 * This cannot be run for file data extents because it does not
2595 * free the extents they point to.
2597 static int drop_objectid_items(struct btrfs_trans_handle
*trans
,
2598 struct btrfs_root
*log
,
2599 struct btrfs_path
*path
,
2600 u64 objectid
, int max_key_type
)
2603 struct btrfs_key key
;
2604 struct btrfs_key found_key
;
2606 key
.objectid
= objectid
;
2607 key
.type
= max_key_type
;
2608 key
.offset
= (u64
)-1;
2611 ret
= btrfs_search_slot(trans
, log
, &key
, path
, -1, 1);
2616 if (path
->slots
[0] == 0)
2620 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
2623 if (found_key
.objectid
!= objectid
)
2626 ret
= btrfs_del_item(trans
, log
, path
);
2629 btrfs_release_path(path
);
2631 btrfs_release_path(path
);
2635 static noinline
int copy_items(struct btrfs_trans_handle
*trans
,
2636 struct btrfs_root
*log
,
2637 struct btrfs_path
*dst_path
,
2638 struct extent_buffer
*src
,
2639 int start_slot
, int nr
, int inode_only
)
2641 unsigned long src_offset
;
2642 unsigned long dst_offset
;
2643 struct btrfs_file_extent_item
*extent
;
2644 struct btrfs_inode_item
*inode_item
;
2646 struct btrfs_key
*ins_keys
;
2650 struct list_head ordered_sums
;
2652 INIT_LIST_HEAD(&ordered_sums
);
2654 ins_data
= kmalloc(nr
* sizeof(struct btrfs_key
) +
2655 nr
* sizeof(u32
), GFP_NOFS
);
2659 ins_sizes
= (u32
*)ins_data
;
2660 ins_keys
= (struct btrfs_key
*)(ins_data
+ nr
* sizeof(u32
));
2662 for (i
= 0; i
< nr
; i
++) {
2663 ins_sizes
[i
] = btrfs_item_size_nr(src
, i
+ start_slot
);
2664 btrfs_item_key_to_cpu(src
, ins_keys
+ i
, i
+ start_slot
);
2666 ret
= btrfs_insert_empty_items(trans
, log
, dst_path
,
2667 ins_keys
, ins_sizes
, nr
);
2673 for (i
= 0; i
< nr
; i
++, dst_path
->slots
[0]++) {
2674 dst_offset
= btrfs_item_ptr_offset(dst_path
->nodes
[0],
2675 dst_path
->slots
[0]);
2677 src_offset
= btrfs_item_ptr_offset(src
, start_slot
+ i
);
2679 copy_extent_buffer(dst_path
->nodes
[0], src
, dst_offset
,
2680 src_offset
, ins_sizes
[i
]);
2682 if (inode_only
== LOG_INODE_EXISTS
&&
2683 ins_keys
[i
].type
== BTRFS_INODE_ITEM_KEY
) {
2684 inode_item
= btrfs_item_ptr(dst_path
->nodes
[0],
2686 struct btrfs_inode_item
);
2687 btrfs_set_inode_size(dst_path
->nodes
[0], inode_item
, 0);
2689 /* set the generation to zero so the recover code
2690 * can tell the difference between an logging
2691 * just to say 'this inode exists' and a logging
2692 * to say 'update this inode with these values'
2694 btrfs_set_inode_generation(dst_path
->nodes
[0],
2697 /* take a reference on file data extents so that truncates
2698 * or deletes of this inode don't have to relog the inode
2701 if (btrfs_key_type(ins_keys
+ i
) == BTRFS_EXTENT_DATA_KEY
) {
2703 extent
= btrfs_item_ptr(src
, start_slot
+ i
,
2704 struct btrfs_file_extent_item
);
2706 if (btrfs_file_extent_generation(src
, extent
) < trans
->transid
)
2709 found_type
= btrfs_file_extent_type(src
, extent
);
2710 if (found_type
== BTRFS_FILE_EXTENT_REG
||
2711 found_type
== BTRFS_FILE_EXTENT_PREALLOC
) {
2713 ds
= btrfs_file_extent_disk_bytenr(src
,
2715 /* ds == 0 is a hole */
2719 dl
= btrfs_file_extent_disk_num_bytes(src
,
2721 cs
= btrfs_file_extent_offset(src
, extent
);
2722 cl
= btrfs_file_extent_num_bytes(src
,
2724 if (btrfs_file_extent_compression(src
,
2730 ret
= btrfs_lookup_csums_range(
2731 log
->fs_info
->csum_root
,
2732 ds
+ cs
, ds
+ cs
+ cl
- 1,
2739 btrfs_mark_buffer_dirty(dst_path
->nodes
[0]);
2740 btrfs_release_path(dst_path
);
2744 * we have to do this after the loop above to avoid changing the
2745 * log tree while trying to change the log tree.
2748 while (!list_empty(&ordered_sums
)) {
2749 struct btrfs_ordered_sum
*sums
= list_entry(ordered_sums
.next
,
2750 struct btrfs_ordered_sum
,
2753 ret
= btrfs_csum_file_blocks(trans
, log
, sums
);
2754 list_del(&sums
->list
);
2760 /* log a single inode in the tree log.
2761 * At least one parent directory for this inode must exist in the tree
2762 * or be logged already.
2764 * Any items from this inode changed by the current transaction are copied
2765 * to the log tree. An extra reference is taken on any extents in this
2766 * file, allowing us to avoid a whole pile of corner cases around logging
2767 * blocks that have been removed from the tree.
2769 * See LOG_INODE_ALL and related defines for a description of what inode_only
2772 * This handles both files and directories.
2774 static int btrfs_log_inode(struct btrfs_trans_handle
*trans
,
2775 struct btrfs_root
*root
, struct inode
*inode
,
2778 struct btrfs_path
*path
;
2779 struct btrfs_path
*dst_path
;
2780 struct btrfs_key min_key
;
2781 struct btrfs_key max_key
;
2782 struct btrfs_root
*log
= root
->log_root
;
2783 struct extent_buffer
*src
= NULL
;
2787 int ins_start_slot
= 0;
2789 u64 ino
= btrfs_ino(inode
);
2791 log
= root
->log_root
;
2793 path
= btrfs_alloc_path();
2796 dst_path
= btrfs_alloc_path();
2798 btrfs_free_path(path
);
2802 min_key
.objectid
= ino
;
2803 min_key
.type
= BTRFS_INODE_ITEM_KEY
;
2806 max_key
.objectid
= ino
;
2808 /* today the code can only do partial logging of directories */
2809 if (!S_ISDIR(inode
->i_mode
))
2810 inode_only
= LOG_INODE_ALL
;
2812 if (inode_only
== LOG_INODE_EXISTS
|| S_ISDIR(inode
->i_mode
))
2813 max_key
.type
= BTRFS_XATTR_ITEM_KEY
;
2815 max_key
.type
= (u8
)-1;
2816 max_key
.offset
= (u64
)-1;
2818 ret
= btrfs_commit_inode_delayed_items(trans
, inode
);
2820 btrfs_free_path(path
);
2821 btrfs_free_path(dst_path
);
2825 mutex_lock(&BTRFS_I(inode
)->log_mutex
);
2828 * a brute force approach to making sure we get the most uptodate
2829 * copies of everything.
2831 if (S_ISDIR(inode
->i_mode
)) {
2832 int max_key_type
= BTRFS_DIR_LOG_INDEX_KEY
;
2834 if (inode_only
== LOG_INODE_EXISTS
)
2835 max_key_type
= BTRFS_XATTR_ITEM_KEY
;
2836 ret
= drop_objectid_items(trans
, log
, path
, ino
, max_key_type
);
2838 ret
= btrfs_truncate_inode_items(trans
, log
, inode
, 0, 0);
2844 path
->keep_locks
= 1;
2848 ret
= btrfs_search_forward(root
, &min_key
, &max_key
,
2849 path
, 0, trans
->transid
);
2853 /* note, ins_nr might be > 0 here, cleanup outside the loop */
2854 if (min_key
.objectid
!= ino
)
2856 if (min_key
.type
> max_key
.type
)
2859 src
= path
->nodes
[0];
2860 if (ins_nr
&& ins_start_slot
+ ins_nr
== path
->slots
[0]) {
2863 } else if (!ins_nr
) {
2864 ins_start_slot
= path
->slots
[0];
2869 ret
= copy_items(trans
, log
, dst_path
, src
, ins_start_slot
,
2870 ins_nr
, inode_only
);
2876 ins_start_slot
= path
->slots
[0];
2879 nritems
= btrfs_header_nritems(path
->nodes
[0]);
2881 if (path
->slots
[0] < nritems
) {
2882 btrfs_item_key_to_cpu(path
->nodes
[0], &min_key
,
2887 ret
= copy_items(trans
, log
, dst_path
, src
,
2889 ins_nr
, inode_only
);
2896 btrfs_release_path(path
);
2898 if (min_key
.offset
< (u64
)-1)
2900 else if (min_key
.type
< (u8
)-1)
2902 else if (min_key
.objectid
< (u64
)-1)
2908 ret
= copy_items(trans
, log
, dst_path
, src
,
2910 ins_nr
, inode_only
);
2918 if (inode_only
== LOG_INODE_ALL
&& S_ISDIR(inode
->i_mode
)) {
2919 btrfs_release_path(path
);
2920 btrfs_release_path(dst_path
);
2921 ret
= log_directory_changes(trans
, root
, inode
, path
, dst_path
);
2927 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
2929 mutex_unlock(&BTRFS_I(inode
)->log_mutex
);
2931 btrfs_free_path(path
);
2932 btrfs_free_path(dst_path
);
2937 * follow the dentry parent pointers up the chain and see if any
2938 * of the directories in it require a full commit before they can
2939 * be logged. Returns zero if nothing special needs to be done or 1 if
2940 * a full commit is required.
2942 static noinline
int check_parent_dirs_for_sync(struct btrfs_trans_handle
*trans
,
2943 struct inode
*inode
,
2944 struct dentry
*parent
,
2945 struct super_block
*sb
,
2949 struct btrfs_root
*root
;
2950 struct dentry
*old_parent
= NULL
;
2953 * for regular files, if its inode is already on disk, we don't
2954 * have to worry about the parents at all. This is because
2955 * we can use the last_unlink_trans field to record renames
2956 * and other fun in this file.
2958 if (S_ISREG(inode
->i_mode
) &&
2959 BTRFS_I(inode
)->generation
<= last_committed
&&
2960 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
)
2963 if (!S_ISDIR(inode
->i_mode
)) {
2964 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
2966 inode
= parent
->d_inode
;
2970 BTRFS_I(inode
)->logged_trans
= trans
->transid
;
2973 if (BTRFS_I(inode
)->last_unlink_trans
> last_committed
) {
2974 root
= BTRFS_I(inode
)->root
;
2977 * make sure any commits to the log are forced
2978 * to be full commits
2980 root
->fs_info
->last_trans_log_full_commit
=
2986 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
2989 if (IS_ROOT(parent
))
2992 parent
= dget_parent(parent
);
2994 old_parent
= parent
;
2995 inode
= parent
->d_inode
;
3003 static int inode_in_log(struct btrfs_trans_handle
*trans
,
3004 struct inode
*inode
)
3006 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3009 mutex_lock(&root
->log_mutex
);
3010 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
&&
3011 BTRFS_I(inode
)->last_sub_trans
<= root
->last_log_commit
)
3013 mutex_unlock(&root
->log_mutex
);
3019 * helper function around btrfs_log_inode to make sure newly created
3020 * parent directories also end up in the log. A minimal inode and backref
3021 * only logging is done of any parent directories that are older than
3022 * the last committed transaction
3024 int btrfs_log_inode_parent(struct btrfs_trans_handle
*trans
,
3025 struct btrfs_root
*root
, struct inode
*inode
,
3026 struct dentry
*parent
, int exists_only
)
3028 int inode_only
= exists_only
? LOG_INODE_EXISTS
: LOG_INODE_ALL
;
3029 struct super_block
*sb
;
3030 struct dentry
*old_parent
= NULL
;
3032 u64 last_committed
= root
->fs_info
->last_trans_committed
;
3036 if (btrfs_test_opt(root
, NOTREELOG
)) {
3041 if (root
->fs_info
->last_trans_log_full_commit
>
3042 root
->fs_info
->last_trans_committed
) {
3047 if (root
!= BTRFS_I(inode
)->root
||
3048 btrfs_root_refs(&root
->root_item
) == 0) {
3053 ret
= check_parent_dirs_for_sync(trans
, inode
, parent
,
3054 sb
, last_committed
);
3058 if (inode_in_log(trans
, inode
)) {
3059 ret
= BTRFS_NO_LOG_SYNC
;
3063 ret
= start_log_trans(trans
, root
);
3067 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
);
3072 * for regular files, if its inode is already on disk, we don't
3073 * have to worry about the parents at all. This is because
3074 * we can use the last_unlink_trans field to record renames
3075 * and other fun in this file.
3077 if (S_ISREG(inode
->i_mode
) &&
3078 BTRFS_I(inode
)->generation
<= last_committed
&&
3079 BTRFS_I(inode
)->last_unlink_trans
<= last_committed
) {
3084 inode_only
= LOG_INODE_EXISTS
;
3086 if (!parent
|| !parent
->d_inode
|| sb
!= parent
->d_inode
->i_sb
)
3089 inode
= parent
->d_inode
;
3090 if (root
!= BTRFS_I(inode
)->root
)
3093 if (BTRFS_I(inode
)->generation
>
3094 root
->fs_info
->last_trans_committed
) {
3095 ret
= btrfs_log_inode(trans
, root
, inode
, inode_only
);
3099 if (IS_ROOT(parent
))
3102 parent
= dget_parent(parent
);
3104 old_parent
= parent
;
3110 BUG_ON(ret
!= -ENOSPC
);
3111 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
3114 btrfs_end_log_trans(root
);
3120 * it is not safe to log dentry if the chunk root has added new
3121 * chunks. This returns 0 if the dentry was logged, and 1 otherwise.
3122 * If this returns 1, you must commit the transaction to safely get your
3125 int btrfs_log_dentry_safe(struct btrfs_trans_handle
*trans
,
3126 struct btrfs_root
*root
, struct dentry
*dentry
)
3128 struct dentry
*parent
= dget_parent(dentry
);
3131 ret
= btrfs_log_inode_parent(trans
, root
, dentry
->d_inode
, parent
, 0);
3138 * should be called during mount to recover any replay any log trees
3141 int btrfs_recover_log_trees(struct btrfs_root
*log_root_tree
)
3144 struct btrfs_path
*path
;
3145 struct btrfs_trans_handle
*trans
;
3146 struct btrfs_key key
;
3147 struct btrfs_key found_key
;
3148 struct btrfs_key tmp_key
;
3149 struct btrfs_root
*log
;
3150 struct btrfs_fs_info
*fs_info
= log_root_tree
->fs_info
;
3151 struct walk_control wc
= {
3152 .process_func
= process_one_buffer
,
3156 path
= btrfs_alloc_path();
3160 fs_info
->log_root_recovering
= 1;
3162 trans
= btrfs_start_transaction(fs_info
->tree_root
, 0);
3163 BUG_ON(IS_ERR(trans
));
3168 ret
= walk_log_tree(trans
, log_root_tree
, &wc
);
3172 key
.objectid
= BTRFS_TREE_LOG_OBJECTID
;
3173 key
.offset
= (u64
)-1;
3174 btrfs_set_key_type(&key
, BTRFS_ROOT_ITEM_KEY
);
3177 ret
= btrfs_search_slot(NULL
, log_root_tree
, &key
, path
, 0, 0);
3181 if (path
->slots
[0] == 0)
3185 btrfs_item_key_to_cpu(path
->nodes
[0], &found_key
,
3187 btrfs_release_path(path
);
3188 if (found_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
)
3191 log
= btrfs_read_fs_root_no_radix(log_root_tree
,
3193 BUG_ON(IS_ERR(log
));
3195 tmp_key
.objectid
= found_key
.offset
;
3196 tmp_key
.type
= BTRFS_ROOT_ITEM_KEY
;
3197 tmp_key
.offset
= (u64
)-1;
3199 wc
.replay_dest
= btrfs_read_fs_root_no_name(fs_info
, &tmp_key
);
3200 BUG_ON(IS_ERR_OR_NULL(wc
.replay_dest
));
3202 wc
.replay_dest
->log_root
= log
;
3203 btrfs_record_root_in_trans(trans
, wc
.replay_dest
);
3204 ret
= walk_log_tree(trans
, log
, &wc
);
3207 if (wc
.stage
== LOG_WALK_REPLAY_ALL
) {
3208 ret
= fixup_inode_link_counts(trans
, wc
.replay_dest
,
3213 key
.offset
= found_key
.offset
- 1;
3214 wc
.replay_dest
->log_root
= NULL
;
3215 free_extent_buffer(log
->node
);
3216 free_extent_buffer(log
->commit_root
);
3219 if (found_key
.offset
== 0)
3222 btrfs_release_path(path
);
3224 /* step one is to pin it all, step two is to replay just inodes */
3227 wc
.process_func
= replay_one_buffer
;
3228 wc
.stage
= LOG_WALK_REPLAY_INODES
;
3231 /* step three is to replay everything */
3232 if (wc
.stage
< LOG_WALK_REPLAY_ALL
) {
3237 btrfs_free_path(path
);
3239 free_extent_buffer(log_root_tree
->node
);
3240 log_root_tree
->log_root
= NULL
;
3241 fs_info
->log_root_recovering
= 0;
3243 /* step 4: commit the transaction, which also unpins the blocks */
3244 btrfs_commit_transaction(trans
, fs_info
->tree_root
);
3246 kfree(log_root_tree
);
3251 * there are some corner cases where we want to force a full
3252 * commit instead of allowing a directory to be logged.
3254 * They revolve around files there were unlinked from the directory, and
3255 * this function updates the parent directory so that a full commit is
3256 * properly done if it is fsync'd later after the unlinks are done.
3258 void btrfs_record_unlink_dir(struct btrfs_trans_handle
*trans
,
3259 struct inode
*dir
, struct inode
*inode
,
3263 * when we're logging a file, if it hasn't been renamed
3264 * or unlinked, and its inode is fully committed on disk,
3265 * we don't have to worry about walking up the directory chain
3266 * to log its parents.
3268 * So, we use the last_unlink_trans field to put this transid
3269 * into the file. When the file is logged we check it and
3270 * don't log the parents if the file is fully on disk.
3272 if (S_ISREG(inode
->i_mode
))
3273 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
3276 * if this directory was already logged any new
3277 * names for this file/dir will get recorded
3280 if (BTRFS_I(dir
)->logged_trans
== trans
->transid
)
3284 * if the inode we're about to unlink was logged,
3285 * the log will be properly updated for any new names
3287 if (BTRFS_I(inode
)->logged_trans
== trans
->transid
)
3291 * when renaming files across directories, if the directory
3292 * there we're unlinking from gets fsync'd later on, there's
3293 * no way to find the destination directory later and fsync it
3294 * properly. So, we have to be conservative and force commits
3295 * so the new name gets discovered.
3300 /* we can safely do the unlink without any special recording */
3304 BTRFS_I(dir
)->last_unlink_trans
= trans
->transid
;
3308 * Call this after adding a new name for a file and it will properly
3309 * update the log to reflect the new name.
3311 * It will return zero if all goes well, and it will return 1 if a
3312 * full transaction commit is required.
3314 int btrfs_log_new_name(struct btrfs_trans_handle
*trans
,
3315 struct inode
*inode
, struct inode
*old_dir
,
3316 struct dentry
*parent
)
3318 struct btrfs_root
* root
= BTRFS_I(inode
)->root
;
3321 * this will force the logging code to walk the dentry chain
3324 if (S_ISREG(inode
->i_mode
))
3325 BTRFS_I(inode
)->last_unlink_trans
= trans
->transid
;
3328 * if this inode hasn't been logged and directory we're renaming it
3329 * from hasn't been logged, we don't need to log it
3331 if (BTRFS_I(inode
)->logged_trans
<=
3332 root
->fs_info
->last_trans_committed
&&
3333 (!old_dir
|| BTRFS_I(old_dir
)->logged_trans
<=
3334 root
->fs_info
->last_trans_committed
))
3337 return btrfs_log_inode_parent(trans
, root
, inode
, parent
, 1);