sch_gred: should not use GFP_KERNEL while holding a spinlock
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / extent-tree.c
blob7e20a65d2d4f04981b9bc4b2ab03d03747d923ec
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
26 #include "compat.h"
27 #include "hash.h"
28 #include "ctree.h"
29 #include "disk-io.h"
30 #include "print-tree.h"
31 #include "transaction.h"
32 #include "volumes.h"
33 #include "locking.h"
34 #include "free-space-cache.h"
36 /* control flags for do_chunk_alloc's force field
37 * CHUNK_ALLOC_NO_FORCE means to only allocate a chunk
38 * if we really need one.
40 * CHUNK_ALLOC_FORCE means it must try to allocate one
42 * CHUNK_ALLOC_LIMITED means to only try and allocate one
43 * if we have very few chunks already allocated. This is
44 * used as part of the clustering code to help make sure
45 * we have a good pool of storage to cluster in, without
46 * filling the FS with empty chunks
49 enum {
50 CHUNK_ALLOC_NO_FORCE = 0,
51 CHUNK_ALLOC_FORCE = 1,
52 CHUNK_ALLOC_LIMITED = 2,
55 static int update_block_group(struct btrfs_trans_handle *trans,
56 struct btrfs_root *root,
57 u64 bytenr, u64 num_bytes, int alloc);
58 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
59 struct btrfs_root *root,
60 u64 bytenr, u64 num_bytes, u64 parent,
61 u64 root_objectid, u64 owner_objectid,
62 u64 owner_offset, int refs_to_drop,
63 struct btrfs_delayed_extent_op *extra_op);
64 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
65 struct extent_buffer *leaf,
66 struct btrfs_extent_item *ei);
67 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
68 struct btrfs_root *root,
69 u64 parent, u64 root_objectid,
70 u64 flags, u64 owner, u64 offset,
71 struct btrfs_key *ins, int ref_mod);
72 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
73 struct btrfs_root *root,
74 u64 parent, u64 root_objectid,
75 u64 flags, struct btrfs_disk_key *key,
76 int level, struct btrfs_key *ins);
77 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
78 struct btrfs_root *extent_root, u64 alloc_bytes,
79 u64 flags, int force);
80 static int find_next_key(struct btrfs_path *path, int level,
81 struct btrfs_key *key);
82 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
83 int dump_block_groups);
85 static noinline int
86 block_group_cache_done(struct btrfs_block_group_cache *cache)
88 smp_mb();
89 return cache->cached == BTRFS_CACHE_FINISHED;
92 static int block_group_bits(struct btrfs_block_group_cache *cache, u64 bits)
94 return (cache->flags & bits) == bits;
97 static void btrfs_get_block_group(struct btrfs_block_group_cache *cache)
99 atomic_inc(&cache->count);
102 void btrfs_put_block_group(struct btrfs_block_group_cache *cache)
104 if (atomic_dec_and_test(&cache->count)) {
105 WARN_ON(cache->pinned > 0);
106 WARN_ON(cache->reserved > 0);
107 WARN_ON(cache->reserved_pinned > 0);
108 kfree(cache->free_space_ctl);
109 kfree(cache);
114 * this adds the block group to the fs_info rb tree for the block group
115 * cache
117 static int btrfs_add_block_group_cache(struct btrfs_fs_info *info,
118 struct btrfs_block_group_cache *block_group)
120 struct rb_node **p;
121 struct rb_node *parent = NULL;
122 struct btrfs_block_group_cache *cache;
124 spin_lock(&info->block_group_cache_lock);
125 p = &info->block_group_cache_tree.rb_node;
127 while (*p) {
128 parent = *p;
129 cache = rb_entry(parent, struct btrfs_block_group_cache,
130 cache_node);
131 if (block_group->key.objectid < cache->key.objectid) {
132 p = &(*p)->rb_left;
133 } else if (block_group->key.objectid > cache->key.objectid) {
134 p = &(*p)->rb_right;
135 } else {
136 spin_unlock(&info->block_group_cache_lock);
137 return -EEXIST;
141 rb_link_node(&block_group->cache_node, parent, p);
142 rb_insert_color(&block_group->cache_node,
143 &info->block_group_cache_tree);
144 spin_unlock(&info->block_group_cache_lock);
146 return 0;
150 * This will return the block group at or after bytenr if contains is 0, else
151 * it will return the block group that contains the bytenr
153 static struct btrfs_block_group_cache *
154 block_group_cache_tree_search(struct btrfs_fs_info *info, u64 bytenr,
155 int contains)
157 struct btrfs_block_group_cache *cache, *ret = NULL;
158 struct rb_node *n;
159 u64 end, start;
161 spin_lock(&info->block_group_cache_lock);
162 n = info->block_group_cache_tree.rb_node;
164 while (n) {
165 cache = rb_entry(n, struct btrfs_block_group_cache,
166 cache_node);
167 end = cache->key.objectid + cache->key.offset - 1;
168 start = cache->key.objectid;
170 if (bytenr < start) {
171 if (!contains && (!ret || start < ret->key.objectid))
172 ret = cache;
173 n = n->rb_left;
174 } else if (bytenr > start) {
175 if (contains && bytenr <= end) {
176 ret = cache;
177 break;
179 n = n->rb_right;
180 } else {
181 ret = cache;
182 break;
185 if (ret)
186 btrfs_get_block_group(ret);
187 spin_unlock(&info->block_group_cache_lock);
189 return ret;
192 static int add_excluded_extent(struct btrfs_root *root,
193 u64 start, u64 num_bytes)
195 u64 end = start + num_bytes - 1;
196 set_extent_bits(&root->fs_info->freed_extents[0],
197 start, end, EXTENT_UPTODATE, GFP_NOFS);
198 set_extent_bits(&root->fs_info->freed_extents[1],
199 start, end, EXTENT_UPTODATE, GFP_NOFS);
200 return 0;
203 static void free_excluded_extents(struct btrfs_root *root,
204 struct btrfs_block_group_cache *cache)
206 u64 start, end;
208 start = cache->key.objectid;
209 end = start + cache->key.offset - 1;
211 clear_extent_bits(&root->fs_info->freed_extents[0],
212 start, end, EXTENT_UPTODATE, GFP_NOFS);
213 clear_extent_bits(&root->fs_info->freed_extents[1],
214 start, end, EXTENT_UPTODATE, GFP_NOFS);
217 static int exclude_super_stripes(struct btrfs_root *root,
218 struct btrfs_block_group_cache *cache)
220 u64 bytenr;
221 u64 *logical;
222 int stripe_len;
223 int i, nr, ret;
225 if (cache->key.objectid < BTRFS_SUPER_INFO_OFFSET) {
226 stripe_len = BTRFS_SUPER_INFO_OFFSET - cache->key.objectid;
227 cache->bytes_super += stripe_len;
228 ret = add_excluded_extent(root, cache->key.objectid,
229 stripe_len);
230 BUG_ON(ret);
233 for (i = 0; i < BTRFS_SUPER_MIRROR_MAX; i++) {
234 bytenr = btrfs_sb_offset(i);
235 ret = btrfs_rmap_block(&root->fs_info->mapping_tree,
236 cache->key.objectid, bytenr,
237 0, &logical, &nr, &stripe_len);
238 BUG_ON(ret);
240 while (nr--) {
241 cache->bytes_super += stripe_len;
242 ret = add_excluded_extent(root, logical[nr],
243 stripe_len);
244 BUG_ON(ret);
247 kfree(logical);
249 return 0;
252 static struct btrfs_caching_control *
253 get_caching_control(struct btrfs_block_group_cache *cache)
255 struct btrfs_caching_control *ctl;
257 spin_lock(&cache->lock);
258 if (cache->cached != BTRFS_CACHE_STARTED) {
259 spin_unlock(&cache->lock);
260 return NULL;
263 /* We're loading it the fast way, so we don't have a caching_ctl. */
264 if (!cache->caching_ctl) {
265 spin_unlock(&cache->lock);
266 return NULL;
269 ctl = cache->caching_ctl;
270 atomic_inc(&ctl->count);
271 spin_unlock(&cache->lock);
272 return ctl;
275 static void put_caching_control(struct btrfs_caching_control *ctl)
277 if (atomic_dec_and_test(&ctl->count))
278 kfree(ctl);
282 * this is only called by cache_block_group, since we could have freed extents
283 * we need to check the pinned_extents for any extents that can't be used yet
284 * since their free space will be released as soon as the transaction commits.
286 static u64 add_new_free_space(struct btrfs_block_group_cache *block_group,
287 struct btrfs_fs_info *info, u64 start, u64 end)
289 u64 extent_start, extent_end, size, total_added = 0;
290 int ret;
292 while (start < end) {
293 ret = find_first_extent_bit(info->pinned_extents, start,
294 &extent_start, &extent_end,
295 EXTENT_DIRTY | EXTENT_UPTODATE);
296 if (ret)
297 break;
299 if (extent_start <= start) {
300 start = extent_end + 1;
301 } else if (extent_start > start && extent_start < end) {
302 size = extent_start - start;
303 total_added += size;
304 ret = btrfs_add_free_space(block_group, start,
305 size);
306 BUG_ON(ret);
307 start = extent_end + 1;
308 } else {
309 break;
313 if (start < end) {
314 size = end - start;
315 total_added += size;
316 ret = btrfs_add_free_space(block_group, start, size);
317 BUG_ON(ret);
320 return total_added;
323 static int caching_kthread(void *data)
325 struct btrfs_block_group_cache *block_group = data;
326 struct btrfs_fs_info *fs_info = block_group->fs_info;
327 struct btrfs_caching_control *caching_ctl = block_group->caching_ctl;
328 struct btrfs_root *extent_root = fs_info->extent_root;
329 struct btrfs_path *path;
330 struct extent_buffer *leaf;
331 struct btrfs_key key;
332 u64 total_found = 0;
333 u64 last = 0;
334 u32 nritems;
335 int ret = 0;
337 path = btrfs_alloc_path();
338 if (!path)
339 return -ENOMEM;
341 last = max_t(u64, block_group->key.objectid, BTRFS_SUPER_INFO_OFFSET);
344 * We don't want to deadlock with somebody trying to allocate a new
345 * extent for the extent root while also trying to search the extent
346 * root to add free space. So we skip locking and search the commit
347 * root, since its read-only
349 path->skip_locking = 1;
350 path->search_commit_root = 1;
351 path->reada = 1;
353 key.objectid = last;
354 key.offset = 0;
355 key.type = BTRFS_EXTENT_ITEM_KEY;
356 again:
357 mutex_lock(&caching_ctl->mutex);
358 /* need to make sure the commit_root doesn't disappear */
359 down_read(&fs_info->extent_commit_sem);
361 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
362 if (ret < 0)
363 goto err;
365 leaf = path->nodes[0];
366 nritems = btrfs_header_nritems(leaf);
368 while (1) {
369 if (btrfs_fs_closing(fs_info) > 1) {
370 last = (u64)-1;
371 break;
374 if (path->slots[0] < nritems) {
375 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
376 } else {
377 ret = find_next_key(path, 0, &key);
378 if (ret)
379 break;
381 if (need_resched() ||
382 btrfs_next_leaf(extent_root, path)) {
383 caching_ctl->progress = last;
384 btrfs_release_path(path);
385 up_read(&fs_info->extent_commit_sem);
386 mutex_unlock(&caching_ctl->mutex);
387 cond_resched();
388 goto again;
390 leaf = path->nodes[0];
391 nritems = btrfs_header_nritems(leaf);
392 continue;
395 if (key.objectid < block_group->key.objectid) {
396 path->slots[0]++;
397 continue;
400 if (key.objectid >= block_group->key.objectid +
401 block_group->key.offset)
402 break;
404 if (key.type == BTRFS_EXTENT_ITEM_KEY) {
405 total_found += add_new_free_space(block_group,
406 fs_info, last,
407 key.objectid);
408 last = key.objectid + key.offset;
410 if (total_found > (1024 * 1024 * 2)) {
411 total_found = 0;
412 wake_up(&caching_ctl->wait);
415 path->slots[0]++;
417 ret = 0;
419 total_found += add_new_free_space(block_group, fs_info, last,
420 block_group->key.objectid +
421 block_group->key.offset);
422 caching_ctl->progress = (u64)-1;
424 spin_lock(&block_group->lock);
425 block_group->caching_ctl = NULL;
426 block_group->cached = BTRFS_CACHE_FINISHED;
427 spin_unlock(&block_group->lock);
429 err:
430 btrfs_free_path(path);
431 up_read(&fs_info->extent_commit_sem);
433 free_excluded_extents(extent_root, block_group);
435 mutex_unlock(&caching_ctl->mutex);
436 wake_up(&caching_ctl->wait);
438 put_caching_control(caching_ctl);
439 atomic_dec(&block_group->space_info->caching_threads);
440 btrfs_put_block_group(block_group);
442 return 0;
445 static int cache_block_group(struct btrfs_block_group_cache *cache,
446 struct btrfs_trans_handle *trans,
447 struct btrfs_root *root,
448 int load_cache_only)
450 struct btrfs_fs_info *fs_info = cache->fs_info;
451 struct btrfs_caching_control *caching_ctl;
452 struct task_struct *tsk;
453 int ret = 0;
455 smp_mb();
456 if (cache->cached != BTRFS_CACHE_NO)
457 return 0;
460 * We can't do the read from on-disk cache during a commit since we need
461 * to have the normal tree locking. Also if we are currently trying to
462 * allocate blocks for the tree root we can't do the fast caching since
463 * we likely hold important locks.
465 if (trans && (!trans->transaction->in_commit) &&
466 (root && root != root->fs_info->tree_root)) {
467 spin_lock(&cache->lock);
468 if (cache->cached != BTRFS_CACHE_NO) {
469 spin_unlock(&cache->lock);
470 return 0;
472 cache->cached = BTRFS_CACHE_STARTED;
473 spin_unlock(&cache->lock);
475 ret = load_free_space_cache(fs_info, cache);
477 spin_lock(&cache->lock);
478 if (ret == 1) {
479 cache->cached = BTRFS_CACHE_FINISHED;
480 cache->last_byte_to_unpin = (u64)-1;
481 } else {
482 cache->cached = BTRFS_CACHE_NO;
484 spin_unlock(&cache->lock);
485 if (ret == 1) {
486 free_excluded_extents(fs_info->extent_root, cache);
487 return 0;
491 if (load_cache_only)
492 return 0;
494 caching_ctl = kzalloc(sizeof(*caching_ctl), GFP_NOFS);
495 BUG_ON(!caching_ctl);
497 INIT_LIST_HEAD(&caching_ctl->list);
498 mutex_init(&caching_ctl->mutex);
499 init_waitqueue_head(&caching_ctl->wait);
500 caching_ctl->block_group = cache;
501 caching_ctl->progress = cache->key.objectid;
502 /* one for caching kthread, one for caching block group list */
503 atomic_set(&caching_ctl->count, 2);
505 spin_lock(&cache->lock);
506 if (cache->cached != BTRFS_CACHE_NO) {
507 spin_unlock(&cache->lock);
508 kfree(caching_ctl);
509 return 0;
511 cache->caching_ctl = caching_ctl;
512 cache->cached = BTRFS_CACHE_STARTED;
513 spin_unlock(&cache->lock);
515 down_write(&fs_info->extent_commit_sem);
516 list_add_tail(&caching_ctl->list, &fs_info->caching_block_groups);
517 up_write(&fs_info->extent_commit_sem);
519 atomic_inc(&cache->space_info->caching_threads);
520 btrfs_get_block_group(cache);
522 tsk = kthread_run(caching_kthread, cache, "btrfs-cache-%llu\n",
523 cache->key.objectid);
524 if (IS_ERR(tsk)) {
525 ret = PTR_ERR(tsk);
526 printk(KERN_ERR "error running thread %d\n", ret);
527 BUG();
530 return ret;
534 * return the block group that starts at or after bytenr
536 static struct btrfs_block_group_cache *
537 btrfs_lookup_first_block_group(struct btrfs_fs_info *info, u64 bytenr)
539 struct btrfs_block_group_cache *cache;
541 cache = block_group_cache_tree_search(info, bytenr, 0);
543 return cache;
547 * return the block group that contains the given bytenr
549 struct btrfs_block_group_cache *btrfs_lookup_block_group(
550 struct btrfs_fs_info *info,
551 u64 bytenr)
553 struct btrfs_block_group_cache *cache;
555 cache = block_group_cache_tree_search(info, bytenr, 1);
557 return cache;
560 static struct btrfs_space_info *__find_space_info(struct btrfs_fs_info *info,
561 u64 flags)
563 struct list_head *head = &info->space_info;
564 struct btrfs_space_info *found;
566 flags &= BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_SYSTEM |
567 BTRFS_BLOCK_GROUP_METADATA;
569 rcu_read_lock();
570 list_for_each_entry_rcu(found, head, list) {
571 if (found->flags & flags) {
572 rcu_read_unlock();
573 return found;
576 rcu_read_unlock();
577 return NULL;
581 * after adding space to the filesystem, we need to clear the full flags
582 * on all the space infos.
584 void btrfs_clear_space_info_full(struct btrfs_fs_info *info)
586 struct list_head *head = &info->space_info;
587 struct btrfs_space_info *found;
589 rcu_read_lock();
590 list_for_each_entry_rcu(found, head, list)
591 found->full = 0;
592 rcu_read_unlock();
595 static u64 div_factor(u64 num, int factor)
597 if (factor == 10)
598 return num;
599 num *= factor;
600 do_div(num, 10);
601 return num;
604 static u64 div_factor_fine(u64 num, int factor)
606 if (factor == 100)
607 return num;
608 num *= factor;
609 do_div(num, 100);
610 return num;
613 u64 btrfs_find_block_group(struct btrfs_root *root,
614 u64 search_start, u64 search_hint, int owner)
616 struct btrfs_block_group_cache *cache;
617 u64 used;
618 u64 last = max(search_hint, search_start);
619 u64 group_start = 0;
620 int full_search = 0;
621 int factor = 9;
622 int wrapped = 0;
623 again:
624 while (1) {
625 cache = btrfs_lookup_first_block_group(root->fs_info, last);
626 if (!cache)
627 break;
629 spin_lock(&cache->lock);
630 last = cache->key.objectid + cache->key.offset;
631 used = btrfs_block_group_used(&cache->item);
633 if ((full_search || !cache->ro) &&
634 block_group_bits(cache, BTRFS_BLOCK_GROUP_METADATA)) {
635 if (used + cache->pinned + cache->reserved <
636 div_factor(cache->key.offset, factor)) {
637 group_start = cache->key.objectid;
638 spin_unlock(&cache->lock);
639 btrfs_put_block_group(cache);
640 goto found;
643 spin_unlock(&cache->lock);
644 btrfs_put_block_group(cache);
645 cond_resched();
647 if (!wrapped) {
648 last = search_start;
649 wrapped = 1;
650 goto again;
652 if (!full_search && factor < 10) {
653 last = search_start;
654 full_search = 1;
655 factor = 10;
656 goto again;
658 found:
659 return group_start;
662 /* simple helper to search for an existing extent at a given offset */
663 int btrfs_lookup_extent(struct btrfs_root *root, u64 start, u64 len)
665 int ret;
666 struct btrfs_key key;
667 struct btrfs_path *path;
669 path = btrfs_alloc_path();
670 BUG_ON(!path);
671 key.objectid = start;
672 key.offset = len;
673 btrfs_set_key_type(&key, BTRFS_EXTENT_ITEM_KEY);
674 ret = btrfs_search_slot(NULL, root->fs_info->extent_root, &key, path,
675 0, 0);
676 btrfs_free_path(path);
677 return ret;
681 * helper function to lookup reference count and flags of extent.
683 * the head node for delayed ref is used to store the sum of all the
684 * reference count modifications queued up in the rbtree. the head
685 * node may also store the extent flags to set. This way you can check
686 * to see what the reference count and extent flags would be if all of
687 * the delayed refs are not processed.
689 int btrfs_lookup_extent_info(struct btrfs_trans_handle *trans,
690 struct btrfs_root *root, u64 bytenr,
691 u64 num_bytes, u64 *refs, u64 *flags)
693 struct btrfs_delayed_ref_head *head;
694 struct btrfs_delayed_ref_root *delayed_refs;
695 struct btrfs_path *path;
696 struct btrfs_extent_item *ei;
697 struct extent_buffer *leaf;
698 struct btrfs_key key;
699 u32 item_size;
700 u64 num_refs;
701 u64 extent_flags;
702 int ret;
704 path = btrfs_alloc_path();
705 if (!path)
706 return -ENOMEM;
708 key.objectid = bytenr;
709 key.type = BTRFS_EXTENT_ITEM_KEY;
710 key.offset = num_bytes;
711 if (!trans) {
712 path->skip_locking = 1;
713 path->search_commit_root = 1;
715 again:
716 ret = btrfs_search_slot(trans, root->fs_info->extent_root,
717 &key, path, 0, 0);
718 if (ret < 0)
719 goto out_free;
721 if (ret == 0) {
722 leaf = path->nodes[0];
723 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
724 if (item_size >= sizeof(*ei)) {
725 ei = btrfs_item_ptr(leaf, path->slots[0],
726 struct btrfs_extent_item);
727 num_refs = btrfs_extent_refs(leaf, ei);
728 extent_flags = btrfs_extent_flags(leaf, ei);
729 } else {
730 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
731 struct btrfs_extent_item_v0 *ei0;
732 BUG_ON(item_size != sizeof(*ei0));
733 ei0 = btrfs_item_ptr(leaf, path->slots[0],
734 struct btrfs_extent_item_v0);
735 num_refs = btrfs_extent_refs_v0(leaf, ei0);
736 /* FIXME: this isn't correct for data */
737 extent_flags = BTRFS_BLOCK_FLAG_FULL_BACKREF;
738 #else
739 BUG();
740 #endif
742 BUG_ON(num_refs == 0);
743 } else {
744 num_refs = 0;
745 extent_flags = 0;
746 ret = 0;
749 if (!trans)
750 goto out;
752 delayed_refs = &trans->transaction->delayed_refs;
753 spin_lock(&delayed_refs->lock);
754 head = btrfs_find_delayed_ref_head(trans, bytenr);
755 if (head) {
756 if (!mutex_trylock(&head->mutex)) {
757 atomic_inc(&head->node.refs);
758 spin_unlock(&delayed_refs->lock);
760 btrfs_release_path(path);
763 * Mutex was contended, block until it's released and try
764 * again
766 mutex_lock(&head->mutex);
767 mutex_unlock(&head->mutex);
768 btrfs_put_delayed_ref(&head->node);
769 goto again;
771 if (head->extent_op && head->extent_op->update_flags)
772 extent_flags |= head->extent_op->flags_to_set;
773 else
774 BUG_ON(num_refs == 0);
776 num_refs += head->node.ref_mod;
777 mutex_unlock(&head->mutex);
779 spin_unlock(&delayed_refs->lock);
780 out:
781 WARN_ON(num_refs == 0);
782 if (refs)
783 *refs = num_refs;
784 if (flags)
785 *flags = extent_flags;
786 out_free:
787 btrfs_free_path(path);
788 return ret;
792 * Back reference rules. Back refs have three main goals:
794 * 1) differentiate between all holders of references to an extent so that
795 * when a reference is dropped we can make sure it was a valid reference
796 * before freeing the extent.
798 * 2) Provide enough information to quickly find the holders of an extent
799 * if we notice a given block is corrupted or bad.
801 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
802 * maintenance. This is actually the same as #2, but with a slightly
803 * different use case.
805 * There are two kinds of back refs. The implicit back refs is optimized
806 * for pointers in non-shared tree blocks. For a given pointer in a block,
807 * back refs of this kind provide information about the block's owner tree
808 * and the pointer's key. These information allow us to find the block by
809 * b-tree searching. The full back refs is for pointers in tree blocks not
810 * referenced by their owner trees. The location of tree block is recorded
811 * in the back refs. Actually the full back refs is generic, and can be
812 * used in all cases the implicit back refs is used. The major shortcoming
813 * of the full back refs is its overhead. Every time a tree block gets
814 * COWed, we have to update back refs entry for all pointers in it.
816 * For a newly allocated tree block, we use implicit back refs for
817 * pointers in it. This means most tree related operations only involve
818 * implicit back refs. For a tree block created in old transaction, the
819 * only way to drop a reference to it is COW it. So we can detect the
820 * event that tree block loses its owner tree's reference and do the
821 * back refs conversion.
823 * When a tree block is COW'd through a tree, there are four cases:
825 * The reference count of the block is one and the tree is the block's
826 * owner tree. Nothing to do in this case.
828 * The reference count of the block is one and the tree is not the
829 * block's owner tree. In this case, full back refs is used for pointers
830 * in the block. Remove these full back refs, add implicit back refs for
831 * every pointers in the new block.
833 * The reference count of the block is greater than one and the tree is
834 * the block's owner tree. In this case, implicit back refs is used for
835 * pointers in the block. Add full back refs for every pointers in the
836 * block, increase lower level extents' reference counts. The original
837 * implicit back refs are entailed to the new block.
839 * The reference count of the block is greater than one and the tree is
840 * not the block's owner tree. Add implicit back refs for every pointer in
841 * the new block, increase lower level extents' reference count.
843 * Back Reference Key composing:
845 * The key objectid corresponds to the first byte in the extent,
846 * The key type is used to differentiate between types of back refs.
847 * There are different meanings of the key offset for different types
848 * of back refs.
850 * File extents can be referenced by:
852 * - multiple snapshots, subvolumes, or different generations in one subvol
853 * - different files inside a single subvolume
854 * - different offsets inside a file (bookend extents in file.c)
856 * The extent ref structure for the implicit back refs has fields for:
858 * - Objectid of the subvolume root
859 * - objectid of the file holding the reference
860 * - original offset in the file
861 * - how many bookend extents
863 * The key offset for the implicit back refs is hash of the first
864 * three fields.
866 * The extent ref structure for the full back refs has field for:
868 * - number of pointers in the tree leaf
870 * The key offset for the implicit back refs is the first byte of
871 * the tree leaf
873 * When a file extent is allocated, The implicit back refs is used.
874 * the fields are filled in:
876 * (root_key.objectid, inode objectid, offset in file, 1)
878 * When a file extent is removed file truncation, we find the
879 * corresponding implicit back refs and check the following fields:
881 * (btrfs_header_owner(leaf), inode objectid, offset in file)
883 * Btree extents can be referenced by:
885 * - Different subvolumes
887 * Both the implicit back refs and the full back refs for tree blocks
888 * only consist of key. The key offset for the implicit back refs is
889 * objectid of block's owner tree. The key offset for the full back refs
890 * is the first byte of parent block.
892 * When implicit back refs is used, information about the lowest key and
893 * level of the tree block are required. These information are stored in
894 * tree block info structure.
897 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
898 static int convert_extent_item_v0(struct btrfs_trans_handle *trans,
899 struct btrfs_root *root,
900 struct btrfs_path *path,
901 u64 owner, u32 extra_size)
903 struct btrfs_extent_item *item;
904 struct btrfs_extent_item_v0 *ei0;
905 struct btrfs_extent_ref_v0 *ref0;
906 struct btrfs_tree_block_info *bi;
907 struct extent_buffer *leaf;
908 struct btrfs_key key;
909 struct btrfs_key found_key;
910 u32 new_size = sizeof(*item);
911 u64 refs;
912 int ret;
914 leaf = path->nodes[0];
915 BUG_ON(btrfs_item_size_nr(leaf, path->slots[0]) != sizeof(*ei0));
917 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
918 ei0 = btrfs_item_ptr(leaf, path->slots[0],
919 struct btrfs_extent_item_v0);
920 refs = btrfs_extent_refs_v0(leaf, ei0);
922 if (owner == (u64)-1) {
923 while (1) {
924 if (path->slots[0] >= btrfs_header_nritems(leaf)) {
925 ret = btrfs_next_leaf(root, path);
926 if (ret < 0)
927 return ret;
928 BUG_ON(ret > 0);
929 leaf = path->nodes[0];
931 btrfs_item_key_to_cpu(leaf, &found_key,
932 path->slots[0]);
933 BUG_ON(key.objectid != found_key.objectid);
934 if (found_key.type != BTRFS_EXTENT_REF_V0_KEY) {
935 path->slots[0]++;
936 continue;
938 ref0 = btrfs_item_ptr(leaf, path->slots[0],
939 struct btrfs_extent_ref_v0);
940 owner = btrfs_ref_objectid_v0(leaf, ref0);
941 break;
944 btrfs_release_path(path);
946 if (owner < BTRFS_FIRST_FREE_OBJECTID)
947 new_size += sizeof(*bi);
949 new_size -= sizeof(*ei0);
950 ret = btrfs_search_slot(trans, root, &key, path,
951 new_size + extra_size, 1);
952 if (ret < 0)
953 return ret;
954 BUG_ON(ret);
956 ret = btrfs_extend_item(trans, root, path, new_size);
958 leaf = path->nodes[0];
959 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
960 btrfs_set_extent_refs(leaf, item, refs);
961 /* FIXME: get real generation */
962 btrfs_set_extent_generation(leaf, item, 0);
963 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
964 btrfs_set_extent_flags(leaf, item,
965 BTRFS_EXTENT_FLAG_TREE_BLOCK |
966 BTRFS_BLOCK_FLAG_FULL_BACKREF);
967 bi = (struct btrfs_tree_block_info *)(item + 1);
968 /* FIXME: get first key of the block */
969 memset_extent_buffer(leaf, 0, (unsigned long)bi, sizeof(*bi));
970 btrfs_set_tree_block_level(leaf, bi, (int)owner);
971 } else {
972 btrfs_set_extent_flags(leaf, item, BTRFS_EXTENT_FLAG_DATA);
974 btrfs_mark_buffer_dirty(leaf);
975 return 0;
977 #endif
979 static u64 hash_extent_data_ref(u64 root_objectid, u64 owner, u64 offset)
981 u32 high_crc = ~(u32)0;
982 u32 low_crc = ~(u32)0;
983 __le64 lenum;
985 lenum = cpu_to_le64(root_objectid);
986 high_crc = crc32c(high_crc, &lenum, sizeof(lenum));
987 lenum = cpu_to_le64(owner);
988 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
989 lenum = cpu_to_le64(offset);
990 low_crc = crc32c(low_crc, &lenum, sizeof(lenum));
992 return ((u64)high_crc << 31) ^ (u64)low_crc;
995 static u64 hash_extent_data_ref_item(struct extent_buffer *leaf,
996 struct btrfs_extent_data_ref *ref)
998 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf, ref),
999 btrfs_extent_data_ref_objectid(leaf, ref),
1000 btrfs_extent_data_ref_offset(leaf, ref));
1003 static int match_extent_data_ref(struct extent_buffer *leaf,
1004 struct btrfs_extent_data_ref *ref,
1005 u64 root_objectid, u64 owner, u64 offset)
1007 if (btrfs_extent_data_ref_root(leaf, ref) != root_objectid ||
1008 btrfs_extent_data_ref_objectid(leaf, ref) != owner ||
1009 btrfs_extent_data_ref_offset(leaf, ref) != offset)
1010 return 0;
1011 return 1;
1014 static noinline int lookup_extent_data_ref(struct btrfs_trans_handle *trans,
1015 struct btrfs_root *root,
1016 struct btrfs_path *path,
1017 u64 bytenr, u64 parent,
1018 u64 root_objectid,
1019 u64 owner, u64 offset)
1021 struct btrfs_key key;
1022 struct btrfs_extent_data_ref *ref;
1023 struct extent_buffer *leaf;
1024 u32 nritems;
1025 int ret;
1026 int recow;
1027 int err = -ENOENT;
1029 key.objectid = bytenr;
1030 if (parent) {
1031 key.type = BTRFS_SHARED_DATA_REF_KEY;
1032 key.offset = parent;
1033 } else {
1034 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1035 key.offset = hash_extent_data_ref(root_objectid,
1036 owner, offset);
1038 again:
1039 recow = 0;
1040 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1041 if (ret < 0) {
1042 err = ret;
1043 goto fail;
1046 if (parent) {
1047 if (!ret)
1048 return 0;
1049 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1050 key.type = BTRFS_EXTENT_REF_V0_KEY;
1051 btrfs_release_path(path);
1052 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1053 if (ret < 0) {
1054 err = ret;
1055 goto fail;
1057 if (!ret)
1058 return 0;
1059 #endif
1060 goto fail;
1063 leaf = path->nodes[0];
1064 nritems = btrfs_header_nritems(leaf);
1065 while (1) {
1066 if (path->slots[0] >= nritems) {
1067 ret = btrfs_next_leaf(root, path);
1068 if (ret < 0)
1069 err = ret;
1070 if (ret)
1071 goto fail;
1073 leaf = path->nodes[0];
1074 nritems = btrfs_header_nritems(leaf);
1075 recow = 1;
1078 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1079 if (key.objectid != bytenr ||
1080 key.type != BTRFS_EXTENT_DATA_REF_KEY)
1081 goto fail;
1083 ref = btrfs_item_ptr(leaf, path->slots[0],
1084 struct btrfs_extent_data_ref);
1086 if (match_extent_data_ref(leaf, ref, root_objectid,
1087 owner, offset)) {
1088 if (recow) {
1089 btrfs_release_path(path);
1090 goto again;
1092 err = 0;
1093 break;
1095 path->slots[0]++;
1097 fail:
1098 return err;
1101 static noinline int insert_extent_data_ref(struct btrfs_trans_handle *trans,
1102 struct btrfs_root *root,
1103 struct btrfs_path *path,
1104 u64 bytenr, u64 parent,
1105 u64 root_objectid, u64 owner,
1106 u64 offset, int refs_to_add)
1108 struct btrfs_key key;
1109 struct extent_buffer *leaf;
1110 u32 size;
1111 u32 num_refs;
1112 int ret;
1114 key.objectid = bytenr;
1115 if (parent) {
1116 key.type = BTRFS_SHARED_DATA_REF_KEY;
1117 key.offset = parent;
1118 size = sizeof(struct btrfs_shared_data_ref);
1119 } else {
1120 key.type = BTRFS_EXTENT_DATA_REF_KEY;
1121 key.offset = hash_extent_data_ref(root_objectid,
1122 owner, offset);
1123 size = sizeof(struct btrfs_extent_data_ref);
1126 ret = btrfs_insert_empty_item(trans, root, path, &key, size);
1127 if (ret && ret != -EEXIST)
1128 goto fail;
1130 leaf = path->nodes[0];
1131 if (parent) {
1132 struct btrfs_shared_data_ref *ref;
1133 ref = btrfs_item_ptr(leaf, path->slots[0],
1134 struct btrfs_shared_data_ref);
1135 if (ret == 0) {
1136 btrfs_set_shared_data_ref_count(leaf, ref, refs_to_add);
1137 } else {
1138 num_refs = btrfs_shared_data_ref_count(leaf, ref);
1139 num_refs += refs_to_add;
1140 btrfs_set_shared_data_ref_count(leaf, ref, num_refs);
1142 } else {
1143 struct btrfs_extent_data_ref *ref;
1144 while (ret == -EEXIST) {
1145 ref = btrfs_item_ptr(leaf, path->slots[0],
1146 struct btrfs_extent_data_ref);
1147 if (match_extent_data_ref(leaf, ref, root_objectid,
1148 owner, offset))
1149 break;
1150 btrfs_release_path(path);
1151 key.offset++;
1152 ret = btrfs_insert_empty_item(trans, root, path, &key,
1153 size);
1154 if (ret && ret != -EEXIST)
1155 goto fail;
1157 leaf = path->nodes[0];
1159 ref = btrfs_item_ptr(leaf, path->slots[0],
1160 struct btrfs_extent_data_ref);
1161 if (ret == 0) {
1162 btrfs_set_extent_data_ref_root(leaf, ref,
1163 root_objectid);
1164 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
1165 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
1166 btrfs_set_extent_data_ref_count(leaf, ref, refs_to_add);
1167 } else {
1168 num_refs = btrfs_extent_data_ref_count(leaf, ref);
1169 num_refs += refs_to_add;
1170 btrfs_set_extent_data_ref_count(leaf, ref, num_refs);
1173 btrfs_mark_buffer_dirty(leaf);
1174 ret = 0;
1175 fail:
1176 btrfs_release_path(path);
1177 return ret;
1180 static noinline int remove_extent_data_ref(struct btrfs_trans_handle *trans,
1181 struct btrfs_root *root,
1182 struct btrfs_path *path,
1183 int refs_to_drop)
1185 struct btrfs_key key;
1186 struct btrfs_extent_data_ref *ref1 = NULL;
1187 struct btrfs_shared_data_ref *ref2 = NULL;
1188 struct extent_buffer *leaf;
1189 u32 num_refs = 0;
1190 int ret = 0;
1192 leaf = path->nodes[0];
1193 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1195 if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1196 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1197 struct btrfs_extent_data_ref);
1198 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1199 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1200 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1201 struct btrfs_shared_data_ref);
1202 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1203 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1204 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1205 struct btrfs_extent_ref_v0 *ref0;
1206 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1207 struct btrfs_extent_ref_v0);
1208 num_refs = btrfs_ref_count_v0(leaf, ref0);
1209 #endif
1210 } else {
1211 BUG();
1214 BUG_ON(num_refs < refs_to_drop);
1215 num_refs -= refs_to_drop;
1217 if (num_refs == 0) {
1218 ret = btrfs_del_item(trans, root, path);
1219 } else {
1220 if (key.type == BTRFS_EXTENT_DATA_REF_KEY)
1221 btrfs_set_extent_data_ref_count(leaf, ref1, num_refs);
1222 else if (key.type == BTRFS_SHARED_DATA_REF_KEY)
1223 btrfs_set_shared_data_ref_count(leaf, ref2, num_refs);
1224 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1225 else {
1226 struct btrfs_extent_ref_v0 *ref0;
1227 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1228 struct btrfs_extent_ref_v0);
1229 btrfs_set_ref_count_v0(leaf, ref0, num_refs);
1231 #endif
1232 btrfs_mark_buffer_dirty(leaf);
1234 return ret;
1237 static noinline u32 extent_data_ref_count(struct btrfs_root *root,
1238 struct btrfs_path *path,
1239 struct btrfs_extent_inline_ref *iref)
1241 struct btrfs_key key;
1242 struct extent_buffer *leaf;
1243 struct btrfs_extent_data_ref *ref1;
1244 struct btrfs_shared_data_ref *ref2;
1245 u32 num_refs = 0;
1247 leaf = path->nodes[0];
1248 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
1249 if (iref) {
1250 if (btrfs_extent_inline_ref_type(leaf, iref) ==
1251 BTRFS_EXTENT_DATA_REF_KEY) {
1252 ref1 = (struct btrfs_extent_data_ref *)(&iref->offset);
1253 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1254 } else {
1255 ref2 = (struct btrfs_shared_data_ref *)(iref + 1);
1256 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1258 } else if (key.type == BTRFS_EXTENT_DATA_REF_KEY) {
1259 ref1 = btrfs_item_ptr(leaf, path->slots[0],
1260 struct btrfs_extent_data_ref);
1261 num_refs = btrfs_extent_data_ref_count(leaf, ref1);
1262 } else if (key.type == BTRFS_SHARED_DATA_REF_KEY) {
1263 ref2 = btrfs_item_ptr(leaf, path->slots[0],
1264 struct btrfs_shared_data_ref);
1265 num_refs = btrfs_shared_data_ref_count(leaf, ref2);
1266 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1267 } else if (key.type == BTRFS_EXTENT_REF_V0_KEY) {
1268 struct btrfs_extent_ref_v0 *ref0;
1269 ref0 = btrfs_item_ptr(leaf, path->slots[0],
1270 struct btrfs_extent_ref_v0);
1271 num_refs = btrfs_ref_count_v0(leaf, ref0);
1272 #endif
1273 } else {
1274 WARN_ON(1);
1276 return num_refs;
1279 static noinline int lookup_tree_block_ref(struct btrfs_trans_handle *trans,
1280 struct btrfs_root *root,
1281 struct btrfs_path *path,
1282 u64 bytenr, u64 parent,
1283 u64 root_objectid)
1285 struct btrfs_key key;
1286 int ret;
1288 key.objectid = bytenr;
1289 if (parent) {
1290 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1291 key.offset = parent;
1292 } else {
1293 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1294 key.offset = root_objectid;
1297 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1298 if (ret > 0)
1299 ret = -ENOENT;
1300 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1301 if (ret == -ENOENT && parent) {
1302 btrfs_release_path(path);
1303 key.type = BTRFS_EXTENT_REF_V0_KEY;
1304 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
1305 if (ret > 0)
1306 ret = -ENOENT;
1308 #endif
1309 return ret;
1312 static noinline int insert_tree_block_ref(struct btrfs_trans_handle *trans,
1313 struct btrfs_root *root,
1314 struct btrfs_path *path,
1315 u64 bytenr, u64 parent,
1316 u64 root_objectid)
1318 struct btrfs_key key;
1319 int ret;
1321 key.objectid = bytenr;
1322 if (parent) {
1323 key.type = BTRFS_SHARED_BLOCK_REF_KEY;
1324 key.offset = parent;
1325 } else {
1326 key.type = BTRFS_TREE_BLOCK_REF_KEY;
1327 key.offset = root_objectid;
1330 ret = btrfs_insert_empty_item(trans, root, path, &key, 0);
1331 btrfs_release_path(path);
1332 return ret;
1335 static inline int extent_ref_type(u64 parent, u64 owner)
1337 int type;
1338 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1339 if (parent > 0)
1340 type = BTRFS_SHARED_BLOCK_REF_KEY;
1341 else
1342 type = BTRFS_TREE_BLOCK_REF_KEY;
1343 } else {
1344 if (parent > 0)
1345 type = BTRFS_SHARED_DATA_REF_KEY;
1346 else
1347 type = BTRFS_EXTENT_DATA_REF_KEY;
1349 return type;
1352 static int find_next_key(struct btrfs_path *path, int level,
1353 struct btrfs_key *key)
1356 for (; level < BTRFS_MAX_LEVEL; level++) {
1357 if (!path->nodes[level])
1358 break;
1359 if (path->slots[level] + 1 >=
1360 btrfs_header_nritems(path->nodes[level]))
1361 continue;
1362 if (level == 0)
1363 btrfs_item_key_to_cpu(path->nodes[level], key,
1364 path->slots[level] + 1);
1365 else
1366 btrfs_node_key_to_cpu(path->nodes[level], key,
1367 path->slots[level] + 1);
1368 return 0;
1370 return 1;
1374 * look for inline back ref. if back ref is found, *ref_ret is set
1375 * to the address of inline back ref, and 0 is returned.
1377 * if back ref isn't found, *ref_ret is set to the address where it
1378 * should be inserted, and -ENOENT is returned.
1380 * if insert is true and there are too many inline back refs, the path
1381 * points to the extent item, and -EAGAIN is returned.
1383 * NOTE: inline back refs are ordered in the same way that back ref
1384 * items in the tree are ordered.
1386 static noinline_for_stack
1387 int lookup_inline_extent_backref(struct btrfs_trans_handle *trans,
1388 struct btrfs_root *root,
1389 struct btrfs_path *path,
1390 struct btrfs_extent_inline_ref **ref_ret,
1391 u64 bytenr, u64 num_bytes,
1392 u64 parent, u64 root_objectid,
1393 u64 owner, u64 offset, int insert)
1395 struct btrfs_key key;
1396 struct extent_buffer *leaf;
1397 struct btrfs_extent_item *ei;
1398 struct btrfs_extent_inline_ref *iref;
1399 u64 flags;
1400 u64 item_size;
1401 unsigned long ptr;
1402 unsigned long end;
1403 int extra_size;
1404 int type;
1405 int want;
1406 int ret;
1407 int err = 0;
1409 key.objectid = bytenr;
1410 key.type = BTRFS_EXTENT_ITEM_KEY;
1411 key.offset = num_bytes;
1413 want = extent_ref_type(parent, owner);
1414 if (insert) {
1415 extra_size = btrfs_extent_inline_ref_size(want);
1416 path->keep_locks = 1;
1417 } else
1418 extra_size = -1;
1419 ret = btrfs_search_slot(trans, root, &key, path, extra_size, 1);
1420 if (ret < 0) {
1421 err = ret;
1422 goto out;
1424 BUG_ON(ret);
1426 leaf = path->nodes[0];
1427 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1428 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1429 if (item_size < sizeof(*ei)) {
1430 if (!insert) {
1431 err = -ENOENT;
1432 goto out;
1434 ret = convert_extent_item_v0(trans, root, path, owner,
1435 extra_size);
1436 if (ret < 0) {
1437 err = ret;
1438 goto out;
1440 leaf = path->nodes[0];
1441 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1443 #endif
1444 BUG_ON(item_size < sizeof(*ei));
1446 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1447 flags = btrfs_extent_flags(leaf, ei);
1449 ptr = (unsigned long)(ei + 1);
1450 end = (unsigned long)ei + item_size;
1452 if (flags & BTRFS_EXTENT_FLAG_TREE_BLOCK) {
1453 ptr += sizeof(struct btrfs_tree_block_info);
1454 BUG_ON(ptr > end);
1455 } else {
1456 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_DATA));
1459 err = -ENOENT;
1460 while (1) {
1461 if (ptr >= end) {
1462 WARN_ON(ptr > end);
1463 break;
1465 iref = (struct btrfs_extent_inline_ref *)ptr;
1466 type = btrfs_extent_inline_ref_type(leaf, iref);
1467 if (want < type)
1468 break;
1469 if (want > type) {
1470 ptr += btrfs_extent_inline_ref_size(type);
1471 continue;
1474 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1475 struct btrfs_extent_data_ref *dref;
1476 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1477 if (match_extent_data_ref(leaf, dref, root_objectid,
1478 owner, offset)) {
1479 err = 0;
1480 break;
1482 if (hash_extent_data_ref_item(leaf, dref) <
1483 hash_extent_data_ref(root_objectid, owner, offset))
1484 break;
1485 } else {
1486 u64 ref_offset;
1487 ref_offset = btrfs_extent_inline_ref_offset(leaf, iref);
1488 if (parent > 0) {
1489 if (parent == ref_offset) {
1490 err = 0;
1491 break;
1493 if (ref_offset < parent)
1494 break;
1495 } else {
1496 if (root_objectid == ref_offset) {
1497 err = 0;
1498 break;
1500 if (ref_offset < root_objectid)
1501 break;
1504 ptr += btrfs_extent_inline_ref_size(type);
1506 if (err == -ENOENT && insert) {
1507 if (item_size + extra_size >=
1508 BTRFS_MAX_EXTENT_ITEM_SIZE(root)) {
1509 err = -EAGAIN;
1510 goto out;
1513 * To add new inline back ref, we have to make sure
1514 * there is no corresponding back ref item.
1515 * For simplicity, we just do not add new inline back
1516 * ref if there is any kind of item for this block
1518 if (find_next_key(path, 0, &key) == 0 &&
1519 key.objectid == bytenr &&
1520 key.type < BTRFS_BLOCK_GROUP_ITEM_KEY) {
1521 err = -EAGAIN;
1522 goto out;
1525 *ref_ret = (struct btrfs_extent_inline_ref *)ptr;
1526 out:
1527 if (insert) {
1528 path->keep_locks = 0;
1529 btrfs_unlock_up_safe(path, 1);
1531 return err;
1535 * helper to add new inline back ref
1537 static noinline_for_stack
1538 int setup_inline_extent_backref(struct btrfs_trans_handle *trans,
1539 struct btrfs_root *root,
1540 struct btrfs_path *path,
1541 struct btrfs_extent_inline_ref *iref,
1542 u64 parent, u64 root_objectid,
1543 u64 owner, u64 offset, int refs_to_add,
1544 struct btrfs_delayed_extent_op *extent_op)
1546 struct extent_buffer *leaf;
1547 struct btrfs_extent_item *ei;
1548 unsigned long ptr;
1549 unsigned long end;
1550 unsigned long item_offset;
1551 u64 refs;
1552 int size;
1553 int type;
1554 int ret;
1556 leaf = path->nodes[0];
1557 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1558 item_offset = (unsigned long)iref - (unsigned long)ei;
1560 type = extent_ref_type(parent, owner);
1561 size = btrfs_extent_inline_ref_size(type);
1563 ret = btrfs_extend_item(trans, root, path, size);
1565 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1566 refs = btrfs_extent_refs(leaf, ei);
1567 refs += refs_to_add;
1568 btrfs_set_extent_refs(leaf, ei, refs);
1569 if (extent_op)
1570 __run_delayed_extent_op(extent_op, leaf, ei);
1572 ptr = (unsigned long)ei + item_offset;
1573 end = (unsigned long)ei + btrfs_item_size_nr(leaf, path->slots[0]);
1574 if (ptr < end - size)
1575 memmove_extent_buffer(leaf, ptr + size, ptr,
1576 end - size - ptr);
1578 iref = (struct btrfs_extent_inline_ref *)ptr;
1579 btrfs_set_extent_inline_ref_type(leaf, iref, type);
1580 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1581 struct btrfs_extent_data_ref *dref;
1582 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1583 btrfs_set_extent_data_ref_root(leaf, dref, root_objectid);
1584 btrfs_set_extent_data_ref_objectid(leaf, dref, owner);
1585 btrfs_set_extent_data_ref_offset(leaf, dref, offset);
1586 btrfs_set_extent_data_ref_count(leaf, dref, refs_to_add);
1587 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1588 struct btrfs_shared_data_ref *sref;
1589 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1590 btrfs_set_shared_data_ref_count(leaf, sref, refs_to_add);
1591 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1592 } else if (type == BTRFS_SHARED_BLOCK_REF_KEY) {
1593 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
1594 } else {
1595 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
1597 btrfs_mark_buffer_dirty(leaf);
1598 return 0;
1601 static int lookup_extent_backref(struct btrfs_trans_handle *trans,
1602 struct btrfs_root *root,
1603 struct btrfs_path *path,
1604 struct btrfs_extent_inline_ref **ref_ret,
1605 u64 bytenr, u64 num_bytes, u64 parent,
1606 u64 root_objectid, u64 owner, u64 offset)
1608 int ret;
1610 ret = lookup_inline_extent_backref(trans, root, path, ref_ret,
1611 bytenr, num_bytes, parent,
1612 root_objectid, owner, offset, 0);
1613 if (ret != -ENOENT)
1614 return ret;
1616 btrfs_release_path(path);
1617 *ref_ret = NULL;
1619 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1620 ret = lookup_tree_block_ref(trans, root, path, bytenr, parent,
1621 root_objectid);
1622 } else {
1623 ret = lookup_extent_data_ref(trans, root, path, bytenr, parent,
1624 root_objectid, owner, offset);
1626 return ret;
1630 * helper to update/remove inline back ref
1632 static noinline_for_stack
1633 int update_inline_extent_backref(struct btrfs_trans_handle *trans,
1634 struct btrfs_root *root,
1635 struct btrfs_path *path,
1636 struct btrfs_extent_inline_ref *iref,
1637 int refs_to_mod,
1638 struct btrfs_delayed_extent_op *extent_op)
1640 struct extent_buffer *leaf;
1641 struct btrfs_extent_item *ei;
1642 struct btrfs_extent_data_ref *dref = NULL;
1643 struct btrfs_shared_data_ref *sref = NULL;
1644 unsigned long ptr;
1645 unsigned long end;
1646 u32 item_size;
1647 int size;
1648 int type;
1649 int ret;
1650 u64 refs;
1652 leaf = path->nodes[0];
1653 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1654 refs = btrfs_extent_refs(leaf, ei);
1655 WARN_ON(refs_to_mod < 0 && refs + refs_to_mod <= 0);
1656 refs += refs_to_mod;
1657 btrfs_set_extent_refs(leaf, ei, refs);
1658 if (extent_op)
1659 __run_delayed_extent_op(extent_op, leaf, ei);
1661 type = btrfs_extent_inline_ref_type(leaf, iref);
1663 if (type == BTRFS_EXTENT_DATA_REF_KEY) {
1664 dref = (struct btrfs_extent_data_ref *)(&iref->offset);
1665 refs = btrfs_extent_data_ref_count(leaf, dref);
1666 } else if (type == BTRFS_SHARED_DATA_REF_KEY) {
1667 sref = (struct btrfs_shared_data_ref *)(iref + 1);
1668 refs = btrfs_shared_data_ref_count(leaf, sref);
1669 } else {
1670 refs = 1;
1671 BUG_ON(refs_to_mod != -1);
1674 BUG_ON(refs_to_mod < 0 && refs < -refs_to_mod);
1675 refs += refs_to_mod;
1677 if (refs > 0) {
1678 if (type == BTRFS_EXTENT_DATA_REF_KEY)
1679 btrfs_set_extent_data_ref_count(leaf, dref, refs);
1680 else
1681 btrfs_set_shared_data_ref_count(leaf, sref, refs);
1682 } else {
1683 size = btrfs_extent_inline_ref_size(type);
1684 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1685 ptr = (unsigned long)iref;
1686 end = (unsigned long)ei + item_size;
1687 if (ptr + size < end)
1688 memmove_extent_buffer(leaf, ptr, ptr + size,
1689 end - ptr - size);
1690 item_size -= size;
1691 ret = btrfs_truncate_item(trans, root, path, item_size, 1);
1693 btrfs_mark_buffer_dirty(leaf);
1694 return 0;
1697 static noinline_for_stack
1698 int insert_inline_extent_backref(struct btrfs_trans_handle *trans,
1699 struct btrfs_root *root,
1700 struct btrfs_path *path,
1701 u64 bytenr, u64 num_bytes, u64 parent,
1702 u64 root_objectid, u64 owner,
1703 u64 offset, int refs_to_add,
1704 struct btrfs_delayed_extent_op *extent_op)
1706 struct btrfs_extent_inline_ref *iref;
1707 int ret;
1709 ret = lookup_inline_extent_backref(trans, root, path, &iref,
1710 bytenr, num_bytes, parent,
1711 root_objectid, owner, offset, 1);
1712 if (ret == 0) {
1713 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID);
1714 ret = update_inline_extent_backref(trans, root, path, iref,
1715 refs_to_add, extent_op);
1716 } else if (ret == -ENOENT) {
1717 ret = setup_inline_extent_backref(trans, root, path, iref,
1718 parent, root_objectid,
1719 owner, offset, refs_to_add,
1720 extent_op);
1722 return ret;
1725 static int insert_extent_backref(struct btrfs_trans_handle *trans,
1726 struct btrfs_root *root,
1727 struct btrfs_path *path,
1728 u64 bytenr, u64 parent, u64 root_objectid,
1729 u64 owner, u64 offset, int refs_to_add)
1731 int ret;
1732 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1733 BUG_ON(refs_to_add != 1);
1734 ret = insert_tree_block_ref(trans, root, path, bytenr,
1735 parent, root_objectid);
1736 } else {
1737 ret = insert_extent_data_ref(trans, root, path, bytenr,
1738 parent, root_objectid,
1739 owner, offset, refs_to_add);
1741 return ret;
1744 static int remove_extent_backref(struct btrfs_trans_handle *trans,
1745 struct btrfs_root *root,
1746 struct btrfs_path *path,
1747 struct btrfs_extent_inline_ref *iref,
1748 int refs_to_drop, int is_data)
1750 int ret;
1752 BUG_ON(!is_data && refs_to_drop != 1);
1753 if (iref) {
1754 ret = update_inline_extent_backref(trans, root, path, iref,
1755 -refs_to_drop, NULL);
1756 } else if (is_data) {
1757 ret = remove_extent_data_ref(trans, root, path, refs_to_drop);
1758 } else {
1759 ret = btrfs_del_item(trans, root, path);
1761 return ret;
1764 static int btrfs_issue_discard(struct block_device *bdev,
1765 u64 start, u64 len)
1767 return blkdev_issue_discard(bdev, start >> 9, len >> 9, GFP_NOFS, 0);
1770 static int btrfs_discard_extent(struct btrfs_root *root, u64 bytenr,
1771 u64 num_bytes, u64 *actual_bytes)
1773 int ret;
1774 u64 discarded_bytes = 0;
1775 struct btrfs_multi_bio *multi = NULL;
1778 /* Tell the block device(s) that the sectors can be discarded */
1779 ret = btrfs_map_block(&root->fs_info->mapping_tree, REQ_DISCARD,
1780 bytenr, &num_bytes, &multi, 0);
1781 if (!ret) {
1782 struct btrfs_bio_stripe *stripe = multi->stripes;
1783 int i;
1786 for (i = 0; i < multi->num_stripes; i++, stripe++) {
1787 if (!stripe->dev->can_discard)
1788 continue;
1790 ret = btrfs_issue_discard(stripe->dev->bdev,
1791 stripe->physical,
1792 stripe->length);
1793 if (!ret)
1794 discarded_bytes += stripe->length;
1795 else if (ret != -EOPNOTSUPP)
1796 break;
1799 * Just in case we get back EOPNOTSUPP for some reason,
1800 * just ignore the return value so we don't screw up
1801 * people calling discard_extent.
1803 ret = 0;
1805 kfree(multi);
1808 if (actual_bytes)
1809 *actual_bytes = discarded_bytes;
1812 return ret;
1815 int btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1816 struct btrfs_root *root,
1817 u64 bytenr, u64 num_bytes, u64 parent,
1818 u64 root_objectid, u64 owner, u64 offset)
1820 int ret;
1821 BUG_ON(owner < BTRFS_FIRST_FREE_OBJECTID &&
1822 root_objectid == BTRFS_TREE_LOG_OBJECTID);
1824 if (owner < BTRFS_FIRST_FREE_OBJECTID) {
1825 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
1826 parent, root_objectid, (int)owner,
1827 BTRFS_ADD_DELAYED_REF, NULL);
1828 } else {
1829 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
1830 parent, root_objectid, owner, offset,
1831 BTRFS_ADD_DELAYED_REF, NULL);
1833 return ret;
1836 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle *trans,
1837 struct btrfs_root *root,
1838 u64 bytenr, u64 num_bytes,
1839 u64 parent, u64 root_objectid,
1840 u64 owner, u64 offset, int refs_to_add,
1841 struct btrfs_delayed_extent_op *extent_op)
1843 struct btrfs_path *path;
1844 struct extent_buffer *leaf;
1845 struct btrfs_extent_item *item;
1846 u64 refs;
1847 int ret;
1848 int err = 0;
1850 path = btrfs_alloc_path();
1851 if (!path)
1852 return -ENOMEM;
1854 path->reada = 1;
1855 path->leave_spinning = 1;
1856 /* this will setup the path even if it fails to insert the back ref */
1857 ret = insert_inline_extent_backref(trans, root->fs_info->extent_root,
1858 path, bytenr, num_bytes, parent,
1859 root_objectid, owner, offset,
1860 refs_to_add, extent_op);
1861 if (ret == 0)
1862 goto out;
1864 if (ret != -EAGAIN) {
1865 err = ret;
1866 goto out;
1869 leaf = path->nodes[0];
1870 item = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
1871 refs = btrfs_extent_refs(leaf, item);
1872 btrfs_set_extent_refs(leaf, item, refs + refs_to_add);
1873 if (extent_op)
1874 __run_delayed_extent_op(extent_op, leaf, item);
1876 btrfs_mark_buffer_dirty(leaf);
1877 btrfs_release_path(path);
1879 path->reada = 1;
1880 path->leave_spinning = 1;
1882 /* now insert the actual backref */
1883 ret = insert_extent_backref(trans, root->fs_info->extent_root,
1884 path, bytenr, parent, root_objectid,
1885 owner, offset, refs_to_add);
1886 BUG_ON(ret);
1887 out:
1888 btrfs_free_path(path);
1889 return err;
1892 static int run_delayed_data_ref(struct btrfs_trans_handle *trans,
1893 struct btrfs_root *root,
1894 struct btrfs_delayed_ref_node *node,
1895 struct btrfs_delayed_extent_op *extent_op,
1896 int insert_reserved)
1898 int ret = 0;
1899 struct btrfs_delayed_data_ref *ref;
1900 struct btrfs_key ins;
1901 u64 parent = 0;
1902 u64 ref_root = 0;
1903 u64 flags = 0;
1905 ins.objectid = node->bytenr;
1906 ins.offset = node->num_bytes;
1907 ins.type = BTRFS_EXTENT_ITEM_KEY;
1909 ref = btrfs_delayed_node_to_data_ref(node);
1910 if (node->type == BTRFS_SHARED_DATA_REF_KEY)
1911 parent = ref->parent;
1912 else
1913 ref_root = ref->root;
1915 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
1916 if (extent_op) {
1917 BUG_ON(extent_op->update_key);
1918 flags |= extent_op->flags_to_set;
1920 ret = alloc_reserved_file_extent(trans, root,
1921 parent, ref_root, flags,
1922 ref->objectid, ref->offset,
1923 &ins, node->ref_mod);
1924 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
1925 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
1926 node->num_bytes, parent,
1927 ref_root, ref->objectid,
1928 ref->offset, node->ref_mod,
1929 extent_op);
1930 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
1931 ret = __btrfs_free_extent(trans, root, node->bytenr,
1932 node->num_bytes, parent,
1933 ref_root, ref->objectid,
1934 ref->offset, node->ref_mod,
1935 extent_op);
1936 } else {
1937 BUG();
1939 return ret;
1942 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op *extent_op,
1943 struct extent_buffer *leaf,
1944 struct btrfs_extent_item *ei)
1946 u64 flags = btrfs_extent_flags(leaf, ei);
1947 if (extent_op->update_flags) {
1948 flags |= extent_op->flags_to_set;
1949 btrfs_set_extent_flags(leaf, ei, flags);
1952 if (extent_op->update_key) {
1953 struct btrfs_tree_block_info *bi;
1954 BUG_ON(!(flags & BTRFS_EXTENT_FLAG_TREE_BLOCK));
1955 bi = (struct btrfs_tree_block_info *)(ei + 1);
1956 btrfs_set_tree_block_key(leaf, bi, &extent_op->key);
1960 static int run_delayed_extent_op(struct btrfs_trans_handle *trans,
1961 struct btrfs_root *root,
1962 struct btrfs_delayed_ref_node *node,
1963 struct btrfs_delayed_extent_op *extent_op)
1965 struct btrfs_key key;
1966 struct btrfs_path *path;
1967 struct btrfs_extent_item *ei;
1968 struct extent_buffer *leaf;
1969 u32 item_size;
1970 int ret;
1971 int err = 0;
1973 path = btrfs_alloc_path();
1974 if (!path)
1975 return -ENOMEM;
1977 key.objectid = node->bytenr;
1978 key.type = BTRFS_EXTENT_ITEM_KEY;
1979 key.offset = node->num_bytes;
1981 path->reada = 1;
1982 path->leave_spinning = 1;
1983 ret = btrfs_search_slot(trans, root->fs_info->extent_root, &key,
1984 path, 0, 1);
1985 if (ret < 0) {
1986 err = ret;
1987 goto out;
1989 if (ret > 0) {
1990 err = -EIO;
1991 goto out;
1994 leaf = path->nodes[0];
1995 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
1996 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1997 if (item_size < sizeof(*ei)) {
1998 ret = convert_extent_item_v0(trans, root->fs_info->extent_root,
1999 path, (u64)-1, 0);
2000 if (ret < 0) {
2001 err = ret;
2002 goto out;
2004 leaf = path->nodes[0];
2005 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2007 #endif
2008 BUG_ON(item_size < sizeof(*ei));
2009 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2010 __run_delayed_extent_op(extent_op, leaf, ei);
2012 btrfs_mark_buffer_dirty(leaf);
2013 out:
2014 btrfs_free_path(path);
2015 return err;
2018 static int run_delayed_tree_ref(struct btrfs_trans_handle *trans,
2019 struct btrfs_root *root,
2020 struct btrfs_delayed_ref_node *node,
2021 struct btrfs_delayed_extent_op *extent_op,
2022 int insert_reserved)
2024 int ret = 0;
2025 struct btrfs_delayed_tree_ref *ref;
2026 struct btrfs_key ins;
2027 u64 parent = 0;
2028 u64 ref_root = 0;
2030 ins.objectid = node->bytenr;
2031 ins.offset = node->num_bytes;
2032 ins.type = BTRFS_EXTENT_ITEM_KEY;
2034 ref = btrfs_delayed_node_to_tree_ref(node);
2035 if (node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2036 parent = ref->parent;
2037 else
2038 ref_root = ref->root;
2040 BUG_ON(node->ref_mod != 1);
2041 if (node->action == BTRFS_ADD_DELAYED_REF && insert_reserved) {
2042 BUG_ON(!extent_op || !extent_op->update_flags ||
2043 !extent_op->update_key);
2044 ret = alloc_reserved_tree_block(trans, root,
2045 parent, ref_root,
2046 extent_op->flags_to_set,
2047 &extent_op->key,
2048 ref->level, &ins);
2049 } else if (node->action == BTRFS_ADD_DELAYED_REF) {
2050 ret = __btrfs_inc_extent_ref(trans, root, node->bytenr,
2051 node->num_bytes, parent, ref_root,
2052 ref->level, 0, 1, extent_op);
2053 } else if (node->action == BTRFS_DROP_DELAYED_REF) {
2054 ret = __btrfs_free_extent(trans, root, node->bytenr,
2055 node->num_bytes, parent, ref_root,
2056 ref->level, 0, 1, extent_op);
2057 } else {
2058 BUG();
2060 return ret;
2063 /* helper function to actually process a single delayed ref entry */
2064 static int run_one_delayed_ref(struct btrfs_trans_handle *trans,
2065 struct btrfs_root *root,
2066 struct btrfs_delayed_ref_node *node,
2067 struct btrfs_delayed_extent_op *extent_op,
2068 int insert_reserved)
2070 int ret;
2071 if (btrfs_delayed_ref_is_head(node)) {
2072 struct btrfs_delayed_ref_head *head;
2074 * we've hit the end of the chain and we were supposed
2075 * to insert this extent into the tree. But, it got
2076 * deleted before we ever needed to insert it, so all
2077 * we have to do is clean up the accounting
2079 BUG_ON(extent_op);
2080 head = btrfs_delayed_node_to_head(node);
2081 if (insert_reserved) {
2082 btrfs_pin_extent(root, node->bytenr,
2083 node->num_bytes, 1);
2084 if (head->is_data) {
2085 ret = btrfs_del_csums(trans, root,
2086 node->bytenr,
2087 node->num_bytes);
2088 BUG_ON(ret);
2091 mutex_unlock(&head->mutex);
2092 return 0;
2095 if (node->type == BTRFS_TREE_BLOCK_REF_KEY ||
2096 node->type == BTRFS_SHARED_BLOCK_REF_KEY)
2097 ret = run_delayed_tree_ref(trans, root, node, extent_op,
2098 insert_reserved);
2099 else if (node->type == BTRFS_EXTENT_DATA_REF_KEY ||
2100 node->type == BTRFS_SHARED_DATA_REF_KEY)
2101 ret = run_delayed_data_ref(trans, root, node, extent_op,
2102 insert_reserved);
2103 else
2104 BUG();
2105 return ret;
2108 static noinline struct btrfs_delayed_ref_node *
2109 select_delayed_ref(struct btrfs_delayed_ref_head *head)
2111 struct rb_node *node;
2112 struct btrfs_delayed_ref_node *ref;
2113 int action = BTRFS_ADD_DELAYED_REF;
2114 again:
2116 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2117 * this prevents ref count from going down to zero when
2118 * there still are pending delayed ref.
2120 node = rb_prev(&head->node.rb_node);
2121 while (1) {
2122 if (!node)
2123 break;
2124 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2125 rb_node);
2126 if (ref->bytenr != head->node.bytenr)
2127 break;
2128 if (ref->action == action)
2129 return ref;
2130 node = rb_prev(node);
2132 if (action == BTRFS_ADD_DELAYED_REF) {
2133 action = BTRFS_DROP_DELAYED_REF;
2134 goto again;
2136 return NULL;
2139 static noinline int run_clustered_refs(struct btrfs_trans_handle *trans,
2140 struct btrfs_root *root,
2141 struct list_head *cluster)
2143 struct btrfs_delayed_ref_root *delayed_refs;
2144 struct btrfs_delayed_ref_node *ref;
2145 struct btrfs_delayed_ref_head *locked_ref = NULL;
2146 struct btrfs_delayed_extent_op *extent_op;
2147 int ret;
2148 int count = 0;
2149 int must_insert_reserved = 0;
2151 delayed_refs = &trans->transaction->delayed_refs;
2152 while (1) {
2153 if (!locked_ref) {
2154 /* pick a new head ref from the cluster list */
2155 if (list_empty(cluster))
2156 break;
2158 locked_ref = list_entry(cluster->next,
2159 struct btrfs_delayed_ref_head, cluster);
2161 /* grab the lock that says we are going to process
2162 * all the refs for this head */
2163 ret = btrfs_delayed_ref_lock(trans, locked_ref);
2166 * we may have dropped the spin lock to get the head
2167 * mutex lock, and that might have given someone else
2168 * time to free the head. If that's true, it has been
2169 * removed from our list and we can move on.
2171 if (ret == -EAGAIN) {
2172 locked_ref = NULL;
2173 count++;
2174 continue;
2179 * record the must insert reserved flag before we
2180 * drop the spin lock.
2182 must_insert_reserved = locked_ref->must_insert_reserved;
2183 locked_ref->must_insert_reserved = 0;
2185 extent_op = locked_ref->extent_op;
2186 locked_ref->extent_op = NULL;
2189 * locked_ref is the head node, so we have to go one
2190 * node back for any delayed ref updates
2192 ref = select_delayed_ref(locked_ref);
2193 if (!ref) {
2194 /* All delayed refs have been processed, Go ahead
2195 * and send the head node to run_one_delayed_ref,
2196 * so that any accounting fixes can happen
2198 ref = &locked_ref->node;
2200 if (extent_op && must_insert_reserved) {
2201 kfree(extent_op);
2202 extent_op = NULL;
2205 if (extent_op) {
2206 spin_unlock(&delayed_refs->lock);
2208 ret = run_delayed_extent_op(trans, root,
2209 ref, extent_op);
2210 BUG_ON(ret);
2211 kfree(extent_op);
2213 cond_resched();
2214 spin_lock(&delayed_refs->lock);
2215 continue;
2218 list_del_init(&locked_ref->cluster);
2219 locked_ref = NULL;
2222 ref->in_tree = 0;
2223 rb_erase(&ref->rb_node, &delayed_refs->root);
2224 delayed_refs->num_entries--;
2226 spin_unlock(&delayed_refs->lock);
2228 ret = run_one_delayed_ref(trans, root, ref, extent_op,
2229 must_insert_reserved);
2230 BUG_ON(ret);
2232 btrfs_put_delayed_ref(ref);
2233 kfree(extent_op);
2234 count++;
2236 cond_resched();
2237 spin_lock(&delayed_refs->lock);
2239 return count;
2243 * this starts processing the delayed reference count updates and
2244 * extent insertions we have queued up so far. count can be
2245 * 0, which means to process everything in the tree at the start
2246 * of the run (but not newly added entries), or it can be some target
2247 * number you'd like to process.
2249 int btrfs_run_delayed_refs(struct btrfs_trans_handle *trans,
2250 struct btrfs_root *root, unsigned long count)
2252 struct rb_node *node;
2253 struct btrfs_delayed_ref_root *delayed_refs;
2254 struct btrfs_delayed_ref_node *ref;
2255 struct list_head cluster;
2256 int ret;
2257 int run_all = count == (unsigned long)-1;
2258 int run_most = 0;
2260 if (root == root->fs_info->extent_root)
2261 root = root->fs_info->tree_root;
2263 delayed_refs = &trans->transaction->delayed_refs;
2264 INIT_LIST_HEAD(&cluster);
2265 again:
2266 spin_lock(&delayed_refs->lock);
2267 if (count == 0) {
2268 count = delayed_refs->num_entries * 2;
2269 run_most = 1;
2271 while (1) {
2272 if (!(run_all || run_most) &&
2273 delayed_refs->num_heads_ready < 64)
2274 break;
2277 * go find something we can process in the rbtree. We start at
2278 * the beginning of the tree, and then build a cluster
2279 * of refs to process starting at the first one we are able to
2280 * lock
2282 ret = btrfs_find_ref_cluster(trans, &cluster,
2283 delayed_refs->run_delayed_start);
2284 if (ret)
2285 break;
2287 ret = run_clustered_refs(trans, root, &cluster);
2288 BUG_ON(ret < 0);
2290 count -= min_t(unsigned long, ret, count);
2292 if (count == 0)
2293 break;
2296 if (run_all) {
2297 node = rb_first(&delayed_refs->root);
2298 if (!node)
2299 goto out;
2300 count = (unsigned long)-1;
2302 while (node) {
2303 ref = rb_entry(node, struct btrfs_delayed_ref_node,
2304 rb_node);
2305 if (btrfs_delayed_ref_is_head(ref)) {
2306 struct btrfs_delayed_ref_head *head;
2308 head = btrfs_delayed_node_to_head(ref);
2309 atomic_inc(&ref->refs);
2311 spin_unlock(&delayed_refs->lock);
2313 * Mutex was contended, block until it's
2314 * released and try again
2316 mutex_lock(&head->mutex);
2317 mutex_unlock(&head->mutex);
2319 btrfs_put_delayed_ref(ref);
2320 cond_resched();
2321 goto again;
2323 node = rb_next(node);
2325 spin_unlock(&delayed_refs->lock);
2326 schedule_timeout(1);
2327 goto again;
2329 out:
2330 spin_unlock(&delayed_refs->lock);
2331 return 0;
2334 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle *trans,
2335 struct btrfs_root *root,
2336 u64 bytenr, u64 num_bytes, u64 flags,
2337 int is_data)
2339 struct btrfs_delayed_extent_op *extent_op;
2340 int ret;
2342 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
2343 if (!extent_op)
2344 return -ENOMEM;
2346 extent_op->flags_to_set = flags;
2347 extent_op->update_flags = 1;
2348 extent_op->update_key = 0;
2349 extent_op->is_data = is_data ? 1 : 0;
2351 ret = btrfs_add_delayed_extent_op(trans, bytenr, num_bytes, extent_op);
2352 if (ret)
2353 kfree(extent_op);
2354 return ret;
2357 static noinline int check_delayed_ref(struct btrfs_trans_handle *trans,
2358 struct btrfs_root *root,
2359 struct btrfs_path *path,
2360 u64 objectid, u64 offset, u64 bytenr)
2362 struct btrfs_delayed_ref_head *head;
2363 struct btrfs_delayed_ref_node *ref;
2364 struct btrfs_delayed_data_ref *data_ref;
2365 struct btrfs_delayed_ref_root *delayed_refs;
2366 struct rb_node *node;
2367 int ret = 0;
2369 ret = -ENOENT;
2370 delayed_refs = &trans->transaction->delayed_refs;
2371 spin_lock(&delayed_refs->lock);
2372 head = btrfs_find_delayed_ref_head(trans, bytenr);
2373 if (!head)
2374 goto out;
2376 if (!mutex_trylock(&head->mutex)) {
2377 atomic_inc(&head->node.refs);
2378 spin_unlock(&delayed_refs->lock);
2380 btrfs_release_path(path);
2383 * Mutex was contended, block until it's released and let
2384 * caller try again
2386 mutex_lock(&head->mutex);
2387 mutex_unlock(&head->mutex);
2388 btrfs_put_delayed_ref(&head->node);
2389 return -EAGAIN;
2392 node = rb_prev(&head->node.rb_node);
2393 if (!node)
2394 goto out_unlock;
2396 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2398 if (ref->bytenr != bytenr)
2399 goto out_unlock;
2401 ret = 1;
2402 if (ref->type != BTRFS_EXTENT_DATA_REF_KEY)
2403 goto out_unlock;
2405 data_ref = btrfs_delayed_node_to_data_ref(ref);
2407 node = rb_prev(node);
2408 if (node) {
2409 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
2410 if (ref->bytenr == bytenr)
2411 goto out_unlock;
2414 if (data_ref->root != root->root_key.objectid ||
2415 data_ref->objectid != objectid || data_ref->offset != offset)
2416 goto out_unlock;
2418 ret = 0;
2419 out_unlock:
2420 mutex_unlock(&head->mutex);
2421 out:
2422 spin_unlock(&delayed_refs->lock);
2423 return ret;
2426 static noinline int check_committed_ref(struct btrfs_trans_handle *trans,
2427 struct btrfs_root *root,
2428 struct btrfs_path *path,
2429 u64 objectid, u64 offset, u64 bytenr)
2431 struct btrfs_root *extent_root = root->fs_info->extent_root;
2432 struct extent_buffer *leaf;
2433 struct btrfs_extent_data_ref *ref;
2434 struct btrfs_extent_inline_ref *iref;
2435 struct btrfs_extent_item *ei;
2436 struct btrfs_key key;
2437 u32 item_size;
2438 int ret;
2440 key.objectid = bytenr;
2441 key.offset = (u64)-1;
2442 key.type = BTRFS_EXTENT_ITEM_KEY;
2444 ret = btrfs_search_slot(NULL, extent_root, &key, path, 0, 0);
2445 if (ret < 0)
2446 goto out;
2447 BUG_ON(ret == 0);
2449 ret = -ENOENT;
2450 if (path->slots[0] == 0)
2451 goto out;
2453 path->slots[0]--;
2454 leaf = path->nodes[0];
2455 btrfs_item_key_to_cpu(leaf, &key, path->slots[0]);
2457 if (key.objectid != bytenr || key.type != BTRFS_EXTENT_ITEM_KEY)
2458 goto out;
2460 ret = 1;
2461 item_size = btrfs_item_size_nr(leaf, path->slots[0]);
2462 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2463 if (item_size < sizeof(*ei)) {
2464 WARN_ON(item_size != sizeof(struct btrfs_extent_item_v0));
2465 goto out;
2467 #endif
2468 ei = btrfs_item_ptr(leaf, path->slots[0], struct btrfs_extent_item);
2470 if (item_size != sizeof(*ei) +
2471 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY))
2472 goto out;
2474 if (btrfs_extent_generation(leaf, ei) <=
2475 btrfs_root_last_snapshot(&root->root_item))
2476 goto out;
2478 iref = (struct btrfs_extent_inline_ref *)(ei + 1);
2479 if (btrfs_extent_inline_ref_type(leaf, iref) !=
2480 BTRFS_EXTENT_DATA_REF_KEY)
2481 goto out;
2483 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
2484 if (btrfs_extent_refs(leaf, ei) !=
2485 btrfs_extent_data_ref_count(leaf, ref) ||
2486 btrfs_extent_data_ref_root(leaf, ref) !=
2487 root->root_key.objectid ||
2488 btrfs_extent_data_ref_objectid(leaf, ref) != objectid ||
2489 btrfs_extent_data_ref_offset(leaf, ref) != offset)
2490 goto out;
2492 ret = 0;
2493 out:
2494 return ret;
2497 int btrfs_cross_ref_exist(struct btrfs_trans_handle *trans,
2498 struct btrfs_root *root,
2499 u64 objectid, u64 offset, u64 bytenr)
2501 struct btrfs_path *path;
2502 int ret;
2503 int ret2;
2505 path = btrfs_alloc_path();
2506 if (!path)
2507 return -ENOENT;
2509 do {
2510 ret = check_committed_ref(trans, root, path, objectid,
2511 offset, bytenr);
2512 if (ret && ret != -ENOENT)
2513 goto out;
2515 ret2 = check_delayed_ref(trans, root, path, objectid,
2516 offset, bytenr);
2517 } while (ret2 == -EAGAIN);
2519 if (ret2 && ret2 != -ENOENT) {
2520 ret = ret2;
2521 goto out;
2524 if (ret != -ENOENT || ret2 != -ENOENT)
2525 ret = 0;
2526 out:
2527 btrfs_free_path(path);
2528 if (root->root_key.objectid == BTRFS_DATA_RELOC_TREE_OBJECTID)
2529 WARN_ON(ret > 0);
2530 return ret;
2533 static int __btrfs_mod_ref(struct btrfs_trans_handle *trans,
2534 struct btrfs_root *root,
2535 struct extent_buffer *buf,
2536 int full_backref, int inc)
2538 u64 bytenr;
2539 u64 num_bytes;
2540 u64 parent;
2541 u64 ref_root;
2542 u32 nritems;
2543 struct btrfs_key key;
2544 struct btrfs_file_extent_item *fi;
2545 int i;
2546 int level;
2547 int ret = 0;
2548 int (*process_func)(struct btrfs_trans_handle *, struct btrfs_root *,
2549 u64, u64, u64, u64, u64, u64);
2551 ref_root = btrfs_header_owner(buf);
2552 nritems = btrfs_header_nritems(buf);
2553 level = btrfs_header_level(buf);
2555 if (!root->ref_cows && level == 0)
2556 return 0;
2558 if (inc)
2559 process_func = btrfs_inc_extent_ref;
2560 else
2561 process_func = btrfs_free_extent;
2563 if (full_backref)
2564 parent = buf->start;
2565 else
2566 parent = 0;
2568 for (i = 0; i < nritems; i++) {
2569 if (level == 0) {
2570 btrfs_item_key_to_cpu(buf, &key, i);
2571 if (btrfs_key_type(&key) != BTRFS_EXTENT_DATA_KEY)
2572 continue;
2573 fi = btrfs_item_ptr(buf, i,
2574 struct btrfs_file_extent_item);
2575 if (btrfs_file_extent_type(buf, fi) ==
2576 BTRFS_FILE_EXTENT_INLINE)
2577 continue;
2578 bytenr = btrfs_file_extent_disk_bytenr(buf, fi);
2579 if (bytenr == 0)
2580 continue;
2582 num_bytes = btrfs_file_extent_disk_num_bytes(buf, fi);
2583 key.offset -= btrfs_file_extent_offset(buf, fi);
2584 ret = process_func(trans, root, bytenr, num_bytes,
2585 parent, ref_root, key.objectid,
2586 key.offset);
2587 if (ret)
2588 goto fail;
2589 } else {
2590 bytenr = btrfs_node_blockptr(buf, i);
2591 num_bytes = btrfs_level_size(root, level - 1);
2592 ret = process_func(trans, root, bytenr, num_bytes,
2593 parent, ref_root, level - 1, 0);
2594 if (ret)
2595 goto fail;
2598 return 0;
2599 fail:
2600 BUG();
2601 return ret;
2604 int btrfs_inc_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2605 struct extent_buffer *buf, int full_backref)
2607 return __btrfs_mod_ref(trans, root, buf, full_backref, 1);
2610 int btrfs_dec_ref(struct btrfs_trans_handle *trans, struct btrfs_root *root,
2611 struct extent_buffer *buf, int full_backref)
2613 return __btrfs_mod_ref(trans, root, buf, full_backref, 0);
2616 static int write_one_cache_group(struct btrfs_trans_handle *trans,
2617 struct btrfs_root *root,
2618 struct btrfs_path *path,
2619 struct btrfs_block_group_cache *cache)
2621 int ret;
2622 struct btrfs_root *extent_root = root->fs_info->extent_root;
2623 unsigned long bi;
2624 struct extent_buffer *leaf;
2626 ret = btrfs_search_slot(trans, extent_root, &cache->key, path, 0, 1);
2627 if (ret < 0)
2628 goto fail;
2629 BUG_ON(ret);
2631 leaf = path->nodes[0];
2632 bi = btrfs_item_ptr_offset(leaf, path->slots[0]);
2633 write_extent_buffer(leaf, &cache->item, bi, sizeof(cache->item));
2634 btrfs_mark_buffer_dirty(leaf);
2635 btrfs_release_path(path);
2636 fail:
2637 if (ret)
2638 return ret;
2639 return 0;
2643 static struct btrfs_block_group_cache *
2644 next_block_group(struct btrfs_root *root,
2645 struct btrfs_block_group_cache *cache)
2647 struct rb_node *node;
2648 spin_lock(&root->fs_info->block_group_cache_lock);
2649 node = rb_next(&cache->cache_node);
2650 btrfs_put_block_group(cache);
2651 if (node) {
2652 cache = rb_entry(node, struct btrfs_block_group_cache,
2653 cache_node);
2654 btrfs_get_block_group(cache);
2655 } else
2656 cache = NULL;
2657 spin_unlock(&root->fs_info->block_group_cache_lock);
2658 return cache;
2661 static int cache_save_setup(struct btrfs_block_group_cache *block_group,
2662 struct btrfs_trans_handle *trans,
2663 struct btrfs_path *path)
2665 struct btrfs_root *root = block_group->fs_info->tree_root;
2666 struct inode *inode = NULL;
2667 u64 alloc_hint = 0;
2668 int dcs = BTRFS_DC_ERROR;
2669 int num_pages = 0;
2670 int retries = 0;
2671 int ret = 0;
2674 * If this block group is smaller than 100 megs don't bother caching the
2675 * block group.
2677 if (block_group->key.offset < (100 * 1024 * 1024)) {
2678 spin_lock(&block_group->lock);
2679 block_group->disk_cache_state = BTRFS_DC_WRITTEN;
2680 spin_unlock(&block_group->lock);
2681 return 0;
2684 again:
2685 inode = lookup_free_space_inode(root, block_group, path);
2686 if (IS_ERR(inode) && PTR_ERR(inode) != -ENOENT) {
2687 ret = PTR_ERR(inode);
2688 btrfs_release_path(path);
2689 goto out;
2692 if (IS_ERR(inode)) {
2693 BUG_ON(retries);
2694 retries++;
2696 if (block_group->ro)
2697 goto out_free;
2699 ret = create_free_space_inode(root, trans, block_group, path);
2700 if (ret)
2701 goto out_free;
2702 goto again;
2706 * We want to set the generation to 0, that way if anything goes wrong
2707 * from here on out we know not to trust this cache when we load up next
2708 * time.
2710 BTRFS_I(inode)->generation = 0;
2711 ret = btrfs_update_inode(trans, root, inode);
2712 WARN_ON(ret);
2714 if (i_size_read(inode) > 0) {
2715 ret = btrfs_truncate_free_space_cache(root, trans, path,
2716 inode);
2717 if (ret)
2718 goto out_put;
2721 spin_lock(&block_group->lock);
2722 if (block_group->cached != BTRFS_CACHE_FINISHED) {
2723 /* We're not cached, don't bother trying to write stuff out */
2724 dcs = BTRFS_DC_WRITTEN;
2725 spin_unlock(&block_group->lock);
2726 goto out_put;
2728 spin_unlock(&block_group->lock);
2730 num_pages = (int)div64_u64(block_group->key.offset, 1024 * 1024 * 1024);
2731 if (!num_pages)
2732 num_pages = 1;
2735 * Just to make absolutely sure we have enough space, we're going to
2736 * preallocate 12 pages worth of space for each block group. In
2737 * practice we ought to use at most 8, but we need extra space so we can
2738 * add our header and have a terminator between the extents and the
2739 * bitmaps.
2741 num_pages *= 16;
2742 num_pages *= PAGE_CACHE_SIZE;
2744 ret = btrfs_check_data_free_space(inode, num_pages);
2745 if (ret)
2746 goto out_put;
2748 ret = btrfs_prealloc_file_range_trans(inode, trans, 0, 0, num_pages,
2749 num_pages, num_pages,
2750 &alloc_hint);
2751 if (!ret)
2752 dcs = BTRFS_DC_SETUP;
2753 btrfs_free_reserved_data_space(inode, num_pages);
2754 out_put:
2755 iput(inode);
2756 out_free:
2757 btrfs_release_path(path);
2758 out:
2759 spin_lock(&block_group->lock);
2760 block_group->disk_cache_state = dcs;
2761 spin_unlock(&block_group->lock);
2763 return ret;
2766 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle *trans,
2767 struct btrfs_root *root)
2769 struct btrfs_block_group_cache *cache;
2770 int err = 0;
2771 struct btrfs_path *path;
2772 u64 last = 0;
2774 path = btrfs_alloc_path();
2775 if (!path)
2776 return -ENOMEM;
2778 again:
2779 while (1) {
2780 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2781 while (cache) {
2782 if (cache->disk_cache_state == BTRFS_DC_CLEAR)
2783 break;
2784 cache = next_block_group(root, cache);
2786 if (!cache) {
2787 if (last == 0)
2788 break;
2789 last = 0;
2790 continue;
2792 err = cache_save_setup(cache, trans, path);
2793 last = cache->key.objectid + cache->key.offset;
2794 btrfs_put_block_group(cache);
2797 while (1) {
2798 if (last == 0) {
2799 err = btrfs_run_delayed_refs(trans, root,
2800 (unsigned long)-1);
2801 BUG_ON(err);
2804 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2805 while (cache) {
2806 if (cache->disk_cache_state == BTRFS_DC_CLEAR) {
2807 btrfs_put_block_group(cache);
2808 goto again;
2811 if (cache->dirty)
2812 break;
2813 cache = next_block_group(root, cache);
2815 if (!cache) {
2816 if (last == 0)
2817 break;
2818 last = 0;
2819 continue;
2822 if (cache->disk_cache_state == BTRFS_DC_SETUP)
2823 cache->disk_cache_state = BTRFS_DC_NEED_WRITE;
2824 cache->dirty = 0;
2825 last = cache->key.objectid + cache->key.offset;
2827 err = write_one_cache_group(trans, root, path, cache);
2828 BUG_ON(err);
2829 btrfs_put_block_group(cache);
2832 while (1) {
2834 * I don't think this is needed since we're just marking our
2835 * preallocated extent as written, but just in case it can't
2836 * hurt.
2838 if (last == 0) {
2839 err = btrfs_run_delayed_refs(trans, root,
2840 (unsigned long)-1);
2841 BUG_ON(err);
2844 cache = btrfs_lookup_first_block_group(root->fs_info, last);
2845 while (cache) {
2847 * Really this shouldn't happen, but it could if we
2848 * couldn't write the entire preallocated extent and
2849 * splitting the extent resulted in a new block.
2851 if (cache->dirty) {
2852 btrfs_put_block_group(cache);
2853 goto again;
2855 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2856 break;
2857 cache = next_block_group(root, cache);
2859 if (!cache) {
2860 if (last == 0)
2861 break;
2862 last = 0;
2863 continue;
2866 btrfs_write_out_cache(root, trans, cache, path);
2869 * If we didn't have an error then the cache state is still
2870 * NEED_WRITE, so we can set it to WRITTEN.
2872 if (cache->disk_cache_state == BTRFS_DC_NEED_WRITE)
2873 cache->disk_cache_state = BTRFS_DC_WRITTEN;
2874 last = cache->key.objectid + cache->key.offset;
2875 btrfs_put_block_group(cache);
2878 btrfs_free_path(path);
2879 return 0;
2882 int btrfs_extent_readonly(struct btrfs_root *root, u64 bytenr)
2884 struct btrfs_block_group_cache *block_group;
2885 int readonly = 0;
2887 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
2888 if (!block_group || block_group->ro)
2889 readonly = 1;
2890 if (block_group)
2891 btrfs_put_block_group(block_group);
2892 return readonly;
2895 static int update_space_info(struct btrfs_fs_info *info, u64 flags,
2896 u64 total_bytes, u64 bytes_used,
2897 struct btrfs_space_info **space_info)
2899 struct btrfs_space_info *found;
2900 int i;
2901 int factor;
2903 if (flags & (BTRFS_BLOCK_GROUP_DUP | BTRFS_BLOCK_GROUP_RAID1 |
2904 BTRFS_BLOCK_GROUP_RAID10))
2905 factor = 2;
2906 else
2907 factor = 1;
2909 found = __find_space_info(info, flags);
2910 if (found) {
2911 spin_lock(&found->lock);
2912 found->total_bytes += total_bytes;
2913 found->disk_total += total_bytes * factor;
2914 found->bytes_used += bytes_used;
2915 found->disk_used += bytes_used * factor;
2916 found->full = 0;
2917 spin_unlock(&found->lock);
2918 *space_info = found;
2919 return 0;
2921 found = kzalloc(sizeof(*found), GFP_NOFS);
2922 if (!found)
2923 return -ENOMEM;
2925 for (i = 0; i < BTRFS_NR_RAID_TYPES; i++)
2926 INIT_LIST_HEAD(&found->block_groups[i]);
2927 init_rwsem(&found->groups_sem);
2928 spin_lock_init(&found->lock);
2929 found->flags = flags & (BTRFS_BLOCK_GROUP_DATA |
2930 BTRFS_BLOCK_GROUP_SYSTEM |
2931 BTRFS_BLOCK_GROUP_METADATA);
2932 found->total_bytes = total_bytes;
2933 found->disk_total = total_bytes * factor;
2934 found->bytes_used = bytes_used;
2935 found->disk_used = bytes_used * factor;
2936 found->bytes_pinned = 0;
2937 found->bytes_reserved = 0;
2938 found->bytes_readonly = 0;
2939 found->bytes_may_use = 0;
2940 found->full = 0;
2941 found->force_alloc = CHUNK_ALLOC_NO_FORCE;
2942 found->chunk_alloc = 0;
2943 *space_info = found;
2944 list_add_rcu(&found->list, &info->space_info);
2945 atomic_set(&found->caching_threads, 0);
2946 return 0;
2949 static void set_avail_alloc_bits(struct btrfs_fs_info *fs_info, u64 flags)
2951 u64 extra_flags = flags & (BTRFS_BLOCK_GROUP_RAID0 |
2952 BTRFS_BLOCK_GROUP_RAID1 |
2953 BTRFS_BLOCK_GROUP_RAID10 |
2954 BTRFS_BLOCK_GROUP_DUP);
2955 if (extra_flags) {
2956 if (flags & BTRFS_BLOCK_GROUP_DATA)
2957 fs_info->avail_data_alloc_bits |= extra_flags;
2958 if (flags & BTRFS_BLOCK_GROUP_METADATA)
2959 fs_info->avail_metadata_alloc_bits |= extra_flags;
2960 if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
2961 fs_info->avail_system_alloc_bits |= extra_flags;
2965 u64 btrfs_reduce_alloc_profile(struct btrfs_root *root, u64 flags)
2968 * we add in the count of missing devices because we want
2969 * to make sure that any RAID levels on a degraded FS
2970 * continue to be honored.
2972 u64 num_devices = root->fs_info->fs_devices->rw_devices +
2973 root->fs_info->fs_devices->missing_devices;
2975 if (num_devices == 1)
2976 flags &= ~(BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID0);
2977 if (num_devices < 4)
2978 flags &= ~BTRFS_BLOCK_GROUP_RAID10;
2980 if ((flags & BTRFS_BLOCK_GROUP_DUP) &&
2981 (flags & (BTRFS_BLOCK_GROUP_RAID1 |
2982 BTRFS_BLOCK_GROUP_RAID10))) {
2983 flags &= ~BTRFS_BLOCK_GROUP_DUP;
2986 if ((flags & BTRFS_BLOCK_GROUP_RAID1) &&
2987 (flags & BTRFS_BLOCK_GROUP_RAID10)) {
2988 flags &= ~BTRFS_BLOCK_GROUP_RAID1;
2991 if ((flags & BTRFS_BLOCK_GROUP_RAID0) &&
2992 ((flags & BTRFS_BLOCK_GROUP_RAID1) |
2993 (flags & BTRFS_BLOCK_GROUP_RAID10) |
2994 (flags & BTRFS_BLOCK_GROUP_DUP)))
2995 flags &= ~BTRFS_BLOCK_GROUP_RAID0;
2996 return flags;
2999 static u64 get_alloc_profile(struct btrfs_root *root, u64 flags)
3001 if (flags & BTRFS_BLOCK_GROUP_DATA)
3002 flags |= root->fs_info->avail_data_alloc_bits &
3003 root->fs_info->data_alloc_profile;
3004 else if (flags & BTRFS_BLOCK_GROUP_SYSTEM)
3005 flags |= root->fs_info->avail_system_alloc_bits &
3006 root->fs_info->system_alloc_profile;
3007 else if (flags & BTRFS_BLOCK_GROUP_METADATA)
3008 flags |= root->fs_info->avail_metadata_alloc_bits &
3009 root->fs_info->metadata_alloc_profile;
3010 return btrfs_reduce_alloc_profile(root, flags);
3013 u64 btrfs_get_alloc_profile(struct btrfs_root *root, int data)
3015 u64 flags;
3017 if (data)
3018 flags = BTRFS_BLOCK_GROUP_DATA;
3019 else if (root == root->fs_info->chunk_root)
3020 flags = BTRFS_BLOCK_GROUP_SYSTEM;
3021 else
3022 flags = BTRFS_BLOCK_GROUP_METADATA;
3024 return get_alloc_profile(root, flags);
3027 void btrfs_set_inode_space_info(struct btrfs_root *root, struct inode *inode)
3029 BTRFS_I(inode)->space_info = __find_space_info(root->fs_info,
3030 BTRFS_BLOCK_GROUP_DATA);
3034 * This will check the space that the inode allocates from to make sure we have
3035 * enough space for bytes.
3037 int btrfs_check_data_free_space(struct inode *inode, u64 bytes)
3039 struct btrfs_space_info *data_sinfo;
3040 struct btrfs_root *root = BTRFS_I(inode)->root;
3041 u64 used;
3042 int ret = 0, committed = 0, alloc_chunk = 1;
3044 /* make sure bytes are sectorsize aligned */
3045 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3047 if (root == root->fs_info->tree_root ||
3048 BTRFS_I(inode)->location.objectid == BTRFS_FREE_INO_OBJECTID) {
3049 alloc_chunk = 0;
3050 committed = 1;
3053 data_sinfo = BTRFS_I(inode)->space_info;
3054 if (!data_sinfo)
3055 goto alloc;
3057 again:
3058 /* make sure we have enough space to handle the data first */
3059 spin_lock(&data_sinfo->lock);
3060 used = data_sinfo->bytes_used + data_sinfo->bytes_reserved +
3061 data_sinfo->bytes_pinned + data_sinfo->bytes_readonly +
3062 data_sinfo->bytes_may_use;
3064 if (used + bytes > data_sinfo->total_bytes) {
3065 struct btrfs_trans_handle *trans;
3068 * if we don't have enough free bytes in this space then we need
3069 * to alloc a new chunk.
3071 if (!data_sinfo->full && alloc_chunk) {
3072 u64 alloc_target;
3074 data_sinfo->force_alloc = CHUNK_ALLOC_FORCE;
3075 spin_unlock(&data_sinfo->lock);
3076 alloc:
3077 alloc_target = btrfs_get_alloc_profile(root, 1);
3078 trans = btrfs_join_transaction(root);
3079 if (IS_ERR(trans))
3080 return PTR_ERR(trans);
3082 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
3083 bytes + 2 * 1024 * 1024,
3084 alloc_target,
3085 CHUNK_ALLOC_NO_FORCE);
3086 btrfs_end_transaction(trans, root);
3087 if (ret < 0) {
3088 if (ret != -ENOSPC)
3089 return ret;
3090 else
3091 goto commit_trans;
3094 if (!data_sinfo) {
3095 btrfs_set_inode_space_info(root, inode);
3096 data_sinfo = BTRFS_I(inode)->space_info;
3098 goto again;
3102 * If we have less pinned bytes than we want to allocate then
3103 * don't bother committing the transaction, it won't help us.
3105 if (data_sinfo->bytes_pinned < bytes)
3106 committed = 1;
3107 spin_unlock(&data_sinfo->lock);
3109 /* commit the current transaction and try again */
3110 commit_trans:
3111 if (!committed &&
3112 !atomic_read(&root->fs_info->open_ioctl_trans)) {
3113 committed = 1;
3114 trans = btrfs_join_transaction(root);
3115 if (IS_ERR(trans))
3116 return PTR_ERR(trans);
3117 ret = btrfs_commit_transaction(trans, root);
3118 if (ret)
3119 return ret;
3120 goto again;
3123 return -ENOSPC;
3125 data_sinfo->bytes_may_use += bytes;
3126 BTRFS_I(inode)->reserved_bytes += bytes;
3127 spin_unlock(&data_sinfo->lock);
3129 return 0;
3133 * called when we are clearing an delalloc extent from the
3134 * inode's io_tree or there was an error for whatever reason
3135 * after calling btrfs_check_data_free_space
3137 void btrfs_free_reserved_data_space(struct inode *inode, u64 bytes)
3139 struct btrfs_root *root = BTRFS_I(inode)->root;
3140 struct btrfs_space_info *data_sinfo;
3142 /* make sure bytes are sectorsize aligned */
3143 bytes = (bytes + root->sectorsize - 1) & ~((u64)root->sectorsize - 1);
3145 data_sinfo = BTRFS_I(inode)->space_info;
3146 spin_lock(&data_sinfo->lock);
3147 data_sinfo->bytes_may_use -= bytes;
3148 BTRFS_I(inode)->reserved_bytes -= bytes;
3149 spin_unlock(&data_sinfo->lock);
3152 static void force_metadata_allocation(struct btrfs_fs_info *info)
3154 struct list_head *head = &info->space_info;
3155 struct btrfs_space_info *found;
3157 rcu_read_lock();
3158 list_for_each_entry_rcu(found, head, list) {
3159 if (found->flags & BTRFS_BLOCK_GROUP_METADATA)
3160 found->force_alloc = CHUNK_ALLOC_FORCE;
3162 rcu_read_unlock();
3165 static int should_alloc_chunk(struct btrfs_root *root,
3166 struct btrfs_space_info *sinfo, u64 alloc_bytes,
3167 int force)
3169 u64 num_bytes = sinfo->total_bytes - sinfo->bytes_readonly;
3170 u64 num_allocated = sinfo->bytes_used + sinfo->bytes_reserved;
3171 u64 thresh;
3173 if (force == CHUNK_ALLOC_FORCE)
3174 return 1;
3177 * in limited mode, we want to have some free space up to
3178 * about 1% of the FS size.
3180 if (force == CHUNK_ALLOC_LIMITED) {
3181 thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3182 thresh = max_t(u64, 64 * 1024 * 1024,
3183 div_factor_fine(thresh, 1));
3185 if (num_bytes - num_allocated < thresh)
3186 return 1;
3190 * we have two similar checks here, one based on percentage
3191 * and once based on a hard number of 256MB. The idea
3192 * is that if we have a good amount of free
3193 * room, don't allocate a chunk. A good mount is
3194 * less than 80% utilized of the chunks we have allocated,
3195 * or more than 256MB free
3197 if (num_allocated + alloc_bytes + 256 * 1024 * 1024 < num_bytes)
3198 return 0;
3200 if (num_allocated + alloc_bytes < div_factor(num_bytes, 8))
3201 return 0;
3203 thresh = btrfs_super_total_bytes(&root->fs_info->super_copy);
3205 /* 256MB or 5% of the FS */
3206 thresh = max_t(u64, 256 * 1024 * 1024, div_factor_fine(thresh, 5));
3208 if (num_bytes > thresh && sinfo->bytes_used < div_factor(num_bytes, 3))
3209 return 0;
3210 return 1;
3213 static int do_chunk_alloc(struct btrfs_trans_handle *trans,
3214 struct btrfs_root *extent_root, u64 alloc_bytes,
3215 u64 flags, int force)
3217 struct btrfs_space_info *space_info;
3218 struct btrfs_fs_info *fs_info = extent_root->fs_info;
3219 int wait_for_alloc = 0;
3220 int ret = 0;
3222 flags = btrfs_reduce_alloc_profile(extent_root, flags);
3224 space_info = __find_space_info(extent_root->fs_info, flags);
3225 if (!space_info) {
3226 ret = update_space_info(extent_root->fs_info, flags,
3227 0, 0, &space_info);
3228 BUG_ON(ret);
3230 BUG_ON(!space_info);
3232 again:
3233 spin_lock(&space_info->lock);
3234 if (space_info->force_alloc)
3235 force = space_info->force_alloc;
3236 if (space_info->full) {
3237 spin_unlock(&space_info->lock);
3238 return 0;
3241 if (!should_alloc_chunk(extent_root, space_info, alloc_bytes, force)) {
3242 spin_unlock(&space_info->lock);
3243 return 0;
3244 } else if (space_info->chunk_alloc) {
3245 wait_for_alloc = 1;
3246 } else {
3247 space_info->chunk_alloc = 1;
3250 spin_unlock(&space_info->lock);
3252 mutex_lock(&fs_info->chunk_mutex);
3255 * The chunk_mutex is held throughout the entirety of a chunk
3256 * allocation, so once we've acquired the chunk_mutex we know that the
3257 * other guy is done and we need to recheck and see if we should
3258 * allocate.
3260 if (wait_for_alloc) {
3261 mutex_unlock(&fs_info->chunk_mutex);
3262 wait_for_alloc = 0;
3263 goto again;
3267 * If we have mixed data/metadata chunks we want to make sure we keep
3268 * allocating mixed chunks instead of individual chunks.
3270 if (btrfs_mixed_space_info(space_info))
3271 flags |= (BTRFS_BLOCK_GROUP_DATA | BTRFS_BLOCK_GROUP_METADATA);
3274 * if we're doing a data chunk, go ahead and make sure that
3275 * we keep a reasonable number of metadata chunks allocated in the
3276 * FS as well.
3278 if (flags & BTRFS_BLOCK_GROUP_DATA && fs_info->metadata_ratio) {
3279 fs_info->data_chunk_allocations++;
3280 if (!(fs_info->data_chunk_allocations %
3281 fs_info->metadata_ratio))
3282 force_metadata_allocation(fs_info);
3285 ret = btrfs_alloc_chunk(trans, extent_root, flags);
3286 spin_lock(&space_info->lock);
3287 if (ret)
3288 space_info->full = 1;
3289 else
3290 ret = 1;
3292 space_info->force_alloc = CHUNK_ALLOC_NO_FORCE;
3293 space_info->chunk_alloc = 0;
3294 spin_unlock(&space_info->lock);
3295 mutex_unlock(&extent_root->fs_info->chunk_mutex);
3296 return ret;
3300 * shrink metadata reservation for delalloc
3302 static int shrink_delalloc(struct btrfs_trans_handle *trans,
3303 struct btrfs_root *root, u64 to_reclaim, int sync)
3305 struct btrfs_block_rsv *block_rsv;
3306 struct btrfs_space_info *space_info;
3307 u64 reserved;
3308 u64 max_reclaim;
3309 u64 reclaimed = 0;
3310 long time_left;
3311 int nr_pages = (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT;
3312 int loops = 0;
3313 unsigned long progress;
3315 block_rsv = &root->fs_info->delalloc_block_rsv;
3316 space_info = block_rsv->space_info;
3318 smp_mb();
3319 reserved = space_info->bytes_reserved;
3320 progress = space_info->reservation_progress;
3322 if (reserved == 0)
3323 return 0;
3325 max_reclaim = min(reserved, to_reclaim);
3327 while (loops < 1024) {
3328 /* have the flusher threads jump in and do some IO */
3329 smp_mb();
3330 nr_pages = min_t(unsigned long, nr_pages,
3331 root->fs_info->delalloc_bytes >> PAGE_CACHE_SHIFT);
3332 writeback_inodes_sb_nr_if_idle(root->fs_info->sb, nr_pages);
3334 spin_lock(&space_info->lock);
3335 if (reserved > space_info->bytes_reserved)
3336 reclaimed += reserved - space_info->bytes_reserved;
3337 reserved = space_info->bytes_reserved;
3338 spin_unlock(&space_info->lock);
3340 loops++;
3342 if (reserved == 0 || reclaimed >= max_reclaim)
3343 break;
3345 if (trans && trans->transaction->blocked)
3346 return -EAGAIN;
3348 time_left = schedule_timeout_interruptible(1);
3350 /* We were interrupted, exit */
3351 if (time_left)
3352 break;
3354 /* we've kicked the IO a few times, if anything has been freed,
3355 * exit. There is no sense in looping here for a long time
3356 * when we really need to commit the transaction, or there are
3357 * just too many writers without enough free space
3360 if (loops > 3) {
3361 smp_mb();
3362 if (progress != space_info->reservation_progress)
3363 break;
3367 return reclaimed >= to_reclaim;
3371 * Retries tells us how many times we've called reserve_metadata_bytes. The
3372 * idea is if this is the first call (retries == 0) then we will add to our
3373 * reserved count if we can't make the allocation in order to hold our place
3374 * while we go and try and free up space. That way for retries > 1 we don't try
3375 * and add space, we just check to see if the amount of unused space is >= the
3376 * total space, meaning that our reservation is valid.
3378 * However if we don't intend to retry this reservation, pass -1 as retries so
3379 * that it short circuits this logic.
3381 static int reserve_metadata_bytes(struct btrfs_trans_handle *trans,
3382 struct btrfs_root *root,
3383 struct btrfs_block_rsv *block_rsv,
3384 u64 orig_bytes, int flush)
3386 struct btrfs_space_info *space_info = block_rsv->space_info;
3387 u64 unused;
3388 u64 num_bytes = orig_bytes;
3389 int retries = 0;
3390 int ret = 0;
3391 bool reserved = false;
3392 bool committed = false;
3394 again:
3395 ret = -ENOSPC;
3396 if (reserved)
3397 num_bytes = 0;
3399 spin_lock(&space_info->lock);
3400 unused = space_info->bytes_used + space_info->bytes_reserved +
3401 space_info->bytes_pinned + space_info->bytes_readonly +
3402 space_info->bytes_may_use;
3405 * The idea here is that we've not already over-reserved the block group
3406 * then we can go ahead and save our reservation first and then start
3407 * flushing if we need to. Otherwise if we've already overcommitted
3408 * lets start flushing stuff first and then come back and try to make
3409 * our reservation.
3411 if (unused <= space_info->total_bytes) {
3412 unused = space_info->total_bytes - unused;
3413 if (unused >= num_bytes) {
3414 if (!reserved)
3415 space_info->bytes_reserved += orig_bytes;
3416 ret = 0;
3417 } else {
3419 * Ok set num_bytes to orig_bytes since we aren't
3420 * overocmmitted, this way we only try and reclaim what
3421 * we need.
3423 num_bytes = orig_bytes;
3425 } else {
3427 * Ok we're over committed, set num_bytes to the overcommitted
3428 * amount plus the amount of bytes that we need for this
3429 * reservation.
3431 num_bytes = unused - space_info->total_bytes +
3432 (orig_bytes * (retries + 1));
3436 * Couldn't make our reservation, save our place so while we're trying
3437 * to reclaim space we can actually use it instead of somebody else
3438 * stealing it from us.
3440 if (ret && !reserved) {
3441 space_info->bytes_reserved += orig_bytes;
3442 reserved = true;
3445 spin_unlock(&space_info->lock);
3447 if (!ret)
3448 return 0;
3450 if (!flush)
3451 goto out;
3454 * We do synchronous shrinking since we don't actually unreserve
3455 * metadata until after the IO is completed.
3457 ret = shrink_delalloc(trans, root, num_bytes, 1);
3458 if (ret > 0)
3459 return 0;
3460 else if (ret < 0)
3461 goto out;
3464 * So if we were overcommitted it's possible that somebody else flushed
3465 * out enough space and we simply didn't have enough space to reclaim,
3466 * so go back around and try again.
3468 if (retries < 2) {
3469 retries++;
3470 goto again;
3473 spin_lock(&space_info->lock);
3475 * Not enough space to be reclaimed, don't bother committing the
3476 * transaction.
3478 if (space_info->bytes_pinned < orig_bytes)
3479 ret = -ENOSPC;
3480 spin_unlock(&space_info->lock);
3481 if (ret)
3482 goto out;
3484 ret = -EAGAIN;
3485 if (trans || committed)
3486 goto out;
3488 ret = -ENOSPC;
3489 trans = btrfs_join_transaction(root);
3490 if (IS_ERR(trans))
3491 goto out;
3492 ret = btrfs_commit_transaction(trans, root);
3493 if (!ret) {
3494 trans = NULL;
3495 committed = true;
3496 goto again;
3499 out:
3500 if (reserved) {
3501 spin_lock(&space_info->lock);
3502 space_info->bytes_reserved -= orig_bytes;
3503 spin_unlock(&space_info->lock);
3506 return ret;
3509 static struct btrfs_block_rsv *get_block_rsv(struct btrfs_trans_handle *trans,
3510 struct btrfs_root *root)
3512 struct btrfs_block_rsv *block_rsv;
3513 if (root->ref_cows)
3514 block_rsv = trans->block_rsv;
3515 else
3516 block_rsv = root->block_rsv;
3518 if (!block_rsv)
3519 block_rsv = &root->fs_info->empty_block_rsv;
3521 return block_rsv;
3524 static int block_rsv_use_bytes(struct btrfs_block_rsv *block_rsv,
3525 u64 num_bytes)
3527 int ret = -ENOSPC;
3528 spin_lock(&block_rsv->lock);
3529 if (block_rsv->reserved >= num_bytes) {
3530 block_rsv->reserved -= num_bytes;
3531 if (block_rsv->reserved < block_rsv->size)
3532 block_rsv->full = 0;
3533 ret = 0;
3535 spin_unlock(&block_rsv->lock);
3536 return ret;
3539 static void block_rsv_add_bytes(struct btrfs_block_rsv *block_rsv,
3540 u64 num_bytes, int update_size)
3542 spin_lock(&block_rsv->lock);
3543 block_rsv->reserved += num_bytes;
3544 if (update_size)
3545 block_rsv->size += num_bytes;
3546 else if (block_rsv->reserved >= block_rsv->size)
3547 block_rsv->full = 1;
3548 spin_unlock(&block_rsv->lock);
3551 static void block_rsv_release_bytes(struct btrfs_block_rsv *block_rsv,
3552 struct btrfs_block_rsv *dest, u64 num_bytes)
3554 struct btrfs_space_info *space_info = block_rsv->space_info;
3556 spin_lock(&block_rsv->lock);
3557 if (num_bytes == (u64)-1)
3558 num_bytes = block_rsv->size;
3559 block_rsv->size -= num_bytes;
3560 if (block_rsv->reserved >= block_rsv->size) {
3561 num_bytes = block_rsv->reserved - block_rsv->size;
3562 block_rsv->reserved = block_rsv->size;
3563 block_rsv->full = 1;
3564 } else {
3565 num_bytes = 0;
3567 spin_unlock(&block_rsv->lock);
3569 if (num_bytes > 0) {
3570 if (dest) {
3571 spin_lock(&dest->lock);
3572 if (!dest->full) {
3573 u64 bytes_to_add;
3575 bytes_to_add = dest->size - dest->reserved;
3576 bytes_to_add = min(num_bytes, bytes_to_add);
3577 dest->reserved += bytes_to_add;
3578 if (dest->reserved >= dest->size)
3579 dest->full = 1;
3580 num_bytes -= bytes_to_add;
3582 spin_unlock(&dest->lock);
3584 if (num_bytes) {
3585 spin_lock(&space_info->lock);
3586 space_info->bytes_reserved -= num_bytes;
3587 space_info->reservation_progress++;
3588 spin_unlock(&space_info->lock);
3593 static int block_rsv_migrate_bytes(struct btrfs_block_rsv *src,
3594 struct btrfs_block_rsv *dst, u64 num_bytes)
3596 int ret;
3598 ret = block_rsv_use_bytes(src, num_bytes);
3599 if (ret)
3600 return ret;
3602 block_rsv_add_bytes(dst, num_bytes, 1);
3603 return 0;
3606 void btrfs_init_block_rsv(struct btrfs_block_rsv *rsv)
3608 memset(rsv, 0, sizeof(*rsv));
3609 spin_lock_init(&rsv->lock);
3610 atomic_set(&rsv->usage, 1);
3611 rsv->priority = 6;
3612 INIT_LIST_HEAD(&rsv->list);
3615 struct btrfs_block_rsv *btrfs_alloc_block_rsv(struct btrfs_root *root)
3617 struct btrfs_block_rsv *block_rsv;
3618 struct btrfs_fs_info *fs_info = root->fs_info;
3620 block_rsv = kmalloc(sizeof(*block_rsv), GFP_NOFS);
3621 if (!block_rsv)
3622 return NULL;
3624 btrfs_init_block_rsv(block_rsv);
3625 block_rsv->space_info = __find_space_info(fs_info,
3626 BTRFS_BLOCK_GROUP_METADATA);
3627 return block_rsv;
3630 void btrfs_free_block_rsv(struct btrfs_root *root,
3631 struct btrfs_block_rsv *rsv)
3633 if (rsv && atomic_dec_and_test(&rsv->usage)) {
3634 btrfs_block_rsv_release(root, rsv, (u64)-1);
3635 if (!rsv->durable)
3636 kfree(rsv);
3641 * make the block_rsv struct be able to capture freed space.
3642 * the captured space will re-add to the the block_rsv struct
3643 * after transaction commit
3645 void btrfs_add_durable_block_rsv(struct btrfs_fs_info *fs_info,
3646 struct btrfs_block_rsv *block_rsv)
3648 block_rsv->durable = 1;
3649 mutex_lock(&fs_info->durable_block_rsv_mutex);
3650 list_add_tail(&block_rsv->list, &fs_info->durable_block_rsv_list);
3651 mutex_unlock(&fs_info->durable_block_rsv_mutex);
3654 int btrfs_block_rsv_add(struct btrfs_trans_handle *trans,
3655 struct btrfs_root *root,
3656 struct btrfs_block_rsv *block_rsv,
3657 u64 num_bytes)
3659 int ret;
3661 if (num_bytes == 0)
3662 return 0;
3664 ret = reserve_metadata_bytes(trans, root, block_rsv, num_bytes, 1);
3665 if (!ret) {
3666 block_rsv_add_bytes(block_rsv, num_bytes, 1);
3667 return 0;
3670 return ret;
3673 int btrfs_block_rsv_check(struct btrfs_trans_handle *trans,
3674 struct btrfs_root *root,
3675 struct btrfs_block_rsv *block_rsv,
3676 u64 min_reserved, int min_factor)
3678 u64 num_bytes = 0;
3679 int commit_trans = 0;
3680 int ret = -ENOSPC;
3682 if (!block_rsv)
3683 return 0;
3685 spin_lock(&block_rsv->lock);
3686 if (min_factor > 0)
3687 num_bytes = div_factor(block_rsv->size, min_factor);
3688 if (min_reserved > num_bytes)
3689 num_bytes = min_reserved;
3691 if (block_rsv->reserved >= num_bytes) {
3692 ret = 0;
3693 } else {
3694 num_bytes -= block_rsv->reserved;
3695 if (block_rsv->durable &&
3696 block_rsv->freed[0] + block_rsv->freed[1] >= num_bytes)
3697 commit_trans = 1;
3699 spin_unlock(&block_rsv->lock);
3700 if (!ret)
3701 return 0;
3703 if (block_rsv->refill_used) {
3704 ret = reserve_metadata_bytes(trans, root, block_rsv,
3705 num_bytes, 0);
3706 if (!ret) {
3707 block_rsv_add_bytes(block_rsv, num_bytes, 0);
3708 return 0;
3712 if (commit_trans) {
3713 if (trans)
3714 return -EAGAIN;
3716 trans = btrfs_join_transaction(root);
3717 BUG_ON(IS_ERR(trans));
3718 ret = btrfs_commit_transaction(trans, root);
3719 return 0;
3722 return -ENOSPC;
3725 int btrfs_block_rsv_migrate(struct btrfs_block_rsv *src_rsv,
3726 struct btrfs_block_rsv *dst_rsv,
3727 u64 num_bytes)
3729 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3732 void btrfs_block_rsv_release(struct btrfs_root *root,
3733 struct btrfs_block_rsv *block_rsv,
3734 u64 num_bytes)
3736 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
3737 if (global_rsv->full || global_rsv == block_rsv ||
3738 block_rsv->space_info != global_rsv->space_info)
3739 global_rsv = NULL;
3740 block_rsv_release_bytes(block_rsv, global_rsv, num_bytes);
3744 * helper to calculate size of global block reservation.
3745 * the desired value is sum of space used by extent tree,
3746 * checksum tree and root tree
3748 static u64 calc_global_metadata_size(struct btrfs_fs_info *fs_info)
3750 struct btrfs_space_info *sinfo;
3751 u64 num_bytes;
3752 u64 meta_used;
3753 u64 data_used;
3754 int csum_size = btrfs_super_csum_size(&fs_info->super_copy);
3756 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_DATA);
3757 spin_lock(&sinfo->lock);
3758 data_used = sinfo->bytes_used;
3759 spin_unlock(&sinfo->lock);
3761 sinfo = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3762 spin_lock(&sinfo->lock);
3763 if (sinfo->flags & BTRFS_BLOCK_GROUP_DATA)
3764 data_used = 0;
3765 meta_used = sinfo->bytes_used;
3766 spin_unlock(&sinfo->lock);
3768 num_bytes = (data_used >> fs_info->sb->s_blocksize_bits) *
3769 csum_size * 2;
3770 num_bytes += div64_u64(data_used + meta_used, 50);
3772 if (num_bytes * 3 > meta_used)
3773 num_bytes = div64_u64(meta_used, 3);
3775 return ALIGN(num_bytes, fs_info->extent_root->leafsize << 10);
3778 static void update_global_block_rsv(struct btrfs_fs_info *fs_info)
3780 struct btrfs_block_rsv *block_rsv = &fs_info->global_block_rsv;
3781 struct btrfs_space_info *sinfo = block_rsv->space_info;
3782 u64 num_bytes;
3784 num_bytes = calc_global_metadata_size(fs_info);
3786 spin_lock(&block_rsv->lock);
3787 spin_lock(&sinfo->lock);
3789 block_rsv->size = num_bytes;
3791 num_bytes = sinfo->bytes_used + sinfo->bytes_pinned +
3792 sinfo->bytes_reserved + sinfo->bytes_readonly +
3793 sinfo->bytes_may_use;
3795 if (sinfo->total_bytes > num_bytes) {
3796 num_bytes = sinfo->total_bytes - num_bytes;
3797 block_rsv->reserved += num_bytes;
3798 sinfo->bytes_reserved += num_bytes;
3801 if (block_rsv->reserved >= block_rsv->size) {
3802 num_bytes = block_rsv->reserved - block_rsv->size;
3803 sinfo->bytes_reserved -= num_bytes;
3804 sinfo->reservation_progress++;
3805 block_rsv->reserved = block_rsv->size;
3806 block_rsv->full = 1;
3809 spin_unlock(&sinfo->lock);
3810 spin_unlock(&block_rsv->lock);
3813 static void init_global_block_rsv(struct btrfs_fs_info *fs_info)
3815 struct btrfs_space_info *space_info;
3817 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_SYSTEM);
3818 fs_info->chunk_block_rsv.space_info = space_info;
3819 fs_info->chunk_block_rsv.priority = 10;
3821 space_info = __find_space_info(fs_info, BTRFS_BLOCK_GROUP_METADATA);
3822 fs_info->global_block_rsv.space_info = space_info;
3823 fs_info->global_block_rsv.priority = 10;
3824 fs_info->global_block_rsv.refill_used = 1;
3825 fs_info->delalloc_block_rsv.space_info = space_info;
3826 fs_info->trans_block_rsv.space_info = space_info;
3827 fs_info->empty_block_rsv.space_info = space_info;
3828 fs_info->empty_block_rsv.priority = 10;
3830 fs_info->extent_root->block_rsv = &fs_info->global_block_rsv;
3831 fs_info->csum_root->block_rsv = &fs_info->global_block_rsv;
3832 fs_info->dev_root->block_rsv = &fs_info->global_block_rsv;
3833 fs_info->tree_root->block_rsv = &fs_info->global_block_rsv;
3834 fs_info->chunk_root->block_rsv = &fs_info->chunk_block_rsv;
3836 btrfs_add_durable_block_rsv(fs_info, &fs_info->global_block_rsv);
3838 btrfs_add_durable_block_rsv(fs_info, &fs_info->delalloc_block_rsv);
3840 update_global_block_rsv(fs_info);
3843 static void release_global_block_rsv(struct btrfs_fs_info *fs_info)
3845 block_rsv_release_bytes(&fs_info->global_block_rsv, NULL, (u64)-1);
3846 WARN_ON(fs_info->delalloc_block_rsv.size > 0);
3847 WARN_ON(fs_info->delalloc_block_rsv.reserved > 0);
3848 WARN_ON(fs_info->trans_block_rsv.size > 0);
3849 WARN_ON(fs_info->trans_block_rsv.reserved > 0);
3850 WARN_ON(fs_info->chunk_block_rsv.size > 0);
3851 WARN_ON(fs_info->chunk_block_rsv.reserved > 0);
3854 int btrfs_truncate_reserve_metadata(struct btrfs_trans_handle *trans,
3855 struct btrfs_root *root,
3856 struct btrfs_block_rsv *rsv)
3858 struct btrfs_block_rsv *trans_rsv = &root->fs_info->trans_block_rsv;
3859 u64 num_bytes;
3860 int ret;
3863 * Truncate should be freeing data, but give us 2 items just in case it
3864 * needs to use some space. We may want to be smarter about this in the
3865 * future.
3867 num_bytes = btrfs_calc_trans_metadata_size(root, 2);
3869 /* We already have enough bytes, just return */
3870 if (rsv->reserved >= num_bytes)
3871 return 0;
3873 num_bytes -= rsv->reserved;
3876 * You should have reserved enough space before hand to do this, so this
3877 * should not fail.
3879 ret = block_rsv_migrate_bytes(trans_rsv, rsv, num_bytes);
3880 BUG_ON(ret);
3882 return 0;
3885 int btrfs_trans_reserve_metadata(struct btrfs_trans_handle *trans,
3886 struct btrfs_root *root,
3887 int num_items)
3889 u64 num_bytes;
3890 int ret;
3892 if (num_items == 0 || root->fs_info->chunk_root == root)
3893 return 0;
3895 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
3896 ret = btrfs_block_rsv_add(trans, root, &root->fs_info->trans_block_rsv,
3897 num_bytes);
3898 if (!ret) {
3899 trans->bytes_reserved += num_bytes;
3900 trans->block_rsv = &root->fs_info->trans_block_rsv;
3902 return ret;
3905 void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans,
3906 struct btrfs_root *root)
3908 if (!trans->bytes_reserved)
3909 return;
3911 BUG_ON(trans->block_rsv != &root->fs_info->trans_block_rsv);
3912 btrfs_block_rsv_release(root, trans->block_rsv,
3913 trans->bytes_reserved);
3914 trans->bytes_reserved = 0;
3917 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle *trans,
3918 struct inode *inode)
3920 struct btrfs_root *root = BTRFS_I(inode)->root;
3921 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3922 struct btrfs_block_rsv *dst_rsv = root->orphan_block_rsv;
3925 * We need to hold space in order to delete our orphan item once we've
3926 * added it, so this takes the reservation so we can release it later
3927 * when we are truly done with the orphan item.
3929 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
3930 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3933 void btrfs_orphan_release_metadata(struct inode *inode)
3935 struct btrfs_root *root = BTRFS_I(inode)->root;
3936 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 1);
3937 btrfs_block_rsv_release(root, root->orphan_block_rsv, num_bytes);
3940 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle *trans,
3941 struct btrfs_pending_snapshot *pending)
3943 struct btrfs_root *root = pending->root;
3944 struct btrfs_block_rsv *src_rsv = get_block_rsv(trans, root);
3945 struct btrfs_block_rsv *dst_rsv = &pending->block_rsv;
3947 * two for root back/forward refs, two for directory entries
3948 * and one for root of the snapshot.
3950 u64 num_bytes = btrfs_calc_trans_metadata_size(root, 5);
3951 dst_rsv->space_info = src_rsv->space_info;
3952 return block_rsv_migrate_bytes(src_rsv, dst_rsv, num_bytes);
3955 static u64 calc_csum_metadata_size(struct inode *inode, u64 num_bytes)
3957 return num_bytes >>= 3;
3960 int btrfs_delalloc_reserve_metadata(struct inode *inode, u64 num_bytes)
3962 struct btrfs_root *root = BTRFS_I(inode)->root;
3963 struct btrfs_block_rsv *block_rsv = &root->fs_info->delalloc_block_rsv;
3964 u64 to_reserve;
3965 int nr_extents;
3966 int reserved_extents;
3967 int ret;
3969 if (btrfs_transaction_in_commit(root->fs_info))
3970 schedule_timeout(1);
3972 num_bytes = ALIGN(num_bytes, root->sectorsize);
3974 nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents) + 1;
3975 reserved_extents = atomic_read(&BTRFS_I(inode)->reserved_extents);
3977 if (nr_extents > reserved_extents) {
3978 nr_extents -= reserved_extents;
3979 to_reserve = btrfs_calc_trans_metadata_size(root, nr_extents);
3980 } else {
3981 nr_extents = 0;
3982 to_reserve = 0;
3985 to_reserve += calc_csum_metadata_size(inode, num_bytes);
3986 ret = reserve_metadata_bytes(NULL, root, block_rsv, to_reserve, 1);
3987 if (ret)
3988 return ret;
3990 atomic_add(nr_extents, &BTRFS_I(inode)->reserved_extents);
3991 atomic_inc(&BTRFS_I(inode)->outstanding_extents);
3993 block_rsv_add_bytes(block_rsv, to_reserve, 1);
3995 if (block_rsv->size > 512 * 1024 * 1024)
3996 shrink_delalloc(NULL, root, to_reserve, 0);
3998 return 0;
4001 void btrfs_delalloc_release_metadata(struct inode *inode, u64 num_bytes)
4003 struct btrfs_root *root = BTRFS_I(inode)->root;
4004 u64 to_free;
4005 int nr_extents;
4006 int reserved_extents;
4008 num_bytes = ALIGN(num_bytes, root->sectorsize);
4009 atomic_dec(&BTRFS_I(inode)->outstanding_extents);
4010 WARN_ON(atomic_read(&BTRFS_I(inode)->outstanding_extents) < 0);
4012 reserved_extents = atomic_read(&BTRFS_I(inode)->reserved_extents);
4013 do {
4014 int old, new;
4016 nr_extents = atomic_read(&BTRFS_I(inode)->outstanding_extents);
4017 if (nr_extents >= reserved_extents) {
4018 nr_extents = 0;
4019 break;
4021 old = reserved_extents;
4022 nr_extents = reserved_extents - nr_extents;
4023 new = reserved_extents - nr_extents;
4024 old = atomic_cmpxchg(&BTRFS_I(inode)->reserved_extents,
4025 reserved_extents, new);
4026 if (likely(old == reserved_extents))
4027 break;
4028 reserved_extents = old;
4029 } while (1);
4031 to_free = calc_csum_metadata_size(inode, num_bytes);
4032 if (nr_extents > 0)
4033 to_free += btrfs_calc_trans_metadata_size(root, nr_extents);
4035 btrfs_block_rsv_release(root, &root->fs_info->delalloc_block_rsv,
4036 to_free);
4039 int btrfs_delalloc_reserve_space(struct inode *inode, u64 num_bytes)
4041 int ret;
4043 ret = btrfs_check_data_free_space(inode, num_bytes);
4044 if (ret)
4045 return ret;
4047 ret = btrfs_delalloc_reserve_metadata(inode, num_bytes);
4048 if (ret) {
4049 btrfs_free_reserved_data_space(inode, num_bytes);
4050 return ret;
4053 return 0;
4056 void btrfs_delalloc_release_space(struct inode *inode, u64 num_bytes)
4058 btrfs_delalloc_release_metadata(inode, num_bytes);
4059 btrfs_free_reserved_data_space(inode, num_bytes);
4062 static int update_block_group(struct btrfs_trans_handle *trans,
4063 struct btrfs_root *root,
4064 u64 bytenr, u64 num_bytes, int alloc)
4066 struct btrfs_block_group_cache *cache = NULL;
4067 struct btrfs_fs_info *info = root->fs_info;
4068 u64 total = num_bytes;
4069 u64 old_val;
4070 u64 byte_in_group;
4071 int factor;
4073 /* block accounting for super block */
4074 spin_lock(&info->delalloc_lock);
4075 old_val = btrfs_super_bytes_used(&info->super_copy);
4076 if (alloc)
4077 old_val += num_bytes;
4078 else
4079 old_val -= num_bytes;
4080 btrfs_set_super_bytes_used(&info->super_copy, old_val);
4081 spin_unlock(&info->delalloc_lock);
4083 while (total) {
4084 cache = btrfs_lookup_block_group(info, bytenr);
4085 if (!cache)
4086 return -1;
4087 if (cache->flags & (BTRFS_BLOCK_GROUP_DUP |
4088 BTRFS_BLOCK_GROUP_RAID1 |
4089 BTRFS_BLOCK_GROUP_RAID10))
4090 factor = 2;
4091 else
4092 factor = 1;
4094 * If this block group has free space cache written out, we
4095 * need to make sure to load it if we are removing space. This
4096 * is because we need the unpinning stage to actually add the
4097 * space back to the block group, otherwise we will leak space.
4099 if (!alloc && cache->cached == BTRFS_CACHE_NO)
4100 cache_block_group(cache, trans, NULL, 1);
4102 byte_in_group = bytenr - cache->key.objectid;
4103 WARN_ON(byte_in_group > cache->key.offset);
4105 spin_lock(&cache->space_info->lock);
4106 spin_lock(&cache->lock);
4108 if (btrfs_super_cache_generation(&info->super_copy) != 0 &&
4109 cache->disk_cache_state < BTRFS_DC_CLEAR)
4110 cache->disk_cache_state = BTRFS_DC_CLEAR;
4112 cache->dirty = 1;
4113 old_val = btrfs_block_group_used(&cache->item);
4114 num_bytes = min(total, cache->key.offset - byte_in_group);
4115 if (alloc) {
4116 old_val += num_bytes;
4117 btrfs_set_block_group_used(&cache->item, old_val);
4118 cache->reserved -= num_bytes;
4119 cache->space_info->bytes_reserved -= num_bytes;
4120 cache->space_info->reservation_progress++;
4121 cache->space_info->bytes_used += num_bytes;
4122 cache->space_info->disk_used += num_bytes * factor;
4123 spin_unlock(&cache->lock);
4124 spin_unlock(&cache->space_info->lock);
4125 } else {
4126 old_val -= num_bytes;
4127 btrfs_set_block_group_used(&cache->item, old_val);
4128 cache->pinned += num_bytes;
4129 cache->space_info->bytes_pinned += num_bytes;
4130 cache->space_info->bytes_used -= num_bytes;
4131 cache->space_info->disk_used -= num_bytes * factor;
4132 spin_unlock(&cache->lock);
4133 spin_unlock(&cache->space_info->lock);
4135 set_extent_dirty(info->pinned_extents,
4136 bytenr, bytenr + num_bytes - 1,
4137 GFP_NOFS | __GFP_NOFAIL);
4139 btrfs_put_block_group(cache);
4140 total -= num_bytes;
4141 bytenr += num_bytes;
4143 return 0;
4146 static u64 first_logical_byte(struct btrfs_root *root, u64 search_start)
4148 struct btrfs_block_group_cache *cache;
4149 u64 bytenr;
4151 cache = btrfs_lookup_first_block_group(root->fs_info, search_start);
4152 if (!cache)
4153 return 0;
4155 bytenr = cache->key.objectid;
4156 btrfs_put_block_group(cache);
4158 return bytenr;
4161 static int pin_down_extent(struct btrfs_root *root,
4162 struct btrfs_block_group_cache *cache,
4163 u64 bytenr, u64 num_bytes, int reserved)
4165 spin_lock(&cache->space_info->lock);
4166 spin_lock(&cache->lock);
4167 cache->pinned += num_bytes;
4168 cache->space_info->bytes_pinned += num_bytes;
4169 if (reserved) {
4170 cache->reserved -= num_bytes;
4171 cache->space_info->bytes_reserved -= num_bytes;
4172 cache->space_info->reservation_progress++;
4174 spin_unlock(&cache->lock);
4175 spin_unlock(&cache->space_info->lock);
4177 set_extent_dirty(root->fs_info->pinned_extents, bytenr,
4178 bytenr + num_bytes - 1, GFP_NOFS | __GFP_NOFAIL);
4179 return 0;
4183 * this function must be called within transaction
4185 int btrfs_pin_extent(struct btrfs_root *root,
4186 u64 bytenr, u64 num_bytes, int reserved)
4188 struct btrfs_block_group_cache *cache;
4190 cache = btrfs_lookup_block_group(root->fs_info, bytenr);
4191 BUG_ON(!cache);
4193 pin_down_extent(root, cache, bytenr, num_bytes, reserved);
4195 btrfs_put_block_group(cache);
4196 return 0;
4200 * update size of reserved extents. this function may return -EAGAIN
4201 * if 'reserve' is true or 'sinfo' is false.
4203 int btrfs_update_reserved_bytes(struct btrfs_block_group_cache *cache,
4204 u64 num_bytes, int reserve, int sinfo)
4206 int ret = 0;
4207 if (sinfo) {
4208 struct btrfs_space_info *space_info = cache->space_info;
4209 spin_lock(&space_info->lock);
4210 spin_lock(&cache->lock);
4211 if (reserve) {
4212 if (cache->ro) {
4213 ret = -EAGAIN;
4214 } else {
4215 cache->reserved += num_bytes;
4216 space_info->bytes_reserved += num_bytes;
4218 } else {
4219 if (cache->ro)
4220 space_info->bytes_readonly += num_bytes;
4221 cache->reserved -= num_bytes;
4222 space_info->bytes_reserved -= num_bytes;
4223 space_info->reservation_progress++;
4225 spin_unlock(&cache->lock);
4226 spin_unlock(&space_info->lock);
4227 } else {
4228 spin_lock(&cache->lock);
4229 if (cache->ro) {
4230 ret = -EAGAIN;
4231 } else {
4232 if (reserve)
4233 cache->reserved += num_bytes;
4234 else
4235 cache->reserved -= num_bytes;
4237 spin_unlock(&cache->lock);
4239 return ret;
4242 int btrfs_prepare_extent_commit(struct btrfs_trans_handle *trans,
4243 struct btrfs_root *root)
4245 struct btrfs_fs_info *fs_info = root->fs_info;
4246 struct btrfs_caching_control *next;
4247 struct btrfs_caching_control *caching_ctl;
4248 struct btrfs_block_group_cache *cache;
4250 down_write(&fs_info->extent_commit_sem);
4252 list_for_each_entry_safe(caching_ctl, next,
4253 &fs_info->caching_block_groups, list) {
4254 cache = caching_ctl->block_group;
4255 if (block_group_cache_done(cache)) {
4256 cache->last_byte_to_unpin = (u64)-1;
4257 list_del_init(&caching_ctl->list);
4258 put_caching_control(caching_ctl);
4259 } else {
4260 cache->last_byte_to_unpin = caching_ctl->progress;
4264 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4265 fs_info->pinned_extents = &fs_info->freed_extents[1];
4266 else
4267 fs_info->pinned_extents = &fs_info->freed_extents[0];
4269 up_write(&fs_info->extent_commit_sem);
4271 update_global_block_rsv(fs_info);
4272 return 0;
4275 static int unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
4277 struct btrfs_fs_info *fs_info = root->fs_info;
4278 struct btrfs_block_group_cache *cache = NULL;
4279 u64 len;
4281 while (start <= end) {
4282 if (!cache ||
4283 start >= cache->key.objectid + cache->key.offset) {
4284 if (cache)
4285 btrfs_put_block_group(cache);
4286 cache = btrfs_lookup_block_group(fs_info, start);
4287 BUG_ON(!cache);
4290 len = cache->key.objectid + cache->key.offset - start;
4291 len = min(len, end + 1 - start);
4293 if (start < cache->last_byte_to_unpin) {
4294 len = min(len, cache->last_byte_to_unpin - start);
4295 btrfs_add_free_space(cache, start, len);
4298 start += len;
4300 spin_lock(&cache->space_info->lock);
4301 spin_lock(&cache->lock);
4302 cache->pinned -= len;
4303 cache->space_info->bytes_pinned -= len;
4304 if (cache->ro) {
4305 cache->space_info->bytes_readonly += len;
4306 } else if (cache->reserved_pinned > 0) {
4307 len = min(len, cache->reserved_pinned);
4308 cache->reserved_pinned -= len;
4309 cache->space_info->bytes_reserved += len;
4311 spin_unlock(&cache->lock);
4312 spin_unlock(&cache->space_info->lock);
4315 if (cache)
4316 btrfs_put_block_group(cache);
4317 return 0;
4320 int btrfs_finish_extent_commit(struct btrfs_trans_handle *trans,
4321 struct btrfs_root *root)
4323 struct btrfs_fs_info *fs_info = root->fs_info;
4324 struct extent_io_tree *unpin;
4325 struct btrfs_block_rsv *block_rsv;
4326 struct btrfs_block_rsv *next_rsv;
4327 u64 start;
4328 u64 end;
4329 int idx;
4330 int ret;
4332 if (fs_info->pinned_extents == &fs_info->freed_extents[0])
4333 unpin = &fs_info->freed_extents[1];
4334 else
4335 unpin = &fs_info->freed_extents[0];
4337 while (1) {
4338 ret = find_first_extent_bit(unpin, 0, &start, &end,
4339 EXTENT_DIRTY);
4340 if (ret)
4341 break;
4343 if (btrfs_test_opt(root, DISCARD))
4344 ret = btrfs_discard_extent(root, start,
4345 end + 1 - start, NULL);
4347 clear_extent_dirty(unpin, start, end, GFP_NOFS);
4348 unpin_extent_range(root, start, end);
4349 cond_resched();
4352 mutex_lock(&fs_info->durable_block_rsv_mutex);
4353 list_for_each_entry_safe(block_rsv, next_rsv,
4354 &fs_info->durable_block_rsv_list, list) {
4356 idx = trans->transid & 0x1;
4357 if (block_rsv->freed[idx] > 0) {
4358 block_rsv_add_bytes(block_rsv,
4359 block_rsv->freed[idx], 0);
4360 block_rsv->freed[idx] = 0;
4362 if (atomic_read(&block_rsv->usage) == 0) {
4363 btrfs_block_rsv_release(root, block_rsv, (u64)-1);
4365 if (block_rsv->freed[0] == 0 &&
4366 block_rsv->freed[1] == 0) {
4367 list_del_init(&block_rsv->list);
4368 kfree(block_rsv);
4370 } else {
4371 btrfs_block_rsv_release(root, block_rsv, 0);
4374 mutex_unlock(&fs_info->durable_block_rsv_mutex);
4376 return 0;
4379 static int __btrfs_free_extent(struct btrfs_trans_handle *trans,
4380 struct btrfs_root *root,
4381 u64 bytenr, u64 num_bytes, u64 parent,
4382 u64 root_objectid, u64 owner_objectid,
4383 u64 owner_offset, int refs_to_drop,
4384 struct btrfs_delayed_extent_op *extent_op)
4386 struct btrfs_key key;
4387 struct btrfs_path *path;
4388 struct btrfs_fs_info *info = root->fs_info;
4389 struct btrfs_root *extent_root = info->extent_root;
4390 struct extent_buffer *leaf;
4391 struct btrfs_extent_item *ei;
4392 struct btrfs_extent_inline_ref *iref;
4393 int ret;
4394 int is_data;
4395 int extent_slot = 0;
4396 int found_extent = 0;
4397 int num_to_del = 1;
4398 u32 item_size;
4399 u64 refs;
4401 path = btrfs_alloc_path();
4402 if (!path)
4403 return -ENOMEM;
4405 path->reada = 1;
4406 path->leave_spinning = 1;
4408 is_data = owner_objectid >= BTRFS_FIRST_FREE_OBJECTID;
4409 BUG_ON(!is_data && refs_to_drop != 1);
4411 ret = lookup_extent_backref(trans, extent_root, path, &iref,
4412 bytenr, num_bytes, parent,
4413 root_objectid, owner_objectid,
4414 owner_offset);
4415 if (ret == 0) {
4416 extent_slot = path->slots[0];
4417 while (extent_slot >= 0) {
4418 btrfs_item_key_to_cpu(path->nodes[0], &key,
4419 extent_slot);
4420 if (key.objectid != bytenr)
4421 break;
4422 if (key.type == BTRFS_EXTENT_ITEM_KEY &&
4423 key.offset == num_bytes) {
4424 found_extent = 1;
4425 break;
4427 if (path->slots[0] - extent_slot > 5)
4428 break;
4429 extent_slot--;
4431 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4432 item_size = btrfs_item_size_nr(path->nodes[0], extent_slot);
4433 if (found_extent && item_size < sizeof(*ei))
4434 found_extent = 0;
4435 #endif
4436 if (!found_extent) {
4437 BUG_ON(iref);
4438 ret = remove_extent_backref(trans, extent_root, path,
4439 NULL, refs_to_drop,
4440 is_data);
4441 BUG_ON(ret);
4442 btrfs_release_path(path);
4443 path->leave_spinning = 1;
4445 key.objectid = bytenr;
4446 key.type = BTRFS_EXTENT_ITEM_KEY;
4447 key.offset = num_bytes;
4449 ret = btrfs_search_slot(trans, extent_root,
4450 &key, path, -1, 1);
4451 if (ret) {
4452 printk(KERN_ERR "umm, got %d back from search"
4453 ", was looking for %llu\n", ret,
4454 (unsigned long long)bytenr);
4455 btrfs_print_leaf(extent_root, path->nodes[0]);
4457 BUG_ON(ret);
4458 extent_slot = path->slots[0];
4460 } else {
4461 btrfs_print_leaf(extent_root, path->nodes[0]);
4462 WARN_ON(1);
4463 printk(KERN_ERR "btrfs unable to find ref byte nr %llu "
4464 "parent %llu root %llu owner %llu offset %llu\n",
4465 (unsigned long long)bytenr,
4466 (unsigned long long)parent,
4467 (unsigned long long)root_objectid,
4468 (unsigned long long)owner_objectid,
4469 (unsigned long long)owner_offset);
4472 leaf = path->nodes[0];
4473 item_size = btrfs_item_size_nr(leaf, extent_slot);
4474 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4475 if (item_size < sizeof(*ei)) {
4476 BUG_ON(found_extent || extent_slot != path->slots[0]);
4477 ret = convert_extent_item_v0(trans, extent_root, path,
4478 owner_objectid, 0);
4479 BUG_ON(ret < 0);
4481 btrfs_release_path(path);
4482 path->leave_spinning = 1;
4484 key.objectid = bytenr;
4485 key.type = BTRFS_EXTENT_ITEM_KEY;
4486 key.offset = num_bytes;
4488 ret = btrfs_search_slot(trans, extent_root, &key, path,
4489 -1, 1);
4490 if (ret) {
4491 printk(KERN_ERR "umm, got %d back from search"
4492 ", was looking for %llu\n", ret,
4493 (unsigned long long)bytenr);
4494 btrfs_print_leaf(extent_root, path->nodes[0]);
4496 BUG_ON(ret);
4497 extent_slot = path->slots[0];
4498 leaf = path->nodes[0];
4499 item_size = btrfs_item_size_nr(leaf, extent_slot);
4501 #endif
4502 BUG_ON(item_size < sizeof(*ei));
4503 ei = btrfs_item_ptr(leaf, extent_slot,
4504 struct btrfs_extent_item);
4505 if (owner_objectid < BTRFS_FIRST_FREE_OBJECTID) {
4506 struct btrfs_tree_block_info *bi;
4507 BUG_ON(item_size < sizeof(*ei) + sizeof(*bi));
4508 bi = (struct btrfs_tree_block_info *)(ei + 1);
4509 WARN_ON(owner_objectid != btrfs_tree_block_level(leaf, bi));
4512 refs = btrfs_extent_refs(leaf, ei);
4513 BUG_ON(refs < refs_to_drop);
4514 refs -= refs_to_drop;
4516 if (refs > 0) {
4517 if (extent_op)
4518 __run_delayed_extent_op(extent_op, leaf, ei);
4520 * In the case of inline back ref, reference count will
4521 * be updated by remove_extent_backref
4523 if (iref) {
4524 BUG_ON(!found_extent);
4525 } else {
4526 btrfs_set_extent_refs(leaf, ei, refs);
4527 btrfs_mark_buffer_dirty(leaf);
4529 if (found_extent) {
4530 ret = remove_extent_backref(trans, extent_root, path,
4531 iref, refs_to_drop,
4532 is_data);
4533 BUG_ON(ret);
4535 } else {
4536 if (found_extent) {
4537 BUG_ON(is_data && refs_to_drop !=
4538 extent_data_ref_count(root, path, iref));
4539 if (iref) {
4540 BUG_ON(path->slots[0] != extent_slot);
4541 } else {
4542 BUG_ON(path->slots[0] != extent_slot + 1);
4543 path->slots[0] = extent_slot;
4544 num_to_del = 2;
4548 ret = btrfs_del_items(trans, extent_root, path, path->slots[0],
4549 num_to_del);
4550 BUG_ON(ret);
4551 btrfs_release_path(path);
4553 if (is_data) {
4554 ret = btrfs_del_csums(trans, root, bytenr, num_bytes);
4555 BUG_ON(ret);
4556 } else {
4557 invalidate_mapping_pages(info->btree_inode->i_mapping,
4558 bytenr >> PAGE_CACHE_SHIFT,
4559 (bytenr + num_bytes - 1) >> PAGE_CACHE_SHIFT);
4562 ret = update_block_group(trans, root, bytenr, num_bytes, 0);
4563 BUG_ON(ret);
4565 btrfs_free_path(path);
4566 return ret;
4570 * when we free an block, it is possible (and likely) that we free the last
4571 * delayed ref for that extent as well. This searches the delayed ref tree for
4572 * a given extent, and if there are no other delayed refs to be processed, it
4573 * removes it from the tree.
4575 static noinline int check_ref_cleanup(struct btrfs_trans_handle *trans,
4576 struct btrfs_root *root, u64 bytenr)
4578 struct btrfs_delayed_ref_head *head;
4579 struct btrfs_delayed_ref_root *delayed_refs;
4580 struct btrfs_delayed_ref_node *ref;
4581 struct rb_node *node;
4582 int ret = 0;
4584 delayed_refs = &trans->transaction->delayed_refs;
4585 spin_lock(&delayed_refs->lock);
4586 head = btrfs_find_delayed_ref_head(trans, bytenr);
4587 if (!head)
4588 goto out;
4590 node = rb_prev(&head->node.rb_node);
4591 if (!node)
4592 goto out;
4594 ref = rb_entry(node, struct btrfs_delayed_ref_node, rb_node);
4596 /* there are still entries for this ref, we can't drop it */
4597 if (ref->bytenr == bytenr)
4598 goto out;
4600 if (head->extent_op) {
4601 if (!head->must_insert_reserved)
4602 goto out;
4603 kfree(head->extent_op);
4604 head->extent_op = NULL;
4608 * waiting for the lock here would deadlock. If someone else has it
4609 * locked they are already in the process of dropping it anyway
4611 if (!mutex_trylock(&head->mutex))
4612 goto out;
4615 * at this point we have a head with no other entries. Go
4616 * ahead and process it.
4618 head->node.in_tree = 0;
4619 rb_erase(&head->node.rb_node, &delayed_refs->root);
4621 delayed_refs->num_entries--;
4624 * we don't take a ref on the node because we're removing it from the
4625 * tree, so we just steal the ref the tree was holding.
4627 delayed_refs->num_heads--;
4628 if (list_empty(&head->cluster))
4629 delayed_refs->num_heads_ready--;
4631 list_del_init(&head->cluster);
4632 spin_unlock(&delayed_refs->lock);
4634 BUG_ON(head->extent_op);
4635 if (head->must_insert_reserved)
4636 ret = 1;
4638 mutex_unlock(&head->mutex);
4639 btrfs_put_delayed_ref(&head->node);
4640 return ret;
4641 out:
4642 spin_unlock(&delayed_refs->lock);
4643 return 0;
4646 void btrfs_free_tree_block(struct btrfs_trans_handle *trans,
4647 struct btrfs_root *root,
4648 struct extent_buffer *buf,
4649 u64 parent, int last_ref)
4651 struct btrfs_block_rsv *block_rsv;
4652 struct btrfs_block_group_cache *cache = NULL;
4653 int ret;
4655 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4656 ret = btrfs_add_delayed_tree_ref(trans, buf->start, buf->len,
4657 parent, root->root_key.objectid,
4658 btrfs_header_level(buf),
4659 BTRFS_DROP_DELAYED_REF, NULL);
4660 BUG_ON(ret);
4663 if (!last_ref)
4664 return;
4666 block_rsv = get_block_rsv(trans, root);
4667 cache = btrfs_lookup_block_group(root->fs_info, buf->start);
4668 if (block_rsv->space_info != cache->space_info)
4669 goto out;
4671 if (btrfs_header_generation(buf) == trans->transid) {
4672 if (root->root_key.objectid != BTRFS_TREE_LOG_OBJECTID) {
4673 ret = check_ref_cleanup(trans, root, buf->start);
4674 if (!ret)
4675 goto pin;
4678 if (btrfs_header_flag(buf, BTRFS_HEADER_FLAG_WRITTEN)) {
4679 pin_down_extent(root, cache, buf->start, buf->len, 1);
4680 goto pin;
4683 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY, &buf->bflags));
4685 btrfs_add_free_space(cache, buf->start, buf->len);
4686 ret = btrfs_update_reserved_bytes(cache, buf->len, 0, 0);
4687 if (ret == -EAGAIN) {
4688 /* block group became read-only */
4689 btrfs_update_reserved_bytes(cache, buf->len, 0, 1);
4690 goto out;
4693 ret = 1;
4694 spin_lock(&block_rsv->lock);
4695 if (block_rsv->reserved < block_rsv->size) {
4696 block_rsv->reserved += buf->len;
4697 ret = 0;
4699 spin_unlock(&block_rsv->lock);
4701 if (ret) {
4702 spin_lock(&cache->space_info->lock);
4703 cache->space_info->bytes_reserved -= buf->len;
4704 cache->space_info->reservation_progress++;
4705 spin_unlock(&cache->space_info->lock);
4707 goto out;
4709 pin:
4710 if (block_rsv->durable && !cache->ro) {
4711 ret = 0;
4712 spin_lock(&cache->lock);
4713 if (!cache->ro) {
4714 cache->reserved_pinned += buf->len;
4715 ret = 1;
4717 spin_unlock(&cache->lock);
4719 if (ret) {
4720 spin_lock(&block_rsv->lock);
4721 block_rsv->freed[trans->transid & 0x1] += buf->len;
4722 spin_unlock(&block_rsv->lock);
4725 out:
4727 * Deleting the buffer, clear the corrupt flag since it doesn't matter
4728 * anymore.
4730 clear_bit(EXTENT_BUFFER_CORRUPT, &buf->bflags);
4731 btrfs_put_block_group(cache);
4734 int btrfs_free_extent(struct btrfs_trans_handle *trans,
4735 struct btrfs_root *root,
4736 u64 bytenr, u64 num_bytes, u64 parent,
4737 u64 root_objectid, u64 owner, u64 offset)
4739 int ret;
4742 * tree log blocks never actually go into the extent allocation
4743 * tree, just update pinning info and exit early.
4745 if (root_objectid == BTRFS_TREE_LOG_OBJECTID) {
4746 WARN_ON(owner >= BTRFS_FIRST_FREE_OBJECTID);
4747 /* unlocks the pinned mutex */
4748 btrfs_pin_extent(root, bytenr, num_bytes, 1);
4749 ret = 0;
4750 } else if (owner < BTRFS_FIRST_FREE_OBJECTID) {
4751 ret = btrfs_add_delayed_tree_ref(trans, bytenr, num_bytes,
4752 parent, root_objectid, (int)owner,
4753 BTRFS_DROP_DELAYED_REF, NULL);
4754 BUG_ON(ret);
4755 } else {
4756 ret = btrfs_add_delayed_data_ref(trans, bytenr, num_bytes,
4757 parent, root_objectid, owner,
4758 offset, BTRFS_DROP_DELAYED_REF, NULL);
4759 BUG_ON(ret);
4761 return ret;
4764 static u64 stripe_align(struct btrfs_root *root, u64 val)
4766 u64 mask = ((u64)root->stripesize - 1);
4767 u64 ret = (val + mask) & ~mask;
4768 return ret;
4772 * when we wait for progress in the block group caching, its because
4773 * our allocation attempt failed at least once. So, we must sleep
4774 * and let some progress happen before we try again.
4776 * This function will sleep at least once waiting for new free space to
4777 * show up, and then it will check the block group free space numbers
4778 * for our min num_bytes. Another option is to have it go ahead
4779 * and look in the rbtree for a free extent of a given size, but this
4780 * is a good start.
4782 static noinline int
4783 wait_block_group_cache_progress(struct btrfs_block_group_cache *cache,
4784 u64 num_bytes)
4786 struct btrfs_caching_control *caching_ctl;
4787 DEFINE_WAIT(wait);
4789 caching_ctl = get_caching_control(cache);
4790 if (!caching_ctl)
4791 return 0;
4793 wait_event(caching_ctl->wait, block_group_cache_done(cache) ||
4794 (cache->free_space_ctl->free_space >= num_bytes));
4796 put_caching_control(caching_ctl);
4797 return 0;
4800 static noinline int
4801 wait_block_group_cache_done(struct btrfs_block_group_cache *cache)
4803 struct btrfs_caching_control *caching_ctl;
4804 DEFINE_WAIT(wait);
4806 caching_ctl = get_caching_control(cache);
4807 if (!caching_ctl)
4808 return 0;
4810 wait_event(caching_ctl->wait, block_group_cache_done(cache));
4812 put_caching_control(caching_ctl);
4813 return 0;
4816 static int get_block_group_index(struct btrfs_block_group_cache *cache)
4818 int index;
4819 if (cache->flags & BTRFS_BLOCK_GROUP_RAID10)
4820 index = 0;
4821 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID1)
4822 index = 1;
4823 else if (cache->flags & BTRFS_BLOCK_GROUP_DUP)
4824 index = 2;
4825 else if (cache->flags & BTRFS_BLOCK_GROUP_RAID0)
4826 index = 3;
4827 else
4828 index = 4;
4829 return index;
4832 enum btrfs_loop_type {
4833 LOOP_FIND_IDEAL = 0,
4834 LOOP_CACHING_NOWAIT = 1,
4835 LOOP_CACHING_WAIT = 2,
4836 LOOP_ALLOC_CHUNK = 3,
4837 LOOP_NO_EMPTY_SIZE = 4,
4841 * walks the btree of allocated extents and find a hole of a given size.
4842 * The key ins is changed to record the hole:
4843 * ins->objectid == block start
4844 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4845 * ins->offset == number of blocks
4846 * Any available blocks before search_start are skipped.
4848 static noinline int find_free_extent(struct btrfs_trans_handle *trans,
4849 struct btrfs_root *orig_root,
4850 u64 num_bytes, u64 empty_size,
4851 u64 search_start, u64 search_end,
4852 u64 hint_byte, struct btrfs_key *ins,
4853 u64 data)
4855 int ret = 0;
4856 struct btrfs_root *root = orig_root->fs_info->extent_root;
4857 struct btrfs_free_cluster *last_ptr = NULL;
4858 struct btrfs_block_group_cache *block_group = NULL;
4859 int empty_cluster = 2 * 1024 * 1024;
4860 int allowed_chunk_alloc = 0;
4861 int done_chunk_alloc = 0;
4862 struct btrfs_space_info *space_info;
4863 int last_ptr_loop = 0;
4864 int loop = 0;
4865 int index = 0;
4866 bool found_uncached_bg = false;
4867 bool failed_cluster_refill = false;
4868 bool failed_alloc = false;
4869 bool use_cluster = true;
4870 u64 ideal_cache_percent = 0;
4871 u64 ideal_cache_offset = 0;
4873 WARN_ON(num_bytes < root->sectorsize);
4874 btrfs_set_key_type(ins, BTRFS_EXTENT_ITEM_KEY);
4875 ins->objectid = 0;
4876 ins->offset = 0;
4878 space_info = __find_space_info(root->fs_info, data);
4879 if (!space_info) {
4880 printk(KERN_ERR "No space info for %llu\n", data);
4881 return -ENOSPC;
4885 * If the space info is for both data and metadata it means we have a
4886 * small filesystem and we can't use the clustering stuff.
4888 if (btrfs_mixed_space_info(space_info))
4889 use_cluster = false;
4891 if (orig_root->ref_cows || empty_size)
4892 allowed_chunk_alloc = 1;
4894 if (data & BTRFS_BLOCK_GROUP_METADATA && use_cluster) {
4895 last_ptr = &root->fs_info->meta_alloc_cluster;
4896 if (!btrfs_test_opt(root, SSD))
4897 empty_cluster = 64 * 1024;
4900 if ((data & BTRFS_BLOCK_GROUP_DATA) && use_cluster &&
4901 btrfs_test_opt(root, SSD)) {
4902 last_ptr = &root->fs_info->data_alloc_cluster;
4905 if (last_ptr) {
4906 spin_lock(&last_ptr->lock);
4907 if (last_ptr->block_group)
4908 hint_byte = last_ptr->window_start;
4909 spin_unlock(&last_ptr->lock);
4912 search_start = max(search_start, first_logical_byte(root, 0));
4913 search_start = max(search_start, hint_byte);
4915 if (!last_ptr)
4916 empty_cluster = 0;
4918 if (search_start == hint_byte) {
4919 ideal_cache:
4920 block_group = btrfs_lookup_block_group(root->fs_info,
4921 search_start);
4923 * we don't want to use the block group if it doesn't match our
4924 * allocation bits, or if its not cached.
4926 * However if we are re-searching with an ideal block group
4927 * picked out then we don't care that the block group is cached.
4929 if (block_group && block_group_bits(block_group, data) &&
4930 (block_group->cached != BTRFS_CACHE_NO ||
4931 search_start == ideal_cache_offset)) {
4932 down_read(&space_info->groups_sem);
4933 if (list_empty(&block_group->list) ||
4934 block_group->ro) {
4936 * someone is removing this block group,
4937 * we can't jump into the have_block_group
4938 * target because our list pointers are not
4939 * valid
4941 btrfs_put_block_group(block_group);
4942 up_read(&space_info->groups_sem);
4943 } else {
4944 index = get_block_group_index(block_group);
4945 goto have_block_group;
4947 } else if (block_group) {
4948 btrfs_put_block_group(block_group);
4951 search:
4952 down_read(&space_info->groups_sem);
4953 list_for_each_entry(block_group, &space_info->block_groups[index],
4954 list) {
4955 u64 offset;
4956 int cached;
4958 btrfs_get_block_group(block_group);
4959 search_start = block_group->key.objectid;
4962 * this can happen if we end up cycling through all the
4963 * raid types, but we want to make sure we only allocate
4964 * for the proper type.
4966 if (!block_group_bits(block_group, data)) {
4967 u64 extra = BTRFS_BLOCK_GROUP_DUP |
4968 BTRFS_BLOCK_GROUP_RAID1 |
4969 BTRFS_BLOCK_GROUP_RAID10;
4972 * if they asked for extra copies and this block group
4973 * doesn't provide them, bail. This does allow us to
4974 * fill raid0 from raid1.
4976 if ((data & extra) && !(block_group->flags & extra))
4977 goto loop;
4980 have_block_group:
4981 if (unlikely(block_group->cached == BTRFS_CACHE_NO)) {
4982 u64 free_percent;
4984 ret = cache_block_group(block_group, trans,
4985 orig_root, 1);
4986 if (block_group->cached == BTRFS_CACHE_FINISHED)
4987 goto have_block_group;
4989 free_percent = btrfs_block_group_used(&block_group->item);
4990 free_percent *= 100;
4991 free_percent = div64_u64(free_percent,
4992 block_group->key.offset);
4993 free_percent = 100 - free_percent;
4994 if (free_percent > ideal_cache_percent &&
4995 likely(!block_group->ro)) {
4996 ideal_cache_offset = block_group->key.objectid;
4997 ideal_cache_percent = free_percent;
5001 * We only want to start kthread caching if we are at
5002 * the point where we will wait for caching to make
5003 * progress, or if our ideal search is over and we've
5004 * found somebody to start caching.
5006 if (loop > LOOP_CACHING_NOWAIT ||
5007 (loop > LOOP_FIND_IDEAL &&
5008 atomic_read(&space_info->caching_threads) < 2)) {
5009 ret = cache_block_group(block_group, trans,
5010 orig_root, 0);
5011 BUG_ON(ret);
5013 found_uncached_bg = true;
5016 * If loop is set for cached only, try the next block
5017 * group.
5019 if (loop == LOOP_FIND_IDEAL)
5020 goto loop;
5023 cached = block_group_cache_done(block_group);
5024 if (unlikely(!cached))
5025 found_uncached_bg = true;
5027 if (unlikely(block_group->ro))
5028 goto loop;
5030 spin_lock(&block_group->free_space_ctl->tree_lock);
5031 if (cached &&
5032 block_group->free_space_ctl->free_space <
5033 num_bytes + empty_size) {
5034 spin_unlock(&block_group->free_space_ctl->tree_lock);
5035 goto loop;
5037 spin_unlock(&block_group->free_space_ctl->tree_lock);
5040 * Ok we want to try and use the cluster allocator, so lets look
5041 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
5042 * have tried the cluster allocator plenty of times at this
5043 * point and not have found anything, so we are likely way too
5044 * fragmented for the clustering stuff to find anything, so lets
5045 * just skip it and let the allocator find whatever block it can
5046 * find
5048 if (last_ptr && loop < LOOP_NO_EMPTY_SIZE) {
5050 * the refill lock keeps out other
5051 * people trying to start a new cluster
5053 spin_lock(&last_ptr->refill_lock);
5054 if (last_ptr->block_group &&
5055 (last_ptr->block_group->ro ||
5056 !block_group_bits(last_ptr->block_group, data))) {
5057 offset = 0;
5058 goto refill_cluster;
5061 offset = btrfs_alloc_from_cluster(block_group, last_ptr,
5062 num_bytes, search_start);
5063 if (offset) {
5064 /* we have a block, we're done */
5065 spin_unlock(&last_ptr->refill_lock);
5066 goto checks;
5069 spin_lock(&last_ptr->lock);
5071 * whoops, this cluster doesn't actually point to
5072 * this block group. Get a ref on the block
5073 * group is does point to and try again
5075 if (!last_ptr_loop && last_ptr->block_group &&
5076 last_ptr->block_group != block_group) {
5078 btrfs_put_block_group(block_group);
5079 block_group = last_ptr->block_group;
5080 btrfs_get_block_group(block_group);
5081 spin_unlock(&last_ptr->lock);
5082 spin_unlock(&last_ptr->refill_lock);
5084 last_ptr_loop = 1;
5085 search_start = block_group->key.objectid;
5087 * we know this block group is properly
5088 * in the list because
5089 * btrfs_remove_block_group, drops the
5090 * cluster before it removes the block
5091 * group from the list
5093 goto have_block_group;
5095 spin_unlock(&last_ptr->lock);
5096 refill_cluster:
5098 * this cluster didn't work out, free it and
5099 * start over
5101 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5103 last_ptr_loop = 0;
5105 /* allocate a cluster in this block group */
5106 ret = btrfs_find_space_cluster(trans, root,
5107 block_group, last_ptr,
5108 offset, num_bytes,
5109 empty_cluster + empty_size);
5110 if (ret == 0) {
5112 * now pull our allocation out of this
5113 * cluster
5115 offset = btrfs_alloc_from_cluster(block_group,
5116 last_ptr, num_bytes,
5117 search_start);
5118 if (offset) {
5119 /* we found one, proceed */
5120 spin_unlock(&last_ptr->refill_lock);
5121 goto checks;
5123 } else if (!cached && loop > LOOP_CACHING_NOWAIT
5124 && !failed_cluster_refill) {
5125 spin_unlock(&last_ptr->refill_lock);
5127 failed_cluster_refill = true;
5128 wait_block_group_cache_progress(block_group,
5129 num_bytes + empty_cluster + empty_size);
5130 goto have_block_group;
5134 * at this point we either didn't find a cluster
5135 * or we weren't able to allocate a block from our
5136 * cluster. Free the cluster we've been trying
5137 * to use, and go to the next block group
5139 btrfs_return_cluster_to_free_space(NULL, last_ptr);
5140 spin_unlock(&last_ptr->refill_lock);
5141 goto loop;
5144 offset = btrfs_find_space_for_alloc(block_group, search_start,
5145 num_bytes, empty_size);
5147 * If we didn't find a chunk, and we haven't failed on this
5148 * block group before, and this block group is in the middle of
5149 * caching and we are ok with waiting, then go ahead and wait
5150 * for progress to be made, and set failed_alloc to true.
5152 * If failed_alloc is true then we've already waited on this
5153 * block group once and should move on to the next block group.
5155 if (!offset && !failed_alloc && !cached &&
5156 loop > LOOP_CACHING_NOWAIT) {
5157 wait_block_group_cache_progress(block_group,
5158 num_bytes + empty_size);
5159 failed_alloc = true;
5160 goto have_block_group;
5161 } else if (!offset) {
5162 goto loop;
5164 checks:
5165 search_start = stripe_align(root, offset);
5166 /* move on to the next group */
5167 if (search_start + num_bytes >= search_end) {
5168 btrfs_add_free_space(block_group, offset, num_bytes);
5169 goto loop;
5172 /* move on to the next group */
5173 if (search_start + num_bytes >
5174 block_group->key.objectid + block_group->key.offset) {
5175 btrfs_add_free_space(block_group, offset, num_bytes);
5176 goto loop;
5179 ins->objectid = search_start;
5180 ins->offset = num_bytes;
5182 if (offset < search_start)
5183 btrfs_add_free_space(block_group, offset,
5184 search_start - offset);
5185 BUG_ON(offset > search_start);
5187 ret = btrfs_update_reserved_bytes(block_group, num_bytes, 1,
5188 (data & BTRFS_BLOCK_GROUP_DATA));
5189 if (ret == -EAGAIN) {
5190 btrfs_add_free_space(block_group, offset, num_bytes);
5191 goto loop;
5194 /* we are all good, lets return */
5195 ins->objectid = search_start;
5196 ins->offset = num_bytes;
5198 if (offset < search_start)
5199 btrfs_add_free_space(block_group, offset,
5200 search_start - offset);
5201 BUG_ON(offset > search_start);
5202 btrfs_put_block_group(block_group);
5203 break;
5204 loop:
5205 failed_cluster_refill = false;
5206 failed_alloc = false;
5207 BUG_ON(index != get_block_group_index(block_group));
5208 btrfs_put_block_group(block_group);
5210 up_read(&space_info->groups_sem);
5212 if (!ins->objectid && ++index < BTRFS_NR_RAID_TYPES)
5213 goto search;
5215 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5216 * for them to make caching progress. Also
5217 * determine the best possible bg to cache
5218 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5219 * caching kthreads as we move along
5220 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5221 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5222 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5223 * again
5225 if (!ins->objectid && loop < LOOP_NO_EMPTY_SIZE) {
5226 index = 0;
5227 if (loop == LOOP_FIND_IDEAL && found_uncached_bg) {
5228 found_uncached_bg = false;
5229 loop++;
5230 if (!ideal_cache_percent &&
5231 atomic_read(&space_info->caching_threads))
5232 goto search;
5235 * 1 of the following 2 things have happened so far
5237 * 1) We found an ideal block group for caching that
5238 * is mostly full and will cache quickly, so we might
5239 * as well wait for it.
5241 * 2) We searched for cached only and we didn't find
5242 * anything, and we didn't start any caching kthreads
5243 * either, so chances are we will loop through and
5244 * start a couple caching kthreads, and then come back
5245 * around and just wait for them. This will be slower
5246 * because we will have 2 caching kthreads reading at
5247 * the same time when we could have just started one
5248 * and waited for it to get far enough to give us an
5249 * allocation, so go ahead and go to the wait caching
5250 * loop.
5252 loop = LOOP_CACHING_WAIT;
5253 search_start = ideal_cache_offset;
5254 ideal_cache_percent = 0;
5255 goto ideal_cache;
5256 } else if (loop == LOOP_FIND_IDEAL) {
5258 * Didn't find a uncached bg, wait on anything we find
5259 * next.
5261 loop = LOOP_CACHING_WAIT;
5262 goto search;
5265 loop++;
5267 if (loop == LOOP_ALLOC_CHUNK) {
5268 if (allowed_chunk_alloc) {
5269 ret = do_chunk_alloc(trans, root, num_bytes +
5270 2 * 1024 * 1024, data,
5271 CHUNK_ALLOC_LIMITED);
5272 allowed_chunk_alloc = 0;
5273 if (ret == 1)
5274 done_chunk_alloc = 1;
5275 } else if (!done_chunk_alloc &&
5276 space_info->force_alloc ==
5277 CHUNK_ALLOC_NO_FORCE) {
5278 space_info->force_alloc = CHUNK_ALLOC_LIMITED;
5282 * We didn't allocate a chunk, go ahead and drop the
5283 * empty size and loop again.
5285 if (!done_chunk_alloc)
5286 loop = LOOP_NO_EMPTY_SIZE;
5289 if (loop == LOOP_NO_EMPTY_SIZE) {
5290 empty_size = 0;
5291 empty_cluster = 0;
5294 goto search;
5295 } else if (!ins->objectid) {
5296 ret = -ENOSPC;
5297 } else if (ins->objectid) {
5298 ret = 0;
5301 return ret;
5304 static void dump_space_info(struct btrfs_space_info *info, u64 bytes,
5305 int dump_block_groups)
5307 struct btrfs_block_group_cache *cache;
5308 int index = 0;
5310 spin_lock(&info->lock);
5311 printk(KERN_INFO "space_info has %llu free, is %sfull\n",
5312 (unsigned long long)(info->total_bytes - info->bytes_used -
5313 info->bytes_pinned - info->bytes_reserved -
5314 info->bytes_readonly),
5315 (info->full) ? "" : "not ");
5316 printk(KERN_INFO "space_info total=%llu, used=%llu, pinned=%llu, "
5317 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5318 (unsigned long long)info->total_bytes,
5319 (unsigned long long)info->bytes_used,
5320 (unsigned long long)info->bytes_pinned,
5321 (unsigned long long)info->bytes_reserved,
5322 (unsigned long long)info->bytes_may_use,
5323 (unsigned long long)info->bytes_readonly);
5324 spin_unlock(&info->lock);
5326 if (!dump_block_groups)
5327 return;
5329 down_read(&info->groups_sem);
5330 again:
5331 list_for_each_entry(cache, &info->block_groups[index], list) {
5332 spin_lock(&cache->lock);
5333 printk(KERN_INFO "block group %llu has %llu bytes, %llu used "
5334 "%llu pinned %llu reserved\n",
5335 (unsigned long long)cache->key.objectid,
5336 (unsigned long long)cache->key.offset,
5337 (unsigned long long)btrfs_block_group_used(&cache->item),
5338 (unsigned long long)cache->pinned,
5339 (unsigned long long)cache->reserved);
5340 btrfs_dump_free_space(cache, bytes);
5341 spin_unlock(&cache->lock);
5343 if (++index < BTRFS_NR_RAID_TYPES)
5344 goto again;
5345 up_read(&info->groups_sem);
5348 int btrfs_reserve_extent(struct btrfs_trans_handle *trans,
5349 struct btrfs_root *root,
5350 u64 num_bytes, u64 min_alloc_size,
5351 u64 empty_size, u64 hint_byte,
5352 u64 search_end, struct btrfs_key *ins,
5353 u64 data)
5355 int ret;
5356 u64 search_start = 0;
5358 data = btrfs_get_alloc_profile(root, data);
5359 again:
5361 * the only place that sets empty_size is btrfs_realloc_node, which
5362 * is not called recursively on allocations
5364 if (empty_size || root->ref_cows)
5365 ret = do_chunk_alloc(trans, root->fs_info->extent_root,
5366 num_bytes + 2 * 1024 * 1024, data,
5367 CHUNK_ALLOC_NO_FORCE);
5369 WARN_ON(num_bytes < root->sectorsize);
5370 ret = find_free_extent(trans, root, num_bytes, empty_size,
5371 search_start, search_end, hint_byte,
5372 ins, data);
5374 if (ret == -ENOSPC && num_bytes > min_alloc_size) {
5375 num_bytes = num_bytes >> 1;
5376 num_bytes = num_bytes & ~(root->sectorsize - 1);
5377 num_bytes = max(num_bytes, min_alloc_size);
5378 do_chunk_alloc(trans, root->fs_info->extent_root,
5379 num_bytes, data, CHUNK_ALLOC_FORCE);
5380 goto again;
5382 if (ret == -ENOSPC && btrfs_test_opt(root, ENOSPC_DEBUG)) {
5383 struct btrfs_space_info *sinfo;
5385 sinfo = __find_space_info(root->fs_info, data);
5386 printk(KERN_ERR "btrfs allocation failed flags %llu, "
5387 "wanted %llu\n", (unsigned long long)data,
5388 (unsigned long long)num_bytes);
5389 dump_space_info(sinfo, num_bytes, 1);
5392 trace_btrfs_reserved_extent_alloc(root, ins->objectid, ins->offset);
5394 return ret;
5397 int btrfs_free_reserved_extent(struct btrfs_root *root, u64 start, u64 len)
5399 struct btrfs_block_group_cache *cache;
5400 int ret = 0;
5402 cache = btrfs_lookup_block_group(root->fs_info, start);
5403 if (!cache) {
5404 printk(KERN_ERR "Unable to find block group for %llu\n",
5405 (unsigned long long)start);
5406 return -ENOSPC;
5409 if (btrfs_test_opt(root, DISCARD))
5410 ret = btrfs_discard_extent(root, start, len, NULL);
5412 btrfs_add_free_space(cache, start, len);
5413 btrfs_update_reserved_bytes(cache, len, 0, 1);
5414 btrfs_put_block_group(cache);
5416 trace_btrfs_reserved_extent_free(root, start, len);
5418 return ret;
5421 static int alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5422 struct btrfs_root *root,
5423 u64 parent, u64 root_objectid,
5424 u64 flags, u64 owner, u64 offset,
5425 struct btrfs_key *ins, int ref_mod)
5427 int ret;
5428 struct btrfs_fs_info *fs_info = root->fs_info;
5429 struct btrfs_extent_item *extent_item;
5430 struct btrfs_extent_inline_ref *iref;
5431 struct btrfs_path *path;
5432 struct extent_buffer *leaf;
5433 int type;
5434 u32 size;
5436 if (parent > 0)
5437 type = BTRFS_SHARED_DATA_REF_KEY;
5438 else
5439 type = BTRFS_EXTENT_DATA_REF_KEY;
5441 size = sizeof(*extent_item) + btrfs_extent_inline_ref_size(type);
5443 path = btrfs_alloc_path();
5444 if (!path)
5445 return -ENOMEM;
5447 path->leave_spinning = 1;
5448 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5449 ins, size);
5450 BUG_ON(ret);
5452 leaf = path->nodes[0];
5453 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5454 struct btrfs_extent_item);
5455 btrfs_set_extent_refs(leaf, extent_item, ref_mod);
5456 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5457 btrfs_set_extent_flags(leaf, extent_item,
5458 flags | BTRFS_EXTENT_FLAG_DATA);
5460 iref = (struct btrfs_extent_inline_ref *)(extent_item + 1);
5461 btrfs_set_extent_inline_ref_type(leaf, iref, type);
5462 if (parent > 0) {
5463 struct btrfs_shared_data_ref *ref;
5464 ref = (struct btrfs_shared_data_ref *)(iref + 1);
5465 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5466 btrfs_set_shared_data_ref_count(leaf, ref, ref_mod);
5467 } else {
5468 struct btrfs_extent_data_ref *ref;
5469 ref = (struct btrfs_extent_data_ref *)(&iref->offset);
5470 btrfs_set_extent_data_ref_root(leaf, ref, root_objectid);
5471 btrfs_set_extent_data_ref_objectid(leaf, ref, owner);
5472 btrfs_set_extent_data_ref_offset(leaf, ref, offset);
5473 btrfs_set_extent_data_ref_count(leaf, ref, ref_mod);
5476 btrfs_mark_buffer_dirty(path->nodes[0]);
5477 btrfs_free_path(path);
5479 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5480 if (ret) {
5481 printk(KERN_ERR "btrfs update block group failed for %llu "
5482 "%llu\n", (unsigned long long)ins->objectid,
5483 (unsigned long long)ins->offset);
5484 BUG();
5486 return ret;
5489 static int alloc_reserved_tree_block(struct btrfs_trans_handle *trans,
5490 struct btrfs_root *root,
5491 u64 parent, u64 root_objectid,
5492 u64 flags, struct btrfs_disk_key *key,
5493 int level, struct btrfs_key *ins)
5495 int ret;
5496 struct btrfs_fs_info *fs_info = root->fs_info;
5497 struct btrfs_extent_item *extent_item;
5498 struct btrfs_tree_block_info *block_info;
5499 struct btrfs_extent_inline_ref *iref;
5500 struct btrfs_path *path;
5501 struct extent_buffer *leaf;
5502 u32 size = sizeof(*extent_item) + sizeof(*block_info) + sizeof(*iref);
5504 path = btrfs_alloc_path();
5505 BUG_ON(!path);
5507 path->leave_spinning = 1;
5508 ret = btrfs_insert_empty_item(trans, fs_info->extent_root, path,
5509 ins, size);
5510 BUG_ON(ret);
5512 leaf = path->nodes[0];
5513 extent_item = btrfs_item_ptr(leaf, path->slots[0],
5514 struct btrfs_extent_item);
5515 btrfs_set_extent_refs(leaf, extent_item, 1);
5516 btrfs_set_extent_generation(leaf, extent_item, trans->transid);
5517 btrfs_set_extent_flags(leaf, extent_item,
5518 flags | BTRFS_EXTENT_FLAG_TREE_BLOCK);
5519 block_info = (struct btrfs_tree_block_info *)(extent_item + 1);
5521 btrfs_set_tree_block_key(leaf, block_info, key);
5522 btrfs_set_tree_block_level(leaf, block_info, level);
5524 iref = (struct btrfs_extent_inline_ref *)(block_info + 1);
5525 if (parent > 0) {
5526 BUG_ON(!(flags & BTRFS_BLOCK_FLAG_FULL_BACKREF));
5527 btrfs_set_extent_inline_ref_type(leaf, iref,
5528 BTRFS_SHARED_BLOCK_REF_KEY);
5529 btrfs_set_extent_inline_ref_offset(leaf, iref, parent);
5530 } else {
5531 btrfs_set_extent_inline_ref_type(leaf, iref,
5532 BTRFS_TREE_BLOCK_REF_KEY);
5533 btrfs_set_extent_inline_ref_offset(leaf, iref, root_objectid);
5536 btrfs_mark_buffer_dirty(leaf);
5537 btrfs_free_path(path);
5539 ret = update_block_group(trans, root, ins->objectid, ins->offset, 1);
5540 if (ret) {
5541 printk(KERN_ERR "btrfs update block group failed for %llu "
5542 "%llu\n", (unsigned long long)ins->objectid,
5543 (unsigned long long)ins->offset);
5544 BUG();
5546 return ret;
5549 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle *trans,
5550 struct btrfs_root *root,
5551 u64 root_objectid, u64 owner,
5552 u64 offset, struct btrfs_key *ins)
5554 int ret;
5556 BUG_ON(root_objectid == BTRFS_TREE_LOG_OBJECTID);
5558 ret = btrfs_add_delayed_data_ref(trans, ins->objectid, ins->offset,
5559 0, root_objectid, owner, offset,
5560 BTRFS_ADD_DELAYED_EXTENT, NULL);
5561 return ret;
5565 * this is used by the tree logging recovery code. It records that
5566 * an extent has been allocated and makes sure to clear the free
5567 * space cache bits as well
5569 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle *trans,
5570 struct btrfs_root *root,
5571 u64 root_objectid, u64 owner, u64 offset,
5572 struct btrfs_key *ins)
5574 int ret;
5575 struct btrfs_block_group_cache *block_group;
5576 struct btrfs_caching_control *caching_ctl;
5577 u64 start = ins->objectid;
5578 u64 num_bytes = ins->offset;
5580 block_group = btrfs_lookup_block_group(root->fs_info, ins->objectid);
5581 cache_block_group(block_group, trans, NULL, 0);
5582 caching_ctl = get_caching_control(block_group);
5584 if (!caching_ctl) {
5585 BUG_ON(!block_group_cache_done(block_group));
5586 ret = btrfs_remove_free_space(block_group, start, num_bytes);
5587 BUG_ON(ret);
5588 } else {
5589 mutex_lock(&caching_ctl->mutex);
5591 if (start >= caching_ctl->progress) {
5592 ret = add_excluded_extent(root, start, num_bytes);
5593 BUG_ON(ret);
5594 } else if (start + num_bytes <= caching_ctl->progress) {
5595 ret = btrfs_remove_free_space(block_group,
5596 start, num_bytes);
5597 BUG_ON(ret);
5598 } else {
5599 num_bytes = caching_ctl->progress - start;
5600 ret = btrfs_remove_free_space(block_group,
5601 start, num_bytes);
5602 BUG_ON(ret);
5604 start = caching_ctl->progress;
5605 num_bytes = ins->objectid + ins->offset -
5606 caching_ctl->progress;
5607 ret = add_excluded_extent(root, start, num_bytes);
5608 BUG_ON(ret);
5611 mutex_unlock(&caching_ctl->mutex);
5612 put_caching_control(caching_ctl);
5615 ret = btrfs_update_reserved_bytes(block_group, ins->offset, 1, 1);
5616 BUG_ON(ret);
5617 btrfs_put_block_group(block_group);
5618 ret = alloc_reserved_file_extent(trans, root, 0, root_objectid,
5619 0, owner, offset, ins, 1);
5620 return ret;
5623 struct extent_buffer *btrfs_init_new_buffer(struct btrfs_trans_handle *trans,
5624 struct btrfs_root *root,
5625 u64 bytenr, u32 blocksize,
5626 int level)
5628 struct extent_buffer *buf;
5630 buf = btrfs_find_create_tree_block(root, bytenr, blocksize);
5631 if (!buf)
5632 return ERR_PTR(-ENOMEM);
5633 btrfs_set_header_generation(buf, trans->transid);
5634 btrfs_set_buffer_lockdep_class(buf, level);
5635 btrfs_tree_lock(buf);
5636 clean_tree_block(trans, root, buf);
5638 btrfs_set_lock_blocking(buf);
5639 btrfs_set_buffer_uptodate(buf);
5641 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
5643 * we allow two log transactions at a time, use different
5644 * EXENT bit to differentiate dirty pages.
5646 if (root->log_transid % 2 == 0)
5647 set_extent_dirty(&root->dirty_log_pages, buf->start,
5648 buf->start + buf->len - 1, GFP_NOFS);
5649 else
5650 set_extent_new(&root->dirty_log_pages, buf->start,
5651 buf->start + buf->len - 1, GFP_NOFS);
5652 } else {
5653 set_extent_dirty(&trans->transaction->dirty_pages, buf->start,
5654 buf->start + buf->len - 1, GFP_NOFS);
5656 trans->blocks_used++;
5657 /* this returns a buffer locked for blocking */
5658 return buf;
5661 static struct btrfs_block_rsv *
5662 use_block_rsv(struct btrfs_trans_handle *trans,
5663 struct btrfs_root *root, u32 blocksize)
5665 struct btrfs_block_rsv *block_rsv;
5666 struct btrfs_block_rsv *global_rsv = &root->fs_info->global_block_rsv;
5667 int ret;
5669 block_rsv = get_block_rsv(trans, root);
5671 if (block_rsv->size == 0) {
5672 ret = reserve_metadata_bytes(trans, root, block_rsv,
5673 blocksize, 0);
5675 * If we couldn't reserve metadata bytes try and use some from
5676 * the global reserve.
5678 if (ret && block_rsv != global_rsv) {
5679 ret = block_rsv_use_bytes(global_rsv, blocksize);
5680 if (!ret)
5681 return global_rsv;
5682 return ERR_PTR(ret);
5683 } else if (ret) {
5684 return ERR_PTR(ret);
5686 return block_rsv;
5689 ret = block_rsv_use_bytes(block_rsv, blocksize);
5690 if (!ret)
5691 return block_rsv;
5692 if (ret) {
5693 WARN_ON(1);
5694 ret = reserve_metadata_bytes(trans, root, block_rsv, blocksize,
5696 if (!ret) {
5697 spin_lock(&block_rsv->lock);
5698 block_rsv->size += blocksize;
5699 spin_unlock(&block_rsv->lock);
5700 return block_rsv;
5701 } else if (ret && block_rsv != global_rsv) {
5702 ret = block_rsv_use_bytes(global_rsv, blocksize);
5703 if (!ret)
5704 return global_rsv;
5708 return ERR_PTR(-ENOSPC);
5711 static void unuse_block_rsv(struct btrfs_block_rsv *block_rsv, u32 blocksize)
5713 block_rsv_add_bytes(block_rsv, blocksize, 0);
5714 block_rsv_release_bytes(block_rsv, NULL, 0);
5718 * finds a free extent and does all the dirty work required for allocation
5719 * returns the key for the extent through ins, and a tree buffer for
5720 * the first block of the extent through buf.
5722 * returns the tree buffer or NULL.
5724 struct extent_buffer *btrfs_alloc_free_block(struct btrfs_trans_handle *trans,
5725 struct btrfs_root *root, u32 blocksize,
5726 u64 parent, u64 root_objectid,
5727 struct btrfs_disk_key *key, int level,
5728 u64 hint, u64 empty_size)
5730 struct btrfs_key ins;
5731 struct btrfs_block_rsv *block_rsv;
5732 struct extent_buffer *buf;
5733 u64 flags = 0;
5734 int ret;
5737 block_rsv = use_block_rsv(trans, root, blocksize);
5738 if (IS_ERR(block_rsv))
5739 return ERR_CAST(block_rsv);
5741 ret = btrfs_reserve_extent(trans, root, blocksize, blocksize,
5742 empty_size, hint, (u64)-1, &ins, 0);
5743 if (ret) {
5744 unuse_block_rsv(block_rsv, blocksize);
5745 return ERR_PTR(ret);
5748 buf = btrfs_init_new_buffer(trans, root, ins.objectid,
5749 blocksize, level);
5750 BUG_ON(IS_ERR(buf));
5752 if (root_objectid == BTRFS_TREE_RELOC_OBJECTID) {
5753 if (parent == 0)
5754 parent = ins.objectid;
5755 flags |= BTRFS_BLOCK_FLAG_FULL_BACKREF;
5756 } else
5757 BUG_ON(parent > 0);
5759 if (root_objectid != BTRFS_TREE_LOG_OBJECTID) {
5760 struct btrfs_delayed_extent_op *extent_op;
5761 extent_op = kmalloc(sizeof(*extent_op), GFP_NOFS);
5762 BUG_ON(!extent_op);
5763 if (key)
5764 memcpy(&extent_op->key, key, sizeof(extent_op->key));
5765 else
5766 memset(&extent_op->key, 0, sizeof(extent_op->key));
5767 extent_op->flags_to_set = flags;
5768 extent_op->update_key = 1;
5769 extent_op->update_flags = 1;
5770 extent_op->is_data = 0;
5772 ret = btrfs_add_delayed_tree_ref(trans, ins.objectid,
5773 ins.offset, parent, root_objectid,
5774 level, BTRFS_ADD_DELAYED_EXTENT,
5775 extent_op);
5776 BUG_ON(ret);
5778 return buf;
5781 struct walk_control {
5782 u64 refs[BTRFS_MAX_LEVEL];
5783 u64 flags[BTRFS_MAX_LEVEL];
5784 struct btrfs_key update_progress;
5785 int stage;
5786 int level;
5787 int shared_level;
5788 int update_ref;
5789 int keep_locks;
5790 int reada_slot;
5791 int reada_count;
5794 #define DROP_REFERENCE 1
5795 #define UPDATE_BACKREF 2
5797 static noinline void reada_walk_down(struct btrfs_trans_handle *trans,
5798 struct btrfs_root *root,
5799 struct walk_control *wc,
5800 struct btrfs_path *path)
5802 u64 bytenr;
5803 u64 generation;
5804 u64 refs;
5805 u64 flags;
5806 u32 nritems;
5807 u32 blocksize;
5808 struct btrfs_key key;
5809 struct extent_buffer *eb;
5810 int ret;
5811 int slot;
5812 int nread = 0;
5814 if (path->slots[wc->level] < wc->reada_slot) {
5815 wc->reada_count = wc->reada_count * 2 / 3;
5816 wc->reada_count = max(wc->reada_count, 2);
5817 } else {
5818 wc->reada_count = wc->reada_count * 3 / 2;
5819 wc->reada_count = min_t(int, wc->reada_count,
5820 BTRFS_NODEPTRS_PER_BLOCK(root));
5823 eb = path->nodes[wc->level];
5824 nritems = btrfs_header_nritems(eb);
5825 blocksize = btrfs_level_size(root, wc->level - 1);
5827 for (slot = path->slots[wc->level]; slot < nritems; slot++) {
5828 if (nread >= wc->reada_count)
5829 break;
5831 cond_resched();
5832 bytenr = btrfs_node_blockptr(eb, slot);
5833 generation = btrfs_node_ptr_generation(eb, slot);
5835 if (slot == path->slots[wc->level])
5836 goto reada;
5838 if (wc->stage == UPDATE_BACKREF &&
5839 generation <= root->root_key.offset)
5840 continue;
5842 /* We don't lock the tree block, it's OK to be racy here */
5843 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
5844 &refs, &flags);
5845 BUG_ON(ret);
5846 BUG_ON(refs == 0);
5848 if (wc->stage == DROP_REFERENCE) {
5849 if (refs == 1)
5850 goto reada;
5852 if (wc->level == 1 &&
5853 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5854 continue;
5855 if (!wc->update_ref ||
5856 generation <= root->root_key.offset)
5857 continue;
5858 btrfs_node_key_to_cpu(eb, &key, slot);
5859 ret = btrfs_comp_cpu_keys(&key,
5860 &wc->update_progress);
5861 if (ret < 0)
5862 continue;
5863 } else {
5864 if (wc->level == 1 &&
5865 (flags & BTRFS_BLOCK_FLAG_FULL_BACKREF))
5866 continue;
5868 reada:
5869 ret = readahead_tree_block(root, bytenr, blocksize,
5870 generation);
5871 if (ret)
5872 break;
5873 nread++;
5875 wc->reada_slot = slot;
5879 * hepler to process tree block while walking down the tree.
5881 * when wc->stage == UPDATE_BACKREF, this function updates
5882 * back refs for pointers in the block.
5884 * NOTE: return value 1 means we should stop walking down.
5886 static noinline int walk_down_proc(struct btrfs_trans_handle *trans,
5887 struct btrfs_root *root,
5888 struct btrfs_path *path,
5889 struct walk_control *wc, int lookup_info)
5891 int level = wc->level;
5892 struct extent_buffer *eb = path->nodes[level];
5893 u64 flag = BTRFS_BLOCK_FLAG_FULL_BACKREF;
5894 int ret;
5896 if (wc->stage == UPDATE_BACKREF &&
5897 btrfs_header_owner(eb) != root->root_key.objectid)
5898 return 1;
5901 * when reference count of tree block is 1, it won't increase
5902 * again. once full backref flag is set, we never clear it.
5904 if (lookup_info &&
5905 ((wc->stage == DROP_REFERENCE && wc->refs[level] != 1) ||
5906 (wc->stage == UPDATE_BACKREF && !(wc->flags[level] & flag)))) {
5907 BUG_ON(!path->locks[level]);
5908 ret = btrfs_lookup_extent_info(trans, root,
5909 eb->start, eb->len,
5910 &wc->refs[level],
5911 &wc->flags[level]);
5912 BUG_ON(ret);
5913 BUG_ON(wc->refs[level] == 0);
5916 if (wc->stage == DROP_REFERENCE) {
5917 if (wc->refs[level] > 1)
5918 return 1;
5920 if (path->locks[level] && !wc->keep_locks) {
5921 btrfs_tree_unlock(eb);
5922 path->locks[level] = 0;
5924 return 0;
5927 /* wc->stage == UPDATE_BACKREF */
5928 if (!(wc->flags[level] & flag)) {
5929 BUG_ON(!path->locks[level]);
5930 ret = btrfs_inc_ref(trans, root, eb, 1);
5931 BUG_ON(ret);
5932 ret = btrfs_dec_ref(trans, root, eb, 0);
5933 BUG_ON(ret);
5934 ret = btrfs_set_disk_extent_flags(trans, root, eb->start,
5935 eb->len, flag, 0);
5936 BUG_ON(ret);
5937 wc->flags[level] |= flag;
5941 * the block is shared by multiple trees, so it's not good to
5942 * keep the tree lock
5944 if (path->locks[level] && level > 0) {
5945 btrfs_tree_unlock(eb);
5946 path->locks[level] = 0;
5948 return 0;
5952 * hepler to process tree block pointer.
5954 * when wc->stage == DROP_REFERENCE, this function checks
5955 * reference count of the block pointed to. if the block
5956 * is shared and we need update back refs for the subtree
5957 * rooted at the block, this function changes wc->stage to
5958 * UPDATE_BACKREF. if the block is shared and there is no
5959 * need to update back, this function drops the reference
5960 * to the block.
5962 * NOTE: return value 1 means we should stop walking down.
5964 static noinline int do_walk_down(struct btrfs_trans_handle *trans,
5965 struct btrfs_root *root,
5966 struct btrfs_path *path,
5967 struct walk_control *wc, int *lookup_info)
5969 u64 bytenr;
5970 u64 generation;
5971 u64 parent;
5972 u32 blocksize;
5973 struct btrfs_key key;
5974 struct extent_buffer *next;
5975 int level = wc->level;
5976 int reada = 0;
5977 int ret = 0;
5979 generation = btrfs_node_ptr_generation(path->nodes[level],
5980 path->slots[level]);
5982 * if the lower level block was created before the snapshot
5983 * was created, we know there is no need to update back refs
5984 * for the subtree
5986 if (wc->stage == UPDATE_BACKREF &&
5987 generation <= root->root_key.offset) {
5988 *lookup_info = 1;
5989 return 1;
5992 bytenr = btrfs_node_blockptr(path->nodes[level], path->slots[level]);
5993 blocksize = btrfs_level_size(root, level - 1);
5995 next = btrfs_find_tree_block(root, bytenr, blocksize);
5996 if (!next) {
5997 next = btrfs_find_create_tree_block(root, bytenr, blocksize);
5998 if (!next)
5999 return -ENOMEM;
6000 reada = 1;
6002 btrfs_tree_lock(next);
6003 btrfs_set_lock_blocking(next);
6005 ret = btrfs_lookup_extent_info(trans, root, bytenr, blocksize,
6006 &wc->refs[level - 1],
6007 &wc->flags[level - 1]);
6008 BUG_ON(ret);
6009 BUG_ON(wc->refs[level - 1] == 0);
6010 *lookup_info = 0;
6012 if (wc->stage == DROP_REFERENCE) {
6013 if (wc->refs[level - 1] > 1) {
6014 if (level == 1 &&
6015 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6016 goto skip;
6018 if (!wc->update_ref ||
6019 generation <= root->root_key.offset)
6020 goto skip;
6022 btrfs_node_key_to_cpu(path->nodes[level], &key,
6023 path->slots[level]);
6024 ret = btrfs_comp_cpu_keys(&key, &wc->update_progress);
6025 if (ret < 0)
6026 goto skip;
6028 wc->stage = UPDATE_BACKREF;
6029 wc->shared_level = level - 1;
6031 } else {
6032 if (level == 1 &&
6033 (wc->flags[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF))
6034 goto skip;
6037 if (!btrfs_buffer_uptodate(next, generation)) {
6038 btrfs_tree_unlock(next);
6039 free_extent_buffer(next);
6040 next = NULL;
6041 *lookup_info = 1;
6044 if (!next) {
6045 if (reada && level == 1)
6046 reada_walk_down(trans, root, wc, path);
6047 next = read_tree_block(root, bytenr, blocksize, generation);
6048 if (!next)
6049 return -EIO;
6050 btrfs_tree_lock(next);
6051 btrfs_set_lock_blocking(next);
6054 level--;
6055 BUG_ON(level != btrfs_header_level(next));
6056 path->nodes[level] = next;
6057 path->slots[level] = 0;
6058 path->locks[level] = 1;
6059 wc->level = level;
6060 if (wc->level == 1)
6061 wc->reada_slot = 0;
6062 return 0;
6063 skip:
6064 wc->refs[level - 1] = 0;
6065 wc->flags[level - 1] = 0;
6066 if (wc->stage == DROP_REFERENCE) {
6067 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF) {
6068 parent = path->nodes[level]->start;
6069 } else {
6070 BUG_ON(root->root_key.objectid !=
6071 btrfs_header_owner(path->nodes[level]));
6072 parent = 0;
6075 ret = btrfs_free_extent(trans, root, bytenr, blocksize, parent,
6076 root->root_key.objectid, level - 1, 0);
6077 BUG_ON(ret);
6079 btrfs_tree_unlock(next);
6080 free_extent_buffer(next);
6081 *lookup_info = 1;
6082 return 1;
6086 * hepler to process tree block while walking up the tree.
6088 * when wc->stage == DROP_REFERENCE, this function drops
6089 * reference count on the block.
6091 * when wc->stage == UPDATE_BACKREF, this function changes
6092 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6093 * to UPDATE_BACKREF previously while processing the block.
6095 * NOTE: return value 1 means we should stop walking up.
6097 static noinline int walk_up_proc(struct btrfs_trans_handle *trans,
6098 struct btrfs_root *root,
6099 struct btrfs_path *path,
6100 struct walk_control *wc)
6102 int ret;
6103 int level = wc->level;
6104 struct extent_buffer *eb = path->nodes[level];
6105 u64 parent = 0;
6107 if (wc->stage == UPDATE_BACKREF) {
6108 BUG_ON(wc->shared_level < level);
6109 if (level < wc->shared_level)
6110 goto out;
6112 ret = find_next_key(path, level + 1, &wc->update_progress);
6113 if (ret > 0)
6114 wc->update_ref = 0;
6116 wc->stage = DROP_REFERENCE;
6117 wc->shared_level = -1;
6118 path->slots[level] = 0;
6121 * check reference count again if the block isn't locked.
6122 * we should start walking down the tree again if reference
6123 * count is one.
6125 if (!path->locks[level]) {
6126 BUG_ON(level == 0);
6127 btrfs_tree_lock(eb);
6128 btrfs_set_lock_blocking(eb);
6129 path->locks[level] = 1;
6131 ret = btrfs_lookup_extent_info(trans, root,
6132 eb->start, eb->len,
6133 &wc->refs[level],
6134 &wc->flags[level]);
6135 BUG_ON(ret);
6136 BUG_ON(wc->refs[level] == 0);
6137 if (wc->refs[level] == 1) {
6138 btrfs_tree_unlock(eb);
6139 path->locks[level] = 0;
6140 return 1;
6145 /* wc->stage == DROP_REFERENCE */
6146 BUG_ON(wc->refs[level] > 1 && !path->locks[level]);
6148 if (wc->refs[level] == 1) {
6149 if (level == 0) {
6150 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6151 ret = btrfs_dec_ref(trans, root, eb, 1);
6152 else
6153 ret = btrfs_dec_ref(trans, root, eb, 0);
6154 BUG_ON(ret);
6156 /* make block locked assertion in clean_tree_block happy */
6157 if (!path->locks[level] &&
6158 btrfs_header_generation(eb) == trans->transid) {
6159 btrfs_tree_lock(eb);
6160 btrfs_set_lock_blocking(eb);
6161 path->locks[level] = 1;
6163 clean_tree_block(trans, root, eb);
6166 if (eb == root->node) {
6167 if (wc->flags[level] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6168 parent = eb->start;
6169 else
6170 BUG_ON(root->root_key.objectid !=
6171 btrfs_header_owner(eb));
6172 } else {
6173 if (wc->flags[level + 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF)
6174 parent = path->nodes[level + 1]->start;
6175 else
6176 BUG_ON(root->root_key.objectid !=
6177 btrfs_header_owner(path->nodes[level + 1]));
6180 btrfs_free_tree_block(trans, root, eb, parent, wc->refs[level] == 1);
6181 out:
6182 wc->refs[level] = 0;
6183 wc->flags[level] = 0;
6184 return 0;
6187 static noinline int walk_down_tree(struct btrfs_trans_handle *trans,
6188 struct btrfs_root *root,
6189 struct btrfs_path *path,
6190 struct walk_control *wc)
6192 int level = wc->level;
6193 int lookup_info = 1;
6194 int ret;
6196 while (level >= 0) {
6197 ret = walk_down_proc(trans, root, path, wc, lookup_info);
6198 if (ret > 0)
6199 break;
6201 if (level == 0)
6202 break;
6204 if (path->slots[level] >=
6205 btrfs_header_nritems(path->nodes[level]))
6206 break;
6208 ret = do_walk_down(trans, root, path, wc, &lookup_info);
6209 if (ret > 0) {
6210 path->slots[level]++;
6211 continue;
6212 } else if (ret < 0)
6213 return ret;
6214 level = wc->level;
6216 return 0;
6219 static noinline int walk_up_tree(struct btrfs_trans_handle *trans,
6220 struct btrfs_root *root,
6221 struct btrfs_path *path,
6222 struct walk_control *wc, int max_level)
6224 int level = wc->level;
6225 int ret;
6227 path->slots[level] = btrfs_header_nritems(path->nodes[level]);
6228 while (level < max_level && path->nodes[level]) {
6229 wc->level = level;
6230 if (path->slots[level] + 1 <
6231 btrfs_header_nritems(path->nodes[level])) {
6232 path->slots[level]++;
6233 return 0;
6234 } else {
6235 ret = walk_up_proc(trans, root, path, wc);
6236 if (ret > 0)
6237 return 0;
6239 if (path->locks[level]) {
6240 btrfs_tree_unlock(path->nodes[level]);
6241 path->locks[level] = 0;
6243 free_extent_buffer(path->nodes[level]);
6244 path->nodes[level] = NULL;
6245 level++;
6248 return 1;
6252 * drop a subvolume tree.
6254 * this function traverses the tree freeing any blocks that only
6255 * referenced by the tree.
6257 * when a shared tree block is found. this function decreases its
6258 * reference count by one. if update_ref is true, this function
6259 * also make sure backrefs for the shared block and all lower level
6260 * blocks are properly updated.
6262 int btrfs_drop_snapshot(struct btrfs_root *root,
6263 struct btrfs_block_rsv *block_rsv, int update_ref)
6265 struct btrfs_path *path;
6266 struct btrfs_trans_handle *trans;
6267 struct btrfs_root *tree_root = root->fs_info->tree_root;
6268 struct btrfs_root_item *root_item = &root->root_item;
6269 struct walk_control *wc;
6270 struct btrfs_key key;
6271 int err = 0;
6272 int ret;
6273 int level;
6275 path = btrfs_alloc_path();
6276 BUG_ON(!path);
6278 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6279 BUG_ON(!wc);
6281 trans = btrfs_start_transaction(tree_root, 0);
6282 BUG_ON(IS_ERR(trans));
6284 if (block_rsv)
6285 trans->block_rsv = block_rsv;
6287 if (btrfs_disk_key_objectid(&root_item->drop_progress) == 0) {
6288 level = btrfs_header_level(root->node);
6289 path->nodes[level] = btrfs_lock_root_node(root);
6290 btrfs_set_lock_blocking(path->nodes[level]);
6291 path->slots[level] = 0;
6292 path->locks[level] = 1;
6293 memset(&wc->update_progress, 0,
6294 sizeof(wc->update_progress));
6295 } else {
6296 btrfs_disk_key_to_cpu(&key, &root_item->drop_progress);
6297 memcpy(&wc->update_progress, &key,
6298 sizeof(wc->update_progress));
6300 level = root_item->drop_level;
6301 BUG_ON(level == 0);
6302 path->lowest_level = level;
6303 ret = btrfs_search_slot(NULL, root, &key, path, 0, 0);
6304 path->lowest_level = 0;
6305 if (ret < 0) {
6306 err = ret;
6307 goto out;
6309 WARN_ON(ret > 0);
6312 * unlock our path, this is safe because only this
6313 * function is allowed to delete this snapshot
6315 btrfs_unlock_up_safe(path, 0);
6317 level = btrfs_header_level(root->node);
6318 while (1) {
6319 btrfs_tree_lock(path->nodes[level]);
6320 btrfs_set_lock_blocking(path->nodes[level]);
6322 ret = btrfs_lookup_extent_info(trans, root,
6323 path->nodes[level]->start,
6324 path->nodes[level]->len,
6325 &wc->refs[level],
6326 &wc->flags[level]);
6327 BUG_ON(ret);
6328 BUG_ON(wc->refs[level] == 0);
6330 if (level == root_item->drop_level)
6331 break;
6333 btrfs_tree_unlock(path->nodes[level]);
6334 WARN_ON(wc->refs[level] != 1);
6335 level--;
6339 wc->level = level;
6340 wc->shared_level = -1;
6341 wc->stage = DROP_REFERENCE;
6342 wc->update_ref = update_ref;
6343 wc->keep_locks = 0;
6344 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6346 while (1) {
6347 ret = walk_down_tree(trans, root, path, wc);
6348 if (ret < 0) {
6349 err = ret;
6350 break;
6353 ret = walk_up_tree(trans, root, path, wc, BTRFS_MAX_LEVEL);
6354 if (ret < 0) {
6355 err = ret;
6356 break;
6359 if (ret > 0) {
6360 BUG_ON(wc->stage != DROP_REFERENCE);
6361 break;
6364 if (wc->stage == DROP_REFERENCE) {
6365 level = wc->level;
6366 btrfs_node_key(path->nodes[level],
6367 &root_item->drop_progress,
6368 path->slots[level]);
6369 root_item->drop_level = level;
6372 BUG_ON(wc->level == 0);
6373 if (btrfs_should_end_transaction(trans, tree_root)) {
6374 ret = btrfs_update_root(trans, tree_root,
6375 &root->root_key,
6376 root_item);
6377 BUG_ON(ret);
6379 btrfs_end_transaction_throttle(trans, tree_root);
6380 trans = btrfs_start_transaction(tree_root, 0);
6381 BUG_ON(IS_ERR(trans));
6382 if (block_rsv)
6383 trans->block_rsv = block_rsv;
6386 btrfs_release_path(path);
6387 BUG_ON(err);
6389 ret = btrfs_del_root(trans, tree_root, &root->root_key);
6390 BUG_ON(ret);
6392 if (root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID) {
6393 ret = btrfs_find_last_root(tree_root, root->root_key.objectid,
6394 NULL, NULL);
6395 BUG_ON(ret < 0);
6396 if (ret > 0) {
6397 /* if we fail to delete the orphan item this time
6398 * around, it'll get picked up the next time.
6400 * The most common failure here is just -ENOENT.
6402 btrfs_del_orphan_item(trans, tree_root,
6403 root->root_key.objectid);
6407 if (root->in_radix) {
6408 btrfs_free_fs_root(tree_root->fs_info, root);
6409 } else {
6410 free_extent_buffer(root->node);
6411 free_extent_buffer(root->commit_root);
6412 kfree(root);
6414 out:
6415 btrfs_end_transaction_throttle(trans, tree_root);
6416 kfree(wc);
6417 btrfs_free_path(path);
6418 return err;
6422 * drop subtree rooted at tree block 'node'.
6424 * NOTE: this function will unlock and release tree block 'node'
6426 int btrfs_drop_subtree(struct btrfs_trans_handle *trans,
6427 struct btrfs_root *root,
6428 struct extent_buffer *node,
6429 struct extent_buffer *parent)
6431 struct btrfs_path *path;
6432 struct walk_control *wc;
6433 int level;
6434 int parent_level;
6435 int ret = 0;
6436 int wret;
6438 BUG_ON(root->root_key.objectid != BTRFS_TREE_RELOC_OBJECTID);
6440 path = btrfs_alloc_path();
6441 if (!path)
6442 return -ENOMEM;
6444 wc = kzalloc(sizeof(*wc), GFP_NOFS);
6445 if (!wc) {
6446 btrfs_free_path(path);
6447 return -ENOMEM;
6450 btrfs_assert_tree_locked(parent);
6451 parent_level = btrfs_header_level(parent);
6452 extent_buffer_get(parent);
6453 path->nodes[parent_level] = parent;
6454 path->slots[parent_level] = btrfs_header_nritems(parent);
6456 btrfs_assert_tree_locked(node);
6457 level = btrfs_header_level(node);
6458 path->nodes[level] = node;
6459 path->slots[level] = 0;
6460 path->locks[level] = 1;
6462 wc->refs[parent_level] = 1;
6463 wc->flags[parent_level] = BTRFS_BLOCK_FLAG_FULL_BACKREF;
6464 wc->level = level;
6465 wc->shared_level = -1;
6466 wc->stage = DROP_REFERENCE;
6467 wc->update_ref = 0;
6468 wc->keep_locks = 1;
6469 wc->reada_count = BTRFS_NODEPTRS_PER_BLOCK(root);
6471 while (1) {
6472 wret = walk_down_tree(trans, root, path, wc);
6473 if (wret < 0) {
6474 ret = wret;
6475 break;
6478 wret = walk_up_tree(trans, root, path, wc, parent_level);
6479 if (wret < 0)
6480 ret = wret;
6481 if (wret != 0)
6482 break;
6485 kfree(wc);
6486 btrfs_free_path(path);
6487 return ret;
6490 static u64 update_block_group_flags(struct btrfs_root *root, u64 flags)
6492 u64 num_devices;
6493 u64 stripped = BTRFS_BLOCK_GROUP_RAID0 |
6494 BTRFS_BLOCK_GROUP_RAID1 | BTRFS_BLOCK_GROUP_RAID10;
6497 * we add in the count of missing devices because we want
6498 * to make sure that any RAID levels on a degraded FS
6499 * continue to be honored.
6501 num_devices = root->fs_info->fs_devices->rw_devices +
6502 root->fs_info->fs_devices->missing_devices;
6504 if (num_devices == 1) {
6505 stripped |= BTRFS_BLOCK_GROUP_DUP;
6506 stripped = flags & ~stripped;
6508 /* turn raid0 into single device chunks */
6509 if (flags & BTRFS_BLOCK_GROUP_RAID0)
6510 return stripped;
6512 /* turn mirroring into duplication */
6513 if (flags & (BTRFS_BLOCK_GROUP_RAID1 |
6514 BTRFS_BLOCK_GROUP_RAID10))
6515 return stripped | BTRFS_BLOCK_GROUP_DUP;
6516 return flags;
6517 } else {
6518 /* they already had raid on here, just return */
6519 if (flags & stripped)
6520 return flags;
6522 stripped |= BTRFS_BLOCK_GROUP_DUP;
6523 stripped = flags & ~stripped;
6525 /* switch duplicated blocks with raid1 */
6526 if (flags & BTRFS_BLOCK_GROUP_DUP)
6527 return stripped | BTRFS_BLOCK_GROUP_RAID1;
6529 /* turn single device chunks into raid0 */
6530 return stripped | BTRFS_BLOCK_GROUP_RAID0;
6532 return flags;
6535 static int set_block_group_ro(struct btrfs_block_group_cache *cache)
6537 struct btrfs_space_info *sinfo = cache->space_info;
6538 u64 num_bytes;
6539 int ret = -ENOSPC;
6541 if (cache->ro)
6542 return 0;
6544 spin_lock(&sinfo->lock);
6545 spin_lock(&cache->lock);
6546 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6547 cache->bytes_super - btrfs_block_group_used(&cache->item);
6549 if (sinfo->bytes_used + sinfo->bytes_reserved + sinfo->bytes_pinned +
6550 sinfo->bytes_may_use + sinfo->bytes_readonly +
6551 cache->reserved_pinned + num_bytes <= sinfo->total_bytes) {
6552 sinfo->bytes_readonly += num_bytes;
6553 sinfo->bytes_reserved += cache->reserved_pinned;
6554 cache->reserved_pinned = 0;
6555 cache->ro = 1;
6556 ret = 0;
6559 spin_unlock(&cache->lock);
6560 spin_unlock(&sinfo->lock);
6561 return ret;
6564 int btrfs_set_block_group_ro(struct btrfs_root *root,
6565 struct btrfs_block_group_cache *cache)
6568 struct btrfs_trans_handle *trans;
6569 u64 alloc_flags;
6570 int ret;
6572 BUG_ON(cache->ro);
6574 trans = btrfs_join_transaction(root);
6575 BUG_ON(IS_ERR(trans));
6577 alloc_flags = update_block_group_flags(root, cache->flags);
6578 if (alloc_flags != cache->flags)
6579 do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6580 CHUNK_ALLOC_FORCE);
6582 ret = set_block_group_ro(cache);
6583 if (!ret)
6584 goto out;
6585 alloc_flags = get_alloc_profile(root, cache->space_info->flags);
6586 ret = do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6587 CHUNK_ALLOC_FORCE);
6588 if (ret < 0)
6589 goto out;
6590 ret = set_block_group_ro(cache);
6591 out:
6592 btrfs_end_transaction(trans, root);
6593 return ret;
6596 int btrfs_force_chunk_alloc(struct btrfs_trans_handle *trans,
6597 struct btrfs_root *root, u64 type)
6599 u64 alloc_flags = get_alloc_profile(root, type);
6600 return do_chunk_alloc(trans, root, 2 * 1024 * 1024, alloc_flags,
6601 CHUNK_ALLOC_FORCE);
6605 * helper to account the unused space of all the readonly block group in the
6606 * list. takes mirrors into account.
6608 static u64 __btrfs_get_ro_block_group_free_space(struct list_head *groups_list)
6610 struct btrfs_block_group_cache *block_group;
6611 u64 free_bytes = 0;
6612 int factor;
6614 list_for_each_entry(block_group, groups_list, list) {
6615 spin_lock(&block_group->lock);
6617 if (!block_group->ro) {
6618 spin_unlock(&block_group->lock);
6619 continue;
6622 if (block_group->flags & (BTRFS_BLOCK_GROUP_RAID1 |
6623 BTRFS_BLOCK_GROUP_RAID10 |
6624 BTRFS_BLOCK_GROUP_DUP))
6625 factor = 2;
6626 else
6627 factor = 1;
6629 free_bytes += (block_group->key.offset -
6630 btrfs_block_group_used(&block_group->item)) *
6631 factor;
6633 spin_unlock(&block_group->lock);
6636 return free_bytes;
6640 * helper to account the unused space of all the readonly block group in the
6641 * space_info. takes mirrors into account.
6643 u64 btrfs_account_ro_block_groups_free_space(struct btrfs_space_info *sinfo)
6645 int i;
6646 u64 free_bytes = 0;
6648 spin_lock(&sinfo->lock);
6650 for(i = 0; i < BTRFS_NR_RAID_TYPES; i++)
6651 if (!list_empty(&sinfo->block_groups[i]))
6652 free_bytes += __btrfs_get_ro_block_group_free_space(
6653 &sinfo->block_groups[i]);
6655 spin_unlock(&sinfo->lock);
6657 return free_bytes;
6660 int btrfs_set_block_group_rw(struct btrfs_root *root,
6661 struct btrfs_block_group_cache *cache)
6663 struct btrfs_space_info *sinfo = cache->space_info;
6664 u64 num_bytes;
6666 BUG_ON(!cache->ro);
6668 spin_lock(&sinfo->lock);
6669 spin_lock(&cache->lock);
6670 num_bytes = cache->key.offset - cache->reserved - cache->pinned -
6671 cache->bytes_super - btrfs_block_group_used(&cache->item);
6672 sinfo->bytes_readonly -= num_bytes;
6673 cache->ro = 0;
6674 spin_unlock(&cache->lock);
6675 spin_unlock(&sinfo->lock);
6676 return 0;
6680 * checks to see if its even possible to relocate this block group.
6682 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
6683 * ok to go ahead and try.
6685 int btrfs_can_relocate(struct btrfs_root *root, u64 bytenr)
6687 struct btrfs_block_group_cache *block_group;
6688 struct btrfs_space_info *space_info;
6689 struct btrfs_fs_devices *fs_devices = root->fs_info->fs_devices;
6690 struct btrfs_device *device;
6691 int full = 0;
6692 int ret = 0;
6694 block_group = btrfs_lookup_block_group(root->fs_info, bytenr);
6696 /* odd, couldn't find the block group, leave it alone */
6697 if (!block_group)
6698 return -1;
6700 /* no bytes used, we're good */
6701 if (!btrfs_block_group_used(&block_group->item))
6702 goto out;
6704 space_info = block_group->space_info;
6705 spin_lock(&space_info->lock);
6707 full = space_info->full;
6710 * if this is the last block group we have in this space, we can't
6711 * relocate it unless we're able to allocate a new chunk below.
6713 * Otherwise, we need to make sure we have room in the space to handle
6714 * all of the extents from this block group. If we can, we're good
6716 if ((space_info->total_bytes != block_group->key.offset) &&
6717 (space_info->bytes_used + space_info->bytes_reserved +
6718 space_info->bytes_pinned + space_info->bytes_readonly +
6719 btrfs_block_group_used(&block_group->item) <
6720 space_info->total_bytes)) {
6721 spin_unlock(&space_info->lock);
6722 goto out;
6724 spin_unlock(&space_info->lock);
6727 * ok we don't have enough space, but maybe we have free space on our
6728 * devices to allocate new chunks for relocation, so loop through our
6729 * alloc devices and guess if we have enough space. However, if we
6730 * were marked as full, then we know there aren't enough chunks, and we
6731 * can just return.
6733 ret = -1;
6734 if (full)
6735 goto out;
6737 mutex_lock(&root->fs_info->chunk_mutex);
6738 list_for_each_entry(device, &fs_devices->alloc_list, dev_alloc_list) {
6739 u64 min_free = btrfs_block_group_used(&block_group->item);
6740 u64 dev_offset;
6743 * check to make sure we can actually find a chunk with enough
6744 * space to fit our block group in.
6746 if (device->total_bytes > device->bytes_used + min_free) {
6747 ret = find_free_dev_extent(NULL, device, min_free,
6748 &dev_offset, NULL);
6749 if (!ret)
6750 break;
6751 ret = -1;
6754 mutex_unlock(&root->fs_info->chunk_mutex);
6755 out:
6756 btrfs_put_block_group(block_group);
6757 return ret;
6760 static int find_first_block_group(struct btrfs_root *root,
6761 struct btrfs_path *path, struct btrfs_key *key)
6763 int ret = 0;
6764 struct btrfs_key found_key;
6765 struct extent_buffer *leaf;
6766 int slot;
6768 ret = btrfs_search_slot(NULL, root, key, path, 0, 0);
6769 if (ret < 0)
6770 goto out;
6772 while (1) {
6773 slot = path->slots[0];
6774 leaf = path->nodes[0];
6775 if (slot >= btrfs_header_nritems(leaf)) {
6776 ret = btrfs_next_leaf(root, path);
6777 if (ret == 0)
6778 continue;
6779 if (ret < 0)
6780 goto out;
6781 break;
6783 btrfs_item_key_to_cpu(leaf, &found_key, slot);
6785 if (found_key.objectid >= key->objectid &&
6786 found_key.type == BTRFS_BLOCK_GROUP_ITEM_KEY) {
6787 ret = 0;
6788 goto out;
6790 path->slots[0]++;
6792 out:
6793 return ret;
6796 void btrfs_put_block_group_cache(struct btrfs_fs_info *info)
6798 struct btrfs_block_group_cache *block_group;
6799 u64 last = 0;
6801 while (1) {
6802 struct inode *inode;
6804 block_group = btrfs_lookup_first_block_group(info, last);
6805 while (block_group) {
6806 spin_lock(&block_group->lock);
6807 if (block_group->iref)
6808 break;
6809 spin_unlock(&block_group->lock);
6810 block_group = next_block_group(info->tree_root,
6811 block_group);
6813 if (!block_group) {
6814 if (last == 0)
6815 break;
6816 last = 0;
6817 continue;
6820 inode = block_group->inode;
6821 block_group->iref = 0;
6822 block_group->inode = NULL;
6823 spin_unlock(&block_group->lock);
6824 iput(inode);
6825 last = block_group->key.objectid + block_group->key.offset;
6826 btrfs_put_block_group(block_group);
6830 int btrfs_free_block_groups(struct btrfs_fs_info *info)
6832 struct btrfs_block_group_cache *block_group;
6833 struct btrfs_space_info *space_info;
6834 struct btrfs_caching_control *caching_ctl;
6835 struct rb_node *n;
6837 down_write(&info->extent_commit_sem);
6838 while (!list_empty(&info->caching_block_groups)) {
6839 caching_ctl = list_entry(info->caching_block_groups.next,
6840 struct btrfs_caching_control, list);
6841 list_del(&caching_ctl->list);
6842 put_caching_control(caching_ctl);
6844 up_write(&info->extent_commit_sem);
6846 spin_lock(&info->block_group_cache_lock);
6847 while ((n = rb_last(&info->block_group_cache_tree)) != NULL) {
6848 block_group = rb_entry(n, struct btrfs_block_group_cache,
6849 cache_node);
6850 rb_erase(&block_group->cache_node,
6851 &info->block_group_cache_tree);
6852 spin_unlock(&info->block_group_cache_lock);
6854 down_write(&block_group->space_info->groups_sem);
6855 list_del(&block_group->list);
6856 up_write(&block_group->space_info->groups_sem);
6858 if (block_group->cached == BTRFS_CACHE_STARTED)
6859 wait_block_group_cache_done(block_group);
6862 * We haven't cached this block group, which means we could
6863 * possibly have excluded extents on this block group.
6865 if (block_group->cached == BTRFS_CACHE_NO)
6866 free_excluded_extents(info->extent_root, block_group);
6868 btrfs_remove_free_space_cache(block_group);
6869 btrfs_put_block_group(block_group);
6871 spin_lock(&info->block_group_cache_lock);
6873 spin_unlock(&info->block_group_cache_lock);
6875 /* now that all the block groups are freed, go through and
6876 * free all the space_info structs. This is only called during
6877 * the final stages of unmount, and so we know nobody is
6878 * using them. We call synchronize_rcu() once before we start,
6879 * just to be on the safe side.
6881 synchronize_rcu();
6883 release_global_block_rsv(info);
6885 while(!list_empty(&info->space_info)) {
6886 space_info = list_entry(info->space_info.next,
6887 struct btrfs_space_info,
6888 list);
6889 if (space_info->bytes_pinned > 0 ||
6890 space_info->bytes_reserved > 0) {
6891 WARN_ON(1);
6892 dump_space_info(space_info, 0, 0);
6894 list_del(&space_info->list);
6895 kfree(space_info);
6897 return 0;
6900 static void __link_block_group(struct btrfs_space_info *space_info,
6901 struct btrfs_block_group_cache *cache)
6903 int index = get_block_group_index(cache);
6905 down_write(&space_info->groups_sem);
6906 list_add_tail(&cache->list, &space_info->block_groups[index]);
6907 up_write(&space_info->groups_sem);
6910 int btrfs_read_block_groups(struct btrfs_root *root)
6912 struct btrfs_path *path;
6913 int ret;
6914 struct btrfs_block_group_cache *cache;
6915 struct btrfs_fs_info *info = root->fs_info;
6916 struct btrfs_space_info *space_info;
6917 struct btrfs_key key;
6918 struct btrfs_key found_key;
6919 struct extent_buffer *leaf;
6920 int need_clear = 0;
6921 u64 cache_gen;
6923 root = info->extent_root;
6924 key.objectid = 0;
6925 key.offset = 0;
6926 btrfs_set_key_type(&key, BTRFS_BLOCK_GROUP_ITEM_KEY);
6927 path = btrfs_alloc_path();
6928 if (!path)
6929 return -ENOMEM;
6930 path->reada = 1;
6932 cache_gen = btrfs_super_cache_generation(&root->fs_info->super_copy);
6933 if (cache_gen != 0 &&
6934 btrfs_super_generation(&root->fs_info->super_copy) != cache_gen)
6935 need_clear = 1;
6936 if (btrfs_test_opt(root, CLEAR_CACHE))
6937 need_clear = 1;
6938 if (!btrfs_test_opt(root, SPACE_CACHE) && cache_gen)
6939 printk(KERN_INFO "btrfs: disk space caching is enabled\n");
6941 while (1) {
6942 ret = find_first_block_group(root, path, &key);
6943 if (ret > 0)
6944 break;
6945 if (ret != 0)
6946 goto error;
6947 leaf = path->nodes[0];
6948 btrfs_item_key_to_cpu(leaf, &found_key, path->slots[0]);
6949 cache = kzalloc(sizeof(*cache), GFP_NOFS);
6950 if (!cache) {
6951 ret = -ENOMEM;
6952 goto error;
6954 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
6955 GFP_NOFS);
6956 if (!cache->free_space_ctl) {
6957 kfree(cache);
6958 ret = -ENOMEM;
6959 goto error;
6962 atomic_set(&cache->count, 1);
6963 spin_lock_init(&cache->lock);
6964 cache->fs_info = info;
6965 INIT_LIST_HEAD(&cache->list);
6966 INIT_LIST_HEAD(&cache->cluster_list);
6968 if (need_clear)
6969 cache->disk_cache_state = BTRFS_DC_CLEAR;
6971 read_extent_buffer(leaf, &cache->item,
6972 btrfs_item_ptr_offset(leaf, path->slots[0]),
6973 sizeof(cache->item));
6974 memcpy(&cache->key, &found_key, sizeof(found_key));
6976 key.objectid = found_key.objectid + found_key.offset;
6977 btrfs_release_path(path);
6978 cache->flags = btrfs_block_group_flags(&cache->item);
6979 cache->sectorsize = root->sectorsize;
6981 btrfs_init_free_space_ctl(cache);
6984 * We need to exclude the super stripes now so that the space
6985 * info has super bytes accounted for, otherwise we'll think
6986 * we have more space than we actually do.
6988 exclude_super_stripes(root, cache);
6991 * check for two cases, either we are full, and therefore
6992 * don't need to bother with the caching work since we won't
6993 * find any space, or we are empty, and we can just add all
6994 * the space in and be done with it. This saves us _alot_ of
6995 * time, particularly in the full case.
6997 if (found_key.offset == btrfs_block_group_used(&cache->item)) {
6998 cache->last_byte_to_unpin = (u64)-1;
6999 cache->cached = BTRFS_CACHE_FINISHED;
7000 free_excluded_extents(root, cache);
7001 } else if (btrfs_block_group_used(&cache->item) == 0) {
7002 cache->last_byte_to_unpin = (u64)-1;
7003 cache->cached = BTRFS_CACHE_FINISHED;
7004 add_new_free_space(cache, root->fs_info,
7005 found_key.objectid,
7006 found_key.objectid +
7007 found_key.offset);
7008 free_excluded_extents(root, cache);
7011 ret = update_space_info(info, cache->flags, found_key.offset,
7012 btrfs_block_group_used(&cache->item),
7013 &space_info);
7014 BUG_ON(ret);
7015 cache->space_info = space_info;
7016 spin_lock(&cache->space_info->lock);
7017 cache->space_info->bytes_readonly += cache->bytes_super;
7018 spin_unlock(&cache->space_info->lock);
7020 __link_block_group(space_info, cache);
7022 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7023 BUG_ON(ret);
7025 set_avail_alloc_bits(root->fs_info, cache->flags);
7026 if (btrfs_chunk_readonly(root, cache->key.objectid))
7027 set_block_group_ro(cache);
7030 list_for_each_entry_rcu(space_info, &root->fs_info->space_info, list) {
7031 if (!(get_alloc_profile(root, space_info->flags) &
7032 (BTRFS_BLOCK_GROUP_RAID10 |
7033 BTRFS_BLOCK_GROUP_RAID1 |
7034 BTRFS_BLOCK_GROUP_DUP)))
7035 continue;
7037 * avoid allocating from un-mirrored block group if there are
7038 * mirrored block groups.
7040 list_for_each_entry(cache, &space_info->block_groups[3], list)
7041 set_block_group_ro(cache);
7042 list_for_each_entry(cache, &space_info->block_groups[4], list)
7043 set_block_group_ro(cache);
7046 init_global_block_rsv(info);
7047 ret = 0;
7048 error:
7049 btrfs_free_path(path);
7050 return ret;
7053 int btrfs_make_block_group(struct btrfs_trans_handle *trans,
7054 struct btrfs_root *root, u64 bytes_used,
7055 u64 type, u64 chunk_objectid, u64 chunk_offset,
7056 u64 size)
7058 int ret;
7059 struct btrfs_root *extent_root;
7060 struct btrfs_block_group_cache *cache;
7062 extent_root = root->fs_info->extent_root;
7064 root->fs_info->last_trans_log_full_commit = trans->transid;
7066 cache = kzalloc(sizeof(*cache), GFP_NOFS);
7067 if (!cache)
7068 return -ENOMEM;
7069 cache->free_space_ctl = kzalloc(sizeof(*cache->free_space_ctl),
7070 GFP_NOFS);
7071 if (!cache->free_space_ctl) {
7072 kfree(cache);
7073 return -ENOMEM;
7076 cache->key.objectid = chunk_offset;
7077 cache->key.offset = size;
7078 cache->key.type = BTRFS_BLOCK_GROUP_ITEM_KEY;
7079 cache->sectorsize = root->sectorsize;
7080 cache->fs_info = root->fs_info;
7082 atomic_set(&cache->count, 1);
7083 spin_lock_init(&cache->lock);
7084 INIT_LIST_HEAD(&cache->list);
7085 INIT_LIST_HEAD(&cache->cluster_list);
7087 btrfs_init_free_space_ctl(cache);
7089 btrfs_set_block_group_used(&cache->item, bytes_used);
7090 btrfs_set_block_group_chunk_objectid(&cache->item, chunk_objectid);
7091 cache->flags = type;
7092 btrfs_set_block_group_flags(&cache->item, type);
7094 cache->last_byte_to_unpin = (u64)-1;
7095 cache->cached = BTRFS_CACHE_FINISHED;
7096 exclude_super_stripes(root, cache);
7098 add_new_free_space(cache, root->fs_info, chunk_offset,
7099 chunk_offset + size);
7101 free_excluded_extents(root, cache);
7103 ret = update_space_info(root->fs_info, cache->flags, size, bytes_used,
7104 &cache->space_info);
7105 BUG_ON(ret);
7107 spin_lock(&cache->space_info->lock);
7108 cache->space_info->bytes_readonly += cache->bytes_super;
7109 spin_unlock(&cache->space_info->lock);
7111 __link_block_group(cache->space_info, cache);
7113 ret = btrfs_add_block_group_cache(root->fs_info, cache);
7114 BUG_ON(ret);
7116 ret = btrfs_insert_item(trans, extent_root, &cache->key, &cache->item,
7117 sizeof(cache->item));
7118 BUG_ON(ret);
7120 set_avail_alloc_bits(extent_root->fs_info, type);
7122 return 0;
7125 int btrfs_remove_block_group(struct btrfs_trans_handle *trans,
7126 struct btrfs_root *root, u64 group_start)
7128 struct btrfs_path *path;
7129 struct btrfs_block_group_cache *block_group;
7130 struct btrfs_free_cluster *cluster;
7131 struct btrfs_root *tree_root = root->fs_info->tree_root;
7132 struct btrfs_key key;
7133 struct inode *inode;
7134 int ret;
7135 int factor;
7137 root = root->fs_info->extent_root;
7139 block_group = btrfs_lookup_block_group(root->fs_info, group_start);
7140 BUG_ON(!block_group);
7141 BUG_ON(!block_group->ro);
7144 * Free the reserved super bytes from this block group before
7145 * remove it.
7147 free_excluded_extents(root, block_group);
7149 memcpy(&key, &block_group->key, sizeof(key));
7150 if (block_group->flags & (BTRFS_BLOCK_GROUP_DUP |
7151 BTRFS_BLOCK_GROUP_RAID1 |
7152 BTRFS_BLOCK_GROUP_RAID10))
7153 factor = 2;
7154 else
7155 factor = 1;
7157 /* make sure this block group isn't part of an allocation cluster */
7158 cluster = &root->fs_info->data_alloc_cluster;
7159 spin_lock(&cluster->refill_lock);
7160 btrfs_return_cluster_to_free_space(block_group, cluster);
7161 spin_unlock(&cluster->refill_lock);
7164 * make sure this block group isn't part of a metadata
7165 * allocation cluster
7167 cluster = &root->fs_info->meta_alloc_cluster;
7168 spin_lock(&cluster->refill_lock);
7169 btrfs_return_cluster_to_free_space(block_group, cluster);
7170 spin_unlock(&cluster->refill_lock);
7172 path = btrfs_alloc_path();
7173 BUG_ON(!path);
7175 inode = lookup_free_space_inode(root, block_group, path);
7176 if (!IS_ERR(inode)) {
7177 btrfs_orphan_add(trans, inode);
7178 clear_nlink(inode);
7179 /* One for the block groups ref */
7180 spin_lock(&block_group->lock);
7181 if (block_group->iref) {
7182 block_group->iref = 0;
7183 block_group->inode = NULL;
7184 spin_unlock(&block_group->lock);
7185 iput(inode);
7186 } else {
7187 spin_unlock(&block_group->lock);
7189 /* One for our lookup ref */
7190 iput(inode);
7193 key.objectid = BTRFS_FREE_SPACE_OBJECTID;
7194 key.offset = block_group->key.objectid;
7195 key.type = 0;
7197 ret = btrfs_search_slot(trans, tree_root, &key, path, -1, 1);
7198 if (ret < 0)
7199 goto out;
7200 if (ret > 0)
7201 btrfs_release_path(path);
7202 if (ret == 0) {
7203 ret = btrfs_del_item(trans, tree_root, path);
7204 if (ret)
7205 goto out;
7206 btrfs_release_path(path);
7209 spin_lock(&root->fs_info->block_group_cache_lock);
7210 rb_erase(&block_group->cache_node,
7211 &root->fs_info->block_group_cache_tree);
7212 spin_unlock(&root->fs_info->block_group_cache_lock);
7214 down_write(&block_group->space_info->groups_sem);
7216 * we must use list_del_init so people can check to see if they
7217 * are still on the list after taking the semaphore
7219 list_del_init(&block_group->list);
7220 up_write(&block_group->space_info->groups_sem);
7222 if (block_group->cached == BTRFS_CACHE_STARTED)
7223 wait_block_group_cache_done(block_group);
7225 btrfs_remove_free_space_cache(block_group);
7227 spin_lock(&block_group->space_info->lock);
7228 block_group->space_info->total_bytes -= block_group->key.offset;
7229 block_group->space_info->bytes_readonly -= block_group->key.offset;
7230 block_group->space_info->disk_total -= block_group->key.offset * factor;
7231 spin_unlock(&block_group->space_info->lock);
7233 memcpy(&key, &block_group->key, sizeof(key));
7235 btrfs_clear_space_info_full(root->fs_info);
7237 btrfs_put_block_group(block_group);
7238 btrfs_put_block_group(block_group);
7240 ret = btrfs_search_slot(trans, root, &key, path, -1, 1);
7241 if (ret > 0)
7242 ret = -EIO;
7243 if (ret < 0)
7244 goto out;
7246 ret = btrfs_del_item(trans, root, path);
7247 out:
7248 btrfs_free_path(path);
7249 return ret;
7252 int btrfs_init_space_info(struct btrfs_fs_info *fs_info)
7254 struct btrfs_space_info *space_info;
7255 struct btrfs_super_block *disk_super;
7256 u64 features;
7257 u64 flags;
7258 int mixed = 0;
7259 int ret;
7261 disk_super = &fs_info->super_copy;
7262 if (!btrfs_super_root(disk_super))
7263 return 1;
7265 features = btrfs_super_incompat_flags(disk_super);
7266 if (features & BTRFS_FEATURE_INCOMPAT_MIXED_GROUPS)
7267 mixed = 1;
7269 flags = BTRFS_BLOCK_GROUP_SYSTEM;
7270 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7271 if (ret)
7272 goto out;
7274 if (mixed) {
7275 flags = BTRFS_BLOCK_GROUP_METADATA | BTRFS_BLOCK_GROUP_DATA;
7276 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7277 } else {
7278 flags = BTRFS_BLOCK_GROUP_METADATA;
7279 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7280 if (ret)
7281 goto out;
7283 flags = BTRFS_BLOCK_GROUP_DATA;
7284 ret = update_space_info(fs_info, flags, 0, 0, &space_info);
7286 out:
7287 return ret;
7290 int btrfs_error_unpin_extent_range(struct btrfs_root *root, u64 start, u64 end)
7292 return unpin_extent_range(root, start, end);
7295 int btrfs_error_discard_extent(struct btrfs_root *root, u64 bytenr,
7296 u64 num_bytes, u64 *actual_bytes)
7298 return btrfs_discard_extent(root, bytenr, num_bytes, actual_bytes);
7301 int btrfs_trim_fs(struct btrfs_root *root, struct fstrim_range *range)
7303 struct btrfs_fs_info *fs_info = root->fs_info;
7304 struct btrfs_block_group_cache *cache = NULL;
7305 u64 group_trimmed;
7306 u64 start;
7307 u64 end;
7308 u64 trimmed = 0;
7309 int ret = 0;
7311 cache = btrfs_lookup_block_group(fs_info, range->start);
7313 while (cache) {
7314 if (cache->key.objectid >= (range->start + range->len)) {
7315 btrfs_put_block_group(cache);
7316 break;
7319 start = max(range->start, cache->key.objectid);
7320 end = min(range->start + range->len,
7321 cache->key.objectid + cache->key.offset);
7323 if (end - start >= range->minlen) {
7324 if (!block_group_cache_done(cache)) {
7325 ret = cache_block_group(cache, NULL, root, 0);
7326 if (!ret)
7327 wait_block_group_cache_done(cache);
7329 ret = btrfs_trim_block_group(cache,
7330 &group_trimmed,
7331 start,
7332 end,
7333 range->minlen);
7335 trimmed += group_trimmed;
7336 if (ret) {
7337 btrfs_put_block_group(cache);
7338 break;
7342 cache = next_block_group(fs_info->tree_root, cache);
7345 range->len = trimmed;
7346 return ret;