2 * drivers/net/wan/dscc4/dscc4.c: a DSCC4 HDLC driver for Linux
4 * This software may be used and distributed according to the terms of the
5 * GNU General Public License.
7 * The author may be reached as romieu@cogenit.fr.
8 * Specific bug reports/asian food will be welcome.
10 * Special thanks to the nice people at CS-Telecom for the hardware and the
11 * access to the test/measure tools.
16 * I. Board Compatibility
18 * This device driver is designed for the Siemens PEB20534 4 ports serial
19 * controller as found on Etinc PCISYNC cards. The documentation for the
20 * chipset is available at http://www.infineon.com:
21 * - Data Sheet "DSCC4, DMA Supported Serial Communication Controller with
22 * 4 Channels, PEB 20534 Version 2.1, PEF 20534 Version 2.1";
23 * - Application Hint "Management of DSCC4 on-chip FIFO resources".
24 * - Errata sheet DS5 (courtesy of Michael Skerritt).
25 * Jens David has built an adapter based on the same chipset. Take a look
26 * at http://www.afthd.tu-darmstadt.de/~dg1kjd/pciscc4 for a specific
28 * Sample code (2 revisions) is available at Infineon.
30 * II. Board-specific settings
32 * Pcisync can transmit some clock signal to the outside world on the
33 * *first two* ports provided you put a quartz and a line driver on it and
34 * remove the jumpers. The operation is described on Etinc web site. If you
35 * go DCE on these ports, don't forget to use an adequate cable.
37 * Sharing of the PCI interrupt line for this board is possible.
39 * III. Driver operation
41 * The rx/tx operations are based on a linked list of descriptors. The driver
42 * doesn't use HOLD mode any more. HOLD mode is definitely buggy and the more
43 * I tried to fix it, the more it started to look like (convoluted) software
44 * mutation of LxDA method. Errata sheet DS5 suggests to use LxDA: consider
45 * this a rfc2119 MUST.
48 * When the tx ring is full, the xmit routine issues a call to netdev_stop.
49 * The device is supposed to be enabled again during an ALLS irq (we could
50 * use HI but as it's easy to lose events, it's fscked).
53 * The received frames aren't supposed to span over multiple receiving areas.
54 * I may implement it some day but it isn't the highest ranked item.
57 * The current error (XDU, RFO) recovery code is untested.
58 * So far, RDO takes his RX channel down and the right sequence to enable it
59 * again is still a mistery. If RDO happens, plan a reboot. More details
60 * in the code (NB: as this happens, TX still works).
61 * Don't mess the cables during operation, especially on DTE ports. I don't
62 * suggest it for DCE either but at least one can get some messages instead
63 * of a complete instant freeze.
64 * Tests are done on Rev. 20 of the silicium. The RDO handling changes with
65 * the documentation/chipset releases.
69 * - use polling at high irq/s,
70 * - performance analysis,
73 * 2001/12/10 Daniela Squassoni <daniela@cyclades.com>
74 * - Contribution to support the new generic HDLC layer.
77 * - old style interface removal
78 * - dscc4_release_ring fix (related to DMA mapping)
79 * - hard_start_xmit fix (hint: TxSizeMax)
83 #include <linux/module.h>
84 #include <linux/sched.h>
85 #include <linux/types.h>
86 #include <linux/errno.h>
87 #include <linux/list.h>
88 #include <linux/ioport.h>
89 #include <linux/pci.h>
90 #include <linux/kernel.h>
92 #include <linux/slab.h>
94 #include <asm/system.h>
95 #include <asm/cache.h>
96 #include <asm/byteorder.h>
97 #include <asm/uaccess.h>
101 #include <linux/init.h>
102 #include <linux/string.h>
104 #include <linux/if_arp.h>
105 #include <linux/netdevice.h>
106 #include <linux/skbuff.h>
107 #include <linux/delay.h>
108 #include <linux/hdlc.h>
109 #include <linux/mutex.h>
112 static const char version
[] = "$Id: dscc4.c,v 1.173 2003/09/20 23:55:34 romieu Exp $ for Linux\n";
116 #ifdef CONFIG_DSCC4_PCI_RST
117 static DEFINE_MUTEX(dscc4_mutex
);
118 static u32 dscc4_pci_config_store
[16];
121 #define DRV_NAME "dscc4"
125 /* Module parameters */
127 MODULE_AUTHOR("Maintainer: Francois Romieu <romieu@cogenit.fr>");
128 MODULE_DESCRIPTION("Siemens PEB20534 PCI Controler");
129 MODULE_LICENSE("GPL");
130 module_param(debug
, int, 0);
131 MODULE_PARM_DESC(debug
,"Enable/disable extra messages");
132 module_param(quartz
, int, 0);
133 MODULE_PARM_DESC(quartz
,"If present, on-board quartz frequency (Hz)");
147 u32 jiffies
; /* Allows sizeof(TxFD) == sizeof(RxFD) + extra hack */
148 /* FWIW, datasheet calls that "dummy" and says that card
149 * never looks at it; neither does the driver */
160 #define DUMMY_SKB_SIZE 64
162 #define TX_RING_SIZE 32
163 #define RX_RING_SIZE 32
164 #define TX_TOTAL_SIZE TX_RING_SIZE*sizeof(struct TxFD)
165 #define RX_TOTAL_SIZE RX_RING_SIZE*sizeof(struct RxFD)
166 #define IRQ_RING_SIZE 64 /* Keep it a multiple of 32 */
167 #define TX_TIMEOUT (HZ/10)
168 #define DSCC4_HZ_MAX 33000000
169 #define BRR_DIVIDER_MAX 64*0x00004000 /* Cf errata DS5 p.10 */
170 #define dev_per_card 4
171 #define SCC_REGISTERS_MAX 23 /* Cf errata DS5 p.4 */
173 #define SOURCE_ID(flags) (((flags) >> 28) & 0x03)
174 #define TO_SIZE(state) (((state) >> 16) & 0x1fff)
177 * Given the operating range of Linux HDLC, the 2 defines below could be
178 * made simpler. However they are a fine reminder for the limitations of
179 * the driver: it's better to stay < TxSizeMax and < RxSizeMax.
181 #define TO_STATE_TX(len) cpu_to_le32(((len) & TxSizeMax) << 16)
182 #define TO_STATE_RX(len) cpu_to_le32((RX_MAX(len) % RxSizeMax) << 16)
183 #define RX_MAX(len) ((((len) >> 5) + 1) << 5) /* Cf RLCR */
184 #define SCC_REG_START(dpriv) (SCC_START+(dpriv->dev_id)*SCC_OFFSET)
186 struct dscc4_pci_priv
{
190 struct pci_dev
*pdev
;
192 struct dscc4_dev_priv
*root
;
193 dma_addr_t iqcfg_dma
;
197 struct dscc4_dev_priv
{
198 struct sk_buff
*rx_skbuff
[RX_RING_SIZE
];
199 struct sk_buff
*tx_skbuff
[TX_RING_SIZE
];
206 /* FIXME: check all the volatile are required */
207 volatile u32 tx_current
;
212 volatile u32 tx_dirty
;
217 dma_addr_t tx_fd_dma
;
218 dma_addr_t rx_fd_dma
;
222 u32 scc_regs
[SCC_REGISTERS_MAX
]; /* Cf errata DS5 p.4 */
224 struct timer_list timer
;
226 struct dscc4_pci_priv
*pci_priv
;
233 unsigned short encoding
;
234 unsigned short parity
;
235 struct net_device
*dev
;
236 sync_serial_settings settings
;
237 void __iomem
*base_addr
;
238 u32 __pad
__attribute__ ((aligned (4)));
241 /* GLOBAL registers definitions */
262 /* SCC registers definitions */
263 #define SCC_START 0x0100
264 #define SCC_OFFSET 0x80
276 #define GPDATA 0x0404
280 #define EncodingMask 0x00700000
281 #define CrcMask 0x00000003
283 #define IntRxScc0 0x10000000
284 #define IntTxScc0 0x01000000
286 #define TxPollCmd 0x00000400
287 #define RxActivate 0x08000000
288 #define MTFi 0x04000000
289 #define Rdr 0x00400000
290 #define Rdt 0x00200000
291 #define Idr 0x00100000
292 #define Idt 0x00080000
293 #define TxSccRes 0x01000000
294 #define RxSccRes 0x00010000
295 #define TxSizeMax 0x1fff /* Datasheet DS1 - 11.1.1.1 */
296 #define RxSizeMax 0x1ffc /* Datasheet DS1 - 11.1.2.1 */
298 #define Ccr0ClockMask 0x0000003f
299 #define Ccr1LoopMask 0x00000200
300 #define IsrMask 0x000fffff
301 #define BrrExpMask 0x00000f00
302 #define BrrMultMask 0x0000003f
303 #define EncodingMask 0x00700000
304 #define Hold cpu_to_le32(0x40000000)
305 #define SccBusy 0x10000000
306 #define PowerUp 0x80000000
307 #define Vis 0x00001000
308 #define FrameOk (FrameVfr | FrameCrc)
309 #define FrameVfr 0x80
310 #define FrameRdo 0x40
311 #define FrameCrc 0x20
312 #define FrameRab 0x10
313 #define FrameAborted cpu_to_le32(0x00000200)
314 #define FrameEnd cpu_to_le32(0x80000000)
315 #define DataComplete cpu_to_le32(0x40000000)
316 #define LengthCheck 0x00008000
317 #define SccEvt 0x02000000
318 #define NoAck 0x00000200
319 #define Action 0x00000001
320 #define HiDesc cpu_to_le32(0x20000000)
323 #define RxEvt 0xf0000000
324 #define TxEvt 0x0f000000
325 #define Alls 0x00040000
326 #define Xdu 0x00010000
327 #define Cts 0x00004000
328 #define Xmr 0x00002000
329 #define Xpr 0x00001000
330 #define Rdo 0x00000080
331 #define Rfs 0x00000040
332 #define Cd 0x00000004
333 #define Rfo 0x00000002
334 #define Flex 0x00000001
336 /* DMA core events */
337 #define Cfg 0x00200000
338 #define Hi 0x00040000
339 #define Fi 0x00020000
340 #define Err 0x00010000
341 #define Arf 0x00000002
342 #define ArAck 0x00000001
345 #define Ready 0x00000000
346 #define NeedIDR 0x00000001
347 #define NeedIDT 0x00000002
348 #define RdoSet 0x00000004
349 #define FakeReset 0x00000008
351 /* Don't mask RDO. Ever. */
353 #define EventsMask 0xfffeef7f
355 #define EventsMask 0xfffa8f7a
358 /* Functions prototypes */
359 static void dscc4_rx_irq(struct dscc4_pci_priv
*, struct dscc4_dev_priv
*);
360 static void dscc4_tx_irq(struct dscc4_pci_priv
*, struct dscc4_dev_priv
*);
361 static int dscc4_found1(struct pci_dev
*, void __iomem
*ioaddr
);
362 static int dscc4_init_one(struct pci_dev
*, const struct pci_device_id
*ent
);
363 static int dscc4_open(struct net_device
*);
364 static netdev_tx_t
dscc4_start_xmit(struct sk_buff
*,
365 struct net_device
*);
366 static int dscc4_close(struct net_device
*);
367 static int dscc4_ioctl(struct net_device
*dev
, struct ifreq
*rq
, int cmd
);
368 static int dscc4_init_ring(struct net_device
*);
369 static void dscc4_release_ring(struct dscc4_dev_priv
*);
370 static void dscc4_timer(unsigned long);
371 static void dscc4_tx_timeout(struct net_device
*);
372 static irqreturn_t
dscc4_irq(int irq
, void *dev_id
);
373 static int dscc4_hdlc_attach(struct net_device
*, unsigned short, unsigned short);
374 static int dscc4_set_iface(struct dscc4_dev_priv
*, struct net_device
*);
376 static int dscc4_tx_poll(struct dscc4_dev_priv
*, struct net_device
*);
379 static inline struct dscc4_dev_priv
*dscc4_priv(struct net_device
*dev
)
381 return dev_to_hdlc(dev
)->priv
;
384 static inline struct net_device
*dscc4_to_dev(struct dscc4_dev_priv
*p
)
389 static void scc_patchl(u32 mask
, u32 value
, struct dscc4_dev_priv
*dpriv
,
390 struct net_device
*dev
, int offset
)
394 /* Cf scc_writel for concern regarding thread-safety */
395 state
= dpriv
->scc_regs
[offset
>> 2];
398 dpriv
->scc_regs
[offset
>> 2] = state
;
399 writel(state
, dpriv
->base_addr
+ SCC_REG_START(dpriv
) + offset
);
402 static void scc_writel(u32 bits
, struct dscc4_dev_priv
*dpriv
,
403 struct net_device
*dev
, int offset
)
407 * As of 2002/02/16, there are no thread racing for access.
409 dpriv
->scc_regs
[offset
>> 2] = bits
;
410 writel(bits
, dpriv
->base_addr
+ SCC_REG_START(dpriv
) + offset
);
413 static inline u32
scc_readl(struct dscc4_dev_priv
*dpriv
, int offset
)
415 return dpriv
->scc_regs
[offset
>> 2];
418 static u32
scc_readl_star(struct dscc4_dev_priv
*dpriv
, struct net_device
*dev
)
420 /* Cf errata DS5 p.4 */
421 readl(dpriv
->base_addr
+ SCC_REG_START(dpriv
) + STAR
);
422 return readl(dpriv
->base_addr
+ SCC_REG_START(dpriv
) + STAR
);
425 static inline void dscc4_do_tx(struct dscc4_dev_priv
*dpriv
,
426 struct net_device
*dev
)
428 dpriv
->ltda
= dpriv
->tx_fd_dma
+
429 ((dpriv
->tx_current
-1)%TX_RING_SIZE
)*sizeof(struct TxFD
);
430 writel(dpriv
->ltda
, dpriv
->base_addr
+ CH0LTDA
+ dpriv
->dev_id
*4);
431 /* Flush posted writes *NOW* */
432 readl(dpriv
->base_addr
+ CH0LTDA
+ dpriv
->dev_id
*4);
435 static inline void dscc4_rx_update(struct dscc4_dev_priv
*dpriv
,
436 struct net_device
*dev
)
438 dpriv
->lrda
= dpriv
->rx_fd_dma
+
439 ((dpriv
->rx_dirty
- 1)%RX_RING_SIZE
)*sizeof(struct RxFD
);
440 writel(dpriv
->lrda
, dpriv
->base_addr
+ CH0LRDA
+ dpriv
->dev_id
*4);
443 static inline unsigned int dscc4_tx_done(struct dscc4_dev_priv
*dpriv
)
445 return dpriv
->tx_current
== dpriv
->tx_dirty
;
448 static inline unsigned int dscc4_tx_quiescent(struct dscc4_dev_priv
*dpriv
,
449 struct net_device
*dev
)
451 return readl(dpriv
->base_addr
+ CH0FTDA
+ dpriv
->dev_id
*4) == dpriv
->ltda
;
454 static int state_check(u32 state
, struct dscc4_dev_priv
*dpriv
,
455 struct net_device
*dev
, const char *msg
)
460 if (SOURCE_ID(state
) != dpriv
->dev_id
) {
461 printk(KERN_DEBUG
"%s (%s): Source Id=%d, state=%08x\n",
462 dev
->name
, msg
, SOURCE_ID(state
), state
);
465 if (state
& 0x0df80c00) {
466 printk(KERN_DEBUG
"%s (%s): state=%08x (UFO alert)\n",
467 dev
->name
, msg
, state
);
474 static void dscc4_tx_print(struct net_device
*dev
,
475 struct dscc4_dev_priv
*dpriv
,
478 printk(KERN_DEBUG
"%s: tx_current=%02d tx_dirty=%02d (%s)\n",
479 dev
->name
, dpriv
->tx_current
, dpriv
->tx_dirty
, msg
);
482 static void dscc4_release_ring(struct dscc4_dev_priv
*dpriv
)
484 struct pci_dev
*pdev
= dpriv
->pci_priv
->pdev
;
485 struct TxFD
*tx_fd
= dpriv
->tx_fd
;
486 struct RxFD
*rx_fd
= dpriv
->rx_fd
;
487 struct sk_buff
**skbuff
;
490 pci_free_consistent(pdev
, TX_TOTAL_SIZE
, tx_fd
, dpriv
->tx_fd_dma
);
491 pci_free_consistent(pdev
, RX_TOTAL_SIZE
, rx_fd
, dpriv
->rx_fd_dma
);
493 skbuff
= dpriv
->tx_skbuff
;
494 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
496 pci_unmap_single(pdev
, le32_to_cpu(tx_fd
->data
),
497 (*skbuff
)->len
, PCI_DMA_TODEVICE
);
498 dev_kfree_skb(*skbuff
);
504 skbuff
= dpriv
->rx_skbuff
;
505 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
507 pci_unmap_single(pdev
, le32_to_cpu(rx_fd
->data
),
508 RX_MAX(HDLC_MAX_MRU
), PCI_DMA_FROMDEVICE
);
509 dev_kfree_skb(*skbuff
);
516 static inline int try_get_rx_skb(struct dscc4_dev_priv
*dpriv
,
517 struct net_device
*dev
)
519 unsigned int dirty
= dpriv
->rx_dirty
%RX_RING_SIZE
;
520 struct RxFD
*rx_fd
= dpriv
->rx_fd
+ dirty
;
521 const int len
= RX_MAX(HDLC_MAX_MRU
);
525 skb
= dev_alloc_skb(len
);
526 dpriv
->rx_skbuff
[dirty
] = skb
;
528 skb
->protocol
= hdlc_type_trans(skb
, dev
);
529 rx_fd
->data
= cpu_to_le32(pci_map_single(dpriv
->pci_priv
->pdev
,
530 skb
->data
, len
, PCI_DMA_FROMDEVICE
));
539 * IRQ/thread/whatever safe
541 static int dscc4_wait_ack_cec(struct dscc4_dev_priv
*dpriv
,
542 struct net_device
*dev
, char *msg
)
547 if (!(scc_readl_star(dpriv
, dev
) & SccBusy
)) {
548 printk(KERN_DEBUG
"%s: %s ack (%d try)\n", dev
->name
,
552 schedule_timeout_uninterruptible(10);
555 printk(KERN_ERR
"%s: %s timeout\n", dev
->name
, msg
);
557 return (i
>= 0) ? i
: -EAGAIN
;
560 static int dscc4_do_action(struct net_device
*dev
, char *msg
)
562 void __iomem
*ioaddr
= dscc4_priv(dev
)->base_addr
;
565 writel(Action
, ioaddr
+ GCMDR
);
568 u32 state
= readl(ioaddr
);
571 printk(KERN_DEBUG
"%s: %s ack\n", dev
->name
, msg
);
572 writel(ArAck
, ioaddr
);
574 } else if (state
& Arf
) {
575 printk(KERN_ERR
"%s: %s failed\n", dev
->name
, msg
);
582 printk(KERN_ERR
"%s: %s timeout\n", dev
->name
, msg
);
587 static inline int dscc4_xpr_ack(struct dscc4_dev_priv
*dpriv
)
589 int cur
= dpriv
->iqtx_current
%IRQ_RING_SIZE
;
593 if (!(dpriv
->flags
& (NeedIDR
| NeedIDT
)) ||
594 (dpriv
->iqtx
[cur
] & cpu_to_le32(Xpr
)))
597 schedule_timeout_uninterruptible(10);
600 return (i
>= 0 ) ? i
: -EAGAIN
;
603 #if 0 /* dscc4_{rx/tx}_reset are both unreliable - more tweak needed */
604 static void dscc4_rx_reset(struct dscc4_dev_priv
*dpriv
, struct net_device
*dev
)
608 spin_lock_irqsave(&dpriv
->pci_priv
->lock
, flags
);
609 /* Cf errata DS5 p.6 */
610 writel(0x00000000, dpriv
->base_addr
+ CH0LRDA
+ dpriv
->dev_id
*4);
611 scc_patchl(PowerUp
, 0, dpriv
, dev
, CCR0
);
612 readl(dpriv
->base_addr
+ CH0LRDA
+ dpriv
->dev_id
*4);
613 writel(MTFi
|Rdr
, dpriv
->base_addr
+ dpriv
->dev_id
*0x0c + CH0CFG
);
614 writel(Action
, dpriv
->base_addr
+ GCMDR
);
615 spin_unlock_irqrestore(&dpriv
->pci_priv
->lock
, flags
);
621 static void dscc4_tx_reset(struct dscc4_dev_priv
*dpriv
, struct net_device
*dev
)
625 /* Cf errata DS5 p.7 */
626 scc_patchl(PowerUp
, 0, dpriv
, dev
, CCR0
);
627 scc_writel(0x00050000, dpriv
, dev
, CCR2
);
629 * Must be longer than the time required to fill the fifo.
631 while (!dscc4_tx_quiescent(dpriv
, dev
) && ++i
) {
636 writel(MTFi
|Rdt
, dpriv
->base_addr
+ dpriv
->dev_id
*0x0c + CH0CFG
);
637 if (dscc4_do_action(dev
, "Rdt") < 0)
638 printk(KERN_ERR
"%s: Tx reset failed\n", dev
->name
);
642 /* TODO: (ab)use this function to refill a completely depleted RX ring. */
643 static inline void dscc4_rx_skb(struct dscc4_dev_priv
*dpriv
,
644 struct net_device
*dev
)
646 struct RxFD
*rx_fd
= dpriv
->rx_fd
+ dpriv
->rx_current
%RX_RING_SIZE
;
647 struct pci_dev
*pdev
= dpriv
->pci_priv
->pdev
;
651 skb
= dpriv
->rx_skbuff
[dpriv
->rx_current
++%RX_RING_SIZE
];
653 printk(KERN_DEBUG
"%s: skb=0 (%s)\n", dev
->name
, __func__
);
656 pkt_len
= TO_SIZE(le32_to_cpu(rx_fd
->state2
));
657 pci_unmap_single(pdev
, le32_to_cpu(rx_fd
->data
),
658 RX_MAX(HDLC_MAX_MRU
), PCI_DMA_FROMDEVICE
);
659 if ((skb
->data
[--pkt_len
] & FrameOk
) == FrameOk
) {
660 dev
->stats
.rx_packets
++;
661 dev
->stats
.rx_bytes
+= pkt_len
;
662 skb_put(skb
, pkt_len
);
663 if (netif_running(dev
))
664 skb
->protocol
= hdlc_type_trans(skb
, dev
);
667 if (skb
->data
[pkt_len
] & FrameRdo
)
668 dev
->stats
.rx_fifo_errors
++;
669 else if (!(skb
->data
[pkt_len
] & FrameCrc
))
670 dev
->stats
.rx_crc_errors
++;
671 else if ((skb
->data
[pkt_len
] & (FrameVfr
| FrameRab
)) !=
672 (FrameVfr
| FrameRab
))
673 dev
->stats
.rx_length_errors
++;
674 dev
->stats
.rx_errors
++;
675 dev_kfree_skb_irq(skb
);
678 while ((dpriv
->rx_dirty
- dpriv
->rx_current
) % RX_RING_SIZE
) {
679 if (try_get_rx_skb(dpriv
, dev
) < 0)
683 dscc4_rx_update(dpriv
, dev
);
684 rx_fd
->state2
= 0x00000000;
685 rx_fd
->end
= cpu_to_le32(0xbabeface);
688 static void dscc4_free1(struct pci_dev
*pdev
)
690 struct dscc4_pci_priv
*ppriv
;
691 struct dscc4_dev_priv
*root
;
694 ppriv
= pci_get_drvdata(pdev
);
697 for (i
= 0; i
< dev_per_card
; i
++)
698 unregister_hdlc_device(dscc4_to_dev(root
+ i
));
700 pci_set_drvdata(pdev
, NULL
);
702 for (i
= 0; i
< dev_per_card
; i
++)
703 free_netdev(root
[i
].dev
);
708 static int __devinit
dscc4_init_one(struct pci_dev
*pdev
,
709 const struct pci_device_id
*ent
)
711 struct dscc4_pci_priv
*priv
;
712 struct dscc4_dev_priv
*dpriv
;
713 void __iomem
*ioaddr
;
716 printk(KERN_DEBUG
"%s", version
);
718 rc
= pci_enable_device(pdev
);
722 rc
= pci_request_region(pdev
, 0, "registers");
724 printk(KERN_ERR
"%s: can't reserve MMIO region (regs)\n",
728 rc
= pci_request_region(pdev
, 1, "LBI interface");
730 printk(KERN_ERR
"%s: can't reserve MMIO region (lbi)\n",
732 goto err_free_mmio_region_1
;
735 ioaddr
= pci_ioremap_bar(pdev
, 0);
737 printk(KERN_ERR
"%s: cannot remap MMIO region %llx @ %llx\n",
738 DRV_NAME
, (unsigned long long)pci_resource_len(pdev
, 0),
739 (unsigned long long)pci_resource_start(pdev
, 0));
741 goto err_free_mmio_regions_2
;
743 printk(KERN_DEBUG
"Siemens DSCC4, MMIO at %#llx (regs), %#llx (lbi), IRQ %d\n",
744 (unsigned long long)pci_resource_start(pdev
, 0),
745 (unsigned long long)pci_resource_start(pdev
, 1), pdev
->irq
);
747 /* Cf errata DS5 p.2 */
748 pci_write_config_byte(pdev
, PCI_LATENCY_TIMER
, 0xf8);
749 pci_set_master(pdev
);
751 rc
= dscc4_found1(pdev
, ioaddr
);
755 priv
= pci_get_drvdata(pdev
);
757 rc
= request_irq(pdev
->irq
, dscc4_irq
, IRQF_SHARED
, DRV_NAME
, priv
->root
);
759 printk(KERN_WARNING
"%s: IRQ %d busy\n", DRV_NAME
, pdev
->irq
);
763 /* power up/little endian/dma core controlled via lrda/ltda */
764 writel(0x00000001, ioaddr
+ GMODE
);
765 /* Shared interrupt queue */
769 bits
= (IRQ_RING_SIZE
>> 5) - 1;
773 writel(bits
, ioaddr
+ IQLENR0
);
775 /* Global interrupt queue */
776 writel((u32
)(((IRQ_RING_SIZE
>> 5) - 1) << 20), ioaddr
+ IQLENR1
);
777 priv
->iqcfg
= (__le32
*) pci_alloc_consistent(pdev
,
778 IRQ_RING_SIZE
*sizeof(__le32
), &priv
->iqcfg_dma
);
781 writel(priv
->iqcfg_dma
, ioaddr
+ IQCFG
);
786 * SCC 0-3 private rx/tx irq structures
787 * IQRX/TXi needs to be set soon. Learned it the hard way...
789 for (i
= 0; i
< dev_per_card
; i
++) {
790 dpriv
= priv
->root
+ i
;
791 dpriv
->iqtx
= (__le32
*) pci_alloc_consistent(pdev
,
792 IRQ_RING_SIZE
*sizeof(u32
), &dpriv
->iqtx_dma
);
794 goto err_free_iqtx_6
;
795 writel(dpriv
->iqtx_dma
, ioaddr
+ IQTX0
+ i
*4);
797 for (i
= 0; i
< dev_per_card
; i
++) {
798 dpriv
= priv
->root
+ i
;
799 dpriv
->iqrx
= (__le32
*) pci_alloc_consistent(pdev
,
800 IRQ_RING_SIZE
*sizeof(u32
), &dpriv
->iqrx_dma
);
802 goto err_free_iqrx_7
;
803 writel(dpriv
->iqrx_dma
, ioaddr
+ IQRX0
+ i
*4);
806 /* Cf application hint. Beware of hard-lock condition on threshold. */
807 writel(0x42104000, ioaddr
+ FIFOCR1
);
808 //writel(0x9ce69800, ioaddr + FIFOCR2);
809 writel(0xdef6d800, ioaddr
+ FIFOCR2
);
810 //writel(0x11111111, ioaddr + FIFOCR4);
811 writel(0x18181818, ioaddr
+ FIFOCR4
);
812 // FIXME: should depend on the chipset revision
813 writel(0x0000000e, ioaddr
+ FIFOCR3
);
815 writel(0xff200001, ioaddr
+ GCMDR
);
823 dpriv
= priv
->root
+ i
;
824 pci_free_consistent(pdev
, IRQ_RING_SIZE
*sizeof(u32
),
825 dpriv
->iqrx
, dpriv
->iqrx_dma
);
830 dpriv
= priv
->root
+ i
;
831 pci_free_consistent(pdev
, IRQ_RING_SIZE
*sizeof(u32
),
832 dpriv
->iqtx
, dpriv
->iqtx_dma
);
834 pci_free_consistent(pdev
, IRQ_RING_SIZE
*sizeof(u32
), priv
->iqcfg
,
837 free_irq(pdev
->irq
, priv
->root
);
842 err_free_mmio_regions_2
:
843 pci_release_region(pdev
, 1);
844 err_free_mmio_region_1
:
845 pci_release_region(pdev
, 0);
847 pci_disable_device(pdev
);
852 * Let's hope the default values are decent enough to protect my
853 * feet from the user's gun - Ueimor
855 static void dscc4_init_registers(struct dscc4_dev_priv
*dpriv
,
856 struct net_device
*dev
)
858 /* No interrupts, SCC core disabled. Let's relax */
859 scc_writel(0x00000000, dpriv
, dev
, CCR0
);
861 scc_writel(LengthCheck
| (HDLC_MAX_MRU
>> 5), dpriv
, dev
, RLCR
);
864 * No address recognition/crc-CCITT/cts enabled
865 * Shared flags transmission disabled - cf errata DS5 p.11
866 * Carrier detect disabled - cf errata p.14
867 * FIXME: carrier detection/polarity may be handled more gracefully.
869 scc_writel(0x02408000, dpriv
, dev
, CCR1
);
871 /* crc not forwarded - Cf errata DS5 p.11 */
872 scc_writel(0x00050008 & ~RxActivate
, dpriv
, dev
, CCR2
);
874 //scc_writel(0x00250008 & ~RxActivate, dpriv, dev, CCR2);
877 static inline int dscc4_set_quartz(struct dscc4_dev_priv
*dpriv
, int hz
)
881 if ((hz
< 0) || (hz
> DSCC4_HZ_MAX
))
884 dpriv
->pci_priv
->xtal_hz
= hz
;
889 static const struct net_device_ops dscc4_ops
= {
890 .ndo_open
= dscc4_open
,
891 .ndo_stop
= dscc4_close
,
892 .ndo_change_mtu
= hdlc_change_mtu
,
893 .ndo_start_xmit
= hdlc_start_xmit
,
894 .ndo_do_ioctl
= dscc4_ioctl
,
895 .ndo_tx_timeout
= dscc4_tx_timeout
,
898 static int dscc4_found1(struct pci_dev
*pdev
, void __iomem
*ioaddr
)
900 struct dscc4_pci_priv
*ppriv
;
901 struct dscc4_dev_priv
*root
;
902 int i
, ret
= -ENOMEM
;
904 root
= kcalloc(dev_per_card
, sizeof(*root
), GFP_KERNEL
);
906 printk(KERN_ERR
"%s: can't allocate data\n", DRV_NAME
);
910 for (i
= 0; i
< dev_per_card
; i
++) {
911 root
[i
].dev
= alloc_hdlcdev(root
+ i
);
916 ppriv
= kzalloc(sizeof(*ppriv
), GFP_KERNEL
);
918 printk(KERN_ERR
"%s: can't allocate private data\n", DRV_NAME
);
923 spin_lock_init(&ppriv
->lock
);
925 for (i
= 0; i
< dev_per_card
; i
++) {
926 struct dscc4_dev_priv
*dpriv
= root
+ i
;
927 struct net_device
*d
= dscc4_to_dev(dpriv
);
928 hdlc_device
*hdlc
= dev_to_hdlc(d
);
930 d
->base_addr
= (unsigned long)ioaddr
;
932 d
->netdev_ops
= &dscc4_ops
;
933 d
->watchdog_timeo
= TX_TIMEOUT
;
934 SET_NETDEV_DEV(d
, &pdev
->dev
);
937 dpriv
->pci_priv
= ppriv
;
938 dpriv
->base_addr
= ioaddr
;
939 spin_lock_init(&dpriv
->lock
);
941 hdlc
->xmit
= dscc4_start_xmit
;
942 hdlc
->attach
= dscc4_hdlc_attach
;
944 dscc4_init_registers(dpriv
, d
);
945 dpriv
->parity
= PARITY_CRC16_PR0_CCITT
;
946 dpriv
->encoding
= ENCODING_NRZ
;
948 ret
= dscc4_init_ring(d
);
952 ret
= register_hdlc_device(d
);
954 printk(KERN_ERR
"%s: unable to register\n", DRV_NAME
);
955 dscc4_release_ring(dpriv
);
960 ret
= dscc4_set_quartz(root
, quartz
);
964 pci_set_drvdata(pdev
, ppriv
);
969 dscc4_release_ring(root
+ i
);
970 unregister_hdlc_device(dscc4_to_dev(root
+ i
));
976 free_netdev(root
[i
].dev
);
982 /* FIXME: get rid of the unneeded code */
983 static void dscc4_timer(unsigned long data
)
985 struct net_device
*dev
= (struct net_device
*)data
;
986 struct dscc4_dev_priv
*dpriv
= dscc4_priv(dev
);
987 // struct dscc4_pci_priv *ppriv;
991 dpriv
->timer
.expires
= jiffies
+ TX_TIMEOUT
;
992 add_timer(&dpriv
->timer
);
995 static void dscc4_tx_timeout(struct net_device
*dev
)
997 /* FIXME: something is missing there */
1000 static int dscc4_loopback_check(struct dscc4_dev_priv
*dpriv
)
1002 sync_serial_settings
*settings
= &dpriv
->settings
;
1004 if (settings
->loopback
&& (settings
->clock_type
!= CLOCK_INT
)) {
1005 struct net_device
*dev
= dscc4_to_dev(dpriv
);
1007 printk(KERN_INFO
"%s: loopback requires clock\n", dev
->name
);
1013 #ifdef CONFIG_DSCC4_PCI_RST
1015 * Some DSCC4-based cards wires the GPIO port and the PCI #RST pin together
1016 * so as to provide a safe way to reset the asic while not the whole machine
1019 * This code doesn't need to be efficient. Keep It Simple
1021 static void dscc4_pci_reset(struct pci_dev
*pdev
, void __iomem
*ioaddr
)
1025 mutex_lock(&dscc4_mutex
);
1026 for (i
= 0; i
< 16; i
++)
1027 pci_read_config_dword(pdev
, i
<< 2, dscc4_pci_config_store
+ i
);
1029 /* Maximal LBI clock divider (who cares ?) and whole GPIO range. */
1030 writel(0x001c0000, ioaddr
+ GMODE
);
1031 /* Configure GPIO port as output */
1032 writel(0x0000ffff, ioaddr
+ GPDIR
);
1033 /* Disable interruption */
1034 writel(0x0000ffff, ioaddr
+ GPIM
);
1036 writel(0x0000ffff, ioaddr
+ GPDATA
);
1037 writel(0x00000000, ioaddr
+ GPDATA
);
1039 /* Flush posted writes */
1040 readl(ioaddr
+ GSTAR
);
1042 schedule_timeout_uninterruptible(10);
1044 for (i
= 0; i
< 16; i
++)
1045 pci_write_config_dword(pdev
, i
<< 2, dscc4_pci_config_store
[i
]);
1046 mutex_unlock(&dscc4_mutex
);
1049 #define dscc4_pci_reset(pdev,ioaddr) do {} while (0)
1050 #endif /* CONFIG_DSCC4_PCI_RST */
1052 static int dscc4_open(struct net_device
*dev
)
1054 struct dscc4_dev_priv
*dpriv
= dscc4_priv(dev
);
1055 struct dscc4_pci_priv
*ppriv
;
1058 if ((dscc4_loopback_check(dpriv
) < 0))
1061 if ((ret
= hdlc_open(dev
)))
1064 ppriv
= dpriv
->pci_priv
;
1067 * Due to various bugs, there is no way to reliably reset a
1068 * specific port (manufacturer's dependant special PCI #RST wiring
1069 * apart: it affects all ports). Thus the device goes in the best
1070 * silent mode possible at dscc4_close() time and simply claims to
1071 * be up if it's opened again. It still isn't possible to change
1072 * the HDLC configuration without rebooting but at least the ports
1073 * can be up/down ifconfig'ed without killing the host.
1075 if (dpriv
->flags
& FakeReset
) {
1076 dpriv
->flags
&= ~FakeReset
;
1077 scc_patchl(0, PowerUp
, dpriv
, dev
, CCR0
);
1078 scc_patchl(0, 0x00050000, dpriv
, dev
, CCR2
);
1079 scc_writel(EventsMask
, dpriv
, dev
, IMR
);
1080 printk(KERN_INFO
"%s: up again.\n", dev
->name
);
1084 /* IDT+IDR during XPR */
1085 dpriv
->flags
= NeedIDR
| NeedIDT
;
1087 scc_patchl(0, PowerUp
| Vis
, dpriv
, dev
, CCR0
);
1090 * The following is a bit paranoid...
1092 * NB: the datasheet "...CEC will stay active if the SCC is in
1093 * power-down mode or..." and CCR2.RAC = 1 are two different
1096 if (scc_readl_star(dpriv
, dev
) & SccBusy
) {
1097 printk(KERN_ERR
"%s busy. Try later\n", dev
->name
);
1101 printk(KERN_INFO
"%s: available. Good\n", dev
->name
);
1103 scc_writel(EventsMask
, dpriv
, dev
, IMR
);
1105 /* Posted write is flushed in the wait_ack loop */
1106 scc_writel(TxSccRes
| RxSccRes
, dpriv
, dev
, CMDR
);
1108 if ((ret
= dscc4_wait_ack_cec(dpriv
, dev
, "Cec")) < 0)
1109 goto err_disable_scc_events
;
1112 * I would expect XPR near CE completion (before ? after ?).
1113 * At worst, this code won't see a late XPR and people
1114 * will have to re-issue an ifconfig (this is harmless).
1115 * WARNING, a really missing XPR usually means a hardware
1116 * reset is needed. Suggestions anyone ?
1118 if ((ret
= dscc4_xpr_ack(dpriv
)) < 0) {
1119 printk(KERN_ERR
"%s: %s timeout\n", DRV_NAME
, "XPR");
1120 goto err_disable_scc_events
;
1124 dscc4_tx_print(dev
, dpriv
, "Open");
1127 netif_start_queue(dev
);
1129 init_timer(&dpriv
->timer
);
1130 dpriv
->timer
.expires
= jiffies
+ 10*HZ
;
1131 dpriv
->timer
.data
= (unsigned long)dev
;
1132 dpriv
->timer
.function
= dscc4_timer
;
1133 add_timer(&dpriv
->timer
);
1134 netif_carrier_on(dev
);
1138 err_disable_scc_events
:
1139 scc_writel(0xffffffff, dpriv
, dev
, IMR
);
1140 scc_patchl(PowerUp
| Vis
, 0, dpriv
, dev
, CCR0
);
1147 #ifdef DSCC4_POLLING
1148 static int dscc4_tx_poll(struct dscc4_dev_priv
*dpriv
, struct net_device
*dev
)
1150 /* FIXME: it's gonna be easy (TM), for sure */
1152 #endif /* DSCC4_POLLING */
1154 static netdev_tx_t
dscc4_start_xmit(struct sk_buff
*skb
,
1155 struct net_device
*dev
)
1157 struct dscc4_dev_priv
*dpriv
= dscc4_priv(dev
);
1158 struct dscc4_pci_priv
*ppriv
= dpriv
->pci_priv
;
1162 next
= dpriv
->tx_current
%TX_RING_SIZE
;
1163 dpriv
->tx_skbuff
[next
] = skb
;
1164 tx_fd
= dpriv
->tx_fd
+ next
;
1165 tx_fd
->state
= FrameEnd
| TO_STATE_TX(skb
->len
);
1166 tx_fd
->data
= cpu_to_le32(pci_map_single(ppriv
->pdev
, skb
->data
, skb
->len
,
1168 tx_fd
->complete
= 0x00000000;
1169 tx_fd
->jiffies
= jiffies
;
1172 #ifdef DSCC4_POLLING
1173 spin_lock(&dpriv
->lock
);
1174 while (dscc4_tx_poll(dpriv
, dev
));
1175 spin_unlock(&dpriv
->lock
);
1179 dscc4_tx_print(dev
, dpriv
, "Xmit");
1180 /* To be cleaned(unsigned int)/optimized. Later, ok ? */
1181 if (!((++dpriv
->tx_current
- dpriv
->tx_dirty
)%TX_RING_SIZE
))
1182 netif_stop_queue(dev
);
1184 if (dscc4_tx_quiescent(dpriv
, dev
))
1185 dscc4_do_tx(dpriv
, dev
);
1187 return NETDEV_TX_OK
;
1190 static int dscc4_close(struct net_device
*dev
)
1192 struct dscc4_dev_priv
*dpriv
= dscc4_priv(dev
);
1194 del_timer_sync(&dpriv
->timer
);
1195 netif_stop_queue(dev
);
1197 scc_patchl(PowerUp
| Vis
, 0, dpriv
, dev
, CCR0
);
1198 scc_patchl(0x00050000, 0, dpriv
, dev
, CCR2
);
1199 scc_writel(0xffffffff, dpriv
, dev
, IMR
);
1201 dpriv
->flags
|= FakeReset
;
1208 static inline int dscc4_check_clock_ability(int port
)
1212 #ifdef CONFIG_DSCC4_PCISYNC
1220 * DS1 p.137: "There are a total of 13 different clocking modes..."
1223 * - by default, assume a clock is provided on pin RxClk/TxClk (clock mode 0a).
1224 * Clock mode 3b _should_ work but the testing seems to make this point
1225 * dubious (DIY testing requires setting CCR0 at 0x00000033).
1226 * This is supposed to provide least surprise "DTE like" behavior.
1227 * - if line rate is specified, clocks are assumed to be locally generated.
1228 * A quartz must be available (on pin XTAL1). Modes 6b/7b are used. Choosing
1229 * between these it automagically done according on the required frequency
1230 * scaling. Of course some rounding may take place.
1231 * - no high speed mode (40Mb/s). May be trivial to do but I don't have an
1232 * appropriate external clocking device for testing.
1233 * - no time-slot/clock mode 5: shameless lazyness.
1235 * The clock signals wiring can be (is ?) manufacturer dependant. Good luck.
1237 * BIG FAT WARNING: if the device isn't provided enough clocking signal, it
1238 * won't pass the init sequence. For example, straight back-to-back DTE without
1239 * external clock will fail when dscc4_open() (<- 'ifconfig hdlcx xxx') is
1242 * Typos lurk in datasheet (missing divier in clock mode 7a figure 51 p.153
1245 * Clock mode related bits of CCR0:
1246 * +------------ TOE: output TxClk (0b/2b/3a/3b/6b/7a/7b only)
1247 * | +---------- SSEL: sub-mode select 0 -> a, 1 -> b
1248 * | | +-------- High Speed: say 0
1249 * | | | +-+-+-- Clock Mode: 0..7
1252 * x|x|5|4|3|2|1|0| lower bits
1254 * Division factor of BRR: k = (N+1)x2^M (total divider = 16xk in mode 6b)
1255 * +-+-+-+------------------ M (0..15)
1256 * | | | | +-+-+-+-+-+-- N (0..63)
1257 * 0 0 0 0 | | | | 0 0 | | | | | |
1258 * ...-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+-+
1259 * f|e|d|c|b|a|9|8|7|6|5|4|3|2|1|0| lower bits
1262 static int dscc4_set_clock(struct net_device
*dev
, u32
*bps
, u32
*state
)
1264 struct dscc4_dev_priv
*dpriv
= dscc4_priv(dev
);
1268 *state
&= ~Ccr0ClockMask
;
1269 if (*bps
) { /* Clock generated - required for DCE */
1270 u32 n
= 0, m
= 0, divider
;
1273 xtal
= dpriv
->pci_priv
->xtal_hz
;
1276 if (dscc4_check_clock_ability(dpriv
->dev_id
) < 0)
1278 divider
= xtal
/ *bps
;
1279 if (divider
> BRR_DIVIDER_MAX
) {
1281 *state
|= 0x00000036; /* Clock mode 6b (BRG/16) */
1283 *state
|= 0x00000037; /* Clock mode 7b (BRG) */
1284 if (divider
>> 22) {
1287 } else if (divider
) {
1288 /* Extraction of the 6 highest weighted bits */
1290 while (0xffffffc0 & divider
) {
1298 if (!(*state
& 0x00000001)) /* ?b mode mask => clock mode 6b */
1300 *bps
= xtal
/ divider
;
1303 * External clock - DTE
1304 * "state" already reflects Clock mode 0a (CCR0 = 0xzzzzzz00).
1305 * Nothing more to be done
1309 scc_writel(brr
, dpriv
, dev
, BRR
);
1315 static int dscc4_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
1317 sync_serial_settings __user
*line
= ifr
->ifr_settings
.ifs_ifsu
.sync
;
1318 struct dscc4_dev_priv
*dpriv
= dscc4_priv(dev
);
1319 const size_t size
= sizeof(dpriv
->settings
);
1322 if (dev
->flags
& IFF_UP
)
1325 if (cmd
!= SIOCWANDEV
)
1328 switch(ifr
->ifr_settings
.type
) {
1330 ifr
->ifr_settings
.type
= IF_IFACE_SYNC_SERIAL
;
1331 if (ifr
->ifr_settings
.size
< size
) {
1332 ifr
->ifr_settings
.size
= size
; /* data size wanted */
1335 if (copy_to_user(line
, &dpriv
->settings
, size
))
1339 case IF_IFACE_SYNC_SERIAL
:
1340 if (!capable(CAP_NET_ADMIN
))
1343 if (dpriv
->flags
& FakeReset
) {
1344 printk(KERN_INFO
"%s: please reset the device"
1345 " before this command\n", dev
->name
);
1348 if (copy_from_user(&dpriv
->settings
, line
, size
))
1350 ret
= dscc4_set_iface(dpriv
, dev
);
1354 ret
= hdlc_ioctl(dev
, ifr
, cmd
);
1361 static int dscc4_match(struct thingie
*p
, int value
)
1365 for (i
= 0; p
[i
].define
!= -1; i
++) {
1366 if (value
== p
[i
].define
)
1369 if (p
[i
].define
== -1)
1375 static int dscc4_clock_setting(struct dscc4_dev_priv
*dpriv
,
1376 struct net_device
*dev
)
1378 sync_serial_settings
*settings
= &dpriv
->settings
;
1379 int ret
= -EOPNOTSUPP
;
1382 bps
= settings
->clock_rate
;
1383 state
= scc_readl(dpriv
, CCR0
);
1384 if (dscc4_set_clock(dev
, &bps
, &state
) < 0)
1386 if (bps
) { /* DCE */
1387 printk(KERN_DEBUG
"%s: generated RxClk (DCE)\n", dev
->name
);
1388 if (settings
->clock_rate
!= bps
) {
1389 printk(KERN_DEBUG
"%s: clock adjusted (%08d -> %08d)\n",
1390 dev
->name
, settings
->clock_rate
, bps
);
1391 settings
->clock_rate
= bps
;
1394 state
|= PowerUp
| Vis
;
1395 printk(KERN_DEBUG
"%s: external RxClk (DTE)\n", dev
->name
);
1397 scc_writel(state
, dpriv
, dev
, CCR0
);
1403 static int dscc4_encoding_setting(struct dscc4_dev_priv
*dpriv
,
1404 struct net_device
*dev
)
1406 struct thingie encoding
[] = {
1407 { ENCODING_NRZ
, 0x00000000 },
1408 { ENCODING_NRZI
, 0x00200000 },
1409 { ENCODING_FM_MARK
, 0x00400000 },
1410 { ENCODING_FM_SPACE
, 0x00500000 },
1411 { ENCODING_MANCHESTER
, 0x00600000 },
1416 i
= dscc4_match(encoding
, dpriv
->encoding
);
1418 scc_patchl(EncodingMask
, encoding
[i
].bits
, dpriv
, dev
, CCR0
);
1424 static int dscc4_loopback_setting(struct dscc4_dev_priv
*dpriv
,
1425 struct net_device
*dev
)
1427 sync_serial_settings
*settings
= &dpriv
->settings
;
1430 state
= scc_readl(dpriv
, CCR1
);
1431 if (settings
->loopback
) {
1432 printk(KERN_DEBUG
"%s: loopback\n", dev
->name
);
1433 state
|= 0x00000100;
1435 printk(KERN_DEBUG
"%s: normal\n", dev
->name
);
1436 state
&= ~0x00000100;
1438 scc_writel(state
, dpriv
, dev
, CCR1
);
1442 static int dscc4_crc_setting(struct dscc4_dev_priv
*dpriv
,
1443 struct net_device
*dev
)
1445 struct thingie crc
[] = {
1446 { PARITY_CRC16_PR0_CCITT
, 0x00000010 },
1447 { PARITY_CRC16_PR1_CCITT
, 0x00000000 },
1448 { PARITY_CRC32_PR0_CCITT
, 0x00000011 },
1449 { PARITY_CRC32_PR1_CCITT
, 0x00000001 }
1453 i
= dscc4_match(crc
, dpriv
->parity
);
1455 scc_patchl(CrcMask
, crc
[i
].bits
, dpriv
, dev
, CCR1
);
1461 static int dscc4_set_iface(struct dscc4_dev_priv
*dpriv
, struct net_device
*dev
)
1464 int (*action
)(struct dscc4_dev_priv
*, struct net_device
*);
1465 } *p
, do_setting
[] = {
1466 { dscc4_encoding_setting
},
1467 { dscc4_clock_setting
},
1468 { dscc4_loopback_setting
},
1469 { dscc4_crc_setting
},
1474 for (p
= do_setting
; p
->action
; p
++) {
1475 if ((ret
= p
->action(dpriv
, dev
)) < 0)
1481 static irqreturn_t
dscc4_irq(int irq
, void *token
)
1483 struct dscc4_dev_priv
*root
= token
;
1484 struct dscc4_pci_priv
*priv
;
1485 struct net_device
*dev
;
1486 void __iomem
*ioaddr
;
1488 unsigned long flags
;
1491 priv
= root
->pci_priv
;
1492 dev
= dscc4_to_dev(root
);
1494 spin_lock_irqsave(&priv
->lock
, flags
);
1496 ioaddr
= root
->base_addr
;
1498 state
= readl(ioaddr
+ GSTAR
);
1504 printk(KERN_DEBUG
"%s: GSTAR = 0x%08x\n", DRV_NAME
, state
);
1505 writel(state
, ioaddr
+ GSTAR
);
1508 printk(KERN_ERR
"%s: failure (Arf). Harass the maintener\n",
1515 printk(KERN_DEBUG
"%s: CfgIV\n", DRV_NAME
);
1516 if (priv
->iqcfg
[priv
->cfg_cur
++%IRQ_RING_SIZE
] & cpu_to_le32(Arf
))
1517 printk(KERN_ERR
"%s: %s failed\n", dev
->name
, "CFG");
1518 if (!(state
&= ~Cfg
))
1521 if (state
& RxEvt
) {
1522 i
= dev_per_card
- 1;
1524 dscc4_rx_irq(priv
, root
+ i
);
1528 if (state
& TxEvt
) {
1529 i
= dev_per_card
- 1;
1531 dscc4_tx_irq(priv
, root
+ i
);
1536 spin_unlock_irqrestore(&priv
->lock
, flags
);
1537 return IRQ_RETVAL(handled
);
1540 static void dscc4_tx_irq(struct dscc4_pci_priv
*ppriv
,
1541 struct dscc4_dev_priv
*dpriv
)
1543 struct net_device
*dev
= dscc4_to_dev(dpriv
);
1548 cur
= dpriv
->iqtx_current
%IRQ_RING_SIZE
;
1549 state
= le32_to_cpu(dpriv
->iqtx
[cur
]);
1552 printk(KERN_DEBUG
"%s: Tx ISR = 0x%08x\n", dev
->name
,
1554 if ((debug
> 1) && (loop
> 1))
1555 printk(KERN_DEBUG
"%s: Tx irq loop=%d\n", dev
->name
, loop
);
1556 if (loop
&& netif_queue_stopped(dev
))
1557 if ((dpriv
->tx_current
- dpriv
->tx_dirty
)%TX_RING_SIZE
)
1558 netif_wake_queue(dev
);
1560 if (netif_running(dev
) && dscc4_tx_quiescent(dpriv
, dev
) &&
1561 !dscc4_tx_done(dpriv
))
1562 dscc4_do_tx(dpriv
, dev
);
1566 dpriv
->iqtx
[cur
] = 0;
1567 dpriv
->iqtx_current
++;
1569 if (state_check(state
, dpriv
, dev
, "Tx") < 0)
1572 if (state
& SccEvt
) {
1574 struct sk_buff
*skb
;
1578 dscc4_tx_print(dev
, dpriv
, "Alls");
1580 * DataComplete can't be trusted for Tx completion.
1583 cur
= dpriv
->tx_dirty
%TX_RING_SIZE
;
1584 tx_fd
= dpriv
->tx_fd
+ cur
;
1585 skb
= dpriv
->tx_skbuff
[cur
];
1587 pci_unmap_single(ppriv
->pdev
, le32_to_cpu(tx_fd
->data
),
1588 skb
->len
, PCI_DMA_TODEVICE
);
1589 if (tx_fd
->state
& FrameEnd
) {
1590 dev
->stats
.tx_packets
++;
1591 dev
->stats
.tx_bytes
+= skb
->len
;
1593 dev_kfree_skb_irq(skb
);
1594 dpriv
->tx_skbuff
[cur
] = NULL
;
1598 printk(KERN_ERR
"%s Tx: NULL skb %d\n",
1602 * If the driver ends sending crap on the wire, it
1603 * will be way easier to diagnose than the (not so)
1604 * random freeze induced by null sized tx frames.
1606 tx_fd
->data
= tx_fd
->next
;
1607 tx_fd
->state
= FrameEnd
| TO_STATE_TX(2*DUMMY_SKB_SIZE
);
1608 tx_fd
->complete
= 0x00000000;
1611 if (!(state
&= ~Alls
))
1615 * Transmit Data Underrun
1618 printk(KERN_ERR
"%s: XDU. Ask maintainer\n", DRV_NAME
);
1619 dpriv
->flags
= NeedIDT
;
1622 dpriv
->base_addr
+ 0x0c*dpriv
->dev_id
+ CH0CFG
);
1623 writel(Action
, dpriv
->base_addr
+ GCMDR
);
1627 printk(KERN_INFO
"%s: CTS transition\n", dev
->name
);
1628 if (!(state
&= ~Cts
)) /* DEBUG */
1632 /* Frame needs to be sent again - FIXME */
1633 printk(KERN_ERR
"%s: Xmr. Ask maintainer\n", DRV_NAME
);
1634 if (!(state
&= ~Xmr
)) /* DEBUG */
1638 void __iomem
*scc_addr
;
1643 * - the busy condition happens (sometimes);
1644 * - it doesn't seem to make the handler unreliable.
1646 for (i
= 1; i
; i
<<= 1) {
1647 if (!(scc_readl_star(dpriv
, dev
) & SccBusy
))
1651 printk(KERN_INFO
"%s busy in irq\n", dev
->name
);
1653 scc_addr
= dpriv
->base_addr
+ 0x0c*dpriv
->dev_id
;
1654 /* Keep this order: IDT before IDR */
1655 if (dpriv
->flags
& NeedIDT
) {
1657 dscc4_tx_print(dev
, dpriv
, "Xpr");
1658 ring
= dpriv
->tx_fd_dma
+
1659 (dpriv
->tx_dirty
%TX_RING_SIZE
)*
1660 sizeof(struct TxFD
);
1661 writel(ring
, scc_addr
+ CH0BTDA
);
1662 dscc4_do_tx(dpriv
, dev
);
1663 writel(MTFi
| Idt
, scc_addr
+ CH0CFG
);
1664 if (dscc4_do_action(dev
, "IDT") < 0)
1666 dpriv
->flags
&= ~NeedIDT
;
1668 if (dpriv
->flags
& NeedIDR
) {
1669 ring
= dpriv
->rx_fd_dma
+
1670 (dpriv
->rx_current
%RX_RING_SIZE
)*
1671 sizeof(struct RxFD
);
1672 writel(ring
, scc_addr
+ CH0BRDA
);
1673 dscc4_rx_update(dpriv
, dev
);
1674 writel(MTFi
| Idr
, scc_addr
+ CH0CFG
);
1675 if (dscc4_do_action(dev
, "IDR") < 0)
1677 dpriv
->flags
&= ~NeedIDR
;
1679 /* Activate receiver and misc */
1680 scc_writel(0x08050008, dpriv
, dev
, CCR2
);
1683 if (!(state
&= ~Xpr
))
1688 printk(KERN_INFO
"%s: CD transition\n", dev
->name
);
1689 if (!(state
&= ~Cd
)) /* DEBUG */
1692 } else { /* ! SccEvt */
1694 #ifdef DSCC4_POLLING
1695 while (!dscc4_tx_poll(dpriv
, dev
));
1697 printk(KERN_INFO
"%s: Tx Hi\n", dev
->name
);
1701 printk(KERN_INFO
"%s: Tx ERR\n", dev
->name
);
1702 dev
->stats
.tx_errors
++;
1709 static void dscc4_rx_irq(struct dscc4_pci_priv
*priv
,
1710 struct dscc4_dev_priv
*dpriv
)
1712 struct net_device
*dev
= dscc4_to_dev(dpriv
);
1717 cur
= dpriv
->iqrx_current
%IRQ_RING_SIZE
;
1718 state
= le32_to_cpu(dpriv
->iqrx
[cur
]);
1721 dpriv
->iqrx
[cur
] = 0;
1722 dpriv
->iqrx_current
++;
1724 if (state_check(state
, dpriv
, dev
, "Rx") < 0)
1727 if (!(state
& SccEvt
)){
1731 printk(KERN_DEBUG
"%s: Rx ISR = 0x%08x\n", dev
->name
,
1733 state
&= 0x00ffffff;
1734 if (state
& Err
) { /* Hold or reset */
1735 printk(KERN_DEBUG
"%s: Rx ERR\n", dev
->name
);
1736 cur
= dpriv
->rx_current
%RX_RING_SIZE
;
1737 rx_fd
= dpriv
->rx_fd
+ cur
;
1739 * Presume we're not facing a DMAC receiver reset.
1740 * As We use the rx size-filtering feature of the
1741 * DSCC4, the beginning of a new frame is waiting in
1742 * the rx fifo. I bet a Receive Data Overflow will
1743 * happen most of time but let's try and avoid it.
1744 * Btw (as for RDO) if one experiences ERR whereas
1745 * the system looks rather idle, there may be a
1746 * problem with latency. In this case, increasing
1747 * RX_RING_SIZE may help.
1749 //while (dpriv->rx_needs_refill) {
1750 while (!(rx_fd
->state1
& Hold
)) {
1753 if (!(cur
= cur
%RX_RING_SIZE
))
1754 rx_fd
= dpriv
->rx_fd
;
1756 //dpriv->rx_needs_refill--;
1757 try_get_rx_skb(dpriv
, dev
);
1760 rx_fd
->state1
&= ~Hold
;
1761 rx_fd
->state2
= 0x00000000;
1762 rx_fd
->end
= cpu_to_le32(0xbabeface);
1767 dscc4_rx_skb(dpriv
, dev
);
1770 if (state
& Hi
) { /* HI bit */
1771 printk(KERN_INFO
"%s: Rx Hi\n", dev
->name
);
1775 } else { /* SccEvt */
1777 //FIXME: verifier la presence de tous les evenements
1780 const char *irq_name
;
1782 { 0x00008000, "TIN"},
1783 { 0x00000020, "RSC"},
1784 { 0x00000010, "PCE"},
1785 { 0x00000008, "PLLA"},
1789 for (evt
= evts
; evt
->irq_name
; evt
++) {
1790 if (state
& evt
->mask
) {
1791 printk(KERN_DEBUG
"%s: %s\n",
1792 dev
->name
, evt
->irq_name
);
1793 if (!(state
&= ~evt
->mask
))
1798 if (!(state
&= ~0x0000c03c))
1802 printk(KERN_INFO
"%s: CTS transition\n", dev
->name
);
1803 if (!(state
&= ~Cts
)) /* DEBUG */
1807 * Receive Data Overflow (FIXME: fscked)
1811 void __iomem
*scc_addr
;
1815 // dscc4_rx_dump(dpriv);
1816 scc_addr
= dpriv
->base_addr
+ 0x0c*dpriv
->dev_id
;
1818 scc_patchl(RxActivate
, 0, dpriv
, dev
, CCR2
);
1820 * This has no effect. Why ?
1821 * ORed with TxSccRes, one sees the CFG ack (for
1822 * the TX part only).
1824 scc_writel(RxSccRes
, dpriv
, dev
, CMDR
);
1825 dpriv
->flags
|= RdoSet
;
1828 * Let's try and save something in the received data.
1829 * rx_current must be incremented at least once to
1830 * avoid HOLD in the BRDA-to-be-pointed desc.
1833 cur
= dpriv
->rx_current
++%RX_RING_SIZE
;
1834 rx_fd
= dpriv
->rx_fd
+ cur
;
1835 if (!(rx_fd
->state2
& DataComplete
))
1837 if (rx_fd
->state2
& FrameAborted
) {
1838 dev
->stats
.rx_over_errors
++;
1839 rx_fd
->state1
|= Hold
;
1840 rx_fd
->state2
= 0x00000000;
1841 rx_fd
->end
= cpu_to_le32(0xbabeface);
1843 dscc4_rx_skb(dpriv
, dev
);
1847 if (dpriv
->flags
& RdoSet
)
1849 "%s: no RDO in Rx data\n", DRV_NAME
);
1851 #ifdef DSCC4_RDO_EXPERIMENTAL_RECOVERY
1853 * FIXME: must the reset be this violent ?
1855 #warning "FIXME: CH0BRDA"
1856 writel(dpriv
->rx_fd_dma
+
1857 (dpriv
->rx_current
%RX_RING_SIZE
)*
1858 sizeof(struct RxFD
), scc_addr
+ CH0BRDA
);
1859 writel(MTFi
|Rdr
|Idr
, scc_addr
+ CH0CFG
);
1860 if (dscc4_do_action(dev
, "RDR") < 0) {
1861 printk(KERN_ERR
"%s: RDO recovery failed(%s)\n",
1865 writel(MTFi
|Idr
, scc_addr
+ CH0CFG
);
1866 if (dscc4_do_action(dev
, "IDR") < 0) {
1867 printk(KERN_ERR
"%s: RDO recovery failed(%s)\n",
1873 scc_patchl(0, RxActivate
, dpriv
, dev
, CCR2
);
1877 printk(KERN_INFO
"%s: CD transition\n", dev
->name
);
1878 if (!(state
&= ~Cd
)) /* DEBUG */
1882 printk(KERN_DEBUG
"%s: Flex. Ttttt...\n", DRV_NAME
);
1883 if (!(state
&= ~Flex
))
1890 * I had expected the following to work for the first descriptor
1891 * (tx_fd->state = 0xc0000000)
1892 * - Hold=1 (don't try and branch to the next descripto);
1893 * - No=0 (I want an empty data section, i.e. size=0);
1894 * - Fe=1 (required by No=0 or we got an Err irq and must reset).
1895 * It failed and locked solid. Thus the introduction of a dummy skb.
1896 * Problem is acknowledged in errata sheet DS5. Joy :o/
1898 static struct sk_buff
*dscc4_init_dummy_skb(struct dscc4_dev_priv
*dpriv
)
1900 struct sk_buff
*skb
;
1902 skb
= dev_alloc_skb(DUMMY_SKB_SIZE
);
1904 int last
= dpriv
->tx_dirty
%TX_RING_SIZE
;
1905 struct TxFD
*tx_fd
= dpriv
->tx_fd
+ last
;
1907 skb
->len
= DUMMY_SKB_SIZE
;
1908 skb_copy_to_linear_data(skb
, version
,
1909 strlen(version
) % DUMMY_SKB_SIZE
);
1910 tx_fd
->state
= FrameEnd
| TO_STATE_TX(DUMMY_SKB_SIZE
);
1911 tx_fd
->data
= cpu_to_le32(pci_map_single(dpriv
->pci_priv
->pdev
,
1912 skb
->data
, DUMMY_SKB_SIZE
,
1914 dpriv
->tx_skbuff
[last
] = skb
;
1919 static int dscc4_init_ring(struct net_device
*dev
)
1921 struct dscc4_dev_priv
*dpriv
= dscc4_priv(dev
);
1922 struct pci_dev
*pdev
= dpriv
->pci_priv
->pdev
;
1928 ring
= pci_alloc_consistent(pdev
, RX_TOTAL_SIZE
, &dpriv
->rx_fd_dma
);
1931 dpriv
->rx_fd
= rx_fd
= (struct RxFD
*) ring
;
1933 ring
= pci_alloc_consistent(pdev
, TX_TOTAL_SIZE
, &dpriv
->tx_fd_dma
);
1935 goto err_free_dma_rx
;
1936 dpriv
->tx_fd
= tx_fd
= (struct TxFD
*) ring
;
1938 memset(dpriv
->tx_skbuff
, 0, sizeof(struct sk_buff
*)*TX_RING_SIZE
);
1939 dpriv
->tx_dirty
= 0xffffffff;
1940 i
= dpriv
->tx_current
= 0;
1942 tx_fd
->state
= FrameEnd
| TO_STATE_TX(2*DUMMY_SKB_SIZE
);
1943 tx_fd
->complete
= 0x00000000;
1944 /* FIXME: NULL should be ok - to be tried */
1945 tx_fd
->data
= cpu_to_le32(dpriv
->tx_fd_dma
);
1946 (tx_fd
++)->next
= cpu_to_le32(dpriv
->tx_fd_dma
+
1947 (++i
%TX_RING_SIZE
)*sizeof(*tx_fd
));
1948 } while (i
< TX_RING_SIZE
);
1950 if (!dscc4_init_dummy_skb(dpriv
))
1951 goto err_free_dma_tx
;
1953 memset(dpriv
->rx_skbuff
, 0, sizeof(struct sk_buff
*)*RX_RING_SIZE
);
1954 i
= dpriv
->rx_dirty
= dpriv
->rx_current
= 0;
1956 /* size set by the host. Multiple of 4 bytes please */
1957 rx_fd
->state1
= HiDesc
;
1958 rx_fd
->state2
= 0x00000000;
1959 rx_fd
->end
= cpu_to_le32(0xbabeface);
1960 rx_fd
->state1
|= TO_STATE_RX(HDLC_MAX_MRU
);
1961 // FIXME: return value verifiee mais traitement suspect
1962 if (try_get_rx_skb(dpriv
, dev
) >= 0)
1964 (rx_fd
++)->next
= cpu_to_le32(dpriv
->rx_fd_dma
+
1965 (++i
%RX_RING_SIZE
)*sizeof(*rx_fd
));
1966 } while (i
< RX_RING_SIZE
);
1971 pci_free_consistent(pdev
, TX_TOTAL_SIZE
, ring
, dpriv
->tx_fd_dma
);
1973 pci_free_consistent(pdev
, RX_TOTAL_SIZE
, rx_fd
, dpriv
->rx_fd_dma
);
1978 static void __devexit
dscc4_remove_one(struct pci_dev
*pdev
)
1980 struct dscc4_pci_priv
*ppriv
;
1981 struct dscc4_dev_priv
*root
;
1982 void __iomem
*ioaddr
;
1985 ppriv
= pci_get_drvdata(pdev
);
1988 ioaddr
= root
->base_addr
;
1990 dscc4_pci_reset(pdev
, ioaddr
);
1992 free_irq(pdev
->irq
, root
);
1993 pci_free_consistent(pdev
, IRQ_RING_SIZE
*sizeof(u32
), ppriv
->iqcfg
,
1995 for (i
= 0; i
< dev_per_card
; i
++) {
1996 struct dscc4_dev_priv
*dpriv
= root
+ i
;
1998 dscc4_release_ring(dpriv
);
1999 pci_free_consistent(pdev
, IRQ_RING_SIZE
*sizeof(u32
),
2000 dpriv
->iqrx
, dpriv
->iqrx_dma
);
2001 pci_free_consistent(pdev
, IRQ_RING_SIZE
*sizeof(u32
),
2002 dpriv
->iqtx
, dpriv
->iqtx_dma
);
2009 pci_release_region(pdev
, 1);
2010 pci_release_region(pdev
, 0);
2012 pci_disable_device(pdev
);
2015 static int dscc4_hdlc_attach(struct net_device
*dev
, unsigned short encoding
,
2016 unsigned short parity
)
2018 struct dscc4_dev_priv
*dpriv
= dscc4_priv(dev
);
2020 if (encoding
!= ENCODING_NRZ
&&
2021 encoding
!= ENCODING_NRZI
&&
2022 encoding
!= ENCODING_FM_MARK
&&
2023 encoding
!= ENCODING_FM_SPACE
&&
2024 encoding
!= ENCODING_MANCHESTER
)
2027 if (parity
!= PARITY_NONE
&&
2028 parity
!= PARITY_CRC16_PR0_CCITT
&&
2029 parity
!= PARITY_CRC16_PR1_CCITT
&&
2030 parity
!= PARITY_CRC32_PR0_CCITT
&&
2031 parity
!= PARITY_CRC32_PR1_CCITT
)
2034 dpriv
->encoding
= encoding
;
2035 dpriv
->parity
= parity
;
2040 static int __init
dscc4_setup(char *str
)
2042 int *args
[] = { &debug
, &quartz
, NULL
}, **p
= args
;
2044 while (*p
&& (get_option(&str
, *p
) == 2))
2049 __setup("dscc4.setup=", dscc4_setup
);
2052 static DEFINE_PCI_DEVICE_TABLE(dscc4_pci_tbl
) = {
2053 { PCI_VENDOR_ID_SIEMENS
, PCI_DEVICE_ID_SIEMENS_DSCC4
,
2054 PCI_ANY_ID
, PCI_ANY_ID
, },
2057 MODULE_DEVICE_TABLE(pci
, dscc4_pci_tbl
);
2059 static struct pci_driver dscc4_driver
= {
2061 .id_table
= dscc4_pci_tbl
,
2062 .probe
= dscc4_init_one
,
2063 .remove
= __devexit_p(dscc4_remove_one
),
2066 static int __init
dscc4_init_module(void)
2068 return pci_register_driver(&dscc4_driver
);
2071 static void __exit
dscc4_cleanup_module(void)
2073 pci_unregister_driver(&dscc4_driver
);
2076 module_init(dscc4_init_module
);
2077 module_exit(dscc4_cleanup_module
);