ALSA: hda - Supports more audio streams
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / rds / ib_recv.c
blobe29e0ca32f740d978aeccf23a4fba5453a4e8aa4
1 /*
2 * Copyright (c) 2006 Oracle. All rights reserved.
4 * This software is available to you under a choice of one of two
5 * licenses. You may choose to be licensed under the terms of the GNU
6 * General Public License (GPL) Version 2, available from the file
7 * COPYING in the main directory of this source tree, or the
8 * OpenIB.org BSD license below:
10 * Redistribution and use in source and binary forms, with or
11 * without modification, are permitted provided that the following
12 * conditions are met:
14 * - Redistributions of source code must retain the above
15 * copyright notice, this list of conditions and the following
16 * disclaimer.
18 * - Redistributions in binary form must reproduce the above
19 * copyright notice, this list of conditions and the following
20 * disclaimer in the documentation and/or other materials
21 * provided with the distribution.
23 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
24 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
25 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
26 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
27 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
28 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
29 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
30 * SOFTWARE.
33 #include <linux/kernel.h>
34 #include <linux/slab.h>
35 #include <linux/pci.h>
36 #include <linux/dma-mapping.h>
37 #include <rdma/rdma_cm.h>
39 #include "rds.h"
40 #include "ib.h"
42 static struct kmem_cache *rds_ib_incoming_slab;
43 static struct kmem_cache *rds_ib_frag_slab;
44 static atomic_t rds_ib_allocation = ATOMIC_INIT(0);
46 void rds_ib_recv_init_ring(struct rds_ib_connection *ic)
48 struct rds_ib_recv_work *recv;
49 u32 i;
51 for (i = 0, recv = ic->i_recvs; i < ic->i_recv_ring.w_nr; i++, recv++) {
52 struct ib_sge *sge;
54 recv->r_ibinc = NULL;
55 recv->r_frag = NULL;
57 recv->r_wr.next = NULL;
58 recv->r_wr.wr_id = i;
59 recv->r_wr.sg_list = recv->r_sge;
60 recv->r_wr.num_sge = RDS_IB_RECV_SGE;
62 sge = &recv->r_sge[0];
63 sge->addr = ic->i_recv_hdrs_dma + (i * sizeof(struct rds_header));
64 sge->length = sizeof(struct rds_header);
65 sge->lkey = ic->i_mr->lkey;
67 sge = &recv->r_sge[1];
68 sge->addr = 0;
69 sge->length = RDS_FRAG_SIZE;
70 sge->lkey = ic->i_mr->lkey;
75 * The entire 'from' list, including the from element itself, is put on
76 * to the tail of the 'to' list.
78 static void list_splice_entire_tail(struct list_head *from,
79 struct list_head *to)
81 struct list_head *from_last = from->prev;
83 list_splice_tail(from_last, to);
84 list_add_tail(from_last, to);
87 static void rds_ib_cache_xfer_to_ready(struct rds_ib_refill_cache *cache)
89 struct list_head *tmp;
91 tmp = xchg(&cache->xfer, NULL);
92 if (tmp) {
93 if (cache->ready)
94 list_splice_entire_tail(tmp, cache->ready);
95 else
96 cache->ready = tmp;
100 static int rds_ib_recv_alloc_cache(struct rds_ib_refill_cache *cache)
102 struct rds_ib_cache_head *head;
103 int cpu;
105 cache->percpu = alloc_percpu(struct rds_ib_cache_head);
106 if (!cache->percpu)
107 return -ENOMEM;
109 for_each_possible_cpu(cpu) {
110 head = per_cpu_ptr(cache->percpu, cpu);
111 head->first = NULL;
112 head->count = 0;
114 cache->xfer = NULL;
115 cache->ready = NULL;
117 return 0;
120 int rds_ib_recv_alloc_caches(struct rds_ib_connection *ic)
122 int ret;
124 ret = rds_ib_recv_alloc_cache(&ic->i_cache_incs);
125 if (!ret) {
126 ret = rds_ib_recv_alloc_cache(&ic->i_cache_frags);
127 if (ret)
128 free_percpu(ic->i_cache_incs.percpu);
131 return ret;
134 static void rds_ib_cache_splice_all_lists(struct rds_ib_refill_cache *cache,
135 struct list_head *caller_list)
137 struct rds_ib_cache_head *head;
138 int cpu;
140 for_each_possible_cpu(cpu) {
141 head = per_cpu_ptr(cache->percpu, cpu);
142 if (head->first) {
143 list_splice_entire_tail(head->first, caller_list);
144 head->first = NULL;
148 if (cache->ready) {
149 list_splice_entire_tail(cache->ready, caller_list);
150 cache->ready = NULL;
154 void rds_ib_recv_free_caches(struct rds_ib_connection *ic)
156 struct rds_ib_incoming *inc;
157 struct rds_ib_incoming *inc_tmp;
158 struct rds_page_frag *frag;
159 struct rds_page_frag *frag_tmp;
160 LIST_HEAD(list);
162 rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
163 rds_ib_cache_splice_all_lists(&ic->i_cache_incs, &list);
164 free_percpu(ic->i_cache_incs.percpu);
166 list_for_each_entry_safe(inc, inc_tmp, &list, ii_cache_entry) {
167 list_del(&inc->ii_cache_entry);
168 WARN_ON(!list_empty(&inc->ii_frags));
169 kmem_cache_free(rds_ib_incoming_slab, inc);
172 rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
173 rds_ib_cache_splice_all_lists(&ic->i_cache_frags, &list);
174 free_percpu(ic->i_cache_frags.percpu);
176 list_for_each_entry_safe(frag, frag_tmp, &list, f_cache_entry) {
177 list_del(&frag->f_cache_entry);
178 WARN_ON(!list_empty(&frag->f_item));
179 kmem_cache_free(rds_ib_frag_slab, frag);
183 /* fwd decl */
184 static void rds_ib_recv_cache_put(struct list_head *new_item,
185 struct rds_ib_refill_cache *cache);
186 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache);
189 /* Recycle frag and attached recv buffer f_sg */
190 static void rds_ib_frag_free(struct rds_ib_connection *ic,
191 struct rds_page_frag *frag)
193 rdsdebug("frag %p page %p\n", frag, sg_page(&frag->f_sg));
195 rds_ib_recv_cache_put(&frag->f_cache_entry, &ic->i_cache_frags);
198 /* Recycle inc after freeing attached frags */
199 void rds_ib_inc_free(struct rds_incoming *inc)
201 struct rds_ib_incoming *ibinc;
202 struct rds_page_frag *frag;
203 struct rds_page_frag *pos;
204 struct rds_ib_connection *ic = inc->i_conn->c_transport_data;
206 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
208 /* Free attached frags */
209 list_for_each_entry_safe(frag, pos, &ibinc->ii_frags, f_item) {
210 list_del_init(&frag->f_item);
211 rds_ib_frag_free(ic, frag);
213 BUG_ON(!list_empty(&ibinc->ii_frags));
215 rdsdebug("freeing ibinc %p inc %p\n", ibinc, inc);
216 rds_ib_recv_cache_put(&ibinc->ii_cache_entry, &ic->i_cache_incs);
219 static void rds_ib_recv_clear_one(struct rds_ib_connection *ic,
220 struct rds_ib_recv_work *recv)
222 if (recv->r_ibinc) {
223 rds_inc_put(&recv->r_ibinc->ii_inc);
224 recv->r_ibinc = NULL;
226 if (recv->r_frag) {
227 ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
228 rds_ib_frag_free(ic, recv->r_frag);
229 recv->r_frag = NULL;
233 void rds_ib_recv_clear_ring(struct rds_ib_connection *ic)
235 u32 i;
237 for (i = 0; i < ic->i_recv_ring.w_nr; i++)
238 rds_ib_recv_clear_one(ic, &ic->i_recvs[i]);
241 static struct rds_ib_incoming *rds_ib_refill_one_inc(struct rds_ib_connection *ic,
242 gfp_t slab_mask)
244 struct rds_ib_incoming *ibinc;
245 struct list_head *cache_item;
246 int avail_allocs;
248 cache_item = rds_ib_recv_cache_get(&ic->i_cache_incs);
249 if (cache_item) {
250 ibinc = container_of(cache_item, struct rds_ib_incoming, ii_cache_entry);
251 } else {
252 avail_allocs = atomic_add_unless(&rds_ib_allocation,
253 1, rds_ib_sysctl_max_recv_allocation);
254 if (!avail_allocs) {
255 rds_ib_stats_inc(s_ib_rx_alloc_limit);
256 return NULL;
258 ibinc = kmem_cache_alloc(rds_ib_incoming_slab, slab_mask);
259 if (!ibinc) {
260 atomic_dec(&rds_ib_allocation);
261 return NULL;
264 INIT_LIST_HEAD(&ibinc->ii_frags);
265 rds_inc_init(&ibinc->ii_inc, ic->conn, ic->conn->c_faddr);
267 return ibinc;
270 static struct rds_page_frag *rds_ib_refill_one_frag(struct rds_ib_connection *ic,
271 gfp_t slab_mask, gfp_t page_mask)
273 struct rds_page_frag *frag;
274 struct list_head *cache_item;
275 int ret;
277 cache_item = rds_ib_recv_cache_get(&ic->i_cache_frags);
278 if (cache_item) {
279 frag = container_of(cache_item, struct rds_page_frag, f_cache_entry);
280 } else {
281 frag = kmem_cache_alloc(rds_ib_frag_slab, slab_mask);
282 if (!frag)
283 return NULL;
285 sg_init_table(&frag->f_sg, 1);
286 ret = rds_page_remainder_alloc(&frag->f_sg,
287 RDS_FRAG_SIZE, page_mask);
288 if (ret) {
289 kmem_cache_free(rds_ib_frag_slab, frag);
290 return NULL;
294 INIT_LIST_HEAD(&frag->f_item);
296 return frag;
299 static int rds_ib_recv_refill_one(struct rds_connection *conn,
300 struct rds_ib_recv_work *recv, int prefill)
302 struct rds_ib_connection *ic = conn->c_transport_data;
303 struct ib_sge *sge;
304 int ret = -ENOMEM;
305 gfp_t slab_mask = GFP_NOWAIT;
306 gfp_t page_mask = GFP_NOWAIT;
308 if (prefill) {
309 slab_mask = GFP_KERNEL;
310 page_mask = GFP_HIGHUSER;
313 if (!ic->i_cache_incs.ready)
314 rds_ib_cache_xfer_to_ready(&ic->i_cache_incs);
315 if (!ic->i_cache_frags.ready)
316 rds_ib_cache_xfer_to_ready(&ic->i_cache_frags);
319 * ibinc was taken from recv if recv contained the start of a message.
320 * recvs that were continuations will still have this allocated.
322 if (!recv->r_ibinc) {
323 recv->r_ibinc = rds_ib_refill_one_inc(ic, slab_mask);
324 if (!recv->r_ibinc)
325 goto out;
328 WARN_ON(recv->r_frag); /* leak! */
329 recv->r_frag = rds_ib_refill_one_frag(ic, slab_mask, page_mask);
330 if (!recv->r_frag)
331 goto out;
333 ret = ib_dma_map_sg(ic->i_cm_id->device, &recv->r_frag->f_sg,
334 1, DMA_FROM_DEVICE);
335 WARN_ON(ret != 1);
337 sge = &recv->r_sge[0];
338 sge->addr = ic->i_recv_hdrs_dma + (recv - ic->i_recvs) * sizeof(struct rds_header);
339 sge->length = sizeof(struct rds_header);
341 sge = &recv->r_sge[1];
342 sge->addr = sg_dma_address(&recv->r_frag->f_sg);
343 sge->length = sg_dma_len(&recv->r_frag->f_sg);
345 ret = 0;
346 out:
347 return ret;
351 * This tries to allocate and post unused work requests after making sure that
352 * they have all the allocations they need to queue received fragments into
353 * sockets.
355 * -1 is returned if posting fails due to temporary resource exhaustion.
357 void rds_ib_recv_refill(struct rds_connection *conn, int prefill)
359 struct rds_ib_connection *ic = conn->c_transport_data;
360 struct rds_ib_recv_work *recv;
361 struct ib_recv_wr *failed_wr;
362 unsigned int posted = 0;
363 int ret = 0;
364 u32 pos;
366 while ((prefill || rds_conn_up(conn)) &&
367 rds_ib_ring_alloc(&ic->i_recv_ring, 1, &pos)) {
368 if (pos >= ic->i_recv_ring.w_nr) {
369 printk(KERN_NOTICE "Argh - ring alloc returned pos=%u\n",
370 pos);
371 break;
374 recv = &ic->i_recvs[pos];
375 ret = rds_ib_recv_refill_one(conn, recv, prefill);
376 if (ret) {
377 break;
380 /* XXX when can this fail? */
381 ret = ib_post_recv(ic->i_cm_id->qp, &recv->r_wr, &failed_wr);
382 rdsdebug("recv %p ibinc %p page %p addr %lu ret %d\n", recv,
383 recv->r_ibinc, sg_page(&recv->r_frag->f_sg),
384 (long) sg_dma_address(&recv->r_frag->f_sg), ret);
385 if (ret) {
386 rds_ib_conn_error(conn, "recv post on "
387 "%pI4 returned %d, disconnecting and "
388 "reconnecting\n", &conn->c_faddr,
389 ret);
390 break;
393 posted++;
396 /* We're doing flow control - update the window. */
397 if (ic->i_flowctl && posted)
398 rds_ib_advertise_credits(conn, posted);
400 if (ret)
401 rds_ib_ring_unalloc(&ic->i_recv_ring, 1);
405 * We want to recycle several types of recv allocations, like incs and frags.
406 * To use this, the *_free() function passes in the ptr to a list_head within
407 * the recyclee, as well as the cache to put it on.
409 * First, we put the memory on a percpu list. When this reaches a certain size,
410 * We move it to an intermediate non-percpu list in a lockless manner, with some
411 * xchg/compxchg wizardry.
413 * N.B. Instead of a list_head as the anchor, we use a single pointer, which can
414 * be NULL and xchg'd. The list is actually empty when the pointer is NULL, and
415 * list_empty() will return true with one element is actually present.
417 static void rds_ib_recv_cache_put(struct list_head *new_item,
418 struct rds_ib_refill_cache *cache)
420 unsigned long flags;
421 struct rds_ib_cache_head *chp;
422 struct list_head *old;
424 local_irq_save(flags);
426 chp = per_cpu_ptr(cache->percpu, smp_processor_id());
427 if (!chp->first)
428 INIT_LIST_HEAD(new_item);
429 else /* put on front */
430 list_add_tail(new_item, chp->first);
431 chp->first = new_item;
432 chp->count++;
434 if (chp->count < RDS_IB_RECYCLE_BATCH_COUNT)
435 goto end;
438 * Return our per-cpu first list to the cache's xfer by atomically
439 * grabbing the current xfer list, appending it to our per-cpu list,
440 * and then atomically returning that entire list back to the
441 * cache's xfer list as long as it's still empty.
443 do {
444 old = xchg(&cache->xfer, NULL);
445 if (old)
446 list_splice_entire_tail(old, chp->first);
447 old = cmpxchg(&cache->xfer, NULL, chp->first);
448 } while (old);
450 chp->first = NULL;
451 chp->count = 0;
452 end:
453 local_irq_restore(flags);
456 static struct list_head *rds_ib_recv_cache_get(struct rds_ib_refill_cache *cache)
458 struct list_head *head = cache->ready;
460 if (head) {
461 if (!list_empty(head)) {
462 cache->ready = head->next;
463 list_del_init(head);
464 } else
465 cache->ready = NULL;
468 return head;
471 int rds_ib_inc_copy_to_user(struct rds_incoming *inc, struct iovec *first_iov,
472 size_t size)
474 struct rds_ib_incoming *ibinc;
475 struct rds_page_frag *frag;
476 struct iovec *iov = first_iov;
477 unsigned long to_copy;
478 unsigned long frag_off = 0;
479 unsigned long iov_off = 0;
480 int copied = 0;
481 int ret;
482 u32 len;
484 ibinc = container_of(inc, struct rds_ib_incoming, ii_inc);
485 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
486 len = be32_to_cpu(inc->i_hdr.h_len);
488 while (copied < size && copied < len) {
489 if (frag_off == RDS_FRAG_SIZE) {
490 frag = list_entry(frag->f_item.next,
491 struct rds_page_frag, f_item);
492 frag_off = 0;
494 while (iov_off == iov->iov_len) {
495 iov_off = 0;
496 iov++;
499 to_copy = min(iov->iov_len - iov_off, RDS_FRAG_SIZE - frag_off);
500 to_copy = min_t(size_t, to_copy, size - copied);
501 to_copy = min_t(unsigned long, to_copy, len - copied);
503 rdsdebug("%lu bytes to user [%p, %zu] + %lu from frag "
504 "[%p, %u] + %lu\n",
505 to_copy, iov->iov_base, iov->iov_len, iov_off,
506 sg_page(&frag->f_sg), frag->f_sg.offset, frag_off);
508 /* XXX needs + offset for multiple recvs per page */
509 ret = rds_page_copy_to_user(sg_page(&frag->f_sg),
510 frag->f_sg.offset + frag_off,
511 iov->iov_base + iov_off,
512 to_copy);
513 if (ret) {
514 copied = ret;
515 break;
518 iov_off += to_copy;
519 frag_off += to_copy;
520 copied += to_copy;
523 return copied;
526 /* ic starts out kzalloc()ed */
527 void rds_ib_recv_init_ack(struct rds_ib_connection *ic)
529 struct ib_send_wr *wr = &ic->i_ack_wr;
530 struct ib_sge *sge = &ic->i_ack_sge;
532 sge->addr = ic->i_ack_dma;
533 sge->length = sizeof(struct rds_header);
534 sge->lkey = ic->i_mr->lkey;
536 wr->sg_list = sge;
537 wr->num_sge = 1;
538 wr->opcode = IB_WR_SEND;
539 wr->wr_id = RDS_IB_ACK_WR_ID;
540 wr->send_flags = IB_SEND_SIGNALED | IB_SEND_SOLICITED;
544 * You'd think that with reliable IB connections you wouldn't need to ack
545 * messages that have been received. The problem is that IB hardware generates
546 * an ack message before it has DMAed the message into memory. This creates a
547 * potential message loss if the HCA is disabled for any reason between when it
548 * sends the ack and before the message is DMAed and processed. This is only a
549 * potential issue if another HCA is available for fail-over.
551 * When the remote host receives our ack they'll free the sent message from
552 * their send queue. To decrease the latency of this we always send an ack
553 * immediately after we've received messages.
555 * For simplicity, we only have one ack in flight at a time. This puts
556 * pressure on senders to have deep enough send queues to absorb the latency of
557 * a single ack frame being in flight. This might not be good enough.
559 * This is implemented by have a long-lived send_wr and sge which point to a
560 * statically allocated ack frame. This ack wr does not fall under the ring
561 * accounting that the tx and rx wrs do. The QP attribute specifically makes
562 * room for it beyond the ring size. Send completion notices its special
563 * wr_id and avoids working with the ring in that case.
565 #ifndef KERNEL_HAS_ATOMIC64
566 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
567 int ack_required)
569 unsigned long flags;
571 spin_lock_irqsave(&ic->i_ack_lock, flags);
572 ic->i_ack_next = seq;
573 if (ack_required)
574 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
575 spin_unlock_irqrestore(&ic->i_ack_lock, flags);
578 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
580 unsigned long flags;
581 u64 seq;
583 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
585 spin_lock_irqsave(&ic->i_ack_lock, flags);
586 seq = ic->i_ack_next;
587 spin_unlock_irqrestore(&ic->i_ack_lock, flags);
589 return seq;
591 #else
592 static void rds_ib_set_ack(struct rds_ib_connection *ic, u64 seq,
593 int ack_required)
595 atomic64_set(&ic->i_ack_next, seq);
596 if (ack_required) {
597 smp_mb__before_clear_bit();
598 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
602 static u64 rds_ib_get_ack(struct rds_ib_connection *ic)
604 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
605 smp_mb__after_clear_bit();
607 return atomic64_read(&ic->i_ack_next);
609 #endif
612 static void rds_ib_send_ack(struct rds_ib_connection *ic, unsigned int adv_credits)
614 struct rds_header *hdr = ic->i_ack;
615 struct ib_send_wr *failed_wr;
616 u64 seq;
617 int ret;
619 seq = rds_ib_get_ack(ic);
621 rdsdebug("send_ack: ic %p ack %llu\n", ic, (unsigned long long) seq);
622 rds_message_populate_header(hdr, 0, 0, 0);
623 hdr->h_ack = cpu_to_be64(seq);
624 hdr->h_credit = adv_credits;
625 rds_message_make_checksum(hdr);
626 ic->i_ack_queued = jiffies;
628 ret = ib_post_send(ic->i_cm_id->qp, &ic->i_ack_wr, &failed_wr);
629 if (unlikely(ret)) {
630 /* Failed to send. Release the WR, and
631 * force another ACK.
633 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
634 set_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
636 rds_ib_stats_inc(s_ib_ack_send_failure);
638 rds_ib_conn_error(ic->conn, "sending ack failed\n");
639 } else
640 rds_ib_stats_inc(s_ib_ack_sent);
644 * There are 3 ways of getting acknowledgements to the peer:
645 * 1. We call rds_ib_attempt_ack from the recv completion handler
646 * to send an ACK-only frame.
647 * However, there can be only one such frame in the send queue
648 * at any time, so we may have to postpone it.
649 * 2. When another (data) packet is transmitted while there's
650 * an ACK in the queue, we piggyback the ACK sequence number
651 * on the data packet.
652 * 3. If the ACK WR is done sending, we get called from the
653 * send queue completion handler, and check whether there's
654 * another ACK pending (postponed because the WR was on the
655 * queue). If so, we transmit it.
657 * We maintain 2 variables:
658 * - i_ack_flags, which keeps track of whether the ACK WR
659 * is currently in the send queue or not (IB_ACK_IN_FLIGHT)
660 * - i_ack_next, which is the last sequence number we received
662 * Potentially, send queue and receive queue handlers can run concurrently.
663 * It would be nice to not have to use a spinlock to synchronize things,
664 * but the one problem that rules this out is that 64bit updates are
665 * not atomic on all platforms. Things would be a lot simpler if
666 * we had atomic64 or maybe cmpxchg64 everywhere.
668 * Reconnecting complicates this picture just slightly. When we
669 * reconnect, we may be seeing duplicate packets. The peer
670 * is retransmitting them, because it hasn't seen an ACK for
671 * them. It is important that we ACK these.
673 * ACK mitigation adds a header flag "ACK_REQUIRED"; any packet with
674 * this flag set *MUST* be acknowledged immediately.
678 * When we get here, we're called from the recv queue handler.
679 * Check whether we ought to transmit an ACK.
681 void rds_ib_attempt_ack(struct rds_ib_connection *ic)
683 unsigned int adv_credits;
685 if (!test_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
686 return;
688 if (test_and_set_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags)) {
689 rds_ib_stats_inc(s_ib_ack_send_delayed);
690 return;
693 /* Can we get a send credit? */
694 if (!rds_ib_send_grab_credits(ic, 1, &adv_credits, 0, RDS_MAX_ADV_CREDIT)) {
695 rds_ib_stats_inc(s_ib_tx_throttle);
696 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
697 return;
700 clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags);
701 rds_ib_send_ack(ic, adv_credits);
705 * We get here from the send completion handler, when the
706 * adapter tells us the ACK frame was sent.
708 void rds_ib_ack_send_complete(struct rds_ib_connection *ic)
710 clear_bit(IB_ACK_IN_FLIGHT, &ic->i_ack_flags);
711 rds_ib_attempt_ack(ic);
715 * This is called by the regular xmit code when it wants to piggyback
716 * an ACK on an outgoing frame.
718 u64 rds_ib_piggyb_ack(struct rds_ib_connection *ic)
720 if (test_and_clear_bit(IB_ACK_REQUESTED, &ic->i_ack_flags))
721 rds_ib_stats_inc(s_ib_ack_send_piggybacked);
722 return rds_ib_get_ack(ic);
726 * It's kind of lame that we're copying from the posted receive pages into
727 * long-lived bitmaps. We could have posted the bitmaps and rdma written into
728 * them. But receiving new congestion bitmaps should be a *rare* event, so
729 * hopefully we won't need to invest that complexity in making it more
730 * efficient. By copying we can share a simpler core with TCP which has to
731 * copy.
733 static void rds_ib_cong_recv(struct rds_connection *conn,
734 struct rds_ib_incoming *ibinc)
736 struct rds_cong_map *map;
737 unsigned int map_off;
738 unsigned int map_page;
739 struct rds_page_frag *frag;
740 unsigned long frag_off;
741 unsigned long to_copy;
742 unsigned long copied;
743 uint64_t uncongested = 0;
744 void *addr;
746 /* catch completely corrupt packets */
747 if (be32_to_cpu(ibinc->ii_inc.i_hdr.h_len) != RDS_CONG_MAP_BYTES)
748 return;
750 map = conn->c_fcong;
751 map_page = 0;
752 map_off = 0;
754 frag = list_entry(ibinc->ii_frags.next, struct rds_page_frag, f_item);
755 frag_off = 0;
757 copied = 0;
759 while (copied < RDS_CONG_MAP_BYTES) {
760 uint64_t *src, *dst;
761 unsigned int k;
763 to_copy = min(RDS_FRAG_SIZE - frag_off, PAGE_SIZE - map_off);
764 BUG_ON(to_copy & 7); /* Must be 64bit aligned. */
766 addr = kmap_atomic(sg_page(&frag->f_sg), KM_SOFTIRQ0);
768 src = addr + frag_off;
769 dst = (void *)map->m_page_addrs[map_page] + map_off;
770 for (k = 0; k < to_copy; k += 8) {
771 /* Record ports that became uncongested, ie
772 * bits that changed from 0 to 1. */
773 uncongested |= ~(*src) & *dst;
774 *dst++ = *src++;
776 kunmap_atomic(addr, KM_SOFTIRQ0);
778 copied += to_copy;
780 map_off += to_copy;
781 if (map_off == PAGE_SIZE) {
782 map_off = 0;
783 map_page++;
786 frag_off += to_copy;
787 if (frag_off == RDS_FRAG_SIZE) {
788 frag = list_entry(frag->f_item.next,
789 struct rds_page_frag, f_item);
790 frag_off = 0;
794 /* the congestion map is in little endian order */
795 uncongested = le64_to_cpu(uncongested);
797 rds_cong_map_updated(map, uncongested);
801 * Rings are posted with all the allocations they'll need to queue the
802 * incoming message to the receiving socket so this can't fail.
803 * All fragments start with a header, so we can make sure we're not receiving
804 * garbage, and we can tell a small 8 byte fragment from an ACK frame.
806 struct rds_ib_ack_state {
807 u64 ack_next;
808 u64 ack_recv;
809 unsigned int ack_required:1;
810 unsigned int ack_next_valid:1;
811 unsigned int ack_recv_valid:1;
814 static void rds_ib_process_recv(struct rds_connection *conn,
815 struct rds_ib_recv_work *recv, u32 data_len,
816 struct rds_ib_ack_state *state)
818 struct rds_ib_connection *ic = conn->c_transport_data;
819 struct rds_ib_incoming *ibinc = ic->i_ibinc;
820 struct rds_header *ihdr, *hdr;
822 /* XXX shut down the connection if port 0,0 are seen? */
824 rdsdebug("ic %p ibinc %p recv %p byte len %u\n", ic, ibinc, recv,
825 data_len);
827 if (data_len < sizeof(struct rds_header)) {
828 rds_ib_conn_error(conn, "incoming message "
829 "from %pI4 didn't inclue a "
830 "header, disconnecting and "
831 "reconnecting\n",
832 &conn->c_faddr);
833 return;
835 data_len -= sizeof(struct rds_header);
837 ihdr = &ic->i_recv_hdrs[recv - ic->i_recvs];
839 /* Validate the checksum. */
840 if (!rds_message_verify_checksum(ihdr)) {
841 rds_ib_conn_error(conn, "incoming message "
842 "from %pI4 has corrupted header - "
843 "forcing a reconnect\n",
844 &conn->c_faddr);
845 rds_stats_inc(s_recv_drop_bad_checksum);
846 return;
849 /* Process the ACK sequence which comes with every packet */
850 state->ack_recv = be64_to_cpu(ihdr->h_ack);
851 state->ack_recv_valid = 1;
853 /* Process the credits update if there was one */
854 if (ihdr->h_credit)
855 rds_ib_send_add_credits(conn, ihdr->h_credit);
857 if (ihdr->h_sport == 0 && ihdr->h_dport == 0 && data_len == 0) {
858 /* This is an ACK-only packet. The fact that it gets
859 * special treatment here is that historically, ACKs
860 * were rather special beasts.
862 rds_ib_stats_inc(s_ib_ack_received);
865 * Usually the frags make their way on to incs and are then freed as
866 * the inc is freed. We don't go that route, so we have to drop the
867 * page ref ourselves. We can't just leave the page on the recv
868 * because that confuses the dma mapping of pages and each recv's use
869 * of a partial page.
871 * FIXME: Fold this into the code path below.
873 rds_ib_frag_free(ic, recv->r_frag);
874 recv->r_frag = NULL;
875 return;
879 * If we don't already have an inc on the connection then this
880 * fragment has a header and starts a message.. copy its header
881 * into the inc and save the inc so we can hang upcoming fragments
882 * off its list.
884 if (!ibinc) {
885 ibinc = recv->r_ibinc;
886 recv->r_ibinc = NULL;
887 ic->i_ibinc = ibinc;
889 hdr = &ibinc->ii_inc.i_hdr;
890 memcpy(hdr, ihdr, sizeof(*hdr));
891 ic->i_recv_data_rem = be32_to_cpu(hdr->h_len);
893 rdsdebug("ic %p ibinc %p rem %u flag 0x%x\n", ic, ibinc,
894 ic->i_recv_data_rem, hdr->h_flags);
895 } else {
896 hdr = &ibinc->ii_inc.i_hdr;
897 /* We can't just use memcmp here; fragments of a
898 * single message may carry different ACKs */
899 if (hdr->h_sequence != ihdr->h_sequence ||
900 hdr->h_len != ihdr->h_len ||
901 hdr->h_sport != ihdr->h_sport ||
902 hdr->h_dport != ihdr->h_dport) {
903 rds_ib_conn_error(conn,
904 "fragment header mismatch; forcing reconnect\n");
905 return;
909 list_add_tail(&recv->r_frag->f_item, &ibinc->ii_frags);
910 recv->r_frag = NULL;
912 if (ic->i_recv_data_rem > RDS_FRAG_SIZE)
913 ic->i_recv_data_rem -= RDS_FRAG_SIZE;
914 else {
915 ic->i_recv_data_rem = 0;
916 ic->i_ibinc = NULL;
918 if (ibinc->ii_inc.i_hdr.h_flags == RDS_FLAG_CONG_BITMAP)
919 rds_ib_cong_recv(conn, ibinc);
920 else {
921 rds_recv_incoming(conn, conn->c_faddr, conn->c_laddr,
922 &ibinc->ii_inc, GFP_ATOMIC,
923 KM_SOFTIRQ0);
924 state->ack_next = be64_to_cpu(hdr->h_sequence);
925 state->ack_next_valid = 1;
928 /* Evaluate the ACK_REQUIRED flag *after* we received
929 * the complete frame, and after bumping the next_rx
930 * sequence. */
931 if (hdr->h_flags & RDS_FLAG_ACK_REQUIRED) {
932 rds_stats_inc(s_recv_ack_required);
933 state->ack_required = 1;
936 rds_inc_put(&ibinc->ii_inc);
941 * Plucking the oldest entry from the ring can be done concurrently with
942 * the thread refilling the ring. Each ring operation is protected by
943 * spinlocks and the transient state of refilling doesn't change the
944 * recording of which entry is oldest.
946 * This relies on IB only calling one cq comp_handler for each cq so that
947 * there will only be one caller of rds_recv_incoming() per RDS connection.
949 void rds_ib_recv_cq_comp_handler(struct ib_cq *cq, void *context)
951 struct rds_connection *conn = context;
952 struct rds_ib_connection *ic = conn->c_transport_data;
954 rdsdebug("conn %p cq %p\n", conn, cq);
956 rds_ib_stats_inc(s_ib_rx_cq_call);
958 tasklet_schedule(&ic->i_recv_tasklet);
961 static inline void rds_poll_cq(struct rds_ib_connection *ic,
962 struct rds_ib_ack_state *state)
964 struct rds_connection *conn = ic->conn;
965 struct ib_wc wc;
966 struct rds_ib_recv_work *recv;
968 while (ib_poll_cq(ic->i_recv_cq, 1, &wc) > 0) {
969 rdsdebug("wc wr_id 0x%llx status %u (%s) byte_len %u imm_data %u\n",
970 (unsigned long long)wc.wr_id, wc.status,
971 rds_ib_wc_status_str(wc.status), wc.byte_len,
972 be32_to_cpu(wc.ex.imm_data));
973 rds_ib_stats_inc(s_ib_rx_cq_event);
975 recv = &ic->i_recvs[rds_ib_ring_oldest(&ic->i_recv_ring)];
977 ib_dma_unmap_sg(ic->i_cm_id->device, &recv->r_frag->f_sg, 1, DMA_FROM_DEVICE);
980 * Also process recvs in connecting state because it is possible
981 * to get a recv completion _before_ the rdmacm ESTABLISHED
982 * event is processed.
984 if (wc.status == IB_WC_SUCCESS) {
985 rds_ib_process_recv(conn, recv, wc.byte_len, state);
986 } else {
987 /* We expect errors as the qp is drained during shutdown */
988 if (rds_conn_up(conn) || rds_conn_connecting(conn))
989 rds_ib_conn_error(conn, "recv completion on %pI4 had "
990 "status %u (%s), disconnecting and "
991 "reconnecting\n", &conn->c_faddr,
992 wc.status,
993 rds_ib_wc_status_str(wc.status));
997 * It's very important that we only free this ring entry if we've truly
998 * freed the resources allocated to the entry. The refilling path can
999 * leak if we don't.
1001 rds_ib_ring_free(&ic->i_recv_ring, 1);
1005 void rds_ib_recv_tasklet_fn(unsigned long data)
1007 struct rds_ib_connection *ic = (struct rds_ib_connection *) data;
1008 struct rds_connection *conn = ic->conn;
1009 struct rds_ib_ack_state state = { 0, };
1011 rds_poll_cq(ic, &state);
1012 ib_req_notify_cq(ic->i_recv_cq, IB_CQ_SOLICITED);
1013 rds_poll_cq(ic, &state);
1015 if (state.ack_next_valid)
1016 rds_ib_set_ack(ic, state.ack_next, state.ack_required);
1017 if (state.ack_recv_valid && state.ack_recv > ic->i_ack_recv) {
1018 rds_send_drop_acked(conn, state.ack_recv, NULL);
1019 ic->i_ack_recv = state.ack_recv;
1021 if (rds_conn_up(conn))
1022 rds_ib_attempt_ack(ic);
1024 /* If we ever end up with a really empty receive ring, we're
1025 * in deep trouble, as the sender will definitely see RNR
1026 * timeouts. */
1027 if (rds_ib_ring_empty(&ic->i_recv_ring))
1028 rds_ib_stats_inc(s_ib_rx_ring_empty);
1030 if (rds_ib_ring_low(&ic->i_recv_ring))
1031 rds_ib_recv_refill(conn, 0);
1034 int rds_ib_recv(struct rds_connection *conn)
1036 struct rds_ib_connection *ic = conn->c_transport_data;
1037 int ret = 0;
1039 rdsdebug("conn %p\n", conn);
1040 if (rds_conn_up(conn))
1041 rds_ib_attempt_ack(ic);
1043 return ret;
1046 int rds_ib_recv_init(void)
1048 struct sysinfo si;
1049 int ret = -ENOMEM;
1051 /* Default to 30% of all available RAM for recv memory */
1052 si_meminfo(&si);
1053 rds_ib_sysctl_max_recv_allocation = si.totalram / 3 * PAGE_SIZE / RDS_FRAG_SIZE;
1055 rds_ib_incoming_slab = kmem_cache_create("rds_ib_incoming",
1056 sizeof(struct rds_ib_incoming),
1057 0, SLAB_HWCACHE_ALIGN, NULL);
1058 if (!rds_ib_incoming_slab)
1059 goto out;
1061 rds_ib_frag_slab = kmem_cache_create("rds_ib_frag",
1062 sizeof(struct rds_page_frag),
1063 0, SLAB_HWCACHE_ALIGN, NULL);
1064 if (!rds_ib_frag_slab)
1065 kmem_cache_destroy(rds_ib_incoming_slab);
1066 else
1067 ret = 0;
1068 out:
1069 return ret;
1072 void rds_ib_recv_exit(void)
1074 kmem_cache_destroy(rds_ib_incoming_slab);
1075 kmem_cache_destroy(rds_ib_frag_slab);