4 * Mutexes: blocking mutual exclusion locks
6 * Started by Ingo Molnar:
8 * Copyright (C) 2004, 2005, 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
10 * Many thanks to Arjan van de Ven, Thomas Gleixner, Steven Rostedt and
11 * David Howells for suggestions and improvements.
13 * - Adaptive spinning for mutexes by Peter Zijlstra. (Ported to mainline
14 * from the -rt tree, where it was originally implemented for rtmutexes
15 * by Steven Rostedt, based on work by Gregory Haskins, Peter Morreale
18 * Also see Documentation/mutex-design.txt.
20 #include <linux/mutex.h>
21 #include <linux/sched.h>
22 #include <linux/module.h>
23 #include <linux/spinlock.h>
24 #include <linux/interrupt.h>
25 #include <linux/debug_locks.h>
28 * In the DEBUG case we are using the "NULL fastpath" for mutexes,
29 * which forces all calls into the slowpath:
31 #ifdef CONFIG_DEBUG_MUTEXES
32 # include "mutex-debug.h"
33 # include <asm-generic/mutex-null.h>
36 # include <asm/mutex.h>
40 * mutex_init - initialize the mutex
41 * @lock: the mutex to be initialized
42 * @key: the lock_class_key for the class; used by mutex lock debugging
44 * Initialize the mutex to unlocked state.
46 * It is not allowed to initialize an already locked mutex.
49 __mutex_init(struct mutex
*lock
, const char *name
, struct lock_class_key
*key
)
51 atomic_set(&lock
->count
, 1);
52 spin_lock_init(&lock
->wait_lock
);
53 INIT_LIST_HEAD(&lock
->wait_list
);
54 mutex_clear_owner(lock
);
56 debug_mutex_init(lock
, name
, key
);
59 EXPORT_SYMBOL(__mutex_init
);
61 #ifndef CONFIG_DEBUG_LOCK_ALLOC
63 * We split the mutex lock/unlock logic into separate fastpath and
64 * slowpath functions, to reduce the register pressure on the fastpath.
65 * We also put the fastpath first in the kernel image, to make sure the
66 * branch is predicted by the CPU as default-untaken.
68 static __used noinline
void __sched
69 __mutex_lock_slowpath(atomic_t
*lock_count
);
72 * mutex_lock - acquire the mutex
73 * @lock: the mutex to be acquired
75 * Lock the mutex exclusively for this task. If the mutex is not
76 * available right now, it will sleep until it can get it.
78 * The mutex must later on be released by the same task that
79 * acquired it. Recursive locking is not allowed. The task
80 * may not exit without first unlocking the mutex. Also, kernel
81 * memory where the mutex resides mutex must not be freed with
82 * the mutex still locked. The mutex must first be initialized
83 * (or statically defined) before it can be locked. memset()-ing
84 * the mutex to 0 is not allowed.
86 * ( The CONFIG_DEBUG_MUTEXES .config option turns on debugging
87 * checks that will enforce the restrictions and will also do
88 * deadlock debugging. )
90 * This function is similar to (but not equivalent to) down().
92 void __sched
mutex_lock(struct mutex
*lock
)
96 * The locking fastpath is the 1->0 transition from
97 * 'unlocked' into 'locked' state.
99 __mutex_fastpath_lock(&lock
->count
, __mutex_lock_slowpath
);
100 mutex_set_owner(lock
);
103 EXPORT_SYMBOL(mutex_lock
);
106 static __used noinline
void __sched
__mutex_unlock_slowpath(atomic_t
*lock_count
);
109 * mutex_unlock - release the mutex
110 * @lock: the mutex to be released
112 * Unlock a mutex that has been locked by this task previously.
114 * This function must not be used in interrupt context. Unlocking
115 * of a not locked mutex is not allowed.
117 * This function is similar to (but not equivalent to) up().
119 void __sched
mutex_unlock(struct mutex
*lock
)
122 * The unlocking fastpath is the 0->1 transition from 'locked'
123 * into 'unlocked' state:
125 #ifndef CONFIG_DEBUG_MUTEXES
127 * When debugging is enabled we must not clear the owner before time,
128 * the slow path will always be taken, and that clears the owner field
129 * after verifying that it was indeed current.
131 mutex_clear_owner(lock
);
133 __mutex_fastpath_unlock(&lock
->count
, __mutex_unlock_slowpath
);
136 EXPORT_SYMBOL(mutex_unlock
);
139 * Lock a mutex (possibly interruptible), slowpath:
141 static inline int __sched
142 __mutex_lock_common(struct mutex
*lock
, long state
, unsigned int subclass
,
145 struct task_struct
*task
= current
;
146 struct mutex_waiter waiter
;
150 mutex_acquire(&lock
->dep_map
, subclass
, 0, ip
);
151 #if defined(CONFIG_SMP) && !defined(CONFIG_DEBUG_MUTEXES) && \
152 !defined(CONFIG_HAVE_DEFAULT_NO_SPIN_MUTEXES)
154 * Optimistic spinning.
156 * We try to spin for acquisition when we find that there are no
157 * pending waiters and the lock owner is currently running on a
160 * The rationale is that if the lock owner is running, it is likely to
161 * release the lock soon.
163 * Since this needs the lock owner, and this mutex implementation
164 * doesn't track the owner atomically in the lock field, we need to
165 * track it non-atomically.
167 * We can't do this for DEBUG_MUTEXES because that relies on wait_lock
168 * to serialize everything.
172 struct thread_info
*owner
;
175 * If there's an owner, wait for it to either
176 * release the lock or go to sleep.
178 owner
= ACCESS_ONCE(lock
->owner
);
179 if (owner
&& !mutex_spin_on_owner(lock
, owner
))
182 if (atomic_cmpxchg(&lock
->count
, 1, 0) == 1) {
183 lock_acquired(&lock
->dep_map
, ip
);
184 mutex_set_owner(lock
);
190 * When there's no owner, we might have preempted between the
191 * owner acquiring the lock and setting the owner field. If
192 * we're an RT task that will live-lock because we won't let
193 * the owner complete.
195 if (!owner
&& (need_resched() || rt_task(task
)))
199 * The cpu_relax() call is a compiler barrier which forces
200 * everything in this loop to be re-loaded. We don't need
201 * memory barriers as we'll eventually observe the right
202 * values at the cost of a few extra spins.
207 spin_lock_mutex(&lock
->wait_lock
, flags
);
209 debug_mutex_lock_common(lock
, &waiter
);
210 debug_mutex_add_waiter(lock
, &waiter
, task_thread_info(task
));
212 /* add waiting tasks to the end of the waitqueue (FIFO): */
213 list_add_tail(&waiter
.list
, &lock
->wait_list
);
216 if (atomic_xchg(&lock
->count
, -1) == 1)
219 lock_contended(&lock
->dep_map
, ip
);
223 * Lets try to take the lock again - this is needed even if
224 * we get here for the first time (shortly after failing to
225 * acquire the lock), to make sure that we get a wakeup once
226 * it's unlocked. Later on, if we sleep, this is the
227 * operation that gives us the lock. We xchg it to -1, so
228 * that when we release the lock, we properly wake up the
231 if (atomic_xchg(&lock
->count
, -1) == 1)
235 * got a signal? (This code gets eliminated in the
236 * TASK_UNINTERRUPTIBLE case.)
238 if (unlikely(signal_pending_state(state
, task
))) {
239 mutex_remove_waiter(lock
, &waiter
,
240 task_thread_info(task
));
241 mutex_release(&lock
->dep_map
, 1, ip
);
242 spin_unlock_mutex(&lock
->wait_lock
, flags
);
244 debug_mutex_free_waiter(&waiter
);
248 __set_task_state(task
, state
);
250 /* didnt get the lock, go to sleep: */
251 spin_unlock_mutex(&lock
->wait_lock
, flags
);
252 preempt_enable_no_resched();
255 spin_lock_mutex(&lock
->wait_lock
, flags
);
259 lock_acquired(&lock
->dep_map
, ip
);
260 /* got the lock - rejoice! */
261 mutex_remove_waiter(lock
, &waiter
, current_thread_info());
262 mutex_set_owner(lock
);
264 /* set it to 0 if there are no waiters left: */
265 if (likely(list_empty(&lock
->wait_list
)))
266 atomic_set(&lock
->count
, 0);
268 spin_unlock_mutex(&lock
->wait_lock
, flags
);
270 debug_mutex_free_waiter(&waiter
);
276 #ifdef CONFIG_DEBUG_LOCK_ALLOC
278 mutex_lock_nested(struct mutex
*lock
, unsigned int subclass
)
281 __mutex_lock_common(lock
, TASK_UNINTERRUPTIBLE
, subclass
, _RET_IP_
);
284 EXPORT_SYMBOL_GPL(mutex_lock_nested
);
287 mutex_lock_killable_nested(struct mutex
*lock
, unsigned int subclass
)
290 return __mutex_lock_common(lock
, TASK_KILLABLE
, subclass
, _RET_IP_
);
292 EXPORT_SYMBOL_GPL(mutex_lock_killable_nested
);
295 mutex_lock_interruptible_nested(struct mutex
*lock
, unsigned int subclass
)
298 return __mutex_lock_common(lock
, TASK_INTERRUPTIBLE
,
302 EXPORT_SYMBOL_GPL(mutex_lock_interruptible_nested
);
306 * Release the lock, slowpath:
309 __mutex_unlock_common_slowpath(atomic_t
*lock_count
, int nested
)
311 struct mutex
*lock
= container_of(lock_count
, struct mutex
, count
);
314 spin_lock_mutex(&lock
->wait_lock
, flags
);
315 mutex_release(&lock
->dep_map
, nested
, _RET_IP_
);
316 debug_mutex_unlock(lock
);
319 * some architectures leave the lock unlocked in the fastpath failure
320 * case, others need to leave it locked. In the later case we have to
323 if (__mutex_slowpath_needs_to_unlock())
324 atomic_set(&lock
->count
, 1);
326 if (!list_empty(&lock
->wait_list
)) {
327 /* get the first entry from the wait-list: */
328 struct mutex_waiter
*waiter
=
329 list_entry(lock
->wait_list
.next
,
330 struct mutex_waiter
, list
);
332 debug_mutex_wake_waiter(lock
, waiter
);
334 wake_up_process(waiter
->task
);
337 spin_unlock_mutex(&lock
->wait_lock
, flags
);
341 * Release the lock, slowpath:
343 static __used noinline
void
344 __mutex_unlock_slowpath(atomic_t
*lock_count
)
346 __mutex_unlock_common_slowpath(lock_count
, 1);
349 #ifndef CONFIG_DEBUG_LOCK_ALLOC
351 * Here come the less common (and hence less performance-critical) APIs:
352 * mutex_lock_interruptible() and mutex_trylock().
354 static noinline
int __sched
355 __mutex_lock_killable_slowpath(atomic_t
*lock_count
);
357 static noinline
int __sched
358 __mutex_lock_interruptible_slowpath(atomic_t
*lock_count
);
361 * mutex_lock_interruptible - acquire the mutex, interruptable
362 * @lock: the mutex to be acquired
364 * Lock the mutex like mutex_lock(), and return 0 if the mutex has
365 * been acquired or sleep until the mutex becomes available. If a
366 * signal arrives while waiting for the lock then this function
369 * This function is similar to (but not equivalent to) down_interruptible().
371 int __sched
mutex_lock_interruptible(struct mutex
*lock
)
376 ret
= __mutex_fastpath_lock_retval
377 (&lock
->count
, __mutex_lock_interruptible_slowpath
);
379 mutex_set_owner(lock
);
384 EXPORT_SYMBOL(mutex_lock_interruptible
);
386 int __sched
mutex_lock_killable(struct mutex
*lock
)
391 ret
= __mutex_fastpath_lock_retval
392 (&lock
->count
, __mutex_lock_killable_slowpath
);
394 mutex_set_owner(lock
);
398 EXPORT_SYMBOL(mutex_lock_killable
);
400 static __used noinline
void __sched
401 __mutex_lock_slowpath(atomic_t
*lock_count
)
403 struct mutex
*lock
= container_of(lock_count
, struct mutex
, count
);
405 __mutex_lock_common(lock
, TASK_UNINTERRUPTIBLE
, 0, _RET_IP_
);
408 static noinline
int __sched
409 __mutex_lock_killable_slowpath(atomic_t
*lock_count
)
411 struct mutex
*lock
= container_of(lock_count
, struct mutex
, count
);
413 return __mutex_lock_common(lock
, TASK_KILLABLE
, 0, _RET_IP_
);
416 static noinline
int __sched
417 __mutex_lock_interruptible_slowpath(atomic_t
*lock_count
)
419 struct mutex
*lock
= container_of(lock_count
, struct mutex
, count
);
421 return __mutex_lock_common(lock
, TASK_INTERRUPTIBLE
, 0, _RET_IP_
);
426 * Spinlock based trylock, we take the spinlock and check whether we
429 static inline int __mutex_trylock_slowpath(atomic_t
*lock_count
)
431 struct mutex
*lock
= container_of(lock_count
, struct mutex
, count
);
435 spin_lock_mutex(&lock
->wait_lock
, flags
);
437 prev
= atomic_xchg(&lock
->count
, -1);
438 if (likely(prev
== 1)) {
439 mutex_set_owner(lock
);
440 mutex_acquire(&lock
->dep_map
, 0, 1, _RET_IP_
);
443 /* Set it back to 0 if there are no waiters: */
444 if (likely(list_empty(&lock
->wait_list
)))
445 atomic_set(&lock
->count
, 0);
447 spin_unlock_mutex(&lock
->wait_lock
, flags
);
453 * mutex_trylock - try acquire the mutex, without waiting
454 * @lock: the mutex to be acquired
456 * Try to acquire the mutex atomically. Returns 1 if the mutex
457 * has been acquired successfully, and 0 on contention.
459 * NOTE: this function follows the spin_trylock() convention, so
460 * it is negated to the down_trylock() return values! Be careful
461 * about this when converting semaphore users to mutexes.
463 * This function must not be used in interrupt context. The
464 * mutex must be released by the same task that acquired it.
466 int __sched
mutex_trylock(struct mutex
*lock
)
470 ret
= __mutex_fastpath_trylock(&lock
->count
, __mutex_trylock_slowpath
);
472 mutex_set_owner(lock
);
476 EXPORT_SYMBOL(mutex_trylock
);
479 * atomic_dec_and_mutex_lock - return holding mutex if we dec to 0
480 * @cnt: the atomic which we are to dec
481 * @lock: the mutex to return holding if we dec to 0
483 * return true and hold lock if we dec to 0, return false otherwise
485 int atomic_dec_and_mutex_lock(atomic_t
*cnt
, struct mutex
*lock
)
487 /* dec if we can't possibly hit 0 */
488 if (atomic_add_unless(cnt
, -1, 1))
490 /* we might hit 0, so take the lock */
492 if (!atomic_dec_and_test(cnt
)) {
493 /* when we actually did the dec, we didn't hit 0 */
497 /* we hit 0, and we hold the lock */
500 EXPORT_SYMBOL(atomic_dec_and_mutex_lock
);