2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cgroup.h>
26 #include <linux/errno.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
31 #include <linux/mutex.h>
32 #include <linux/mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/proc_fs.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/backing-dev.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/magic.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/sort.h>
44 #include <linux/kmod.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroupstats.h>
47 #include <linux/hash.h>
48 #include <linux/namei.h>
50 #include <asm/atomic.h>
52 static DEFINE_MUTEX(cgroup_mutex
);
54 /* Generate an array of cgroup subsystem pointers */
55 #define SUBSYS(_x) &_x ## _subsys,
57 static struct cgroup_subsys
*subsys
[] = {
58 #include <linux/cgroup_subsys.h>
62 * A cgroupfs_root represents the root of a cgroup hierarchy,
63 * and may be associated with a superblock to form an active
66 struct cgroupfs_root
{
67 struct super_block
*sb
;
70 * The bitmask of subsystems intended to be attached to this
73 unsigned long subsys_bits
;
75 /* The bitmask of subsystems currently attached to this hierarchy */
76 unsigned long actual_subsys_bits
;
78 /* A list running through the attached subsystems */
79 struct list_head subsys_list
;
81 /* The root cgroup for this hierarchy */
82 struct cgroup top_cgroup
;
84 /* Tracks how many cgroups are currently defined in hierarchy.*/
85 int number_of_cgroups
;
87 /* A list running through the mounted hierarchies */
88 struct list_head root_list
;
90 /* Hierarchy-specific flags */
93 /* The path to use for release notifications. */
94 char release_agent_path
[PATH_MAX
];
99 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
100 * subsystems that are otherwise unattached - it never has more than a
101 * single cgroup, and all tasks are part of that cgroup.
103 static struct cgroupfs_root rootnode
;
105 /* The list of hierarchy roots */
107 static LIST_HEAD(roots
);
108 static int root_count
;
110 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
111 #define dummytop (&rootnode.top_cgroup)
113 /* This flag indicates whether tasks in the fork and exit paths should
114 * check for fork/exit handlers to call. This avoids us having to do
115 * extra work in the fork/exit path if none of the subsystems need to
118 static int need_forkexit_callback __read_mostly
;
119 static int need_mm_owner_callback __read_mostly
;
121 /* convenient tests for these bits */
122 inline int cgroup_is_removed(const struct cgroup
*cgrp
)
124 return test_bit(CGRP_REMOVED
, &cgrp
->flags
);
127 /* bits in struct cgroupfs_root flags field */
129 ROOT_NOPREFIX
, /* mounted subsystems have no named prefix */
132 static int cgroup_is_releasable(const struct cgroup
*cgrp
)
135 (1 << CGRP_RELEASABLE
) |
136 (1 << CGRP_NOTIFY_ON_RELEASE
);
137 return (cgrp
->flags
& bits
) == bits
;
140 static int notify_on_release(const struct cgroup
*cgrp
)
142 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
146 * for_each_subsys() allows you to iterate on each subsystem attached to
147 * an active hierarchy
149 #define for_each_subsys(_root, _ss) \
150 list_for_each_entry(_ss, &_root->subsys_list, sibling)
152 /* for_each_root() allows you to iterate across the active hierarchies */
153 #define for_each_root(_root) \
154 list_for_each_entry(_root, &roots, root_list)
156 /* the list of cgroups eligible for automatic release. Protected by
157 * release_list_lock */
158 static LIST_HEAD(release_list
);
159 static DEFINE_SPINLOCK(release_list_lock
);
160 static void cgroup_release_agent(struct work_struct
*work
);
161 static DECLARE_WORK(release_agent_work
, cgroup_release_agent
);
162 static void check_for_release(struct cgroup
*cgrp
);
164 /* Link structure for associating css_set objects with cgroups */
165 struct cg_cgroup_link
{
167 * List running through cg_cgroup_links associated with a
168 * cgroup, anchored on cgroup->css_sets
170 struct list_head cgrp_link_list
;
172 * List running through cg_cgroup_links pointing at a
173 * single css_set object, anchored on css_set->cg_links
175 struct list_head cg_link_list
;
179 /* The default css_set - used by init and its children prior to any
180 * hierarchies being mounted. It contains a pointer to the root state
181 * for each subsystem. Also used to anchor the list of css_sets. Not
182 * reference-counted, to improve performance when child cgroups
183 * haven't been created.
186 static struct css_set init_css_set
;
187 static struct cg_cgroup_link init_css_set_link
;
189 /* css_set_lock protects the list of css_set objects, and the
190 * chain of tasks off each css_set. Nests outside task->alloc_lock
191 * due to cgroup_iter_start() */
192 static DEFINE_RWLOCK(css_set_lock
);
193 static int css_set_count
;
195 /* hash table for cgroup groups. This improves the performance to
196 * find an existing css_set */
197 #define CSS_SET_HASH_BITS 7
198 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
199 static struct hlist_head css_set_table
[CSS_SET_TABLE_SIZE
];
201 static struct hlist_head
*css_set_hash(struct cgroup_subsys_state
*css
[])
205 unsigned long tmp
= 0UL;
207 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++)
208 tmp
+= (unsigned long)css
[i
];
209 tmp
= (tmp
>> 16) ^ tmp
;
211 index
= hash_long(tmp
, CSS_SET_HASH_BITS
);
213 return &css_set_table
[index
];
216 /* We don't maintain the lists running through each css_set to its
217 * task until after the first call to cgroup_iter_start(). This
218 * reduces the fork()/exit() overhead for people who have cgroups
219 * compiled into their kernel but not actually in use */
220 static int use_task_css_set_links __read_mostly
;
222 /* When we create or destroy a css_set, the operation simply
223 * takes/releases a reference count on all the cgroups referenced
224 * by subsystems in this css_set. This can end up multiple-counting
225 * some cgroups, but that's OK - the ref-count is just a
226 * busy/not-busy indicator; ensuring that we only count each cgroup
227 * once would require taking a global lock to ensure that no
228 * subsystems moved between hierarchies while we were doing so.
230 * Possible TODO: decide at boot time based on the number of
231 * registered subsystems and the number of CPUs or NUMA nodes whether
232 * it's better for performance to ref-count every subsystem, or to
233 * take a global lock and only add one ref count to each hierarchy.
237 * unlink a css_set from the list and free it
239 static void unlink_css_set(struct css_set
*cg
)
241 struct cg_cgroup_link
*link
;
242 struct cg_cgroup_link
*saved_link
;
244 write_lock(&css_set_lock
);
245 hlist_del(&cg
->hlist
);
248 list_for_each_entry_safe(link
, saved_link
, &cg
->cg_links
,
250 list_del(&link
->cg_link_list
);
251 list_del(&link
->cgrp_link_list
);
255 write_unlock(&css_set_lock
);
258 static void __release_css_set(struct kref
*k
, int taskexit
)
261 struct css_set
*cg
= container_of(k
, struct css_set
, ref
);
266 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
267 struct cgroup
*cgrp
= cg
->subsys
[i
]->cgroup
;
268 if (atomic_dec_and_test(&cgrp
->count
) &&
269 notify_on_release(cgrp
)) {
271 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
272 check_for_release(cgrp
);
279 static void release_css_set(struct kref
*k
)
281 __release_css_set(k
, 0);
284 static void release_css_set_taskexit(struct kref
*k
)
286 __release_css_set(k
, 1);
290 * refcounted get/put for css_set objects
292 static inline void get_css_set(struct css_set
*cg
)
297 static inline void put_css_set(struct css_set
*cg
)
299 kref_put(&cg
->ref
, release_css_set
);
302 static inline void put_css_set_taskexit(struct css_set
*cg
)
304 kref_put(&cg
->ref
, release_css_set_taskexit
);
308 * find_existing_css_set() is a helper for
309 * find_css_set(), and checks to see whether an existing
310 * css_set is suitable.
312 * oldcg: the cgroup group that we're using before the cgroup
315 * cgrp: the cgroup that we're moving into
317 * template: location in which to build the desired set of subsystem
318 * state objects for the new cgroup group
320 static struct css_set
*find_existing_css_set(
321 struct css_set
*oldcg
,
323 struct cgroup_subsys_state
*template[])
326 struct cgroupfs_root
*root
= cgrp
->root
;
327 struct hlist_head
*hhead
;
328 struct hlist_node
*node
;
331 /* Built the set of subsystem state objects that we want to
332 * see in the new css_set */
333 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
334 if (root
->subsys_bits
& (1UL << i
)) {
335 /* Subsystem is in this hierarchy. So we want
336 * the subsystem state from the new
338 template[i
] = cgrp
->subsys
[i
];
340 /* Subsystem is not in this hierarchy, so we
341 * don't want to change the subsystem state */
342 template[i
] = oldcg
->subsys
[i
];
346 hhead
= css_set_hash(template);
347 hlist_for_each_entry(cg
, node
, hhead
, hlist
) {
348 if (!memcmp(template, cg
->subsys
, sizeof(cg
->subsys
))) {
349 /* All subsystems matched */
354 /* No existing cgroup group matched */
358 static void free_cg_links(struct list_head
*tmp
)
360 struct cg_cgroup_link
*link
;
361 struct cg_cgroup_link
*saved_link
;
363 list_for_each_entry_safe(link
, saved_link
, tmp
, cgrp_link_list
) {
364 list_del(&link
->cgrp_link_list
);
370 * allocate_cg_links() allocates "count" cg_cgroup_link structures
371 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
372 * success or a negative error
374 static int allocate_cg_links(int count
, struct list_head
*tmp
)
376 struct cg_cgroup_link
*link
;
379 for (i
= 0; i
< count
; i
++) {
380 link
= kmalloc(sizeof(*link
), GFP_KERNEL
);
385 list_add(&link
->cgrp_link_list
, tmp
);
391 * find_css_set() takes an existing cgroup group and a
392 * cgroup object, and returns a css_set object that's
393 * equivalent to the old group, but with the given cgroup
394 * substituted into the appropriate hierarchy. Must be called with
397 static struct css_set
*find_css_set(
398 struct css_set
*oldcg
, struct cgroup
*cgrp
)
401 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
];
404 struct list_head tmp_cg_links
;
405 struct cg_cgroup_link
*link
;
407 struct hlist_head
*hhead
;
409 /* First see if we already have a cgroup group that matches
411 read_lock(&css_set_lock
);
412 res
= find_existing_css_set(oldcg
, cgrp
, template);
415 read_unlock(&css_set_lock
);
420 res
= kmalloc(sizeof(*res
), GFP_KERNEL
);
424 /* Allocate all the cg_cgroup_link objects that we'll need */
425 if (allocate_cg_links(root_count
, &tmp_cg_links
) < 0) {
430 kref_init(&res
->ref
);
431 INIT_LIST_HEAD(&res
->cg_links
);
432 INIT_LIST_HEAD(&res
->tasks
);
433 INIT_HLIST_NODE(&res
->hlist
);
435 /* Copy the set of subsystem state objects generated in
436 * find_existing_css_set() */
437 memcpy(res
->subsys
, template, sizeof(res
->subsys
));
439 write_lock(&css_set_lock
);
440 /* Add reference counts and links from the new css_set. */
441 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
442 struct cgroup
*cgrp
= res
->subsys
[i
]->cgroup
;
443 struct cgroup_subsys
*ss
= subsys
[i
];
444 atomic_inc(&cgrp
->count
);
446 * We want to add a link once per cgroup, so we
447 * only do it for the first subsystem in each
450 if (ss
->root
->subsys_list
.next
== &ss
->sibling
) {
451 BUG_ON(list_empty(&tmp_cg_links
));
452 link
= list_entry(tmp_cg_links
.next
,
453 struct cg_cgroup_link
,
455 list_del(&link
->cgrp_link_list
);
456 list_add(&link
->cgrp_link_list
, &cgrp
->css_sets
);
458 list_add(&link
->cg_link_list
, &res
->cg_links
);
461 if (list_empty(&rootnode
.subsys_list
)) {
462 link
= list_entry(tmp_cg_links
.next
,
463 struct cg_cgroup_link
,
465 list_del(&link
->cgrp_link_list
);
466 list_add(&link
->cgrp_link_list
, &dummytop
->css_sets
);
468 list_add(&link
->cg_link_list
, &res
->cg_links
);
471 BUG_ON(!list_empty(&tmp_cg_links
));
475 /* Add this cgroup group to the hash table */
476 hhead
= css_set_hash(res
->subsys
);
477 hlist_add_head(&res
->hlist
, hhead
);
479 write_unlock(&css_set_lock
);
485 * There is one global cgroup mutex. We also require taking
486 * task_lock() when dereferencing a task's cgroup subsys pointers.
487 * See "The task_lock() exception", at the end of this comment.
489 * A task must hold cgroup_mutex to modify cgroups.
491 * Any task can increment and decrement the count field without lock.
492 * So in general, code holding cgroup_mutex can't rely on the count
493 * field not changing. However, if the count goes to zero, then only
494 * cgroup_attach_task() can increment it again. Because a count of zero
495 * means that no tasks are currently attached, therefore there is no
496 * way a task attached to that cgroup can fork (the other way to
497 * increment the count). So code holding cgroup_mutex can safely
498 * assume that if the count is zero, it will stay zero. Similarly, if
499 * a task holds cgroup_mutex on a cgroup with zero count, it
500 * knows that the cgroup won't be removed, as cgroup_rmdir()
503 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
504 * (usually) take cgroup_mutex. These are the two most performance
505 * critical pieces of code here. The exception occurs on cgroup_exit(),
506 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
507 * is taken, and if the cgroup count is zero, a usermode call made
508 * to the release agent with the name of the cgroup (path relative to
509 * the root of cgroup file system) as the argument.
511 * A cgroup can only be deleted if both its 'count' of using tasks
512 * is zero, and its list of 'children' cgroups is empty. Since all
513 * tasks in the system use _some_ cgroup, and since there is always at
514 * least one task in the system (init, pid == 1), therefore, top_cgroup
515 * always has either children cgroups and/or using tasks. So we don't
516 * need a special hack to ensure that top_cgroup cannot be deleted.
518 * The task_lock() exception
520 * The need for this exception arises from the action of
521 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
522 * another. It does so using cgroup_mutex, however there are
523 * several performance critical places that need to reference
524 * task->cgroup without the expense of grabbing a system global
525 * mutex. Therefore except as noted below, when dereferencing or, as
526 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
527 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
528 * the task_struct routinely used for such matters.
530 * P.S. One more locking exception. RCU is used to guard the
531 * update of a tasks cgroup pointer by cgroup_attach_task()
535 * cgroup_lock - lock out any changes to cgroup structures
538 void cgroup_lock(void)
540 mutex_lock(&cgroup_mutex
);
544 * cgroup_unlock - release lock on cgroup changes
546 * Undo the lock taken in a previous cgroup_lock() call.
548 void cgroup_unlock(void)
550 mutex_unlock(&cgroup_mutex
);
554 * A couple of forward declarations required, due to cyclic reference loop:
555 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
556 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
560 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
);
561 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
);
562 static int cgroup_populate_dir(struct cgroup
*cgrp
);
563 static struct inode_operations cgroup_dir_inode_operations
;
564 static struct file_operations proc_cgroupstats_operations
;
566 static struct backing_dev_info cgroup_backing_dev_info
= {
567 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
,
570 static struct inode
*cgroup_new_inode(mode_t mode
, struct super_block
*sb
)
572 struct inode
*inode
= new_inode(sb
);
575 inode
->i_mode
= mode
;
576 inode
->i_uid
= current
->fsuid
;
577 inode
->i_gid
= current
->fsgid
;
579 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
580 inode
->i_mapping
->backing_dev_info
= &cgroup_backing_dev_info
;
586 * Call subsys's pre_destroy handler.
587 * This is called before css refcnt check.
589 static void cgroup_call_pre_destroy(struct cgroup
*cgrp
)
591 struct cgroup_subsys
*ss
;
592 for_each_subsys(cgrp
->root
, ss
)
593 if (ss
->pre_destroy
&& cgrp
->subsys
[ss
->subsys_id
])
594 ss
->pre_destroy(ss
, cgrp
);
598 static void cgroup_diput(struct dentry
*dentry
, struct inode
*inode
)
600 /* is dentry a directory ? if so, kfree() associated cgroup */
601 if (S_ISDIR(inode
->i_mode
)) {
602 struct cgroup
*cgrp
= dentry
->d_fsdata
;
603 struct cgroup_subsys
*ss
;
604 BUG_ON(!(cgroup_is_removed(cgrp
)));
605 /* It's possible for external users to be holding css
606 * reference counts on a cgroup; css_put() needs to
607 * be able to access the cgroup after decrementing
608 * the reference count in order to know if it needs to
609 * queue the cgroup to be handled by the release
613 mutex_lock(&cgroup_mutex
);
615 * Release the subsystem state objects.
617 for_each_subsys(cgrp
->root
, ss
) {
618 if (cgrp
->subsys
[ss
->subsys_id
])
619 ss
->destroy(ss
, cgrp
);
622 cgrp
->root
->number_of_cgroups
--;
623 mutex_unlock(&cgroup_mutex
);
625 /* Drop the active superblock reference that we took when we
626 * created the cgroup */
627 deactivate_super(cgrp
->root
->sb
);
634 static void remove_dir(struct dentry
*d
)
636 struct dentry
*parent
= dget(d
->d_parent
);
639 simple_rmdir(parent
->d_inode
, d
);
643 static void cgroup_clear_directory(struct dentry
*dentry
)
645 struct list_head
*node
;
647 BUG_ON(!mutex_is_locked(&dentry
->d_inode
->i_mutex
));
648 spin_lock(&dcache_lock
);
649 node
= dentry
->d_subdirs
.next
;
650 while (node
!= &dentry
->d_subdirs
) {
651 struct dentry
*d
= list_entry(node
, struct dentry
, d_u
.d_child
);
654 /* This should never be called on a cgroup
655 * directory with child cgroups */
656 BUG_ON(d
->d_inode
->i_mode
& S_IFDIR
);
658 spin_unlock(&dcache_lock
);
660 simple_unlink(dentry
->d_inode
, d
);
662 spin_lock(&dcache_lock
);
664 node
= dentry
->d_subdirs
.next
;
666 spin_unlock(&dcache_lock
);
670 * NOTE : the dentry must have been dget()'ed
672 static void cgroup_d_remove_dir(struct dentry
*dentry
)
674 cgroup_clear_directory(dentry
);
676 spin_lock(&dcache_lock
);
677 list_del_init(&dentry
->d_u
.d_child
);
678 spin_unlock(&dcache_lock
);
682 static int rebind_subsystems(struct cgroupfs_root
*root
,
683 unsigned long final_bits
)
685 unsigned long added_bits
, removed_bits
;
686 struct cgroup
*cgrp
= &root
->top_cgroup
;
689 removed_bits
= root
->actual_subsys_bits
& ~final_bits
;
690 added_bits
= final_bits
& ~root
->actual_subsys_bits
;
691 /* Check that any added subsystems are currently free */
692 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
693 unsigned long bit
= 1UL << i
;
694 struct cgroup_subsys
*ss
= subsys
[i
];
695 if (!(bit
& added_bits
))
697 if (ss
->root
!= &rootnode
) {
698 /* Subsystem isn't free */
703 /* Currently we don't handle adding/removing subsystems when
704 * any child cgroups exist. This is theoretically supportable
705 * but involves complex error handling, so it's being left until
707 if (!list_empty(&cgrp
->children
))
710 /* Process each subsystem */
711 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
712 struct cgroup_subsys
*ss
= subsys
[i
];
713 unsigned long bit
= 1UL << i
;
714 if (bit
& added_bits
) {
715 /* We're binding this subsystem to this hierarchy */
716 BUG_ON(cgrp
->subsys
[i
]);
717 BUG_ON(!dummytop
->subsys
[i
]);
718 BUG_ON(dummytop
->subsys
[i
]->cgroup
!= dummytop
);
719 cgrp
->subsys
[i
] = dummytop
->subsys
[i
];
720 cgrp
->subsys
[i
]->cgroup
= cgrp
;
721 list_add(&ss
->sibling
, &root
->subsys_list
);
722 rcu_assign_pointer(ss
->root
, root
);
726 } else if (bit
& removed_bits
) {
727 /* We're removing this subsystem */
728 BUG_ON(cgrp
->subsys
[i
] != dummytop
->subsys
[i
]);
729 BUG_ON(cgrp
->subsys
[i
]->cgroup
!= cgrp
);
731 ss
->bind(ss
, dummytop
);
732 dummytop
->subsys
[i
]->cgroup
= dummytop
;
733 cgrp
->subsys
[i
] = NULL
;
734 rcu_assign_pointer(subsys
[i
]->root
, &rootnode
);
735 list_del(&ss
->sibling
);
736 } else if (bit
& final_bits
) {
737 /* Subsystem state should already exist */
738 BUG_ON(!cgrp
->subsys
[i
]);
740 /* Subsystem state shouldn't exist */
741 BUG_ON(cgrp
->subsys
[i
]);
744 root
->subsys_bits
= root
->actual_subsys_bits
= final_bits
;
750 static int cgroup_show_options(struct seq_file
*seq
, struct vfsmount
*vfs
)
752 struct cgroupfs_root
*root
= vfs
->mnt_sb
->s_fs_info
;
753 struct cgroup_subsys
*ss
;
755 mutex_lock(&cgroup_mutex
);
756 for_each_subsys(root
, ss
)
757 seq_printf(seq
, ",%s", ss
->name
);
758 if (test_bit(ROOT_NOPREFIX
, &root
->flags
))
759 seq_puts(seq
, ",noprefix");
760 if (strlen(root
->release_agent_path
))
761 seq_printf(seq
, ",release_agent=%s", root
->release_agent_path
);
762 mutex_unlock(&cgroup_mutex
);
766 struct cgroup_sb_opts
{
767 unsigned long subsys_bits
;
772 /* Convert a hierarchy specifier into a bitmask of subsystems and
774 static int parse_cgroupfs_options(char *data
,
775 struct cgroup_sb_opts
*opts
)
777 char *token
, *o
= data
?: "all";
779 opts
->subsys_bits
= 0;
781 opts
->release_agent
= NULL
;
783 while ((token
= strsep(&o
, ",")) != NULL
) {
786 if (!strcmp(token
, "all")) {
787 /* Add all non-disabled subsystems */
789 opts
->subsys_bits
= 0;
790 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
791 struct cgroup_subsys
*ss
= subsys
[i
];
793 opts
->subsys_bits
|= 1ul << i
;
795 } else if (!strcmp(token
, "noprefix")) {
796 set_bit(ROOT_NOPREFIX
, &opts
->flags
);
797 } else if (!strncmp(token
, "release_agent=", 14)) {
798 /* Specifying two release agents is forbidden */
799 if (opts
->release_agent
)
801 opts
->release_agent
= kzalloc(PATH_MAX
, GFP_KERNEL
);
802 if (!opts
->release_agent
)
804 strncpy(opts
->release_agent
, token
+ 14, PATH_MAX
- 1);
805 opts
->release_agent
[PATH_MAX
- 1] = 0;
807 struct cgroup_subsys
*ss
;
809 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
811 if (!strcmp(token
, ss
->name
)) {
813 set_bit(i
, &opts
->subsys_bits
);
817 if (i
== CGROUP_SUBSYS_COUNT
)
822 /* We can't have an empty hierarchy */
823 if (!opts
->subsys_bits
)
829 static int cgroup_remount(struct super_block
*sb
, int *flags
, char *data
)
832 struct cgroupfs_root
*root
= sb
->s_fs_info
;
833 struct cgroup
*cgrp
= &root
->top_cgroup
;
834 struct cgroup_sb_opts opts
;
836 mutex_lock(&cgrp
->dentry
->d_inode
->i_mutex
);
837 mutex_lock(&cgroup_mutex
);
839 /* See what subsystems are wanted */
840 ret
= parse_cgroupfs_options(data
, &opts
);
844 /* Don't allow flags to change at remount */
845 if (opts
.flags
!= root
->flags
) {
850 ret
= rebind_subsystems(root
, opts
.subsys_bits
);
852 /* (re)populate subsystem files */
854 cgroup_populate_dir(cgrp
);
856 if (opts
.release_agent
)
857 strcpy(root
->release_agent_path
, opts
.release_agent
);
859 if (opts
.release_agent
)
860 kfree(opts
.release_agent
);
861 mutex_unlock(&cgroup_mutex
);
862 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
866 static struct super_operations cgroup_ops
= {
867 .statfs
= simple_statfs
,
868 .drop_inode
= generic_delete_inode
,
869 .show_options
= cgroup_show_options
,
870 .remount_fs
= cgroup_remount
,
873 static void init_cgroup_root(struct cgroupfs_root
*root
)
875 struct cgroup
*cgrp
= &root
->top_cgroup
;
876 INIT_LIST_HEAD(&root
->subsys_list
);
877 INIT_LIST_HEAD(&root
->root_list
);
878 root
->number_of_cgroups
= 1;
880 cgrp
->top_cgroup
= cgrp
;
881 INIT_LIST_HEAD(&cgrp
->sibling
);
882 INIT_LIST_HEAD(&cgrp
->children
);
883 INIT_LIST_HEAD(&cgrp
->css_sets
);
884 INIT_LIST_HEAD(&cgrp
->release_list
);
887 static int cgroup_test_super(struct super_block
*sb
, void *data
)
889 struct cgroupfs_root
*new = data
;
890 struct cgroupfs_root
*root
= sb
->s_fs_info
;
892 /* First check subsystems */
893 if (new->subsys_bits
!= root
->subsys_bits
)
896 /* Next check flags */
897 if (new->flags
!= root
->flags
)
903 static int cgroup_set_super(struct super_block
*sb
, void *data
)
906 struct cgroupfs_root
*root
= data
;
908 ret
= set_anon_super(sb
, NULL
);
912 sb
->s_fs_info
= root
;
915 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
916 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
917 sb
->s_magic
= CGROUP_SUPER_MAGIC
;
918 sb
->s_op
= &cgroup_ops
;
923 static int cgroup_get_rootdir(struct super_block
*sb
)
925 struct inode
*inode
=
926 cgroup_new_inode(S_IFDIR
| S_IRUGO
| S_IXUGO
| S_IWUSR
, sb
);
927 struct dentry
*dentry
;
932 inode
->i_fop
= &simple_dir_operations
;
933 inode
->i_op
= &cgroup_dir_inode_operations
;
934 /* directories start off with i_nlink == 2 (for "." entry) */
936 dentry
= d_alloc_root(inode
);
945 static int cgroup_get_sb(struct file_system_type
*fs_type
,
946 int flags
, const char *unused_dev_name
,
947 void *data
, struct vfsmount
*mnt
)
949 struct cgroup_sb_opts opts
;
951 struct super_block
*sb
;
952 struct cgroupfs_root
*root
;
953 struct list_head tmp_cg_links
;
955 /* First find the desired set of subsystems */
956 ret
= parse_cgroupfs_options(data
, &opts
);
958 if (opts
.release_agent
)
959 kfree(opts
.release_agent
);
963 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
965 if (opts
.release_agent
)
966 kfree(opts
.release_agent
);
970 init_cgroup_root(root
);
971 root
->subsys_bits
= opts
.subsys_bits
;
972 root
->flags
= opts
.flags
;
973 if (opts
.release_agent
) {
974 strcpy(root
->release_agent_path
, opts
.release_agent
);
975 kfree(opts
.release_agent
);
978 sb
= sget(fs_type
, cgroup_test_super
, cgroup_set_super
, root
);
985 if (sb
->s_fs_info
!= root
) {
986 /* Reusing an existing superblock */
987 BUG_ON(sb
->s_root
== NULL
);
992 struct cgroup
*cgrp
= &root
->top_cgroup
;
996 BUG_ON(sb
->s_root
!= NULL
);
998 ret
= cgroup_get_rootdir(sb
);
1000 goto drop_new_super
;
1001 inode
= sb
->s_root
->d_inode
;
1003 mutex_lock(&inode
->i_mutex
);
1004 mutex_lock(&cgroup_mutex
);
1007 * We're accessing css_set_count without locking
1008 * css_set_lock here, but that's OK - it can only be
1009 * increased by someone holding cgroup_lock, and
1010 * that's us. The worst that can happen is that we
1011 * have some link structures left over
1013 ret
= allocate_cg_links(css_set_count
, &tmp_cg_links
);
1015 mutex_unlock(&cgroup_mutex
);
1016 mutex_unlock(&inode
->i_mutex
);
1017 goto drop_new_super
;
1020 ret
= rebind_subsystems(root
, root
->subsys_bits
);
1021 if (ret
== -EBUSY
) {
1022 mutex_unlock(&cgroup_mutex
);
1023 mutex_unlock(&inode
->i_mutex
);
1024 goto drop_new_super
;
1027 /* EBUSY should be the only error here */
1030 list_add(&root
->root_list
, &roots
);
1033 sb
->s_root
->d_fsdata
= &root
->top_cgroup
;
1034 root
->top_cgroup
.dentry
= sb
->s_root
;
1036 /* Link the top cgroup in this hierarchy into all
1037 * the css_set objects */
1038 write_lock(&css_set_lock
);
1039 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++) {
1040 struct hlist_head
*hhead
= &css_set_table
[i
];
1041 struct hlist_node
*node
;
1044 hlist_for_each_entry(cg
, node
, hhead
, hlist
) {
1045 struct cg_cgroup_link
*link
;
1047 BUG_ON(list_empty(&tmp_cg_links
));
1048 link
= list_entry(tmp_cg_links
.next
,
1049 struct cg_cgroup_link
,
1051 list_del(&link
->cgrp_link_list
);
1053 list_add(&link
->cgrp_link_list
,
1054 &root
->top_cgroup
.css_sets
);
1055 list_add(&link
->cg_link_list
, &cg
->cg_links
);
1058 write_unlock(&css_set_lock
);
1060 free_cg_links(&tmp_cg_links
);
1062 BUG_ON(!list_empty(&cgrp
->sibling
));
1063 BUG_ON(!list_empty(&cgrp
->children
));
1064 BUG_ON(root
->number_of_cgroups
!= 1);
1066 cgroup_populate_dir(cgrp
);
1067 mutex_unlock(&inode
->i_mutex
);
1068 mutex_unlock(&cgroup_mutex
);
1071 return simple_set_mnt(mnt
, sb
);
1074 up_write(&sb
->s_umount
);
1075 deactivate_super(sb
);
1076 free_cg_links(&tmp_cg_links
);
1080 static void cgroup_kill_sb(struct super_block
*sb
) {
1081 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1082 struct cgroup
*cgrp
= &root
->top_cgroup
;
1084 struct cg_cgroup_link
*link
;
1085 struct cg_cgroup_link
*saved_link
;
1089 BUG_ON(root
->number_of_cgroups
!= 1);
1090 BUG_ON(!list_empty(&cgrp
->children
));
1091 BUG_ON(!list_empty(&cgrp
->sibling
));
1093 mutex_lock(&cgroup_mutex
);
1095 /* Rebind all subsystems back to the default hierarchy */
1096 ret
= rebind_subsystems(root
, 0);
1097 /* Shouldn't be able to fail ... */
1101 * Release all the links from css_sets to this hierarchy's
1104 write_lock(&css_set_lock
);
1106 list_for_each_entry_safe(link
, saved_link
, &cgrp
->css_sets
,
1108 list_del(&link
->cg_link_list
);
1109 list_del(&link
->cgrp_link_list
);
1112 write_unlock(&css_set_lock
);
1114 if (!list_empty(&root
->root_list
)) {
1115 list_del(&root
->root_list
);
1118 mutex_unlock(&cgroup_mutex
);
1121 kill_litter_super(sb
);
1124 static struct file_system_type cgroup_fs_type
= {
1126 .get_sb
= cgroup_get_sb
,
1127 .kill_sb
= cgroup_kill_sb
,
1130 static inline struct cgroup
*__d_cgrp(struct dentry
*dentry
)
1132 return dentry
->d_fsdata
;
1135 static inline struct cftype
*__d_cft(struct dentry
*dentry
)
1137 return dentry
->d_fsdata
;
1141 * cgroup_path - generate the path of a cgroup
1142 * @cgrp: the cgroup in question
1143 * @buf: the buffer to write the path into
1144 * @buflen: the length of the buffer
1146 * Called with cgroup_mutex held. Writes path of cgroup into buf.
1147 * Returns 0 on success, -errno on error.
1149 int cgroup_path(const struct cgroup
*cgrp
, char *buf
, int buflen
)
1153 if (cgrp
== dummytop
) {
1155 * Inactive subsystems have no dentry for their root
1162 start
= buf
+ buflen
;
1166 int len
= cgrp
->dentry
->d_name
.len
;
1167 if ((start
-= len
) < buf
)
1168 return -ENAMETOOLONG
;
1169 memcpy(start
, cgrp
->dentry
->d_name
.name
, len
);
1170 cgrp
= cgrp
->parent
;
1176 return -ENAMETOOLONG
;
1179 memmove(buf
, start
, buf
+ buflen
- start
);
1184 * Return the first subsystem attached to a cgroup's hierarchy, and
1188 static void get_first_subsys(const struct cgroup
*cgrp
,
1189 struct cgroup_subsys_state
**css
, int *subsys_id
)
1191 const struct cgroupfs_root
*root
= cgrp
->root
;
1192 const struct cgroup_subsys
*test_ss
;
1193 BUG_ON(list_empty(&root
->subsys_list
));
1194 test_ss
= list_entry(root
->subsys_list
.next
,
1195 struct cgroup_subsys
, sibling
);
1197 *css
= cgrp
->subsys
[test_ss
->subsys_id
];
1201 *subsys_id
= test_ss
->subsys_id
;
1205 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1206 * @cgrp: the cgroup the task is attaching to
1207 * @tsk: the task to be attached
1209 * Call holding cgroup_mutex. May take task_lock of
1210 * the task 'tsk' during call.
1212 int cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
1215 struct cgroup_subsys
*ss
;
1216 struct cgroup
*oldcgrp
;
1217 struct css_set
*cg
= tsk
->cgroups
;
1218 struct css_set
*newcg
;
1219 struct cgroupfs_root
*root
= cgrp
->root
;
1222 get_first_subsys(cgrp
, NULL
, &subsys_id
);
1224 /* Nothing to do if the task is already in that cgroup */
1225 oldcgrp
= task_cgroup(tsk
, subsys_id
);
1226 if (cgrp
== oldcgrp
)
1229 for_each_subsys(root
, ss
) {
1230 if (ss
->can_attach
) {
1231 retval
= ss
->can_attach(ss
, cgrp
, tsk
);
1238 * Locate or allocate a new css_set for this task,
1239 * based on its final set of cgroups
1241 newcg
= find_css_set(cg
, cgrp
);
1246 if (tsk
->flags
& PF_EXITING
) {
1251 rcu_assign_pointer(tsk
->cgroups
, newcg
);
1254 /* Update the css_set linked lists if we're using them */
1255 write_lock(&css_set_lock
);
1256 if (!list_empty(&tsk
->cg_list
)) {
1257 list_del(&tsk
->cg_list
);
1258 list_add(&tsk
->cg_list
, &newcg
->tasks
);
1260 write_unlock(&css_set_lock
);
1262 for_each_subsys(root
, ss
) {
1264 ss
->attach(ss
, cgrp
, oldcgrp
, tsk
);
1266 set_bit(CGRP_RELEASABLE
, &oldcgrp
->flags
);
1273 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1274 * held. May take task_lock of task
1276 static int attach_task_by_pid(struct cgroup
*cgrp
, u64 pid
)
1278 struct task_struct
*tsk
;
1283 tsk
= find_task_by_vpid(pid
);
1284 if (!tsk
|| tsk
->flags
& PF_EXITING
) {
1288 get_task_struct(tsk
);
1291 if ((current
->euid
) && (current
->euid
!= tsk
->uid
)
1292 && (current
->euid
!= tsk
->suid
)) {
1293 put_task_struct(tsk
);
1298 get_task_struct(tsk
);
1301 ret
= cgroup_attach_task(cgrp
, tsk
);
1302 put_task_struct(tsk
);
1306 static int cgroup_tasks_write(struct cgroup
*cgrp
, struct cftype
*cft
, u64 pid
)
1309 if (!cgroup_lock_live_group(cgrp
))
1311 ret
= attach_task_by_pid(cgrp
, pid
);
1316 /* The various types of files and directories in a cgroup file system */
1317 enum cgroup_filetype
{
1321 FILE_NOTIFY_ON_RELEASE
,
1326 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1327 * @cgrp: the cgroup to be checked for liveness
1329 * On success, returns true; the lock should be later released with
1330 * cgroup_unlock(). On failure returns false with no lock held.
1332 bool cgroup_lock_live_group(struct cgroup
*cgrp
)
1334 mutex_lock(&cgroup_mutex
);
1335 if (cgroup_is_removed(cgrp
)) {
1336 mutex_unlock(&cgroup_mutex
);
1342 static int cgroup_release_agent_write(struct cgroup
*cgrp
, struct cftype
*cft
,
1345 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
1346 if (!cgroup_lock_live_group(cgrp
))
1348 strcpy(cgrp
->root
->release_agent_path
, buffer
);
1353 static int cgroup_release_agent_show(struct cgroup
*cgrp
, struct cftype
*cft
,
1354 struct seq_file
*seq
)
1356 if (!cgroup_lock_live_group(cgrp
))
1358 seq_puts(seq
, cgrp
->root
->release_agent_path
);
1359 seq_putc(seq
, '\n');
1364 /* A buffer size big enough for numbers or short strings */
1365 #define CGROUP_LOCAL_BUFFER_SIZE 64
1367 static ssize_t
cgroup_write_X64(struct cgroup
*cgrp
, struct cftype
*cft
,
1369 const char __user
*userbuf
,
1370 size_t nbytes
, loff_t
*unused_ppos
)
1372 char buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
1378 if (nbytes
>= sizeof(buffer
))
1380 if (copy_from_user(buffer
, userbuf
, nbytes
))
1383 buffer
[nbytes
] = 0; /* nul-terminate */
1385 if (cft
->write_u64
) {
1386 u64 val
= simple_strtoull(buffer
, &end
, 0);
1389 retval
= cft
->write_u64(cgrp
, cft
, val
);
1391 s64 val
= simple_strtoll(buffer
, &end
, 0);
1394 retval
= cft
->write_s64(cgrp
, cft
, val
);
1401 static ssize_t
cgroup_write_string(struct cgroup
*cgrp
, struct cftype
*cft
,
1403 const char __user
*userbuf
,
1404 size_t nbytes
, loff_t
*unused_ppos
)
1406 char local_buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
1408 size_t max_bytes
= cft
->max_write_len
;
1409 char *buffer
= local_buffer
;
1412 max_bytes
= sizeof(local_buffer
) - 1;
1413 if (nbytes
>= max_bytes
)
1415 /* Allocate a dynamic buffer if we need one */
1416 if (nbytes
>= sizeof(local_buffer
)) {
1417 buffer
= kmalloc(nbytes
+ 1, GFP_KERNEL
);
1421 if (nbytes
&& copy_from_user(buffer
, userbuf
, nbytes
)) {
1426 buffer
[nbytes
] = 0; /* nul-terminate */
1428 retval
= cft
->write_string(cgrp
, cft
, buffer
);
1432 if (buffer
!= local_buffer
)
1437 static ssize_t
cgroup_file_write(struct file
*file
, const char __user
*buf
,
1438 size_t nbytes
, loff_t
*ppos
)
1440 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1441 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
1443 if (!cft
|| cgroup_is_removed(cgrp
))
1446 return cft
->write(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1447 if (cft
->write_u64
|| cft
->write_s64
)
1448 return cgroup_write_X64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1449 if (cft
->write_string
)
1450 return cgroup_write_string(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1452 int ret
= cft
->trigger(cgrp
, (unsigned int)cft
->private);
1453 return ret
? ret
: nbytes
;
1458 static ssize_t
cgroup_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
,
1460 char __user
*buf
, size_t nbytes
,
1463 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
1464 u64 val
= cft
->read_u64(cgrp
, cft
);
1465 int len
= sprintf(tmp
, "%llu\n", (unsigned long long) val
);
1467 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
1470 static ssize_t
cgroup_read_s64(struct cgroup
*cgrp
, struct cftype
*cft
,
1472 char __user
*buf
, size_t nbytes
,
1475 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
1476 s64 val
= cft
->read_s64(cgrp
, cft
);
1477 int len
= sprintf(tmp
, "%lld\n", (long long) val
);
1479 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
1482 static ssize_t
cgroup_file_read(struct file
*file
, char __user
*buf
,
1483 size_t nbytes
, loff_t
*ppos
)
1485 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1486 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
1488 if (!cft
|| cgroup_is_removed(cgrp
))
1492 return cft
->read(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1494 return cgroup_read_u64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1496 return cgroup_read_s64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1501 * seqfile ops/methods for returning structured data. Currently just
1502 * supports string->u64 maps, but can be extended in future.
1505 struct cgroup_seqfile_state
{
1507 struct cgroup
*cgroup
;
1510 static int cgroup_map_add(struct cgroup_map_cb
*cb
, const char *key
, u64 value
)
1512 struct seq_file
*sf
= cb
->state
;
1513 return seq_printf(sf
, "%s %llu\n", key
, (unsigned long long)value
);
1516 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
1518 struct cgroup_seqfile_state
*state
= m
->private;
1519 struct cftype
*cft
= state
->cft
;
1520 if (cft
->read_map
) {
1521 struct cgroup_map_cb cb
= {
1522 .fill
= cgroup_map_add
,
1525 return cft
->read_map(state
->cgroup
, cft
, &cb
);
1527 return cft
->read_seq_string(state
->cgroup
, cft
, m
);
1530 static int cgroup_seqfile_release(struct inode
*inode
, struct file
*file
)
1532 struct seq_file
*seq
= file
->private_data
;
1533 kfree(seq
->private);
1534 return single_release(inode
, file
);
1537 static struct file_operations cgroup_seqfile_operations
= {
1539 .write
= cgroup_file_write
,
1540 .llseek
= seq_lseek
,
1541 .release
= cgroup_seqfile_release
,
1544 static int cgroup_file_open(struct inode
*inode
, struct file
*file
)
1549 err
= generic_file_open(inode
, file
);
1553 cft
= __d_cft(file
->f_dentry
);
1556 if (cft
->read_map
|| cft
->read_seq_string
) {
1557 struct cgroup_seqfile_state
*state
=
1558 kzalloc(sizeof(*state
), GFP_USER
);
1562 state
->cgroup
= __d_cgrp(file
->f_dentry
->d_parent
);
1563 file
->f_op
= &cgroup_seqfile_operations
;
1564 err
= single_open(file
, cgroup_seqfile_show
, state
);
1567 } else if (cft
->open
)
1568 err
= cft
->open(inode
, file
);
1575 static int cgroup_file_release(struct inode
*inode
, struct file
*file
)
1577 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1579 return cft
->release(inode
, file
);
1584 * cgroup_rename - Only allow simple rename of directories in place.
1586 static int cgroup_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
1587 struct inode
*new_dir
, struct dentry
*new_dentry
)
1589 if (!S_ISDIR(old_dentry
->d_inode
->i_mode
))
1591 if (new_dentry
->d_inode
)
1593 if (old_dir
!= new_dir
)
1595 return simple_rename(old_dir
, old_dentry
, new_dir
, new_dentry
);
1598 static struct file_operations cgroup_file_operations
= {
1599 .read
= cgroup_file_read
,
1600 .write
= cgroup_file_write
,
1601 .llseek
= generic_file_llseek
,
1602 .open
= cgroup_file_open
,
1603 .release
= cgroup_file_release
,
1606 static struct inode_operations cgroup_dir_inode_operations
= {
1607 .lookup
= simple_lookup
,
1608 .mkdir
= cgroup_mkdir
,
1609 .rmdir
= cgroup_rmdir
,
1610 .rename
= cgroup_rename
,
1613 static int cgroup_create_file(struct dentry
*dentry
, int mode
,
1614 struct super_block
*sb
)
1616 static struct dentry_operations cgroup_dops
= {
1617 .d_iput
= cgroup_diput
,
1620 struct inode
*inode
;
1624 if (dentry
->d_inode
)
1627 inode
= cgroup_new_inode(mode
, sb
);
1631 if (S_ISDIR(mode
)) {
1632 inode
->i_op
= &cgroup_dir_inode_operations
;
1633 inode
->i_fop
= &simple_dir_operations
;
1635 /* start off with i_nlink == 2 (for "." entry) */
1638 /* start with the directory inode held, so that we can
1639 * populate it without racing with another mkdir */
1640 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
1641 } else if (S_ISREG(mode
)) {
1643 inode
->i_fop
= &cgroup_file_operations
;
1645 dentry
->d_op
= &cgroup_dops
;
1646 d_instantiate(dentry
, inode
);
1647 dget(dentry
); /* Extra count - pin the dentry in core */
1652 * cgroup_create_dir - create a directory for an object.
1653 * @cgrp: the cgroup we create the directory for. It must have a valid
1654 * ->parent field. And we are going to fill its ->dentry field.
1655 * @dentry: dentry of the new cgroup
1656 * @mode: mode to set on new directory.
1658 static int cgroup_create_dir(struct cgroup
*cgrp
, struct dentry
*dentry
,
1661 struct dentry
*parent
;
1664 parent
= cgrp
->parent
->dentry
;
1665 error
= cgroup_create_file(dentry
, S_IFDIR
| mode
, cgrp
->root
->sb
);
1667 dentry
->d_fsdata
= cgrp
;
1668 inc_nlink(parent
->d_inode
);
1669 cgrp
->dentry
= dentry
;
1677 int cgroup_add_file(struct cgroup
*cgrp
,
1678 struct cgroup_subsys
*subsys
,
1679 const struct cftype
*cft
)
1681 struct dentry
*dir
= cgrp
->dentry
;
1682 struct dentry
*dentry
;
1685 char name
[MAX_CGROUP_TYPE_NAMELEN
+ MAX_CFTYPE_NAME
+ 2] = { 0 };
1686 if (subsys
&& !test_bit(ROOT_NOPREFIX
, &cgrp
->root
->flags
)) {
1687 strcpy(name
, subsys
->name
);
1690 strcat(name
, cft
->name
);
1691 BUG_ON(!mutex_is_locked(&dir
->d_inode
->i_mutex
));
1692 dentry
= lookup_one_len(name
, dir
, strlen(name
));
1693 if (!IS_ERR(dentry
)) {
1694 error
= cgroup_create_file(dentry
, 0644 | S_IFREG
,
1697 dentry
->d_fsdata
= (void *)cft
;
1700 error
= PTR_ERR(dentry
);
1704 int cgroup_add_files(struct cgroup
*cgrp
,
1705 struct cgroup_subsys
*subsys
,
1706 const struct cftype cft
[],
1710 for (i
= 0; i
< count
; i
++) {
1711 err
= cgroup_add_file(cgrp
, subsys
, &cft
[i
]);
1719 * cgroup_task_count - count the number of tasks in a cgroup.
1720 * @cgrp: the cgroup in question
1722 * Return the number of tasks in the cgroup.
1724 int cgroup_task_count(const struct cgroup
*cgrp
)
1727 struct cg_cgroup_link
*link
;
1729 read_lock(&css_set_lock
);
1730 list_for_each_entry(link
, &cgrp
->css_sets
, cgrp_link_list
) {
1731 count
+= atomic_read(&link
->cg
->ref
.refcount
);
1733 read_unlock(&css_set_lock
);
1738 * Advance a list_head iterator. The iterator should be positioned at
1739 * the start of a css_set
1741 static void cgroup_advance_iter(struct cgroup
*cgrp
,
1742 struct cgroup_iter
*it
)
1744 struct list_head
*l
= it
->cg_link
;
1745 struct cg_cgroup_link
*link
;
1748 /* Advance to the next non-empty css_set */
1751 if (l
== &cgrp
->css_sets
) {
1755 link
= list_entry(l
, struct cg_cgroup_link
, cgrp_link_list
);
1757 } while (list_empty(&cg
->tasks
));
1759 it
->task
= cg
->tasks
.next
;
1763 * To reduce the fork() overhead for systems that are not actually
1764 * using their cgroups capability, we don't maintain the lists running
1765 * through each css_set to its tasks until we see the list actually
1766 * used - in other words after the first call to cgroup_iter_start().
1768 * The tasklist_lock is not held here, as do_each_thread() and
1769 * while_each_thread() are protected by RCU.
1771 static void cgroup_enable_task_cg_lists(void)
1773 struct task_struct
*p
, *g
;
1774 write_lock(&css_set_lock
);
1775 use_task_css_set_links
= 1;
1776 do_each_thread(g
, p
) {
1779 * We should check if the process is exiting, otherwise
1780 * it will race with cgroup_exit() in that the list
1781 * entry won't be deleted though the process has exited.
1783 if (!(p
->flags
& PF_EXITING
) && list_empty(&p
->cg_list
))
1784 list_add(&p
->cg_list
, &p
->cgroups
->tasks
);
1786 } while_each_thread(g
, p
);
1787 write_unlock(&css_set_lock
);
1790 void cgroup_iter_start(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
1793 * The first time anyone tries to iterate across a cgroup,
1794 * we need to enable the list linking each css_set to its
1795 * tasks, and fix up all existing tasks.
1797 if (!use_task_css_set_links
)
1798 cgroup_enable_task_cg_lists();
1800 read_lock(&css_set_lock
);
1801 it
->cg_link
= &cgrp
->css_sets
;
1802 cgroup_advance_iter(cgrp
, it
);
1805 struct task_struct
*cgroup_iter_next(struct cgroup
*cgrp
,
1806 struct cgroup_iter
*it
)
1808 struct task_struct
*res
;
1809 struct list_head
*l
= it
->task
;
1811 /* If the iterator cg is NULL, we have no tasks */
1814 res
= list_entry(l
, struct task_struct
, cg_list
);
1815 /* Advance iterator to find next entry */
1817 if (l
== &res
->cgroups
->tasks
) {
1818 /* We reached the end of this task list - move on to
1819 * the next cg_cgroup_link */
1820 cgroup_advance_iter(cgrp
, it
);
1827 void cgroup_iter_end(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
1829 read_unlock(&css_set_lock
);
1832 static inline int started_after_time(struct task_struct
*t1
,
1833 struct timespec
*time
,
1834 struct task_struct
*t2
)
1836 int start_diff
= timespec_compare(&t1
->start_time
, time
);
1837 if (start_diff
> 0) {
1839 } else if (start_diff
< 0) {
1843 * Arbitrarily, if two processes started at the same
1844 * time, we'll say that the lower pointer value
1845 * started first. Note that t2 may have exited by now
1846 * so this may not be a valid pointer any longer, but
1847 * that's fine - it still serves to distinguish
1848 * between two tasks started (effectively) simultaneously.
1855 * This function is a callback from heap_insert() and is used to order
1857 * In this case we order the heap in descending task start time.
1859 static inline int started_after(void *p1
, void *p2
)
1861 struct task_struct
*t1
= p1
;
1862 struct task_struct
*t2
= p2
;
1863 return started_after_time(t1
, &t2
->start_time
, t2
);
1867 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
1868 * @scan: struct cgroup_scanner containing arguments for the scan
1870 * Arguments include pointers to callback functions test_task() and
1872 * Iterate through all the tasks in a cgroup, calling test_task() for each,
1873 * and if it returns true, call process_task() for it also.
1874 * The test_task pointer may be NULL, meaning always true (select all tasks).
1875 * Effectively duplicates cgroup_iter_{start,next,end}()
1876 * but does not lock css_set_lock for the call to process_task().
1877 * The struct cgroup_scanner may be embedded in any structure of the caller's
1879 * It is guaranteed that process_task() will act on every task that
1880 * is a member of the cgroup for the duration of this call. This
1881 * function may or may not call process_task() for tasks that exit
1882 * or move to a different cgroup during the call, or are forked or
1883 * move into the cgroup during the call.
1885 * Note that test_task() may be called with locks held, and may in some
1886 * situations be called multiple times for the same task, so it should
1888 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
1889 * pre-allocated and will be used for heap operations (and its "gt" member will
1890 * be overwritten), else a temporary heap will be used (allocation of which
1891 * may cause this function to fail).
1893 int cgroup_scan_tasks(struct cgroup_scanner
*scan
)
1896 struct cgroup_iter it
;
1897 struct task_struct
*p
, *dropped
;
1898 /* Never dereference latest_task, since it's not refcounted */
1899 struct task_struct
*latest_task
= NULL
;
1900 struct ptr_heap tmp_heap
;
1901 struct ptr_heap
*heap
;
1902 struct timespec latest_time
= { 0, 0 };
1905 /* The caller supplied our heap and pre-allocated its memory */
1907 heap
->gt
= &started_after
;
1909 /* We need to allocate our own heap memory */
1911 retval
= heap_init(heap
, PAGE_SIZE
, GFP_KERNEL
, &started_after
);
1913 /* cannot allocate the heap */
1919 * Scan tasks in the cgroup, using the scanner's "test_task" callback
1920 * to determine which are of interest, and using the scanner's
1921 * "process_task" callback to process any of them that need an update.
1922 * Since we don't want to hold any locks during the task updates,
1923 * gather tasks to be processed in a heap structure.
1924 * The heap is sorted by descending task start time.
1925 * If the statically-sized heap fills up, we overflow tasks that
1926 * started later, and in future iterations only consider tasks that
1927 * started after the latest task in the previous pass. This
1928 * guarantees forward progress and that we don't miss any tasks.
1931 cgroup_iter_start(scan
->cg
, &it
);
1932 while ((p
= cgroup_iter_next(scan
->cg
, &it
))) {
1934 * Only affect tasks that qualify per the caller's callback,
1935 * if he provided one
1937 if (scan
->test_task
&& !scan
->test_task(p
, scan
))
1940 * Only process tasks that started after the last task
1943 if (!started_after_time(p
, &latest_time
, latest_task
))
1945 dropped
= heap_insert(heap
, p
);
1946 if (dropped
== NULL
) {
1948 * The new task was inserted; the heap wasn't
1952 } else if (dropped
!= p
) {
1954 * The new task was inserted, and pushed out a
1958 put_task_struct(dropped
);
1961 * Else the new task was newer than anything already in
1962 * the heap and wasn't inserted
1965 cgroup_iter_end(scan
->cg
, &it
);
1968 for (i
= 0; i
< heap
->size
; i
++) {
1969 struct task_struct
*q
= heap
->ptrs
[i
];
1971 latest_time
= q
->start_time
;
1974 /* Process the task per the caller's callback */
1975 scan
->process_task(q
, scan
);
1979 * If we had to process any tasks at all, scan again
1980 * in case some of them were in the middle of forking
1981 * children that didn't get processed.
1982 * Not the most efficient way to do it, but it avoids
1983 * having to take callback_mutex in the fork path
1987 if (heap
== &tmp_heap
)
1988 heap_free(&tmp_heap
);
1993 * Stuff for reading the 'tasks' file.
1995 * Reading this file can return large amounts of data if a cgroup has
1996 * *lots* of attached tasks. So it may need several calls to read(),
1997 * but we cannot guarantee that the information we produce is correct
1998 * unless we produce it entirely atomically.
2000 * Upon tasks file open(), a struct ctr_struct is allocated, that
2001 * will have a pointer to an array (also allocated here). The struct
2002 * ctr_struct * is stored in file->private_data. Its resources will
2003 * be freed by release() when the file is closed. The array is used
2004 * to sprintf the PIDs and then used by read().
2012 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2013 * 'cgrp'. Return actual number of pids loaded. No need to
2014 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2015 * read section, so the css_set can't go away, and is
2016 * immutable after creation.
2018 static int pid_array_load(pid_t
*pidarray
, int npids
, struct cgroup
*cgrp
)
2021 struct cgroup_iter it
;
2022 struct task_struct
*tsk
;
2023 cgroup_iter_start(cgrp
, &it
);
2024 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2025 if (unlikely(n
== npids
))
2027 pidarray
[n
++] = task_pid_vnr(tsk
);
2029 cgroup_iter_end(cgrp
, &it
);
2034 * cgroupstats_build - build and fill cgroupstats
2035 * @stats: cgroupstats to fill information into
2036 * @dentry: A dentry entry belonging to the cgroup for which stats have
2039 * Build and fill cgroupstats so that taskstats can export it to user
2042 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
2045 struct cgroup
*cgrp
;
2046 struct cgroup_iter it
;
2047 struct task_struct
*tsk
;
2050 * Validate dentry by checking the superblock operations,
2051 * and make sure it's a directory.
2053 if (dentry
->d_sb
->s_op
!= &cgroup_ops
||
2054 !S_ISDIR(dentry
->d_inode
->i_mode
))
2058 cgrp
= dentry
->d_fsdata
;
2061 cgroup_iter_start(cgrp
, &it
);
2062 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2063 switch (tsk
->state
) {
2065 stats
->nr_running
++;
2067 case TASK_INTERRUPTIBLE
:
2068 stats
->nr_sleeping
++;
2070 case TASK_UNINTERRUPTIBLE
:
2071 stats
->nr_uninterruptible
++;
2074 stats
->nr_stopped
++;
2077 if (delayacct_is_task_waiting_on_io(tsk
))
2078 stats
->nr_io_wait
++;
2082 cgroup_iter_end(cgrp
, &it
);
2089 static int cmppid(const void *a
, const void *b
)
2091 return *(pid_t
*)a
- *(pid_t
*)b
;
2095 * Convert array 'a' of 'npids' pid_t's to a string of newline separated
2096 * decimal pids in 'buf'. Don't write more than 'sz' chars, but return
2097 * count 'cnt' of how many chars would be written if buf were large enough.
2099 static int pid_array_to_buf(char *buf
, int sz
, pid_t
*a
, int npids
)
2104 for (i
= 0; i
< npids
; i
++)
2105 cnt
+= snprintf(buf
+ cnt
, max(sz
- cnt
, 0), "%d\n", a
[i
]);
2110 * Handle an open on 'tasks' file. Prepare a buffer listing the
2111 * process id's of tasks currently attached to the cgroup being opened.
2113 * Does not require any specific cgroup mutexes, and does not take any.
2115 static int cgroup_tasks_open(struct inode
*unused
, struct file
*file
)
2117 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2118 struct ctr_struct
*ctr
;
2123 if (!(file
->f_mode
& FMODE_READ
))
2126 ctr
= kmalloc(sizeof(*ctr
), GFP_KERNEL
);
2131 * If cgroup gets more users after we read count, we won't have
2132 * enough space - tough. This race is indistinguishable to the
2133 * caller from the case that the additional cgroup users didn't
2134 * show up until sometime later on.
2136 npids
= cgroup_task_count(cgrp
);
2138 pidarray
= kmalloc(npids
* sizeof(pid_t
), GFP_KERNEL
);
2142 npids
= pid_array_load(pidarray
, npids
, cgrp
);
2143 sort(pidarray
, npids
, sizeof(pid_t
), cmppid
, NULL
);
2145 /* Call pid_array_to_buf() twice, first just to get bufsz */
2146 ctr
->bufsz
= pid_array_to_buf(&c
, sizeof(c
), pidarray
, npids
) + 1;
2147 ctr
->buf
= kmalloc(ctr
->bufsz
, GFP_KERNEL
);
2150 ctr
->bufsz
= pid_array_to_buf(ctr
->buf
, ctr
->bufsz
, pidarray
, npids
);
2157 file
->private_data
= ctr
;
2168 static ssize_t
cgroup_tasks_read(struct cgroup
*cgrp
,
2170 struct file
*file
, char __user
*buf
,
2171 size_t nbytes
, loff_t
*ppos
)
2173 struct ctr_struct
*ctr
= file
->private_data
;
2175 return simple_read_from_buffer(buf
, nbytes
, ppos
, ctr
->buf
, ctr
->bufsz
);
2178 static int cgroup_tasks_release(struct inode
*unused_inode
,
2181 struct ctr_struct
*ctr
;
2183 if (file
->f_mode
& FMODE_READ
) {
2184 ctr
= file
->private_data
;
2191 static u64
cgroup_read_notify_on_release(struct cgroup
*cgrp
,
2194 return notify_on_release(cgrp
);
2197 static int cgroup_write_notify_on_release(struct cgroup
*cgrp
,
2201 clear_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
2203 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
2205 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
2210 * for the common functions, 'private' gives the type of file
2212 static struct cftype files
[] = {
2215 .open
= cgroup_tasks_open
,
2216 .read
= cgroup_tasks_read
,
2217 .write_u64
= cgroup_tasks_write
,
2218 .release
= cgroup_tasks_release
,
2219 .private = FILE_TASKLIST
,
2223 .name
= "notify_on_release",
2224 .read_u64
= cgroup_read_notify_on_release
,
2225 .write_u64
= cgroup_write_notify_on_release
,
2226 .private = FILE_NOTIFY_ON_RELEASE
,
2230 static struct cftype cft_release_agent
= {
2231 .name
= "release_agent",
2232 .read_seq_string
= cgroup_release_agent_show
,
2233 .write_string
= cgroup_release_agent_write
,
2234 .max_write_len
= PATH_MAX
,
2235 .private = FILE_RELEASE_AGENT
,
2238 static int cgroup_populate_dir(struct cgroup
*cgrp
)
2241 struct cgroup_subsys
*ss
;
2243 /* First clear out any existing files */
2244 cgroup_clear_directory(cgrp
->dentry
);
2246 err
= cgroup_add_files(cgrp
, NULL
, files
, ARRAY_SIZE(files
));
2250 if (cgrp
== cgrp
->top_cgroup
) {
2251 if ((err
= cgroup_add_file(cgrp
, NULL
, &cft_release_agent
)) < 0)
2255 for_each_subsys(cgrp
->root
, ss
) {
2256 if (ss
->populate
&& (err
= ss
->populate(ss
, cgrp
)) < 0)
2263 static void init_cgroup_css(struct cgroup_subsys_state
*css
,
2264 struct cgroup_subsys
*ss
,
2265 struct cgroup
*cgrp
)
2268 atomic_set(&css
->refcnt
, 0);
2270 if (cgrp
== dummytop
)
2271 set_bit(CSS_ROOT
, &css
->flags
);
2272 BUG_ON(cgrp
->subsys
[ss
->subsys_id
]);
2273 cgrp
->subsys
[ss
->subsys_id
] = css
;
2277 * cgroup_create - create a cgroup
2278 * @parent: cgroup that will be parent of the new cgroup
2279 * @dentry: dentry of the new cgroup
2280 * @mode: mode to set on new inode
2282 * Must be called with the mutex on the parent inode held
2284 static long cgroup_create(struct cgroup
*parent
, struct dentry
*dentry
,
2287 struct cgroup
*cgrp
;
2288 struct cgroupfs_root
*root
= parent
->root
;
2290 struct cgroup_subsys
*ss
;
2291 struct super_block
*sb
= root
->sb
;
2293 cgrp
= kzalloc(sizeof(*cgrp
), GFP_KERNEL
);
2297 /* Grab a reference on the superblock so the hierarchy doesn't
2298 * get deleted on unmount if there are child cgroups. This
2299 * can be done outside cgroup_mutex, since the sb can't
2300 * disappear while someone has an open control file on the
2302 atomic_inc(&sb
->s_active
);
2304 mutex_lock(&cgroup_mutex
);
2306 INIT_LIST_HEAD(&cgrp
->sibling
);
2307 INIT_LIST_HEAD(&cgrp
->children
);
2308 INIT_LIST_HEAD(&cgrp
->css_sets
);
2309 INIT_LIST_HEAD(&cgrp
->release_list
);
2311 cgrp
->parent
= parent
;
2312 cgrp
->root
= parent
->root
;
2313 cgrp
->top_cgroup
= parent
->top_cgroup
;
2315 if (notify_on_release(parent
))
2316 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
2318 for_each_subsys(root
, ss
) {
2319 struct cgroup_subsys_state
*css
= ss
->create(ss
, cgrp
);
2324 init_cgroup_css(css
, ss
, cgrp
);
2327 list_add(&cgrp
->sibling
, &cgrp
->parent
->children
);
2328 root
->number_of_cgroups
++;
2330 err
= cgroup_create_dir(cgrp
, dentry
, mode
);
2334 /* The cgroup directory was pre-locked for us */
2335 BUG_ON(!mutex_is_locked(&cgrp
->dentry
->d_inode
->i_mutex
));
2337 err
= cgroup_populate_dir(cgrp
);
2338 /* If err < 0, we have a half-filled directory - oh well ;) */
2340 mutex_unlock(&cgroup_mutex
);
2341 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
2347 list_del(&cgrp
->sibling
);
2348 root
->number_of_cgroups
--;
2352 for_each_subsys(root
, ss
) {
2353 if (cgrp
->subsys
[ss
->subsys_id
])
2354 ss
->destroy(ss
, cgrp
);
2357 mutex_unlock(&cgroup_mutex
);
2359 /* Release the reference count that we took on the superblock */
2360 deactivate_super(sb
);
2366 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
2368 struct cgroup
*c_parent
= dentry
->d_parent
->d_fsdata
;
2370 /* the vfs holds inode->i_mutex already */
2371 return cgroup_create(c_parent
, dentry
, mode
| S_IFDIR
);
2374 static int cgroup_has_css_refs(struct cgroup
*cgrp
)
2376 /* Check the reference count on each subsystem. Since we
2377 * already established that there are no tasks in the
2378 * cgroup, if the css refcount is also 0, then there should
2379 * be no outstanding references, so the subsystem is safe to
2380 * destroy. We scan across all subsystems rather than using
2381 * the per-hierarchy linked list of mounted subsystems since
2382 * we can be called via check_for_release() with no
2383 * synchronization other than RCU, and the subsystem linked
2384 * list isn't RCU-safe */
2386 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2387 struct cgroup_subsys
*ss
= subsys
[i
];
2388 struct cgroup_subsys_state
*css
;
2389 /* Skip subsystems not in this hierarchy */
2390 if (ss
->root
!= cgrp
->root
)
2392 css
= cgrp
->subsys
[ss
->subsys_id
];
2393 /* When called from check_for_release() it's possible
2394 * that by this point the cgroup has been removed
2395 * and the css deleted. But a false-positive doesn't
2396 * matter, since it can only happen if the cgroup
2397 * has been deleted and hence no longer needs the
2398 * release agent to be called anyway. */
2399 if (css
&& atomic_read(&css
->refcnt
))
2405 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
)
2407 struct cgroup
*cgrp
= dentry
->d_fsdata
;
2409 struct cgroup
*parent
;
2410 struct super_block
*sb
;
2411 struct cgroupfs_root
*root
;
2413 /* the vfs holds both inode->i_mutex already */
2415 mutex_lock(&cgroup_mutex
);
2416 if (atomic_read(&cgrp
->count
) != 0) {
2417 mutex_unlock(&cgroup_mutex
);
2420 if (!list_empty(&cgrp
->children
)) {
2421 mutex_unlock(&cgroup_mutex
);
2425 parent
= cgrp
->parent
;
2430 * Call pre_destroy handlers of subsys. Notify subsystems
2431 * that rmdir() request comes.
2433 cgroup_call_pre_destroy(cgrp
);
2435 if (cgroup_has_css_refs(cgrp
)) {
2436 mutex_unlock(&cgroup_mutex
);
2440 spin_lock(&release_list_lock
);
2441 set_bit(CGRP_REMOVED
, &cgrp
->flags
);
2442 if (!list_empty(&cgrp
->release_list
))
2443 list_del(&cgrp
->release_list
);
2444 spin_unlock(&release_list_lock
);
2445 /* delete my sibling from parent->children */
2446 list_del(&cgrp
->sibling
);
2447 spin_lock(&cgrp
->dentry
->d_lock
);
2448 d
= dget(cgrp
->dentry
);
2449 spin_unlock(&d
->d_lock
);
2451 cgroup_d_remove_dir(d
);
2454 set_bit(CGRP_RELEASABLE
, &parent
->flags
);
2455 check_for_release(parent
);
2457 mutex_unlock(&cgroup_mutex
);
2461 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
)
2463 struct cgroup_subsys_state
*css
;
2465 printk(KERN_INFO
"Initializing cgroup subsys %s\n", ss
->name
);
2467 /* Create the top cgroup state for this subsystem */
2468 ss
->root
= &rootnode
;
2469 css
= ss
->create(ss
, dummytop
);
2470 /* We don't handle early failures gracefully */
2471 BUG_ON(IS_ERR(css
));
2472 init_cgroup_css(css
, ss
, dummytop
);
2474 /* Update the init_css_set to contain a subsys
2475 * pointer to this state - since the subsystem is
2476 * newly registered, all tasks and hence the
2477 * init_css_set is in the subsystem's top cgroup. */
2478 init_css_set
.subsys
[ss
->subsys_id
] = dummytop
->subsys
[ss
->subsys_id
];
2480 need_forkexit_callback
|= ss
->fork
|| ss
->exit
;
2481 need_mm_owner_callback
|= !!ss
->mm_owner_changed
;
2483 /* At system boot, before all subsystems have been
2484 * registered, no tasks have been forked, so we don't
2485 * need to invoke fork callbacks here. */
2486 BUG_ON(!list_empty(&init_task
.tasks
));
2492 * cgroup_init_early - cgroup initialization at system boot
2494 * Initialize cgroups at system boot, and initialize any
2495 * subsystems that request early init.
2497 int __init
cgroup_init_early(void)
2500 kref_init(&init_css_set
.ref
);
2501 kref_get(&init_css_set
.ref
);
2502 INIT_LIST_HEAD(&init_css_set
.cg_links
);
2503 INIT_LIST_HEAD(&init_css_set
.tasks
);
2504 INIT_HLIST_NODE(&init_css_set
.hlist
);
2506 init_cgroup_root(&rootnode
);
2507 list_add(&rootnode
.root_list
, &roots
);
2509 init_task
.cgroups
= &init_css_set
;
2511 init_css_set_link
.cg
= &init_css_set
;
2512 list_add(&init_css_set_link
.cgrp_link_list
,
2513 &rootnode
.top_cgroup
.css_sets
);
2514 list_add(&init_css_set_link
.cg_link_list
,
2515 &init_css_set
.cg_links
);
2517 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++)
2518 INIT_HLIST_HEAD(&css_set_table
[i
]);
2520 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2521 struct cgroup_subsys
*ss
= subsys
[i
];
2524 BUG_ON(strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
);
2525 BUG_ON(!ss
->create
);
2526 BUG_ON(!ss
->destroy
);
2527 if (ss
->subsys_id
!= i
) {
2528 printk(KERN_ERR
"cgroup: Subsys %s id == %d\n",
2529 ss
->name
, ss
->subsys_id
);
2534 cgroup_init_subsys(ss
);
2540 * cgroup_init - cgroup initialization
2542 * Register cgroup filesystem and /proc file, and initialize
2543 * any subsystems that didn't request early init.
2545 int __init
cgroup_init(void)
2549 struct hlist_head
*hhead
;
2551 err
= bdi_init(&cgroup_backing_dev_info
);
2555 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2556 struct cgroup_subsys
*ss
= subsys
[i
];
2557 if (!ss
->early_init
)
2558 cgroup_init_subsys(ss
);
2561 /* Add init_css_set to the hash table */
2562 hhead
= css_set_hash(init_css_set
.subsys
);
2563 hlist_add_head(&init_css_set
.hlist
, hhead
);
2565 err
= register_filesystem(&cgroup_fs_type
);
2569 proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
);
2573 bdi_destroy(&cgroup_backing_dev_info
);
2579 * proc_cgroup_show()
2580 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2581 * - Used for /proc/<pid>/cgroup.
2582 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2583 * doesn't really matter if tsk->cgroup changes after we read it,
2584 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2585 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2586 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2587 * cgroup to top_cgroup.
2590 /* TODO: Use a proper seq_file iterator */
2591 static int proc_cgroup_show(struct seq_file
*m
, void *v
)
2594 struct task_struct
*tsk
;
2597 struct cgroupfs_root
*root
;
2600 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2606 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
2612 mutex_lock(&cgroup_mutex
);
2614 for_each_root(root
) {
2615 struct cgroup_subsys
*ss
;
2616 struct cgroup
*cgrp
;
2620 /* Skip this hierarchy if it has no active subsystems */
2621 if (!root
->actual_subsys_bits
)
2623 seq_printf(m
, "%lu:", root
->subsys_bits
);
2624 for_each_subsys(root
, ss
)
2625 seq_printf(m
, "%s%s", count
++ ? "," : "", ss
->name
);
2627 get_first_subsys(&root
->top_cgroup
, NULL
, &subsys_id
);
2628 cgrp
= task_cgroup(tsk
, subsys_id
);
2629 retval
= cgroup_path(cgrp
, buf
, PAGE_SIZE
);
2637 mutex_unlock(&cgroup_mutex
);
2638 put_task_struct(tsk
);
2645 static int cgroup_open(struct inode
*inode
, struct file
*file
)
2647 struct pid
*pid
= PROC_I(inode
)->pid
;
2648 return single_open(file
, proc_cgroup_show
, pid
);
2651 struct file_operations proc_cgroup_operations
= {
2652 .open
= cgroup_open
,
2654 .llseek
= seq_lseek
,
2655 .release
= single_release
,
2658 /* Display information about each subsystem and each hierarchy */
2659 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
2663 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
2664 mutex_lock(&cgroup_mutex
);
2665 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2666 struct cgroup_subsys
*ss
= subsys
[i
];
2667 seq_printf(m
, "%s\t%lu\t%d\t%d\n",
2668 ss
->name
, ss
->root
->subsys_bits
,
2669 ss
->root
->number_of_cgroups
, !ss
->disabled
);
2671 mutex_unlock(&cgroup_mutex
);
2675 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
2677 return single_open(file
, proc_cgroupstats_show
, NULL
);
2680 static struct file_operations proc_cgroupstats_operations
= {
2681 .open
= cgroupstats_open
,
2683 .llseek
= seq_lseek
,
2684 .release
= single_release
,
2688 * cgroup_fork - attach newly forked task to its parents cgroup.
2689 * @child: pointer to task_struct of forking parent process.
2691 * Description: A task inherits its parent's cgroup at fork().
2693 * A pointer to the shared css_set was automatically copied in
2694 * fork.c by dup_task_struct(). However, we ignore that copy, since
2695 * it was not made under the protection of RCU or cgroup_mutex, so
2696 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
2697 * have already changed current->cgroups, allowing the previously
2698 * referenced cgroup group to be removed and freed.
2700 * At the point that cgroup_fork() is called, 'current' is the parent
2701 * task, and the passed argument 'child' points to the child task.
2703 void cgroup_fork(struct task_struct
*child
)
2706 child
->cgroups
= current
->cgroups
;
2707 get_css_set(child
->cgroups
);
2708 task_unlock(current
);
2709 INIT_LIST_HEAD(&child
->cg_list
);
2713 * cgroup_fork_callbacks - run fork callbacks
2714 * @child: the new task
2716 * Called on a new task very soon before adding it to the
2717 * tasklist. No need to take any locks since no-one can
2718 * be operating on this task.
2720 void cgroup_fork_callbacks(struct task_struct
*child
)
2722 if (need_forkexit_callback
) {
2724 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2725 struct cgroup_subsys
*ss
= subsys
[i
];
2727 ss
->fork(ss
, child
);
2732 #ifdef CONFIG_MM_OWNER
2734 * cgroup_mm_owner_callbacks - run callbacks when the mm->owner changes
2737 * Called on every change to mm->owner. mm_init_owner() does not
2738 * invoke this routine, since it assigns the mm->owner the first time
2739 * and does not change it.
2741 void cgroup_mm_owner_callbacks(struct task_struct
*old
, struct task_struct
*new)
2743 struct cgroup
*oldcgrp
, *newcgrp
= NULL
;
2745 if (need_mm_owner_callback
) {
2747 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2748 struct cgroup_subsys
*ss
= subsys
[i
];
2749 oldcgrp
= task_cgroup(old
, ss
->subsys_id
);
2751 newcgrp
= task_cgroup(new, ss
->subsys_id
);
2752 if (oldcgrp
== newcgrp
)
2754 if (ss
->mm_owner_changed
)
2755 ss
->mm_owner_changed(ss
, oldcgrp
, newcgrp
);
2759 #endif /* CONFIG_MM_OWNER */
2762 * cgroup_post_fork - called on a new task after adding it to the task list
2763 * @child: the task in question
2765 * Adds the task to the list running through its css_set if necessary.
2766 * Has to be after the task is visible on the task list in case we race
2767 * with the first call to cgroup_iter_start() - to guarantee that the
2768 * new task ends up on its list.
2770 void cgroup_post_fork(struct task_struct
*child
)
2772 if (use_task_css_set_links
) {
2773 write_lock(&css_set_lock
);
2774 if (list_empty(&child
->cg_list
))
2775 list_add(&child
->cg_list
, &child
->cgroups
->tasks
);
2776 write_unlock(&css_set_lock
);
2780 * cgroup_exit - detach cgroup from exiting task
2781 * @tsk: pointer to task_struct of exiting process
2782 * @run_callback: run exit callbacks?
2784 * Description: Detach cgroup from @tsk and release it.
2786 * Note that cgroups marked notify_on_release force every task in
2787 * them to take the global cgroup_mutex mutex when exiting.
2788 * This could impact scaling on very large systems. Be reluctant to
2789 * use notify_on_release cgroups where very high task exit scaling
2790 * is required on large systems.
2792 * the_top_cgroup_hack:
2794 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
2796 * We call cgroup_exit() while the task is still competent to
2797 * handle notify_on_release(), then leave the task attached to the
2798 * root cgroup in each hierarchy for the remainder of its exit.
2800 * To do this properly, we would increment the reference count on
2801 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
2802 * code we would add a second cgroup function call, to drop that
2803 * reference. This would just create an unnecessary hot spot on
2804 * the top_cgroup reference count, to no avail.
2806 * Normally, holding a reference to a cgroup without bumping its
2807 * count is unsafe. The cgroup could go away, or someone could
2808 * attach us to a different cgroup, decrementing the count on
2809 * the first cgroup that we never incremented. But in this case,
2810 * top_cgroup isn't going away, and either task has PF_EXITING set,
2811 * which wards off any cgroup_attach_task() attempts, or task is a failed
2812 * fork, never visible to cgroup_attach_task.
2814 void cgroup_exit(struct task_struct
*tsk
, int run_callbacks
)
2819 if (run_callbacks
&& need_forkexit_callback
) {
2820 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2821 struct cgroup_subsys
*ss
= subsys
[i
];
2828 * Unlink from the css_set task list if necessary.
2829 * Optimistically check cg_list before taking
2832 if (!list_empty(&tsk
->cg_list
)) {
2833 write_lock(&css_set_lock
);
2834 if (!list_empty(&tsk
->cg_list
))
2835 list_del(&tsk
->cg_list
);
2836 write_unlock(&css_set_lock
);
2839 /* Reassign the task to the init_css_set. */
2842 tsk
->cgroups
= &init_css_set
;
2845 put_css_set_taskexit(cg
);
2849 * cgroup_clone - clone the cgroup the given subsystem is attached to
2850 * @tsk: the task to be moved
2851 * @subsys: the given subsystem
2852 * @nodename: the name for the new cgroup
2854 * Duplicate the current cgroup in the hierarchy that the given
2855 * subsystem is attached to, and move this task into the new
2858 int cgroup_clone(struct task_struct
*tsk
, struct cgroup_subsys
*subsys
,
2861 struct dentry
*dentry
;
2863 struct cgroup
*parent
, *child
;
2864 struct inode
*inode
;
2866 struct cgroupfs_root
*root
;
2867 struct cgroup_subsys
*ss
;
2869 /* We shouldn't be called by an unregistered subsystem */
2870 BUG_ON(!subsys
->active
);
2872 /* First figure out what hierarchy and cgroup we're dealing
2873 * with, and pin them so we can drop cgroup_mutex */
2874 mutex_lock(&cgroup_mutex
);
2876 root
= subsys
->root
;
2877 if (root
== &rootnode
) {
2879 "Not cloning cgroup for unused subsystem %s\n",
2881 mutex_unlock(&cgroup_mutex
);
2885 parent
= task_cgroup(tsk
, subsys
->subsys_id
);
2887 /* Pin the hierarchy */
2888 if (!atomic_inc_not_zero(&parent
->root
->sb
->s_active
)) {
2889 /* We race with the final deactivate_super() */
2890 mutex_unlock(&cgroup_mutex
);
2894 /* Keep the cgroup alive */
2896 mutex_unlock(&cgroup_mutex
);
2898 /* Now do the VFS work to create a cgroup */
2899 inode
= parent
->dentry
->d_inode
;
2901 /* Hold the parent directory mutex across this operation to
2902 * stop anyone else deleting the new cgroup */
2903 mutex_lock(&inode
->i_mutex
);
2904 dentry
= lookup_one_len(nodename
, parent
->dentry
, strlen(nodename
));
2905 if (IS_ERR(dentry
)) {
2907 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename
,
2909 ret
= PTR_ERR(dentry
);
2913 /* Create the cgroup directory, which also creates the cgroup */
2914 ret
= vfs_mkdir(inode
, dentry
, S_IFDIR
| 0755);
2915 child
= __d_cgrp(dentry
);
2919 "Failed to create cgroup %s: %d\n", nodename
,
2926 "Couldn't find new cgroup %s\n", nodename
);
2931 /* The cgroup now exists. Retake cgroup_mutex and check
2932 * that we're still in the same state that we thought we
2934 mutex_lock(&cgroup_mutex
);
2935 if ((root
!= subsys
->root
) ||
2936 (parent
!= task_cgroup(tsk
, subsys
->subsys_id
))) {
2937 /* Aargh, we raced ... */
2938 mutex_unlock(&inode
->i_mutex
);
2941 deactivate_super(parent
->root
->sb
);
2942 /* The cgroup is still accessible in the VFS, but
2943 * we're not going to try to rmdir() it at this
2946 "Race in cgroup_clone() - leaking cgroup %s\n",
2951 /* do any required auto-setup */
2952 for_each_subsys(root
, ss
) {
2954 ss
->post_clone(ss
, child
);
2957 /* All seems fine. Finish by moving the task into the new cgroup */
2958 ret
= cgroup_attach_task(child
, tsk
);
2959 mutex_unlock(&cgroup_mutex
);
2962 mutex_unlock(&inode
->i_mutex
);
2964 mutex_lock(&cgroup_mutex
);
2966 mutex_unlock(&cgroup_mutex
);
2967 deactivate_super(parent
->root
->sb
);
2972 * cgroup_is_descendant - see if @cgrp is a descendant of current task's cgrp
2973 * @cgrp: the cgroup in question
2975 * See if @cgrp is a descendant of the current task's cgroup in
2976 * the appropriate hierarchy.
2978 * If we are sending in dummytop, then presumably we are creating
2979 * the top cgroup in the subsystem.
2981 * Called only by the ns (nsproxy) cgroup.
2983 int cgroup_is_descendant(const struct cgroup
*cgrp
)
2986 struct cgroup
*target
;
2989 if (cgrp
== dummytop
)
2992 get_first_subsys(cgrp
, NULL
, &subsys_id
);
2993 target
= task_cgroup(current
, subsys_id
);
2994 while (cgrp
!= target
&& cgrp
!= cgrp
->top_cgroup
)
2995 cgrp
= cgrp
->parent
;
2996 ret
= (cgrp
== target
);
3000 static void check_for_release(struct cgroup
*cgrp
)
3002 /* All of these checks rely on RCU to keep the cgroup
3003 * structure alive */
3004 if (cgroup_is_releasable(cgrp
) && !atomic_read(&cgrp
->count
)
3005 && list_empty(&cgrp
->children
) && !cgroup_has_css_refs(cgrp
)) {
3006 /* Control Group is currently removeable. If it's not
3007 * already queued for a userspace notification, queue
3009 int need_schedule_work
= 0;
3010 spin_lock(&release_list_lock
);
3011 if (!cgroup_is_removed(cgrp
) &&
3012 list_empty(&cgrp
->release_list
)) {
3013 list_add(&cgrp
->release_list
, &release_list
);
3014 need_schedule_work
= 1;
3016 spin_unlock(&release_list_lock
);
3017 if (need_schedule_work
)
3018 schedule_work(&release_agent_work
);
3022 void __css_put(struct cgroup_subsys_state
*css
)
3024 struct cgroup
*cgrp
= css
->cgroup
;
3026 if (atomic_dec_and_test(&css
->refcnt
) && notify_on_release(cgrp
)) {
3027 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
3028 check_for_release(cgrp
);
3034 * Notify userspace when a cgroup is released, by running the
3035 * configured release agent with the name of the cgroup (path
3036 * relative to the root of cgroup file system) as the argument.
3038 * Most likely, this user command will try to rmdir this cgroup.
3040 * This races with the possibility that some other task will be
3041 * attached to this cgroup before it is removed, or that some other
3042 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3043 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3044 * unused, and this cgroup will be reprieved from its death sentence,
3045 * to continue to serve a useful existence. Next time it's released,
3046 * we will get notified again, if it still has 'notify_on_release' set.
3048 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3049 * means only wait until the task is successfully execve()'d. The
3050 * separate release agent task is forked by call_usermodehelper(),
3051 * then control in this thread returns here, without waiting for the
3052 * release agent task. We don't bother to wait because the caller of
3053 * this routine has no use for the exit status of the release agent
3054 * task, so no sense holding our caller up for that.
3056 static void cgroup_release_agent(struct work_struct
*work
)
3058 BUG_ON(work
!= &release_agent_work
);
3059 mutex_lock(&cgroup_mutex
);
3060 spin_lock(&release_list_lock
);
3061 while (!list_empty(&release_list
)) {
3062 char *argv
[3], *envp
[3];
3064 char *pathbuf
= NULL
, *agentbuf
= NULL
;
3065 struct cgroup
*cgrp
= list_entry(release_list
.next
,
3068 list_del_init(&cgrp
->release_list
);
3069 spin_unlock(&release_list_lock
);
3070 pathbuf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3073 if (cgroup_path(cgrp
, pathbuf
, PAGE_SIZE
) < 0)
3075 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
3080 argv
[i
++] = agentbuf
;
3081 argv
[i
++] = pathbuf
;
3085 /* minimal command environment */
3086 envp
[i
++] = "HOME=/";
3087 envp
[i
++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3090 /* Drop the lock while we invoke the usermode helper,
3091 * since the exec could involve hitting disk and hence
3092 * be a slow process */
3093 mutex_unlock(&cgroup_mutex
);
3094 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
3095 mutex_lock(&cgroup_mutex
);
3099 spin_lock(&release_list_lock
);
3101 spin_unlock(&release_list_lock
);
3102 mutex_unlock(&cgroup_mutex
);
3105 static int __init
cgroup_disable(char *str
)
3110 while ((token
= strsep(&str
, ",")) != NULL
) {
3114 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3115 struct cgroup_subsys
*ss
= subsys
[i
];
3117 if (!strcmp(token
, ss
->name
)) {
3119 printk(KERN_INFO
"Disabling %s control group"
3120 " subsystem\n", ss
->name
);
3127 __setup("cgroup_disable=", cgroup_disable
);