USB: cp210x: fix up set_termios variables
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / fs-writeback.c
blob517f211a3bd45c60f607e5da7d957bc739d55d47
1 /*
2 * fs/fs-writeback.c
4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/slab.h>
20 #include <linux/sched.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kthread.h>
24 #include <linux/freezer.h>
25 #include <linux/writeback.h>
26 #include <linux/blkdev.h>
27 #include <linux/backing-dev.h>
28 #include <linux/buffer_head.h>
29 #include <linux/tracepoint.h>
30 #include "internal.h"
33 * Passed into wb_writeback(), essentially a subset of writeback_control
35 struct wb_writeback_work {
36 long nr_pages;
37 struct super_block *sb;
38 unsigned long *older_than_this;
39 enum writeback_sync_modes sync_mode;
40 unsigned int tagged_writepages:1;
41 unsigned int for_kupdate:1;
42 unsigned int range_cyclic:1;
43 unsigned int for_background:1;
44 enum wb_reason reason; /* why was writeback initiated? */
46 struct list_head list; /* pending work list */
47 struct completion *done; /* set if the caller waits */
51 * Include the creation of the trace points after defining the
52 * wb_writeback_work structure so that the definition remains local to this
53 * file.
55 #define CREATE_TRACE_POINTS
56 #include <trace/events/writeback.h>
59 * We don't actually have pdflush, but this one is exported though /proc...
61 int nr_pdflush_threads;
63 /**
64 * writeback_in_progress - determine whether there is writeback in progress
65 * @bdi: the device's backing_dev_info structure.
67 * Determine whether there is writeback waiting to be handled against a
68 * backing device.
70 int writeback_in_progress(struct backing_dev_info *bdi)
72 return test_bit(BDI_writeback_running, &bdi->state);
75 static inline struct backing_dev_info *inode_to_bdi(struct inode *inode)
77 struct super_block *sb = inode->i_sb;
79 if (strcmp(sb->s_type->name, "bdev") == 0)
80 return inode->i_mapping->backing_dev_info;
82 return sb->s_bdi;
85 static inline struct inode *wb_inode(struct list_head *head)
87 return list_entry(head, struct inode, i_wb_list);
90 /* Wakeup flusher thread or forker thread to fork it. Requires bdi->wb_lock. */
91 static void bdi_wakeup_flusher(struct backing_dev_info *bdi)
93 if (bdi->wb.task) {
94 wake_up_process(bdi->wb.task);
95 } else {
97 * The bdi thread isn't there, wake up the forker thread which
98 * will create and run it.
100 wake_up_process(default_backing_dev_info.wb.task);
104 static void bdi_queue_work(struct backing_dev_info *bdi,
105 struct wb_writeback_work *work)
107 trace_writeback_queue(bdi, work);
109 spin_lock_bh(&bdi->wb_lock);
110 list_add_tail(&work->list, &bdi->work_list);
111 if (!bdi->wb.task)
112 trace_writeback_nothread(bdi, work);
113 bdi_wakeup_flusher(bdi);
114 spin_unlock_bh(&bdi->wb_lock);
117 static void
118 __bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
119 bool range_cyclic, enum wb_reason reason)
121 struct wb_writeback_work *work;
124 * This is WB_SYNC_NONE writeback, so if allocation fails just
125 * wakeup the thread for old dirty data writeback
127 work = kzalloc(sizeof(*work), GFP_ATOMIC);
128 if (!work) {
129 if (bdi->wb.task) {
130 trace_writeback_nowork(bdi);
131 wake_up_process(bdi->wb.task);
133 return;
136 work->sync_mode = WB_SYNC_NONE;
137 work->nr_pages = nr_pages;
138 work->range_cyclic = range_cyclic;
139 work->reason = reason;
141 bdi_queue_work(bdi, work);
145 * bdi_start_writeback - start writeback
146 * @bdi: the backing device to write from
147 * @nr_pages: the number of pages to write
148 * @reason: reason why some writeback work was initiated
150 * Description:
151 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
152 * started when this function returns, we make no guarantees on
153 * completion. Caller need not hold sb s_umount semaphore.
156 void bdi_start_writeback(struct backing_dev_info *bdi, long nr_pages,
157 enum wb_reason reason)
159 __bdi_start_writeback(bdi, nr_pages, true, reason);
163 * bdi_start_background_writeback - start background writeback
164 * @bdi: the backing device to write from
166 * Description:
167 * This makes sure WB_SYNC_NONE background writeback happens. When
168 * this function returns, it is only guaranteed that for given BDI
169 * some IO is happening if we are over background dirty threshold.
170 * Caller need not hold sb s_umount semaphore.
172 void bdi_start_background_writeback(struct backing_dev_info *bdi)
175 * We just wake up the flusher thread. It will perform background
176 * writeback as soon as there is no other work to do.
178 trace_writeback_wake_background(bdi);
179 spin_lock_bh(&bdi->wb_lock);
180 bdi_wakeup_flusher(bdi);
181 spin_unlock_bh(&bdi->wb_lock);
185 * Remove the inode from the writeback list it is on.
187 void inode_wb_list_del(struct inode *inode)
189 struct backing_dev_info *bdi = inode_to_bdi(inode);
191 spin_lock(&bdi->wb.list_lock);
192 list_del_init(&inode->i_wb_list);
193 spin_unlock(&bdi->wb.list_lock);
197 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
198 * furthest end of its superblock's dirty-inode list.
200 * Before stamping the inode's ->dirtied_when, we check to see whether it is
201 * already the most-recently-dirtied inode on the b_dirty list. If that is
202 * the case then the inode must have been redirtied while it was being written
203 * out and we don't reset its dirtied_when.
205 static void redirty_tail(struct inode *inode, struct bdi_writeback *wb)
207 assert_spin_locked(&wb->list_lock);
208 if (!list_empty(&wb->b_dirty)) {
209 struct inode *tail;
211 tail = wb_inode(wb->b_dirty.next);
212 if (time_before(inode->dirtied_when, tail->dirtied_when))
213 inode->dirtied_when = jiffies;
215 list_move(&inode->i_wb_list, &wb->b_dirty);
219 * requeue inode for re-scanning after bdi->b_io list is exhausted.
221 static void requeue_io(struct inode *inode, struct bdi_writeback *wb)
223 assert_spin_locked(&wb->list_lock);
224 list_move(&inode->i_wb_list, &wb->b_more_io);
227 static void inode_sync_complete(struct inode *inode)
230 * Prevent speculative execution through
231 * spin_unlock(&wb->list_lock);
234 smp_mb();
235 wake_up_bit(&inode->i_state, __I_SYNC);
238 static bool inode_dirtied_after(struct inode *inode, unsigned long t)
240 bool ret = time_after(inode->dirtied_when, t);
241 #ifndef CONFIG_64BIT
243 * For inodes being constantly redirtied, dirtied_when can get stuck.
244 * It _appears_ to be in the future, but is actually in distant past.
245 * This test is necessary to prevent such wrapped-around relative times
246 * from permanently stopping the whole bdi writeback.
248 ret = ret && time_before_eq(inode->dirtied_when, jiffies);
249 #endif
250 return ret;
254 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
256 static int move_expired_inodes(struct list_head *delaying_queue,
257 struct list_head *dispatch_queue,
258 struct wb_writeback_work *work)
260 LIST_HEAD(tmp);
261 struct list_head *pos, *node;
262 struct super_block *sb = NULL;
263 struct inode *inode;
264 int do_sb_sort = 0;
265 int moved = 0;
267 while (!list_empty(delaying_queue)) {
268 inode = wb_inode(delaying_queue->prev);
269 if (work->older_than_this &&
270 inode_dirtied_after(inode, *work->older_than_this))
271 break;
272 if (sb && sb != inode->i_sb)
273 do_sb_sort = 1;
274 sb = inode->i_sb;
275 list_move(&inode->i_wb_list, &tmp);
276 moved++;
279 /* just one sb in list, splice to dispatch_queue and we're done */
280 if (!do_sb_sort) {
281 list_splice(&tmp, dispatch_queue);
282 goto out;
285 /* Move inodes from one superblock together */
286 while (!list_empty(&tmp)) {
287 sb = wb_inode(tmp.prev)->i_sb;
288 list_for_each_prev_safe(pos, node, &tmp) {
289 inode = wb_inode(pos);
290 if (inode->i_sb == sb)
291 list_move(&inode->i_wb_list, dispatch_queue);
294 out:
295 return moved;
299 * Queue all expired dirty inodes for io, eldest first.
300 * Before
301 * newly dirtied b_dirty b_io b_more_io
302 * =============> gf edc BA
303 * After
304 * newly dirtied b_dirty b_io b_more_io
305 * =============> g fBAedc
307 * +--> dequeue for IO
309 static void queue_io(struct bdi_writeback *wb, struct wb_writeback_work *work)
311 int moved;
312 assert_spin_locked(&wb->list_lock);
313 list_splice_init(&wb->b_more_io, &wb->b_io);
314 moved = move_expired_inodes(&wb->b_dirty, &wb->b_io, work);
315 trace_writeback_queue_io(wb, work, moved);
318 static int write_inode(struct inode *inode, struct writeback_control *wbc)
320 if (inode->i_sb->s_op->write_inode && !is_bad_inode(inode))
321 return inode->i_sb->s_op->write_inode(inode, wbc);
322 return 0;
326 * Wait for writeback on an inode to complete.
328 static void inode_wait_for_writeback(struct inode *inode,
329 struct bdi_writeback *wb)
331 DEFINE_WAIT_BIT(wq, &inode->i_state, __I_SYNC);
332 wait_queue_head_t *wqh;
334 wqh = bit_waitqueue(&inode->i_state, __I_SYNC);
335 while (inode->i_state & I_SYNC) {
336 spin_unlock(&inode->i_lock);
337 spin_unlock(&wb->list_lock);
338 __wait_on_bit(wqh, &wq, inode_wait, TASK_UNINTERRUPTIBLE);
339 spin_lock(&wb->list_lock);
340 spin_lock(&inode->i_lock);
345 * Write out an inode's dirty pages. Called under wb->list_lock and
346 * inode->i_lock. Either the caller has an active reference on the inode or
347 * the inode has I_WILL_FREE set.
349 * If `wait' is set, wait on the writeout.
351 * The whole writeout design is quite complex and fragile. We want to avoid
352 * starvation of particular inodes when others are being redirtied, prevent
353 * livelocks, etc.
355 static int
356 writeback_single_inode(struct inode *inode, struct bdi_writeback *wb,
357 struct writeback_control *wbc)
359 struct address_space *mapping = inode->i_mapping;
360 long nr_to_write = wbc->nr_to_write;
361 unsigned dirty;
362 int ret;
364 assert_spin_locked(&wb->list_lock);
365 assert_spin_locked(&inode->i_lock);
367 if (!atomic_read(&inode->i_count))
368 WARN_ON(!(inode->i_state & (I_WILL_FREE|I_FREEING)));
369 else
370 WARN_ON(inode->i_state & I_WILL_FREE);
372 if (inode->i_state & I_SYNC) {
374 * If this inode is locked for writeback and we are not doing
375 * writeback-for-data-integrity, move it to b_more_io so that
376 * writeback can proceed with the other inodes on s_io.
378 * We'll have another go at writing back this inode when we
379 * completed a full scan of b_io.
381 if (wbc->sync_mode != WB_SYNC_ALL) {
382 requeue_io(inode, wb);
383 trace_writeback_single_inode_requeue(inode, wbc,
384 nr_to_write);
385 return 0;
389 * It's a data-integrity sync. We must wait.
391 inode_wait_for_writeback(inode, wb);
394 BUG_ON(inode->i_state & I_SYNC);
396 /* Set I_SYNC, reset I_DIRTY_PAGES */
397 inode->i_state |= I_SYNC;
398 inode->i_state &= ~I_DIRTY_PAGES;
399 spin_unlock(&inode->i_lock);
400 spin_unlock(&wb->list_lock);
402 ret = do_writepages(mapping, wbc);
405 * Make sure to wait on the data before writing out the metadata.
406 * This is important for filesystems that modify metadata on data
407 * I/O completion.
409 if (wbc->sync_mode == WB_SYNC_ALL) {
410 int err = filemap_fdatawait(mapping);
411 if (ret == 0)
412 ret = err;
416 * Some filesystems may redirty the inode during the writeback
417 * due to delalloc, clear dirty metadata flags right before
418 * write_inode()
420 spin_lock(&inode->i_lock);
421 dirty = inode->i_state & I_DIRTY;
422 inode->i_state &= ~(I_DIRTY_SYNC | I_DIRTY_DATASYNC);
423 spin_unlock(&inode->i_lock);
424 /* Don't write the inode if only I_DIRTY_PAGES was set */
425 if (dirty & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
426 int err = write_inode(inode, wbc);
427 if (ret == 0)
428 ret = err;
431 spin_lock(&wb->list_lock);
432 spin_lock(&inode->i_lock);
433 inode->i_state &= ~I_SYNC;
434 if (!(inode->i_state & I_FREEING)) {
436 * Sync livelock prevention. Each inode is tagged and synced in
437 * one shot. If still dirty, it will be redirty_tail()'ed below.
438 * Update the dirty time to prevent enqueue and sync it again.
440 if ((inode->i_state & I_DIRTY) &&
441 (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages))
442 inode->dirtied_when = jiffies;
444 if (mapping_tagged(mapping, PAGECACHE_TAG_DIRTY)) {
446 * We didn't write back all the pages. nfs_writepages()
447 * sometimes bales out without doing anything.
449 inode->i_state |= I_DIRTY_PAGES;
450 if (wbc->nr_to_write <= 0) {
452 * slice used up: queue for next turn
454 requeue_io(inode, wb);
455 } else {
457 * Writeback blocked by something other than
458 * congestion. Delay the inode for some time to
459 * avoid spinning on the CPU (100% iowait)
460 * retrying writeback of the dirty page/inode
461 * that cannot be performed immediately.
463 redirty_tail(inode, wb);
465 } else if (inode->i_state & I_DIRTY) {
467 * Filesystems can dirty the inode during writeback
468 * operations, such as delayed allocation during
469 * submission or metadata updates after data IO
470 * completion.
472 redirty_tail(inode, wb);
473 } else {
475 * The inode is clean. At this point we either have
476 * a reference to the inode or it's on it's way out.
477 * No need to add it back to the LRU.
479 list_del_init(&inode->i_wb_list);
482 inode_sync_complete(inode);
483 trace_writeback_single_inode(inode, wbc, nr_to_write);
484 return ret;
487 static long writeback_chunk_size(struct backing_dev_info *bdi,
488 struct wb_writeback_work *work)
490 long pages;
493 * WB_SYNC_ALL mode does livelock avoidance by syncing dirty
494 * inodes/pages in one big loop. Setting wbc.nr_to_write=LONG_MAX
495 * here avoids calling into writeback_inodes_wb() more than once.
497 * The intended call sequence for WB_SYNC_ALL writeback is:
499 * wb_writeback()
500 * writeback_sb_inodes() <== called only once
501 * write_cache_pages() <== called once for each inode
502 * (quickly) tag currently dirty pages
503 * (maybe slowly) sync all tagged pages
505 if (work->sync_mode == WB_SYNC_ALL || work->tagged_writepages)
506 pages = LONG_MAX;
507 else {
508 pages = min(bdi->avg_write_bandwidth / 2,
509 global_dirty_limit / DIRTY_SCOPE);
510 pages = min(pages, work->nr_pages);
511 pages = round_down(pages + MIN_WRITEBACK_PAGES,
512 MIN_WRITEBACK_PAGES);
515 return pages;
519 * Write a portion of b_io inodes which belong to @sb.
521 * If @only_this_sb is true, then find and write all such
522 * inodes. Otherwise write only ones which go sequentially
523 * in reverse order.
525 * Return the number of pages and/or inodes written.
527 static long writeback_sb_inodes(struct super_block *sb,
528 struct bdi_writeback *wb,
529 struct wb_writeback_work *work)
531 struct writeback_control wbc = {
532 .sync_mode = work->sync_mode,
533 .tagged_writepages = work->tagged_writepages,
534 .for_kupdate = work->for_kupdate,
535 .for_background = work->for_background,
536 .range_cyclic = work->range_cyclic,
537 .range_start = 0,
538 .range_end = LLONG_MAX,
540 unsigned long start_time = jiffies;
541 long write_chunk;
542 long wrote = 0; /* count both pages and inodes */
544 while (!list_empty(&wb->b_io)) {
545 struct inode *inode = wb_inode(wb->b_io.prev);
547 if (inode->i_sb != sb) {
548 if (work->sb) {
550 * We only want to write back data for this
551 * superblock, move all inodes not belonging
552 * to it back onto the dirty list.
554 redirty_tail(inode, wb);
555 continue;
559 * The inode belongs to a different superblock.
560 * Bounce back to the caller to unpin this and
561 * pin the next superblock.
563 break;
567 * Don't bother with new inodes or inodes beeing freed, first
568 * kind does not need peridic writeout yet, and for the latter
569 * kind writeout is handled by the freer.
571 spin_lock(&inode->i_lock);
572 if (inode->i_state & (I_NEW | I_FREEING | I_WILL_FREE)) {
573 spin_unlock(&inode->i_lock);
574 redirty_tail(inode, wb);
575 continue;
577 __iget(inode);
578 write_chunk = writeback_chunk_size(wb->bdi, work);
579 wbc.nr_to_write = write_chunk;
580 wbc.pages_skipped = 0;
582 writeback_single_inode(inode, wb, &wbc);
584 work->nr_pages -= write_chunk - wbc.nr_to_write;
585 wrote += write_chunk - wbc.nr_to_write;
586 if (!(inode->i_state & I_DIRTY))
587 wrote++;
588 if (wbc.pages_skipped) {
590 * writeback is not making progress due to locked
591 * buffers. Skip this inode for now.
593 redirty_tail(inode, wb);
595 spin_unlock(&inode->i_lock);
596 spin_unlock(&wb->list_lock);
597 iput(inode);
598 cond_resched();
599 spin_lock(&wb->list_lock);
601 * bail out to wb_writeback() often enough to check
602 * background threshold and other termination conditions.
604 if (wrote) {
605 if (time_is_before_jiffies(start_time + HZ / 10UL))
606 break;
607 if (work->nr_pages <= 0)
608 break;
611 return wrote;
614 static long __writeback_inodes_wb(struct bdi_writeback *wb,
615 struct wb_writeback_work *work)
617 unsigned long start_time = jiffies;
618 long wrote = 0;
620 while (!list_empty(&wb->b_io)) {
621 struct inode *inode = wb_inode(wb->b_io.prev);
622 struct super_block *sb = inode->i_sb;
624 if (!grab_super_passive(sb)) {
626 * grab_super_passive() may fail consistently due to
627 * s_umount being grabbed by someone else. Don't use
628 * requeue_io() to avoid busy retrying the inode/sb.
630 redirty_tail(inode, wb);
631 continue;
633 wrote += writeback_sb_inodes(sb, wb, work);
634 drop_super(sb);
636 /* refer to the same tests at the end of writeback_sb_inodes */
637 if (wrote) {
638 if (time_is_before_jiffies(start_time + HZ / 10UL))
639 break;
640 if (work->nr_pages <= 0)
641 break;
644 /* Leave any unwritten inodes on b_io */
645 return wrote;
648 long writeback_inodes_wb(struct bdi_writeback *wb, long nr_pages,
649 enum wb_reason reason)
651 struct wb_writeback_work work = {
652 .nr_pages = nr_pages,
653 .sync_mode = WB_SYNC_NONE,
654 .range_cyclic = 1,
655 .reason = reason,
658 spin_lock(&wb->list_lock);
659 if (list_empty(&wb->b_io))
660 queue_io(wb, &work);
661 __writeback_inodes_wb(wb, &work);
662 spin_unlock(&wb->list_lock);
664 return nr_pages - work.nr_pages;
667 static bool over_bground_thresh(struct backing_dev_info *bdi)
669 unsigned long background_thresh, dirty_thresh;
671 global_dirty_limits(&background_thresh, &dirty_thresh);
673 if (global_page_state(NR_FILE_DIRTY) +
674 global_page_state(NR_UNSTABLE_NFS) > background_thresh)
675 return true;
677 if (bdi_stat(bdi, BDI_RECLAIMABLE) >
678 bdi_dirty_limit(bdi, background_thresh))
679 return true;
681 return false;
685 * Called under wb->list_lock. If there are multiple wb per bdi,
686 * only the flusher working on the first wb should do it.
688 static void wb_update_bandwidth(struct bdi_writeback *wb,
689 unsigned long start_time)
691 __bdi_update_bandwidth(wb->bdi, 0, 0, 0, 0, 0, start_time);
695 * Explicit flushing or periodic writeback of "old" data.
697 * Define "old": the first time one of an inode's pages is dirtied, we mark the
698 * dirtying-time in the inode's address_space. So this periodic writeback code
699 * just walks the superblock inode list, writing back any inodes which are
700 * older than a specific point in time.
702 * Try to run once per dirty_writeback_interval. But if a writeback event
703 * takes longer than a dirty_writeback_interval interval, then leave a
704 * one-second gap.
706 * older_than_this takes precedence over nr_to_write. So we'll only write back
707 * all dirty pages if they are all attached to "old" mappings.
709 static long wb_writeback(struct bdi_writeback *wb,
710 struct wb_writeback_work *work)
712 unsigned long wb_start = jiffies;
713 long nr_pages = work->nr_pages;
714 unsigned long oldest_jif;
715 struct inode *inode;
716 long progress;
718 oldest_jif = jiffies;
719 work->older_than_this = &oldest_jif;
721 spin_lock(&wb->list_lock);
722 for (;;) {
724 * Stop writeback when nr_pages has been consumed
726 if (work->nr_pages <= 0)
727 break;
730 * Background writeout and kupdate-style writeback may
731 * run forever. Stop them if there is other work to do
732 * so that e.g. sync can proceed. They'll be restarted
733 * after the other works are all done.
735 if ((work->for_background || work->for_kupdate) &&
736 !list_empty(&wb->bdi->work_list))
737 break;
740 * For background writeout, stop when we are below the
741 * background dirty threshold
743 if (work->for_background && !over_bground_thresh(wb->bdi))
744 break;
746 if (work->for_kupdate) {
747 oldest_jif = jiffies -
748 msecs_to_jiffies(dirty_expire_interval * 10);
749 work->older_than_this = &oldest_jif;
752 trace_writeback_start(wb->bdi, work);
753 if (list_empty(&wb->b_io))
754 queue_io(wb, work);
755 if (work->sb)
756 progress = writeback_sb_inodes(work->sb, wb, work);
757 else
758 progress = __writeback_inodes_wb(wb, work);
759 trace_writeback_written(wb->bdi, work);
761 wb_update_bandwidth(wb, wb_start);
764 * Did we write something? Try for more
766 * Dirty inodes are moved to b_io for writeback in batches.
767 * The completion of the current batch does not necessarily
768 * mean the overall work is done. So we keep looping as long
769 * as made some progress on cleaning pages or inodes.
771 if (progress)
772 continue;
774 * No more inodes for IO, bail
776 if (list_empty(&wb->b_more_io))
777 break;
779 * Nothing written. Wait for some inode to
780 * become available for writeback. Otherwise
781 * we'll just busyloop.
783 if (!list_empty(&wb->b_more_io)) {
784 trace_writeback_wait(wb->bdi, work);
785 inode = wb_inode(wb->b_more_io.prev);
786 spin_lock(&inode->i_lock);
787 inode_wait_for_writeback(inode, wb);
788 spin_unlock(&inode->i_lock);
791 spin_unlock(&wb->list_lock);
793 return nr_pages - work->nr_pages;
797 * Return the next wb_writeback_work struct that hasn't been processed yet.
799 static struct wb_writeback_work *
800 get_next_work_item(struct backing_dev_info *bdi)
802 struct wb_writeback_work *work = NULL;
804 spin_lock_bh(&bdi->wb_lock);
805 if (!list_empty(&bdi->work_list)) {
806 work = list_entry(bdi->work_list.next,
807 struct wb_writeback_work, list);
808 list_del_init(&work->list);
810 spin_unlock_bh(&bdi->wb_lock);
811 return work;
815 * Add in the number of potentially dirty inodes, because each inode
816 * write can dirty pagecache in the underlying blockdev.
818 static unsigned long get_nr_dirty_pages(void)
820 return global_page_state(NR_FILE_DIRTY) +
821 global_page_state(NR_UNSTABLE_NFS) +
822 get_nr_dirty_inodes();
825 static long wb_check_background_flush(struct bdi_writeback *wb)
827 if (over_bground_thresh(wb->bdi)) {
829 struct wb_writeback_work work = {
830 .nr_pages = LONG_MAX,
831 .sync_mode = WB_SYNC_NONE,
832 .for_background = 1,
833 .range_cyclic = 1,
834 .reason = WB_REASON_BACKGROUND,
837 return wb_writeback(wb, &work);
840 return 0;
843 static long wb_check_old_data_flush(struct bdi_writeback *wb)
845 unsigned long expired;
846 long nr_pages;
849 * When set to zero, disable periodic writeback
851 if (!dirty_writeback_interval)
852 return 0;
854 expired = wb->last_old_flush +
855 msecs_to_jiffies(dirty_writeback_interval * 10);
856 if (time_before(jiffies, expired))
857 return 0;
859 wb->last_old_flush = jiffies;
860 nr_pages = get_nr_dirty_pages();
862 if (nr_pages) {
863 struct wb_writeback_work work = {
864 .nr_pages = nr_pages,
865 .sync_mode = WB_SYNC_NONE,
866 .for_kupdate = 1,
867 .range_cyclic = 1,
868 .reason = WB_REASON_PERIODIC,
871 return wb_writeback(wb, &work);
874 return 0;
878 * Retrieve work items and do the writeback they describe
880 long wb_do_writeback(struct bdi_writeback *wb, int force_wait)
882 struct backing_dev_info *bdi = wb->bdi;
883 struct wb_writeback_work *work;
884 long wrote = 0;
886 set_bit(BDI_writeback_running, &wb->bdi->state);
887 while ((work = get_next_work_item(bdi)) != NULL) {
889 * Override sync mode, in case we must wait for completion
890 * because this thread is exiting now.
892 if (force_wait)
893 work->sync_mode = WB_SYNC_ALL;
895 trace_writeback_exec(bdi, work);
897 wrote += wb_writeback(wb, work);
900 * Notify the caller of completion if this is a synchronous
901 * work item, otherwise just free it.
903 if (work->done)
904 complete(work->done);
905 else
906 kfree(work);
910 * Check for periodic writeback, kupdated() style
912 wrote += wb_check_old_data_flush(wb);
913 wrote += wb_check_background_flush(wb);
914 clear_bit(BDI_writeback_running, &wb->bdi->state);
916 return wrote;
920 * Handle writeback of dirty data for the device backed by this bdi. Also
921 * wakes up periodically and does kupdated style flushing.
923 int bdi_writeback_thread(void *data)
925 struct bdi_writeback *wb = data;
926 struct backing_dev_info *bdi = wb->bdi;
927 long pages_written;
929 current->flags |= PF_SWAPWRITE;
930 set_freezable();
931 wb->last_active = jiffies;
934 * Our parent may run at a different priority, just set us to normal
936 set_user_nice(current, 0);
938 trace_writeback_thread_start(bdi);
940 while (!kthread_should_stop()) {
942 * Remove own delayed wake-up timer, since we are already awake
943 * and we'll take care of the preriodic write-back.
945 del_timer(&wb->wakeup_timer);
947 pages_written = wb_do_writeback(wb, 0);
949 trace_writeback_pages_written(pages_written);
951 if (pages_written)
952 wb->last_active = jiffies;
954 set_current_state(TASK_INTERRUPTIBLE);
955 if (!list_empty(&bdi->work_list) || kthread_should_stop()) {
956 __set_current_state(TASK_RUNNING);
957 continue;
960 if (wb_has_dirty_io(wb) && dirty_writeback_interval)
961 schedule_timeout(msecs_to_jiffies(dirty_writeback_interval * 10));
962 else {
964 * We have nothing to do, so can go sleep without any
965 * timeout and save power. When a work is queued or
966 * something is made dirty - we will be woken up.
968 schedule();
971 try_to_freeze();
974 /* Flush any work that raced with us exiting */
975 if (!list_empty(&bdi->work_list))
976 wb_do_writeback(wb, 1);
978 trace_writeback_thread_stop(bdi);
979 return 0;
984 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
985 * the whole world.
987 void wakeup_flusher_threads(long nr_pages, enum wb_reason reason)
989 struct backing_dev_info *bdi;
991 if (!nr_pages) {
992 nr_pages = global_page_state(NR_FILE_DIRTY) +
993 global_page_state(NR_UNSTABLE_NFS);
996 rcu_read_lock();
997 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list) {
998 if (!bdi_has_dirty_io(bdi))
999 continue;
1000 __bdi_start_writeback(bdi, nr_pages, false, reason);
1002 rcu_read_unlock();
1005 static noinline void block_dump___mark_inode_dirty(struct inode *inode)
1007 if (inode->i_ino || strcmp(inode->i_sb->s_id, "bdev")) {
1008 struct dentry *dentry;
1009 const char *name = "?";
1011 dentry = d_find_alias(inode);
1012 if (dentry) {
1013 spin_lock(&dentry->d_lock);
1014 name = (const char *) dentry->d_name.name;
1016 printk(KERN_DEBUG
1017 "%s(%d): dirtied inode %lu (%s) on %s\n",
1018 current->comm, task_pid_nr(current), inode->i_ino,
1019 name, inode->i_sb->s_id);
1020 if (dentry) {
1021 spin_unlock(&dentry->d_lock);
1022 dput(dentry);
1028 * __mark_inode_dirty - internal function
1029 * @inode: inode to mark
1030 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1031 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1032 * mark_inode_dirty_sync.
1034 * Put the inode on the super block's dirty list.
1036 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1037 * dirty list only if it is hashed or if it refers to a blockdev.
1038 * If it was not hashed, it will never be added to the dirty list
1039 * even if it is later hashed, as it will have been marked dirty already.
1041 * In short, make sure you hash any inodes _before_ you start marking
1042 * them dirty.
1044 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1045 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1046 * the kernel-internal blockdev inode represents the dirtying time of the
1047 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1048 * page->mapping->host, so the page-dirtying time is recorded in the internal
1049 * blockdev inode.
1051 void __mark_inode_dirty(struct inode *inode, int flags)
1053 struct super_block *sb = inode->i_sb;
1054 struct backing_dev_info *bdi = NULL;
1057 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1058 * dirty the inode itself
1060 if (flags & (I_DIRTY_SYNC | I_DIRTY_DATASYNC)) {
1061 if (sb->s_op->dirty_inode)
1062 sb->s_op->dirty_inode(inode, flags);
1066 * make sure that changes are seen by all cpus before we test i_state
1067 * -- mikulas
1069 smp_mb();
1071 /* avoid the locking if we can */
1072 if ((inode->i_state & flags) == flags)
1073 return;
1075 if (unlikely(block_dump))
1076 block_dump___mark_inode_dirty(inode);
1078 spin_lock(&inode->i_lock);
1079 if ((inode->i_state & flags) != flags) {
1080 const int was_dirty = inode->i_state & I_DIRTY;
1082 inode->i_state |= flags;
1085 * If the inode is being synced, just update its dirty state.
1086 * The unlocker will place the inode on the appropriate
1087 * superblock list, based upon its state.
1089 if (inode->i_state & I_SYNC)
1090 goto out_unlock_inode;
1093 * Only add valid (hashed) inodes to the superblock's
1094 * dirty list. Add blockdev inodes as well.
1096 if (!S_ISBLK(inode->i_mode)) {
1097 if (inode_unhashed(inode))
1098 goto out_unlock_inode;
1100 if (inode->i_state & I_FREEING)
1101 goto out_unlock_inode;
1104 * If the inode was already on b_dirty/b_io/b_more_io, don't
1105 * reposition it (that would break b_dirty time-ordering).
1107 if (!was_dirty) {
1108 bool wakeup_bdi = false;
1109 bdi = inode_to_bdi(inode);
1111 if (bdi_cap_writeback_dirty(bdi)) {
1112 WARN(!test_bit(BDI_registered, &bdi->state),
1113 "bdi-%s not registered\n", bdi->name);
1116 * If this is the first dirty inode for this
1117 * bdi, we have to wake-up the corresponding
1118 * bdi thread to make sure background
1119 * write-back happens later.
1121 if (!wb_has_dirty_io(&bdi->wb))
1122 wakeup_bdi = true;
1125 spin_unlock(&inode->i_lock);
1126 spin_lock(&bdi->wb.list_lock);
1127 inode->dirtied_when = jiffies;
1128 list_move(&inode->i_wb_list, &bdi->wb.b_dirty);
1129 spin_unlock(&bdi->wb.list_lock);
1131 if (wakeup_bdi)
1132 bdi_wakeup_thread_delayed(bdi);
1133 return;
1136 out_unlock_inode:
1137 spin_unlock(&inode->i_lock);
1140 EXPORT_SYMBOL(__mark_inode_dirty);
1143 * Write out a superblock's list of dirty inodes. A wait will be performed
1144 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1146 * If older_than_this is non-NULL, then only write out inodes which
1147 * had their first dirtying at a time earlier than *older_than_this.
1149 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1150 * This function assumes that the blockdev superblock's inodes are backed by
1151 * a variety of queues, so all inodes are searched. For other superblocks,
1152 * assume that all inodes are backed by the same queue.
1154 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1155 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1156 * on the writer throttling path, and we get decent balancing between many
1157 * throttled threads: we don't want them all piling up on inode_sync_wait.
1159 static void wait_sb_inodes(struct super_block *sb)
1161 struct inode *inode, *old_inode = NULL;
1164 * We need to be protected against the filesystem going from
1165 * r/o to r/w or vice versa.
1167 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1169 spin_lock(&inode_sb_list_lock);
1172 * Data integrity sync. Must wait for all pages under writeback,
1173 * because there may have been pages dirtied before our sync
1174 * call, but which had writeout started before we write it out.
1175 * In which case, the inode may not be on the dirty list, but
1176 * we still have to wait for that writeout.
1178 list_for_each_entry(inode, &sb->s_inodes, i_sb_list) {
1179 struct address_space *mapping = inode->i_mapping;
1181 spin_lock(&inode->i_lock);
1182 if ((inode->i_state & (I_FREEING|I_WILL_FREE|I_NEW)) ||
1183 (mapping->nrpages == 0)) {
1184 spin_unlock(&inode->i_lock);
1185 continue;
1187 __iget(inode);
1188 spin_unlock(&inode->i_lock);
1189 spin_unlock(&inode_sb_list_lock);
1192 * We hold a reference to 'inode' so it couldn't have been
1193 * removed from s_inodes list while we dropped the
1194 * inode_sb_list_lock. We cannot iput the inode now as we can
1195 * be holding the last reference and we cannot iput it under
1196 * inode_sb_list_lock. So we keep the reference and iput it
1197 * later.
1199 iput(old_inode);
1200 old_inode = inode;
1202 filemap_fdatawait(mapping);
1204 cond_resched();
1206 spin_lock(&inode_sb_list_lock);
1208 spin_unlock(&inode_sb_list_lock);
1209 iput(old_inode);
1213 * writeback_inodes_sb_nr - writeback dirty inodes from given super_block
1214 * @sb: the superblock
1215 * @nr: the number of pages to write
1216 * @reason: reason why some writeback work initiated
1218 * Start writeback on some inodes on this super_block. No guarantees are made
1219 * on how many (if any) will be written, and this function does not wait
1220 * for IO completion of submitted IO.
1222 void writeback_inodes_sb_nr(struct super_block *sb,
1223 unsigned long nr,
1224 enum wb_reason reason)
1226 DECLARE_COMPLETION_ONSTACK(done);
1227 struct wb_writeback_work work = {
1228 .sb = sb,
1229 .sync_mode = WB_SYNC_NONE,
1230 .tagged_writepages = 1,
1231 .done = &done,
1232 .nr_pages = nr,
1233 .reason = reason,
1236 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1237 bdi_queue_work(sb->s_bdi, &work);
1238 wait_for_completion(&done);
1240 EXPORT_SYMBOL(writeback_inodes_sb_nr);
1243 * writeback_inodes_sb - writeback dirty inodes from given super_block
1244 * @sb: the superblock
1245 * @reason: reason why some writeback work was initiated
1247 * Start writeback on some inodes on this super_block. No guarantees are made
1248 * on how many (if any) will be written, and this function does not wait
1249 * for IO completion of submitted IO.
1251 void writeback_inodes_sb(struct super_block *sb, enum wb_reason reason)
1253 return writeback_inodes_sb_nr(sb, get_nr_dirty_pages(), reason);
1255 EXPORT_SYMBOL(writeback_inodes_sb);
1258 * writeback_inodes_sb_if_idle - start writeback if none underway
1259 * @sb: the superblock
1260 * @reason: reason why some writeback work was initiated
1262 * Invoke writeback_inodes_sb if no writeback is currently underway.
1263 * Returns 1 if writeback was started, 0 if not.
1265 int writeback_inodes_sb_if_idle(struct super_block *sb, enum wb_reason reason)
1267 if (!writeback_in_progress(sb->s_bdi)) {
1268 down_read(&sb->s_umount);
1269 writeback_inodes_sb(sb, reason);
1270 up_read(&sb->s_umount);
1271 return 1;
1272 } else
1273 return 0;
1275 EXPORT_SYMBOL(writeback_inodes_sb_if_idle);
1278 * writeback_inodes_sb_if_idle - start writeback if none underway
1279 * @sb: the superblock
1280 * @nr: the number of pages to write
1281 * @reason: reason why some writeback work was initiated
1283 * Invoke writeback_inodes_sb if no writeback is currently underway.
1284 * Returns 1 if writeback was started, 0 if not.
1286 int writeback_inodes_sb_nr_if_idle(struct super_block *sb,
1287 unsigned long nr,
1288 enum wb_reason reason)
1290 if (!writeback_in_progress(sb->s_bdi)) {
1291 down_read(&sb->s_umount);
1292 writeback_inodes_sb_nr(sb, nr, reason);
1293 up_read(&sb->s_umount);
1294 return 1;
1295 } else
1296 return 0;
1298 EXPORT_SYMBOL(writeback_inodes_sb_nr_if_idle);
1301 * sync_inodes_sb - sync sb inode pages
1302 * @sb: the superblock
1304 * This function writes and waits on any dirty inode belonging to this
1305 * super_block.
1307 void sync_inodes_sb(struct super_block *sb)
1309 DECLARE_COMPLETION_ONSTACK(done);
1310 struct wb_writeback_work work = {
1311 .sb = sb,
1312 .sync_mode = WB_SYNC_ALL,
1313 .nr_pages = LONG_MAX,
1314 .range_cyclic = 0,
1315 .done = &done,
1316 .reason = WB_REASON_SYNC,
1319 WARN_ON(!rwsem_is_locked(&sb->s_umount));
1321 bdi_queue_work(sb->s_bdi, &work);
1322 wait_for_completion(&done);
1324 wait_sb_inodes(sb);
1326 EXPORT_SYMBOL(sync_inodes_sb);
1329 * write_inode_now - write an inode to disk
1330 * @inode: inode to write to disk
1331 * @sync: whether the write should be synchronous or not
1333 * This function commits an inode to disk immediately if it is dirty. This is
1334 * primarily needed by knfsd.
1336 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1338 int write_inode_now(struct inode *inode, int sync)
1340 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1341 int ret;
1342 struct writeback_control wbc = {
1343 .nr_to_write = LONG_MAX,
1344 .sync_mode = sync ? WB_SYNC_ALL : WB_SYNC_NONE,
1345 .range_start = 0,
1346 .range_end = LLONG_MAX,
1349 if (!mapping_cap_writeback_dirty(inode->i_mapping))
1350 wbc.nr_to_write = 0;
1352 might_sleep();
1353 spin_lock(&wb->list_lock);
1354 spin_lock(&inode->i_lock);
1355 ret = writeback_single_inode(inode, wb, &wbc);
1356 spin_unlock(&inode->i_lock);
1357 spin_unlock(&wb->list_lock);
1358 if (sync)
1359 inode_sync_wait(inode);
1360 return ret;
1362 EXPORT_SYMBOL(write_inode_now);
1365 * sync_inode - write an inode and its pages to disk.
1366 * @inode: the inode to sync
1367 * @wbc: controls the writeback mode
1369 * sync_inode() will write an inode and its pages to disk. It will also
1370 * correctly update the inode on its superblock's dirty inode lists and will
1371 * update inode->i_state.
1373 * The caller must have a ref on the inode.
1375 int sync_inode(struct inode *inode, struct writeback_control *wbc)
1377 struct bdi_writeback *wb = &inode_to_bdi(inode)->wb;
1378 int ret;
1380 spin_lock(&wb->list_lock);
1381 spin_lock(&inode->i_lock);
1382 ret = writeback_single_inode(inode, wb, wbc);
1383 spin_unlock(&inode->i_lock);
1384 spin_unlock(&wb->list_lock);
1385 return ret;
1387 EXPORT_SYMBOL(sync_inode);
1390 * sync_inode_metadata - write an inode to disk
1391 * @inode: the inode to sync
1392 * @wait: wait for I/O to complete.
1394 * Write an inode to disk and adjust its dirty state after completion.
1396 * Note: only writes the actual inode, no associated data or other metadata.
1398 int sync_inode_metadata(struct inode *inode, int wait)
1400 struct writeback_control wbc = {
1401 .sync_mode = wait ? WB_SYNC_ALL : WB_SYNC_NONE,
1402 .nr_to_write = 0, /* metadata-only */
1405 return sync_inode(inode, &wbc);
1407 EXPORT_SYMBOL(sync_inode_metadata);