rfkill: always call get_state() hook on resume
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / mm / vmalloc.c
blob4172ce4f8897525593a894e0af5cecfc3d396888
1 /*
2 * linux/mm/vmalloc.c
4 * Copyright (C) 1993 Linus Torvalds
5 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
6 * SMP-safe vmalloc/vfree/ioremap, Tigran Aivazian <tigran@veritas.com>, May 2000
7 * Major rework to support vmap/vunmap, Christoph Hellwig, SGI, August 2002
8 * Numa awareness, Christoph Lameter, SGI, June 2005
9 */
11 #include <linux/vmalloc.h>
12 #include <linux/mm.h>
13 #include <linux/module.h>
14 #include <linux/highmem.h>
15 #include <linux/slab.h>
16 #include <linux/spinlock.h>
17 #include <linux/interrupt.h>
18 #include <linux/proc_fs.h>
19 #include <linux/seq_file.h>
20 #include <linux/debugobjects.h>
21 #include <linux/kallsyms.h>
22 #include <linux/list.h>
23 #include <linux/rbtree.h>
24 #include <linux/radix-tree.h>
25 #include <linux/rcupdate.h>
26 #include <linux/bootmem.h>
28 #include <asm/atomic.h>
29 #include <asm/uaccess.h>
30 #include <asm/tlbflush.h>
33 /*** Page table manipulation functions ***/
35 static void vunmap_pte_range(pmd_t *pmd, unsigned long addr, unsigned long end)
37 pte_t *pte;
39 pte = pte_offset_kernel(pmd, addr);
40 do {
41 pte_t ptent = ptep_get_and_clear(&init_mm, addr, pte);
42 WARN_ON(!pte_none(ptent) && !pte_present(ptent));
43 } while (pte++, addr += PAGE_SIZE, addr != end);
46 static void vunmap_pmd_range(pud_t *pud, unsigned long addr, unsigned long end)
48 pmd_t *pmd;
49 unsigned long next;
51 pmd = pmd_offset(pud, addr);
52 do {
53 next = pmd_addr_end(addr, end);
54 if (pmd_none_or_clear_bad(pmd))
55 continue;
56 vunmap_pte_range(pmd, addr, next);
57 } while (pmd++, addr = next, addr != end);
60 static void vunmap_pud_range(pgd_t *pgd, unsigned long addr, unsigned long end)
62 pud_t *pud;
63 unsigned long next;
65 pud = pud_offset(pgd, addr);
66 do {
67 next = pud_addr_end(addr, end);
68 if (pud_none_or_clear_bad(pud))
69 continue;
70 vunmap_pmd_range(pud, addr, next);
71 } while (pud++, addr = next, addr != end);
74 static void vunmap_page_range(unsigned long addr, unsigned long end)
76 pgd_t *pgd;
77 unsigned long next;
79 BUG_ON(addr >= end);
80 pgd = pgd_offset_k(addr);
81 do {
82 next = pgd_addr_end(addr, end);
83 if (pgd_none_or_clear_bad(pgd))
84 continue;
85 vunmap_pud_range(pgd, addr, next);
86 } while (pgd++, addr = next, addr != end);
89 static int vmap_pte_range(pmd_t *pmd, unsigned long addr,
90 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
92 pte_t *pte;
95 * nr is a running index into the array which helps higher level
96 * callers keep track of where we're up to.
99 pte = pte_alloc_kernel(pmd, addr);
100 if (!pte)
101 return -ENOMEM;
102 do {
103 struct page *page = pages[*nr];
105 if (WARN_ON(!pte_none(*pte)))
106 return -EBUSY;
107 if (WARN_ON(!page))
108 return -ENOMEM;
109 set_pte_at(&init_mm, addr, pte, mk_pte(page, prot));
110 (*nr)++;
111 } while (pte++, addr += PAGE_SIZE, addr != end);
112 return 0;
115 static int vmap_pmd_range(pud_t *pud, unsigned long addr,
116 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
118 pmd_t *pmd;
119 unsigned long next;
121 pmd = pmd_alloc(&init_mm, pud, addr);
122 if (!pmd)
123 return -ENOMEM;
124 do {
125 next = pmd_addr_end(addr, end);
126 if (vmap_pte_range(pmd, addr, next, prot, pages, nr))
127 return -ENOMEM;
128 } while (pmd++, addr = next, addr != end);
129 return 0;
132 static int vmap_pud_range(pgd_t *pgd, unsigned long addr,
133 unsigned long end, pgprot_t prot, struct page **pages, int *nr)
135 pud_t *pud;
136 unsigned long next;
138 pud = pud_alloc(&init_mm, pgd, addr);
139 if (!pud)
140 return -ENOMEM;
141 do {
142 next = pud_addr_end(addr, end);
143 if (vmap_pmd_range(pud, addr, next, prot, pages, nr))
144 return -ENOMEM;
145 } while (pud++, addr = next, addr != end);
146 return 0;
150 * Set up page tables in kva (addr, end). The ptes shall have prot "prot", and
151 * will have pfns corresponding to the "pages" array.
153 * Ie. pte at addr+N*PAGE_SIZE shall point to pfn corresponding to pages[N]
155 static int vmap_page_range(unsigned long start, unsigned long end,
156 pgprot_t prot, struct page **pages)
158 pgd_t *pgd;
159 unsigned long next;
160 unsigned long addr = start;
161 int err = 0;
162 int nr = 0;
164 BUG_ON(addr >= end);
165 pgd = pgd_offset_k(addr);
166 do {
167 next = pgd_addr_end(addr, end);
168 err = vmap_pud_range(pgd, addr, next, prot, pages, &nr);
169 if (err)
170 break;
171 } while (pgd++, addr = next, addr != end);
172 flush_cache_vmap(start, end);
174 if (unlikely(err))
175 return err;
176 return nr;
179 static inline int is_vmalloc_or_module_addr(const void *x)
182 * ARM, x86-64 and sparc64 put modules in a special place,
183 * and fall back on vmalloc() if that fails. Others
184 * just put it in the vmalloc space.
186 #if defined(CONFIG_MODULES) && defined(MODULES_VADDR)
187 unsigned long addr = (unsigned long)x;
188 if (addr >= MODULES_VADDR && addr < MODULES_END)
189 return 1;
190 #endif
191 return is_vmalloc_addr(x);
195 * Walk a vmap address to the struct page it maps.
197 struct page *vmalloc_to_page(const void *vmalloc_addr)
199 unsigned long addr = (unsigned long) vmalloc_addr;
200 struct page *page = NULL;
201 pgd_t *pgd = pgd_offset_k(addr);
204 * XXX we might need to change this if we add VIRTUAL_BUG_ON for
205 * architectures that do not vmalloc module space
207 VIRTUAL_BUG_ON(!is_vmalloc_or_module_addr(vmalloc_addr));
209 if (!pgd_none(*pgd)) {
210 pud_t *pud = pud_offset(pgd, addr);
211 if (!pud_none(*pud)) {
212 pmd_t *pmd = pmd_offset(pud, addr);
213 if (!pmd_none(*pmd)) {
214 pte_t *ptep, pte;
216 ptep = pte_offset_map(pmd, addr);
217 pte = *ptep;
218 if (pte_present(pte))
219 page = pte_page(pte);
220 pte_unmap(ptep);
224 return page;
226 EXPORT_SYMBOL(vmalloc_to_page);
229 * Map a vmalloc()-space virtual address to the physical page frame number.
231 unsigned long vmalloc_to_pfn(const void *vmalloc_addr)
233 return page_to_pfn(vmalloc_to_page(vmalloc_addr));
235 EXPORT_SYMBOL(vmalloc_to_pfn);
238 /*** Global kva allocator ***/
240 #define VM_LAZY_FREE 0x01
241 #define VM_LAZY_FREEING 0x02
242 #define VM_VM_AREA 0x04
244 struct vmap_area {
245 unsigned long va_start;
246 unsigned long va_end;
247 unsigned long flags;
248 struct rb_node rb_node; /* address sorted rbtree */
249 struct list_head list; /* address sorted list */
250 struct list_head purge_list; /* "lazy purge" list */
251 void *private;
252 struct rcu_head rcu_head;
255 static DEFINE_SPINLOCK(vmap_area_lock);
256 static struct rb_root vmap_area_root = RB_ROOT;
257 static LIST_HEAD(vmap_area_list);
259 static struct vmap_area *__find_vmap_area(unsigned long addr)
261 struct rb_node *n = vmap_area_root.rb_node;
263 while (n) {
264 struct vmap_area *va;
266 va = rb_entry(n, struct vmap_area, rb_node);
267 if (addr < va->va_start)
268 n = n->rb_left;
269 else if (addr > va->va_start)
270 n = n->rb_right;
271 else
272 return va;
275 return NULL;
278 static void __insert_vmap_area(struct vmap_area *va)
280 struct rb_node **p = &vmap_area_root.rb_node;
281 struct rb_node *parent = NULL;
282 struct rb_node *tmp;
284 while (*p) {
285 struct vmap_area *tmp;
287 parent = *p;
288 tmp = rb_entry(parent, struct vmap_area, rb_node);
289 if (va->va_start < tmp->va_end)
290 p = &(*p)->rb_left;
291 else if (va->va_end > tmp->va_start)
292 p = &(*p)->rb_right;
293 else
294 BUG();
297 rb_link_node(&va->rb_node, parent, p);
298 rb_insert_color(&va->rb_node, &vmap_area_root);
300 /* address-sort this list so it is usable like the vmlist */
301 tmp = rb_prev(&va->rb_node);
302 if (tmp) {
303 struct vmap_area *prev;
304 prev = rb_entry(tmp, struct vmap_area, rb_node);
305 list_add_rcu(&va->list, &prev->list);
306 } else
307 list_add_rcu(&va->list, &vmap_area_list);
310 static void purge_vmap_area_lazy(void);
313 * Allocate a region of KVA of the specified size and alignment, within the
314 * vstart and vend.
316 static struct vmap_area *alloc_vmap_area(unsigned long size,
317 unsigned long align,
318 unsigned long vstart, unsigned long vend,
319 int node, gfp_t gfp_mask)
321 struct vmap_area *va;
322 struct rb_node *n;
323 unsigned long addr;
324 int purged = 0;
326 BUG_ON(!size);
327 BUG_ON(size & ~PAGE_MASK);
329 va = kmalloc_node(sizeof(struct vmap_area),
330 gfp_mask & GFP_RECLAIM_MASK, node);
331 if (unlikely(!va))
332 return ERR_PTR(-ENOMEM);
334 retry:
335 addr = ALIGN(vstart, align);
337 spin_lock(&vmap_area_lock);
338 if (addr + size - 1 < addr)
339 goto overflow;
341 /* XXX: could have a last_hole cache */
342 n = vmap_area_root.rb_node;
343 if (n) {
344 struct vmap_area *first = NULL;
346 do {
347 struct vmap_area *tmp;
348 tmp = rb_entry(n, struct vmap_area, rb_node);
349 if (tmp->va_end >= addr) {
350 if (!first && tmp->va_start < addr + size)
351 first = tmp;
352 n = n->rb_left;
353 } else {
354 first = tmp;
355 n = n->rb_right;
357 } while (n);
359 if (!first)
360 goto found;
362 if (first->va_end < addr) {
363 n = rb_next(&first->rb_node);
364 if (n)
365 first = rb_entry(n, struct vmap_area, rb_node);
366 else
367 goto found;
370 while (addr + size > first->va_start && addr + size <= vend) {
371 addr = ALIGN(first->va_end + PAGE_SIZE, align);
372 if (addr + size - 1 < addr)
373 goto overflow;
375 n = rb_next(&first->rb_node);
376 if (n)
377 first = rb_entry(n, struct vmap_area, rb_node);
378 else
379 goto found;
382 found:
383 if (addr + size > vend) {
384 overflow:
385 spin_unlock(&vmap_area_lock);
386 if (!purged) {
387 purge_vmap_area_lazy();
388 purged = 1;
389 goto retry;
391 if (printk_ratelimit())
392 printk(KERN_WARNING "vmap allocation failed: "
393 "use vmalloc=<size> to increase size.\n");
394 return ERR_PTR(-EBUSY);
397 BUG_ON(addr & (align-1));
399 va->va_start = addr;
400 va->va_end = addr + size;
401 va->flags = 0;
402 __insert_vmap_area(va);
403 spin_unlock(&vmap_area_lock);
405 return va;
408 static void rcu_free_va(struct rcu_head *head)
410 struct vmap_area *va = container_of(head, struct vmap_area, rcu_head);
412 kfree(va);
415 static void __free_vmap_area(struct vmap_area *va)
417 BUG_ON(RB_EMPTY_NODE(&va->rb_node));
418 rb_erase(&va->rb_node, &vmap_area_root);
419 RB_CLEAR_NODE(&va->rb_node);
420 list_del_rcu(&va->list);
422 call_rcu(&va->rcu_head, rcu_free_va);
426 * Free a region of KVA allocated by alloc_vmap_area
428 static void free_vmap_area(struct vmap_area *va)
430 spin_lock(&vmap_area_lock);
431 __free_vmap_area(va);
432 spin_unlock(&vmap_area_lock);
436 * Clear the pagetable entries of a given vmap_area
438 static void unmap_vmap_area(struct vmap_area *va)
440 vunmap_page_range(va->va_start, va->va_end);
444 * lazy_max_pages is the maximum amount of virtual address space we gather up
445 * before attempting to purge with a TLB flush.
447 * There is a tradeoff here: a larger number will cover more kernel page tables
448 * and take slightly longer to purge, but it will linearly reduce the number of
449 * global TLB flushes that must be performed. It would seem natural to scale
450 * this number up linearly with the number of CPUs (because vmapping activity
451 * could also scale linearly with the number of CPUs), however it is likely
452 * that in practice, workloads might be constrained in other ways that mean
453 * vmap activity will not scale linearly with CPUs. Also, I want to be
454 * conservative and not introduce a big latency on huge systems, so go with
455 * a less aggressive log scale. It will still be an improvement over the old
456 * code, and it will be simple to change the scale factor if we find that it
457 * becomes a problem on bigger systems.
459 static unsigned long lazy_max_pages(void)
461 unsigned int log;
463 log = fls(num_online_cpus());
465 return log * (32UL * 1024 * 1024 / PAGE_SIZE);
468 static atomic_t vmap_lazy_nr = ATOMIC_INIT(0);
471 * Purges all lazily-freed vmap areas.
473 * If sync is 0 then don't purge if there is already a purge in progress.
474 * If force_flush is 1, then flush kernel TLBs between *start and *end even
475 * if we found no lazy vmap areas to unmap (callers can use this to optimise
476 * their own TLB flushing).
477 * Returns with *start = min(*start, lowest purged address)
478 * *end = max(*end, highest purged address)
480 static void __purge_vmap_area_lazy(unsigned long *start, unsigned long *end,
481 int sync, int force_flush)
483 static DEFINE_SPINLOCK(purge_lock);
484 LIST_HEAD(valist);
485 struct vmap_area *va;
486 struct vmap_area *n_va;
487 int nr = 0;
490 * If sync is 0 but force_flush is 1, we'll go sync anyway but callers
491 * should not expect such behaviour. This just simplifies locking for
492 * the case that isn't actually used at the moment anyway.
494 if (!sync && !force_flush) {
495 if (!spin_trylock(&purge_lock))
496 return;
497 } else
498 spin_lock(&purge_lock);
500 rcu_read_lock();
501 list_for_each_entry_rcu(va, &vmap_area_list, list) {
502 if (va->flags & VM_LAZY_FREE) {
503 if (va->va_start < *start)
504 *start = va->va_start;
505 if (va->va_end > *end)
506 *end = va->va_end;
507 nr += (va->va_end - va->va_start) >> PAGE_SHIFT;
508 unmap_vmap_area(va);
509 list_add_tail(&va->purge_list, &valist);
510 va->flags |= VM_LAZY_FREEING;
511 va->flags &= ~VM_LAZY_FREE;
514 rcu_read_unlock();
516 if (nr) {
517 BUG_ON(nr > atomic_read(&vmap_lazy_nr));
518 atomic_sub(nr, &vmap_lazy_nr);
521 if (nr || force_flush)
522 flush_tlb_kernel_range(*start, *end);
524 if (nr) {
525 spin_lock(&vmap_area_lock);
526 list_for_each_entry_safe(va, n_va, &valist, purge_list)
527 __free_vmap_area(va);
528 spin_unlock(&vmap_area_lock);
530 spin_unlock(&purge_lock);
534 * Kick off a purge of the outstanding lazy areas. Don't bother if somebody
535 * is already purging.
537 static void try_purge_vmap_area_lazy(void)
539 unsigned long start = ULONG_MAX, end = 0;
541 __purge_vmap_area_lazy(&start, &end, 0, 0);
545 * Kick off a purge of the outstanding lazy areas.
547 static void purge_vmap_area_lazy(void)
549 unsigned long start = ULONG_MAX, end = 0;
551 __purge_vmap_area_lazy(&start, &end, 1, 0);
555 * Free and unmap a vmap area, caller ensuring flush_cache_vunmap had been
556 * called for the correct range previously.
558 static void free_unmap_vmap_area_noflush(struct vmap_area *va)
560 va->flags |= VM_LAZY_FREE;
561 atomic_add((va->va_end - va->va_start) >> PAGE_SHIFT, &vmap_lazy_nr);
562 if (unlikely(atomic_read(&vmap_lazy_nr) > lazy_max_pages()))
563 try_purge_vmap_area_lazy();
567 * Free and unmap a vmap area
569 static void free_unmap_vmap_area(struct vmap_area *va)
571 flush_cache_vunmap(va->va_start, va->va_end);
572 free_unmap_vmap_area_noflush(va);
575 static struct vmap_area *find_vmap_area(unsigned long addr)
577 struct vmap_area *va;
579 spin_lock(&vmap_area_lock);
580 va = __find_vmap_area(addr);
581 spin_unlock(&vmap_area_lock);
583 return va;
586 static void free_unmap_vmap_area_addr(unsigned long addr)
588 struct vmap_area *va;
590 va = find_vmap_area(addr);
591 BUG_ON(!va);
592 free_unmap_vmap_area(va);
596 /*** Per cpu kva allocator ***/
599 * vmap space is limited especially on 32 bit architectures. Ensure there is
600 * room for at least 16 percpu vmap blocks per CPU.
603 * If we had a constant VMALLOC_START and VMALLOC_END, we'd like to be able
604 * to #define VMALLOC_SPACE (VMALLOC_END-VMALLOC_START). Guess
605 * instead (we just need a rough idea)
607 #if BITS_PER_LONG == 32
608 #define VMALLOC_SPACE (128UL*1024*1024)
609 #else
610 #define VMALLOC_SPACE (128UL*1024*1024*1024)
611 #endif
613 #define VMALLOC_PAGES (VMALLOC_SPACE / PAGE_SIZE)
614 #define VMAP_MAX_ALLOC BITS_PER_LONG /* 256K with 4K pages */
615 #define VMAP_BBMAP_BITS_MAX 1024 /* 4MB with 4K pages */
616 #define VMAP_BBMAP_BITS_MIN (VMAP_MAX_ALLOC*2)
617 #define VMAP_MIN(x, y) ((x) < (y) ? (x) : (y)) /* can't use min() */
618 #define VMAP_MAX(x, y) ((x) > (y) ? (x) : (y)) /* can't use max() */
619 #define VMAP_BBMAP_BITS VMAP_MIN(VMAP_BBMAP_BITS_MAX, \
620 VMAP_MAX(VMAP_BBMAP_BITS_MIN, \
621 VMALLOC_PAGES / NR_CPUS / 16))
623 #define VMAP_BLOCK_SIZE (VMAP_BBMAP_BITS * PAGE_SIZE)
625 static bool vmap_initialized __read_mostly = false;
627 struct vmap_block_queue {
628 spinlock_t lock;
629 struct list_head free;
630 struct list_head dirty;
631 unsigned int nr_dirty;
634 struct vmap_block {
635 spinlock_t lock;
636 struct vmap_area *va;
637 struct vmap_block_queue *vbq;
638 unsigned long free, dirty;
639 DECLARE_BITMAP(alloc_map, VMAP_BBMAP_BITS);
640 DECLARE_BITMAP(dirty_map, VMAP_BBMAP_BITS);
641 union {
642 struct {
643 struct list_head free_list;
644 struct list_head dirty_list;
646 struct rcu_head rcu_head;
650 /* Queue of free and dirty vmap blocks, for allocation and flushing purposes */
651 static DEFINE_PER_CPU(struct vmap_block_queue, vmap_block_queue);
654 * Radix tree of vmap blocks, indexed by address, to quickly find a vmap block
655 * in the free path. Could get rid of this if we change the API to return a
656 * "cookie" from alloc, to be passed to free. But no big deal yet.
658 static DEFINE_SPINLOCK(vmap_block_tree_lock);
659 static RADIX_TREE(vmap_block_tree, GFP_ATOMIC);
662 * We should probably have a fallback mechanism to allocate virtual memory
663 * out of partially filled vmap blocks. However vmap block sizing should be
664 * fairly reasonable according to the vmalloc size, so it shouldn't be a
665 * big problem.
668 static unsigned long addr_to_vb_idx(unsigned long addr)
670 addr -= VMALLOC_START & ~(VMAP_BLOCK_SIZE-1);
671 addr /= VMAP_BLOCK_SIZE;
672 return addr;
675 static struct vmap_block *new_vmap_block(gfp_t gfp_mask)
677 struct vmap_block_queue *vbq;
678 struct vmap_block *vb;
679 struct vmap_area *va;
680 unsigned long vb_idx;
681 int node, err;
683 node = numa_node_id();
685 vb = kmalloc_node(sizeof(struct vmap_block),
686 gfp_mask & GFP_RECLAIM_MASK, node);
687 if (unlikely(!vb))
688 return ERR_PTR(-ENOMEM);
690 va = alloc_vmap_area(VMAP_BLOCK_SIZE, VMAP_BLOCK_SIZE,
691 VMALLOC_START, VMALLOC_END,
692 node, gfp_mask);
693 if (unlikely(IS_ERR(va))) {
694 kfree(vb);
695 return ERR_PTR(PTR_ERR(va));
698 err = radix_tree_preload(gfp_mask);
699 if (unlikely(err)) {
700 kfree(vb);
701 free_vmap_area(va);
702 return ERR_PTR(err);
705 spin_lock_init(&vb->lock);
706 vb->va = va;
707 vb->free = VMAP_BBMAP_BITS;
708 vb->dirty = 0;
709 bitmap_zero(vb->alloc_map, VMAP_BBMAP_BITS);
710 bitmap_zero(vb->dirty_map, VMAP_BBMAP_BITS);
711 INIT_LIST_HEAD(&vb->free_list);
712 INIT_LIST_HEAD(&vb->dirty_list);
714 vb_idx = addr_to_vb_idx(va->va_start);
715 spin_lock(&vmap_block_tree_lock);
716 err = radix_tree_insert(&vmap_block_tree, vb_idx, vb);
717 spin_unlock(&vmap_block_tree_lock);
718 BUG_ON(err);
719 radix_tree_preload_end();
721 vbq = &get_cpu_var(vmap_block_queue);
722 vb->vbq = vbq;
723 spin_lock(&vbq->lock);
724 list_add(&vb->free_list, &vbq->free);
725 spin_unlock(&vbq->lock);
726 put_cpu_var(vmap_cpu_blocks);
728 return vb;
731 static void rcu_free_vb(struct rcu_head *head)
733 struct vmap_block *vb = container_of(head, struct vmap_block, rcu_head);
735 kfree(vb);
738 static void free_vmap_block(struct vmap_block *vb)
740 struct vmap_block *tmp;
741 unsigned long vb_idx;
743 spin_lock(&vb->vbq->lock);
744 if (!list_empty(&vb->free_list))
745 list_del(&vb->free_list);
746 if (!list_empty(&vb->dirty_list))
747 list_del(&vb->dirty_list);
748 spin_unlock(&vb->vbq->lock);
750 vb_idx = addr_to_vb_idx(vb->va->va_start);
751 spin_lock(&vmap_block_tree_lock);
752 tmp = radix_tree_delete(&vmap_block_tree, vb_idx);
753 spin_unlock(&vmap_block_tree_lock);
754 BUG_ON(tmp != vb);
756 free_unmap_vmap_area_noflush(vb->va);
757 call_rcu(&vb->rcu_head, rcu_free_vb);
760 static void *vb_alloc(unsigned long size, gfp_t gfp_mask)
762 struct vmap_block_queue *vbq;
763 struct vmap_block *vb;
764 unsigned long addr = 0;
765 unsigned int order;
767 BUG_ON(size & ~PAGE_MASK);
768 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
769 order = get_order(size);
771 again:
772 rcu_read_lock();
773 vbq = &get_cpu_var(vmap_block_queue);
774 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
775 int i;
777 spin_lock(&vb->lock);
778 i = bitmap_find_free_region(vb->alloc_map,
779 VMAP_BBMAP_BITS, order);
781 if (i >= 0) {
782 addr = vb->va->va_start + (i << PAGE_SHIFT);
783 BUG_ON(addr_to_vb_idx(addr) !=
784 addr_to_vb_idx(vb->va->va_start));
785 vb->free -= 1UL << order;
786 if (vb->free == 0) {
787 spin_lock(&vbq->lock);
788 list_del_init(&vb->free_list);
789 spin_unlock(&vbq->lock);
791 spin_unlock(&vb->lock);
792 break;
794 spin_unlock(&vb->lock);
796 put_cpu_var(vmap_cpu_blocks);
797 rcu_read_unlock();
799 if (!addr) {
800 vb = new_vmap_block(gfp_mask);
801 if (IS_ERR(vb))
802 return vb;
803 goto again;
806 return (void *)addr;
809 static void vb_free(const void *addr, unsigned long size)
811 unsigned long offset;
812 unsigned long vb_idx;
813 unsigned int order;
814 struct vmap_block *vb;
816 BUG_ON(size & ~PAGE_MASK);
817 BUG_ON(size > PAGE_SIZE*VMAP_MAX_ALLOC);
819 flush_cache_vunmap((unsigned long)addr, (unsigned long)addr + size);
821 order = get_order(size);
823 offset = (unsigned long)addr & (VMAP_BLOCK_SIZE - 1);
825 vb_idx = addr_to_vb_idx((unsigned long)addr);
826 rcu_read_lock();
827 vb = radix_tree_lookup(&vmap_block_tree, vb_idx);
828 rcu_read_unlock();
829 BUG_ON(!vb);
831 spin_lock(&vb->lock);
832 bitmap_allocate_region(vb->dirty_map, offset >> PAGE_SHIFT, order);
833 if (!vb->dirty) {
834 spin_lock(&vb->vbq->lock);
835 list_add(&vb->dirty_list, &vb->vbq->dirty);
836 spin_unlock(&vb->vbq->lock);
838 vb->dirty += 1UL << order;
839 if (vb->dirty == VMAP_BBMAP_BITS) {
840 BUG_ON(vb->free || !list_empty(&vb->free_list));
841 spin_unlock(&vb->lock);
842 free_vmap_block(vb);
843 } else
844 spin_unlock(&vb->lock);
848 * vm_unmap_aliases - unmap outstanding lazy aliases in the vmap layer
850 * The vmap/vmalloc layer lazily flushes kernel virtual mappings primarily
851 * to amortize TLB flushing overheads. What this means is that any page you
852 * have now, may, in a former life, have been mapped into kernel virtual
853 * address by the vmap layer and so there might be some CPUs with TLB entries
854 * still referencing that page (additional to the regular 1:1 kernel mapping).
856 * vm_unmap_aliases flushes all such lazy mappings. After it returns, we can
857 * be sure that none of the pages we have control over will have any aliases
858 * from the vmap layer.
860 void vm_unmap_aliases(void)
862 unsigned long start = ULONG_MAX, end = 0;
863 int cpu;
864 int flush = 0;
866 if (unlikely(!vmap_initialized))
867 return;
869 for_each_possible_cpu(cpu) {
870 struct vmap_block_queue *vbq = &per_cpu(vmap_block_queue, cpu);
871 struct vmap_block *vb;
873 rcu_read_lock();
874 list_for_each_entry_rcu(vb, &vbq->free, free_list) {
875 int i;
877 spin_lock(&vb->lock);
878 i = find_first_bit(vb->dirty_map, VMAP_BBMAP_BITS);
879 while (i < VMAP_BBMAP_BITS) {
880 unsigned long s, e;
881 int j;
882 j = find_next_zero_bit(vb->dirty_map,
883 VMAP_BBMAP_BITS, i);
885 s = vb->va->va_start + (i << PAGE_SHIFT);
886 e = vb->va->va_start + (j << PAGE_SHIFT);
887 vunmap_page_range(s, e);
888 flush = 1;
890 if (s < start)
891 start = s;
892 if (e > end)
893 end = e;
895 i = j;
896 i = find_next_bit(vb->dirty_map,
897 VMAP_BBMAP_BITS, i);
899 spin_unlock(&vb->lock);
901 rcu_read_unlock();
904 __purge_vmap_area_lazy(&start, &end, 1, flush);
906 EXPORT_SYMBOL_GPL(vm_unmap_aliases);
909 * vm_unmap_ram - unmap linear kernel address space set up by vm_map_ram
910 * @mem: the pointer returned by vm_map_ram
911 * @count: the count passed to that vm_map_ram call (cannot unmap partial)
913 void vm_unmap_ram(const void *mem, unsigned int count)
915 unsigned long size = count << PAGE_SHIFT;
916 unsigned long addr = (unsigned long)mem;
918 BUG_ON(!addr);
919 BUG_ON(addr < VMALLOC_START);
920 BUG_ON(addr > VMALLOC_END);
921 BUG_ON(addr & (PAGE_SIZE-1));
923 debug_check_no_locks_freed(mem, size);
925 if (likely(count <= VMAP_MAX_ALLOC))
926 vb_free(mem, size);
927 else
928 free_unmap_vmap_area_addr(addr);
930 EXPORT_SYMBOL(vm_unmap_ram);
933 * vm_map_ram - map pages linearly into kernel virtual address (vmalloc space)
934 * @pages: an array of pointers to the pages to be mapped
935 * @count: number of pages
936 * @node: prefer to allocate data structures on this node
937 * @prot: memory protection to use. PAGE_KERNEL for regular RAM
939 * Returns: a pointer to the address that has been mapped, or %NULL on failure
941 void *vm_map_ram(struct page **pages, unsigned int count, int node, pgprot_t prot)
943 unsigned long size = count << PAGE_SHIFT;
944 unsigned long addr;
945 void *mem;
947 if (likely(count <= VMAP_MAX_ALLOC)) {
948 mem = vb_alloc(size, GFP_KERNEL);
949 if (IS_ERR(mem))
950 return NULL;
951 addr = (unsigned long)mem;
952 } else {
953 struct vmap_area *va;
954 va = alloc_vmap_area(size, PAGE_SIZE,
955 VMALLOC_START, VMALLOC_END, node, GFP_KERNEL);
956 if (IS_ERR(va))
957 return NULL;
959 addr = va->va_start;
960 mem = (void *)addr;
962 if (vmap_page_range(addr, addr + size, prot, pages) < 0) {
963 vm_unmap_ram(mem, count);
964 return NULL;
966 return mem;
968 EXPORT_SYMBOL(vm_map_ram);
970 void __init vmalloc_init(void)
972 struct vmap_area *va;
973 struct vm_struct *tmp;
974 int i;
976 for_each_possible_cpu(i) {
977 struct vmap_block_queue *vbq;
979 vbq = &per_cpu(vmap_block_queue, i);
980 spin_lock_init(&vbq->lock);
981 INIT_LIST_HEAD(&vbq->free);
982 INIT_LIST_HEAD(&vbq->dirty);
983 vbq->nr_dirty = 0;
986 /* Import existing vmlist entries. */
987 for (tmp = vmlist; tmp; tmp = tmp->next) {
988 va = alloc_bootmem(sizeof(struct vmap_area));
989 va->flags = tmp->flags | VM_VM_AREA;
990 va->va_start = (unsigned long)tmp->addr;
991 va->va_end = va->va_start + tmp->size;
992 __insert_vmap_area(va);
994 vmap_initialized = true;
997 void unmap_kernel_range(unsigned long addr, unsigned long size)
999 unsigned long end = addr + size;
1001 flush_cache_vunmap(addr, end);
1002 vunmap_page_range(addr, end);
1003 flush_tlb_kernel_range(addr, end);
1006 int map_vm_area(struct vm_struct *area, pgprot_t prot, struct page ***pages)
1008 unsigned long addr = (unsigned long)area->addr;
1009 unsigned long end = addr + area->size - PAGE_SIZE;
1010 int err;
1012 err = vmap_page_range(addr, end, prot, *pages);
1013 if (err > 0) {
1014 *pages += err;
1015 err = 0;
1018 return err;
1020 EXPORT_SYMBOL_GPL(map_vm_area);
1022 /*** Old vmalloc interfaces ***/
1023 DEFINE_RWLOCK(vmlist_lock);
1024 struct vm_struct *vmlist;
1026 static struct vm_struct *__get_vm_area_node(unsigned long size,
1027 unsigned long flags, unsigned long start, unsigned long end,
1028 int node, gfp_t gfp_mask, void *caller)
1030 static struct vmap_area *va;
1031 struct vm_struct *area;
1032 struct vm_struct *tmp, **p;
1033 unsigned long align = 1;
1035 BUG_ON(in_interrupt());
1036 if (flags & VM_IOREMAP) {
1037 int bit = fls(size);
1039 if (bit > IOREMAP_MAX_ORDER)
1040 bit = IOREMAP_MAX_ORDER;
1041 else if (bit < PAGE_SHIFT)
1042 bit = PAGE_SHIFT;
1044 align = 1ul << bit;
1047 size = PAGE_ALIGN(size);
1048 if (unlikely(!size))
1049 return NULL;
1051 area = kmalloc_node(sizeof(*area), gfp_mask & GFP_RECLAIM_MASK, node);
1052 if (unlikely(!area))
1053 return NULL;
1056 * We always allocate a guard page.
1058 size += PAGE_SIZE;
1060 va = alloc_vmap_area(size, align, start, end, node, gfp_mask);
1061 if (IS_ERR(va)) {
1062 kfree(area);
1063 return NULL;
1066 area->flags = flags;
1067 area->addr = (void *)va->va_start;
1068 area->size = size;
1069 area->pages = NULL;
1070 area->nr_pages = 0;
1071 area->phys_addr = 0;
1072 area->caller = caller;
1073 va->private = area;
1074 va->flags |= VM_VM_AREA;
1076 write_lock(&vmlist_lock);
1077 for (p = &vmlist; (tmp = *p) != NULL; p = &tmp->next) {
1078 if (tmp->addr >= area->addr)
1079 break;
1081 area->next = *p;
1082 *p = area;
1083 write_unlock(&vmlist_lock);
1085 return area;
1088 struct vm_struct *__get_vm_area(unsigned long size, unsigned long flags,
1089 unsigned long start, unsigned long end)
1091 return __get_vm_area_node(size, flags, start, end, -1, GFP_KERNEL,
1092 __builtin_return_address(0));
1094 EXPORT_SYMBOL_GPL(__get_vm_area);
1097 * get_vm_area - reserve a contiguous kernel virtual area
1098 * @size: size of the area
1099 * @flags: %VM_IOREMAP for I/O mappings or VM_ALLOC
1101 * Search an area of @size in the kernel virtual mapping area,
1102 * and reserved it for out purposes. Returns the area descriptor
1103 * on success or %NULL on failure.
1105 struct vm_struct *get_vm_area(unsigned long size, unsigned long flags)
1107 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1108 -1, GFP_KERNEL, __builtin_return_address(0));
1111 struct vm_struct *get_vm_area_caller(unsigned long size, unsigned long flags,
1112 void *caller)
1114 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END,
1115 -1, GFP_KERNEL, caller);
1118 struct vm_struct *get_vm_area_node(unsigned long size, unsigned long flags,
1119 int node, gfp_t gfp_mask)
1121 return __get_vm_area_node(size, flags, VMALLOC_START, VMALLOC_END, node,
1122 gfp_mask, __builtin_return_address(0));
1125 static struct vm_struct *find_vm_area(const void *addr)
1127 struct vmap_area *va;
1129 va = find_vmap_area((unsigned long)addr);
1130 if (va && va->flags & VM_VM_AREA)
1131 return va->private;
1133 return NULL;
1137 * remove_vm_area - find and remove a continuous kernel virtual area
1138 * @addr: base address
1140 * Search for the kernel VM area starting at @addr, and remove it.
1141 * This function returns the found VM area, but using it is NOT safe
1142 * on SMP machines, except for its size or flags.
1144 struct vm_struct *remove_vm_area(const void *addr)
1146 struct vmap_area *va;
1148 va = find_vmap_area((unsigned long)addr);
1149 if (va && va->flags & VM_VM_AREA) {
1150 struct vm_struct *vm = va->private;
1151 struct vm_struct *tmp, **p;
1152 free_unmap_vmap_area(va);
1153 vm->size -= PAGE_SIZE;
1155 write_lock(&vmlist_lock);
1156 for (p = &vmlist; (tmp = *p) != vm; p = &tmp->next)
1158 *p = tmp->next;
1159 write_unlock(&vmlist_lock);
1161 return vm;
1163 return NULL;
1166 static void __vunmap(const void *addr, int deallocate_pages)
1168 struct vm_struct *area;
1170 if (!addr)
1171 return;
1173 if ((PAGE_SIZE-1) & (unsigned long)addr) {
1174 WARN(1, KERN_ERR "Trying to vfree() bad address (%p)\n", addr);
1175 return;
1178 area = remove_vm_area(addr);
1179 if (unlikely(!area)) {
1180 WARN(1, KERN_ERR "Trying to vfree() nonexistent vm area (%p)\n",
1181 addr);
1182 return;
1185 debug_check_no_locks_freed(addr, area->size);
1186 debug_check_no_obj_freed(addr, area->size);
1188 if (deallocate_pages) {
1189 int i;
1191 for (i = 0; i < area->nr_pages; i++) {
1192 struct page *page = area->pages[i];
1194 BUG_ON(!page);
1195 __free_page(page);
1198 if (area->flags & VM_VPAGES)
1199 vfree(area->pages);
1200 else
1201 kfree(area->pages);
1204 kfree(area);
1205 return;
1209 * vfree - release memory allocated by vmalloc()
1210 * @addr: memory base address
1212 * Free the virtually continuous memory area starting at @addr, as
1213 * obtained from vmalloc(), vmalloc_32() or __vmalloc(). If @addr is
1214 * NULL, no operation is performed.
1216 * Must not be called in interrupt context.
1218 void vfree(const void *addr)
1220 BUG_ON(in_interrupt());
1221 __vunmap(addr, 1);
1223 EXPORT_SYMBOL(vfree);
1226 * vunmap - release virtual mapping obtained by vmap()
1227 * @addr: memory base address
1229 * Free the virtually contiguous memory area starting at @addr,
1230 * which was created from the page array passed to vmap().
1232 * Must not be called in interrupt context.
1234 void vunmap(const void *addr)
1236 BUG_ON(in_interrupt());
1237 __vunmap(addr, 0);
1239 EXPORT_SYMBOL(vunmap);
1242 * vmap - map an array of pages into virtually contiguous space
1243 * @pages: array of page pointers
1244 * @count: number of pages to map
1245 * @flags: vm_area->flags
1246 * @prot: page protection for the mapping
1248 * Maps @count pages from @pages into contiguous kernel virtual
1249 * space.
1251 void *vmap(struct page **pages, unsigned int count,
1252 unsigned long flags, pgprot_t prot)
1254 struct vm_struct *area;
1256 if (count > num_physpages)
1257 return NULL;
1259 area = get_vm_area_caller((count << PAGE_SHIFT), flags,
1260 __builtin_return_address(0));
1261 if (!area)
1262 return NULL;
1264 if (map_vm_area(area, prot, &pages)) {
1265 vunmap(area->addr);
1266 return NULL;
1269 return area->addr;
1271 EXPORT_SYMBOL(vmap);
1273 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1274 int node, void *caller);
1275 static void *__vmalloc_area_node(struct vm_struct *area, gfp_t gfp_mask,
1276 pgprot_t prot, int node, void *caller)
1278 struct page **pages;
1279 unsigned int nr_pages, array_size, i;
1281 nr_pages = (area->size - PAGE_SIZE) >> PAGE_SHIFT;
1282 array_size = (nr_pages * sizeof(struct page *));
1284 area->nr_pages = nr_pages;
1285 /* Please note that the recursion is strictly bounded. */
1286 if (array_size > PAGE_SIZE) {
1287 pages = __vmalloc_node(array_size, gfp_mask | __GFP_ZERO,
1288 PAGE_KERNEL, node, caller);
1289 area->flags |= VM_VPAGES;
1290 } else {
1291 pages = kmalloc_node(array_size,
1292 (gfp_mask & GFP_RECLAIM_MASK) | __GFP_ZERO,
1293 node);
1295 area->pages = pages;
1296 area->caller = caller;
1297 if (!area->pages) {
1298 remove_vm_area(area->addr);
1299 kfree(area);
1300 return NULL;
1303 for (i = 0; i < area->nr_pages; i++) {
1304 struct page *page;
1306 if (node < 0)
1307 page = alloc_page(gfp_mask);
1308 else
1309 page = alloc_pages_node(node, gfp_mask, 0);
1311 if (unlikely(!page)) {
1312 /* Successfully allocated i pages, free them in __vunmap() */
1313 area->nr_pages = i;
1314 goto fail;
1316 area->pages[i] = page;
1319 if (map_vm_area(area, prot, &pages))
1320 goto fail;
1321 return area->addr;
1323 fail:
1324 vfree(area->addr);
1325 return NULL;
1328 void *__vmalloc_area(struct vm_struct *area, gfp_t gfp_mask, pgprot_t prot)
1330 return __vmalloc_area_node(area, gfp_mask, prot, -1,
1331 __builtin_return_address(0));
1335 * __vmalloc_node - allocate virtually contiguous memory
1336 * @size: allocation size
1337 * @gfp_mask: flags for the page level allocator
1338 * @prot: protection mask for the allocated pages
1339 * @node: node to use for allocation or -1
1340 * @caller: caller's return address
1342 * Allocate enough pages to cover @size from the page level
1343 * allocator with @gfp_mask flags. Map them into contiguous
1344 * kernel virtual space, using a pagetable protection of @prot.
1346 static void *__vmalloc_node(unsigned long size, gfp_t gfp_mask, pgprot_t prot,
1347 int node, void *caller)
1349 struct vm_struct *area;
1351 size = PAGE_ALIGN(size);
1352 if (!size || (size >> PAGE_SHIFT) > num_physpages)
1353 return NULL;
1355 area = __get_vm_area_node(size, VM_ALLOC, VMALLOC_START, VMALLOC_END,
1356 node, gfp_mask, caller);
1358 if (!area)
1359 return NULL;
1361 return __vmalloc_area_node(area, gfp_mask, prot, node, caller);
1364 void *__vmalloc(unsigned long size, gfp_t gfp_mask, pgprot_t prot)
1366 return __vmalloc_node(size, gfp_mask, prot, -1,
1367 __builtin_return_address(0));
1369 EXPORT_SYMBOL(__vmalloc);
1372 * vmalloc - allocate virtually contiguous memory
1373 * @size: allocation size
1374 * Allocate enough pages to cover @size from the page level
1375 * allocator and map them into contiguous kernel virtual space.
1377 * For tight control over page level allocator and protection flags
1378 * use __vmalloc() instead.
1380 void *vmalloc(unsigned long size)
1382 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1383 -1, __builtin_return_address(0));
1385 EXPORT_SYMBOL(vmalloc);
1388 * vmalloc_user - allocate zeroed virtually contiguous memory for userspace
1389 * @size: allocation size
1391 * The resulting memory area is zeroed so it can be mapped to userspace
1392 * without leaking data.
1394 void *vmalloc_user(unsigned long size)
1396 struct vm_struct *area;
1397 void *ret;
1399 ret = __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM | __GFP_ZERO, PAGE_KERNEL);
1400 if (ret) {
1401 area = find_vm_area(ret);
1402 area->flags |= VM_USERMAP;
1404 return ret;
1406 EXPORT_SYMBOL(vmalloc_user);
1409 * vmalloc_node - allocate memory on a specific node
1410 * @size: allocation size
1411 * @node: numa node
1413 * Allocate enough pages to cover @size from the page level
1414 * allocator and map them into contiguous kernel virtual space.
1416 * For tight control over page level allocator and protection flags
1417 * use __vmalloc() instead.
1419 void *vmalloc_node(unsigned long size, int node)
1421 return __vmalloc_node(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL,
1422 node, __builtin_return_address(0));
1424 EXPORT_SYMBOL(vmalloc_node);
1426 #ifndef PAGE_KERNEL_EXEC
1427 # define PAGE_KERNEL_EXEC PAGE_KERNEL
1428 #endif
1431 * vmalloc_exec - allocate virtually contiguous, executable memory
1432 * @size: allocation size
1434 * Kernel-internal function to allocate enough pages to cover @size
1435 * the page level allocator and map them into contiguous and
1436 * executable kernel virtual space.
1438 * For tight control over page level allocator and protection flags
1439 * use __vmalloc() instead.
1442 void *vmalloc_exec(unsigned long size)
1444 return __vmalloc(size, GFP_KERNEL | __GFP_HIGHMEM, PAGE_KERNEL_EXEC);
1447 #if defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA32)
1448 #define GFP_VMALLOC32 GFP_DMA32 | GFP_KERNEL
1449 #elif defined(CONFIG_64BIT) && defined(CONFIG_ZONE_DMA)
1450 #define GFP_VMALLOC32 GFP_DMA | GFP_KERNEL
1451 #else
1452 #define GFP_VMALLOC32 GFP_KERNEL
1453 #endif
1456 * vmalloc_32 - allocate virtually contiguous memory (32bit addressable)
1457 * @size: allocation size
1459 * Allocate enough 32bit PA addressable pages to cover @size from the
1460 * page level allocator and map them into contiguous kernel virtual space.
1462 void *vmalloc_32(unsigned long size)
1464 return __vmalloc(size, GFP_VMALLOC32, PAGE_KERNEL);
1466 EXPORT_SYMBOL(vmalloc_32);
1469 * vmalloc_32_user - allocate zeroed virtually contiguous 32bit memory
1470 * @size: allocation size
1472 * The resulting memory area is 32bit addressable and zeroed so it can be
1473 * mapped to userspace without leaking data.
1475 void *vmalloc_32_user(unsigned long size)
1477 struct vm_struct *area;
1478 void *ret;
1480 ret = __vmalloc(size, GFP_VMALLOC32 | __GFP_ZERO, PAGE_KERNEL);
1481 if (ret) {
1482 area = find_vm_area(ret);
1483 area->flags |= VM_USERMAP;
1485 return ret;
1487 EXPORT_SYMBOL(vmalloc_32_user);
1489 long vread(char *buf, char *addr, unsigned long count)
1491 struct vm_struct *tmp;
1492 char *vaddr, *buf_start = buf;
1493 unsigned long n;
1495 /* Don't allow overflow */
1496 if ((unsigned long) addr + count < count)
1497 count = -(unsigned long) addr;
1499 read_lock(&vmlist_lock);
1500 for (tmp = vmlist; tmp; tmp = tmp->next) {
1501 vaddr = (char *) tmp->addr;
1502 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1503 continue;
1504 while (addr < vaddr) {
1505 if (count == 0)
1506 goto finished;
1507 *buf = '\0';
1508 buf++;
1509 addr++;
1510 count--;
1512 n = vaddr + tmp->size - PAGE_SIZE - addr;
1513 do {
1514 if (count == 0)
1515 goto finished;
1516 *buf = *addr;
1517 buf++;
1518 addr++;
1519 count--;
1520 } while (--n > 0);
1522 finished:
1523 read_unlock(&vmlist_lock);
1524 return buf - buf_start;
1527 long vwrite(char *buf, char *addr, unsigned long count)
1529 struct vm_struct *tmp;
1530 char *vaddr, *buf_start = buf;
1531 unsigned long n;
1533 /* Don't allow overflow */
1534 if ((unsigned long) addr + count < count)
1535 count = -(unsigned long) addr;
1537 read_lock(&vmlist_lock);
1538 for (tmp = vmlist; tmp; tmp = tmp->next) {
1539 vaddr = (char *) tmp->addr;
1540 if (addr >= vaddr + tmp->size - PAGE_SIZE)
1541 continue;
1542 while (addr < vaddr) {
1543 if (count == 0)
1544 goto finished;
1545 buf++;
1546 addr++;
1547 count--;
1549 n = vaddr + tmp->size - PAGE_SIZE - addr;
1550 do {
1551 if (count == 0)
1552 goto finished;
1553 *addr = *buf;
1554 buf++;
1555 addr++;
1556 count--;
1557 } while (--n > 0);
1559 finished:
1560 read_unlock(&vmlist_lock);
1561 return buf - buf_start;
1565 * remap_vmalloc_range - map vmalloc pages to userspace
1566 * @vma: vma to cover (map full range of vma)
1567 * @addr: vmalloc memory
1568 * @pgoff: number of pages into addr before first page to map
1570 * Returns: 0 for success, -Exxx on failure
1572 * This function checks that addr is a valid vmalloc'ed area, and
1573 * that it is big enough to cover the vma. Will return failure if
1574 * that criteria isn't met.
1576 * Similar to remap_pfn_range() (see mm/memory.c)
1578 int remap_vmalloc_range(struct vm_area_struct *vma, void *addr,
1579 unsigned long pgoff)
1581 struct vm_struct *area;
1582 unsigned long uaddr = vma->vm_start;
1583 unsigned long usize = vma->vm_end - vma->vm_start;
1585 if ((PAGE_SIZE-1) & (unsigned long)addr)
1586 return -EINVAL;
1588 area = find_vm_area(addr);
1589 if (!area)
1590 return -EINVAL;
1592 if (!(area->flags & VM_USERMAP))
1593 return -EINVAL;
1595 if (usize + (pgoff << PAGE_SHIFT) > area->size - PAGE_SIZE)
1596 return -EINVAL;
1598 addr += pgoff << PAGE_SHIFT;
1599 do {
1600 struct page *page = vmalloc_to_page(addr);
1601 int ret;
1603 ret = vm_insert_page(vma, uaddr, page);
1604 if (ret)
1605 return ret;
1607 uaddr += PAGE_SIZE;
1608 addr += PAGE_SIZE;
1609 usize -= PAGE_SIZE;
1610 } while (usize > 0);
1612 /* Prevent "things" like memory migration? VM_flags need a cleanup... */
1613 vma->vm_flags |= VM_RESERVED;
1615 return 0;
1617 EXPORT_SYMBOL(remap_vmalloc_range);
1620 * Implement a stub for vmalloc_sync_all() if the architecture chose not to
1621 * have one.
1623 void __attribute__((weak)) vmalloc_sync_all(void)
1628 static int f(pte_t *pte, pgtable_t table, unsigned long addr, void *data)
1630 /* apply_to_page_range() does all the hard work. */
1631 return 0;
1635 * alloc_vm_area - allocate a range of kernel address space
1636 * @size: size of the area
1638 * Returns: NULL on failure, vm_struct on success
1640 * This function reserves a range of kernel address space, and
1641 * allocates pagetables to map that range. No actual mappings
1642 * are created. If the kernel address space is not shared
1643 * between processes, it syncs the pagetable across all
1644 * processes.
1646 struct vm_struct *alloc_vm_area(size_t size)
1648 struct vm_struct *area;
1650 area = get_vm_area_caller(size, VM_IOREMAP,
1651 __builtin_return_address(0));
1652 if (area == NULL)
1653 return NULL;
1656 * This ensures that page tables are constructed for this region
1657 * of kernel virtual address space and mapped into init_mm.
1659 if (apply_to_page_range(&init_mm, (unsigned long)area->addr,
1660 area->size, f, NULL)) {
1661 free_vm_area(area);
1662 return NULL;
1665 /* Make sure the pagetables are constructed in process kernel
1666 mappings */
1667 vmalloc_sync_all();
1669 return area;
1671 EXPORT_SYMBOL_GPL(alloc_vm_area);
1673 void free_vm_area(struct vm_struct *area)
1675 struct vm_struct *ret;
1676 ret = remove_vm_area(area->addr);
1677 BUG_ON(ret != area);
1678 kfree(area);
1680 EXPORT_SYMBOL_GPL(free_vm_area);
1683 #ifdef CONFIG_PROC_FS
1684 static void *s_start(struct seq_file *m, loff_t *pos)
1686 loff_t n = *pos;
1687 struct vm_struct *v;
1689 read_lock(&vmlist_lock);
1690 v = vmlist;
1691 while (n > 0 && v) {
1692 n--;
1693 v = v->next;
1695 if (!n)
1696 return v;
1698 return NULL;
1702 static void *s_next(struct seq_file *m, void *p, loff_t *pos)
1704 struct vm_struct *v = p;
1706 ++*pos;
1707 return v->next;
1710 static void s_stop(struct seq_file *m, void *p)
1712 read_unlock(&vmlist_lock);
1715 static void show_numa_info(struct seq_file *m, struct vm_struct *v)
1717 if (NUMA_BUILD) {
1718 unsigned int nr, *counters = m->private;
1720 if (!counters)
1721 return;
1723 memset(counters, 0, nr_node_ids * sizeof(unsigned int));
1725 for (nr = 0; nr < v->nr_pages; nr++)
1726 counters[page_to_nid(v->pages[nr])]++;
1728 for_each_node_state(nr, N_HIGH_MEMORY)
1729 if (counters[nr])
1730 seq_printf(m, " N%u=%u", nr, counters[nr]);
1734 static int s_show(struct seq_file *m, void *p)
1736 struct vm_struct *v = p;
1738 seq_printf(m, "0x%p-0x%p %7ld",
1739 v->addr, v->addr + v->size, v->size);
1741 if (v->caller) {
1742 char buff[KSYM_SYMBOL_LEN];
1744 seq_putc(m, ' ');
1745 sprint_symbol(buff, (unsigned long)v->caller);
1746 seq_puts(m, buff);
1749 if (v->nr_pages)
1750 seq_printf(m, " pages=%d", v->nr_pages);
1752 if (v->phys_addr)
1753 seq_printf(m, " phys=%lx", v->phys_addr);
1755 if (v->flags & VM_IOREMAP)
1756 seq_printf(m, " ioremap");
1758 if (v->flags & VM_ALLOC)
1759 seq_printf(m, " vmalloc");
1761 if (v->flags & VM_MAP)
1762 seq_printf(m, " vmap");
1764 if (v->flags & VM_USERMAP)
1765 seq_printf(m, " user");
1767 if (v->flags & VM_VPAGES)
1768 seq_printf(m, " vpages");
1770 show_numa_info(m, v);
1771 seq_putc(m, '\n');
1772 return 0;
1775 static const struct seq_operations vmalloc_op = {
1776 .start = s_start,
1777 .next = s_next,
1778 .stop = s_stop,
1779 .show = s_show,
1782 static int vmalloc_open(struct inode *inode, struct file *file)
1784 unsigned int *ptr = NULL;
1785 int ret;
1787 if (NUMA_BUILD)
1788 ptr = kmalloc(nr_node_ids * sizeof(unsigned int), GFP_KERNEL);
1789 ret = seq_open(file, &vmalloc_op);
1790 if (!ret) {
1791 struct seq_file *m = file->private_data;
1792 m->private = ptr;
1793 } else
1794 kfree(ptr);
1795 return ret;
1798 static const struct file_operations proc_vmalloc_operations = {
1799 .open = vmalloc_open,
1800 .read = seq_read,
1801 .llseek = seq_lseek,
1802 .release = seq_release_private,
1805 static int __init proc_vmalloc_init(void)
1807 proc_create("vmallocinfo", S_IRUSR, NULL, &proc_vmalloc_operations);
1808 return 0;
1810 module_init(proc_vmalloc_init);
1811 #endif