2 * Driver for Atmel AT32 and AT91 SPI Controllers
4 * Copyright (C) 2006 Atmel Corporation
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License version 2 as
8 * published by the Free Software Foundation.
11 #include <linux/kernel.h>
12 #include <linux/init.h>
13 #include <linux/clk.h>
14 #include <linux/module.h>
15 #include <linux/platform_device.h>
16 #include <linux/delay.h>
17 #include <linux/dma-mapping.h>
18 #include <linux/err.h>
19 #include <linux/interrupt.h>
20 #include <linux/spi/spi.h>
21 #include <linux/slab.h>
24 #include <mach/board.h>
25 #include <mach/gpio.h>
28 #include "atmel_spi.h"
31 * The core SPI transfer engine just talks to a register bank to set up
32 * DMA transfers; transfer queue progress is driven by IRQs. The clock
33 * framework provides the base clock, subdivided for each spi_device.
41 struct platform_device
*pdev
;
42 struct spi_device
*stay
;
45 struct list_head queue
;
46 struct spi_transfer
*current_transfer
;
47 unsigned long current_remaining_bytes
;
48 struct spi_transfer
*next_transfer
;
49 unsigned long next_remaining_bytes
;
52 dma_addr_t buffer_dma
;
55 /* Controller-specific per-slave state */
56 struct atmel_spi_device
{
57 unsigned int npcs_pin
;
61 #define BUFFER_SIZE PAGE_SIZE
62 #define INVALID_DMA_ADDRESS 0xffffffff
65 * Version 2 of the SPI controller has
67 * - SPI_MR.DIV32 may become FDIV or must-be-zero (here: always zero)
68 * - SPI_SR.TXEMPTY, SPI_SR.NSSR (and corresponding irqs)
70 * - SPI_CSRx.SBCR allows faster clocking
72 * We can determine the controller version by reading the VERSION
73 * register, but I haven't checked that it exists on all chips, and
74 * this is cheaper anyway.
76 static bool atmel_spi_is_v2(void)
78 return !cpu_is_at91rm9200();
82 * Earlier SPI controllers (e.g. on at91rm9200) have a design bug whereby
83 * they assume that spi slave device state will not change on deselect, so
84 * that automagic deselection is OK. ("NPCSx rises if no data is to be
85 * transmitted") Not so! Workaround uses nCSx pins as GPIOs; or newer
86 * controllers have CSAAT and friends.
88 * Since the CSAAT functionality is a bit weird on newer controllers as
89 * well, we use GPIO to control nCSx pins on all controllers, updating
90 * MR.PCS to avoid confusing the controller. Using GPIOs also lets us
91 * support active-high chipselects despite the controller's belief that
92 * only active-low devices/systems exists.
94 * However, at91rm9200 has a second erratum whereby nCS0 doesn't work
95 * right when driven with GPIO. ("Mode Fault does not allow more than one
96 * Master on Chip Select 0.") No workaround exists for that ... so for
97 * nCS0 on that chip, we (a) don't use the GPIO, (b) can't support CS_HIGH,
98 * and (c) will trigger that first erratum in some cases.
100 * TODO: Test if the atmel_spi_is_v2() branch below works on
101 * AT91RM9200 if we use some other register than CSR0. However, don't
102 * do this unconditionally since AP7000 has an errata where the BITS
103 * field in CSR0 overrides all other CSRs.
106 static void cs_activate(struct atmel_spi
*as
, struct spi_device
*spi
)
108 struct atmel_spi_device
*asd
= spi
->controller_state
;
109 unsigned active
= spi
->mode
& SPI_CS_HIGH
;
112 if (atmel_spi_is_v2()) {
114 * Always use CSR0. This ensures that the clock
115 * switches to the correct idle polarity before we
118 spi_writel(as
, CSR0
, asd
->csr
);
119 spi_writel(as
, MR
, SPI_BF(PCS
, 0x0e) | SPI_BIT(MODFDIS
)
121 mr
= spi_readl(as
, MR
);
122 gpio_set_value(asd
->npcs_pin
, active
);
124 u32 cpol
= (spi
->mode
& SPI_CPOL
) ? SPI_BIT(CPOL
) : 0;
128 /* Make sure clock polarity is correct */
129 for (i
= 0; i
< spi
->master
->num_chipselect
; i
++) {
130 csr
= spi_readl(as
, CSR0
+ 4 * i
);
131 if ((csr
^ cpol
) & SPI_BIT(CPOL
))
132 spi_writel(as
, CSR0
+ 4 * i
,
133 csr
^ SPI_BIT(CPOL
));
136 mr
= spi_readl(as
, MR
);
137 mr
= SPI_BFINS(PCS
, ~(1 << spi
->chip_select
), mr
);
138 if (spi
->chip_select
!= 0)
139 gpio_set_value(asd
->npcs_pin
, active
);
140 spi_writel(as
, MR
, mr
);
143 dev_dbg(&spi
->dev
, "activate %u%s, mr %08x\n",
144 asd
->npcs_pin
, active
? " (high)" : "",
148 static void cs_deactivate(struct atmel_spi
*as
, struct spi_device
*spi
)
150 struct atmel_spi_device
*asd
= spi
->controller_state
;
151 unsigned active
= spi
->mode
& SPI_CS_HIGH
;
154 /* only deactivate *this* device; sometimes transfers to
155 * another device may be active when this routine is called.
157 mr
= spi_readl(as
, MR
);
158 if (~SPI_BFEXT(PCS
, mr
) & (1 << spi
->chip_select
)) {
159 mr
= SPI_BFINS(PCS
, 0xf, mr
);
160 spi_writel(as
, MR
, mr
);
163 dev_dbg(&spi
->dev
, "DEactivate %u%s, mr %08x\n",
164 asd
->npcs_pin
, active
? " (low)" : "",
167 if (atmel_spi_is_v2() || spi
->chip_select
!= 0)
168 gpio_set_value(asd
->npcs_pin
, !active
);
171 static inline int atmel_spi_xfer_is_last(struct spi_message
*msg
,
172 struct spi_transfer
*xfer
)
174 return msg
->transfers
.prev
== &xfer
->transfer_list
;
177 static inline int atmel_spi_xfer_can_be_chained(struct spi_transfer
*xfer
)
179 return xfer
->delay_usecs
== 0 && !xfer
->cs_change
;
182 static void atmel_spi_next_xfer_data(struct spi_master
*master
,
183 struct spi_transfer
*xfer
,
188 struct atmel_spi
*as
= spi_master_get_devdata(master
);
191 /* use scratch buffer only when rx or tx data is unspecified */
193 *rx_dma
= xfer
->rx_dma
+ xfer
->len
- *plen
;
195 *rx_dma
= as
->buffer_dma
;
196 if (len
> BUFFER_SIZE
)
200 *tx_dma
= xfer
->tx_dma
+ xfer
->len
- *plen
;
202 *tx_dma
= as
->buffer_dma
;
203 if (len
> BUFFER_SIZE
)
205 memset(as
->buffer
, 0, len
);
206 dma_sync_single_for_device(&as
->pdev
->dev
,
207 as
->buffer_dma
, len
, DMA_TO_DEVICE
);
214 * Submit next transfer for DMA.
215 * lock is held, spi irq is blocked
217 static void atmel_spi_next_xfer(struct spi_master
*master
,
218 struct spi_message
*msg
)
220 struct atmel_spi
*as
= spi_master_get_devdata(master
);
221 struct spi_transfer
*xfer
;
224 dma_addr_t tx_dma
, rx_dma
;
226 if (!as
->current_transfer
)
227 xfer
= list_entry(msg
->transfers
.next
,
228 struct spi_transfer
, transfer_list
);
229 else if (!as
->next_transfer
)
230 xfer
= list_entry(as
->current_transfer
->transfer_list
.next
,
231 struct spi_transfer
, transfer_list
);
236 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
239 atmel_spi_next_xfer_data(master
, xfer
, &tx_dma
, &rx_dma
, &len
);
240 remaining
= xfer
->len
- len
;
242 spi_writel(as
, RPR
, rx_dma
);
243 spi_writel(as
, TPR
, tx_dma
);
245 if (msg
->spi
->bits_per_word
> 8)
247 spi_writel(as
, RCR
, len
);
248 spi_writel(as
, TCR
, len
);
250 dev_dbg(&msg
->spi
->dev
,
251 " start xfer %p: len %u tx %p/%08x rx %p/%08x\n",
252 xfer
, xfer
->len
, xfer
->tx_buf
, xfer
->tx_dma
,
253 xfer
->rx_buf
, xfer
->rx_dma
);
255 xfer
= as
->next_transfer
;
256 remaining
= as
->next_remaining_bytes
;
259 as
->current_transfer
= xfer
;
260 as
->current_remaining_bytes
= remaining
;
264 else if (!atmel_spi_xfer_is_last(msg
, xfer
)
265 && atmel_spi_xfer_can_be_chained(xfer
)) {
266 xfer
= list_entry(xfer
->transfer_list
.next
,
267 struct spi_transfer
, transfer_list
);
272 as
->next_transfer
= xfer
;
278 atmel_spi_next_xfer_data(master
, xfer
, &tx_dma
, &rx_dma
, &len
);
279 as
->next_remaining_bytes
= total
- len
;
281 spi_writel(as
, RNPR
, rx_dma
);
282 spi_writel(as
, TNPR
, tx_dma
);
284 if (msg
->spi
->bits_per_word
> 8)
286 spi_writel(as
, RNCR
, len
);
287 spi_writel(as
, TNCR
, len
);
289 dev_dbg(&msg
->spi
->dev
,
290 " next xfer %p: len %u tx %p/%08x rx %p/%08x\n",
291 xfer
, xfer
->len
, xfer
->tx_buf
, xfer
->tx_dma
,
292 xfer
->rx_buf
, xfer
->rx_dma
);
293 ieval
= SPI_BIT(ENDRX
) | SPI_BIT(OVRES
);
295 spi_writel(as
, RNCR
, 0);
296 spi_writel(as
, TNCR
, 0);
297 ieval
= SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
) | SPI_BIT(OVRES
);
300 /* REVISIT: We're waiting for ENDRX before we start the next
301 * transfer because we need to handle some difficult timing
302 * issues otherwise. If we wait for ENDTX in one transfer and
303 * then starts waiting for ENDRX in the next, it's difficult
304 * to tell the difference between the ENDRX interrupt we're
305 * actually waiting for and the ENDRX interrupt of the
308 * It should be doable, though. Just not now...
310 spi_writel(as
, IER
, ieval
);
311 spi_writel(as
, PTCR
, SPI_BIT(TXTEN
) | SPI_BIT(RXTEN
));
314 static void atmel_spi_next_message(struct spi_master
*master
)
316 struct atmel_spi
*as
= spi_master_get_devdata(master
);
317 struct spi_message
*msg
;
318 struct spi_device
*spi
;
320 BUG_ON(as
->current_transfer
);
322 msg
= list_entry(as
->queue
.next
, struct spi_message
, queue
);
325 dev_dbg(master
->dev
.parent
, "start message %p for %s\n",
326 msg
, dev_name(&spi
->dev
));
328 /* select chip if it's not still active */
330 if (as
->stay
!= spi
) {
331 cs_deactivate(as
, as
->stay
);
332 cs_activate(as
, spi
);
336 cs_activate(as
, spi
);
338 atmel_spi_next_xfer(master
, msg
);
342 * For DMA, tx_buf/tx_dma have the same relationship as rx_buf/rx_dma:
343 * - The buffer is either valid for CPU access, else NULL
344 * - If the buffer is valid, so is its DMA addresss
346 * This driver manages the dma addresss unless message->is_dma_mapped.
349 atmel_spi_dma_map_xfer(struct atmel_spi
*as
, struct spi_transfer
*xfer
)
351 struct device
*dev
= &as
->pdev
->dev
;
353 xfer
->tx_dma
= xfer
->rx_dma
= INVALID_DMA_ADDRESS
;
355 xfer
->tx_dma
= dma_map_single(dev
,
356 (void *) xfer
->tx_buf
, xfer
->len
,
358 if (dma_mapping_error(dev
, xfer
->tx_dma
))
362 xfer
->rx_dma
= dma_map_single(dev
,
363 xfer
->rx_buf
, xfer
->len
,
365 if (dma_mapping_error(dev
, xfer
->rx_dma
)) {
367 dma_unmap_single(dev
,
368 xfer
->tx_dma
, xfer
->len
,
376 static void atmel_spi_dma_unmap_xfer(struct spi_master
*master
,
377 struct spi_transfer
*xfer
)
379 if (xfer
->tx_dma
!= INVALID_DMA_ADDRESS
)
380 dma_unmap_single(master
->dev
.parent
, xfer
->tx_dma
,
381 xfer
->len
, DMA_TO_DEVICE
);
382 if (xfer
->rx_dma
!= INVALID_DMA_ADDRESS
)
383 dma_unmap_single(master
->dev
.parent
, xfer
->rx_dma
,
384 xfer
->len
, DMA_FROM_DEVICE
);
388 atmel_spi_msg_done(struct spi_master
*master
, struct atmel_spi
*as
,
389 struct spi_message
*msg
, int status
, int stay
)
391 if (!stay
|| status
< 0)
392 cs_deactivate(as
, msg
->spi
);
396 list_del(&msg
->queue
);
397 msg
->status
= status
;
399 dev_dbg(master
->dev
.parent
,
400 "xfer complete: %u bytes transferred\n",
403 spin_unlock(&as
->lock
);
404 msg
->complete(msg
->context
);
405 spin_lock(&as
->lock
);
407 as
->current_transfer
= NULL
;
408 as
->next_transfer
= NULL
;
410 /* continue if needed */
411 if (list_empty(&as
->queue
) || as
->stopping
)
412 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
414 atmel_spi_next_message(master
);
418 atmel_spi_interrupt(int irq
, void *dev_id
)
420 struct spi_master
*master
= dev_id
;
421 struct atmel_spi
*as
= spi_master_get_devdata(master
);
422 struct spi_message
*msg
;
423 struct spi_transfer
*xfer
;
424 u32 status
, pending
, imr
;
427 spin_lock(&as
->lock
);
429 xfer
= as
->current_transfer
;
430 msg
= list_entry(as
->queue
.next
, struct spi_message
, queue
);
432 imr
= spi_readl(as
, IMR
);
433 status
= spi_readl(as
, SR
);
434 pending
= status
& imr
;
436 if (pending
& SPI_BIT(OVRES
)) {
441 spi_writel(as
, IDR
, (SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
)
445 * When we get an overrun, we disregard the current
446 * transfer. Data will not be copied back from any
447 * bounce buffer and msg->actual_len will not be
448 * updated with the last xfer.
450 * We will also not process any remaning transfers in
453 * First, stop the transfer and unmap the DMA buffers.
455 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
456 if (!msg
->is_dma_mapped
)
457 atmel_spi_dma_unmap_xfer(master
, xfer
);
459 /* REVISIT: udelay in irq is unfriendly */
460 if (xfer
->delay_usecs
)
461 udelay(xfer
->delay_usecs
);
463 dev_warn(master
->dev
.parent
, "overrun (%u/%u remaining)\n",
464 spi_readl(as
, TCR
), spi_readl(as
, RCR
));
467 * Clean up DMA registers and make sure the data
468 * registers are empty.
470 spi_writel(as
, RNCR
, 0);
471 spi_writel(as
, TNCR
, 0);
472 spi_writel(as
, RCR
, 0);
473 spi_writel(as
, TCR
, 0);
474 for (timeout
= 1000; timeout
; timeout
--)
475 if (spi_readl(as
, SR
) & SPI_BIT(TXEMPTY
))
478 dev_warn(master
->dev
.parent
,
479 "timeout waiting for TXEMPTY");
480 while (spi_readl(as
, SR
) & SPI_BIT(RDRF
))
483 /* Clear any overrun happening while cleaning up */
486 atmel_spi_msg_done(master
, as
, msg
, -EIO
, 0);
487 } else if (pending
& (SPI_BIT(RXBUFF
) | SPI_BIT(ENDRX
))) {
490 spi_writel(as
, IDR
, pending
);
492 if (as
->current_remaining_bytes
== 0) {
493 msg
->actual_length
+= xfer
->len
;
495 if (!msg
->is_dma_mapped
)
496 atmel_spi_dma_unmap_xfer(master
, xfer
);
498 /* REVISIT: udelay in irq is unfriendly */
499 if (xfer
->delay_usecs
)
500 udelay(xfer
->delay_usecs
);
502 if (atmel_spi_xfer_is_last(msg
, xfer
)) {
503 /* report completed message */
504 atmel_spi_msg_done(master
, as
, msg
, 0,
507 if (xfer
->cs_change
) {
508 cs_deactivate(as
, msg
->spi
);
510 cs_activate(as
, msg
->spi
);
514 * Not done yet. Submit the next transfer.
516 * FIXME handle protocol options for xfer
518 atmel_spi_next_xfer(master
, msg
);
522 * Keep going, we still have data to send in
523 * the current transfer.
525 atmel_spi_next_xfer(master
, msg
);
529 spin_unlock(&as
->lock
);
534 static int atmel_spi_setup(struct spi_device
*spi
)
536 struct atmel_spi
*as
;
537 struct atmel_spi_device
*asd
;
539 unsigned int bits
= spi
->bits_per_word
;
540 unsigned long bus_hz
;
541 unsigned int npcs_pin
;
544 as
= spi_master_get_devdata(spi
->master
);
549 if (spi
->chip_select
> spi
->master
->num_chipselect
) {
551 "setup: invalid chipselect %u (%u defined)\n",
552 spi
->chip_select
, spi
->master
->num_chipselect
);
556 if (bits
< 8 || bits
> 16) {
558 "setup: invalid bits_per_word %u (8 to 16)\n",
563 /* see notes above re chipselect */
564 if (!atmel_spi_is_v2()
565 && spi
->chip_select
== 0
566 && (spi
->mode
& SPI_CS_HIGH
)) {
567 dev_dbg(&spi
->dev
, "setup: can't be active-high\n");
571 /* v1 chips start out at half the peripheral bus speed. */
572 bus_hz
= clk_get_rate(as
->clk
);
573 if (!atmel_spi_is_v2())
576 if (spi
->max_speed_hz
) {
578 * Calculate the lowest divider that satisfies the
579 * constraint, assuming div32/fdiv/mbz == 0.
581 scbr
= DIV_ROUND_UP(bus_hz
, spi
->max_speed_hz
);
584 * If the resulting divider doesn't fit into the
585 * register bitfield, we can't satisfy the constraint.
587 if (scbr
>= (1 << SPI_SCBR_SIZE
)) {
589 "setup: %d Hz too slow, scbr %u; min %ld Hz\n",
590 spi
->max_speed_hz
, scbr
, bus_hz
/255);
594 /* speed zero means "as slow as possible" */
597 csr
= SPI_BF(SCBR
, scbr
) | SPI_BF(BITS
, bits
- 8);
598 if (spi
->mode
& SPI_CPOL
)
599 csr
|= SPI_BIT(CPOL
);
600 if (!(spi
->mode
& SPI_CPHA
))
601 csr
|= SPI_BIT(NCPHA
);
603 /* DLYBS is mostly irrelevant since we manage chipselect using GPIOs.
605 * DLYBCT would add delays between words, slowing down transfers.
606 * It could potentially be useful to cope with DMA bottlenecks, but
607 * in those cases it's probably best to just use a lower bitrate.
609 csr
|= SPI_BF(DLYBS
, 0);
610 csr
|= SPI_BF(DLYBCT
, 0);
612 /* chipselect must have been muxed as GPIO (e.g. in board setup) */
613 npcs_pin
= (unsigned int)spi
->controller_data
;
614 asd
= spi
->controller_state
;
616 asd
= kzalloc(sizeof(struct atmel_spi_device
), GFP_KERNEL
);
620 ret
= gpio_request(npcs_pin
, dev_name(&spi
->dev
));
626 asd
->npcs_pin
= npcs_pin
;
627 spi
->controller_state
= asd
;
628 gpio_direction_output(npcs_pin
, !(spi
->mode
& SPI_CS_HIGH
));
632 spin_lock_irqsave(&as
->lock
, flags
);
635 cs_deactivate(as
, spi
);
636 spin_unlock_irqrestore(&as
->lock
, flags
);
642 "setup: %lu Hz bpw %u mode 0x%x -> csr%d %08x\n",
643 bus_hz
/ scbr
, bits
, spi
->mode
, spi
->chip_select
, csr
);
645 if (!atmel_spi_is_v2())
646 spi_writel(as
, CSR0
+ 4 * spi
->chip_select
, csr
);
651 static int atmel_spi_transfer(struct spi_device
*spi
, struct spi_message
*msg
)
653 struct atmel_spi
*as
;
654 struct spi_transfer
*xfer
;
656 struct device
*controller
= spi
->master
->dev
.parent
;
658 struct atmel_spi_device
*asd
;
660 as
= spi_master_get_devdata(spi
->master
);
662 dev_dbg(controller
, "new message %p submitted for %s\n",
663 msg
, dev_name(&spi
->dev
));
665 if (unlikely(list_empty(&msg
->transfers
)))
671 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
672 if (!(xfer
->tx_buf
|| xfer
->rx_buf
) && xfer
->len
) {
673 dev_dbg(&spi
->dev
, "missing rx or tx buf\n");
677 if (xfer
->bits_per_word
) {
678 asd
= spi
->controller_state
;
679 bits
= (asd
->csr
>> 4) & 0xf;
680 if (bits
!= xfer
->bits_per_word
- 8) {
681 dev_dbg(&spi
->dev
, "you can't yet change "
682 "bits_per_word in transfers\n");
687 /* FIXME implement these protocol options!! */
688 if (xfer
->speed_hz
) {
689 dev_dbg(&spi
->dev
, "no protocol options yet\n");
694 * DMA map early, for performance (empties dcache ASAP) and
695 * better fault reporting. This is a DMA-only driver.
697 * NOTE that if dma_unmap_single() ever starts to do work on
698 * platforms supported by this driver, we would need to clean
699 * up mappings for previously-mapped transfers.
701 if (!msg
->is_dma_mapped
) {
702 if (atmel_spi_dma_map_xfer(as
, xfer
) < 0)
708 list_for_each_entry(xfer
, &msg
->transfers
, transfer_list
) {
710 " xfer %p: len %u tx %p/%08x rx %p/%08x\n",
712 xfer
->tx_buf
, xfer
->tx_dma
,
713 xfer
->rx_buf
, xfer
->rx_dma
);
717 msg
->status
= -EINPROGRESS
;
718 msg
->actual_length
= 0;
720 spin_lock_irqsave(&as
->lock
, flags
);
721 list_add_tail(&msg
->queue
, &as
->queue
);
722 if (!as
->current_transfer
)
723 atmel_spi_next_message(spi
->master
);
724 spin_unlock_irqrestore(&as
->lock
, flags
);
729 static void atmel_spi_cleanup(struct spi_device
*spi
)
731 struct atmel_spi
*as
= spi_master_get_devdata(spi
->master
);
732 struct atmel_spi_device
*asd
= spi
->controller_state
;
733 unsigned gpio
= (unsigned) spi
->controller_data
;
739 spin_lock_irqsave(&as
->lock
, flags
);
740 if (as
->stay
== spi
) {
742 cs_deactivate(as
, spi
);
744 spin_unlock_irqrestore(&as
->lock
, flags
);
746 spi
->controller_state
= NULL
;
751 /*-------------------------------------------------------------------------*/
753 static int __init
atmel_spi_probe(struct platform_device
*pdev
)
755 struct resource
*regs
;
759 struct spi_master
*master
;
760 struct atmel_spi
*as
;
762 regs
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
766 irq
= platform_get_irq(pdev
, 0);
770 clk
= clk_get(&pdev
->dev
, "spi_clk");
774 /* setup spi core then atmel-specific driver state */
776 master
= spi_alloc_master(&pdev
->dev
, sizeof *as
);
780 /* the spi->mode bits understood by this driver: */
781 master
->mode_bits
= SPI_CPOL
| SPI_CPHA
| SPI_CS_HIGH
;
783 master
->bus_num
= pdev
->id
;
784 master
->num_chipselect
= 4;
785 master
->setup
= atmel_spi_setup
;
786 master
->transfer
= atmel_spi_transfer
;
787 master
->cleanup
= atmel_spi_cleanup
;
788 platform_set_drvdata(pdev
, master
);
790 as
= spi_master_get_devdata(master
);
793 * Scratch buffer is used for throwaway rx and tx data.
794 * It's coherent to minimize dcache pollution.
796 as
->buffer
= dma_alloc_coherent(&pdev
->dev
, BUFFER_SIZE
,
797 &as
->buffer_dma
, GFP_KERNEL
);
801 spin_lock_init(&as
->lock
);
802 INIT_LIST_HEAD(&as
->queue
);
804 as
->regs
= ioremap(regs
->start
, resource_size(regs
));
806 goto out_free_buffer
;
810 ret
= request_irq(irq
, atmel_spi_interrupt
, 0,
811 dev_name(&pdev
->dev
), master
);
815 /* Initialize the hardware */
817 spi_writel(as
, CR
, SPI_BIT(SWRST
));
818 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
819 spi_writel(as
, MR
, SPI_BIT(MSTR
) | SPI_BIT(MODFDIS
));
820 spi_writel(as
, PTCR
, SPI_BIT(RXTDIS
) | SPI_BIT(TXTDIS
));
821 spi_writel(as
, CR
, SPI_BIT(SPIEN
));
824 dev_info(&pdev
->dev
, "Atmel SPI Controller at 0x%08lx (irq %d)\n",
825 (unsigned long)regs
->start
, irq
);
827 ret
= spi_register_master(master
);
834 spi_writel(as
, CR
, SPI_BIT(SWRST
));
835 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
837 free_irq(irq
, master
);
841 dma_free_coherent(&pdev
->dev
, BUFFER_SIZE
, as
->buffer
,
845 spi_master_put(master
);
849 static int __exit
atmel_spi_remove(struct platform_device
*pdev
)
851 struct spi_master
*master
= platform_get_drvdata(pdev
);
852 struct atmel_spi
*as
= spi_master_get_devdata(master
);
853 struct spi_message
*msg
;
855 /* reset the hardware and block queue progress */
856 spin_lock_irq(&as
->lock
);
858 spi_writel(as
, CR
, SPI_BIT(SWRST
));
859 spi_writel(as
, CR
, SPI_BIT(SWRST
)); /* AT91SAM9263 Rev B workaround */
861 spin_unlock_irq(&as
->lock
);
863 /* Terminate remaining queued transfers */
864 list_for_each_entry(msg
, &as
->queue
, queue
) {
865 /* REVISIT unmapping the dma is a NOP on ARM and AVR32
866 * but we shouldn't depend on that...
868 msg
->status
= -ESHUTDOWN
;
869 msg
->complete(msg
->context
);
872 dma_free_coherent(&pdev
->dev
, BUFFER_SIZE
, as
->buffer
,
875 clk_disable(as
->clk
);
877 free_irq(as
->irq
, master
);
880 spi_unregister_master(master
);
887 static int atmel_spi_suspend(struct platform_device
*pdev
, pm_message_t mesg
)
889 struct spi_master
*master
= platform_get_drvdata(pdev
);
890 struct atmel_spi
*as
= spi_master_get_devdata(master
);
892 clk_disable(as
->clk
);
896 static int atmel_spi_resume(struct platform_device
*pdev
)
898 struct spi_master
*master
= platform_get_drvdata(pdev
);
899 struct atmel_spi
*as
= spi_master_get_devdata(master
);
906 #define atmel_spi_suspend NULL
907 #define atmel_spi_resume NULL
911 static struct platform_driver atmel_spi_driver
= {
914 .owner
= THIS_MODULE
,
916 .suspend
= atmel_spi_suspend
,
917 .resume
= atmel_spi_resume
,
918 .remove
= __exit_p(atmel_spi_remove
),
921 static int __init
atmel_spi_init(void)
923 return platform_driver_probe(&atmel_spi_driver
, atmel_spi_probe
);
925 module_init(atmel_spi_init
);
927 static void __exit
atmel_spi_exit(void)
929 platform_driver_unregister(&atmel_spi_driver
);
931 module_exit(atmel_spi_exit
);
933 MODULE_DESCRIPTION("Atmel AT32/AT91 SPI Controller driver");
934 MODULE_AUTHOR("Haavard Skinnemoen <hskinnemoen@atmel.com>");
935 MODULE_LICENSE("GPL");
936 MODULE_ALIAS("platform:atmel_spi");