2 * Disk Array driver for HP Smart Array controllers.
3 * (C) Copyright 2000, 2007 Hewlett-Packard Development Company, L.P.
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; version 2 of the License.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. See the GNU
12 * General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
19 * Questions/Comments/Bugfixes to iss_storagedev@hp.com
23 #include <linux/module.h>
24 #include <linux/interrupt.h>
25 #include <linux/types.h>
26 #include <linux/pci.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/delay.h>
30 #include <linux/major.h>
32 #include <linux/bio.h>
33 #include <linux/blkpg.h>
34 #include <linux/timer.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/init.h>
38 #include <linux/jiffies.h>
39 #include <linux/hdreg.h>
40 #include <linux/spinlock.h>
41 #include <linux/compat.h>
42 #include <linux/mutex.h>
43 #include <asm/uaccess.h>
46 #include <linux/dma-mapping.h>
47 #include <linux/blkdev.h>
48 #include <linux/genhd.h>
49 #include <linux/completion.h>
50 #include <scsi/scsi.h>
52 #include <scsi/scsi_ioctl.h>
53 #include <linux/cdrom.h>
54 #include <linux/scatterlist.h>
55 #include <linux/kthread.h>
57 #define CCISS_DRIVER_VERSION(maj,min,submin) ((maj<<16)|(min<<8)|(submin))
58 #define DRIVER_NAME "HP CISS Driver (v 3.6.26)"
59 #define DRIVER_VERSION CCISS_DRIVER_VERSION(3, 6, 26)
61 /* Embedded module documentation macros - see modules.h */
62 MODULE_AUTHOR("Hewlett-Packard Company");
63 MODULE_DESCRIPTION("Driver for HP Smart Array Controllers");
64 MODULE_SUPPORTED_DEVICE("HP Smart Array Controllers");
65 MODULE_VERSION("3.6.26");
66 MODULE_LICENSE("GPL");
68 static DEFINE_MUTEX(cciss_mutex
);
69 static int cciss_allow_hpsa
;
70 module_param(cciss_allow_hpsa
, int, S_IRUGO
|S_IWUSR
);
71 MODULE_PARM_DESC(cciss_allow_hpsa
,
72 "Prevent cciss driver from accessing hardware known to be "
73 " supported by the hpsa driver");
75 #include "cciss_cmd.h"
77 #include <linux/cciss_ioctl.h>
79 /* define the PCI info for the cards we can control */
80 static const struct pci_device_id cciss_pci_device_id
[] = {
81 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISS
, 0x0E11, 0x4070},
82 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4080},
83 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4082},
84 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSB
, 0x0E11, 0x4083},
85 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x4091},
86 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409A},
87 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409B},
88 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409C},
89 {PCI_VENDOR_ID_COMPAQ
, PCI_DEVICE_ID_COMPAQ_CISSC
, 0x0E11, 0x409D},
90 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSA
, 0x103C, 0x3225},
91 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3223},
92 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3234},
93 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3235},
94 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3211},
95 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3212},
96 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3213},
97 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3214},
98 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSD
, 0x103C, 0x3215},
99 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x3237},
100 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSC
, 0x103C, 0x323D},
101 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3241},
102 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3243},
103 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3245},
104 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3247},
105 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x3249},
106 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324A},
107 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSE
, 0x103C, 0x324B},
108 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3350},
109 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3351},
110 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3352},
111 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3353},
112 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3354},
113 {PCI_VENDOR_ID_HP
, PCI_DEVICE_ID_HP_CISSF
, 0x103C, 0x3355},
117 MODULE_DEVICE_TABLE(pci
, cciss_pci_device_id
);
119 /* board_id = Subsystem Device ID & Vendor ID
120 * product = Marketing Name for the board
121 * access = Address of the struct of function pointers
123 static struct board_type products
[] = {
124 {0x40700E11, "Smart Array 5300", &SA5_access
},
125 {0x40800E11, "Smart Array 5i", &SA5B_access
},
126 {0x40820E11, "Smart Array 532", &SA5B_access
},
127 {0x40830E11, "Smart Array 5312", &SA5B_access
},
128 {0x409A0E11, "Smart Array 641", &SA5_access
},
129 {0x409B0E11, "Smart Array 642", &SA5_access
},
130 {0x409C0E11, "Smart Array 6400", &SA5_access
},
131 {0x409D0E11, "Smart Array 6400 EM", &SA5_access
},
132 {0x40910E11, "Smart Array 6i", &SA5_access
},
133 {0x3225103C, "Smart Array P600", &SA5_access
},
134 {0x3235103C, "Smart Array P400i", &SA5_access
},
135 {0x3211103C, "Smart Array E200i", &SA5_access
},
136 {0x3212103C, "Smart Array E200", &SA5_access
},
137 {0x3213103C, "Smart Array E200i", &SA5_access
},
138 {0x3214103C, "Smart Array E200i", &SA5_access
},
139 {0x3215103C, "Smart Array E200i", &SA5_access
},
140 {0x3237103C, "Smart Array E500", &SA5_access
},
141 /* controllers below this line are also supported by the hpsa driver. */
142 #define HPSA_BOUNDARY 0x3223103C
143 {0x3223103C, "Smart Array P800", &SA5_access
},
144 {0x3234103C, "Smart Array P400", &SA5_access
},
145 {0x323D103C, "Smart Array P700m", &SA5_access
},
146 {0x3241103C, "Smart Array P212", &SA5_access
},
147 {0x3243103C, "Smart Array P410", &SA5_access
},
148 {0x3245103C, "Smart Array P410i", &SA5_access
},
149 {0x3247103C, "Smart Array P411", &SA5_access
},
150 {0x3249103C, "Smart Array P812", &SA5_access
},
151 {0x324A103C, "Smart Array P712m", &SA5_access
},
152 {0x324B103C, "Smart Array P711m", &SA5_access
},
153 {0x3350103C, "Smart Array", &SA5_access
},
154 {0x3351103C, "Smart Array", &SA5_access
},
155 {0x3352103C, "Smart Array", &SA5_access
},
156 {0x3353103C, "Smart Array", &SA5_access
},
157 {0x3354103C, "Smart Array", &SA5_access
},
158 {0x3355103C, "Smart Array", &SA5_access
},
161 /* How long to wait (in milliseconds) for board to go into simple mode */
162 #define MAX_CONFIG_WAIT 30000
163 #define MAX_IOCTL_CONFIG_WAIT 1000
165 /*define how many times we will try a command because of bus resets */
166 #define MAX_CMD_RETRIES 3
170 /* Originally cciss driver only supports 8 major numbers */
171 #define MAX_CTLR_ORIG 8
173 static ctlr_info_t
*hba
[MAX_CTLR
];
175 static struct task_struct
*cciss_scan_thread
;
176 static DEFINE_MUTEX(scan_mutex
);
177 static LIST_HEAD(scan_q
);
179 static void do_cciss_request(struct request_queue
*q
);
180 static irqreturn_t
do_cciss_intx(int irq
, void *dev_id
);
181 static irqreturn_t
do_cciss_msix_intr(int irq
, void *dev_id
);
182 static int cciss_open(struct block_device
*bdev
, fmode_t mode
);
183 static int cciss_unlocked_open(struct block_device
*bdev
, fmode_t mode
);
184 static int cciss_release(struct gendisk
*disk
, fmode_t mode
);
185 static int do_ioctl(struct block_device
*bdev
, fmode_t mode
,
186 unsigned int cmd
, unsigned long arg
);
187 static int cciss_ioctl(struct block_device
*bdev
, fmode_t mode
,
188 unsigned int cmd
, unsigned long arg
);
189 static int cciss_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
);
191 static int cciss_revalidate(struct gendisk
*disk
);
192 static int rebuild_lun_table(ctlr_info_t
*h
, int first_time
, int via_ioctl
);
193 static int deregister_disk(ctlr_info_t
*h
, int drv_index
,
194 int clear_all
, int via_ioctl
);
196 static void cciss_read_capacity(ctlr_info_t
*h
, int logvol
,
197 sector_t
*total_size
, unsigned int *block_size
);
198 static void cciss_read_capacity_16(ctlr_info_t
*h
, int logvol
,
199 sector_t
*total_size
, unsigned int *block_size
);
200 static void cciss_geometry_inquiry(ctlr_info_t
*h
, int logvol
,
202 unsigned int block_size
, InquiryData_struct
*inq_buff
,
203 drive_info_struct
*drv
);
204 static void __devinit
cciss_interrupt_mode(ctlr_info_t
*);
205 static void start_io(ctlr_info_t
*h
);
206 static int sendcmd_withirq(ctlr_info_t
*h
, __u8 cmd
, void *buff
, size_t size
,
207 __u8 page_code
, unsigned char scsi3addr
[],
209 static int sendcmd_withirq_core(ctlr_info_t
*h
, CommandList_struct
*c
,
211 static int process_sendcmd_error(ctlr_info_t
*h
, CommandList_struct
*c
);
213 static int add_to_scan_list(struct ctlr_info
*h
);
214 static int scan_thread(void *data
);
215 static int check_for_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
);
216 static void cciss_hba_release(struct device
*dev
);
217 static void cciss_device_release(struct device
*dev
);
218 static void cciss_free_gendisk(ctlr_info_t
*h
, int drv_index
);
219 static void cciss_free_drive_info(ctlr_info_t
*h
, int drv_index
);
220 static inline u32
next_command(ctlr_info_t
*h
);
221 static int __devinit
cciss_find_cfg_addrs(struct pci_dev
*pdev
,
222 void __iomem
*vaddr
, u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
224 static int __devinit
cciss_pci_find_memory_BAR(struct pci_dev
*pdev
,
225 unsigned long *memory_bar
);
228 /* performant mode helper functions */
229 static void calc_bucket_map(int *bucket
, int num_buckets
, int nsgs
,
231 static void cciss_put_controller_into_performant_mode(ctlr_info_t
*h
);
233 #ifdef CONFIG_PROC_FS
234 static void cciss_procinit(ctlr_info_t
*h
);
236 static void cciss_procinit(ctlr_info_t
*h
)
239 #endif /* CONFIG_PROC_FS */
242 static int cciss_compat_ioctl(struct block_device
*, fmode_t
,
243 unsigned, unsigned long);
246 static const struct block_device_operations cciss_fops
= {
247 .owner
= THIS_MODULE
,
248 .open
= cciss_unlocked_open
,
249 .release
= cciss_release
,
251 .getgeo
= cciss_getgeo
,
253 .compat_ioctl
= cciss_compat_ioctl
,
255 .revalidate_disk
= cciss_revalidate
,
258 /* set_performant_mode: Modify the tag for cciss performant
259 * set bit 0 for pull model, bits 3-1 for block fetch
262 static void set_performant_mode(ctlr_info_t
*h
, CommandList_struct
*c
)
264 if (likely(h
->transMethod
== CFGTBL_Trans_Performant
))
265 c
->busaddr
|= 1 | (h
->blockFetchTable
[c
->Header
.SGList
] << 1);
269 * Enqueuing and dequeuing functions for cmdlists.
271 static inline void addQ(struct hlist_head
*list
, CommandList_struct
*c
)
273 hlist_add_head(&c
->list
, list
);
276 static inline void removeQ(CommandList_struct
*c
)
279 * After kexec/dump some commands might still
280 * be in flight, which the firmware will try
281 * to complete. Resetting the firmware doesn't work
282 * with old fw revisions, so we have to mark
283 * them off as 'stale' to prevent the driver from
286 if (WARN_ON(hlist_unhashed(&c
->list
))) {
287 c
->cmd_type
= CMD_MSG_STALE
;
291 hlist_del_init(&c
->list
);
294 static void enqueue_cmd_and_start_io(ctlr_info_t
*h
,
295 CommandList_struct
*c
)
298 set_performant_mode(h
, c
);
299 spin_lock_irqsave(&h
->lock
, flags
);
302 if (h
->Qdepth
> h
->maxQsinceinit
)
303 h
->maxQsinceinit
= h
->Qdepth
;
305 spin_unlock_irqrestore(&h
->lock
, flags
);
308 static void cciss_free_sg_chain_blocks(SGDescriptor_struct
**cmd_sg_list
,
315 for (i
= 0; i
< nr_cmds
; i
++) {
316 kfree(cmd_sg_list
[i
]);
317 cmd_sg_list
[i
] = NULL
;
322 static SGDescriptor_struct
**cciss_allocate_sg_chain_blocks(
323 ctlr_info_t
*h
, int chainsize
, int nr_cmds
)
326 SGDescriptor_struct
**cmd_sg_list
;
331 cmd_sg_list
= kmalloc(sizeof(*cmd_sg_list
) * nr_cmds
, GFP_KERNEL
);
335 /* Build up chain blocks for each command */
336 for (j
= 0; j
< nr_cmds
; j
++) {
337 /* Need a block of chainsized s/g elements. */
338 cmd_sg_list
[j
] = kmalloc((chainsize
*
339 sizeof(*cmd_sg_list
[j
])), GFP_KERNEL
);
340 if (!cmd_sg_list
[j
]) {
341 dev_err(&h
->pdev
->dev
, "Cannot get memory "
342 "for s/g chains.\n");
348 cciss_free_sg_chain_blocks(cmd_sg_list
, nr_cmds
);
352 static void cciss_unmap_sg_chain_block(ctlr_info_t
*h
, CommandList_struct
*c
)
354 SGDescriptor_struct
*chain_sg
;
357 if (c
->Header
.SGTotal
<= h
->max_cmd_sgentries
)
360 chain_sg
= &c
->SG
[h
->max_cmd_sgentries
- 1];
361 temp64
.val32
.lower
= chain_sg
->Addr
.lower
;
362 temp64
.val32
.upper
= chain_sg
->Addr
.upper
;
363 pci_unmap_single(h
->pdev
, temp64
.val
, chain_sg
->Len
, PCI_DMA_TODEVICE
);
366 static void cciss_map_sg_chain_block(ctlr_info_t
*h
, CommandList_struct
*c
,
367 SGDescriptor_struct
*chain_block
, int len
)
369 SGDescriptor_struct
*chain_sg
;
372 chain_sg
= &c
->SG
[h
->max_cmd_sgentries
- 1];
373 chain_sg
->Ext
= CCISS_SG_CHAIN
;
375 temp64
.val
= pci_map_single(h
->pdev
, chain_block
, len
,
377 chain_sg
->Addr
.lower
= temp64
.val32
.lower
;
378 chain_sg
->Addr
.upper
= temp64
.val32
.upper
;
381 #include "cciss_scsi.c" /* For SCSI tape support */
383 static const char *raid_label
[] = { "0", "4", "1(1+0)", "5", "5+1", "ADG",
386 #define RAID_UNKNOWN (ARRAY_SIZE(raid_label)-1)
388 #ifdef CONFIG_PROC_FS
391 * Report information about this controller.
393 #define ENG_GIG 1000000000
394 #define ENG_GIG_FACTOR (ENG_GIG/512)
395 #define ENGAGE_SCSI "engage scsi"
397 static struct proc_dir_entry
*proc_cciss
;
399 static void cciss_seq_show_header(struct seq_file
*seq
)
401 ctlr_info_t
*h
= seq
->private;
403 seq_printf(seq
, "%s: HP %s Controller\n"
404 "Board ID: 0x%08lx\n"
405 "Firmware Version: %c%c%c%c\n"
407 "Logical drives: %d\n"
408 "Current Q depth: %d\n"
409 "Current # commands on controller: %d\n"
410 "Max Q depth since init: %d\n"
411 "Max # commands on controller since init: %d\n"
412 "Max SG entries since init: %d\n",
415 (unsigned long)h
->board_id
,
416 h
->firm_ver
[0], h
->firm_ver
[1], h
->firm_ver
[2],
417 h
->firm_ver
[3], (unsigned int)h
->intr
[PERF_MODE_INT
],
419 h
->Qdepth
, h
->commands_outstanding
,
420 h
->maxQsinceinit
, h
->max_outstanding
, h
->maxSG
);
422 #ifdef CONFIG_CISS_SCSI_TAPE
423 cciss_seq_tape_report(seq
, h
);
424 #endif /* CONFIG_CISS_SCSI_TAPE */
427 static void *cciss_seq_start(struct seq_file
*seq
, loff_t
*pos
)
429 ctlr_info_t
*h
= seq
->private;
432 /* prevent displaying bogus info during configuration
433 * or deconfiguration of a logical volume
435 spin_lock_irqsave(&h
->lock
, flags
);
436 if (h
->busy_configuring
) {
437 spin_unlock_irqrestore(&h
->lock
, flags
);
438 return ERR_PTR(-EBUSY
);
440 h
->busy_configuring
= 1;
441 spin_unlock_irqrestore(&h
->lock
, flags
);
444 cciss_seq_show_header(seq
);
449 static int cciss_seq_show(struct seq_file
*seq
, void *v
)
451 sector_t vol_sz
, vol_sz_frac
;
452 ctlr_info_t
*h
= seq
->private;
453 unsigned ctlr
= h
->ctlr
;
455 drive_info_struct
*drv
= h
->drv
[*pos
];
457 if (*pos
> h
->highest_lun
)
460 if (drv
== NULL
) /* it's possible for h->drv[] to have holes. */
466 vol_sz
= drv
->nr_blocks
;
467 vol_sz_frac
= sector_div(vol_sz
, ENG_GIG_FACTOR
);
469 sector_div(vol_sz_frac
, ENG_GIG_FACTOR
);
471 if (drv
->raid_level
< 0 || drv
->raid_level
> RAID_UNKNOWN
)
472 drv
->raid_level
= RAID_UNKNOWN
;
473 seq_printf(seq
, "cciss/c%dd%d:"
474 "\t%4u.%02uGB\tRAID %s\n",
475 ctlr
, (int) *pos
, (int)vol_sz
, (int)vol_sz_frac
,
476 raid_label
[drv
->raid_level
]);
480 static void *cciss_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
482 ctlr_info_t
*h
= seq
->private;
484 if (*pos
> h
->highest_lun
)
491 static void cciss_seq_stop(struct seq_file
*seq
, void *v
)
493 ctlr_info_t
*h
= seq
->private;
495 /* Only reset h->busy_configuring if we succeeded in setting
496 * it during cciss_seq_start. */
497 if (v
== ERR_PTR(-EBUSY
))
500 h
->busy_configuring
= 0;
503 static const struct seq_operations cciss_seq_ops
= {
504 .start
= cciss_seq_start
,
505 .show
= cciss_seq_show
,
506 .next
= cciss_seq_next
,
507 .stop
= cciss_seq_stop
,
510 static int cciss_seq_open(struct inode
*inode
, struct file
*file
)
512 int ret
= seq_open(file
, &cciss_seq_ops
);
513 struct seq_file
*seq
= file
->private_data
;
516 seq
->private = PDE(inode
)->data
;
522 cciss_proc_write(struct file
*file
, const char __user
*buf
,
523 size_t length
, loff_t
*ppos
)
528 #ifndef CONFIG_CISS_SCSI_TAPE
532 if (!buf
|| length
> PAGE_SIZE
- 1)
535 buffer
= (char *)__get_free_page(GFP_KERNEL
);
540 if (copy_from_user(buffer
, buf
, length
))
542 buffer
[length
] = '\0';
544 #ifdef CONFIG_CISS_SCSI_TAPE
545 if (strncmp(ENGAGE_SCSI
, buffer
, sizeof ENGAGE_SCSI
- 1) == 0) {
546 struct seq_file
*seq
= file
->private_data
;
547 ctlr_info_t
*h
= seq
->private;
549 err
= cciss_engage_scsi(h
);
553 #endif /* CONFIG_CISS_SCSI_TAPE */
555 /* might be nice to have "disengage" too, but it's not
556 safely possible. (only 1 module use count, lock issues.) */
559 free_page((unsigned long)buffer
);
563 static const struct file_operations cciss_proc_fops
= {
564 .owner
= THIS_MODULE
,
565 .open
= cciss_seq_open
,
568 .release
= seq_release
,
569 .write
= cciss_proc_write
,
572 static void __devinit
cciss_procinit(ctlr_info_t
*h
)
574 struct proc_dir_entry
*pde
;
576 if (proc_cciss
== NULL
)
577 proc_cciss
= proc_mkdir("driver/cciss", NULL
);
580 pde
= proc_create_data(h
->devname
, S_IWUSR
| S_IRUSR
| S_IRGRP
|
582 &cciss_proc_fops
, h
);
584 #endif /* CONFIG_PROC_FS */
586 #define MAX_PRODUCT_NAME_LEN 19
588 #define to_hba(n) container_of(n, struct ctlr_info, dev)
589 #define to_drv(n) container_of(n, drive_info_struct, dev)
591 static ssize_t
host_store_rescan(struct device
*dev
,
592 struct device_attribute
*attr
,
593 const char *buf
, size_t count
)
595 struct ctlr_info
*h
= to_hba(dev
);
598 wake_up_process(cciss_scan_thread
);
599 wait_for_completion_interruptible(&h
->scan_wait
);
603 static DEVICE_ATTR(rescan
, S_IWUSR
, NULL
, host_store_rescan
);
605 static ssize_t
dev_show_unique_id(struct device
*dev
,
606 struct device_attribute
*attr
,
609 drive_info_struct
*drv
= to_drv(dev
);
610 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
615 spin_lock_irqsave(&h
->lock
, flags
);
616 if (h
->busy_configuring
)
619 memcpy(sn
, drv
->serial_no
, sizeof(sn
));
620 spin_unlock_irqrestore(&h
->lock
, flags
);
625 return snprintf(buf
, 16 * 2 + 2,
626 "%02X%02X%02X%02X%02X%02X%02X%02X"
627 "%02X%02X%02X%02X%02X%02X%02X%02X\n",
628 sn
[0], sn
[1], sn
[2], sn
[3],
629 sn
[4], sn
[5], sn
[6], sn
[7],
630 sn
[8], sn
[9], sn
[10], sn
[11],
631 sn
[12], sn
[13], sn
[14], sn
[15]);
633 static DEVICE_ATTR(unique_id
, S_IRUGO
, dev_show_unique_id
, NULL
);
635 static ssize_t
dev_show_vendor(struct device
*dev
,
636 struct device_attribute
*attr
,
639 drive_info_struct
*drv
= to_drv(dev
);
640 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
641 char vendor
[VENDOR_LEN
+ 1];
645 spin_lock_irqsave(&h
->lock
, flags
);
646 if (h
->busy_configuring
)
649 memcpy(vendor
, drv
->vendor
, VENDOR_LEN
+ 1);
650 spin_unlock_irqrestore(&h
->lock
, flags
);
655 return snprintf(buf
, sizeof(vendor
) + 1, "%s\n", drv
->vendor
);
657 static DEVICE_ATTR(vendor
, S_IRUGO
, dev_show_vendor
, NULL
);
659 static ssize_t
dev_show_model(struct device
*dev
,
660 struct device_attribute
*attr
,
663 drive_info_struct
*drv
= to_drv(dev
);
664 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
665 char model
[MODEL_LEN
+ 1];
669 spin_lock_irqsave(&h
->lock
, flags
);
670 if (h
->busy_configuring
)
673 memcpy(model
, drv
->model
, MODEL_LEN
+ 1);
674 spin_unlock_irqrestore(&h
->lock
, flags
);
679 return snprintf(buf
, sizeof(model
) + 1, "%s\n", drv
->model
);
681 static DEVICE_ATTR(model
, S_IRUGO
, dev_show_model
, NULL
);
683 static ssize_t
dev_show_rev(struct device
*dev
,
684 struct device_attribute
*attr
,
687 drive_info_struct
*drv
= to_drv(dev
);
688 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
689 char rev
[REV_LEN
+ 1];
693 spin_lock_irqsave(&h
->lock
, flags
);
694 if (h
->busy_configuring
)
697 memcpy(rev
, drv
->rev
, REV_LEN
+ 1);
698 spin_unlock_irqrestore(&h
->lock
, flags
);
703 return snprintf(buf
, sizeof(rev
) + 1, "%s\n", drv
->rev
);
705 static DEVICE_ATTR(rev
, S_IRUGO
, dev_show_rev
, NULL
);
707 static ssize_t
cciss_show_lunid(struct device
*dev
,
708 struct device_attribute
*attr
, char *buf
)
710 drive_info_struct
*drv
= to_drv(dev
);
711 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
713 unsigned char lunid
[8];
715 spin_lock_irqsave(&h
->lock
, flags
);
716 if (h
->busy_configuring
) {
717 spin_unlock_irqrestore(&h
->lock
, flags
);
721 spin_unlock_irqrestore(&h
->lock
, flags
);
724 memcpy(lunid
, drv
->LunID
, sizeof(lunid
));
725 spin_unlock_irqrestore(&h
->lock
, flags
);
726 return snprintf(buf
, 20, "0x%02x%02x%02x%02x%02x%02x%02x%02x\n",
727 lunid
[0], lunid
[1], lunid
[2], lunid
[3],
728 lunid
[4], lunid
[5], lunid
[6], lunid
[7]);
730 static DEVICE_ATTR(lunid
, S_IRUGO
, cciss_show_lunid
, NULL
);
732 static ssize_t
cciss_show_raid_level(struct device
*dev
,
733 struct device_attribute
*attr
, char *buf
)
735 drive_info_struct
*drv
= to_drv(dev
);
736 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
740 spin_lock_irqsave(&h
->lock
, flags
);
741 if (h
->busy_configuring
) {
742 spin_unlock_irqrestore(&h
->lock
, flags
);
745 raid
= drv
->raid_level
;
746 spin_unlock_irqrestore(&h
->lock
, flags
);
747 if (raid
< 0 || raid
> RAID_UNKNOWN
)
750 return snprintf(buf
, strlen(raid_label
[raid
]) + 7, "RAID %s\n",
753 static DEVICE_ATTR(raid_level
, S_IRUGO
, cciss_show_raid_level
, NULL
);
755 static ssize_t
cciss_show_usage_count(struct device
*dev
,
756 struct device_attribute
*attr
, char *buf
)
758 drive_info_struct
*drv
= to_drv(dev
);
759 struct ctlr_info
*h
= to_hba(drv
->dev
.parent
);
763 spin_lock_irqsave(&h
->lock
, flags
);
764 if (h
->busy_configuring
) {
765 spin_unlock_irqrestore(&h
->lock
, flags
);
768 count
= drv
->usage_count
;
769 spin_unlock_irqrestore(&h
->lock
, flags
);
770 return snprintf(buf
, 20, "%d\n", count
);
772 static DEVICE_ATTR(usage_count
, S_IRUGO
, cciss_show_usage_count
, NULL
);
774 static struct attribute
*cciss_host_attrs
[] = {
775 &dev_attr_rescan
.attr
,
779 static struct attribute_group cciss_host_attr_group
= {
780 .attrs
= cciss_host_attrs
,
783 static const struct attribute_group
*cciss_host_attr_groups
[] = {
784 &cciss_host_attr_group
,
788 static struct device_type cciss_host_type
= {
789 .name
= "cciss_host",
790 .groups
= cciss_host_attr_groups
,
791 .release
= cciss_hba_release
,
794 static struct attribute
*cciss_dev_attrs
[] = {
795 &dev_attr_unique_id
.attr
,
796 &dev_attr_model
.attr
,
797 &dev_attr_vendor
.attr
,
799 &dev_attr_lunid
.attr
,
800 &dev_attr_raid_level
.attr
,
801 &dev_attr_usage_count
.attr
,
805 static struct attribute_group cciss_dev_attr_group
= {
806 .attrs
= cciss_dev_attrs
,
809 static const struct attribute_group
*cciss_dev_attr_groups
[] = {
810 &cciss_dev_attr_group
,
814 static struct device_type cciss_dev_type
= {
815 .name
= "cciss_device",
816 .groups
= cciss_dev_attr_groups
,
817 .release
= cciss_device_release
,
820 static struct bus_type cciss_bus_type
= {
825 * cciss_hba_release is called when the reference count
826 * of h->dev goes to zero.
828 static void cciss_hba_release(struct device
*dev
)
831 * nothing to do, but need this to avoid a warning
832 * about not having a release handler from lib/kref.c.
837 * Initialize sysfs entry for each controller. This sets up and registers
838 * the 'cciss#' directory for each individual controller under
839 * /sys/bus/pci/devices/<dev>/.
841 static int cciss_create_hba_sysfs_entry(struct ctlr_info
*h
)
843 device_initialize(&h
->dev
);
844 h
->dev
.type
= &cciss_host_type
;
845 h
->dev
.bus
= &cciss_bus_type
;
846 dev_set_name(&h
->dev
, "%s", h
->devname
);
847 h
->dev
.parent
= &h
->pdev
->dev
;
849 return device_add(&h
->dev
);
853 * Remove sysfs entries for an hba.
855 static void cciss_destroy_hba_sysfs_entry(struct ctlr_info
*h
)
858 put_device(&h
->dev
); /* final put. */
861 /* cciss_device_release is called when the reference count
862 * of h->drv[x]dev goes to zero.
864 static void cciss_device_release(struct device
*dev
)
866 drive_info_struct
*drv
= to_drv(dev
);
871 * Initialize sysfs for each logical drive. This sets up and registers
872 * the 'c#d#' directory for each individual logical drive under
873 * /sys/bus/pci/devices/<dev/ccis#/. We also create a link from
874 * /sys/block/cciss!c#d# to this entry.
876 static long cciss_create_ld_sysfs_entry(struct ctlr_info
*h
,
881 if (h
->drv
[drv_index
]->device_initialized
)
884 dev
= &h
->drv
[drv_index
]->dev
;
885 device_initialize(dev
);
886 dev
->type
= &cciss_dev_type
;
887 dev
->bus
= &cciss_bus_type
;
888 dev_set_name(dev
, "c%dd%d", h
->ctlr
, drv_index
);
889 dev
->parent
= &h
->dev
;
890 h
->drv
[drv_index
]->device_initialized
= 1;
891 return device_add(dev
);
895 * Remove sysfs entries for a logical drive.
897 static void cciss_destroy_ld_sysfs_entry(struct ctlr_info
*h
, int drv_index
,
900 struct device
*dev
= &h
->drv
[drv_index
]->dev
;
902 /* special case for c*d0, we only destroy it on controller exit */
903 if (drv_index
== 0 && !ctlr_exiting
)
907 put_device(dev
); /* the "final" put. */
908 h
->drv
[drv_index
] = NULL
;
912 * For operations that cannot sleep, a command block is allocated at init,
913 * and managed by cmd_alloc() and cmd_free() using a simple bitmap to track
914 * which ones are free or in use.
916 static CommandList_struct
*cmd_alloc(ctlr_info_t
*h
)
918 CommandList_struct
*c
;
921 dma_addr_t cmd_dma_handle
, err_dma_handle
;
924 i
= find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
);
927 } while (test_and_set_bit(i
& (BITS_PER_LONG
- 1),
928 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
)) != 0);
930 memset(c
, 0, sizeof(CommandList_struct
));
931 cmd_dma_handle
= h
->cmd_pool_dhandle
+ i
* sizeof(CommandList_struct
);
932 c
->err_info
= h
->errinfo_pool
+ i
;
933 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
934 err_dma_handle
= h
->errinfo_pool_dhandle
935 + i
* sizeof(ErrorInfo_struct
);
940 INIT_HLIST_NODE(&c
->list
);
941 c
->busaddr
= (__u32
) cmd_dma_handle
;
942 temp64
.val
= (__u64
) err_dma_handle
;
943 c
->ErrDesc
.Addr
.lower
= temp64
.val32
.lower
;
944 c
->ErrDesc
.Addr
.upper
= temp64
.val32
.upper
;
945 c
->ErrDesc
.Len
= sizeof(ErrorInfo_struct
);
951 /* allocate a command using pci_alloc_consistent, used for ioctls,
952 * etc., not for the main i/o path.
954 static CommandList_struct
*cmd_special_alloc(ctlr_info_t
*h
)
956 CommandList_struct
*c
;
958 dma_addr_t cmd_dma_handle
, err_dma_handle
;
960 c
= (CommandList_struct
*) pci_alloc_consistent(h
->pdev
,
961 sizeof(CommandList_struct
), &cmd_dma_handle
);
964 memset(c
, 0, sizeof(CommandList_struct
));
968 c
->err_info
= (ErrorInfo_struct
*)
969 pci_alloc_consistent(h
->pdev
, sizeof(ErrorInfo_struct
),
972 if (c
->err_info
== NULL
) {
973 pci_free_consistent(h
->pdev
,
974 sizeof(CommandList_struct
), c
, cmd_dma_handle
);
977 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
979 INIT_HLIST_NODE(&c
->list
);
980 c
->busaddr
= (__u32
) cmd_dma_handle
;
981 temp64
.val
= (__u64
) err_dma_handle
;
982 c
->ErrDesc
.Addr
.lower
= temp64
.val32
.lower
;
983 c
->ErrDesc
.Addr
.upper
= temp64
.val32
.upper
;
984 c
->ErrDesc
.Len
= sizeof(ErrorInfo_struct
);
990 static void cmd_free(ctlr_info_t
*h
, CommandList_struct
*c
)
995 clear_bit(i
& (BITS_PER_LONG
- 1),
996 h
->cmd_pool_bits
+ (i
/ BITS_PER_LONG
));
1000 static void cmd_special_free(ctlr_info_t
*h
, CommandList_struct
*c
)
1004 temp64
.val32
.lower
= c
->ErrDesc
.Addr
.lower
;
1005 temp64
.val32
.upper
= c
->ErrDesc
.Addr
.upper
;
1006 pci_free_consistent(h
->pdev
, sizeof(ErrorInfo_struct
),
1007 c
->err_info
, (dma_addr_t
) temp64
.val
);
1008 pci_free_consistent(h
->pdev
, sizeof(CommandList_struct
),
1009 c
, (dma_addr_t
) c
->busaddr
);
1012 static inline ctlr_info_t
*get_host(struct gendisk
*disk
)
1014 return disk
->queue
->queuedata
;
1017 static inline drive_info_struct
*get_drv(struct gendisk
*disk
)
1019 return disk
->private_data
;
1023 * Open. Make sure the device is really there.
1025 static int cciss_open(struct block_device
*bdev
, fmode_t mode
)
1027 ctlr_info_t
*h
= get_host(bdev
->bd_disk
);
1028 drive_info_struct
*drv
= get_drv(bdev
->bd_disk
);
1030 dev_dbg(&h
->pdev
->dev
, "cciss_open %s\n", bdev
->bd_disk
->disk_name
);
1031 if (drv
->busy_configuring
)
1034 * Root is allowed to open raw volume zero even if it's not configured
1035 * so array config can still work. Root is also allowed to open any
1036 * volume that has a LUN ID, so it can issue IOCTL to reread the
1037 * disk information. I don't think I really like this
1038 * but I'm already using way to many device nodes to claim another one
1039 * for "raw controller".
1041 if (drv
->heads
== 0) {
1042 if (MINOR(bdev
->bd_dev
) != 0) { /* not node 0? */
1043 /* if not node 0 make sure it is a partition = 0 */
1044 if (MINOR(bdev
->bd_dev
) & 0x0f) {
1046 /* if it is, make sure we have a LUN ID */
1047 } else if (memcmp(drv
->LunID
, CTLR_LUNID
,
1048 sizeof(drv
->LunID
))) {
1052 if (!capable(CAP_SYS_ADMIN
))
1060 static int cciss_unlocked_open(struct block_device
*bdev
, fmode_t mode
)
1064 mutex_lock(&cciss_mutex
);
1065 ret
= cciss_open(bdev
, mode
);
1066 mutex_unlock(&cciss_mutex
);
1072 * Close. Sync first.
1074 static int cciss_release(struct gendisk
*disk
, fmode_t mode
)
1077 drive_info_struct
*drv
;
1079 mutex_lock(&cciss_mutex
);
1081 drv
= get_drv(disk
);
1082 dev_dbg(&h
->pdev
->dev
, "cciss_release %s\n", disk
->disk_name
);
1085 mutex_unlock(&cciss_mutex
);
1089 static int do_ioctl(struct block_device
*bdev
, fmode_t mode
,
1090 unsigned cmd
, unsigned long arg
)
1093 mutex_lock(&cciss_mutex
);
1094 ret
= cciss_ioctl(bdev
, mode
, cmd
, arg
);
1095 mutex_unlock(&cciss_mutex
);
1099 #ifdef CONFIG_COMPAT
1101 static int cciss_ioctl32_passthru(struct block_device
*bdev
, fmode_t mode
,
1102 unsigned cmd
, unsigned long arg
);
1103 static int cciss_ioctl32_big_passthru(struct block_device
*bdev
, fmode_t mode
,
1104 unsigned cmd
, unsigned long arg
);
1106 static int cciss_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
1107 unsigned cmd
, unsigned long arg
)
1110 case CCISS_GETPCIINFO
:
1111 case CCISS_GETINTINFO
:
1112 case CCISS_SETINTINFO
:
1113 case CCISS_GETNODENAME
:
1114 case CCISS_SETNODENAME
:
1115 case CCISS_GETHEARTBEAT
:
1116 case CCISS_GETBUSTYPES
:
1117 case CCISS_GETFIRMVER
:
1118 case CCISS_GETDRIVVER
:
1119 case CCISS_REVALIDVOLS
:
1120 case CCISS_DEREGDISK
:
1121 case CCISS_REGNEWDISK
:
1123 case CCISS_RESCANDISK
:
1124 case CCISS_GETLUNINFO
:
1125 return do_ioctl(bdev
, mode
, cmd
, arg
);
1127 case CCISS_PASSTHRU32
:
1128 return cciss_ioctl32_passthru(bdev
, mode
, cmd
, arg
);
1129 case CCISS_BIG_PASSTHRU32
:
1130 return cciss_ioctl32_big_passthru(bdev
, mode
, cmd
, arg
);
1133 return -ENOIOCTLCMD
;
1137 static int cciss_ioctl32_passthru(struct block_device
*bdev
, fmode_t mode
,
1138 unsigned cmd
, unsigned long arg
)
1140 IOCTL32_Command_struct __user
*arg32
=
1141 (IOCTL32_Command_struct __user
*) arg
;
1142 IOCTL_Command_struct arg64
;
1143 IOCTL_Command_struct __user
*p
= compat_alloc_user_space(sizeof(arg64
));
1149 copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
1150 sizeof(arg64
.LUN_info
));
1152 copy_from_user(&arg64
.Request
, &arg32
->Request
,
1153 sizeof(arg64
.Request
));
1155 copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
1156 sizeof(arg64
.error_info
));
1157 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
1158 err
|= get_user(cp
, &arg32
->buf
);
1159 arg64
.buf
= compat_ptr(cp
);
1160 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
1165 err
= do_ioctl(bdev
, mode
, CCISS_PASSTHRU
, (unsigned long)p
);
1169 copy_in_user(&arg32
->error_info
, &p
->error_info
,
1170 sizeof(arg32
->error_info
));
1176 static int cciss_ioctl32_big_passthru(struct block_device
*bdev
, fmode_t mode
,
1177 unsigned cmd
, unsigned long arg
)
1179 BIG_IOCTL32_Command_struct __user
*arg32
=
1180 (BIG_IOCTL32_Command_struct __user
*) arg
;
1181 BIG_IOCTL_Command_struct arg64
;
1182 BIG_IOCTL_Command_struct __user
*p
=
1183 compat_alloc_user_space(sizeof(arg64
));
1189 copy_from_user(&arg64
.LUN_info
, &arg32
->LUN_info
,
1190 sizeof(arg64
.LUN_info
));
1192 copy_from_user(&arg64
.Request
, &arg32
->Request
,
1193 sizeof(arg64
.Request
));
1195 copy_from_user(&arg64
.error_info
, &arg32
->error_info
,
1196 sizeof(arg64
.error_info
));
1197 err
|= get_user(arg64
.buf_size
, &arg32
->buf_size
);
1198 err
|= get_user(arg64
.malloc_size
, &arg32
->malloc_size
);
1199 err
|= get_user(cp
, &arg32
->buf
);
1200 arg64
.buf
= compat_ptr(cp
);
1201 err
|= copy_to_user(p
, &arg64
, sizeof(arg64
));
1206 err
= do_ioctl(bdev
, mode
, CCISS_BIG_PASSTHRU
, (unsigned long)p
);
1210 copy_in_user(&arg32
->error_info
, &p
->error_info
,
1211 sizeof(arg32
->error_info
));
1218 static int cciss_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
1220 drive_info_struct
*drv
= get_drv(bdev
->bd_disk
);
1222 if (!drv
->cylinders
)
1225 geo
->heads
= drv
->heads
;
1226 geo
->sectors
= drv
->sectors
;
1227 geo
->cylinders
= drv
->cylinders
;
1231 static void check_ioctl_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
)
1233 if (c
->err_info
->CommandStatus
== CMD_TARGET_STATUS
&&
1234 c
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
)
1235 (void)check_for_unit_attention(h
, c
);
1238 static int cciss_getpciinfo(ctlr_info_t
*h
, void __user
*argp
)
1240 cciss_pci_info_struct pciinfo
;
1244 pciinfo
.domain
= pci_domain_nr(h
->pdev
->bus
);
1245 pciinfo
.bus
= h
->pdev
->bus
->number
;
1246 pciinfo
.dev_fn
= h
->pdev
->devfn
;
1247 pciinfo
.board_id
= h
->board_id
;
1248 if (copy_to_user(argp
, &pciinfo
, sizeof(cciss_pci_info_struct
)))
1253 static int cciss_getintinfo(ctlr_info_t
*h
, void __user
*argp
)
1255 cciss_coalint_struct intinfo
;
1259 intinfo
.delay
= readl(&h
->cfgtable
->HostWrite
.CoalIntDelay
);
1260 intinfo
.count
= readl(&h
->cfgtable
->HostWrite
.CoalIntCount
);
1262 (argp
, &intinfo
, sizeof(cciss_coalint_struct
)))
1267 static int cciss_setintinfo(ctlr_info_t
*h
, void __user
*argp
)
1269 cciss_coalint_struct intinfo
;
1270 unsigned long flags
;
1275 if (!capable(CAP_SYS_ADMIN
))
1277 if (copy_from_user(&intinfo
, argp
, sizeof(intinfo
)))
1279 if ((intinfo
.delay
== 0) && (intinfo
.count
== 0))
1281 spin_lock_irqsave(&h
->lock
, flags
);
1282 /* Update the field, and then ring the doorbell */
1283 writel(intinfo
.delay
, &(h
->cfgtable
->HostWrite
.CoalIntDelay
));
1284 writel(intinfo
.count
, &(h
->cfgtable
->HostWrite
.CoalIntCount
));
1285 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
1287 for (i
= 0; i
< MAX_IOCTL_CONFIG_WAIT
; i
++) {
1288 if (!(readl(h
->vaddr
+ SA5_DOORBELL
) & CFGTBL_ChangeReq
))
1290 udelay(1000); /* delay and try again */
1292 spin_unlock_irqrestore(&h
->lock
, flags
);
1293 if (i
>= MAX_IOCTL_CONFIG_WAIT
)
1298 static int cciss_getnodename(ctlr_info_t
*h
, void __user
*argp
)
1300 NodeName_type NodeName
;
1305 for (i
= 0; i
< 16; i
++)
1306 NodeName
[i
] = readb(&h
->cfgtable
->ServerName
[i
]);
1307 if (copy_to_user(argp
, NodeName
, sizeof(NodeName_type
)))
1312 static int cciss_setnodename(ctlr_info_t
*h
, void __user
*argp
)
1314 NodeName_type NodeName
;
1315 unsigned long flags
;
1320 if (!capable(CAP_SYS_ADMIN
))
1322 if (copy_from_user(NodeName
, argp
, sizeof(NodeName_type
)))
1324 spin_lock_irqsave(&h
->lock
, flags
);
1325 /* Update the field, and then ring the doorbell */
1326 for (i
= 0; i
< 16; i
++)
1327 writeb(NodeName
[i
], &h
->cfgtable
->ServerName
[i
]);
1328 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
1329 for (i
= 0; i
< MAX_IOCTL_CONFIG_WAIT
; i
++) {
1330 if (!(readl(h
->vaddr
+ SA5_DOORBELL
) & CFGTBL_ChangeReq
))
1332 udelay(1000); /* delay and try again */
1334 spin_unlock_irqrestore(&h
->lock
, flags
);
1335 if (i
>= MAX_IOCTL_CONFIG_WAIT
)
1340 static int cciss_getheartbeat(ctlr_info_t
*h
, void __user
*argp
)
1342 Heartbeat_type heartbeat
;
1346 heartbeat
= readl(&h
->cfgtable
->HeartBeat
);
1347 if (copy_to_user(argp
, &heartbeat
, sizeof(Heartbeat_type
)))
1352 static int cciss_getbustypes(ctlr_info_t
*h
, void __user
*argp
)
1354 BusTypes_type BusTypes
;
1358 BusTypes
= readl(&h
->cfgtable
->BusTypes
);
1359 if (copy_to_user(argp
, &BusTypes
, sizeof(BusTypes_type
)))
1364 static int cciss_getfirmver(ctlr_info_t
*h
, void __user
*argp
)
1366 FirmwareVer_type firmware
;
1370 memcpy(firmware
, h
->firm_ver
, 4);
1373 (argp
, firmware
, sizeof(FirmwareVer_type
)))
1378 static int cciss_getdrivver(ctlr_info_t
*h
, void __user
*argp
)
1380 DriverVer_type DriverVer
= DRIVER_VERSION
;
1384 if (copy_to_user(argp
, &DriverVer
, sizeof(DriverVer_type
)))
1389 static int cciss_getluninfo(ctlr_info_t
*h
,
1390 struct gendisk
*disk
, void __user
*argp
)
1392 LogvolInfo_struct luninfo
;
1393 drive_info_struct
*drv
= get_drv(disk
);
1397 memcpy(&luninfo
.LunID
, drv
->LunID
, sizeof(luninfo
.LunID
));
1398 luninfo
.num_opens
= drv
->usage_count
;
1399 luninfo
.num_parts
= 0;
1400 if (copy_to_user(argp
, &luninfo
, sizeof(LogvolInfo_struct
)))
1405 static int cciss_passthru(ctlr_info_t
*h
, void __user
*argp
)
1407 IOCTL_Command_struct iocommand
;
1408 CommandList_struct
*c
;
1411 DECLARE_COMPLETION_ONSTACK(wait
);
1416 if (!capable(CAP_SYS_RAWIO
))
1420 (&iocommand
, argp
, sizeof(IOCTL_Command_struct
)))
1422 if ((iocommand
.buf_size
< 1) &&
1423 (iocommand
.Request
.Type
.Direction
!= XFER_NONE
)) {
1426 if (iocommand
.buf_size
> 0) {
1427 buff
= kmalloc(iocommand
.buf_size
, GFP_KERNEL
);
1431 if (iocommand
.Request
.Type
.Direction
== XFER_WRITE
) {
1432 /* Copy the data into the buffer we created */
1433 if (copy_from_user(buff
, iocommand
.buf
, iocommand
.buf_size
)) {
1438 memset(buff
, 0, iocommand
.buf_size
);
1440 c
= cmd_special_alloc(h
);
1445 /* Fill in the command type */
1446 c
->cmd_type
= CMD_IOCTL_PEND
;
1447 /* Fill in Command Header */
1448 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
1449 if (iocommand
.buf_size
> 0) { /* buffer to fill */
1450 c
->Header
.SGList
= 1;
1451 c
->Header
.SGTotal
= 1;
1452 } else { /* no buffers to fill */
1453 c
->Header
.SGList
= 0;
1454 c
->Header
.SGTotal
= 0;
1456 c
->Header
.LUN
= iocommand
.LUN_info
;
1457 /* use the kernel address the cmd block for tag */
1458 c
->Header
.Tag
.lower
= c
->busaddr
;
1460 /* Fill in Request block */
1461 c
->Request
= iocommand
.Request
;
1463 /* Fill in the scatter gather information */
1464 if (iocommand
.buf_size
> 0) {
1465 temp64
.val
= pci_map_single(h
->pdev
, buff
,
1466 iocommand
.buf_size
, PCI_DMA_BIDIRECTIONAL
);
1467 c
->SG
[0].Addr
.lower
= temp64
.val32
.lower
;
1468 c
->SG
[0].Addr
.upper
= temp64
.val32
.upper
;
1469 c
->SG
[0].Len
= iocommand
.buf_size
;
1470 c
->SG
[0].Ext
= 0; /* we are not chaining */
1474 enqueue_cmd_and_start_io(h
, c
);
1475 wait_for_completion(&wait
);
1477 /* unlock the buffers from DMA */
1478 temp64
.val32
.lower
= c
->SG
[0].Addr
.lower
;
1479 temp64
.val32
.upper
= c
->SG
[0].Addr
.upper
;
1480 pci_unmap_single(h
->pdev
, (dma_addr_t
) temp64
.val
, iocommand
.buf_size
,
1481 PCI_DMA_BIDIRECTIONAL
);
1482 check_ioctl_unit_attention(h
, c
);
1484 /* Copy the error information out */
1485 iocommand
.error_info
= *(c
->err_info
);
1486 if (copy_to_user(argp
, &iocommand
, sizeof(IOCTL_Command_struct
))) {
1488 cmd_special_free(h
, c
);
1492 if (iocommand
.Request
.Type
.Direction
== XFER_READ
) {
1493 /* Copy the data out of the buffer we created */
1494 if (copy_to_user(iocommand
.buf
, buff
, iocommand
.buf_size
)) {
1496 cmd_special_free(h
, c
);
1501 cmd_special_free(h
, c
);
1505 static int cciss_bigpassthru(ctlr_info_t
*h
, void __user
*argp
)
1507 BIG_IOCTL_Command_struct
*ioc
;
1508 CommandList_struct
*c
;
1509 unsigned char **buff
= NULL
;
1510 int *buff_size
= NULL
;
1515 DECLARE_COMPLETION_ONSTACK(wait
);
1518 BYTE __user
*data_ptr
;
1522 if (!capable(CAP_SYS_RAWIO
))
1524 ioc
= (BIG_IOCTL_Command_struct
*)
1525 kmalloc(sizeof(*ioc
), GFP_KERNEL
);
1530 if (copy_from_user(ioc
, argp
, sizeof(*ioc
))) {
1534 if ((ioc
->buf_size
< 1) &&
1535 (ioc
->Request
.Type
.Direction
!= XFER_NONE
)) {
1539 /* Check kmalloc limits using all SGs */
1540 if (ioc
->malloc_size
> MAX_KMALLOC_SIZE
) {
1544 if (ioc
->buf_size
> ioc
->malloc_size
* MAXSGENTRIES
) {
1548 buff
= kzalloc(MAXSGENTRIES
* sizeof(char *), GFP_KERNEL
);
1553 buff_size
= kmalloc(MAXSGENTRIES
* sizeof(int), GFP_KERNEL
);
1558 left
= ioc
->buf_size
;
1559 data_ptr
= ioc
->buf
;
1561 sz
= (left
> ioc
->malloc_size
) ? ioc
->malloc_size
: left
;
1562 buff_size
[sg_used
] = sz
;
1563 buff
[sg_used
] = kmalloc(sz
, GFP_KERNEL
);
1564 if (buff
[sg_used
] == NULL
) {
1568 if (ioc
->Request
.Type
.Direction
== XFER_WRITE
) {
1569 if (copy_from_user(buff
[sg_used
], data_ptr
, sz
)) {
1574 memset(buff
[sg_used
], 0, sz
);
1580 c
= cmd_special_alloc(h
);
1585 c
->cmd_type
= CMD_IOCTL_PEND
;
1586 c
->Header
.ReplyQueue
= 0;
1587 c
->Header
.SGList
= sg_used
;
1588 c
->Header
.SGTotal
= sg_used
;
1589 c
->Header
.LUN
= ioc
->LUN_info
;
1590 c
->Header
.Tag
.lower
= c
->busaddr
;
1592 c
->Request
= ioc
->Request
;
1593 for (i
= 0; i
< sg_used
; i
++) {
1594 temp64
.val
= pci_map_single(h
->pdev
, buff
[i
], buff_size
[i
],
1595 PCI_DMA_BIDIRECTIONAL
);
1596 c
->SG
[i
].Addr
.lower
= temp64
.val32
.lower
;
1597 c
->SG
[i
].Addr
.upper
= temp64
.val32
.upper
;
1598 c
->SG
[i
].Len
= buff_size
[i
];
1599 c
->SG
[i
].Ext
= 0; /* we are not chaining */
1602 enqueue_cmd_and_start_io(h
, c
);
1603 wait_for_completion(&wait
);
1604 /* unlock the buffers from DMA */
1605 for (i
= 0; i
< sg_used
; i
++) {
1606 temp64
.val32
.lower
= c
->SG
[i
].Addr
.lower
;
1607 temp64
.val32
.upper
= c
->SG
[i
].Addr
.upper
;
1608 pci_unmap_single(h
->pdev
,
1609 (dma_addr_t
) temp64
.val
, buff_size
[i
],
1610 PCI_DMA_BIDIRECTIONAL
);
1612 check_ioctl_unit_attention(h
, c
);
1613 /* Copy the error information out */
1614 ioc
->error_info
= *(c
->err_info
);
1615 if (copy_to_user(argp
, ioc
, sizeof(*ioc
))) {
1616 cmd_special_free(h
, c
);
1620 if (ioc
->Request
.Type
.Direction
== XFER_READ
) {
1621 /* Copy the data out of the buffer we created */
1622 BYTE __user
*ptr
= ioc
->buf
;
1623 for (i
= 0; i
< sg_used
; i
++) {
1624 if (copy_to_user(ptr
, buff
[i
], buff_size
[i
])) {
1625 cmd_special_free(h
, c
);
1629 ptr
+= buff_size
[i
];
1632 cmd_special_free(h
, c
);
1636 for (i
= 0; i
< sg_used
; i
++)
1645 static int cciss_ioctl(struct block_device
*bdev
, fmode_t mode
,
1646 unsigned int cmd
, unsigned long arg
)
1648 struct gendisk
*disk
= bdev
->bd_disk
;
1649 ctlr_info_t
*h
= get_host(disk
);
1650 void __user
*argp
= (void __user
*)arg
;
1652 dev_dbg(&h
->pdev
->dev
, "cciss_ioctl: Called with cmd=%x %lx\n",
1655 case CCISS_GETPCIINFO
:
1656 return cciss_getpciinfo(h
, argp
);
1657 case CCISS_GETINTINFO
:
1658 return cciss_getintinfo(h
, argp
);
1659 case CCISS_SETINTINFO
:
1660 return cciss_setintinfo(h
, argp
);
1661 case CCISS_GETNODENAME
:
1662 return cciss_getnodename(h
, argp
);
1663 case CCISS_SETNODENAME
:
1664 return cciss_setnodename(h
, argp
);
1665 case CCISS_GETHEARTBEAT
:
1666 return cciss_getheartbeat(h
, argp
);
1667 case CCISS_GETBUSTYPES
:
1668 return cciss_getbustypes(h
, argp
);
1669 case CCISS_GETFIRMVER
:
1670 return cciss_getfirmver(h
, argp
);
1671 case CCISS_GETDRIVVER
:
1672 return cciss_getdrivver(h
, argp
);
1673 case CCISS_DEREGDISK
:
1675 case CCISS_REVALIDVOLS
:
1676 return rebuild_lun_table(h
, 0, 1);
1677 case CCISS_GETLUNINFO
:
1678 return cciss_getluninfo(h
, disk
, argp
);
1679 case CCISS_PASSTHRU
:
1680 return cciss_passthru(h
, argp
);
1681 case CCISS_BIG_PASSTHRU
:
1682 return cciss_bigpassthru(h
, argp
);
1684 /* scsi_cmd_ioctl handles these, below, though some are not */
1685 /* very meaningful for cciss. SG_IO is the main one people want. */
1687 case SG_GET_VERSION_NUM
:
1688 case SG_SET_TIMEOUT
:
1689 case SG_GET_TIMEOUT
:
1690 case SG_GET_RESERVED_SIZE
:
1691 case SG_SET_RESERVED_SIZE
:
1692 case SG_EMULATED_HOST
:
1694 case SCSI_IOCTL_SEND_COMMAND
:
1695 return scsi_cmd_ioctl(disk
->queue
, disk
, mode
, cmd
, argp
);
1697 /* scsi_cmd_ioctl would normally handle these, below, but */
1698 /* they aren't a good fit for cciss, as CD-ROMs are */
1699 /* not supported, and we don't have any bus/target/lun */
1700 /* which we present to the kernel. */
1702 case CDROM_SEND_PACKET
:
1703 case CDROMCLOSETRAY
:
1705 case SCSI_IOCTL_GET_IDLUN
:
1706 case SCSI_IOCTL_GET_BUS_NUMBER
:
1712 static void cciss_check_queues(ctlr_info_t
*h
)
1714 int start_queue
= h
->next_to_run
;
1717 /* check to see if we have maxed out the number of commands that can
1718 * be placed on the queue. If so then exit. We do this check here
1719 * in case the interrupt we serviced was from an ioctl and did not
1720 * free any new commands.
1722 if ((find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
)) == h
->nr_cmds
)
1725 /* We have room on the queue for more commands. Now we need to queue
1726 * them up. We will also keep track of the next queue to run so
1727 * that every queue gets a chance to be started first.
1729 for (i
= 0; i
< h
->highest_lun
+ 1; i
++) {
1730 int curr_queue
= (start_queue
+ i
) % (h
->highest_lun
+ 1);
1731 /* make sure the disk has been added and the drive is real
1732 * because this can be called from the middle of init_one.
1734 if (!h
->drv
[curr_queue
])
1736 if (!(h
->drv
[curr_queue
]->queue
) ||
1737 !(h
->drv
[curr_queue
]->heads
))
1739 blk_start_queue(h
->gendisk
[curr_queue
]->queue
);
1741 /* check to see if we have maxed out the number of commands
1742 * that can be placed on the queue.
1744 if ((find_first_zero_bit(h
->cmd_pool_bits
, h
->nr_cmds
)) == h
->nr_cmds
) {
1745 if (curr_queue
== start_queue
) {
1747 (start_queue
+ 1) % (h
->highest_lun
+ 1);
1750 h
->next_to_run
= curr_queue
;
1757 static void cciss_softirq_done(struct request
*rq
)
1759 CommandList_struct
*c
= rq
->completion_data
;
1760 ctlr_info_t
*h
= hba
[c
->ctlr
];
1761 SGDescriptor_struct
*curr_sg
= c
->SG
;
1763 unsigned long flags
;
1767 if (c
->Request
.Type
.Direction
== XFER_READ
)
1768 ddir
= PCI_DMA_FROMDEVICE
;
1770 ddir
= PCI_DMA_TODEVICE
;
1772 /* command did not need to be retried */
1773 /* unmap the DMA mapping for all the scatter gather elements */
1774 for (i
= 0; i
< c
->Header
.SGList
; i
++) {
1775 if (curr_sg
[sg_index
].Ext
== CCISS_SG_CHAIN
) {
1776 cciss_unmap_sg_chain_block(h
, c
);
1777 /* Point to the next block */
1778 curr_sg
= h
->cmd_sg_list
[c
->cmdindex
];
1781 temp64
.val32
.lower
= curr_sg
[sg_index
].Addr
.lower
;
1782 temp64
.val32
.upper
= curr_sg
[sg_index
].Addr
.upper
;
1783 pci_unmap_page(h
->pdev
, temp64
.val
, curr_sg
[sg_index
].Len
,
1788 dev_dbg(&h
->pdev
->dev
, "Done with %p\n", rq
);
1790 /* set the residual count for pc requests */
1791 if (rq
->cmd_type
== REQ_TYPE_BLOCK_PC
)
1792 rq
->resid_len
= c
->err_info
->ResidualCnt
;
1794 blk_end_request_all(rq
, (rq
->errors
== 0) ? 0 : -EIO
);
1796 spin_lock_irqsave(&h
->lock
, flags
);
1798 cciss_check_queues(h
);
1799 spin_unlock_irqrestore(&h
->lock
, flags
);
1802 static inline void log_unit_to_scsi3addr(ctlr_info_t
*h
,
1803 unsigned char scsi3addr
[], uint32_t log_unit
)
1805 memcpy(scsi3addr
, h
->drv
[log_unit
]->LunID
,
1806 sizeof(h
->drv
[log_unit
]->LunID
));
1809 /* This function gets the SCSI vendor, model, and revision of a logical drive
1810 * via the inquiry page 0. Model, vendor, and rev are set to empty strings if
1811 * they cannot be read.
1813 static void cciss_get_device_descr(ctlr_info_t
*h
, int logvol
,
1814 char *vendor
, char *model
, char *rev
)
1817 InquiryData_struct
*inq_buf
;
1818 unsigned char scsi3addr
[8];
1824 inq_buf
= kzalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
1828 log_unit_to_scsi3addr(h
, scsi3addr
, logvol
);
1829 rc
= sendcmd_withirq(h
, CISS_INQUIRY
, inq_buf
, sizeof(*inq_buf
), 0,
1830 scsi3addr
, TYPE_CMD
);
1832 memcpy(vendor
, &inq_buf
->data_byte
[8], VENDOR_LEN
);
1833 vendor
[VENDOR_LEN
] = '\0';
1834 memcpy(model
, &inq_buf
->data_byte
[16], MODEL_LEN
);
1835 model
[MODEL_LEN
] = '\0';
1836 memcpy(rev
, &inq_buf
->data_byte
[32], REV_LEN
);
1837 rev
[REV_LEN
] = '\0';
1844 /* This function gets the serial number of a logical drive via
1845 * inquiry page 0x83. Serial no. is 16 bytes. If the serial
1846 * number cannot be had, for whatever reason, 16 bytes of 0xff
1847 * are returned instead.
1849 static void cciss_get_serial_no(ctlr_info_t
*h
, int logvol
,
1850 unsigned char *serial_no
, int buflen
)
1852 #define PAGE_83_INQ_BYTES 64
1855 unsigned char scsi3addr
[8];
1859 memset(serial_no
, 0xff, buflen
);
1860 buf
= kzalloc(PAGE_83_INQ_BYTES
, GFP_KERNEL
);
1863 memset(serial_no
, 0, buflen
);
1864 log_unit_to_scsi3addr(h
, scsi3addr
, logvol
);
1865 rc
= sendcmd_withirq(h
, CISS_INQUIRY
, buf
,
1866 PAGE_83_INQ_BYTES
, 0x83, scsi3addr
, TYPE_CMD
);
1868 memcpy(serial_no
, &buf
[8], buflen
);
1874 * cciss_add_disk sets up the block device queue for a logical drive
1876 static int cciss_add_disk(ctlr_info_t
*h
, struct gendisk
*disk
,
1879 disk
->queue
= blk_init_queue(do_cciss_request
, &h
->lock
);
1881 goto init_queue_failure
;
1882 sprintf(disk
->disk_name
, "cciss/c%dd%d", h
->ctlr
, drv_index
);
1883 disk
->major
= h
->major
;
1884 disk
->first_minor
= drv_index
<< NWD_SHIFT
;
1885 disk
->fops
= &cciss_fops
;
1886 if (cciss_create_ld_sysfs_entry(h
, drv_index
))
1888 disk
->private_data
= h
->drv
[drv_index
];
1889 disk
->driverfs_dev
= &h
->drv
[drv_index
]->dev
;
1891 /* Set up queue information */
1892 blk_queue_bounce_limit(disk
->queue
, h
->pdev
->dma_mask
);
1894 /* This is a hardware imposed limit. */
1895 blk_queue_max_segments(disk
->queue
, h
->maxsgentries
);
1897 blk_queue_max_hw_sectors(disk
->queue
, h
->cciss_max_sectors
);
1899 blk_queue_softirq_done(disk
->queue
, cciss_softirq_done
);
1901 disk
->queue
->queuedata
= h
;
1903 blk_queue_logical_block_size(disk
->queue
,
1904 h
->drv
[drv_index
]->block_size
);
1906 /* Make sure all queue data is written out before */
1907 /* setting h->drv[drv_index]->queue, as setting this */
1908 /* allows the interrupt handler to start the queue */
1910 h
->drv
[drv_index
]->queue
= disk
->queue
;
1915 blk_cleanup_queue(disk
->queue
);
1921 /* This function will check the usage_count of the drive to be updated/added.
1922 * If the usage_count is zero and it is a heretofore unknown drive, or,
1923 * the drive's capacity, geometry, or serial number has changed,
1924 * then the drive information will be updated and the disk will be
1925 * re-registered with the kernel. If these conditions don't hold,
1926 * then it will be left alone for the next reboot. The exception to this
1927 * is disk 0 which will always be left registered with the kernel since it
1928 * is also the controller node. Any changes to disk 0 will show up on
1931 static void cciss_update_drive_info(ctlr_info_t
*h
, int drv_index
,
1932 int first_time
, int via_ioctl
)
1934 struct gendisk
*disk
;
1935 InquiryData_struct
*inq_buff
= NULL
;
1936 unsigned int block_size
;
1937 sector_t total_size
;
1938 unsigned long flags
= 0;
1940 drive_info_struct
*drvinfo
;
1942 /* Get information about the disk and modify the driver structure */
1943 inq_buff
= kmalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
1944 drvinfo
= kzalloc(sizeof(*drvinfo
), GFP_KERNEL
);
1945 if (inq_buff
== NULL
|| drvinfo
== NULL
)
1948 /* testing to see if 16-byte CDBs are already being used */
1949 if (h
->cciss_read
== CCISS_READ_16
) {
1950 cciss_read_capacity_16(h
, drv_index
,
1951 &total_size
, &block_size
);
1954 cciss_read_capacity(h
, drv_index
, &total_size
, &block_size
);
1955 /* if read_capacity returns all F's this volume is >2TB */
1956 /* in size so we switch to 16-byte CDB's for all */
1957 /* read/write ops */
1958 if (total_size
== 0xFFFFFFFFULL
) {
1959 cciss_read_capacity_16(h
, drv_index
,
1960 &total_size
, &block_size
);
1961 h
->cciss_read
= CCISS_READ_16
;
1962 h
->cciss_write
= CCISS_WRITE_16
;
1964 h
->cciss_read
= CCISS_READ_10
;
1965 h
->cciss_write
= CCISS_WRITE_10
;
1969 cciss_geometry_inquiry(h
, drv_index
, total_size
, block_size
,
1971 drvinfo
->block_size
= block_size
;
1972 drvinfo
->nr_blocks
= total_size
+ 1;
1974 cciss_get_device_descr(h
, drv_index
, drvinfo
->vendor
,
1975 drvinfo
->model
, drvinfo
->rev
);
1976 cciss_get_serial_no(h
, drv_index
, drvinfo
->serial_no
,
1977 sizeof(drvinfo
->serial_no
));
1978 /* Save the lunid in case we deregister the disk, below. */
1979 memcpy(drvinfo
->LunID
, h
->drv
[drv_index
]->LunID
,
1980 sizeof(drvinfo
->LunID
));
1982 /* Is it the same disk we already know, and nothing's changed? */
1983 if (h
->drv
[drv_index
]->raid_level
!= -1 &&
1984 ((memcmp(drvinfo
->serial_no
,
1985 h
->drv
[drv_index
]->serial_no
, 16) == 0) &&
1986 drvinfo
->block_size
== h
->drv
[drv_index
]->block_size
&&
1987 drvinfo
->nr_blocks
== h
->drv
[drv_index
]->nr_blocks
&&
1988 drvinfo
->heads
== h
->drv
[drv_index
]->heads
&&
1989 drvinfo
->sectors
== h
->drv
[drv_index
]->sectors
&&
1990 drvinfo
->cylinders
== h
->drv
[drv_index
]->cylinders
))
1991 /* The disk is unchanged, nothing to update */
1994 /* If we get here it's not the same disk, or something's changed,
1995 * so we need to * deregister it, and re-register it, if it's not
1997 * If the disk already exists then deregister it before proceeding
1998 * (unless it's the first disk (for the controller node).
2000 if (h
->drv
[drv_index
]->raid_level
!= -1 && drv_index
!= 0) {
2001 dev_warn(&h
->pdev
->dev
, "disk %d has changed.\n", drv_index
);
2002 spin_lock_irqsave(&h
->lock
, flags
);
2003 h
->drv
[drv_index
]->busy_configuring
= 1;
2004 spin_unlock_irqrestore(&h
->lock
, flags
);
2006 /* deregister_disk sets h->drv[drv_index]->queue = NULL
2007 * which keeps the interrupt handler from starting
2010 ret
= deregister_disk(h
, drv_index
, 0, via_ioctl
);
2013 /* If the disk is in use return */
2017 /* Save the new information from cciss_geometry_inquiry
2018 * and serial number inquiry. If the disk was deregistered
2019 * above, then h->drv[drv_index] will be NULL.
2021 if (h
->drv
[drv_index
] == NULL
) {
2022 drvinfo
->device_initialized
= 0;
2023 h
->drv
[drv_index
] = drvinfo
;
2024 drvinfo
= NULL
; /* so it won't be freed below. */
2026 /* special case for cxd0 */
2027 h
->drv
[drv_index
]->block_size
= drvinfo
->block_size
;
2028 h
->drv
[drv_index
]->nr_blocks
= drvinfo
->nr_blocks
;
2029 h
->drv
[drv_index
]->heads
= drvinfo
->heads
;
2030 h
->drv
[drv_index
]->sectors
= drvinfo
->sectors
;
2031 h
->drv
[drv_index
]->cylinders
= drvinfo
->cylinders
;
2032 h
->drv
[drv_index
]->raid_level
= drvinfo
->raid_level
;
2033 memcpy(h
->drv
[drv_index
]->serial_no
, drvinfo
->serial_no
, 16);
2034 memcpy(h
->drv
[drv_index
]->vendor
, drvinfo
->vendor
,
2036 memcpy(h
->drv
[drv_index
]->model
, drvinfo
->model
, MODEL_LEN
+ 1);
2037 memcpy(h
->drv
[drv_index
]->rev
, drvinfo
->rev
, REV_LEN
+ 1);
2041 disk
= h
->gendisk
[drv_index
];
2042 set_capacity(disk
, h
->drv
[drv_index
]->nr_blocks
);
2044 /* If it's not disk 0 (drv_index != 0)
2045 * or if it was disk 0, but there was previously
2046 * no actual corresponding configured logical drive
2047 * (raid_leve == -1) then we want to update the
2048 * logical drive's information.
2050 if (drv_index
|| first_time
) {
2051 if (cciss_add_disk(h
, disk
, drv_index
) != 0) {
2052 cciss_free_gendisk(h
, drv_index
);
2053 cciss_free_drive_info(h
, drv_index
);
2054 dev_warn(&h
->pdev
->dev
, "could not update disk %d\n",
2065 dev_err(&h
->pdev
->dev
, "out of memory\n");
2069 /* This function will find the first index of the controllers drive array
2070 * that has a null drv pointer and allocate the drive info struct and
2071 * will return that index This is where new drives will be added.
2072 * If the index to be returned is greater than the highest_lun index for
2073 * the controller then highest_lun is set * to this new index.
2074 * If there are no available indexes or if tha allocation fails, then -1
2075 * is returned. * "controller_node" is used to know if this is a real
2076 * logical drive, or just the controller node, which determines if this
2077 * counts towards highest_lun.
2079 static int cciss_alloc_drive_info(ctlr_info_t
*h
, int controller_node
)
2082 drive_info_struct
*drv
;
2084 /* Search for an empty slot for our drive info */
2085 for (i
= 0; i
< CISS_MAX_LUN
; i
++) {
2087 /* if not cxd0 case, and it's occupied, skip it. */
2088 if (h
->drv
[i
] && i
!= 0)
2091 * If it's cxd0 case, and drv is alloc'ed already, and a
2092 * disk is configured there, skip it.
2094 if (i
== 0 && h
->drv
[i
] && h
->drv
[i
]->raid_level
!= -1)
2098 * We've found an empty slot. Update highest_lun
2099 * provided this isn't just the fake cxd0 controller node.
2101 if (i
> h
->highest_lun
&& !controller_node
)
2104 /* If adding a real disk at cxd0, and it's already alloc'ed */
2105 if (i
== 0 && h
->drv
[i
] != NULL
)
2109 * Found an empty slot, not already alloc'ed. Allocate it.
2110 * Mark it with raid_level == -1, so we know it's new later on.
2112 drv
= kzalloc(sizeof(*drv
), GFP_KERNEL
);
2115 drv
->raid_level
= -1; /* so we know it's new */
2122 static void cciss_free_drive_info(ctlr_info_t
*h
, int drv_index
)
2124 kfree(h
->drv
[drv_index
]);
2125 h
->drv
[drv_index
] = NULL
;
2128 static void cciss_free_gendisk(ctlr_info_t
*h
, int drv_index
)
2130 put_disk(h
->gendisk
[drv_index
]);
2131 h
->gendisk
[drv_index
] = NULL
;
2134 /* cciss_add_gendisk finds a free hba[]->drv structure
2135 * and allocates a gendisk if needed, and sets the lunid
2136 * in the drvinfo structure. It returns the index into
2137 * the ->drv[] array, or -1 if none are free.
2138 * is_controller_node indicates whether highest_lun should
2139 * count this disk, or if it's only being added to provide
2140 * a means to talk to the controller in case no logical
2141 * drives have yet been configured.
2143 static int cciss_add_gendisk(ctlr_info_t
*h
, unsigned char lunid
[],
2144 int controller_node
)
2148 drv_index
= cciss_alloc_drive_info(h
, controller_node
);
2149 if (drv_index
== -1)
2152 /*Check if the gendisk needs to be allocated */
2153 if (!h
->gendisk
[drv_index
]) {
2154 h
->gendisk
[drv_index
] =
2155 alloc_disk(1 << NWD_SHIFT
);
2156 if (!h
->gendisk
[drv_index
]) {
2157 dev_err(&h
->pdev
->dev
,
2158 "could not allocate a new disk %d\n",
2160 goto err_free_drive_info
;
2163 memcpy(h
->drv
[drv_index
]->LunID
, lunid
,
2164 sizeof(h
->drv
[drv_index
]->LunID
));
2165 if (cciss_create_ld_sysfs_entry(h
, drv_index
))
2167 /* Don't need to mark this busy because nobody */
2168 /* else knows about this disk yet to contend */
2169 /* for access to it. */
2170 h
->drv
[drv_index
]->busy_configuring
= 0;
2175 cciss_free_gendisk(h
, drv_index
);
2176 err_free_drive_info
:
2177 cciss_free_drive_info(h
, drv_index
);
2181 /* This is for the special case of a controller which
2182 * has no logical drives. In this case, we still need
2183 * to register a disk so the controller can be accessed
2184 * by the Array Config Utility.
2186 static void cciss_add_controller_node(ctlr_info_t
*h
)
2188 struct gendisk
*disk
;
2191 if (h
->gendisk
[0] != NULL
) /* already did this? Then bail. */
2194 drv_index
= cciss_add_gendisk(h
, CTLR_LUNID
, 1);
2195 if (drv_index
== -1)
2197 h
->drv
[drv_index
]->block_size
= 512;
2198 h
->drv
[drv_index
]->nr_blocks
= 0;
2199 h
->drv
[drv_index
]->heads
= 0;
2200 h
->drv
[drv_index
]->sectors
= 0;
2201 h
->drv
[drv_index
]->cylinders
= 0;
2202 h
->drv
[drv_index
]->raid_level
= -1;
2203 memset(h
->drv
[drv_index
]->serial_no
, 0, 16);
2204 disk
= h
->gendisk
[drv_index
];
2205 if (cciss_add_disk(h
, disk
, drv_index
) == 0)
2207 cciss_free_gendisk(h
, drv_index
);
2208 cciss_free_drive_info(h
, drv_index
);
2210 dev_warn(&h
->pdev
->dev
, "could not add disk 0.\n");
2214 /* This function will add and remove logical drives from the Logical
2215 * drive array of the controller and maintain persistency of ordering
2216 * so that mount points are preserved until the next reboot. This allows
2217 * for the removal of logical drives in the middle of the drive array
2218 * without a re-ordering of those drives.
2220 * h = The controller to perform the operations on
2222 static int rebuild_lun_table(ctlr_info_t
*h
, int first_time
,
2226 ReportLunData_struct
*ld_buff
= NULL
;
2232 unsigned char lunid
[8] = CTLR_LUNID
;
2233 unsigned long flags
;
2235 if (!capable(CAP_SYS_RAWIO
))
2238 /* Set busy_configuring flag for this operation */
2239 spin_lock_irqsave(&h
->lock
, flags
);
2240 if (h
->busy_configuring
) {
2241 spin_unlock_irqrestore(&h
->lock
, flags
);
2244 h
->busy_configuring
= 1;
2245 spin_unlock_irqrestore(&h
->lock
, flags
);
2247 ld_buff
= kzalloc(sizeof(ReportLunData_struct
), GFP_KERNEL
);
2248 if (ld_buff
== NULL
)
2251 return_code
= sendcmd_withirq(h
, CISS_REPORT_LOG
, ld_buff
,
2252 sizeof(ReportLunData_struct
),
2253 0, CTLR_LUNID
, TYPE_CMD
);
2255 if (return_code
== IO_OK
)
2256 listlength
= be32_to_cpu(*(__be32
*) ld_buff
->LUNListLength
);
2257 else { /* reading number of logical volumes failed */
2258 dev_warn(&h
->pdev
->dev
,
2259 "report logical volume command failed\n");
2264 num_luns
= listlength
/ 8; /* 8 bytes per entry */
2265 if (num_luns
> CISS_MAX_LUN
) {
2266 num_luns
= CISS_MAX_LUN
;
2267 dev_warn(&h
->pdev
->dev
, "more luns configured"
2268 " on controller than can be handled by"
2273 cciss_add_controller_node(h
);
2275 /* Compare controller drive array to driver's drive array
2276 * to see if any drives are missing on the controller due
2277 * to action of Array Config Utility (user deletes drive)
2278 * and deregister logical drives which have disappeared.
2280 for (i
= 0; i
<= h
->highest_lun
; i
++) {
2284 /* skip holes in the array from already deleted drives */
2285 if (h
->drv
[i
] == NULL
)
2288 for (j
= 0; j
< num_luns
; j
++) {
2289 memcpy(lunid
, &ld_buff
->LUN
[j
][0], sizeof(lunid
));
2290 if (memcmp(h
->drv
[i
]->LunID
, lunid
,
2291 sizeof(lunid
)) == 0) {
2297 /* Deregister it from the OS, it's gone. */
2298 spin_lock_irqsave(&h
->lock
, flags
);
2299 h
->drv
[i
]->busy_configuring
= 1;
2300 spin_unlock_irqrestore(&h
->lock
, flags
);
2301 return_code
= deregister_disk(h
, i
, 1, via_ioctl
);
2302 if (h
->drv
[i
] != NULL
)
2303 h
->drv
[i
]->busy_configuring
= 0;
2307 /* Compare controller drive array to driver's drive array.
2308 * Check for updates in the drive information and any new drives
2309 * on the controller due to ACU adding logical drives, or changing
2310 * a logical drive's size, etc. Reregister any new/changed drives
2312 for (i
= 0; i
< num_luns
; i
++) {
2317 memcpy(lunid
, &ld_buff
->LUN
[i
][0], sizeof(lunid
));
2318 /* Find if the LUN is already in the drive array
2319 * of the driver. If so then update its info
2320 * if not in use. If it does not exist then find
2321 * the first free index and add it.
2323 for (j
= 0; j
<= h
->highest_lun
; j
++) {
2324 if (h
->drv
[j
] != NULL
&&
2325 memcmp(h
->drv
[j
]->LunID
, lunid
,
2326 sizeof(h
->drv
[j
]->LunID
)) == 0) {
2333 /* check if the drive was found already in the array */
2335 drv_index
= cciss_add_gendisk(h
, lunid
, 0);
2336 if (drv_index
== -1)
2339 cciss_update_drive_info(h
, drv_index
, first_time
, via_ioctl
);
2344 h
->busy_configuring
= 0;
2345 /* We return -1 here to tell the ACU that we have registered/updated
2346 * all of the drives that we can and to keep it from calling us
2351 dev_err(&h
->pdev
->dev
, "out of memory\n");
2352 h
->busy_configuring
= 0;
2356 static void cciss_clear_drive_info(drive_info_struct
*drive_info
)
2358 /* zero out the disk size info */
2359 drive_info
->nr_blocks
= 0;
2360 drive_info
->block_size
= 0;
2361 drive_info
->heads
= 0;
2362 drive_info
->sectors
= 0;
2363 drive_info
->cylinders
= 0;
2364 drive_info
->raid_level
= -1;
2365 memset(drive_info
->serial_no
, 0, sizeof(drive_info
->serial_no
));
2366 memset(drive_info
->model
, 0, sizeof(drive_info
->model
));
2367 memset(drive_info
->rev
, 0, sizeof(drive_info
->rev
));
2368 memset(drive_info
->vendor
, 0, sizeof(drive_info
->vendor
));
2370 * don't clear the LUNID though, we need to remember which
2375 /* This function will deregister the disk and it's queue from the
2376 * kernel. It must be called with the controller lock held and the
2377 * drv structures busy_configuring flag set. It's parameters are:
2379 * disk = This is the disk to be deregistered
2380 * drv = This is the drive_info_struct associated with the disk to be
2381 * deregistered. It contains information about the disk used
2383 * clear_all = This flag determines whether or not the disk information
2384 * is going to be completely cleared out and the highest_lun
2385 * reset. Sometimes we want to clear out information about
2386 * the disk in preparation for re-adding it. In this case
2387 * the highest_lun should be left unchanged and the LunID
2388 * should not be cleared.
2390 * This indicates whether we've reached this path via ioctl.
2391 * This affects the maximum usage count allowed for c0d0 to be messed with.
2392 * If this path is reached via ioctl(), then the max_usage_count will
2393 * be 1, as the process calling ioctl() has got to have the device open.
2394 * If we get here via sysfs, then the max usage count will be zero.
2396 static int deregister_disk(ctlr_info_t
*h
, int drv_index
,
2397 int clear_all
, int via_ioctl
)
2400 struct gendisk
*disk
;
2401 drive_info_struct
*drv
;
2402 int recalculate_highest_lun
;
2404 if (!capable(CAP_SYS_RAWIO
))
2407 drv
= h
->drv
[drv_index
];
2408 disk
= h
->gendisk
[drv_index
];
2410 /* make sure logical volume is NOT is use */
2411 if (clear_all
|| (h
->gendisk
[0] == disk
)) {
2412 if (drv
->usage_count
> via_ioctl
)
2414 } else if (drv
->usage_count
> 0)
2417 recalculate_highest_lun
= (drv
== h
->drv
[h
->highest_lun
]);
2419 /* invalidate the devices and deregister the disk. If it is disk
2420 * zero do not deregister it but just zero out it's values. This
2421 * allows us to delete disk zero but keep the controller registered.
2423 if (h
->gendisk
[0] != disk
) {
2424 struct request_queue
*q
= disk
->queue
;
2425 if (disk
->flags
& GENHD_FL_UP
) {
2426 cciss_destroy_ld_sysfs_entry(h
, drv_index
, 0);
2430 blk_cleanup_queue(q
);
2431 /* If clear_all is set then we are deleting the logical
2432 * drive, not just refreshing its info. For drives
2433 * other than disk 0 we will call put_disk. We do not
2434 * do this for disk 0 as we need it to be able to
2435 * configure the controller.
2438 /* This isn't pretty, but we need to find the
2439 * disk in our array and NULL our the pointer.
2440 * This is so that we will call alloc_disk if
2441 * this index is used again later.
2443 for (i
=0; i
< CISS_MAX_LUN
; i
++){
2444 if (h
->gendisk
[i
] == disk
) {
2445 h
->gendisk
[i
] = NULL
;
2452 set_capacity(disk
, 0);
2453 cciss_clear_drive_info(drv
);
2458 /* if it was the last disk, find the new hightest lun */
2459 if (clear_all
&& recalculate_highest_lun
) {
2460 int newhighest
= -1;
2461 for (i
= 0; i
<= h
->highest_lun
; i
++) {
2462 /* if the disk has size > 0, it is available */
2463 if (h
->drv
[i
] && h
->drv
[i
]->heads
)
2466 h
->highest_lun
= newhighest
;
2471 static int fill_cmd(ctlr_info_t
*h
, CommandList_struct
*c
, __u8 cmd
, void *buff
,
2472 size_t size
, __u8 page_code
, unsigned char *scsi3addr
,
2475 u64bit buff_dma_handle
;
2478 c
->cmd_type
= CMD_IOCTL_PEND
;
2479 c
->Header
.ReplyQueue
= 0;
2481 c
->Header
.SGList
= 1;
2482 c
->Header
.SGTotal
= 1;
2484 c
->Header
.SGList
= 0;
2485 c
->Header
.SGTotal
= 0;
2487 c
->Header
.Tag
.lower
= c
->busaddr
;
2488 memcpy(c
->Header
.LUN
.LunAddrBytes
, scsi3addr
, 8);
2490 c
->Request
.Type
.Type
= cmd_type
;
2491 if (cmd_type
== TYPE_CMD
) {
2494 /* are we trying to read a vital product page */
2495 if (page_code
!= 0) {
2496 c
->Request
.CDB
[1] = 0x01;
2497 c
->Request
.CDB
[2] = page_code
;
2499 c
->Request
.CDBLen
= 6;
2500 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2501 c
->Request
.Type
.Direction
= XFER_READ
;
2502 c
->Request
.Timeout
= 0;
2503 c
->Request
.CDB
[0] = CISS_INQUIRY
;
2504 c
->Request
.CDB
[4] = size
& 0xFF;
2506 case CISS_REPORT_LOG
:
2507 case CISS_REPORT_PHYS
:
2508 /* Talking to controller so It's a physical command
2509 mode = 00 target = 0. Nothing to write.
2511 c
->Request
.CDBLen
= 12;
2512 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2513 c
->Request
.Type
.Direction
= XFER_READ
;
2514 c
->Request
.Timeout
= 0;
2515 c
->Request
.CDB
[0] = cmd
;
2516 c
->Request
.CDB
[6] = (size
>> 24) & 0xFF; /* MSB */
2517 c
->Request
.CDB
[7] = (size
>> 16) & 0xFF;
2518 c
->Request
.CDB
[8] = (size
>> 8) & 0xFF;
2519 c
->Request
.CDB
[9] = size
& 0xFF;
2522 case CCISS_READ_CAPACITY
:
2523 c
->Request
.CDBLen
= 10;
2524 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2525 c
->Request
.Type
.Direction
= XFER_READ
;
2526 c
->Request
.Timeout
= 0;
2527 c
->Request
.CDB
[0] = cmd
;
2529 case CCISS_READ_CAPACITY_16
:
2530 c
->Request
.CDBLen
= 16;
2531 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2532 c
->Request
.Type
.Direction
= XFER_READ
;
2533 c
->Request
.Timeout
= 0;
2534 c
->Request
.CDB
[0] = cmd
;
2535 c
->Request
.CDB
[1] = 0x10;
2536 c
->Request
.CDB
[10] = (size
>> 24) & 0xFF;
2537 c
->Request
.CDB
[11] = (size
>> 16) & 0xFF;
2538 c
->Request
.CDB
[12] = (size
>> 8) & 0xFF;
2539 c
->Request
.CDB
[13] = size
& 0xFF;
2540 c
->Request
.Timeout
= 0;
2541 c
->Request
.CDB
[0] = cmd
;
2543 case CCISS_CACHE_FLUSH
:
2544 c
->Request
.CDBLen
= 12;
2545 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2546 c
->Request
.Type
.Direction
= XFER_WRITE
;
2547 c
->Request
.Timeout
= 0;
2548 c
->Request
.CDB
[0] = BMIC_WRITE
;
2549 c
->Request
.CDB
[6] = BMIC_CACHE_FLUSH
;
2551 case TEST_UNIT_READY
:
2552 c
->Request
.CDBLen
= 6;
2553 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2554 c
->Request
.Type
.Direction
= XFER_NONE
;
2555 c
->Request
.Timeout
= 0;
2558 dev_warn(&h
->pdev
->dev
, "Unknown Command 0x%c\n", cmd
);
2561 } else if (cmd_type
== TYPE_MSG
) {
2563 case 0: /* ABORT message */
2564 c
->Request
.CDBLen
= 12;
2565 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2566 c
->Request
.Type
.Direction
= XFER_WRITE
;
2567 c
->Request
.Timeout
= 0;
2568 c
->Request
.CDB
[0] = cmd
; /* abort */
2569 c
->Request
.CDB
[1] = 0; /* abort a command */
2570 /* buff contains the tag of the command to abort */
2571 memcpy(&c
->Request
.CDB
[4], buff
, 8);
2573 case 1: /* RESET message */
2574 c
->Request
.CDBLen
= 16;
2575 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2576 c
->Request
.Type
.Direction
= XFER_NONE
;
2577 c
->Request
.Timeout
= 0;
2578 memset(&c
->Request
.CDB
[0], 0, sizeof(c
->Request
.CDB
));
2579 c
->Request
.CDB
[0] = cmd
; /* reset */
2580 c
->Request
.CDB
[1] = 0x03; /* reset a target */
2582 case 3: /* No-Op message */
2583 c
->Request
.CDBLen
= 1;
2584 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
2585 c
->Request
.Type
.Direction
= XFER_WRITE
;
2586 c
->Request
.Timeout
= 0;
2587 c
->Request
.CDB
[0] = cmd
;
2590 dev_warn(&h
->pdev
->dev
,
2591 "unknown message type %d\n", cmd
);
2595 dev_warn(&h
->pdev
->dev
, "unknown command type %d\n", cmd_type
);
2598 /* Fill in the scatter gather information */
2600 buff_dma_handle
.val
= (__u64
) pci_map_single(h
->pdev
,
2602 PCI_DMA_BIDIRECTIONAL
);
2603 c
->SG
[0].Addr
.lower
= buff_dma_handle
.val32
.lower
;
2604 c
->SG
[0].Addr
.upper
= buff_dma_handle
.val32
.upper
;
2605 c
->SG
[0].Len
= size
;
2606 c
->SG
[0].Ext
= 0; /* we are not chaining */
2611 static int check_target_status(ctlr_info_t
*h
, CommandList_struct
*c
)
2613 switch (c
->err_info
->ScsiStatus
) {
2616 case SAM_STAT_CHECK_CONDITION
:
2617 switch (0xf & c
->err_info
->SenseInfo
[2]) {
2618 case 0: return IO_OK
; /* no sense */
2619 case 1: return IO_OK
; /* recovered error */
2621 if (check_for_unit_attention(h
, c
))
2622 return IO_NEEDS_RETRY
;
2623 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x "
2624 "check condition, sense key = 0x%02x\n",
2625 c
->Request
.CDB
[0], c
->err_info
->SenseInfo
[2]);
2629 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x"
2630 "scsi status = 0x%02x\n",
2631 c
->Request
.CDB
[0], c
->err_info
->ScsiStatus
);
2637 static int process_sendcmd_error(ctlr_info_t
*h
, CommandList_struct
*c
)
2639 int return_status
= IO_OK
;
2641 if (c
->err_info
->CommandStatus
== CMD_SUCCESS
)
2644 switch (c
->err_info
->CommandStatus
) {
2645 case CMD_TARGET_STATUS
:
2646 return_status
= check_target_status(h
, c
);
2648 case CMD_DATA_UNDERRUN
:
2649 case CMD_DATA_OVERRUN
:
2650 /* expected for inquiry and report lun commands */
2653 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x is "
2654 "reported invalid\n", c
->Request
.CDB
[0]);
2655 return_status
= IO_ERROR
;
2657 case CMD_PROTOCOL_ERR
:
2658 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x has "
2659 "protocol error\n", c
->Request
.CDB
[0]);
2660 return_status
= IO_ERROR
;
2662 case CMD_HARDWARE_ERR
:
2663 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x had "
2664 " hardware error\n", c
->Request
.CDB
[0]);
2665 return_status
= IO_ERROR
;
2667 case CMD_CONNECTION_LOST
:
2668 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x had "
2669 "connection lost\n", c
->Request
.CDB
[0]);
2670 return_status
= IO_ERROR
;
2673 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x was "
2674 "aborted\n", c
->Request
.CDB
[0]);
2675 return_status
= IO_ERROR
;
2677 case CMD_ABORT_FAILED
:
2678 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x reports "
2679 "abort failed\n", c
->Request
.CDB
[0]);
2680 return_status
= IO_ERROR
;
2682 case CMD_UNSOLICITED_ABORT
:
2683 dev_warn(&h
->pdev
->dev
, "unsolicited abort 0x%02x\n",
2685 return_status
= IO_NEEDS_RETRY
;
2688 dev_warn(&h
->pdev
->dev
, "cmd 0x%02x returned "
2689 "unknown status %x\n", c
->Request
.CDB
[0],
2690 c
->err_info
->CommandStatus
);
2691 return_status
= IO_ERROR
;
2693 return return_status
;
2696 static int sendcmd_withirq_core(ctlr_info_t
*h
, CommandList_struct
*c
,
2699 DECLARE_COMPLETION_ONSTACK(wait
);
2700 u64bit buff_dma_handle
;
2701 int return_status
= IO_OK
;
2705 enqueue_cmd_and_start_io(h
, c
);
2707 wait_for_completion(&wait
);
2709 if (c
->err_info
->CommandStatus
== 0 || !attempt_retry
)
2712 return_status
= process_sendcmd_error(h
, c
);
2714 if (return_status
== IO_NEEDS_RETRY
&&
2715 c
->retry_count
< MAX_CMD_RETRIES
) {
2716 dev_warn(&h
->pdev
->dev
, "retrying 0x%02x\n",
2719 /* erase the old error information */
2720 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
2721 return_status
= IO_OK
;
2722 INIT_COMPLETION(wait
);
2727 /* unlock the buffers from DMA */
2728 buff_dma_handle
.val32
.lower
= c
->SG
[0].Addr
.lower
;
2729 buff_dma_handle
.val32
.upper
= c
->SG
[0].Addr
.upper
;
2730 pci_unmap_single(h
->pdev
, (dma_addr_t
) buff_dma_handle
.val
,
2731 c
->SG
[0].Len
, PCI_DMA_BIDIRECTIONAL
);
2732 return return_status
;
2735 static int sendcmd_withirq(ctlr_info_t
*h
, __u8 cmd
, void *buff
, size_t size
,
2736 __u8 page_code
, unsigned char scsi3addr
[],
2739 CommandList_struct
*c
;
2742 c
= cmd_special_alloc(h
);
2745 return_status
= fill_cmd(h
, c
, cmd
, buff
, size
, page_code
,
2746 scsi3addr
, cmd_type
);
2747 if (return_status
== IO_OK
)
2748 return_status
= sendcmd_withirq_core(h
, c
, 1);
2750 cmd_special_free(h
, c
);
2751 return return_status
;
2754 static void cciss_geometry_inquiry(ctlr_info_t
*h
, int logvol
,
2755 sector_t total_size
,
2756 unsigned int block_size
,
2757 InquiryData_struct
*inq_buff
,
2758 drive_info_struct
*drv
)
2762 unsigned char scsi3addr
[8];
2764 memset(inq_buff
, 0, sizeof(InquiryData_struct
));
2765 log_unit_to_scsi3addr(h
, scsi3addr
, logvol
);
2766 return_code
= sendcmd_withirq(h
, CISS_INQUIRY
, inq_buff
,
2767 sizeof(*inq_buff
), 0xC1, scsi3addr
, TYPE_CMD
);
2768 if (return_code
== IO_OK
) {
2769 if (inq_buff
->data_byte
[8] == 0xFF) {
2770 dev_warn(&h
->pdev
->dev
,
2771 "reading geometry failed, volume "
2772 "does not support reading geometry\n");
2774 drv
->sectors
= 32; /* Sectors per track */
2775 drv
->cylinders
= total_size
+ 1;
2776 drv
->raid_level
= RAID_UNKNOWN
;
2778 drv
->heads
= inq_buff
->data_byte
[6];
2779 drv
->sectors
= inq_buff
->data_byte
[7];
2780 drv
->cylinders
= (inq_buff
->data_byte
[4] & 0xff) << 8;
2781 drv
->cylinders
+= inq_buff
->data_byte
[5];
2782 drv
->raid_level
= inq_buff
->data_byte
[8];
2784 drv
->block_size
= block_size
;
2785 drv
->nr_blocks
= total_size
+ 1;
2786 t
= drv
->heads
* drv
->sectors
;
2788 sector_t real_size
= total_size
+ 1;
2789 unsigned long rem
= sector_div(real_size
, t
);
2792 drv
->cylinders
= real_size
;
2794 } else { /* Get geometry failed */
2795 dev_warn(&h
->pdev
->dev
, "reading geometry failed\n");
2800 cciss_read_capacity(ctlr_info_t
*h
, int logvol
, sector_t
*total_size
,
2801 unsigned int *block_size
)
2803 ReadCapdata_struct
*buf
;
2805 unsigned char scsi3addr
[8];
2807 buf
= kzalloc(sizeof(ReadCapdata_struct
), GFP_KERNEL
);
2809 dev_warn(&h
->pdev
->dev
, "out of memory\n");
2813 log_unit_to_scsi3addr(h
, scsi3addr
, logvol
);
2814 return_code
= sendcmd_withirq(h
, CCISS_READ_CAPACITY
, buf
,
2815 sizeof(ReadCapdata_struct
), 0, scsi3addr
, TYPE_CMD
);
2816 if (return_code
== IO_OK
) {
2817 *total_size
= be32_to_cpu(*(__be32
*) buf
->total_size
);
2818 *block_size
= be32_to_cpu(*(__be32
*) buf
->block_size
);
2819 } else { /* read capacity command failed */
2820 dev_warn(&h
->pdev
->dev
, "read capacity failed\n");
2822 *block_size
= BLOCK_SIZE
;
2827 static void cciss_read_capacity_16(ctlr_info_t
*h
, int logvol
,
2828 sector_t
*total_size
, unsigned int *block_size
)
2830 ReadCapdata_struct_16
*buf
;
2832 unsigned char scsi3addr
[8];
2834 buf
= kzalloc(sizeof(ReadCapdata_struct_16
), GFP_KERNEL
);
2836 dev_warn(&h
->pdev
->dev
, "out of memory\n");
2840 log_unit_to_scsi3addr(h
, scsi3addr
, logvol
);
2841 return_code
= sendcmd_withirq(h
, CCISS_READ_CAPACITY_16
,
2842 buf
, sizeof(ReadCapdata_struct_16
),
2843 0, scsi3addr
, TYPE_CMD
);
2844 if (return_code
== IO_OK
) {
2845 *total_size
= be64_to_cpu(*(__be64
*) buf
->total_size
);
2846 *block_size
= be32_to_cpu(*(__be32
*) buf
->block_size
);
2847 } else { /* read capacity command failed */
2848 dev_warn(&h
->pdev
->dev
, "read capacity failed\n");
2850 *block_size
= BLOCK_SIZE
;
2852 dev_info(&h
->pdev
->dev
, " blocks= %llu block_size= %d\n",
2853 (unsigned long long)*total_size
+1, *block_size
);
2857 static int cciss_revalidate(struct gendisk
*disk
)
2859 ctlr_info_t
*h
= get_host(disk
);
2860 drive_info_struct
*drv
= get_drv(disk
);
2863 unsigned int block_size
;
2864 sector_t total_size
;
2865 InquiryData_struct
*inq_buff
= NULL
;
2867 for (logvol
= 0; logvol
< CISS_MAX_LUN
; logvol
++) {
2868 if (memcmp(h
->drv
[logvol
]->LunID
, drv
->LunID
,
2869 sizeof(drv
->LunID
)) == 0) {
2878 inq_buff
= kmalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
2879 if (inq_buff
== NULL
) {
2880 dev_warn(&h
->pdev
->dev
, "out of memory\n");
2883 if (h
->cciss_read
== CCISS_READ_10
) {
2884 cciss_read_capacity(h
, logvol
,
2885 &total_size
, &block_size
);
2887 cciss_read_capacity_16(h
, logvol
,
2888 &total_size
, &block_size
);
2890 cciss_geometry_inquiry(h
, logvol
, total_size
, block_size
,
2893 blk_queue_logical_block_size(drv
->queue
, drv
->block_size
);
2894 set_capacity(disk
, drv
->nr_blocks
);
2901 * Map (physical) PCI mem into (virtual) kernel space
2903 static void __iomem
*remap_pci_mem(ulong base
, ulong size
)
2905 ulong page_base
= ((ulong
) base
) & PAGE_MASK
;
2906 ulong page_offs
= ((ulong
) base
) - page_base
;
2907 void __iomem
*page_remapped
= ioremap(page_base
, page_offs
+ size
);
2909 return page_remapped
? (page_remapped
+ page_offs
) : NULL
;
2913 * Takes jobs of the Q and sends them to the hardware, then puts it on
2914 * the Q to wait for completion.
2916 static void start_io(ctlr_info_t
*h
)
2918 CommandList_struct
*c
;
2920 while (!hlist_empty(&h
->reqQ
)) {
2921 c
= hlist_entry(h
->reqQ
.first
, CommandList_struct
, list
);
2922 /* can't do anything if fifo is full */
2923 if ((h
->access
.fifo_full(h
))) {
2924 dev_warn(&h
->pdev
->dev
, "fifo full\n");
2928 /* Get the first entry from the Request Q */
2932 /* Tell the controller execute command */
2933 h
->access
.submit_command(h
, c
);
2935 /* Put job onto the completed Q */
2940 /* Assumes that h->lock is held. */
2941 /* Zeros out the error record and then resends the command back */
2942 /* to the controller */
2943 static inline void resend_cciss_cmd(ctlr_info_t
*h
, CommandList_struct
*c
)
2945 /* erase the old error information */
2946 memset(c
->err_info
, 0, sizeof(ErrorInfo_struct
));
2948 /* add it to software queue and then send it to the controller */
2951 if (h
->Qdepth
> h
->maxQsinceinit
)
2952 h
->maxQsinceinit
= h
->Qdepth
;
2957 static inline unsigned int make_status_bytes(unsigned int scsi_status_byte
,
2958 unsigned int msg_byte
, unsigned int host_byte
,
2959 unsigned int driver_byte
)
2961 /* inverse of macros in scsi.h */
2962 return (scsi_status_byte
& 0xff) |
2963 ((msg_byte
& 0xff) << 8) |
2964 ((host_byte
& 0xff) << 16) |
2965 ((driver_byte
& 0xff) << 24);
2968 static inline int evaluate_target_status(ctlr_info_t
*h
,
2969 CommandList_struct
*cmd
, int *retry_cmd
)
2971 unsigned char sense_key
;
2972 unsigned char status_byte
, msg_byte
, host_byte
, driver_byte
;
2976 /* If we get in here, it means we got "target status", that is, scsi status */
2977 status_byte
= cmd
->err_info
->ScsiStatus
;
2978 driver_byte
= DRIVER_OK
;
2979 msg_byte
= cmd
->err_info
->CommandStatus
; /* correct? seems too device specific */
2981 if (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
)
2982 host_byte
= DID_PASSTHROUGH
;
2986 error_value
= make_status_bytes(status_byte
, msg_byte
,
2987 host_byte
, driver_byte
);
2989 if (cmd
->err_info
->ScsiStatus
!= SAM_STAT_CHECK_CONDITION
) {
2990 if (cmd
->rq
->cmd_type
!= REQ_TYPE_BLOCK_PC
)
2991 dev_warn(&h
->pdev
->dev
, "cmd %p "
2992 "has SCSI Status 0x%x\n",
2993 cmd
, cmd
->err_info
->ScsiStatus
);
2997 /* check the sense key */
2998 sense_key
= 0xf & cmd
->err_info
->SenseInfo
[2];
2999 /* no status or recovered error */
3000 if (((sense_key
== 0x0) || (sense_key
== 0x1)) &&
3001 (cmd
->rq
->cmd_type
!= REQ_TYPE_BLOCK_PC
))
3004 if (check_for_unit_attention(h
, cmd
)) {
3005 *retry_cmd
= !(cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
);
3009 /* Not SG_IO or similar? */
3010 if (cmd
->rq
->cmd_type
!= REQ_TYPE_BLOCK_PC
) {
3011 if (error_value
!= 0)
3012 dev_warn(&h
->pdev
->dev
, "cmd %p has CHECK CONDITION"
3013 " sense key = 0x%x\n", cmd
, sense_key
);
3017 /* SG_IO or similar, copy sense data back */
3018 if (cmd
->rq
->sense
) {
3019 if (cmd
->rq
->sense_len
> cmd
->err_info
->SenseLen
)
3020 cmd
->rq
->sense_len
= cmd
->err_info
->SenseLen
;
3021 memcpy(cmd
->rq
->sense
, cmd
->err_info
->SenseInfo
,
3022 cmd
->rq
->sense_len
);
3024 cmd
->rq
->sense_len
= 0;
3029 /* checks the status of the job and calls complete buffers to mark all
3030 * buffers for the completed job. Note that this function does not need
3031 * to hold the hba/queue lock.
3033 static inline void complete_command(ctlr_info_t
*h
, CommandList_struct
*cmd
,
3037 struct request
*rq
= cmd
->rq
;
3042 rq
->errors
= make_status_bytes(0, 0, 0, DRIVER_TIMEOUT
);
3044 if (cmd
->err_info
->CommandStatus
== 0) /* no error has occurred */
3045 goto after_error_processing
;
3047 switch (cmd
->err_info
->CommandStatus
) {
3048 case CMD_TARGET_STATUS
:
3049 rq
->errors
= evaluate_target_status(h
, cmd
, &retry_cmd
);
3051 case CMD_DATA_UNDERRUN
:
3052 if (cmd
->rq
->cmd_type
== REQ_TYPE_FS
) {
3053 dev_warn(&h
->pdev
->dev
, "cmd %p has"
3054 " completed with data underrun "
3056 cmd
->rq
->resid_len
= cmd
->err_info
->ResidualCnt
;
3059 case CMD_DATA_OVERRUN
:
3060 if (cmd
->rq
->cmd_type
== REQ_TYPE_FS
)
3061 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p has"
3062 " completed with data overrun "
3066 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p is "
3067 "reported invalid\n", cmd
);
3068 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3069 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3070 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3071 DID_PASSTHROUGH
: DID_ERROR
);
3073 case CMD_PROTOCOL_ERR
:
3074 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p has "
3075 "protocol error\n", cmd
);
3076 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3077 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3078 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3079 DID_PASSTHROUGH
: DID_ERROR
);
3081 case CMD_HARDWARE_ERR
:
3082 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p had "
3083 " hardware error\n", cmd
);
3084 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3085 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3086 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3087 DID_PASSTHROUGH
: DID_ERROR
);
3089 case CMD_CONNECTION_LOST
:
3090 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p had "
3091 "connection lost\n", cmd
);
3092 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3093 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3094 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3095 DID_PASSTHROUGH
: DID_ERROR
);
3098 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p was "
3100 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3101 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3102 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3103 DID_PASSTHROUGH
: DID_ABORT
);
3105 case CMD_ABORT_FAILED
:
3106 dev_warn(&h
->pdev
->dev
, "cciss: cmd %p reports "
3107 "abort failed\n", cmd
);
3108 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3109 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3110 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3111 DID_PASSTHROUGH
: DID_ERROR
);
3113 case CMD_UNSOLICITED_ABORT
:
3114 dev_warn(&h
->pdev
->dev
, "cciss%d: unsolicited "
3115 "abort %p\n", h
->ctlr
, cmd
);
3116 if (cmd
->retry_count
< MAX_CMD_RETRIES
) {
3118 dev_warn(&h
->pdev
->dev
, "retrying %p\n", cmd
);
3121 dev_warn(&h
->pdev
->dev
,
3122 "%p retried too many times\n", cmd
);
3123 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3124 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3125 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3126 DID_PASSTHROUGH
: DID_ABORT
);
3129 dev_warn(&h
->pdev
->dev
, "cmd %p timedout\n", cmd
);
3130 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3131 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3132 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3133 DID_PASSTHROUGH
: DID_ERROR
);
3136 dev_warn(&h
->pdev
->dev
, "cmd %p returned "
3137 "unknown status %x\n", cmd
,
3138 cmd
->err_info
->CommandStatus
);
3139 rq
->errors
= make_status_bytes(SAM_STAT_GOOD
,
3140 cmd
->err_info
->CommandStatus
, DRIVER_OK
,
3141 (cmd
->rq
->cmd_type
== REQ_TYPE_BLOCK_PC
) ?
3142 DID_PASSTHROUGH
: DID_ERROR
);
3145 after_error_processing
:
3147 /* We need to return this command */
3149 resend_cciss_cmd(h
, cmd
);
3152 cmd
->rq
->completion_data
= cmd
;
3153 blk_complete_request(cmd
->rq
);
3156 static inline u32
cciss_tag_contains_index(u32 tag
)
3158 #define DIRECT_LOOKUP_BIT 0x10
3159 return tag
& DIRECT_LOOKUP_BIT
;
3162 static inline u32
cciss_tag_to_index(u32 tag
)
3164 #define DIRECT_LOOKUP_SHIFT 5
3165 return tag
>> DIRECT_LOOKUP_SHIFT
;
3168 static inline u32
cciss_tag_discard_error_bits(u32 tag
)
3170 #define CCISS_ERROR_BITS 0x03
3171 return tag
& ~CCISS_ERROR_BITS
;
3174 static inline void cciss_mark_tag_indexed(u32
*tag
)
3176 *tag
|= DIRECT_LOOKUP_BIT
;
3179 static inline void cciss_set_tag_index(u32
*tag
, u32 index
)
3181 *tag
|= (index
<< DIRECT_LOOKUP_SHIFT
);
3185 * Get a request and submit it to the controller.
3187 static void do_cciss_request(struct request_queue
*q
)
3189 ctlr_info_t
*h
= q
->queuedata
;
3190 CommandList_struct
*c
;
3193 struct request
*creq
;
3195 struct scatterlist
*tmp_sg
;
3196 SGDescriptor_struct
*curr_sg
;
3197 drive_info_struct
*drv
;
3202 /* We call start_io here in case there is a command waiting on the
3203 * queue that has not been sent.
3205 if (blk_queue_plugged(q
))
3209 creq
= blk_peek_request(q
);
3213 BUG_ON(creq
->nr_phys_segments
> h
->maxsgentries
);
3219 blk_start_request(creq
);
3221 tmp_sg
= h
->scatter_list
[c
->cmdindex
];
3222 spin_unlock_irq(q
->queue_lock
);
3224 c
->cmd_type
= CMD_RWREQ
;
3227 /* fill in the request */
3228 drv
= creq
->rq_disk
->private_data
;
3229 c
->Header
.ReplyQueue
= 0; /* unused in simple mode */
3230 /* got command from pool, so use the command block index instead */
3231 /* for direct lookups. */
3232 /* The first 2 bits are reserved for controller error reporting. */
3233 cciss_set_tag_index(&c
->Header
.Tag
.lower
, c
->cmdindex
);
3234 cciss_mark_tag_indexed(&c
->Header
.Tag
.lower
);
3235 memcpy(&c
->Header
.LUN
, drv
->LunID
, sizeof(drv
->LunID
));
3236 c
->Request
.CDBLen
= 10; /* 12 byte commands not in FW yet; */
3237 c
->Request
.Type
.Type
= TYPE_CMD
; /* It is a command. */
3238 c
->Request
.Type
.Attribute
= ATTR_SIMPLE
;
3239 c
->Request
.Type
.Direction
=
3240 (rq_data_dir(creq
) == READ
) ? XFER_READ
: XFER_WRITE
;
3241 c
->Request
.Timeout
= 0; /* Don't time out */
3243 (rq_data_dir(creq
) == READ
) ? h
->cciss_read
: h
->cciss_write
;
3244 start_blk
= blk_rq_pos(creq
);
3245 dev_dbg(&h
->pdev
->dev
, "sector =%d nr_sectors=%d\n",
3246 (int)blk_rq_pos(creq
), (int)blk_rq_sectors(creq
));
3247 sg_init_table(tmp_sg
, h
->maxsgentries
);
3248 seg
= blk_rq_map_sg(q
, creq
, tmp_sg
);
3250 /* get the DMA records for the setup */
3251 if (c
->Request
.Type
.Direction
== XFER_READ
)
3252 dir
= PCI_DMA_FROMDEVICE
;
3254 dir
= PCI_DMA_TODEVICE
;
3260 for (i
= 0; i
< seg
; i
++) {
3261 if (((sg_index
+1) == (h
->max_cmd_sgentries
)) &&
3262 !chained
&& ((seg
- i
) > 1)) {
3263 /* Point to next chain block. */
3264 curr_sg
= h
->cmd_sg_list
[c
->cmdindex
];
3268 curr_sg
[sg_index
].Len
= tmp_sg
[i
].length
;
3269 temp64
.val
= (__u64
) pci_map_page(h
->pdev
, sg_page(&tmp_sg
[i
]),
3271 tmp_sg
[i
].length
, dir
);
3272 curr_sg
[sg_index
].Addr
.lower
= temp64
.val32
.lower
;
3273 curr_sg
[sg_index
].Addr
.upper
= temp64
.val32
.upper
;
3274 curr_sg
[sg_index
].Ext
= 0; /* we are not chaining */
3278 cciss_map_sg_chain_block(h
, c
, h
->cmd_sg_list
[c
->cmdindex
],
3279 (seg
- (h
->max_cmd_sgentries
- 1)) *
3280 sizeof(SGDescriptor_struct
));
3282 /* track how many SG entries we are using */
3286 dev_dbg(&h
->pdev
->dev
, "Submitting %u sectors in %d segments "
3288 blk_rq_sectors(creq
), seg
, chained
);
3290 c
->Header
.SGTotal
= seg
+ chained
;
3291 if (seg
<= h
->max_cmd_sgentries
)
3292 c
->Header
.SGList
= c
->Header
.SGTotal
;
3294 c
->Header
.SGList
= h
->max_cmd_sgentries
;
3295 set_performant_mode(h
, c
);
3297 if (likely(creq
->cmd_type
== REQ_TYPE_FS
)) {
3298 if(h
->cciss_read
== CCISS_READ_10
) {
3299 c
->Request
.CDB
[1] = 0;
3300 c
->Request
.CDB
[2] = (start_blk
>> 24) & 0xff; /* MSB */
3301 c
->Request
.CDB
[3] = (start_blk
>> 16) & 0xff;
3302 c
->Request
.CDB
[4] = (start_blk
>> 8) & 0xff;
3303 c
->Request
.CDB
[5] = start_blk
& 0xff;
3304 c
->Request
.CDB
[6] = 0; /* (sect >> 24) & 0xff; MSB */
3305 c
->Request
.CDB
[7] = (blk_rq_sectors(creq
) >> 8) & 0xff;
3306 c
->Request
.CDB
[8] = blk_rq_sectors(creq
) & 0xff;
3307 c
->Request
.CDB
[9] = c
->Request
.CDB
[11] = c
->Request
.CDB
[12] = 0;
3309 u32 upper32
= upper_32_bits(start_blk
);
3311 c
->Request
.CDBLen
= 16;
3312 c
->Request
.CDB
[1]= 0;
3313 c
->Request
.CDB
[2]= (upper32
>> 24) & 0xff; /* MSB */
3314 c
->Request
.CDB
[3]= (upper32
>> 16) & 0xff;
3315 c
->Request
.CDB
[4]= (upper32
>> 8) & 0xff;
3316 c
->Request
.CDB
[5]= upper32
& 0xff;
3317 c
->Request
.CDB
[6]= (start_blk
>> 24) & 0xff;
3318 c
->Request
.CDB
[7]= (start_blk
>> 16) & 0xff;
3319 c
->Request
.CDB
[8]= (start_blk
>> 8) & 0xff;
3320 c
->Request
.CDB
[9]= start_blk
& 0xff;
3321 c
->Request
.CDB
[10]= (blk_rq_sectors(creq
) >> 24) & 0xff;
3322 c
->Request
.CDB
[11]= (blk_rq_sectors(creq
) >> 16) & 0xff;
3323 c
->Request
.CDB
[12]= (blk_rq_sectors(creq
) >> 8) & 0xff;
3324 c
->Request
.CDB
[13]= blk_rq_sectors(creq
) & 0xff;
3325 c
->Request
.CDB
[14] = c
->Request
.CDB
[15] = 0;
3327 } else if (creq
->cmd_type
== REQ_TYPE_BLOCK_PC
) {
3328 c
->Request
.CDBLen
= creq
->cmd_len
;
3329 memcpy(c
->Request
.CDB
, creq
->cmd
, BLK_MAX_CDB
);
3331 dev_warn(&h
->pdev
->dev
, "bad request type %d\n",
3336 spin_lock_irq(q
->queue_lock
);
3340 if (h
->Qdepth
> h
->maxQsinceinit
)
3341 h
->maxQsinceinit
= h
->Qdepth
;
3347 /* We will already have the driver lock here so not need
3353 static inline unsigned long get_next_completion(ctlr_info_t
*h
)
3355 return h
->access
.command_completed(h
);
3358 static inline int interrupt_pending(ctlr_info_t
*h
)
3360 return h
->access
.intr_pending(h
);
3363 static inline long interrupt_not_for_us(ctlr_info_t
*h
)
3365 return ((h
->access
.intr_pending(h
) == 0) ||
3366 (h
->interrupts_enabled
== 0));
3369 static inline int bad_tag(ctlr_info_t
*h
, u32 tag_index
,
3372 if (unlikely(tag_index
>= h
->nr_cmds
)) {
3373 dev_warn(&h
->pdev
->dev
, "bad tag 0x%08x ignored.\n", raw_tag
);
3379 static inline void finish_cmd(ctlr_info_t
*h
, CommandList_struct
*c
,
3383 if (likely(c
->cmd_type
== CMD_RWREQ
))
3384 complete_command(h
, c
, 0);
3385 else if (c
->cmd_type
== CMD_IOCTL_PEND
)
3386 complete(c
->waiting
);
3387 #ifdef CONFIG_CISS_SCSI_TAPE
3388 else if (c
->cmd_type
== CMD_SCSI
)
3389 complete_scsi_command(c
, 0, raw_tag
);
3393 static inline u32
next_command(ctlr_info_t
*h
)
3397 if (unlikely(h
->transMethod
!= CFGTBL_Trans_Performant
))
3398 return h
->access
.command_completed(h
);
3400 if ((*(h
->reply_pool_head
) & 1) == (h
->reply_pool_wraparound
)) {
3401 a
= *(h
->reply_pool_head
); /* Next cmd in ring buffer */
3402 (h
->reply_pool_head
)++;
3403 h
->commands_outstanding
--;
3407 /* Check for wraparound */
3408 if (h
->reply_pool_head
== (h
->reply_pool
+ h
->max_commands
)) {
3409 h
->reply_pool_head
= h
->reply_pool
;
3410 h
->reply_pool_wraparound
^= 1;
3415 /* process completion of an indexed ("direct lookup") command */
3416 static inline u32
process_indexed_cmd(ctlr_info_t
*h
, u32 raw_tag
)
3419 CommandList_struct
*c
;
3421 tag_index
= cciss_tag_to_index(raw_tag
);
3422 if (bad_tag(h
, tag_index
, raw_tag
))
3423 return next_command(h
);
3424 c
= h
->cmd_pool
+ tag_index
;
3425 finish_cmd(h
, c
, raw_tag
);
3426 return next_command(h
);
3429 /* process completion of a non-indexed command */
3430 static inline u32
process_nonindexed_cmd(ctlr_info_t
*h
, u32 raw_tag
)
3433 CommandList_struct
*c
= NULL
;
3434 struct hlist_node
*tmp
;
3435 __u32 busaddr_masked
, tag_masked
;
3437 tag
= cciss_tag_discard_error_bits(raw_tag
);
3438 hlist_for_each_entry(c
, tmp
, &h
->cmpQ
, list
) {
3439 busaddr_masked
= cciss_tag_discard_error_bits(c
->busaddr
);
3440 tag_masked
= cciss_tag_discard_error_bits(tag
);
3441 if (busaddr_masked
== tag_masked
) {
3442 finish_cmd(h
, c
, raw_tag
);
3443 return next_command(h
);
3446 bad_tag(h
, h
->nr_cmds
+ 1, raw_tag
);
3447 return next_command(h
);
3450 static irqreturn_t
do_cciss_intx(int irq
, void *dev_id
)
3452 ctlr_info_t
*h
= dev_id
;
3453 unsigned long flags
;
3456 if (interrupt_not_for_us(h
))
3458 spin_lock_irqsave(&h
->lock
, flags
);
3459 while (interrupt_pending(h
)) {
3460 raw_tag
= get_next_completion(h
);
3461 while (raw_tag
!= FIFO_EMPTY
) {
3462 if (cciss_tag_contains_index(raw_tag
))
3463 raw_tag
= process_indexed_cmd(h
, raw_tag
);
3465 raw_tag
= process_nonindexed_cmd(h
, raw_tag
);
3468 spin_unlock_irqrestore(&h
->lock
, flags
);
3472 /* Add a second interrupt handler for MSI/MSI-X mode. In this mode we never
3473 * check the interrupt pending register because it is not set.
3475 static irqreturn_t
do_cciss_msix_intr(int irq
, void *dev_id
)
3477 ctlr_info_t
*h
= dev_id
;
3478 unsigned long flags
;
3481 spin_lock_irqsave(&h
->lock
, flags
);
3482 raw_tag
= get_next_completion(h
);
3483 while (raw_tag
!= FIFO_EMPTY
) {
3484 if (cciss_tag_contains_index(raw_tag
))
3485 raw_tag
= process_indexed_cmd(h
, raw_tag
);
3487 raw_tag
= process_nonindexed_cmd(h
, raw_tag
);
3489 spin_unlock_irqrestore(&h
->lock
, flags
);
3494 * add_to_scan_list() - add controller to rescan queue
3495 * @h: Pointer to the controller.
3497 * Adds the controller to the rescan queue if not already on the queue.
3499 * returns 1 if added to the queue, 0 if skipped (could be on the
3500 * queue already, or the controller could be initializing or shutting
3503 static int add_to_scan_list(struct ctlr_info
*h
)
3505 struct ctlr_info
*test_h
;
3509 if (h
->busy_initializing
)
3512 if (!mutex_trylock(&h
->busy_shutting_down
))
3515 mutex_lock(&scan_mutex
);
3516 list_for_each_entry(test_h
, &scan_q
, scan_list
) {
3522 if (!found
&& !h
->busy_scanning
) {
3523 INIT_COMPLETION(h
->scan_wait
);
3524 list_add_tail(&h
->scan_list
, &scan_q
);
3527 mutex_unlock(&scan_mutex
);
3528 mutex_unlock(&h
->busy_shutting_down
);
3534 * remove_from_scan_list() - remove controller from rescan queue
3535 * @h: Pointer to the controller.
3537 * Removes the controller from the rescan queue if present. Blocks if
3538 * the controller is currently conducting a rescan. The controller
3539 * can be in one of three states:
3540 * 1. Doesn't need a scan
3541 * 2. On the scan list, but not scanning yet (we remove it)
3542 * 3. Busy scanning (and not on the list). In this case we want to wait for
3543 * the scan to complete to make sure the scanning thread for this
3544 * controller is completely idle.
3546 static void remove_from_scan_list(struct ctlr_info
*h
)
3548 struct ctlr_info
*test_h
, *tmp_h
;
3550 mutex_lock(&scan_mutex
);
3551 list_for_each_entry_safe(test_h
, tmp_h
, &scan_q
, scan_list
) {
3552 if (test_h
== h
) { /* state 2. */
3553 list_del(&h
->scan_list
);
3554 complete_all(&h
->scan_wait
);
3555 mutex_unlock(&scan_mutex
);
3559 if (h
->busy_scanning
) { /* state 3. */
3560 mutex_unlock(&scan_mutex
);
3561 wait_for_completion(&h
->scan_wait
);
3562 } else { /* state 1, nothing to do. */
3563 mutex_unlock(&scan_mutex
);
3568 * scan_thread() - kernel thread used to rescan controllers
3571 * A kernel thread used scan for drive topology changes on
3572 * controllers. The thread processes only one controller at a time
3573 * using a queue. Controllers are added to the queue using
3574 * add_to_scan_list() and removed from the queue either after done
3575 * processing or using remove_from_scan_list().
3579 static int scan_thread(void *data
)
3581 struct ctlr_info
*h
;
3584 set_current_state(TASK_INTERRUPTIBLE
);
3586 if (kthread_should_stop())
3590 mutex_lock(&scan_mutex
);
3591 if (list_empty(&scan_q
)) {
3592 mutex_unlock(&scan_mutex
);
3596 h
= list_entry(scan_q
.next
,
3599 list_del(&h
->scan_list
);
3600 h
->busy_scanning
= 1;
3601 mutex_unlock(&scan_mutex
);
3603 rebuild_lun_table(h
, 0, 0);
3604 complete_all(&h
->scan_wait
);
3605 mutex_lock(&scan_mutex
);
3606 h
->busy_scanning
= 0;
3607 mutex_unlock(&scan_mutex
);
3614 static int check_for_unit_attention(ctlr_info_t
*h
, CommandList_struct
*c
)
3616 if (c
->err_info
->SenseInfo
[2] != UNIT_ATTENTION
)
3619 switch (c
->err_info
->SenseInfo
[12]) {
3621 dev_warn(&h
->pdev
->dev
, "a state change "
3622 "detected, command retried\n");
3626 dev_warn(&h
->pdev
->dev
, "LUN failure "
3627 "detected, action required\n");
3630 case REPORT_LUNS_CHANGED
:
3631 dev_warn(&h
->pdev
->dev
, "report LUN data changed\n");
3633 * Here, we could call add_to_scan_list and wake up the scan thread,
3634 * except that it's quite likely that we will get more than one
3635 * REPORT_LUNS_CHANGED condition in quick succession, which means
3636 * that those which occur after the first one will likely happen
3637 * *during* the scan_thread's rescan. And the rescan code is not
3638 * robust enough to restart in the middle, undoing what it has already
3639 * done, and it's not clear that it's even possible to do this, since
3640 * part of what it does is notify the block layer, which starts
3641 * doing it's own i/o to read partition tables and so on, and the
3642 * driver doesn't have visibility to know what might need undoing.
3643 * In any event, if possible, it is horribly complicated to get right
3644 * so we just don't do it for now.
3646 * Note: this REPORT_LUNS_CHANGED condition only occurs on the MSA2012.
3650 case POWER_OR_RESET
:
3651 dev_warn(&h
->pdev
->dev
,
3652 "a power on or device reset detected\n");
3655 case UNIT_ATTENTION_CLEARED
:
3656 dev_warn(&h
->pdev
->dev
,
3657 "unit attention cleared by another initiator\n");
3661 dev_warn(&h
->pdev
->dev
, "unknown unit attention detected\n");
3667 * We cannot read the structure directly, for portability we must use
3669 * This is for debug only.
3671 static void print_cfg_table(ctlr_info_t
*h
)
3675 CfgTable_struct
*tb
= h
->cfgtable
;
3677 dev_dbg(&h
->pdev
->dev
, "Controller Configuration information\n");
3678 dev_dbg(&h
->pdev
->dev
, "------------------------------------\n");
3679 for (i
= 0; i
< 4; i
++)
3680 temp_name
[i
] = readb(&(tb
->Signature
[i
]));
3681 temp_name
[4] = '\0';
3682 dev_dbg(&h
->pdev
->dev
, " Signature = %s\n", temp_name
);
3683 dev_dbg(&h
->pdev
->dev
, " Spec Number = %d\n",
3684 readl(&(tb
->SpecValence
)));
3685 dev_dbg(&h
->pdev
->dev
, " Transport methods supported = 0x%x\n",
3686 readl(&(tb
->TransportSupport
)));
3687 dev_dbg(&h
->pdev
->dev
, " Transport methods active = 0x%x\n",
3688 readl(&(tb
->TransportActive
)));
3689 dev_dbg(&h
->pdev
->dev
, " Requested transport Method = 0x%x\n",
3690 readl(&(tb
->HostWrite
.TransportRequest
)));
3691 dev_dbg(&h
->pdev
->dev
, " Coalesce Interrupt Delay = 0x%x\n",
3692 readl(&(tb
->HostWrite
.CoalIntDelay
)));
3693 dev_dbg(&h
->pdev
->dev
, " Coalesce Interrupt Count = 0x%x\n",
3694 readl(&(tb
->HostWrite
.CoalIntCount
)));
3695 dev_dbg(&h
->pdev
->dev
, " Max outstanding commands = 0x%d\n",
3696 readl(&(tb
->CmdsOutMax
)));
3697 dev_dbg(&h
->pdev
->dev
, " Bus Types = 0x%x\n",
3698 readl(&(tb
->BusTypes
)));
3699 for (i
= 0; i
< 16; i
++)
3700 temp_name
[i
] = readb(&(tb
->ServerName
[i
]));
3701 temp_name
[16] = '\0';
3702 dev_dbg(&h
->pdev
->dev
, " Server Name = %s\n", temp_name
);
3703 dev_dbg(&h
->pdev
->dev
, " Heartbeat Counter = 0x%x\n\n\n",
3704 readl(&(tb
->HeartBeat
)));
3707 static int find_PCI_BAR_index(struct pci_dev
*pdev
, unsigned long pci_bar_addr
)
3709 int i
, offset
, mem_type
, bar_type
;
3710 if (pci_bar_addr
== PCI_BASE_ADDRESS_0
) /* looking for BAR zero? */
3713 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++) {
3714 bar_type
= pci_resource_flags(pdev
, i
) & PCI_BASE_ADDRESS_SPACE
;
3715 if (bar_type
== PCI_BASE_ADDRESS_SPACE_IO
)
3718 mem_type
= pci_resource_flags(pdev
, i
) &
3719 PCI_BASE_ADDRESS_MEM_TYPE_MASK
;
3721 case PCI_BASE_ADDRESS_MEM_TYPE_32
:
3722 case PCI_BASE_ADDRESS_MEM_TYPE_1M
:
3723 offset
+= 4; /* 32 bit */
3725 case PCI_BASE_ADDRESS_MEM_TYPE_64
:
3728 default: /* reserved in PCI 2.2 */
3729 dev_warn(&pdev
->dev
,
3730 "Base address is invalid\n");
3735 if (offset
== pci_bar_addr
- PCI_BASE_ADDRESS_0
)
3741 /* Fill in bucket_map[], given nsgs (the max number of
3742 * scatter gather elements supported) and bucket[],
3743 * which is an array of 8 integers. The bucket[] array
3744 * contains 8 different DMA transfer sizes (in 16
3745 * byte increments) which the controller uses to fetch
3746 * commands. This function fills in bucket_map[], which
3747 * maps a given number of scatter gather elements to one of
3748 * the 8 DMA transfer sizes. The point of it is to allow the
3749 * controller to only do as much DMA as needed to fetch the
3750 * command, with the DMA transfer size encoded in the lower
3751 * bits of the command address.
3753 static void calc_bucket_map(int bucket
[], int num_buckets
,
3754 int nsgs
, int *bucket_map
)
3758 /* even a command with 0 SGs requires 4 blocks */
3759 #define MINIMUM_TRANSFER_BLOCKS 4
3760 #define NUM_BUCKETS 8
3761 /* Note, bucket_map must have nsgs+1 entries. */
3762 for (i
= 0; i
<= nsgs
; i
++) {
3763 /* Compute size of a command with i SG entries */
3764 size
= i
+ MINIMUM_TRANSFER_BLOCKS
;
3765 b
= num_buckets
; /* Assume the biggest bucket */
3766 /* Find the bucket that is just big enough */
3767 for (j
= 0; j
< 8; j
++) {
3768 if (bucket
[j
] >= size
) {
3773 /* for a command with i SG entries, use bucket b. */
3778 static void __devinit
cciss_wait_for_mode_change_ack(ctlr_info_t
*h
)
3782 /* under certain very rare conditions, this can take awhile.
3783 * (e.g.: hot replace a failed 144GB drive in a RAID 5 set right
3784 * as we enter this code.) */
3785 for (i
= 0; i
< MAX_CONFIG_WAIT
; i
++) {
3786 if (!(readl(h
->vaddr
+ SA5_DOORBELL
) & CFGTBL_ChangeReq
))
3792 static __devinit
void cciss_enter_performant_mode(ctlr_info_t
*h
)
3794 /* This is a bit complicated. There are 8 registers on
3795 * the controller which we write to to tell it 8 different
3796 * sizes of commands which there may be. It's a way of
3797 * reducing the DMA done to fetch each command. Encoded into
3798 * each command's tag are 3 bits which communicate to the controller
3799 * which of the eight sizes that command fits within. The size of
3800 * each command depends on how many scatter gather entries there are.
3801 * Each SG entry requires 16 bytes. The eight registers are programmed
3802 * with the number of 16-byte blocks a command of that size requires.
3803 * The smallest command possible requires 5 such 16 byte blocks.
3804 * the largest command possible requires MAXSGENTRIES + 4 16-byte
3805 * blocks. Note, this only extends to the SG entries contained
3806 * within the command block, and does not extend to chained blocks
3807 * of SG elements. bft[] contains the eight values we write to
3808 * the registers. They are not evenly distributed, but have more
3809 * sizes for small commands, and fewer sizes for larger commands.
3812 int bft
[8] = { 5, 6, 8, 10, 12, 20, 28, MAXSGENTRIES
+ 4};
3814 * 5 = 1 s/g entry or 4k
3815 * 6 = 2 s/g entry or 8k
3816 * 8 = 4 s/g entry or 16k
3817 * 10 = 6 s/g entry or 24k
3819 unsigned long register_value
;
3820 BUILD_BUG_ON(28 > MAXSGENTRIES
+ 4);
3822 h
->reply_pool_wraparound
= 1; /* spec: init to 1 */
3824 /* Controller spec: zero out this buffer. */
3825 memset(h
->reply_pool
, 0, h
->max_commands
* sizeof(__u64
));
3826 h
->reply_pool_head
= h
->reply_pool
;
3828 trans_offset
= readl(&(h
->cfgtable
->TransMethodOffset
));
3829 calc_bucket_map(bft
, ARRAY_SIZE(bft
), h
->maxsgentries
,
3830 h
->blockFetchTable
);
3831 writel(bft
[0], &h
->transtable
->BlockFetch0
);
3832 writel(bft
[1], &h
->transtable
->BlockFetch1
);
3833 writel(bft
[2], &h
->transtable
->BlockFetch2
);
3834 writel(bft
[3], &h
->transtable
->BlockFetch3
);
3835 writel(bft
[4], &h
->transtable
->BlockFetch4
);
3836 writel(bft
[5], &h
->transtable
->BlockFetch5
);
3837 writel(bft
[6], &h
->transtable
->BlockFetch6
);
3838 writel(bft
[7], &h
->transtable
->BlockFetch7
);
3840 /* size of controller ring buffer */
3841 writel(h
->max_commands
, &h
->transtable
->RepQSize
);
3842 writel(1, &h
->transtable
->RepQCount
);
3843 writel(0, &h
->transtable
->RepQCtrAddrLow32
);
3844 writel(0, &h
->transtable
->RepQCtrAddrHigh32
);
3845 writel(h
->reply_pool_dhandle
, &h
->transtable
->RepQAddr0Low32
);
3846 writel(0, &h
->transtable
->RepQAddr0High32
);
3847 writel(CFGTBL_Trans_Performant
,
3848 &(h
->cfgtable
->HostWrite
.TransportRequest
));
3850 writel(CFGTBL_ChangeReq
, h
->vaddr
+ SA5_DOORBELL
);
3851 cciss_wait_for_mode_change_ack(h
);
3852 register_value
= readl(&(h
->cfgtable
->TransportActive
));
3853 if (!(register_value
& CFGTBL_Trans_Performant
))
3854 dev_warn(&h
->pdev
->dev
, "cciss: unable to get board into"
3855 " performant mode\n");
3858 static void __devinit
cciss_put_controller_into_performant_mode(ctlr_info_t
*h
)
3860 __u32 trans_support
;
3862 dev_dbg(&h
->pdev
->dev
, "Trying to put board into Performant mode\n");
3863 /* Attempt to put controller into performant mode if supported */
3864 /* Does board support performant mode? */
3865 trans_support
= readl(&(h
->cfgtable
->TransportSupport
));
3866 if (!(trans_support
& PERFORMANT_MODE
))
3869 dev_dbg(&h
->pdev
->dev
, "Placing controller into performant mode\n");
3870 /* Performant mode demands commands on a 32 byte boundary
3871 * pci_alloc_consistent aligns on page boundarys already.
3872 * Just need to check if divisible by 32
3874 if ((sizeof(CommandList_struct
) % 32) != 0) {
3875 dev_warn(&h
->pdev
->dev
, "%s %d %s\n",
3876 "cciss info: command size[",
3877 (int)sizeof(CommandList_struct
),
3878 "] not divisible by 32, no performant mode..\n");
3882 /* Performant mode ring buffer and supporting data structures */
3883 h
->reply_pool
= (__u64
*)pci_alloc_consistent(
3884 h
->pdev
, h
->max_commands
* sizeof(__u64
),
3885 &(h
->reply_pool_dhandle
));
3887 /* Need a block fetch table for performant mode */
3888 h
->blockFetchTable
= kmalloc(((h
->maxsgentries
+1) *
3889 sizeof(__u32
)), GFP_KERNEL
);
3891 if ((h
->reply_pool
== NULL
) || (h
->blockFetchTable
== NULL
))
3894 cciss_enter_performant_mode(h
);
3896 /* Change the access methods to the performant access methods */
3897 h
->access
= SA5_performant_access
;
3898 h
->transMethod
= CFGTBL_Trans_Performant
;
3902 kfree(h
->blockFetchTable
);
3904 pci_free_consistent(h
->pdev
,
3905 h
->max_commands
* sizeof(__u64
),
3907 h
->reply_pool_dhandle
);
3910 } /* cciss_put_controller_into_performant_mode */
3912 /* If MSI/MSI-X is supported by the kernel we will try to enable it on
3913 * controllers that are capable. If not, we use IO-APIC mode.
3916 static void __devinit
cciss_interrupt_mode(ctlr_info_t
*h
)
3918 #ifdef CONFIG_PCI_MSI
3920 struct msix_entry cciss_msix_entries
[4] = { {0, 0}, {0, 1},
3924 /* Some boards advertise MSI but don't really support it */
3925 if ((h
->board_id
== 0x40700E11) || (h
->board_id
== 0x40800E11) ||
3926 (h
->board_id
== 0x40820E11) || (h
->board_id
== 0x40830E11))
3927 goto default_int_mode
;
3929 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSIX
)) {
3930 err
= pci_enable_msix(h
->pdev
, cciss_msix_entries
, 4);
3932 h
->intr
[0] = cciss_msix_entries
[0].vector
;
3933 h
->intr
[1] = cciss_msix_entries
[1].vector
;
3934 h
->intr
[2] = cciss_msix_entries
[2].vector
;
3935 h
->intr
[3] = cciss_msix_entries
[3].vector
;
3940 dev_warn(&h
->pdev
->dev
,
3941 "only %d MSI-X vectors available\n", err
);
3942 goto default_int_mode
;
3944 dev_warn(&h
->pdev
->dev
,
3945 "MSI-X init failed %d\n", err
);
3946 goto default_int_mode
;
3949 if (pci_find_capability(h
->pdev
, PCI_CAP_ID_MSI
)) {
3950 if (!pci_enable_msi(h
->pdev
))
3953 dev_warn(&h
->pdev
->dev
, "MSI init failed\n");
3956 #endif /* CONFIG_PCI_MSI */
3957 /* if we get here we're going to use the default interrupt mode */
3958 h
->intr
[PERF_MODE_INT
] = h
->pdev
->irq
;
3962 static int __devinit
cciss_lookup_board_id(struct pci_dev
*pdev
, u32
*board_id
)
3965 u32 subsystem_vendor_id
, subsystem_device_id
;
3967 subsystem_vendor_id
= pdev
->subsystem_vendor
;
3968 subsystem_device_id
= pdev
->subsystem_device
;
3969 *board_id
= ((subsystem_device_id
<< 16) & 0xffff0000) |
3970 subsystem_vendor_id
;
3972 for (i
= 0; i
< ARRAY_SIZE(products
); i
++) {
3973 /* Stand aside for hpsa driver on request */
3974 if (cciss_allow_hpsa
&& products
[i
].board_id
== HPSA_BOUNDARY
)
3976 if (*board_id
== products
[i
].board_id
)
3979 dev_warn(&pdev
->dev
, "unrecognized board ID: 0x%08x, ignoring.\n",
3984 static inline bool cciss_board_disabled(ctlr_info_t
*h
)
3988 (void) pci_read_config_word(h
->pdev
, PCI_COMMAND
, &command
);
3989 return ((command
& PCI_COMMAND_MEMORY
) == 0);
3992 static int __devinit
cciss_pci_find_memory_BAR(struct pci_dev
*pdev
,
3993 unsigned long *memory_bar
)
3997 for (i
= 0; i
< DEVICE_COUNT_RESOURCE
; i
++)
3998 if (pci_resource_flags(pdev
, i
) & IORESOURCE_MEM
) {
3999 /* addressing mode bits already removed */
4000 *memory_bar
= pci_resource_start(pdev
, i
);
4001 dev_dbg(&pdev
->dev
, "memory BAR = %lx\n",
4005 dev_warn(&pdev
->dev
, "no memory BAR found\n");
4009 static int __devinit
cciss_wait_for_board_ready(ctlr_info_t
*h
)
4014 for (i
= 0; i
< CCISS_BOARD_READY_ITERATIONS
; i
++) {
4015 scratchpad
= readl(h
->vaddr
+ SA5_SCRATCHPAD_OFFSET
);
4016 if (scratchpad
== CCISS_FIRMWARE_READY
)
4018 msleep(CCISS_BOARD_READY_POLL_INTERVAL_MSECS
);
4020 dev_warn(&h
->pdev
->dev
, "board not ready, timed out.\n");
4024 static int __devinit
cciss_find_cfg_addrs(struct pci_dev
*pdev
,
4025 void __iomem
*vaddr
, u32
*cfg_base_addr
, u64
*cfg_base_addr_index
,
4028 *cfg_base_addr
= readl(vaddr
+ SA5_CTCFG_OFFSET
);
4029 *cfg_offset
= readl(vaddr
+ SA5_CTMEM_OFFSET
);
4030 *cfg_base_addr
&= (u32
) 0x0000ffff;
4031 *cfg_base_addr_index
= find_PCI_BAR_index(pdev
, *cfg_base_addr
);
4032 if (*cfg_base_addr_index
== -1) {
4033 dev_warn(&pdev
->dev
, "cannot find cfg_base_addr_index, "
4034 "*cfg_base_addr = 0x%08x\n", *cfg_base_addr
);
4040 static int __devinit
cciss_find_cfgtables(ctlr_info_t
*h
)
4044 u64 cfg_base_addr_index
;
4048 rc
= cciss_find_cfg_addrs(h
->pdev
, h
->vaddr
, &cfg_base_addr
,
4049 &cfg_base_addr_index
, &cfg_offset
);
4052 h
->cfgtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
4053 cfg_base_addr_index
) + cfg_offset
, sizeof(h
->cfgtable
));
4056 /* Find performant mode table. */
4057 trans_offset
= readl(&h
->cfgtable
->TransMethodOffset
);
4058 h
->transtable
= remap_pci_mem(pci_resource_start(h
->pdev
,
4059 cfg_base_addr_index
)+cfg_offset
+trans_offset
,
4060 sizeof(*h
->transtable
));
4066 static void __devinit
cciss_get_max_perf_mode_cmds(struct ctlr_info
*h
)
4068 h
->max_commands
= readl(&(h
->cfgtable
->MaxPerformantModeCommands
));
4069 if (h
->max_commands
< 16) {
4070 dev_warn(&h
->pdev
->dev
, "Controller reports "
4071 "max supported commands of %d, an obvious lie. "
4072 "Using 16. Ensure that firmware is up to date.\n",
4074 h
->max_commands
= 16;
4078 /* Interrogate the hardware for some limits:
4079 * max commands, max SG elements without chaining, and with chaining,
4080 * SG chain block size, etc.
4082 static void __devinit
cciss_find_board_params(ctlr_info_t
*h
)
4084 cciss_get_max_perf_mode_cmds(h
);
4085 h
->nr_cmds
= h
->max_commands
- 4; /* Allow room for some ioctls */
4086 h
->maxsgentries
= readl(&(h
->cfgtable
->MaxSGElements
));
4088 * Limit in-command s/g elements to 32 save dma'able memory.
4089 * Howvever spec says if 0, use 31
4091 h
->max_cmd_sgentries
= 31;
4092 if (h
->maxsgentries
> 512) {
4093 h
->max_cmd_sgentries
= 32;
4094 h
->chainsize
= h
->maxsgentries
- h
->max_cmd_sgentries
+ 1;
4095 h
->maxsgentries
--; /* save one for chain pointer */
4097 h
->maxsgentries
= 31; /* default to traditional values */
4102 static inline bool CISS_signature_present(ctlr_info_t
*h
)
4104 if ((readb(&h
->cfgtable
->Signature
[0]) != 'C') ||
4105 (readb(&h
->cfgtable
->Signature
[1]) != 'I') ||
4106 (readb(&h
->cfgtable
->Signature
[2]) != 'S') ||
4107 (readb(&h
->cfgtable
->Signature
[3]) != 'S')) {
4108 dev_warn(&h
->pdev
->dev
, "not a valid CISS config table\n");
4114 /* Need to enable prefetch in the SCSI core for 6400 in x86 */
4115 static inline void cciss_enable_scsi_prefetch(ctlr_info_t
*h
)
4120 prefetch
= readl(&(h
->cfgtable
->SCSI_Prefetch
));
4122 writel(prefetch
, &(h
->cfgtable
->SCSI_Prefetch
));
4126 /* Disable DMA prefetch for the P600. Otherwise an ASIC bug may result
4127 * in a prefetch beyond physical memory.
4129 static inline void cciss_p600_dma_prefetch_quirk(ctlr_info_t
*h
)
4134 if (h
->board_id
!= 0x3225103C)
4136 dma_prefetch
= readl(h
->vaddr
+ I2O_DMA1_CFG
);
4137 dma_prefetch
|= 0x8000;
4138 writel(dma_prefetch
, h
->vaddr
+ I2O_DMA1_CFG
);
4139 pci_read_config_dword(h
->pdev
, PCI_COMMAND_PARITY
, &dma_refetch
);
4141 pci_write_config_dword(h
->pdev
, PCI_COMMAND_PARITY
, dma_refetch
);
4144 static int __devinit
cciss_pci_init(ctlr_info_t
*h
)
4146 int prod_index
, err
;
4148 prod_index
= cciss_lookup_board_id(h
->pdev
, &h
->board_id
);
4151 h
->product_name
= products
[prod_index
].product_name
;
4152 h
->access
= *(products
[prod_index
].access
);
4154 if (cciss_board_disabled(h
)) {
4155 dev_warn(&h
->pdev
->dev
, "controller appears to be disabled\n");
4158 err
= pci_enable_device(h
->pdev
);
4160 dev_warn(&h
->pdev
->dev
, "Unable to Enable PCI device\n");
4164 err
= pci_request_regions(h
->pdev
, "cciss");
4166 dev_warn(&h
->pdev
->dev
,
4167 "Cannot obtain PCI resources, aborting\n");
4171 dev_dbg(&h
->pdev
->dev
, "irq = %x\n", h
->pdev
->irq
);
4172 dev_dbg(&h
->pdev
->dev
, "board_id = %x\n", h
->board_id
);
4174 /* If the kernel supports MSI/MSI-X we will try to enable that functionality,
4175 * else we use the IO-APIC interrupt assigned to us by system ROM.
4177 cciss_interrupt_mode(h
);
4178 err
= cciss_pci_find_memory_BAR(h
->pdev
, &h
->paddr
);
4180 goto err_out_free_res
;
4181 h
->vaddr
= remap_pci_mem(h
->paddr
, 0x250);
4184 goto err_out_free_res
;
4186 err
= cciss_wait_for_board_ready(h
);
4188 goto err_out_free_res
;
4189 err
= cciss_find_cfgtables(h
);
4191 goto err_out_free_res
;
4193 cciss_find_board_params(h
);
4195 if (!CISS_signature_present(h
)) {
4197 goto err_out_free_res
;
4199 cciss_enable_scsi_prefetch(h
);
4200 cciss_p600_dma_prefetch_quirk(h
);
4201 cciss_put_controller_into_performant_mode(h
);
4206 * Deliberately omit pci_disable_device(): it does something nasty to
4207 * Smart Array controllers that pci_enable_device does not undo
4210 iounmap(h
->transtable
);
4212 iounmap(h
->cfgtable
);
4215 pci_release_regions(h
->pdev
);
4219 /* Function to find the first free pointer into our hba[] array
4220 * Returns -1 if no free entries are left.
4222 static int alloc_cciss_hba(struct pci_dev
*pdev
)
4226 for (i
= 0; i
< MAX_CTLR
; i
++) {
4230 h
= kzalloc(sizeof(ctlr_info_t
), GFP_KERNEL
);
4237 dev_warn(&pdev
->dev
, "This driver supports a maximum"
4238 " of %d controllers.\n", MAX_CTLR
);
4241 dev_warn(&pdev
->dev
, "out of memory.\n");
4245 static void free_hba(ctlr_info_t
*h
)
4249 hba
[h
->ctlr
] = NULL
;
4250 for (i
= 0; i
< h
->highest_lun
+ 1; i
++)
4251 if (h
->gendisk
[i
] != NULL
)
4252 put_disk(h
->gendisk
[i
]);
4256 /* Send a message CDB to the firmware. */
4257 static __devinit
int cciss_message(struct pci_dev
*pdev
, unsigned char opcode
, unsigned char type
)
4260 CommandListHeader_struct CommandHeader
;
4261 RequestBlock_struct Request
;
4262 ErrDescriptor_struct ErrorDescriptor
;
4264 static const size_t cmd_sz
= sizeof(Command
) + sizeof(ErrorInfo_struct
);
4267 uint32_t paddr32
, tag
;
4268 void __iomem
*vaddr
;
4271 vaddr
= ioremap_nocache(pci_resource_start(pdev
, 0), pci_resource_len(pdev
, 0));
4275 /* The Inbound Post Queue only accepts 32-bit physical addresses for the
4276 CCISS commands, so they must be allocated from the lower 4GiB of
4278 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
4284 cmd
= pci_alloc_consistent(pdev
, cmd_sz
, &paddr64
);
4290 /* This must fit, because of the 32-bit consistent DMA mask. Also,
4291 although there's no guarantee, we assume that the address is at
4292 least 4-byte aligned (most likely, it's page-aligned). */
4295 cmd
->CommandHeader
.ReplyQueue
= 0;
4296 cmd
->CommandHeader
.SGList
= 0;
4297 cmd
->CommandHeader
.SGTotal
= 0;
4298 cmd
->CommandHeader
.Tag
.lower
= paddr32
;
4299 cmd
->CommandHeader
.Tag
.upper
= 0;
4300 memset(&cmd
->CommandHeader
.LUN
.LunAddrBytes
, 0, 8);
4302 cmd
->Request
.CDBLen
= 16;
4303 cmd
->Request
.Type
.Type
= TYPE_MSG
;
4304 cmd
->Request
.Type
.Attribute
= ATTR_HEADOFQUEUE
;
4305 cmd
->Request
.Type
.Direction
= XFER_NONE
;
4306 cmd
->Request
.Timeout
= 0; /* Don't time out */
4307 cmd
->Request
.CDB
[0] = opcode
;
4308 cmd
->Request
.CDB
[1] = type
;
4309 memset(&cmd
->Request
.CDB
[2], 0, 14); /* the rest of the CDB is reserved */
4311 cmd
->ErrorDescriptor
.Addr
.lower
= paddr32
+ sizeof(Command
);
4312 cmd
->ErrorDescriptor
.Addr
.upper
= 0;
4313 cmd
->ErrorDescriptor
.Len
= sizeof(ErrorInfo_struct
);
4315 writel(paddr32
, vaddr
+ SA5_REQUEST_PORT_OFFSET
);
4317 for (i
= 0; i
< 10; i
++) {
4318 tag
= readl(vaddr
+ SA5_REPLY_PORT_OFFSET
);
4319 if ((tag
& ~3) == paddr32
)
4321 schedule_timeout_uninterruptible(HZ
);
4326 /* we leak the DMA buffer here ... no choice since the controller could
4327 still complete the command. */
4330 "controller message %02x:%02x timed out\n",
4335 pci_free_consistent(pdev
, cmd_sz
, cmd
, paddr64
);
4338 dev_err(&pdev
->dev
, "controller message %02x:%02x failed\n",
4343 dev_info(&pdev
->dev
, "controller message %02x:%02x succeeded\n",
4348 #define cciss_soft_reset_controller(p) cciss_message(p, 1, 0)
4349 #define cciss_noop(p) cciss_message(p, 3, 0)
4351 static __devinit
int cciss_reset_msi(struct pci_dev
*pdev
)
4353 /* the #defines are stolen from drivers/pci/msi.h. */
4354 #define msi_control_reg(base) (base + PCI_MSI_FLAGS)
4355 #define PCI_MSIX_FLAGS_ENABLE (1 << 15)
4360 pos
= pci_find_capability(pdev
, PCI_CAP_ID_MSI
);
4362 pci_read_config_word(pdev
, msi_control_reg(pos
), &control
);
4363 if (control
& PCI_MSI_FLAGS_ENABLE
) {
4364 dev_info(&pdev
->dev
, "resetting MSI\n");
4365 pci_write_config_word(pdev
, msi_control_reg(pos
), control
& ~PCI_MSI_FLAGS_ENABLE
);
4369 pos
= pci_find_capability(pdev
, PCI_CAP_ID_MSIX
);
4371 pci_read_config_word(pdev
, msi_control_reg(pos
), &control
);
4372 if (control
& PCI_MSIX_FLAGS_ENABLE
) {
4373 dev_info(&pdev
->dev
, "resetting MSI-X\n");
4374 pci_write_config_word(pdev
, msi_control_reg(pos
), control
& ~PCI_MSIX_FLAGS_ENABLE
);
4381 static int cciss_controller_hard_reset(struct pci_dev
*pdev
,
4382 void * __iomem vaddr
, bool use_doorbell
)
4388 /* For everything after the P600, the PCI power state method
4389 * of resetting the controller doesn't work, so we have this
4390 * other way using the doorbell register.
4392 dev_info(&pdev
->dev
, "using doorbell to reset controller\n");
4393 writel(DOORBELL_CTLR_RESET
, vaddr
+ SA5_DOORBELL
);
4395 } else { /* Try to do it the PCI power state way */
4397 /* Quoting from the Open CISS Specification: "The Power
4398 * Management Control/Status Register (CSR) controls the power
4399 * state of the device. The normal operating state is D0,
4400 * CSR=00h. The software off state is D3, CSR=03h. To reset
4401 * the controller, place the interface device in D3 then to D0,
4402 * this causes a secondary PCI reset which will reset the
4405 pos
= pci_find_capability(pdev
, PCI_CAP_ID_PM
);
4408 "cciss_controller_hard_reset: "
4409 "PCI PM not supported\n");
4412 dev_info(&pdev
->dev
, "using PCI PM to reset controller\n");
4413 /* enter the D3hot power management state */
4414 pci_read_config_word(pdev
, pos
+ PCI_PM_CTRL
, &pmcsr
);
4415 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
4417 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
4421 /* enter the D0 power management state */
4422 pmcsr
&= ~PCI_PM_CTRL_STATE_MASK
;
4424 pci_write_config_word(pdev
, pos
+ PCI_PM_CTRL
, pmcsr
);
4431 /* This does a hard reset of the controller using PCI power management
4432 * states or using the doorbell register. */
4433 static __devinit
int cciss_kdump_hard_reset_controller(struct pci_dev
*pdev
)
4435 u16 saved_config_space
[32];
4438 u64 cfg_base_addr_index
;
4439 void __iomem
*vaddr
;
4440 unsigned long paddr
;
4441 u32 misc_fw_support
, active_transport
;
4443 CfgTable_struct __iomem
*cfgtable
;
4447 /* For controllers as old a the p600, this is very nearly
4450 * pci_save_state(pci_dev);
4451 * pci_set_power_state(pci_dev, PCI_D3hot);
4452 * pci_set_power_state(pci_dev, PCI_D0);
4453 * pci_restore_state(pci_dev);
4455 * but we can't use these nice canned kernel routines on
4456 * kexec, because they also check the MSI/MSI-X state in PCI
4457 * configuration space and do the wrong thing when it is
4458 * set/cleared. Also, the pci_save/restore_state functions
4459 * violate the ordering requirements for restoring the
4460 * configuration space from the CCISS document (see the
4461 * comment below). So we roll our own ....
4463 * For controllers newer than the P600, the pci power state
4464 * method of resetting doesn't work so we have another way
4465 * using the doorbell register.
4468 /* Exclude 640x boards. These are two pci devices in one slot
4469 * which share a battery backed cache module. One controls the
4470 * cache, the other accesses the cache through the one that controls
4471 * it. If we reset the one controlling the cache, the other will
4472 * likely not be happy. Just forbid resetting this conjoined mess.
4474 cciss_lookup_board_id(pdev
, &board_id
);
4475 if (board_id
== 0x409C0E11 || board_id
== 0x409D0E11) {
4476 dev_warn(&pdev
->dev
, "Cannot reset Smart Array 640x "
4477 "due to shared cache module.");
4481 for (i
= 0; i
< 32; i
++)
4482 pci_read_config_word(pdev
, 2*i
, &saved_config_space
[i
]);
4484 /* find the first memory BAR, so we can find the cfg table */
4485 rc
= cciss_pci_find_memory_BAR(pdev
, &paddr
);
4488 vaddr
= remap_pci_mem(paddr
, 0x250);
4492 /* find cfgtable in order to check if reset via doorbell is supported */
4493 rc
= cciss_find_cfg_addrs(pdev
, vaddr
, &cfg_base_addr
,
4494 &cfg_base_addr_index
, &cfg_offset
);
4497 cfgtable
= remap_pci_mem(pci_resource_start(pdev
,
4498 cfg_base_addr_index
) + cfg_offset
, sizeof(*cfgtable
));
4504 /* If reset via doorbell register is supported, use that. */
4505 misc_fw_support
= readl(&cfgtable
->misc_fw_support
);
4506 use_doorbell
= misc_fw_support
& MISC_FW_DOORBELL_RESET
;
4508 /* The doorbell reset seems to cause lockups on some Smart
4509 * Arrays (e.g. P410, P410i, maybe others). Until this is
4510 * fixed or at least isolated, avoid the doorbell reset.
4514 rc
= cciss_controller_hard_reset(pdev
, vaddr
, use_doorbell
);
4516 goto unmap_cfgtable
;
4518 /* Restore the PCI configuration space. The Open CISS
4519 * Specification says, "Restore the PCI Configuration
4520 * Registers, offsets 00h through 60h. It is important to
4521 * restore the command register, 16-bits at offset 04h,
4522 * last. Do not restore the configuration status register,
4523 * 16-bits at offset 06h." Note that the offset is 2*i.
4525 for (i
= 0; i
< 32; i
++) {
4526 if (i
== 2 || i
== 3)
4528 pci_write_config_word(pdev
, 2*i
, saved_config_space
[i
]);
4531 pci_write_config_word(pdev
, 4, saved_config_space
[2]);
4533 /* Some devices (notably the HP Smart Array 5i Controller)
4534 need a little pause here */
4535 msleep(CCISS_POST_RESET_PAUSE_MSECS
);
4537 /* Controller should be in simple mode at this point. If it's not,
4538 * It means we're on one of those controllers which doesn't support
4539 * the doorbell reset method and on which the PCI power management reset
4540 * method doesn't work (P800, for example.)
4541 * In those cases, don't try to proceed, as it generally doesn't work.
4543 active_transport
= readl(&cfgtable
->TransportActive
);
4544 if (active_transport
& PERFORMANT_MODE
) {
4545 dev_warn(&pdev
->dev
, "Unable to successfully reset controller,"
4546 " Ignoring controller.\n");
4558 static __devinit
int cciss_init_reset_devices(struct pci_dev
*pdev
)
4565 /* Reset the controller with a PCI power-cycle or via doorbell */
4566 rc
= cciss_kdump_hard_reset_controller(pdev
);
4568 /* -ENOTSUPP here means we cannot reset the controller
4569 * but it's already (and still) up and running in
4570 * "performant mode". Or, it might be 640x, which can't reset
4571 * due to concerns about shared bbwc between 6402/6404 pair.
4573 if (rc
== -ENOTSUPP
)
4574 return 0; /* just try to do the kdump anyhow. */
4577 if (cciss_reset_msi(pdev
))
4580 /* Now try to get the controller to respond to a no-op */
4581 for (i
= 0; i
< CCISS_POST_RESET_NOOP_RETRIES
; i
++) {
4582 if (cciss_noop(pdev
) == 0)
4585 dev_warn(&pdev
->dev
, "no-op failed%s\n",
4586 (i
< CCISS_POST_RESET_NOOP_RETRIES
- 1 ?
4587 "; re-trying" : ""));
4588 msleep(CCISS_POST_RESET_NOOP_INTERVAL_MSECS
);
4594 * This is it. Find all the controllers and register them. I really hate
4595 * stealing all these major device numbers.
4596 * returns the number of block devices registered.
4598 static int __devinit
cciss_init_one(struct pci_dev
*pdev
,
4599 const struct pci_device_id
*ent
)
4605 int dac
, return_code
;
4606 InquiryData_struct
*inq_buff
;
4609 rc
= cciss_init_reset_devices(pdev
);
4612 i
= alloc_cciss_hba(pdev
);
4618 h
->busy_initializing
= 1;
4619 INIT_HLIST_HEAD(&h
->cmpQ
);
4620 INIT_HLIST_HEAD(&h
->reqQ
);
4621 mutex_init(&h
->busy_shutting_down
);
4623 if (cciss_pci_init(h
) != 0)
4624 goto clean_no_release_regions
;
4626 sprintf(h
->devname
, "cciss%d", i
);
4629 init_completion(&h
->scan_wait
);
4631 if (cciss_create_hba_sysfs_entry(h
))
4634 /* configure PCI DMA stuff */
4635 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64)))
4637 else if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(32)))
4640 dev_err(&h
->pdev
->dev
, "no suitable DMA available\n");
4645 * register with the major number, or get a dynamic major number
4646 * by passing 0 as argument. This is done for greater than
4647 * 8 controller support.
4649 if (i
< MAX_CTLR_ORIG
)
4650 h
->major
= COMPAQ_CISS_MAJOR
+ i
;
4651 rc
= register_blkdev(h
->major
, h
->devname
);
4652 if (rc
== -EBUSY
|| rc
== -EINVAL
) {
4653 dev_err(&h
->pdev
->dev
,
4654 "Unable to get major number %d for %s "
4655 "on hba %d\n", h
->major
, h
->devname
, i
);
4658 if (i
>= MAX_CTLR_ORIG
)
4662 /* make sure the board interrupts are off */
4663 h
->access
.set_intr_mask(h
, CCISS_INTR_OFF
);
4664 if (h
->msi_vector
|| h
->msix_vector
) {
4665 if (request_irq(h
->intr
[PERF_MODE_INT
],
4667 IRQF_DISABLED
, h
->devname
, h
)) {
4668 dev_err(&h
->pdev
->dev
, "Unable to get irq %d for %s\n",
4669 h
->intr
[PERF_MODE_INT
], h
->devname
);
4673 if (request_irq(h
->intr
[PERF_MODE_INT
], do_cciss_intx
,
4674 IRQF_DISABLED
, h
->devname
, h
)) {
4675 dev_err(&h
->pdev
->dev
, "Unable to get irq %d for %s\n",
4676 h
->intr
[PERF_MODE_INT
], h
->devname
);
4681 dev_info(&h
->pdev
->dev
, "%s: <0x%x> at PCI %s IRQ %d%s using DAC\n",
4682 h
->devname
, pdev
->device
, pci_name(pdev
),
4683 h
->intr
[PERF_MODE_INT
], dac
? "" : " not");
4686 kmalloc(DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
)
4687 * sizeof(unsigned long), GFP_KERNEL
);
4688 h
->cmd_pool
= (CommandList_struct
*)
4689 pci_alloc_consistent(h
->pdev
,
4690 h
->nr_cmds
* sizeof(CommandList_struct
),
4691 &(h
->cmd_pool_dhandle
));
4692 h
->errinfo_pool
= (ErrorInfo_struct
*)
4693 pci_alloc_consistent(h
->pdev
,
4694 h
->nr_cmds
* sizeof(ErrorInfo_struct
),
4695 &(h
->errinfo_pool_dhandle
));
4696 if ((h
->cmd_pool_bits
== NULL
)
4697 || (h
->cmd_pool
== NULL
)
4698 || (h
->errinfo_pool
== NULL
)) {
4699 dev_err(&h
->pdev
->dev
, "out of memory");
4703 /* Need space for temp scatter list */
4704 h
->scatter_list
= kmalloc(h
->max_commands
*
4705 sizeof(struct scatterlist
*),
4707 if (!h
->scatter_list
)
4710 for (k
= 0; k
< h
->nr_cmds
; k
++) {
4711 h
->scatter_list
[k
] = kmalloc(sizeof(struct scatterlist
) *
4714 if (h
->scatter_list
[k
] == NULL
) {
4715 dev_err(&h
->pdev
->dev
,
4716 "could not allocate s/g lists\n");
4720 h
->cmd_sg_list
= cciss_allocate_sg_chain_blocks(h
,
4721 h
->chainsize
, h
->nr_cmds
);
4722 if (!h
->cmd_sg_list
&& h
->chainsize
> 0)
4725 spin_lock_init(&h
->lock
);
4727 /* Initialize the pdev driver private data.
4728 have it point to h. */
4729 pci_set_drvdata(pdev
, h
);
4730 /* command and error info recs zeroed out before
4732 memset(h
->cmd_pool_bits
, 0,
4733 DIV_ROUND_UP(h
->nr_cmds
, BITS_PER_LONG
)
4734 * sizeof(unsigned long));
4737 h
->highest_lun
= -1;
4738 for (j
= 0; j
< CISS_MAX_LUN
; j
++) {
4740 h
->gendisk
[j
] = NULL
;
4743 cciss_scsi_setup(h
);
4745 /* Turn the interrupts on so we can service requests */
4746 h
->access
.set_intr_mask(h
, CCISS_INTR_ON
);
4748 /* Get the firmware version */
4749 inq_buff
= kzalloc(sizeof(InquiryData_struct
), GFP_KERNEL
);
4750 if (inq_buff
== NULL
) {
4751 dev_err(&h
->pdev
->dev
, "out of memory\n");
4755 return_code
= sendcmd_withirq(h
, CISS_INQUIRY
, inq_buff
,
4756 sizeof(InquiryData_struct
), 0, CTLR_LUNID
, TYPE_CMD
);
4757 if (return_code
== IO_OK
) {
4758 h
->firm_ver
[0] = inq_buff
->data_byte
[32];
4759 h
->firm_ver
[1] = inq_buff
->data_byte
[33];
4760 h
->firm_ver
[2] = inq_buff
->data_byte
[34];
4761 h
->firm_ver
[3] = inq_buff
->data_byte
[35];
4762 } else { /* send command failed */
4763 dev_warn(&h
->pdev
->dev
, "unable to determine firmware"
4764 " version of controller\n");
4770 h
->cciss_max_sectors
= 8192;
4772 rebuild_lun_table(h
, 1, 0);
4773 h
->busy_initializing
= 0;
4777 kfree(h
->cmd_pool_bits
);
4778 /* Free up sg elements */
4779 for (k
-- ; k
>= 0; k
--)
4780 kfree(h
->scatter_list
[k
]);
4781 kfree(h
->scatter_list
);
4782 cciss_free_sg_chain_blocks(h
->cmd_sg_list
, h
->nr_cmds
);
4784 pci_free_consistent(h
->pdev
,
4785 h
->nr_cmds
* sizeof(CommandList_struct
),
4786 h
->cmd_pool
, h
->cmd_pool_dhandle
);
4787 if (h
->errinfo_pool
)
4788 pci_free_consistent(h
->pdev
,
4789 h
->nr_cmds
* sizeof(ErrorInfo_struct
),
4791 h
->errinfo_pool_dhandle
);
4792 free_irq(h
->intr
[PERF_MODE_INT
], h
);
4794 unregister_blkdev(h
->major
, h
->devname
);
4796 cciss_destroy_hba_sysfs_entry(h
);
4798 pci_release_regions(pdev
);
4799 clean_no_release_regions
:
4800 h
->busy_initializing
= 0;
4803 * Deliberately omit pci_disable_device(): it does something nasty to
4804 * Smart Array controllers that pci_enable_device does not undo
4806 pci_set_drvdata(pdev
, NULL
);
4811 static void cciss_shutdown(struct pci_dev
*pdev
)
4817 h
= pci_get_drvdata(pdev
);
4818 flush_buf
= kzalloc(4, GFP_KERNEL
);
4820 dev_warn(&h
->pdev
->dev
, "cache not flushed, out of memory.\n");
4823 /* write all data in the battery backed cache to disk */
4824 memset(flush_buf
, 0, 4);
4825 return_code
= sendcmd_withirq(h
, CCISS_CACHE_FLUSH
, flush_buf
,
4826 4, 0, CTLR_LUNID
, TYPE_CMD
);
4828 if (return_code
!= IO_OK
)
4829 dev_warn(&h
->pdev
->dev
, "Error flushing cache\n");
4830 h
->access
.set_intr_mask(h
, CCISS_INTR_OFF
);
4831 free_irq(h
->intr
[PERF_MODE_INT
], h
);
4834 static void __devexit
cciss_remove_one(struct pci_dev
*pdev
)
4839 if (pci_get_drvdata(pdev
) == NULL
) {
4840 dev_err(&pdev
->dev
, "Unable to remove device\n");
4844 h
= pci_get_drvdata(pdev
);
4846 if (hba
[i
] == NULL
) {
4847 dev_err(&pdev
->dev
, "device appears to already be removed\n");
4851 mutex_lock(&h
->busy_shutting_down
);
4853 remove_from_scan_list(h
);
4854 remove_proc_entry(h
->devname
, proc_cciss
);
4855 unregister_blkdev(h
->major
, h
->devname
);
4857 /* remove it from the disk list */
4858 for (j
= 0; j
< CISS_MAX_LUN
; j
++) {
4859 struct gendisk
*disk
= h
->gendisk
[j
];
4861 struct request_queue
*q
= disk
->queue
;
4863 if (disk
->flags
& GENHD_FL_UP
) {
4864 cciss_destroy_ld_sysfs_entry(h
, j
, 1);
4868 blk_cleanup_queue(q
);
4872 #ifdef CONFIG_CISS_SCSI_TAPE
4873 cciss_unregister_scsi(h
); /* unhook from SCSI subsystem */
4876 cciss_shutdown(pdev
);
4878 #ifdef CONFIG_PCI_MSI
4880 pci_disable_msix(h
->pdev
);
4881 else if (h
->msi_vector
)
4882 pci_disable_msi(h
->pdev
);
4883 #endif /* CONFIG_PCI_MSI */
4885 iounmap(h
->transtable
);
4886 iounmap(h
->cfgtable
);
4889 pci_free_consistent(h
->pdev
, h
->nr_cmds
* sizeof(CommandList_struct
),
4890 h
->cmd_pool
, h
->cmd_pool_dhandle
);
4891 pci_free_consistent(h
->pdev
, h
->nr_cmds
* sizeof(ErrorInfo_struct
),
4892 h
->errinfo_pool
, h
->errinfo_pool_dhandle
);
4893 kfree(h
->cmd_pool_bits
);
4894 /* Free up sg elements */
4895 for (j
= 0; j
< h
->nr_cmds
; j
++)
4896 kfree(h
->scatter_list
[j
]);
4897 kfree(h
->scatter_list
);
4898 cciss_free_sg_chain_blocks(h
->cmd_sg_list
, h
->nr_cmds
);
4900 * Deliberately omit pci_disable_device(): it does something nasty to
4901 * Smart Array controllers that pci_enable_device does not undo
4903 pci_release_regions(pdev
);
4904 pci_set_drvdata(pdev
, NULL
);
4905 cciss_destroy_hba_sysfs_entry(h
);
4906 mutex_unlock(&h
->busy_shutting_down
);
4910 static struct pci_driver cciss_pci_driver
= {
4912 .probe
= cciss_init_one
,
4913 .remove
= __devexit_p(cciss_remove_one
),
4914 .id_table
= cciss_pci_device_id
, /* id_table */
4915 .shutdown
= cciss_shutdown
,
4919 * This is it. Register the PCI driver information for the cards we control
4920 * the OS will call our registered routines when it finds one of our cards.
4922 static int __init
cciss_init(void)
4927 * The hardware requires that commands are aligned on a 64-bit
4928 * boundary. Given that we use pci_alloc_consistent() to allocate an
4929 * array of them, the size must be a multiple of 8 bytes.
4931 BUILD_BUG_ON(sizeof(CommandList_struct
) % COMMANDLIST_ALIGNMENT
);
4932 printk(KERN_INFO DRIVER_NAME
"\n");
4934 err
= bus_register(&cciss_bus_type
);
4938 /* Start the scan thread */
4939 cciss_scan_thread
= kthread_run(scan_thread
, NULL
, "cciss_scan");
4940 if (IS_ERR(cciss_scan_thread
)) {
4941 err
= PTR_ERR(cciss_scan_thread
);
4942 goto err_bus_unregister
;
4945 /* Register for our PCI devices */
4946 err
= pci_register_driver(&cciss_pci_driver
);
4948 goto err_thread_stop
;
4953 kthread_stop(cciss_scan_thread
);
4955 bus_unregister(&cciss_bus_type
);
4960 static void __exit
cciss_cleanup(void)
4964 pci_unregister_driver(&cciss_pci_driver
);
4965 /* double check that all controller entrys have been removed */
4966 for (i
= 0; i
< MAX_CTLR
; i
++) {
4967 if (hba
[i
] != NULL
) {
4968 dev_warn(&hba
[i
]->pdev
->dev
,
4969 "had to remove controller\n");
4970 cciss_remove_one(hba
[i
]->pdev
);
4973 kthread_stop(cciss_scan_thread
);
4974 remove_proc_entry("driver/cciss", NULL
);
4975 bus_unregister(&cciss_bus_type
);
4978 module_init(cciss_init
);
4979 module_exit(cciss_cleanup
);