2 * Copyright 2002-2005, Instant802 Networks, Inc.
3 * Copyright 2005-2006, Devicescape Software, Inc.
4 * Copyright 2007 Johannes Berg <johannes@sipsolutions.net>
5 * Copyright 2008 Luis R. Rodriguez <lrodriguz@atheros.com>
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License version 2 as
9 * published by the Free Software Foundation.
13 * DOC: Wireless regulatory infrastructure
15 * The usual implementation is for a driver to read a device EEPROM to
16 * determine which regulatory domain it should be operating under, then
17 * looking up the allowable channels in a driver-local table and finally
18 * registering those channels in the wiphy structure.
20 * Another set of compliance enforcement is for drivers to use their
21 * own compliance limits which can be stored on the EEPROM. The host
22 * driver or firmware may ensure these are used.
24 * In addition to all this we provide an extra layer of regulatory
25 * conformance. For drivers which do not have any regulatory
26 * information CRDA provides the complete regulatory solution.
27 * For others it provides a community effort on further restrictions
28 * to enhance compliance.
30 * Note: When number of rules --> infinity we will not be able to
31 * index on alpha2 any more, instead we'll probably have to
32 * rely on some SHA1 checksum of the regdomain for example.
36 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
38 #include <linux/kernel.h>
39 #include <linux/slab.h>
40 #include <linux/list.h>
41 #include <linux/random.h>
42 #include <linux/ctype.h>
43 #include <linux/nl80211.h>
44 #include <linux/platform_device.h>
45 #include <net/cfg80211.h>
51 #ifdef CONFIG_CFG80211_REG_DEBUG
52 #define REG_DBG_PRINT(format, args...) \
54 printk(KERN_DEBUG pr_fmt(format), ##args); \
57 #define REG_DBG_PRINT(args...)
60 /* Receipt of information from last regulatory request */
61 static struct regulatory_request
*last_request
;
63 /* To trigger userspace events */
64 static struct platform_device
*reg_pdev
;
66 static struct device_type reg_device_type
= {
67 .uevent
= reg_device_uevent
,
71 * Central wireless core regulatory domains, we only need two,
72 * the current one and a world regulatory domain in case we have no
73 * information to give us an alpha2
75 const struct ieee80211_regdomain
*cfg80211_regdomain
;
78 * Protects static reg.c components:
79 * - cfg80211_world_regdom
83 static DEFINE_MUTEX(reg_mutex
);
85 static inline void assert_reg_lock(void)
87 lockdep_assert_held(®_mutex
);
90 /* Used to queue up regulatory hints */
91 static LIST_HEAD(reg_requests_list
);
92 static spinlock_t reg_requests_lock
;
94 /* Used to queue up beacon hints for review */
95 static LIST_HEAD(reg_pending_beacons
);
96 static spinlock_t reg_pending_beacons_lock
;
98 /* Used to keep track of processed beacon hints */
99 static LIST_HEAD(reg_beacon_list
);
102 struct list_head list
;
103 struct ieee80211_channel chan
;
106 static void reg_todo(struct work_struct
*work
);
107 static DECLARE_WORK(reg_work
, reg_todo
);
109 static void reg_timeout_work(struct work_struct
*work
);
110 static DECLARE_DELAYED_WORK(reg_timeout
, reg_timeout_work
);
112 /* We keep a static world regulatory domain in case of the absence of CRDA */
113 static const struct ieee80211_regdomain world_regdom
= {
117 /* IEEE 802.11b/g, channels 1..11 */
118 REG_RULE(2412-10, 2462+10, 40, 6, 20, 0),
119 /* IEEE 802.11b/g, channels 12..13. No HT40
120 * channel fits here. */
121 REG_RULE(2467-10, 2472+10, 20, 6, 20,
122 NL80211_RRF_PASSIVE_SCAN
|
123 NL80211_RRF_NO_IBSS
),
124 /* IEEE 802.11 channel 14 - Only JP enables
125 * this and for 802.11b only */
126 REG_RULE(2484-10, 2484+10, 20, 6, 20,
127 NL80211_RRF_PASSIVE_SCAN
|
128 NL80211_RRF_NO_IBSS
|
129 NL80211_RRF_NO_OFDM
),
130 /* IEEE 802.11a, channel 36..48 */
131 REG_RULE(5180-10, 5240+10, 40, 6, 20,
132 NL80211_RRF_PASSIVE_SCAN
|
133 NL80211_RRF_NO_IBSS
),
135 /* NB: 5260 MHz - 5700 MHz requies DFS */
137 /* IEEE 802.11a, channel 149..165 */
138 REG_RULE(5745-10, 5825+10, 40, 6, 20,
139 NL80211_RRF_PASSIVE_SCAN
|
140 NL80211_RRF_NO_IBSS
),
144 static const struct ieee80211_regdomain
*cfg80211_world_regdom
=
147 static char *ieee80211_regdom
= "00";
148 static char user_alpha2
[2];
150 module_param(ieee80211_regdom
, charp
, 0444);
151 MODULE_PARM_DESC(ieee80211_regdom
, "IEEE 802.11 regulatory domain code");
153 static void reset_regdomains(void)
155 /* avoid freeing static information or freeing something twice */
156 if (cfg80211_regdomain
== cfg80211_world_regdom
)
157 cfg80211_regdomain
= NULL
;
158 if (cfg80211_world_regdom
== &world_regdom
)
159 cfg80211_world_regdom
= NULL
;
160 if (cfg80211_regdomain
== &world_regdom
)
161 cfg80211_regdomain
= NULL
;
163 kfree(cfg80211_regdomain
);
164 kfree(cfg80211_world_regdom
);
166 cfg80211_world_regdom
= &world_regdom
;
167 cfg80211_regdomain
= NULL
;
171 * Dynamic world regulatory domain requested by the wireless
172 * core upon initialization
174 static void update_world_regdomain(const struct ieee80211_regdomain
*rd
)
176 BUG_ON(!last_request
);
180 cfg80211_world_regdom
= rd
;
181 cfg80211_regdomain
= rd
;
184 bool is_world_regdom(const char *alpha2
)
188 if (alpha2
[0] == '0' && alpha2
[1] == '0')
193 static bool is_alpha2_set(const char *alpha2
)
197 if (alpha2
[0] != 0 && alpha2
[1] != 0)
202 static bool is_unknown_alpha2(const char *alpha2
)
207 * Special case where regulatory domain was built by driver
208 * but a specific alpha2 cannot be determined
210 if (alpha2
[0] == '9' && alpha2
[1] == '9')
215 static bool is_intersected_alpha2(const char *alpha2
)
220 * Special case where regulatory domain is the
221 * result of an intersection between two regulatory domain
224 if (alpha2
[0] == '9' && alpha2
[1] == '8')
229 static bool is_an_alpha2(const char *alpha2
)
233 if (isalpha(alpha2
[0]) && isalpha(alpha2
[1]))
238 static bool alpha2_equal(const char *alpha2_x
, const char *alpha2_y
)
240 if (!alpha2_x
|| !alpha2_y
)
242 if (alpha2_x
[0] == alpha2_y
[0] &&
243 alpha2_x
[1] == alpha2_y
[1])
248 static bool regdom_changes(const char *alpha2
)
250 assert_cfg80211_lock();
252 if (!cfg80211_regdomain
)
254 if (alpha2_equal(cfg80211_regdomain
->alpha2
, alpha2
))
260 * The NL80211_REGDOM_SET_BY_USER regdom alpha2 is cached, this lets
261 * you know if a valid regulatory hint with NL80211_REGDOM_SET_BY_USER
262 * has ever been issued.
264 static bool is_user_regdom_saved(void)
266 if (user_alpha2
[0] == '9' && user_alpha2
[1] == '7')
269 /* This would indicate a mistake on the design */
270 if (WARN((!is_world_regdom(user_alpha2
) &&
271 !is_an_alpha2(user_alpha2
)),
272 "Unexpected user alpha2: %c%c\n",
280 static int reg_copy_regd(const struct ieee80211_regdomain
**dst_regd
,
281 const struct ieee80211_regdomain
*src_regd
)
283 struct ieee80211_regdomain
*regd
;
284 int size_of_regd
= 0;
287 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
288 ((src_regd
->n_reg_rules
+ 1) * sizeof(struct ieee80211_reg_rule
));
290 regd
= kzalloc(size_of_regd
, GFP_KERNEL
);
294 memcpy(regd
, src_regd
, sizeof(struct ieee80211_regdomain
));
296 for (i
= 0; i
< src_regd
->n_reg_rules
; i
++)
297 memcpy(®d
->reg_rules
[i
], &src_regd
->reg_rules
[i
],
298 sizeof(struct ieee80211_reg_rule
));
304 #ifdef CONFIG_CFG80211_INTERNAL_REGDB
305 struct reg_regdb_search_request
{
307 struct list_head list
;
310 static LIST_HEAD(reg_regdb_search_list
);
311 static DEFINE_MUTEX(reg_regdb_search_mutex
);
313 static void reg_regdb_search(struct work_struct
*work
)
315 struct reg_regdb_search_request
*request
;
316 const struct ieee80211_regdomain
*curdom
, *regdom
;
319 mutex_lock(®_regdb_search_mutex
);
320 while (!list_empty(®_regdb_search_list
)) {
321 request
= list_first_entry(®_regdb_search_list
,
322 struct reg_regdb_search_request
,
324 list_del(&request
->list
);
326 for (i
=0; i
<reg_regdb_size
; i
++) {
327 curdom
= reg_regdb
[i
];
329 if (!memcmp(request
->alpha2
, curdom
->alpha2
, 2)) {
330 r
= reg_copy_regd(®dom
, curdom
);
333 mutex_lock(&cfg80211_mutex
);
335 mutex_unlock(&cfg80211_mutex
);
342 mutex_unlock(®_regdb_search_mutex
);
345 static DECLARE_WORK(reg_regdb_work
, reg_regdb_search
);
347 static void reg_regdb_query(const char *alpha2
)
349 struct reg_regdb_search_request
*request
;
354 request
= kzalloc(sizeof(struct reg_regdb_search_request
), GFP_KERNEL
);
358 memcpy(request
->alpha2
, alpha2
, 2);
360 mutex_lock(®_regdb_search_mutex
);
361 list_add_tail(&request
->list
, ®_regdb_search_list
);
362 mutex_unlock(®_regdb_search_mutex
);
364 schedule_work(®_regdb_work
);
367 static inline void reg_regdb_query(const char *alpha2
) {}
368 #endif /* CONFIG_CFG80211_INTERNAL_REGDB */
371 * This lets us keep regulatory code which is updated on a regulatory
372 * basis in userspace. Country information is filled in by
375 static int call_crda(const char *alpha2
)
377 if (!is_world_regdom((char *) alpha2
))
378 pr_info("Calling CRDA for country: %c%c\n",
379 alpha2
[0], alpha2
[1]);
381 pr_info("Calling CRDA to update world regulatory domain\n");
383 /* query internal regulatory database (if it exists) */
384 reg_regdb_query(alpha2
);
386 return kobject_uevent(®_pdev
->dev
.kobj
, KOBJ_CHANGE
);
389 /* Used by nl80211 before kmalloc'ing our regulatory domain */
390 bool reg_is_valid_request(const char *alpha2
)
392 assert_cfg80211_lock();
397 return alpha2_equal(last_request
->alpha2
, alpha2
);
400 /* Sanity check on a regulatory rule */
401 static bool is_valid_reg_rule(const struct ieee80211_reg_rule
*rule
)
403 const struct ieee80211_freq_range
*freq_range
= &rule
->freq_range
;
406 if (freq_range
->start_freq_khz
<= 0 || freq_range
->end_freq_khz
<= 0)
409 if (freq_range
->start_freq_khz
> freq_range
->end_freq_khz
)
412 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
414 if (freq_range
->end_freq_khz
<= freq_range
->start_freq_khz
||
415 freq_range
->max_bandwidth_khz
> freq_diff
)
421 static bool is_valid_rd(const struct ieee80211_regdomain
*rd
)
423 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
426 if (!rd
->n_reg_rules
)
429 if (WARN_ON(rd
->n_reg_rules
> NL80211_MAX_SUPP_REG_RULES
))
432 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
433 reg_rule
= &rd
->reg_rules
[i
];
434 if (!is_valid_reg_rule(reg_rule
))
441 static bool reg_does_bw_fit(const struct ieee80211_freq_range
*freq_range
,
445 u32 start_freq_khz
, end_freq_khz
;
447 start_freq_khz
= center_freq_khz
- (bw_khz
/2);
448 end_freq_khz
= center_freq_khz
+ (bw_khz
/2);
450 if (start_freq_khz
>= freq_range
->start_freq_khz
&&
451 end_freq_khz
<= freq_range
->end_freq_khz
)
458 * freq_in_rule_band - tells us if a frequency is in a frequency band
459 * @freq_range: frequency rule we want to query
460 * @freq_khz: frequency we are inquiring about
462 * This lets us know if a specific frequency rule is or is not relevant to
463 * a specific frequency's band. Bands are device specific and artificial
464 * definitions (the "2.4 GHz band" and the "5 GHz band"), however it is
465 * safe for now to assume that a frequency rule should not be part of a
466 * frequency's band if the start freq or end freq are off by more than 2 GHz.
467 * This resolution can be lowered and should be considered as we add
468 * regulatory rule support for other "bands".
470 static bool freq_in_rule_band(const struct ieee80211_freq_range
*freq_range
,
473 #define ONE_GHZ_IN_KHZ 1000000
474 if (abs(freq_khz
- freq_range
->start_freq_khz
) <= (2 * ONE_GHZ_IN_KHZ
))
476 if (abs(freq_khz
- freq_range
->end_freq_khz
) <= (2 * ONE_GHZ_IN_KHZ
))
479 #undef ONE_GHZ_IN_KHZ
483 * Helper for regdom_intersect(), this does the real
484 * mathematical intersection fun
486 static int reg_rules_intersect(
487 const struct ieee80211_reg_rule
*rule1
,
488 const struct ieee80211_reg_rule
*rule2
,
489 struct ieee80211_reg_rule
*intersected_rule
)
491 const struct ieee80211_freq_range
*freq_range1
, *freq_range2
;
492 struct ieee80211_freq_range
*freq_range
;
493 const struct ieee80211_power_rule
*power_rule1
, *power_rule2
;
494 struct ieee80211_power_rule
*power_rule
;
497 freq_range1
= &rule1
->freq_range
;
498 freq_range2
= &rule2
->freq_range
;
499 freq_range
= &intersected_rule
->freq_range
;
501 power_rule1
= &rule1
->power_rule
;
502 power_rule2
= &rule2
->power_rule
;
503 power_rule
= &intersected_rule
->power_rule
;
505 freq_range
->start_freq_khz
= max(freq_range1
->start_freq_khz
,
506 freq_range2
->start_freq_khz
);
507 freq_range
->end_freq_khz
= min(freq_range1
->end_freq_khz
,
508 freq_range2
->end_freq_khz
);
509 freq_range
->max_bandwidth_khz
= min(freq_range1
->max_bandwidth_khz
,
510 freq_range2
->max_bandwidth_khz
);
512 freq_diff
= freq_range
->end_freq_khz
- freq_range
->start_freq_khz
;
513 if (freq_range
->max_bandwidth_khz
> freq_diff
)
514 freq_range
->max_bandwidth_khz
= freq_diff
;
516 power_rule
->max_eirp
= min(power_rule1
->max_eirp
,
517 power_rule2
->max_eirp
);
518 power_rule
->max_antenna_gain
= min(power_rule1
->max_antenna_gain
,
519 power_rule2
->max_antenna_gain
);
521 intersected_rule
->flags
= (rule1
->flags
| rule2
->flags
);
523 if (!is_valid_reg_rule(intersected_rule
))
530 * regdom_intersect - do the intersection between two regulatory domains
531 * @rd1: first regulatory domain
532 * @rd2: second regulatory domain
534 * Use this function to get the intersection between two regulatory domains.
535 * Once completed we will mark the alpha2 for the rd as intersected, "98",
536 * as no one single alpha2 can represent this regulatory domain.
538 * Returns a pointer to the regulatory domain structure which will hold the
539 * resulting intersection of rules between rd1 and rd2. We will
540 * kzalloc() this structure for you.
542 static struct ieee80211_regdomain
*regdom_intersect(
543 const struct ieee80211_regdomain
*rd1
,
544 const struct ieee80211_regdomain
*rd2
)
548 unsigned int num_rules
= 0, rule_idx
= 0;
549 const struct ieee80211_reg_rule
*rule1
, *rule2
;
550 struct ieee80211_reg_rule
*intersected_rule
;
551 struct ieee80211_regdomain
*rd
;
552 /* This is just a dummy holder to help us count */
553 struct ieee80211_reg_rule irule
;
555 /* Uses the stack temporarily for counter arithmetic */
556 intersected_rule
= &irule
;
558 memset(intersected_rule
, 0, sizeof(struct ieee80211_reg_rule
));
564 * First we get a count of the rules we'll need, then we actually
565 * build them. This is to so we can malloc() and free() a
566 * regdomain once. The reason we use reg_rules_intersect() here
567 * is it will return -EINVAL if the rule computed makes no sense.
568 * All rules that do check out OK are valid.
571 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
572 rule1
= &rd1
->reg_rules
[x
];
573 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
574 rule2
= &rd2
->reg_rules
[y
];
575 if (!reg_rules_intersect(rule1
, rule2
,
578 memset(intersected_rule
, 0,
579 sizeof(struct ieee80211_reg_rule
));
586 size_of_regd
= sizeof(struct ieee80211_regdomain
) +
587 ((num_rules
+ 1) * sizeof(struct ieee80211_reg_rule
));
589 rd
= kzalloc(size_of_regd
, GFP_KERNEL
);
593 for (x
= 0; x
< rd1
->n_reg_rules
; x
++) {
594 rule1
= &rd1
->reg_rules
[x
];
595 for (y
= 0; y
< rd2
->n_reg_rules
; y
++) {
596 rule2
= &rd2
->reg_rules
[y
];
598 * This time around instead of using the stack lets
599 * write to the target rule directly saving ourselves
602 intersected_rule
= &rd
->reg_rules
[rule_idx
];
603 r
= reg_rules_intersect(rule1
, rule2
,
606 * No need to memset here the intersected rule here as
607 * we're not using the stack anymore
615 if (rule_idx
!= num_rules
) {
620 rd
->n_reg_rules
= num_rules
;
628 * XXX: add support for the rest of enum nl80211_reg_rule_flags, we may
629 * want to just have the channel structure use these
631 static u32
map_regdom_flags(u32 rd_flags
)
633 u32 channel_flags
= 0;
634 if (rd_flags
& NL80211_RRF_PASSIVE_SCAN
)
635 channel_flags
|= IEEE80211_CHAN_PASSIVE_SCAN
;
636 if (rd_flags
& NL80211_RRF_NO_IBSS
)
637 channel_flags
|= IEEE80211_CHAN_NO_IBSS
;
638 if (rd_flags
& NL80211_RRF_DFS
)
639 channel_flags
|= IEEE80211_CHAN_RADAR
;
640 return channel_flags
;
643 static int freq_reg_info_regd(struct wiphy
*wiphy
,
646 const struct ieee80211_reg_rule
**reg_rule
,
647 const struct ieee80211_regdomain
*custom_regd
)
650 bool band_rule_found
= false;
651 const struct ieee80211_regdomain
*regd
;
652 bool bw_fits
= false;
655 desired_bw_khz
= MHZ_TO_KHZ(20);
657 regd
= custom_regd
? custom_regd
: cfg80211_regdomain
;
660 * Follow the driver's regulatory domain, if present, unless a country
661 * IE has been processed or a user wants to help complaince further
664 last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
665 last_request
->initiator
!= NL80211_REGDOM_SET_BY_USER
&&
672 for (i
= 0; i
< regd
->n_reg_rules
; i
++) {
673 const struct ieee80211_reg_rule
*rr
;
674 const struct ieee80211_freq_range
*fr
= NULL
;
676 rr
= ®d
->reg_rules
[i
];
677 fr
= &rr
->freq_range
;
680 * We only need to know if one frequency rule was
681 * was in center_freq's band, that's enough, so lets
682 * not overwrite it once found
684 if (!band_rule_found
)
685 band_rule_found
= freq_in_rule_band(fr
, center_freq
);
687 bw_fits
= reg_does_bw_fit(fr
,
691 if (band_rule_found
&& bw_fits
) {
697 if (!band_rule_found
)
703 int freq_reg_info(struct wiphy
*wiphy
,
706 const struct ieee80211_reg_rule
**reg_rule
)
708 assert_cfg80211_lock();
709 return freq_reg_info_regd(wiphy
,
715 EXPORT_SYMBOL(freq_reg_info
);
717 #ifdef CONFIG_CFG80211_REG_DEBUG
718 static const char *reg_initiator_name(enum nl80211_reg_initiator initiator
)
721 case NL80211_REGDOM_SET_BY_CORE
:
722 return "Set by core";
723 case NL80211_REGDOM_SET_BY_USER
:
724 return "Set by user";
725 case NL80211_REGDOM_SET_BY_DRIVER
:
726 return "Set by driver";
727 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
728 return "Set by country IE";
735 static void chan_reg_rule_print_dbg(struct ieee80211_channel
*chan
,
737 const struct ieee80211_reg_rule
*reg_rule
)
739 const struct ieee80211_power_rule
*power_rule
;
740 const struct ieee80211_freq_range
*freq_range
;
741 char max_antenna_gain
[32];
743 power_rule
= ®_rule
->power_rule
;
744 freq_range
= ®_rule
->freq_range
;
746 if (!power_rule
->max_antenna_gain
)
747 snprintf(max_antenna_gain
, 32, "N/A");
749 snprintf(max_antenna_gain
, 32, "%d", power_rule
->max_antenna_gain
);
751 REG_DBG_PRINT("Updating information on frequency %d MHz "
752 "for a %d MHz width channel with regulatory rule:\n",
754 KHZ_TO_MHZ(desired_bw_khz
));
756 REG_DBG_PRINT("%d KHz - %d KHz @ KHz), (%s mBi, %d mBm)\n",
757 freq_range
->start_freq_khz
,
758 freq_range
->end_freq_khz
,
760 power_rule
->max_eirp
);
763 static void chan_reg_rule_print_dbg(struct ieee80211_channel
*chan
,
765 const struct ieee80211_reg_rule
*reg_rule
)
772 * Note that right now we assume the desired channel bandwidth
773 * is always 20 MHz for each individual channel (HT40 uses 20 MHz
774 * per channel, the primary and the extension channel). To support
775 * smaller custom bandwidths such as 5 MHz or 10 MHz we'll need a
776 * new ieee80211_channel.target_bw and re run the regulatory check
777 * on the wiphy with the target_bw specified. Then we can simply use
778 * that below for the desired_bw_khz below.
780 static void handle_channel(struct wiphy
*wiphy
,
781 enum nl80211_reg_initiator initiator
,
782 enum ieee80211_band band
,
783 unsigned int chan_idx
)
786 u32 flags
, bw_flags
= 0;
787 u32 desired_bw_khz
= MHZ_TO_KHZ(20);
788 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
789 const struct ieee80211_power_rule
*power_rule
= NULL
;
790 const struct ieee80211_freq_range
*freq_range
= NULL
;
791 struct ieee80211_supported_band
*sband
;
792 struct ieee80211_channel
*chan
;
793 struct wiphy
*request_wiphy
= NULL
;
795 assert_cfg80211_lock();
797 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
799 sband
= wiphy
->bands
[band
];
800 BUG_ON(chan_idx
>= sband
->n_channels
);
801 chan
= &sband
->channels
[chan_idx
];
803 flags
= chan
->orig_flags
;
805 r
= freq_reg_info(wiphy
,
806 MHZ_TO_KHZ(chan
->center_freq
),
812 * We will disable all channels that do not match our
813 * received regulatory rule unless the hint is coming
814 * from a Country IE and the Country IE had no information
815 * about a band. The IEEE 802.11 spec allows for an AP
816 * to send only a subset of the regulatory rules allowed,
817 * so an AP in the US that only supports 2.4 GHz may only send
818 * a country IE with information for the 2.4 GHz band
819 * while 5 GHz is still supported.
821 if (initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
825 REG_DBG_PRINT("Disabling freq %d MHz\n", chan
->center_freq
);
826 chan
->flags
= IEEE80211_CHAN_DISABLED
;
830 chan_reg_rule_print_dbg(chan
, desired_bw_khz
, reg_rule
);
832 power_rule
= ®_rule
->power_rule
;
833 freq_range
= ®_rule
->freq_range
;
835 if (freq_range
->max_bandwidth_khz
< MHZ_TO_KHZ(40))
836 bw_flags
= IEEE80211_CHAN_NO_HT40
;
838 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
839 request_wiphy
&& request_wiphy
== wiphy
&&
840 request_wiphy
->flags
& WIPHY_FLAG_STRICT_REGULATORY
) {
842 * This guarantees the driver's requested regulatory domain
843 * will always be used as a base for further regulatory
846 chan
->flags
= chan
->orig_flags
=
847 map_regdom_flags(reg_rule
->flags
) | bw_flags
;
848 chan
->max_antenna_gain
= chan
->orig_mag
=
849 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
850 chan
->max_power
= chan
->orig_mpwr
=
851 (int) MBM_TO_DBM(power_rule
->max_eirp
);
855 chan
->flags
= flags
| bw_flags
| map_regdom_flags(reg_rule
->flags
);
856 chan
->max_antenna_gain
= min(chan
->orig_mag
,
857 (int) MBI_TO_DBI(power_rule
->max_antenna_gain
));
859 chan
->max_power
= min(chan
->orig_mpwr
,
860 (int) MBM_TO_DBM(power_rule
->max_eirp
));
862 chan
->max_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
865 static void handle_band(struct wiphy
*wiphy
,
866 enum ieee80211_band band
,
867 enum nl80211_reg_initiator initiator
)
870 struct ieee80211_supported_band
*sband
;
872 BUG_ON(!wiphy
->bands
[band
]);
873 sband
= wiphy
->bands
[band
];
875 for (i
= 0; i
< sband
->n_channels
; i
++)
876 handle_channel(wiphy
, initiator
, band
, i
);
879 static bool ignore_reg_update(struct wiphy
*wiphy
,
880 enum nl80211_reg_initiator initiator
)
883 REG_DBG_PRINT("Ignoring regulatory request %s since "
884 "last_request is not set\n",
885 reg_initiator_name(initiator
));
889 if (initiator
== NL80211_REGDOM_SET_BY_CORE
&&
890 wiphy
->flags
& WIPHY_FLAG_CUSTOM_REGULATORY
) {
891 REG_DBG_PRINT("Ignoring regulatory request %s "
892 "since the driver uses its own custom "
893 "regulatory domain ",
894 reg_initiator_name(initiator
));
899 * wiphy->regd will be set once the device has its own
900 * desired regulatory domain set
902 if (wiphy
->flags
& WIPHY_FLAG_STRICT_REGULATORY
&& !wiphy
->regd
&&
903 initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
904 !is_world_regdom(last_request
->alpha2
)) {
905 REG_DBG_PRINT("Ignoring regulatory request %s "
906 "since the driver requires its own regulaotry "
907 "domain to be set first",
908 reg_initiator_name(initiator
));
915 static void update_all_wiphy_regulatory(enum nl80211_reg_initiator initiator
)
917 struct cfg80211_registered_device
*rdev
;
919 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
920 wiphy_update_regulatory(&rdev
->wiphy
, initiator
);
923 static void handle_reg_beacon(struct wiphy
*wiphy
,
924 unsigned int chan_idx
,
925 struct reg_beacon
*reg_beacon
)
927 struct ieee80211_supported_band
*sband
;
928 struct ieee80211_channel
*chan
;
929 bool channel_changed
= false;
930 struct ieee80211_channel chan_before
;
932 assert_cfg80211_lock();
934 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
935 chan
= &sband
->channels
[chan_idx
];
937 if (likely(chan
->center_freq
!= reg_beacon
->chan
.center_freq
))
940 if (chan
->beacon_found
)
943 chan
->beacon_found
= true;
945 if (wiphy
->flags
& WIPHY_FLAG_DISABLE_BEACON_HINTS
)
948 chan_before
.center_freq
= chan
->center_freq
;
949 chan_before
.flags
= chan
->flags
;
951 if (chan
->flags
& IEEE80211_CHAN_PASSIVE_SCAN
) {
952 chan
->flags
&= ~IEEE80211_CHAN_PASSIVE_SCAN
;
953 channel_changed
= true;
956 if (chan
->flags
& IEEE80211_CHAN_NO_IBSS
) {
957 chan
->flags
&= ~IEEE80211_CHAN_NO_IBSS
;
958 channel_changed
= true;
962 nl80211_send_beacon_hint_event(wiphy
, &chan_before
, chan
);
966 * Called when a scan on a wiphy finds a beacon on
969 static void wiphy_update_new_beacon(struct wiphy
*wiphy
,
970 struct reg_beacon
*reg_beacon
)
973 struct ieee80211_supported_band
*sband
;
975 assert_cfg80211_lock();
977 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
980 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
982 for (i
= 0; i
< sband
->n_channels
; i
++)
983 handle_reg_beacon(wiphy
, i
, reg_beacon
);
987 * Called upon reg changes or a new wiphy is added
989 static void wiphy_update_beacon_reg(struct wiphy
*wiphy
)
992 struct ieee80211_supported_band
*sband
;
993 struct reg_beacon
*reg_beacon
;
995 assert_cfg80211_lock();
997 if (list_empty(®_beacon_list
))
1000 list_for_each_entry(reg_beacon
, ®_beacon_list
, list
) {
1001 if (!wiphy
->bands
[reg_beacon
->chan
.band
])
1003 sband
= wiphy
->bands
[reg_beacon
->chan
.band
];
1004 for (i
= 0; i
< sband
->n_channels
; i
++)
1005 handle_reg_beacon(wiphy
, i
, reg_beacon
);
1009 static bool reg_is_world_roaming(struct wiphy
*wiphy
)
1011 if (is_world_regdom(cfg80211_regdomain
->alpha2
) ||
1012 (wiphy
->regd
&& is_world_regdom(wiphy
->regd
->alpha2
)))
1015 last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1016 wiphy
->flags
& WIPHY_FLAG_CUSTOM_REGULATORY
)
1021 /* Reap the advantages of previously found beacons */
1022 static void reg_process_beacons(struct wiphy
*wiphy
)
1025 * Means we are just firing up cfg80211, so no beacons would
1026 * have been processed yet.
1030 if (!reg_is_world_roaming(wiphy
))
1032 wiphy_update_beacon_reg(wiphy
);
1035 static bool is_ht40_not_allowed(struct ieee80211_channel
*chan
)
1039 if (chan
->flags
& IEEE80211_CHAN_DISABLED
)
1041 /* This would happen when regulatory rules disallow HT40 completely */
1042 if (IEEE80211_CHAN_NO_HT40
== (chan
->flags
& (IEEE80211_CHAN_NO_HT40
)))
1047 static void reg_process_ht_flags_channel(struct wiphy
*wiphy
,
1048 enum ieee80211_band band
,
1049 unsigned int chan_idx
)
1051 struct ieee80211_supported_band
*sband
;
1052 struct ieee80211_channel
*channel
;
1053 struct ieee80211_channel
*channel_before
= NULL
, *channel_after
= NULL
;
1056 assert_cfg80211_lock();
1058 sband
= wiphy
->bands
[band
];
1059 BUG_ON(chan_idx
>= sband
->n_channels
);
1060 channel
= &sband
->channels
[chan_idx
];
1062 if (is_ht40_not_allowed(channel
)) {
1063 channel
->flags
|= IEEE80211_CHAN_NO_HT40
;
1068 * We need to ensure the extension channels exist to
1069 * be able to use HT40- or HT40+, this finds them (or not)
1071 for (i
= 0; i
< sband
->n_channels
; i
++) {
1072 struct ieee80211_channel
*c
= &sband
->channels
[i
];
1073 if (c
->center_freq
== (channel
->center_freq
- 20))
1075 if (c
->center_freq
== (channel
->center_freq
+ 20))
1080 * Please note that this assumes target bandwidth is 20 MHz,
1081 * if that ever changes we also need to change the below logic
1082 * to include that as well.
1084 if (is_ht40_not_allowed(channel_before
))
1085 channel
->flags
|= IEEE80211_CHAN_NO_HT40MINUS
;
1087 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40MINUS
;
1089 if (is_ht40_not_allowed(channel_after
))
1090 channel
->flags
|= IEEE80211_CHAN_NO_HT40PLUS
;
1092 channel
->flags
&= ~IEEE80211_CHAN_NO_HT40PLUS
;
1095 static void reg_process_ht_flags_band(struct wiphy
*wiphy
,
1096 enum ieee80211_band band
)
1099 struct ieee80211_supported_band
*sband
;
1101 BUG_ON(!wiphy
->bands
[band
]);
1102 sband
= wiphy
->bands
[band
];
1104 for (i
= 0; i
< sband
->n_channels
; i
++)
1105 reg_process_ht_flags_channel(wiphy
, band
, i
);
1108 static void reg_process_ht_flags(struct wiphy
*wiphy
)
1110 enum ieee80211_band band
;
1115 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1116 if (wiphy
->bands
[band
])
1117 reg_process_ht_flags_band(wiphy
, band
);
1122 void wiphy_update_regulatory(struct wiphy
*wiphy
,
1123 enum nl80211_reg_initiator initiator
)
1125 enum ieee80211_band band
;
1127 if (ignore_reg_update(wiphy
, initiator
))
1129 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1130 if (wiphy
->bands
[band
])
1131 handle_band(wiphy
, band
, initiator
);
1134 reg_process_beacons(wiphy
);
1135 reg_process_ht_flags(wiphy
);
1136 if (wiphy
->reg_notifier
)
1137 wiphy
->reg_notifier(wiphy
, last_request
);
1140 static void handle_channel_custom(struct wiphy
*wiphy
,
1141 enum ieee80211_band band
,
1142 unsigned int chan_idx
,
1143 const struct ieee80211_regdomain
*regd
)
1146 u32 desired_bw_khz
= MHZ_TO_KHZ(20);
1148 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1149 const struct ieee80211_power_rule
*power_rule
= NULL
;
1150 const struct ieee80211_freq_range
*freq_range
= NULL
;
1151 struct ieee80211_supported_band
*sband
;
1152 struct ieee80211_channel
*chan
;
1156 sband
= wiphy
->bands
[band
];
1157 BUG_ON(chan_idx
>= sband
->n_channels
);
1158 chan
= &sband
->channels
[chan_idx
];
1160 r
= freq_reg_info_regd(wiphy
,
1161 MHZ_TO_KHZ(chan
->center_freq
),
1167 REG_DBG_PRINT("Disabling freq %d MHz as custom "
1168 "regd has no rule that fits a %d MHz "
1171 KHZ_TO_MHZ(desired_bw_khz
));
1172 chan
->flags
= IEEE80211_CHAN_DISABLED
;
1176 chan_reg_rule_print_dbg(chan
, desired_bw_khz
, reg_rule
);
1178 power_rule
= ®_rule
->power_rule
;
1179 freq_range
= ®_rule
->freq_range
;
1181 if (freq_range
->max_bandwidth_khz
< MHZ_TO_KHZ(40))
1182 bw_flags
= IEEE80211_CHAN_NO_HT40
;
1184 chan
->flags
|= map_regdom_flags(reg_rule
->flags
) | bw_flags
;
1185 chan
->max_antenna_gain
= (int) MBI_TO_DBI(power_rule
->max_antenna_gain
);
1186 chan
->max_power
= (int) MBM_TO_DBM(power_rule
->max_eirp
);
1189 static void handle_band_custom(struct wiphy
*wiphy
, enum ieee80211_band band
,
1190 const struct ieee80211_regdomain
*regd
)
1193 struct ieee80211_supported_band
*sband
;
1195 BUG_ON(!wiphy
->bands
[band
]);
1196 sband
= wiphy
->bands
[band
];
1198 for (i
= 0; i
< sband
->n_channels
; i
++)
1199 handle_channel_custom(wiphy
, band
, i
, regd
);
1202 /* Used by drivers prior to wiphy registration */
1203 void wiphy_apply_custom_regulatory(struct wiphy
*wiphy
,
1204 const struct ieee80211_regdomain
*regd
)
1206 enum ieee80211_band band
;
1207 unsigned int bands_set
= 0;
1209 mutex_lock(®_mutex
);
1210 for (band
= 0; band
< IEEE80211_NUM_BANDS
; band
++) {
1211 if (!wiphy
->bands
[band
])
1213 handle_band_custom(wiphy
, band
, regd
);
1216 mutex_unlock(®_mutex
);
1219 * no point in calling this if it won't have any effect
1220 * on your device's supportd bands.
1222 WARN_ON(!bands_set
);
1224 EXPORT_SYMBOL(wiphy_apply_custom_regulatory
);
1227 * Return value which can be used by ignore_request() to indicate
1228 * it has been determined we should intersect two regulatory domains
1230 #define REG_INTERSECT 1
1232 /* This has the logic which determines when a new request
1233 * should be ignored. */
1234 static int ignore_request(struct wiphy
*wiphy
,
1235 struct regulatory_request
*pending_request
)
1237 struct wiphy
*last_wiphy
= NULL
;
1239 assert_cfg80211_lock();
1241 /* All initial requests are respected */
1245 switch (pending_request
->initiator
) {
1246 case NL80211_REGDOM_SET_BY_CORE
:
1248 case NL80211_REGDOM_SET_BY_COUNTRY_IE
:
1250 last_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
1252 if (unlikely(!is_an_alpha2(pending_request
->alpha2
)))
1254 if (last_request
->initiator
==
1255 NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
1256 if (last_wiphy
!= wiphy
) {
1258 * Two cards with two APs claiming different
1259 * Country IE alpha2s. We could
1260 * intersect them, but that seems unlikely
1261 * to be correct. Reject second one for now.
1263 if (regdom_changes(pending_request
->alpha2
))
1268 * Two consecutive Country IE hints on the same wiphy.
1269 * This should be picked up early by the driver/stack
1271 if (WARN_ON(regdom_changes(pending_request
->alpha2
)))
1276 case NL80211_REGDOM_SET_BY_DRIVER
:
1277 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_CORE
) {
1278 if (regdom_changes(pending_request
->alpha2
))
1284 * This would happen if you unplug and plug your card
1285 * back in or if you add a new device for which the previously
1286 * loaded card also agrees on the regulatory domain.
1288 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1289 !regdom_changes(pending_request
->alpha2
))
1292 return REG_INTERSECT
;
1293 case NL80211_REGDOM_SET_BY_USER
:
1294 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_COUNTRY_IE
)
1295 return REG_INTERSECT
;
1297 * If the user knows better the user should set the regdom
1298 * to their country before the IE is picked up
1300 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
&&
1301 last_request
->intersect
)
1304 * Process user requests only after previous user/driver/core
1305 * requests have been processed
1307 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_CORE
||
1308 last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
||
1309 last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
) {
1310 if (regdom_changes(last_request
->alpha2
))
1314 if (!regdom_changes(pending_request
->alpha2
))
1323 static void reg_set_request_processed(void)
1325 bool need_more_processing
= false;
1327 last_request
->processed
= true;
1329 spin_lock(®_requests_lock
);
1330 if (!list_empty(®_requests_list
))
1331 need_more_processing
= true;
1332 spin_unlock(®_requests_lock
);
1334 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
)
1335 cancel_delayed_work_sync(®_timeout
);
1337 if (need_more_processing
)
1338 schedule_work(®_work
);
1342 * __regulatory_hint - hint to the wireless core a regulatory domain
1343 * @wiphy: if the hint comes from country information from an AP, this
1344 * is required to be set to the wiphy that received the information
1345 * @pending_request: the regulatory request currently being processed
1347 * The Wireless subsystem can use this function to hint to the wireless core
1348 * what it believes should be the current regulatory domain.
1350 * Returns zero if all went fine, %-EALREADY if a regulatory domain had
1351 * already been set or other standard error codes.
1353 * Caller must hold &cfg80211_mutex and ®_mutex
1355 static int __regulatory_hint(struct wiphy
*wiphy
,
1356 struct regulatory_request
*pending_request
)
1358 bool intersect
= false;
1361 assert_cfg80211_lock();
1363 r
= ignore_request(wiphy
, pending_request
);
1365 if (r
== REG_INTERSECT
) {
1366 if (pending_request
->initiator
==
1367 NL80211_REGDOM_SET_BY_DRIVER
) {
1368 r
= reg_copy_regd(&wiphy
->regd
, cfg80211_regdomain
);
1370 kfree(pending_request
);
1377 * If the regulatory domain being requested by the
1378 * driver has already been set just copy it to the
1381 if (r
== -EALREADY
&&
1382 pending_request
->initiator
==
1383 NL80211_REGDOM_SET_BY_DRIVER
) {
1384 r
= reg_copy_regd(&wiphy
->regd
, cfg80211_regdomain
);
1386 kfree(pending_request
);
1392 kfree(pending_request
);
1397 kfree(last_request
);
1399 last_request
= pending_request
;
1400 last_request
->intersect
= intersect
;
1402 pending_request
= NULL
;
1404 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_USER
) {
1405 user_alpha2
[0] = last_request
->alpha2
[0];
1406 user_alpha2
[1] = last_request
->alpha2
[1];
1409 /* When r == REG_INTERSECT we do need to call CRDA */
1412 * Since CRDA will not be called in this case as we already
1413 * have applied the requested regulatory domain before we just
1414 * inform userspace we have processed the request
1416 if (r
== -EALREADY
) {
1417 nl80211_send_reg_change_event(last_request
);
1418 reg_set_request_processed();
1423 return call_crda(last_request
->alpha2
);
1426 /* This processes *all* regulatory hints */
1427 static void reg_process_hint(struct regulatory_request
*reg_request
)
1430 struct wiphy
*wiphy
= NULL
;
1431 enum nl80211_reg_initiator initiator
= reg_request
->initiator
;
1433 BUG_ON(!reg_request
->alpha2
);
1435 if (wiphy_idx_valid(reg_request
->wiphy_idx
))
1436 wiphy
= wiphy_idx_to_wiphy(reg_request
->wiphy_idx
);
1438 if (reg_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
&&
1444 r
= __regulatory_hint(wiphy
, reg_request
);
1445 /* This is required so that the orig_* parameters are saved */
1446 if (r
== -EALREADY
&& wiphy
&&
1447 wiphy
->flags
& WIPHY_FLAG_STRICT_REGULATORY
) {
1448 wiphy_update_regulatory(wiphy
, initiator
);
1453 * We only time out user hints, given that they should be the only
1454 * source of bogus requests.
1456 if (r
!= -EALREADY
&&
1457 reg_request
->initiator
== NL80211_REGDOM_SET_BY_USER
)
1458 schedule_delayed_work(®_timeout
, msecs_to_jiffies(3142));
1462 * Processes regulatory hints, this is all the NL80211_REGDOM_SET_BY_*
1463 * Regulatory hints come on a first come first serve basis and we
1464 * must process each one atomically.
1466 static void reg_process_pending_hints(void)
1468 struct regulatory_request
*reg_request
;
1470 mutex_lock(&cfg80211_mutex
);
1471 mutex_lock(®_mutex
);
1473 /* When last_request->processed becomes true this will be rescheduled */
1474 if (last_request
&& !last_request
->processed
) {
1475 REG_DBG_PRINT("Pending regulatory request, waiting "
1476 "for it to be processed...");
1480 spin_lock(®_requests_lock
);
1482 if (list_empty(®_requests_list
)) {
1483 spin_unlock(®_requests_lock
);
1487 reg_request
= list_first_entry(®_requests_list
,
1488 struct regulatory_request
,
1490 list_del_init(®_request
->list
);
1492 spin_unlock(®_requests_lock
);
1494 reg_process_hint(reg_request
);
1497 mutex_unlock(®_mutex
);
1498 mutex_unlock(&cfg80211_mutex
);
1501 /* Processes beacon hints -- this has nothing to do with country IEs */
1502 static void reg_process_pending_beacon_hints(void)
1504 struct cfg80211_registered_device
*rdev
;
1505 struct reg_beacon
*pending_beacon
, *tmp
;
1508 * No need to hold the reg_mutex here as we just touch wiphys
1509 * and do not read or access regulatory variables.
1511 mutex_lock(&cfg80211_mutex
);
1513 /* This goes through the _pending_ beacon list */
1514 spin_lock_bh(®_pending_beacons_lock
);
1516 if (list_empty(®_pending_beacons
)) {
1517 spin_unlock_bh(®_pending_beacons_lock
);
1521 list_for_each_entry_safe(pending_beacon
, tmp
,
1522 ®_pending_beacons
, list
) {
1524 list_del_init(&pending_beacon
->list
);
1526 /* Applies the beacon hint to current wiphys */
1527 list_for_each_entry(rdev
, &cfg80211_rdev_list
, list
)
1528 wiphy_update_new_beacon(&rdev
->wiphy
, pending_beacon
);
1530 /* Remembers the beacon hint for new wiphys or reg changes */
1531 list_add_tail(&pending_beacon
->list
, ®_beacon_list
);
1534 spin_unlock_bh(®_pending_beacons_lock
);
1536 mutex_unlock(&cfg80211_mutex
);
1539 static void reg_todo(struct work_struct
*work
)
1541 reg_process_pending_hints();
1542 reg_process_pending_beacon_hints();
1545 static void queue_regulatory_request(struct regulatory_request
*request
)
1547 if (isalpha(request
->alpha2
[0]))
1548 request
->alpha2
[0] = toupper(request
->alpha2
[0]);
1549 if (isalpha(request
->alpha2
[1]))
1550 request
->alpha2
[1] = toupper(request
->alpha2
[1]);
1552 spin_lock(®_requests_lock
);
1553 list_add_tail(&request
->list
, ®_requests_list
);
1554 spin_unlock(®_requests_lock
);
1556 schedule_work(®_work
);
1560 * Core regulatory hint -- happens during cfg80211_init()
1561 * and when we restore regulatory settings.
1563 static int regulatory_hint_core(const char *alpha2
)
1565 struct regulatory_request
*request
;
1567 kfree(last_request
);
1568 last_request
= NULL
;
1570 request
= kzalloc(sizeof(struct regulatory_request
),
1575 request
->alpha2
[0] = alpha2
[0];
1576 request
->alpha2
[1] = alpha2
[1];
1577 request
->initiator
= NL80211_REGDOM_SET_BY_CORE
;
1579 queue_regulatory_request(request
);
1585 int regulatory_hint_user(const char *alpha2
)
1587 struct regulatory_request
*request
;
1591 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1595 request
->wiphy_idx
= WIPHY_IDX_STALE
;
1596 request
->alpha2
[0] = alpha2
[0];
1597 request
->alpha2
[1] = alpha2
[1];
1598 request
->initiator
= NL80211_REGDOM_SET_BY_USER
;
1600 queue_regulatory_request(request
);
1606 int regulatory_hint(struct wiphy
*wiphy
, const char *alpha2
)
1608 struct regulatory_request
*request
;
1613 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1617 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
1619 /* Must have registered wiphy first */
1620 BUG_ON(!wiphy_idx_valid(request
->wiphy_idx
));
1622 request
->alpha2
[0] = alpha2
[0];
1623 request
->alpha2
[1] = alpha2
[1];
1624 request
->initiator
= NL80211_REGDOM_SET_BY_DRIVER
;
1626 queue_regulatory_request(request
);
1630 EXPORT_SYMBOL(regulatory_hint
);
1633 * We hold wdev_lock() here so we cannot hold cfg80211_mutex() and
1634 * therefore cannot iterate over the rdev list here.
1636 void regulatory_hint_11d(struct wiphy
*wiphy
,
1637 enum ieee80211_band band
,
1642 enum environment_cap env
= ENVIRON_ANY
;
1643 struct regulatory_request
*request
;
1645 mutex_lock(®_mutex
);
1647 if (unlikely(!last_request
))
1650 /* IE len must be evenly divisible by 2 */
1651 if (country_ie_len
& 0x01)
1654 if (country_ie_len
< IEEE80211_COUNTRY_IE_MIN_LEN
)
1657 alpha2
[0] = country_ie
[0];
1658 alpha2
[1] = country_ie
[1];
1660 if (country_ie
[2] == 'I')
1661 env
= ENVIRON_INDOOR
;
1662 else if (country_ie
[2] == 'O')
1663 env
= ENVIRON_OUTDOOR
;
1666 * We will run this only upon a successful connection on cfg80211.
1667 * We leave conflict resolution to the workqueue, where can hold
1670 if (likely(last_request
->initiator
==
1671 NL80211_REGDOM_SET_BY_COUNTRY_IE
&&
1672 wiphy_idx_valid(last_request
->wiphy_idx
)))
1675 request
= kzalloc(sizeof(struct regulatory_request
), GFP_KERNEL
);
1679 request
->wiphy_idx
= get_wiphy_idx(wiphy
);
1680 request
->alpha2
[0] = alpha2
[0];
1681 request
->alpha2
[1] = alpha2
[1];
1682 request
->initiator
= NL80211_REGDOM_SET_BY_COUNTRY_IE
;
1683 request
->country_ie_env
= env
;
1685 mutex_unlock(®_mutex
);
1687 queue_regulatory_request(request
);
1692 mutex_unlock(®_mutex
);
1695 static void restore_alpha2(char *alpha2
, bool reset_user
)
1697 /* indicates there is no alpha2 to consider for restoration */
1701 /* The user setting has precedence over the module parameter */
1702 if (is_user_regdom_saved()) {
1703 /* Unless we're asked to ignore it and reset it */
1705 REG_DBG_PRINT("Restoring regulatory settings "
1706 "including user preference\n");
1707 user_alpha2
[0] = '9';
1708 user_alpha2
[1] = '7';
1711 * If we're ignoring user settings, we still need to
1712 * check the module parameter to ensure we put things
1713 * back as they were for a full restore.
1715 if (!is_world_regdom(ieee80211_regdom
)) {
1716 REG_DBG_PRINT("Keeping preference on "
1717 "module parameter ieee80211_regdom: %c%c\n",
1718 ieee80211_regdom
[0],
1719 ieee80211_regdom
[1]);
1720 alpha2
[0] = ieee80211_regdom
[0];
1721 alpha2
[1] = ieee80211_regdom
[1];
1724 REG_DBG_PRINT("Restoring regulatory settings "
1725 "while preserving user preference for: %c%c\n",
1728 alpha2
[0] = user_alpha2
[0];
1729 alpha2
[1] = user_alpha2
[1];
1731 } else if (!is_world_regdom(ieee80211_regdom
)) {
1732 REG_DBG_PRINT("Keeping preference on "
1733 "module parameter ieee80211_regdom: %c%c\n",
1734 ieee80211_regdom
[0],
1735 ieee80211_regdom
[1]);
1736 alpha2
[0] = ieee80211_regdom
[0];
1737 alpha2
[1] = ieee80211_regdom
[1];
1739 REG_DBG_PRINT("Restoring regulatory settings\n");
1743 * Restoring regulatory settings involves ingoring any
1744 * possibly stale country IE information and user regulatory
1745 * settings if so desired, this includes any beacon hints
1746 * learned as we could have traveled outside to another country
1747 * after disconnection. To restore regulatory settings we do
1748 * exactly what we did at bootup:
1750 * - send a core regulatory hint
1751 * - send a user regulatory hint if applicable
1753 * Device drivers that send a regulatory hint for a specific country
1754 * keep their own regulatory domain on wiphy->regd so that does does
1755 * not need to be remembered.
1757 static void restore_regulatory_settings(bool reset_user
)
1760 struct reg_beacon
*reg_beacon
, *btmp
;
1761 struct regulatory_request
*reg_request
, *tmp
;
1762 LIST_HEAD(tmp_reg_req_list
);
1764 mutex_lock(&cfg80211_mutex
);
1765 mutex_lock(®_mutex
);
1768 restore_alpha2(alpha2
, reset_user
);
1771 * If there's any pending requests we simply
1772 * stash them to a temporary pending queue and
1773 * add then after we've restored regulatory
1776 spin_lock(®_requests_lock
);
1777 if (!list_empty(®_requests_list
)) {
1778 list_for_each_entry_safe(reg_request
, tmp
,
1779 ®_requests_list
, list
) {
1780 if (reg_request
->initiator
!=
1781 NL80211_REGDOM_SET_BY_USER
)
1783 list_del(®_request
->list
);
1784 list_add_tail(®_request
->list
, &tmp_reg_req_list
);
1787 spin_unlock(®_requests_lock
);
1789 /* Clear beacon hints */
1790 spin_lock_bh(®_pending_beacons_lock
);
1791 if (!list_empty(®_pending_beacons
)) {
1792 list_for_each_entry_safe(reg_beacon
, btmp
,
1793 ®_pending_beacons
, list
) {
1794 list_del(®_beacon
->list
);
1798 spin_unlock_bh(®_pending_beacons_lock
);
1800 if (!list_empty(®_beacon_list
)) {
1801 list_for_each_entry_safe(reg_beacon
, btmp
,
1802 ®_beacon_list
, list
) {
1803 list_del(®_beacon
->list
);
1808 /* First restore to the basic regulatory settings */
1809 cfg80211_regdomain
= cfg80211_world_regdom
;
1811 mutex_unlock(®_mutex
);
1812 mutex_unlock(&cfg80211_mutex
);
1814 regulatory_hint_core(cfg80211_regdomain
->alpha2
);
1817 * This restores the ieee80211_regdom module parameter
1818 * preference or the last user requested regulatory
1819 * settings, user regulatory settings takes precedence.
1821 if (is_an_alpha2(alpha2
))
1822 regulatory_hint_user(user_alpha2
);
1824 if (list_empty(&tmp_reg_req_list
))
1827 mutex_lock(&cfg80211_mutex
);
1828 mutex_lock(®_mutex
);
1830 spin_lock(®_requests_lock
);
1831 list_for_each_entry_safe(reg_request
, tmp
, &tmp_reg_req_list
, list
) {
1832 REG_DBG_PRINT("Adding request for country %c%c back "
1834 reg_request
->alpha2
[0],
1835 reg_request
->alpha2
[1]);
1836 list_del(®_request
->list
);
1837 list_add_tail(®_request
->list
, ®_requests_list
);
1839 spin_unlock(®_requests_lock
);
1841 mutex_unlock(®_mutex
);
1842 mutex_unlock(&cfg80211_mutex
);
1844 REG_DBG_PRINT("Kicking the queue\n");
1846 schedule_work(®_work
);
1849 void regulatory_hint_disconnect(void)
1851 REG_DBG_PRINT("All devices are disconnected, going to "
1852 "restore regulatory settings\n");
1853 restore_regulatory_settings(false);
1856 static bool freq_is_chan_12_13_14(u16 freq
)
1858 if (freq
== ieee80211_channel_to_frequency(12, IEEE80211_BAND_2GHZ
) ||
1859 freq
== ieee80211_channel_to_frequency(13, IEEE80211_BAND_2GHZ
) ||
1860 freq
== ieee80211_channel_to_frequency(14, IEEE80211_BAND_2GHZ
))
1865 int regulatory_hint_found_beacon(struct wiphy
*wiphy
,
1866 struct ieee80211_channel
*beacon_chan
,
1869 struct reg_beacon
*reg_beacon
;
1871 if (likely((beacon_chan
->beacon_found
||
1872 (beacon_chan
->flags
& IEEE80211_CHAN_RADAR
) ||
1873 (beacon_chan
->band
== IEEE80211_BAND_2GHZ
&&
1874 !freq_is_chan_12_13_14(beacon_chan
->center_freq
)))))
1877 reg_beacon
= kzalloc(sizeof(struct reg_beacon
), gfp
);
1881 REG_DBG_PRINT("Found new beacon on "
1882 "frequency: %d MHz (Ch %d) on %s\n",
1883 beacon_chan
->center_freq
,
1884 ieee80211_frequency_to_channel(beacon_chan
->center_freq
),
1887 memcpy(®_beacon
->chan
, beacon_chan
,
1888 sizeof(struct ieee80211_channel
));
1892 * Since we can be called from BH or and non-BH context
1893 * we must use spin_lock_bh()
1895 spin_lock_bh(®_pending_beacons_lock
);
1896 list_add_tail(®_beacon
->list
, ®_pending_beacons
);
1897 spin_unlock_bh(®_pending_beacons_lock
);
1899 schedule_work(®_work
);
1904 static void print_rd_rules(const struct ieee80211_regdomain
*rd
)
1907 const struct ieee80211_reg_rule
*reg_rule
= NULL
;
1908 const struct ieee80211_freq_range
*freq_range
= NULL
;
1909 const struct ieee80211_power_rule
*power_rule
= NULL
;
1911 pr_info(" (start_freq - end_freq @ bandwidth), (max_antenna_gain, max_eirp)\n");
1913 for (i
= 0; i
< rd
->n_reg_rules
; i
++) {
1914 reg_rule
= &rd
->reg_rules
[i
];
1915 freq_range
= ®_rule
->freq_range
;
1916 power_rule
= ®_rule
->power_rule
;
1919 * There may not be documentation for max antenna gain
1920 * in certain regions
1922 if (power_rule
->max_antenna_gain
)
1923 pr_info(" (%d KHz - %d KHz @ %d KHz), (%d mBi, %d mBm)\n",
1924 freq_range
->start_freq_khz
,
1925 freq_range
->end_freq_khz
,
1926 freq_range
->max_bandwidth_khz
,
1927 power_rule
->max_antenna_gain
,
1928 power_rule
->max_eirp
);
1930 pr_info(" (%d KHz - %d KHz @ %d KHz), (N/A, %d mBm)\n",
1931 freq_range
->start_freq_khz
,
1932 freq_range
->end_freq_khz
,
1933 freq_range
->max_bandwidth_khz
,
1934 power_rule
->max_eirp
);
1938 static void print_regdomain(const struct ieee80211_regdomain
*rd
)
1941 if (is_intersected_alpha2(rd
->alpha2
)) {
1943 if (last_request
->initiator
==
1944 NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
1945 struct cfg80211_registered_device
*rdev
;
1946 rdev
= cfg80211_rdev_by_wiphy_idx(
1947 last_request
->wiphy_idx
);
1949 pr_info("Current regulatory domain updated by AP to: %c%c\n",
1950 rdev
->country_ie_alpha2
[0],
1951 rdev
->country_ie_alpha2
[1]);
1953 pr_info("Current regulatory domain intersected:\n");
1955 pr_info("Current regulatory domain intersected:\n");
1956 } else if (is_world_regdom(rd
->alpha2
))
1957 pr_info("World regulatory domain updated:\n");
1959 if (is_unknown_alpha2(rd
->alpha2
))
1960 pr_info("Regulatory domain changed to driver built-in settings (unknown country)\n");
1962 pr_info("Regulatory domain changed to country: %c%c\n",
1963 rd
->alpha2
[0], rd
->alpha2
[1]);
1968 static void print_regdomain_info(const struct ieee80211_regdomain
*rd
)
1970 pr_info("Regulatory domain: %c%c\n", rd
->alpha2
[0], rd
->alpha2
[1]);
1974 /* Takes ownership of rd only if it doesn't fail */
1975 static int __set_regdom(const struct ieee80211_regdomain
*rd
)
1977 const struct ieee80211_regdomain
*intersected_rd
= NULL
;
1978 struct cfg80211_registered_device
*rdev
= NULL
;
1979 struct wiphy
*request_wiphy
;
1980 /* Some basic sanity checks first */
1982 if (is_world_regdom(rd
->alpha2
)) {
1983 if (WARN_ON(!reg_is_valid_request(rd
->alpha2
)))
1985 update_world_regdomain(rd
);
1989 if (!is_alpha2_set(rd
->alpha2
) && !is_an_alpha2(rd
->alpha2
) &&
1990 !is_unknown_alpha2(rd
->alpha2
))
1997 * Lets only bother proceeding on the same alpha2 if the current
1998 * rd is non static (it means CRDA was present and was used last)
1999 * and the pending request came in from a country IE
2001 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
2003 * If someone else asked us to change the rd lets only bother
2004 * checking if the alpha2 changes if CRDA was already called
2006 if (!regdom_changes(rd
->alpha2
))
2011 * Now lets set the regulatory domain, update all driver channels
2012 * and finally inform them of what we have done, in case they want
2013 * to review or adjust their own settings based on their own
2014 * internal EEPROM data
2017 if (WARN_ON(!reg_is_valid_request(rd
->alpha2
)))
2020 if (!is_valid_rd(rd
)) {
2021 pr_err("Invalid regulatory domain detected:\n");
2022 print_regdomain_info(rd
);
2026 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
2028 if (!last_request
->intersect
) {
2031 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_DRIVER
) {
2033 cfg80211_regdomain
= rd
;
2038 * For a driver hint, lets copy the regulatory domain the
2039 * driver wanted to the wiphy to deal with conflicts
2043 * Userspace could have sent two replies with only
2044 * one kernel request.
2046 if (request_wiphy
->regd
)
2049 r
= reg_copy_regd(&request_wiphy
->regd
, rd
);
2054 cfg80211_regdomain
= rd
;
2058 /* Intersection requires a bit more work */
2060 if (last_request
->initiator
!= NL80211_REGDOM_SET_BY_COUNTRY_IE
) {
2062 intersected_rd
= regdom_intersect(rd
, cfg80211_regdomain
);
2063 if (!intersected_rd
)
2067 * We can trash what CRDA provided now.
2068 * However if a driver requested this specific regulatory
2069 * domain we keep it for its private use
2071 if (last_request
->initiator
== NL80211_REGDOM_SET_BY_DRIVER
)
2072 request_wiphy
->regd
= rd
;
2079 cfg80211_regdomain
= intersected_rd
;
2084 if (!intersected_rd
)
2087 rdev
= wiphy_to_dev(request_wiphy
);
2089 rdev
->country_ie_alpha2
[0] = rd
->alpha2
[0];
2090 rdev
->country_ie_alpha2
[1] = rd
->alpha2
[1];
2091 rdev
->env
= last_request
->country_ie_env
;
2093 BUG_ON(intersected_rd
== rd
);
2099 cfg80211_regdomain
= intersected_rd
;
2106 * Use this call to set the current regulatory domain. Conflicts with
2107 * multiple drivers can be ironed out later. Caller must've already
2108 * kmalloc'd the rd structure. Caller must hold cfg80211_mutex
2110 int set_regdom(const struct ieee80211_regdomain
*rd
)
2114 assert_cfg80211_lock();
2116 mutex_lock(®_mutex
);
2118 /* Note that this doesn't update the wiphys, this is done below */
2119 r
= __set_regdom(rd
);
2122 mutex_unlock(®_mutex
);
2126 /* This would make this whole thing pointless */
2127 if (!last_request
->intersect
)
2128 BUG_ON(rd
!= cfg80211_regdomain
);
2130 /* update all wiphys now with the new established regulatory domain */
2131 update_all_wiphy_regulatory(last_request
->initiator
);
2133 print_regdomain(cfg80211_regdomain
);
2135 nl80211_send_reg_change_event(last_request
);
2137 reg_set_request_processed();
2139 mutex_unlock(®_mutex
);
2144 #ifdef CONFIG_HOTPLUG
2145 int reg_device_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
2147 if (last_request
&& !last_request
->processed
) {
2148 if (add_uevent_var(env
, "COUNTRY=%c%c",
2149 last_request
->alpha2
[0],
2150 last_request
->alpha2
[1]))
2157 int reg_device_uevent(struct device
*dev
, struct kobj_uevent_env
*env
)
2161 #endif /* CONFIG_HOTPLUG */
2163 /* Caller must hold cfg80211_mutex */
2164 void reg_device_remove(struct wiphy
*wiphy
)
2166 struct wiphy
*request_wiphy
= NULL
;
2168 assert_cfg80211_lock();
2170 mutex_lock(®_mutex
);
2175 request_wiphy
= wiphy_idx_to_wiphy(last_request
->wiphy_idx
);
2177 if (!request_wiphy
|| request_wiphy
!= wiphy
)
2180 last_request
->wiphy_idx
= WIPHY_IDX_STALE
;
2181 last_request
->country_ie_env
= ENVIRON_ANY
;
2183 mutex_unlock(®_mutex
);
2186 static void reg_timeout_work(struct work_struct
*work
)
2188 REG_DBG_PRINT("Timeout while waiting for CRDA to reply, "
2189 "restoring regulatory settings");
2190 restore_regulatory_settings(true);
2193 int __init
regulatory_init(void)
2197 reg_pdev
= platform_device_register_simple("regulatory", 0, NULL
, 0);
2198 if (IS_ERR(reg_pdev
))
2199 return PTR_ERR(reg_pdev
);
2201 reg_pdev
->dev
.type
= ®_device_type
;
2203 spin_lock_init(®_requests_lock
);
2204 spin_lock_init(®_pending_beacons_lock
);
2206 cfg80211_regdomain
= cfg80211_world_regdom
;
2208 user_alpha2
[0] = '9';
2209 user_alpha2
[1] = '7';
2211 /* We always try to get an update for the static regdomain */
2212 err
= regulatory_hint_core(cfg80211_regdomain
->alpha2
);
2217 * N.B. kobject_uevent_env() can fail mainly for when we're out
2218 * memory which is handled and propagated appropriately above
2219 * but it can also fail during a netlink_broadcast() or during
2220 * early boot for call_usermodehelper(). For now treat these
2221 * errors as non-fatal.
2223 pr_err("kobject_uevent_env() was unable to call CRDA during init\n");
2224 #ifdef CONFIG_CFG80211_REG_DEBUG
2225 /* We want to find out exactly why when debugging */
2231 * Finally, if the user set the module parameter treat it
2234 if (!is_world_regdom(ieee80211_regdom
))
2235 regulatory_hint_user(ieee80211_regdom
);
2240 void /* __init_or_exit */ regulatory_exit(void)
2242 struct regulatory_request
*reg_request
, *tmp
;
2243 struct reg_beacon
*reg_beacon
, *btmp
;
2245 cancel_work_sync(®_work
);
2246 cancel_delayed_work_sync(®_timeout
);
2248 mutex_lock(&cfg80211_mutex
);
2249 mutex_lock(®_mutex
);
2253 kfree(last_request
);
2255 platform_device_unregister(reg_pdev
);
2257 spin_lock_bh(®_pending_beacons_lock
);
2258 if (!list_empty(®_pending_beacons
)) {
2259 list_for_each_entry_safe(reg_beacon
, btmp
,
2260 ®_pending_beacons
, list
) {
2261 list_del(®_beacon
->list
);
2265 spin_unlock_bh(®_pending_beacons_lock
);
2267 if (!list_empty(®_beacon_list
)) {
2268 list_for_each_entry_safe(reg_beacon
, btmp
,
2269 ®_beacon_list
, list
) {
2270 list_del(®_beacon
->list
);
2275 spin_lock(®_requests_lock
);
2276 if (!list_empty(®_requests_list
)) {
2277 list_for_each_entry_safe(reg_request
, tmp
,
2278 ®_requests_list
, list
) {
2279 list_del(®_request
->list
);
2283 spin_unlock(®_requests_lock
);
2285 mutex_unlock(®_mutex
);
2286 mutex_unlock(&cfg80211_mutex
);