Btrfs: add sequence numbers to delayed refs
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / fs / btrfs / transaction.c
blob31a7393af64e3ee84653a96d1a11134ed48d9422
1 /*
2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
19 #include <linux/fs.h>
20 #include <linux/slab.h>
21 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/pagemap.h>
24 #include <linux/blkdev.h>
25 #include "ctree.h"
26 #include "disk-io.h"
27 #include "transaction.h"
28 #include "locking.h"
29 #include "tree-log.h"
30 #include "inode-map.h"
32 #define BTRFS_ROOT_TRANS_TAG 0
34 static noinline void put_transaction(struct btrfs_transaction *transaction)
36 WARN_ON(atomic_read(&transaction->use_count) == 0);
37 if (atomic_dec_and_test(&transaction->use_count)) {
38 BUG_ON(!list_empty(&transaction->list));
39 WARN_ON(transaction->delayed_refs.root.rb_node);
40 WARN_ON(!list_empty(&transaction->delayed_refs.seq_head));
41 memset(transaction, 0, sizeof(*transaction));
42 kmem_cache_free(btrfs_transaction_cachep, transaction);
46 static noinline void switch_commit_root(struct btrfs_root *root)
48 free_extent_buffer(root->commit_root);
49 root->commit_root = btrfs_root_node(root);
53 * either allocate a new transaction or hop into the existing one
55 static noinline int join_transaction(struct btrfs_root *root, int nofail)
57 struct btrfs_transaction *cur_trans;
59 spin_lock(&root->fs_info->trans_lock);
60 loop:
61 if (root->fs_info->trans_no_join) {
62 if (!nofail) {
63 spin_unlock(&root->fs_info->trans_lock);
64 return -EBUSY;
68 cur_trans = root->fs_info->running_transaction;
69 if (cur_trans) {
70 atomic_inc(&cur_trans->use_count);
71 atomic_inc(&cur_trans->num_writers);
72 cur_trans->num_joined++;
73 spin_unlock(&root->fs_info->trans_lock);
74 return 0;
76 spin_unlock(&root->fs_info->trans_lock);
78 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
79 if (!cur_trans)
80 return -ENOMEM;
82 spin_lock(&root->fs_info->trans_lock);
83 if (root->fs_info->running_transaction) {
85 * someone started a transaction after we unlocked. Make sure
86 * to redo the trans_no_join checks above
88 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
89 cur_trans = root->fs_info->running_transaction;
90 goto loop;
93 atomic_set(&cur_trans->num_writers, 1);
94 cur_trans->num_joined = 0;
95 init_waitqueue_head(&cur_trans->writer_wait);
96 init_waitqueue_head(&cur_trans->commit_wait);
97 cur_trans->in_commit = 0;
98 cur_trans->blocked = 0;
100 * One for this trans handle, one so it will live on until we
101 * commit the transaction.
103 atomic_set(&cur_trans->use_count, 2);
104 cur_trans->commit_done = 0;
105 cur_trans->start_time = get_seconds();
107 cur_trans->delayed_refs.root = RB_ROOT;
108 cur_trans->delayed_refs.num_entries = 0;
109 cur_trans->delayed_refs.num_heads_ready = 0;
110 cur_trans->delayed_refs.num_heads = 0;
111 cur_trans->delayed_refs.flushing = 0;
112 cur_trans->delayed_refs.run_delayed_start = 0;
113 cur_trans->delayed_refs.seq = 1;
114 spin_lock_init(&cur_trans->commit_lock);
115 spin_lock_init(&cur_trans->delayed_refs.lock);
116 INIT_LIST_HEAD(&cur_trans->delayed_refs.seq_head);
118 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
119 list_add_tail(&cur_trans->list, &root->fs_info->trans_list);
120 extent_io_tree_init(&cur_trans->dirty_pages,
121 root->fs_info->btree_inode->i_mapping);
122 root->fs_info->generation++;
123 cur_trans->transid = root->fs_info->generation;
124 root->fs_info->running_transaction = cur_trans;
125 spin_unlock(&root->fs_info->trans_lock);
127 return 0;
131 * this does all the record keeping required to make sure that a reference
132 * counted root is properly recorded in a given transaction. This is required
133 * to make sure the old root from before we joined the transaction is deleted
134 * when the transaction commits
136 static int record_root_in_trans(struct btrfs_trans_handle *trans,
137 struct btrfs_root *root)
139 if (root->ref_cows && root->last_trans < trans->transid) {
140 WARN_ON(root == root->fs_info->extent_root);
141 WARN_ON(root->commit_root != root->node);
144 * see below for in_trans_setup usage rules
145 * we have the reloc mutex held now, so there
146 * is only one writer in this function
148 root->in_trans_setup = 1;
150 /* make sure readers find in_trans_setup before
151 * they find our root->last_trans update
153 smp_wmb();
155 spin_lock(&root->fs_info->fs_roots_radix_lock);
156 if (root->last_trans == trans->transid) {
157 spin_unlock(&root->fs_info->fs_roots_radix_lock);
158 return 0;
160 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
161 (unsigned long)root->root_key.objectid,
162 BTRFS_ROOT_TRANS_TAG);
163 spin_unlock(&root->fs_info->fs_roots_radix_lock);
164 root->last_trans = trans->transid;
166 /* this is pretty tricky. We don't want to
167 * take the relocation lock in btrfs_record_root_in_trans
168 * unless we're really doing the first setup for this root in
169 * this transaction.
171 * Normally we'd use root->last_trans as a flag to decide
172 * if we want to take the expensive mutex.
174 * But, we have to set root->last_trans before we
175 * init the relocation root, otherwise, we trip over warnings
176 * in ctree.c. The solution used here is to flag ourselves
177 * with root->in_trans_setup. When this is 1, we're still
178 * fixing up the reloc trees and everyone must wait.
180 * When this is zero, they can trust root->last_trans and fly
181 * through btrfs_record_root_in_trans without having to take the
182 * lock. smp_wmb() makes sure that all the writes above are
183 * done before we pop in the zero below
185 btrfs_init_reloc_root(trans, root);
186 smp_wmb();
187 root->in_trans_setup = 0;
189 return 0;
193 int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
194 struct btrfs_root *root)
196 if (!root->ref_cows)
197 return 0;
200 * see record_root_in_trans for comments about in_trans_setup usage
201 * and barriers
203 smp_rmb();
204 if (root->last_trans == trans->transid &&
205 !root->in_trans_setup)
206 return 0;
208 mutex_lock(&root->fs_info->reloc_mutex);
209 record_root_in_trans(trans, root);
210 mutex_unlock(&root->fs_info->reloc_mutex);
212 return 0;
215 /* wait for commit against the current transaction to become unblocked
216 * when this is done, it is safe to start a new transaction, but the current
217 * transaction might not be fully on disk.
219 static void wait_current_trans(struct btrfs_root *root)
221 struct btrfs_transaction *cur_trans;
223 spin_lock(&root->fs_info->trans_lock);
224 cur_trans = root->fs_info->running_transaction;
225 if (cur_trans && cur_trans->blocked) {
226 atomic_inc(&cur_trans->use_count);
227 spin_unlock(&root->fs_info->trans_lock);
229 wait_event(root->fs_info->transaction_wait,
230 !cur_trans->blocked);
231 put_transaction(cur_trans);
232 } else {
233 spin_unlock(&root->fs_info->trans_lock);
237 enum btrfs_trans_type {
238 TRANS_START,
239 TRANS_JOIN,
240 TRANS_USERSPACE,
241 TRANS_JOIN_NOLOCK,
244 static int may_wait_transaction(struct btrfs_root *root, int type)
246 if (root->fs_info->log_root_recovering)
247 return 0;
249 if (type == TRANS_USERSPACE)
250 return 1;
252 if (type == TRANS_START &&
253 !atomic_read(&root->fs_info->open_ioctl_trans))
254 return 1;
256 return 0;
259 static struct btrfs_trans_handle *start_transaction(struct btrfs_root *root,
260 u64 num_items, int type)
262 struct btrfs_trans_handle *h;
263 struct btrfs_transaction *cur_trans;
264 u64 num_bytes = 0;
265 int ret;
267 if (root->fs_info->fs_state & BTRFS_SUPER_FLAG_ERROR)
268 return ERR_PTR(-EROFS);
270 if (current->journal_info) {
271 WARN_ON(type != TRANS_JOIN && type != TRANS_JOIN_NOLOCK);
272 h = current->journal_info;
273 h->use_count++;
274 h->orig_rsv = h->block_rsv;
275 h->block_rsv = NULL;
276 goto got_it;
280 * Do the reservation before we join the transaction so we can do all
281 * the appropriate flushing if need be.
283 if (num_items > 0 && root != root->fs_info->chunk_root) {
284 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
285 ret = btrfs_block_rsv_add(root,
286 &root->fs_info->trans_block_rsv,
287 num_bytes);
288 if (ret)
289 return ERR_PTR(ret);
291 again:
292 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
293 if (!h)
294 return ERR_PTR(-ENOMEM);
296 if (may_wait_transaction(root, type))
297 wait_current_trans(root);
299 do {
300 ret = join_transaction(root, type == TRANS_JOIN_NOLOCK);
301 if (ret == -EBUSY)
302 wait_current_trans(root);
303 } while (ret == -EBUSY);
305 if (ret < 0) {
306 kmem_cache_free(btrfs_trans_handle_cachep, h);
307 return ERR_PTR(ret);
310 cur_trans = root->fs_info->running_transaction;
312 h->transid = cur_trans->transid;
313 h->transaction = cur_trans;
314 h->blocks_used = 0;
315 h->bytes_reserved = 0;
316 h->delayed_ref_updates = 0;
317 h->use_count = 1;
318 h->block_rsv = NULL;
319 h->orig_rsv = NULL;
321 smp_mb();
322 if (cur_trans->blocked && may_wait_transaction(root, type)) {
323 btrfs_commit_transaction(h, root);
324 goto again;
327 if (num_bytes) {
328 h->block_rsv = &root->fs_info->trans_block_rsv;
329 h->bytes_reserved = num_bytes;
332 got_it:
333 btrfs_record_root_in_trans(h, root);
335 if (!current->journal_info && type != TRANS_USERSPACE)
336 current->journal_info = h;
337 return h;
340 struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
341 int num_items)
343 return start_transaction(root, num_items, TRANS_START);
345 struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
347 return start_transaction(root, 0, TRANS_JOIN);
350 struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
352 return start_transaction(root, 0, TRANS_JOIN_NOLOCK);
355 struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
357 return start_transaction(root, 0, TRANS_USERSPACE);
360 /* wait for a transaction commit to be fully complete */
361 static noinline void wait_for_commit(struct btrfs_root *root,
362 struct btrfs_transaction *commit)
364 wait_event(commit->commit_wait, commit->commit_done);
367 int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
369 struct btrfs_transaction *cur_trans = NULL, *t;
370 int ret;
372 ret = 0;
373 if (transid) {
374 if (transid <= root->fs_info->last_trans_committed)
375 goto out;
377 /* find specified transaction */
378 spin_lock(&root->fs_info->trans_lock);
379 list_for_each_entry(t, &root->fs_info->trans_list, list) {
380 if (t->transid == transid) {
381 cur_trans = t;
382 atomic_inc(&cur_trans->use_count);
383 break;
385 if (t->transid > transid)
386 break;
388 spin_unlock(&root->fs_info->trans_lock);
389 ret = -EINVAL;
390 if (!cur_trans)
391 goto out; /* bad transid */
392 } else {
393 /* find newest transaction that is committing | committed */
394 spin_lock(&root->fs_info->trans_lock);
395 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
396 list) {
397 if (t->in_commit) {
398 if (t->commit_done)
399 break;
400 cur_trans = t;
401 atomic_inc(&cur_trans->use_count);
402 break;
405 spin_unlock(&root->fs_info->trans_lock);
406 if (!cur_trans)
407 goto out; /* nothing committing|committed */
410 wait_for_commit(root, cur_trans);
412 put_transaction(cur_trans);
413 ret = 0;
414 out:
415 return ret;
418 void btrfs_throttle(struct btrfs_root *root)
420 if (!atomic_read(&root->fs_info->open_ioctl_trans))
421 wait_current_trans(root);
424 static int should_end_transaction(struct btrfs_trans_handle *trans,
425 struct btrfs_root *root)
427 int ret;
429 ret = btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
430 return ret ? 1 : 0;
433 int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
434 struct btrfs_root *root)
436 struct btrfs_transaction *cur_trans = trans->transaction;
437 struct btrfs_block_rsv *rsv = trans->block_rsv;
438 int updates;
440 smp_mb();
441 if (cur_trans->blocked || cur_trans->delayed_refs.flushing)
442 return 1;
445 * We need to do this in case we're deleting csums so the global block
446 * rsv get's used instead of the csum block rsv.
448 trans->block_rsv = NULL;
450 updates = trans->delayed_ref_updates;
451 trans->delayed_ref_updates = 0;
452 if (updates)
453 btrfs_run_delayed_refs(trans, root, updates);
455 trans->block_rsv = rsv;
457 return should_end_transaction(trans, root);
460 static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
461 struct btrfs_root *root, int throttle, int lock)
463 struct btrfs_transaction *cur_trans = trans->transaction;
464 struct btrfs_fs_info *info = root->fs_info;
465 int count = 0;
467 if (--trans->use_count) {
468 trans->block_rsv = trans->orig_rsv;
469 return 0;
472 btrfs_trans_release_metadata(trans, root);
473 trans->block_rsv = NULL;
474 while (count < 4) {
475 unsigned long cur = trans->delayed_ref_updates;
476 trans->delayed_ref_updates = 0;
477 if (cur &&
478 trans->transaction->delayed_refs.num_heads_ready > 64) {
479 trans->delayed_ref_updates = 0;
482 * do a full flush if the transaction is trying
483 * to close
485 if (trans->transaction->delayed_refs.flushing)
486 cur = 0;
487 btrfs_run_delayed_refs(trans, root, cur);
488 } else {
489 break;
491 count++;
494 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
495 should_end_transaction(trans, root)) {
496 trans->transaction->blocked = 1;
497 smp_wmb();
500 if (lock && cur_trans->blocked && !cur_trans->in_commit) {
501 if (throttle) {
503 * We may race with somebody else here so end up having
504 * to call end_transaction on ourselves again, so inc
505 * our use_count.
507 trans->use_count++;
508 return btrfs_commit_transaction(trans, root);
509 } else {
510 wake_up_process(info->transaction_kthread);
514 WARN_ON(cur_trans != info->running_transaction);
515 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
516 atomic_dec(&cur_trans->num_writers);
518 smp_mb();
519 if (waitqueue_active(&cur_trans->writer_wait))
520 wake_up(&cur_trans->writer_wait);
521 put_transaction(cur_trans);
523 if (current->journal_info == trans)
524 current->journal_info = NULL;
525 memset(trans, 0, sizeof(*trans));
526 kmem_cache_free(btrfs_trans_handle_cachep, trans);
528 if (throttle)
529 btrfs_run_delayed_iputs(root);
531 return 0;
534 int btrfs_end_transaction(struct btrfs_trans_handle *trans,
535 struct btrfs_root *root)
537 int ret;
539 ret = __btrfs_end_transaction(trans, root, 0, 1);
540 if (ret)
541 return ret;
542 return 0;
545 int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
546 struct btrfs_root *root)
548 int ret;
550 ret = __btrfs_end_transaction(trans, root, 1, 1);
551 if (ret)
552 return ret;
553 return 0;
556 int btrfs_end_transaction_nolock(struct btrfs_trans_handle *trans,
557 struct btrfs_root *root)
559 int ret;
561 ret = __btrfs_end_transaction(trans, root, 0, 0);
562 if (ret)
563 return ret;
564 return 0;
567 int btrfs_end_transaction_dmeta(struct btrfs_trans_handle *trans,
568 struct btrfs_root *root)
570 return __btrfs_end_transaction(trans, root, 1, 1);
574 * when btree blocks are allocated, they have some corresponding bits set for
575 * them in one of two extent_io trees. This is used to make sure all of
576 * those extents are sent to disk but does not wait on them
578 int btrfs_write_marked_extents(struct btrfs_root *root,
579 struct extent_io_tree *dirty_pages, int mark)
581 int err = 0;
582 int werr = 0;
583 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
584 u64 start = 0;
585 u64 end;
587 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
588 mark)) {
589 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT, mark,
590 GFP_NOFS);
591 err = filemap_fdatawrite_range(mapping, start, end);
592 if (err)
593 werr = err;
594 cond_resched();
595 start = end + 1;
597 if (err)
598 werr = err;
599 return werr;
603 * when btree blocks are allocated, they have some corresponding bits set for
604 * them in one of two extent_io trees. This is used to make sure all of
605 * those extents are on disk for transaction or log commit. We wait
606 * on all the pages and clear them from the dirty pages state tree
608 int btrfs_wait_marked_extents(struct btrfs_root *root,
609 struct extent_io_tree *dirty_pages, int mark)
611 int err = 0;
612 int werr = 0;
613 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
614 u64 start = 0;
615 u64 end;
617 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
618 EXTENT_NEED_WAIT)) {
619 clear_extent_bits(dirty_pages, start, end, EXTENT_NEED_WAIT, GFP_NOFS);
620 err = filemap_fdatawait_range(mapping, start, end);
621 if (err)
622 werr = err;
623 cond_resched();
624 start = end + 1;
626 if (err)
627 werr = err;
628 return werr;
632 * when btree blocks are allocated, they have some corresponding bits set for
633 * them in one of two extent_io trees. This is used to make sure all of
634 * those extents are on disk for transaction or log commit
636 int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
637 struct extent_io_tree *dirty_pages, int mark)
639 int ret;
640 int ret2;
642 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
643 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
645 if (ret)
646 return ret;
647 if (ret2)
648 return ret2;
649 return 0;
652 int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
653 struct btrfs_root *root)
655 if (!trans || !trans->transaction) {
656 struct inode *btree_inode;
657 btree_inode = root->fs_info->btree_inode;
658 return filemap_write_and_wait(btree_inode->i_mapping);
660 return btrfs_write_and_wait_marked_extents(root,
661 &trans->transaction->dirty_pages,
662 EXTENT_DIRTY);
666 * this is used to update the root pointer in the tree of tree roots.
668 * But, in the case of the extent allocation tree, updating the root
669 * pointer may allocate blocks which may change the root of the extent
670 * allocation tree.
672 * So, this loops and repeats and makes sure the cowonly root didn't
673 * change while the root pointer was being updated in the metadata.
675 static int update_cowonly_root(struct btrfs_trans_handle *trans,
676 struct btrfs_root *root)
678 int ret;
679 u64 old_root_bytenr;
680 u64 old_root_used;
681 struct btrfs_root *tree_root = root->fs_info->tree_root;
683 old_root_used = btrfs_root_used(&root->root_item);
684 btrfs_write_dirty_block_groups(trans, root);
686 while (1) {
687 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
688 if (old_root_bytenr == root->node->start &&
689 old_root_used == btrfs_root_used(&root->root_item))
690 break;
692 btrfs_set_root_node(&root->root_item, root->node);
693 ret = btrfs_update_root(trans, tree_root,
694 &root->root_key,
695 &root->root_item);
696 BUG_ON(ret);
698 old_root_used = btrfs_root_used(&root->root_item);
699 ret = btrfs_write_dirty_block_groups(trans, root);
700 BUG_ON(ret);
703 if (root != root->fs_info->extent_root)
704 switch_commit_root(root);
706 return 0;
710 * update all the cowonly tree roots on disk
712 static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
713 struct btrfs_root *root)
715 struct btrfs_fs_info *fs_info = root->fs_info;
716 struct list_head *next;
717 struct extent_buffer *eb;
718 int ret;
720 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
721 BUG_ON(ret);
723 eb = btrfs_lock_root_node(fs_info->tree_root);
724 btrfs_cow_block(trans, fs_info->tree_root, eb, NULL, 0, &eb);
725 btrfs_tree_unlock(eb);
726 free_extent_buffer(eb);
728 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
729 BUG_ON(ret);
731 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
732 next = fs_info->dirty_cowonly_roots.next;
733 list_del_init(next);
734 root = list_entry(next, struct btrfs_root, dirty_list);
736 update_cowonly_root(trans, root);
739 down_write(&fs_info->extent_commit_sem);
740 switch_commit_root(fs_info->extent_root);
741 up_write(&fs_info->extent_commit_sem);
743 return 0;
747 * dead roots are old snapshots that need to be deleted. This allocates
748 * a dirty root struct and adds it into the list of dead roots that need to
749 * be deleted
751 int btrfs_add_dead_root(struct btrfs_root *root)
753 spin_lock(&root->fs_info->trans_lock);
754 list_add(&root->root_list, &root->fs_info->dead_roots);
755 spin_unlock(&root->fs_info->trans_lock);
756 return 0;
760 * update all the cowonly tree roots on disk
762 static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
763 struct btrfs_root *root)
765 struct btrfs_root *gang[8];
766 struct btrfs_fs_info *fs_info = root->fs_info;
767 int i;
768 int ret;
769 int err = 0;
771 spin_lock(&fs_info->fs_roots_radix_lock);
772 while (1) {
773 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
774 (void **)gang, 0,
775 ARRAY_SIZE(gang),
776 BTRFS_ROOT_TRANS_TAG);
777 if (ret == 0)
778 break;
779 for (i = 0; i < ret; i++) {
780 root = gang[i];
781 radix_tree_tag_clear(&fs_info->fs_roots_radix,
782 (unsigned long)root->root_key.objectid,
783 BTRFS_ROOT_TRANS_TAG);
784 spin_unlock(&fs_info->fs_roots_radix_lock);
786 btrfs_free_log(trans, root);
787 btrfs_update_reloc_root(trans, root);
788 btrfs_orphan_commit_root(trans, root);
790 btrfs_save_ino_cache(root, trans);
792 /* see comments in should_cow_block() */
793 root->force_cow = 0;
794 smp_wmb();
796 if (root->commit_root != root->node) {
797 mutex_lock(&root->fs_commit_mutex);
798 switch_commit_root(root);
799 btrfs_unpin_free_ino(root);
800 mutex_unlock(&root->fs_commit_mutex);
802 btrfs_set_root_node(&root->root_item,
803 root->node);
806 err = btrfs_update_root(trans, fs_info->tree_root,
807 &root->root_key,
808 &root->root_item);
809 spin_lock(&fs_info->fs_roots_radix_lock);
810 if (err)
811 break;
814 spin_unlock(&fs_info->fs_roots_radix_lock);
815 return err;
819 * defrag a given btree. If cacheonly == 1, this won't read from the disk,
820 * otherwise every leaf in the btree is read and defragged.
822 int btrfs_defrag_root(struct btrfs_root *root, int cacheonly)
824 struct btrfs_fs_info *info = root->fs_info;
825 struct btrfs_trans_handle *trans;
826 int ret;
827 unsigned long nr;
829 if (xchg(&root->defrag_running, 1))
830 return 0;
832 while (1) {
833 trans = btrfs_start_transaction(root, 0);
834 if (IS_ERR(trans))
835 return PTR_ERR(trans);
837 ret = btrfs_defrag_leaves(trans, root, cacheonly);
839 nr = trans->blocks_used;
840 btrfs_end_transaction(trans, root);
841 btrfs_btree_balance_dirty(info->tree_root, nr);
842 cond_resched();
844 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
845 break;
847 root->defrag_running = 0;
848 return ret;
852 * new snapshots need to be created at a very specific time in the
853 * transaction commit. This does the actual creation
855 static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
856 struct btrfs_fs_info *fs_info,
857 struct btrfs_pending_snapshot *pending)
859 struct btrfs_key key;
860 struct btrfs_root_item *new_root_item;
861 struct btrfs_root *tree_root = fs_info->tree_root;
862 struct btrfs_root *root = pending->root;
863 struct btrfs_root *parent_root;
864 struct btrfs_block_rsv *rsv;
865 struct inode *parent_inode;
866 struct dentry *parent;
867 struct dentry *dentry;
868 struct extent_buffer *tmp;
869 struct extent_buffer *old;
870 int ret;
871 u64 to_reserve = 0;
872 u64 index = 0;
873 u64 objectid;
874 u64 root_flags;
876 rsv = trans->block_rsv;
878 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
879 if (!new_root_item) {
880 pending->error = -ENOMEM;
881 goto fail;
884 ret = btrfs_find_free_objectid(tree_root, &objectid);
885 if (ret) {
886 pending->error = ret;
887 goto fail;
890 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
892 if (to_reserve > 0) {
893 ret = btrfs_block_rsv_add_noflush(root, &pending->block_rsv,
894 to_reserve);
895 if (ret) {
896 pending->error = ret;
897 goto fail;
901 key.objectid = objectid;
902 key.offset = (u64)-1;
903 key.type = BTRFS_ROOT_ITEM_KEY;
905 trans->block_rsv = &pending->block_rsv;
907 dentry = pending->dentry;
908 parent = dget_parent(dentry);
909 parent_inode = parent->d_inode;
910 parent_root = BTRFS_I(parent_inode)->root;
911 record_root_in_trans(trans, parent_root);
914 * insert the directory item
916 ret = btrfs_set_inode_index(parent_inode, &index);
917 BUG_ON(ret);
918 ret = btrfs_insert_dir_item(trans, parent_root,
919 dentry->d_name.name, dentry->d_name.len,
920 parent_inode, &key,
921 BTRFS_FT_DIR, index);
922 BUG_ON(ret);
924 btrfs_i_size_write(parent_inode, parent_inode->i_size +
925 dentry->d_name.len * 2);
926 ret = btrfs_update_inode(trans, parent_root, parent_inode);
927 BUG_ON(ret);
930 * pull in the delayed directory update
931 * and the delayed inode item
932 * otherwise we corrupt the FS during
933 * snapshot
935 ret = btrfs_run_delayed_items(trans, root);
936 BUG_ON(ret);
938 record_root_in_trans(trans, root);
939 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
940 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
941 btrfs_check_and_init_root_item(new_root_item);
943 root_flags = btrfs_root_flags(new_root_item);
944 if (pending->readonly)
945 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
946 else
947 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
948 btrfs_set_root_flags(new_root_item, root_flags);
950 old = btrfs_lock_root_node(root);
951 btrfs_cow_block(trans, root, old, NULL, 0, &old);
952 btrfs_set_lock_blocking(old);
954 btrfs_copy_root(trans, root, old, &tmp, objectid);
955 btrfs_tree_unlock(old);
956 free_extent_buffer(old);
958 /* see comments in should_cow_block() */
959 root->force_cow = 1;
960 smp_wmb();
962 btrfs_set_root_node(new_root_item, tmp);
963 /* record when the snapshot was created in key.offset */
964 key.offset = trans->transid;
965 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
966 btrfs_tree_unlock(tmp);
967 free_extent_buffer(tmp);
968 BUG_ON(ret);
971 * insert root back/forward references
973 ret = btrfs_add_root_ref(trans, tree_root, objectid,
974 parent_root->root_key.objectid,
975 btrfs_ino(parent_inode), index,
976 dentry->d_name.name, dentry->d_name.len);
977 BUG_ON(ret);
978 dput(parent);
980 key.offset = (u64)-1;
981 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
982 BUG_ON(IS_ERR(pending->snap));
984 btrfs_reloc_post_snapshot(trans, pending);
985 fail:
986 kfree(new_root_item);
987 trans->block_rsv = rsv;
988 btrfs_block_rsv_release(root, &pending->block_rsv, (u64)-1);
989 return 0;
993 * create all the snapshots we've scheduled for creation
995 static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
996 struct btrfs_fs_info *fs_info)
998 struct btrfs_pending_snapshot *pending;
999 struct list_head *head = &trans->transaction->pending_snapshots;
1000 int ret;
1002 list_for_each_entry(pending, head, list) {
1003 ret = create_pending_snapshot(trans, fs_info, pending);
1004 BUG_ON(ret);
1006 return 0;
1009 static void update_super_roots(struct btrfs_root *root)
1011 struct btrfs_root_item *root_item;
1012 struct btrfs_super_block *super;
1014 super = root->fs_info->super_copy;
1016 root_item = &root->fs_info->chunk_root->root_item;
1017 super->chunk_root = root_item->bytenr;
1018 super->chunk_root_generation = root_item->generation;
1019 super->chunk_root_level = root_item->level;
1021 root_item = &root->fs_info->tree_root->root_item;
1022 super->root = root_item->bytenr;
1023 super->generation = root_item->generation;
1024 super->root_level = root_item->level;
1025 if (btrfs_test_opt(root, SPACE_CACHE))
1026 super->cache_generation = root_item->generation;
1029 int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1031 int ret = 0;
1032 spin_lock(&info->trans_lock);
1033 if (info->running_transaction)
1034 ret = info->running_transaction->in_commit;
1035 spin_unlock(&info->trans_lock);
1036 return ret;
1039 int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1041 int ret = 0;
1042 spin_lock(&info->trans_lock);
1043 if (info->running_transaction)
1044 ret = info->running_transaction->blocked;
1045 spin_unlock(&info->trans_lock);
1046 return ret;
1050 * wait for the current transaction commit to start and block subsequent
1051 * transaction joins
1053 static void wait_current_trans_commit_start(struct btrfs_root *root,
1054 struct btrfs_transaction *trans)
1056 wait_event(root->fs_info->transaction_blocked_wait, trans->in_commit);
1060 * wait for the current transaction to start and then become unblocked.
1061 * caller holds ref.
1063 static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1064 struct btrfs_transaction *trans)
1066 wait_event(root->fs_info->transaction_wait,
1067 trans->commit_done || (trans->in_commit && !trans->blocked));
1071 * commit transactions asynchronously. once btrfs_commit_transaction_async
1072 * returns, any subsequent transaction will not be allowed to join.
1074 struct btrfs_async_commit {
1075 struct btrfs_trans_handle *newtrans;
1076 struct btrfs_root *root;
1077 struct delayed_work work;
1080 static void do_async_commit(struct work_struct *work)
1082 struct btrfs_async_commit *ac =
1083 container_of(work, struct btrfs_async_commit, work.work);
1085 btrfs_commit_transaction(ac->newtrans, ac->root);
1086 kfree(ac);
1089 int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1090 struct btrfs_root *root,
1091 int wait_for_unblock)
1093 struct btrfs_async_commit *ac;
1094 struct btrfs_transaction *cur_trans;
1096 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1097 if (!ac)
1098 return -ENOMEM;
1100 INIT_DELAYED_WORK(&ac->work, do_async_commit);
1101 ac->root = root;
1102 ac->newtrans = btrfs_join_transaction(root);
1103 if (IS_ERR(ac->newtrans)) {
1104 int err = PTR_ERR(ac->newtrans);
1105 kfree(ac);
1106 return err;
1109 /* take transaction reference */
1110 cur_trans = trans->transaction;
1111 atomic_inc(&cur_trans->use_count);
1113 btrfs_end_transaction(trans, root);
1114 schedule_delayed_work(&ac->work, 0);
1116 /* wait for transaction to start and unblock */
1117 if (wait_for_unblock)
1118 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1119 else
1120 wait_current_trans_commit_start(root, cur_trans);
1122 if (current->journal_info == trans)
1123 current->journal_info = NULL;
1125 put_transaction(cur_trans);
1126 return 0;
1130 * btrfs_transaction state sequence:
1131 * in_commit = 0, blocked = 0 (initial)
1132 * in_commit = 1, blocked = 1
1133 * blocked = 0
1134 * commit_done = 1
1136 int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1137 struct btrfs_root *root)
1139 unsigned long joined = 0;
1140 struct btrfs_transaction *cur_trans;
1141 struct btrfs_transaction *prev_trans = NULL;
1142 DEFINE_WAIT(wait);
1143 int ret;
1144 int should_grow = 0;
1145 unsigned long now = get_seconds();
1146 int flush_on_commit = btrfs_test_opt(root, FLUSHONCOMMIT);
1148 btrfs_run_ordered_operations(root, 0);
1150 btrfs_trans_release_metadata(trans, root);
1151 trans->block_rsv = NULL;
1153 /* make a pass through all the delayed refs we have so far
1154 * any runnings procs may add more while we are here
1156 ret = btrfs_run_delayed_refs(trans, root, 0);
1157 BUG_ON(ret);
1159 cur_trans = trans->transaction;
1161 * set the flushing flag so procs in this transaction have to
1162 * start sending their work down.
1164 cur_trans->delayed_refs.flushing = 1;
1166 ret = btrfs_run_delayed_refs(trans, root, 0);
1167 BUG_ON(ret);
1169 spin_lock(&cur_trans->commit_lock);
1170 if (cur_trans->in_commit) {
1171 spin_unlock(&cur_trans->commit_lock);
1172 atomic_inc(&cur_trans->use_count);
1173 btrfs_end_transaction(trans, root);
1175 wait_for_commit(root, cur_trans);
1177 put_transaction(cur_trans);
1179 return 0;
1182 trans->transaction->in_commit = 1;
1183 trans->transaction->blocked = 1;
1184 spin_unlock(&cur_trans->commit_lock);
1185 wake_up(&root->fs_info->transaction_blocked_wait);
1187 spin_lock(&root->fs_info->trans_lock);
1188 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1189 prev_trans = list_entry(cur_trans->list.prev,
1190 struct btrfs_transaction, list);
1191 if (!prev_trans->commit_done) {
1192 atomic_inc(&prev_trans->use_count);
1193 spin_unlock(&root->fs_info->trans_lock);
1195 wait_for_commit(root, prev_trans);
1197 put_transaction(prev_trans);
1198 } else {
1199 spin_unlock(&root->fs_info->trans_lock);
1201 } else {
1202 spin_unlock(&root->fs_info->trans_lock);
1205 if (now < cur_trans->start_time || now - cur_trans->start_time < 1)
1206 should_grow = 1;
1208 do {
1209 int snap_pending = 0;
1211 joined = cur_trans->num_joined;
1212 if (!list_empty(&trans->transaction->pending_snapshots))
1213 snap_pending = 1;
1215 WARN_ON(cur_trans != trans->transaction);
1217 if (flush_on_commit || snap_pending) {
1218 btrfs_start_delalloc_inodes(root, 1);
1219 ret = btrfs_wait_ordered_extents(root, 0, 1);
1220 BUG_ON(ret);
1223 ret = btrfs_run_delayed_items(trans, root);
1224 BUG_ON(ret);
1227 * rename don't use btrfs_join_transaction, so, once we
1228 * set the transaction to blocked above, we aren't going
1229 * to get any new ordered operations. We can safely run
1230 * it here and no for sure that nothing new will be added
1231 * to the list
1233 btrfs_run_ordered_operations(root, 1);
1235 prepare_to_wait(&cur_trans->writer_wait, &wait,
1236 TASK_UNINTERRUPTIBLE);
1238 if (atomic_read(&cur_trans->num_writers) > 1)
1239 schedule_timeout(MAX_SCHEDULE_TIMEOUT);
1240 else if (should_grow)
1241 schedule_timeout(1);
1243 finish_wait(&cur_trans->writer_wait, &wait);
1244 } while (atomic_read(&cur_trans->num_writers) > 1 ||
1245 (should_grow && cur_trans->num_joined != joined));
1248 * Ok now we need to make sure to block out any other joins while we
1249 * commit the transaction. We could have started a join before setting
1250 * no_join so make sure to wait for num_writers to == 1 again.
1252 spin_lock(&root->fs_info->trans_lock);
1253 root->fs_info->trans_no_join = 1;
1254 spin_unlock(&root->fs_info->trans_lock);
1255 wait_event(cur_trans->writer_wait,
1256 atomic_read(&cur_trans->num_writers) == 1);
1259 * the reloc mutex makes sure that we stop
1260 * the balancing code from coming in and moving
1261 * extents around in the middle of the commit
1263 mutex_lock(&root->fs_info->reloc_mutex);
1265 ret = btrfs_run_delayed_items(trans, root);
1266 BUG_ON(ret);
1268 ret = create_pending_snapshots(trans, root->fs_info);
1269 BUG_ON(ret);
1271 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1272 BUG_ON(ret);
1275 * make sure none of the code above managed to slip in a
1276 * delayed item
1278 btrfs_assert_delayed_root_empty(root);
1280 WARN_ON(cur_trans != trans->transaction);
1282 btrfs_scrub_pause(root);
1283 /* btrfs_commit_tree_roots is responsible for getting the
1284 * various roots consistent with each other. Every pointer
1285 * in the tree of tree roots has to point to the most up to date
1286 * root for every subvolume and other tree. So, we have to keep
1287 * the tree logging code from jumping in and changing any
1288 * of the trees.
1290 * At this point in the commit, there can't be any tree-log
1291 * writers, but a little lower down we drop the trans mutex
1292 * and let new people in. By holding the tree_log_mutex
1293 * from now until after the super is written, we avoid races
1294 * with the tree-log code.
1296 mutex_lock(&root->fs_info->tree_log_mutex);
1298 ret = commit_fs_roots(trans, root);
1299 BUG_ON(ret);
1301 /* commit_fs_roots gets rid of all the tree log roots, it is now
1302 * safe to free the root of tree log roots
1304 btrfs_free_log_root_tree(trans, root->fs_info);
1306 ret = commit_cowonly_roots(trans, root);
1307 BUG_ON(ret);
1309 btrfs_prepare_extent_commit(trans, root);
1311 cur_trans = root->fs_info->running_transaction;
1313 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1314 root->fs_info->tree_root->node);
1315 switch_commit_root(root->fs_info->tree_root);
1317 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1318 root->fs_info->chunk_root->node);
1319 switch_commit_root(root->fs_info->chunk_root);
1321 update_super_roots(root);
1323 if (!root->fs_info->log_root_recovering) {
1324 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1325 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1328 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1329 sizeof(*root->fs_info->super_copy));
1331 trans->transaction->blocked = 0;
1332 spin_lock(&root->fs_info->trans_lock);
1333 root->fs_info->running_transaction = NULL;
1334 root->fs_info->trans_no_join = 0;
1335 spin_unlock(&root->fs_info->trans_lock);
1336 mutex_unlock(&root->fs_info->reloc_mutex);
1338 wake_up(&root->fs_info->transaction_wait);
1340 ret = btrfs_write_and_wait_transaction(trans, root);
1341 BUG_ON(ret);
1342 write_ctree_super(trans, root, 0);
1345 * the super is written, we can safely allow the tree-loggers
1346 * to go about their business
1348 mutex_unlock(&root->fs_info->tree_log_mutex);
1350 btrfs_finish_extent_commit(trans, root);
1352 cur_trans->commit_done = 1;
1354 root->fs_info->last_trans_committed = cur_trans->transid;
1356 wake_up(&cur_trans->commit_wait);
1358 spin_lock(&root->fs_info->trans_lock);
1359 list_del_init(&cur_trans->list);
1360 spin_unlock(&root->fs_info->trans_lock);
1362 put_transaction(cur_trans);
1363 put_transaction(cur_trans);
1365 trace_btrfs_transaction_commit(root);
1367 btrfs_scrub_continue(root);
1369 if (current->journal_info == trans)
1370 current->journal_info = NULL;
1372 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1374 if (current != root->fs_info->transaction_kthread)
1375 btrfs_run_delayed_iputs(root);
1377 return ret;
1381 * interface function to delete all the snapshots we have scheduled for deletion
1383 int btrfs_clean_old_snapshots(struct btrfs_root *root)
1385 LIST_HEAD(list);
1386 struct btrfs_fs_info *fs_info = root->fs_info;
1388 spin_lock(&fs_info->trans_lock);
1389 list_splice_init(&fs_info->dead_roots, &list);
1390 spin_unlock(&fs_info->trans_lock);
1392 while (!list_empty(&list)) {
1393 root = list_entry(list.next, struct btrfs_root, root_list);
1394 list_del(&root->root_list);
1396 btrfs_kill_all_delayed_nodes(root);
1398 if (btrfs_header_backref_rev(root->node) <
1399 BTRFS_MIXED_BACKREF_REV)
1400 btrfs_drop_snapshot(root, NULL, 0, 0);
1401 else
1402 btrfs_drop_snapshot(root, NULL, 1, 0);
1404 return 0;