drm/nouveau: validate vbios size
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / net / core / skbuff.c
blobe33ebae519c8c3283dadde917cdf46d413229a54
1 /*
2 * Routines having to do with the 'struct sk_buff' memory handlers.
4 * Authors: Alan Cox <alan@lxorguk.ukuu.org.uk>
5 * Florian La Roche <rzsfl@rz.uni-sb.de>
7 * Fixes:
8 * Alan Cox : Fixed the worst of the load
9 * balancer bugs.
10 * Dave Platt : Interrupt stacking fix.
11 * Richard Kooijman : Timestamp fixes.
12 * Alan Cox : Changed buffer format.
13 * Alan Cox : destructor hook for AF_UNIX etc.
14 * Linus Torvalds : Better skb_clone.
15 * Alan Cox : Added skb_copy.
16 * Alan Cox : Added all the changed routines Linus
17 * only put in the headers
18 * Ray VanTassle : Fixed --skb->lock in free
19 * Alan Cox : skb_copy copy arp field
20 * Andi Kleen : slabified it.
21 * Robert Olsson : Removed skb_head_pool
23 * NOTE:
24 * The __skb_ routines should be called with interrupts
25 * disabled, or you better be *real* sure that the operation is atomic
26 * with respect to whatever list is being frobbed (e.g. via lock_sock()
27 * or via disabling bottom half handlers, etc).
29 * This program is free software; you can redistribute it and/or
30 * modify it under the terms of the GNU General Public License
31 * as published by the Free Software Foundation; either version
32 * 2 of the License, or (at your option) any later version.
36 * The functions in this file will not compile correctly with gcc 2.4.x
39 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
41 #include <linux/module.h>
42 #include <linux/types.h>
43 #include <linux/kernel.h>
44 #include <linux/kmemcheck.h>
45 #include <linux/mm.h>
46 #include <linux/interrupt.h>
47 #include <linux/in.h>
48 #include <linux/inet.h>
49 #include <linux/slab.h>
50 #include <linux/netdevice.h>
51 #ifdef CONFIG_NET_CLS_ACT
52 #include <net/pkt_sched.h>
53 #endif
54 #include <linux/string.h>
55 #include <linux/skbuff.h>
56 #include <linux/splice.h>
57 #include <linux/cache.h>
58 #include <linux/rtnetlink.h>
59 #include <linux/init.h>
60 #include <linux/scatterlist.h>
61 #include <linux/errqueue.h>
62 #include <linux/prefetch.h>
64 #include <net/protocol.h>
65 #include <net/dst.h>
66 #include <net/sock.h>
67 #include <net/checksum.h>
68 #include <net/xfrm.h>
70 #include <asm/uaccess.h>
71 #include <trace/events/skb.h>
72 #include <linux/highmem.h>
74 struct kmem_cache *skbuff_head_cache __read_mostly;
75 static struct kmem_cache *skbuff_fclone_cache __read_mostly;
77 static void sock_pipe_buf_release(struct pipe_inode_info *pipe,
78 struct pipe_buffer *buf)
80 put_page(buf->page);
83 static void sock_pipe_buf_get(struct pipe_inode_info *pipe,
84 struct pipe_buffer *buf)
86 get_page(buf->page);
89 static int sock_pipe_buf_steal(struct pipe_inode_info *pipe,
90 struct pipe_buffer *buf)
92 return 1;
96 /* Pipe buffer operations for a socket. */
97 static const struct pipe_buf_operations sock_pipe_buf_ops = {
98 .can_merge = 0,
99 .map = generic_pipe_buf_map,
100 .unmap = generic_pipe_buf_unmap,
101 .confirm = generic_pipe_buf_confirm,
102 .release = sock_pipe_buf_release,
103 .steal = sock_pipe_buf_steal,
104 .get = sock_pipe_buf_get,
108 * Keep out-of-line to prevent kernel bloat.
109 * __builtin_return_address is not used because it is not always
110 * reliable.
114 * skb_over_panic - private function
115 * @skb: buffer
116 * @sz: size
117 * @here: address
119 * Out of line support code for skb_put(). Not user callable.
121 static void skb_over_panic(struct sk_buff *skb, int sz, void *here)
123 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
124 __func__, here, skb->len, sz, skb->head, skb->data,
125 (unsigned long)skb->tail, (unsigned long)skb->end,
126 skb->dev ? skb->dev->name : "<NULL>");
127 BUG();
131 * skb_under_panic - private function
132 * @skb: buffer
133 * @sz: size
134 * @here: address
136 * Out of line support code for skb_push(). Not user callable.
139 static void skb_under_panic(struct sk_buff *skb, int sz, void *here)
141 pr_emerg("%s: text:%p len:%d put:%d head:%p data:%p tail:%#lx end:%#lx dev:%s\n",
142 __func__, here, skb->len, sz, skb->head, skb->data,
143 (unsigned long)skb->tail, (unsigned long)skb->end,
144 skb->dev ? skb->dev->name : "<NULL>");
145 BUG();
150 * kmalloc_reserve is a wrapper around kmalloc_node_track_caller that tells
151 * the caller if emergency pfmemalloc reserves are being used. If it is and
152 * the socket is later found to be SOCK_MEMALLOC then PFMEMALLOC reserves
153 * may be used. Otherwise, the packet data may be discarded until enough
154 * memory is free
156 #define kmalloc_reserve(size, gfp, node, pfmemalloc) \
157 __kmalloc_reserve(size, gfp, node, _RET_IP_, pfmemalloc)
158 void *__kmalloc_reserve(size_t size, gfp_t flags, int node, unsigned long ip,
159 bool *pfmemalloc)
161 void *obj;
162 bool ret_pfmemalloc = false;
165 * Try a regular allocation, when that fails and we're not entitled
166 * to the reserves, fail.
168 obj = kmalloc_node_track_caller(size,
169 flags | __GFP_NOMEMALLOC | __GFP_NOWARN,
170 node);
171 if (obj || !(gfp_pfmemalloc_allowed(flags)))
172 goto out;
174 /* Try again but now we are using pfmemalloc reserves */
175 ret_pfmemalloc = true;
176 obj = kmalloc_node_track_caller(size, flags, node);
178 out:
179 if (pfmemalloc)
180 *pfmemalloc = ret_pfmemalloc;
182 return obj;
185 /* Allocate a new skbuff. We do this ourselves so we can fill in a few
186 * 'private' fields and also do memory statistics to find all the
187 * [BEEP] leaks.
192 * __alloc_skb - allocate a network buffer
193 * @size: size to allocate
194 * @gfp_mask: allocation mask
195 * @flags: If SKB_ALLOC_FCLONE is set, allocate from fclone cache
196 * instead of head cache and allocate a cloned (child) skb.
197 * If SKB_ALLOC_RX is set, __GFP_MEMALLOC will be used for
198 * allocations in case the data is required for writeback
199 * @node: numa node to allocate memory on
201 * Allocate a new &sk_buff. The returned buffer has no headroom and a
202 * tail room of at least size bytes. The object has a reference count
203 * of one. The return is the buffer. On a failure the return is %NULL.
205 * Buffers may only be allocated from interrupts using a @gfp_mask of
206 * %GFP_ATOMIC.
208 struct sk_buff *__alloc_skb(unsigned int size, gfp_t gfp_mask,
209 int flags, int node)
211 struct kmem_cache *cache;
212 struct skb_shared_info *shinfo;
213 struct sk_buff *skb;
214 u8 *data;
215 bool pfmemalloc;
217 cache = (flags & SKB_ALLOC_FCLONE)
218 ? skbuff_fclone_cache : skbuff_head_cache;
220 if (sk_memalloc_socks() && (flags & SKB_ALLOC_RX))
221 gfp_mask |= __GFP_MEMALLOC;
223 /* Get the HEAD */
224 skb = kmem_cache_alloc_node(cache, gfp_mask & ~__GFP_DMA, node);
225 if (!skb)
226 goto out;
227 prefetchw(skb);
229 /* We do our best to align skb_shared_info on a separate cache
230 * line. It usually works because kmalloc(X > SMP_CACHE_BYTES) gives
231 * aligned memory blocks, unless SLUB/SLAB debug is enabled.
232 * Both skb->head and skb_shared_info are cache line aligned.
234 size = SKB_DATA_ALIGN(size);
235 size += SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
236 data = kmalloc_reserve(size, gfp_mask, node, &pfmemalloc);
237 if (!data)
238 goto nodata;
239 /* kmalloc(size) might give us more room than requested.
240 * Put skb_shared_info exactly at the end of allocated zone,
241 * to allow max possible filling before reallocation.
243 size = SKB_WITH_OVERHEAD(ksize(data));
244 prefetchw(data + size);
247 * Only clear those fields we need to clear, not those that we will
248 * actually initialise below. Hence, don't put any more fields after
249 * the tail pointer in struct sk_buff!
251 memset(skb, 0, offsetof(struct sk_buff, tail));
252 /* Account for allocated memory : skb + skb->head */
253 skb->truesize = SKB_TRUESIZE(size);
254 skb->pfmemalloc = pfmemalloc;
255 atomic_set(&skb->users, 1);
256 skb->head = data;
257 skb->data = data;
258 skb_reset_tail_pointer(skb);
259 skb->end = skb->tail + size;
260 #ifdef NET_SKBUFF_DATA_USES_OFFSET
261 skb->mac_header = ~0U;
262 #endif
264 /* make sure we initialize shinfo sequentially */
265 shinfo = skb_shinfo(skb);
266 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
267 atomic_set(&shinfo->dataref, 1);
268 kmemcheck_annotate_variable(shinfo->destructor_arg);
270 if (flags & SKB_ALLOC_FCLONE) {
271 struct sk_buff *child = skb + 1;
272 atomic_t *fclone_ref = (atomic_t *) (child + 1);
274 kmemcheck_annotate_bitfield(child, flags1);
275 kmemcheck_annotate_bitfield(child, flags2);
276 skb->fclone = SKB_FCLONE_ORIG;
277 atomic_set(fclone_ref, 1);
279 child->fclone = SKB_FCLONE_UNAVAILABLE;
280 child->pfmemalloc = pfmemalloc;
282 out:
283 return skb;
284 nodata:
285 kmem_cache_free(cache, skb);
286 skb = NULL;
287 goto out;
289 EXPORT_SYMBOL(__alloc_skb);
292 * build_skb - build a network buffer
293 * @data: data buffer provided by caller
294 * @frag_size: size of fragment, or 0 if head was kmalloced
296 * Allocate a new &sk_buff. Caller provides space holding head and
297 * skb_shared_info. @data must have been allocated by kmalloc()
298 * The return is the new skb buffer.
299 * On a failure the return is %NULL, and @data is not freed.
300 * Notes :
301 * Before IO, driver allocates only data buffer where NIC put incoming frame
302 * Driver should add room at head (NET_SKB_PAD) and
303 * MUST add room at tail (SKB_DATA_ALIGN(skb_shared_info))
304 * After IO, driver calls build_skb(), to allocate sk_buff and populate it
305 * before giving packet to stack.
306 * RX rings only contains data buffers, not full skbs.
308 struct sk_buff *build_skb(void *data, unsigned int frag_size)
310 struct skb_shared_info *shinfo;
311 struct sk_buff *skb;
312 unsigned int size = frag_size ? : ksize(data);
314 skb = kmem_cache_alloc(skbuff_head_cache, GFP_ATOMIC);
315 if (!skb)
316 return NULL;
318 size -= SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
320 memset(skb, 0, offsetof(struct sk_buff, tail));
321 skb->truesize = SKB_TRUESIZE(size);
322 skb->head_frag = frag_size != 0;
323 atomic_set(&skb->users, 1);
324 skb->head = data;
325 skb->data = data;
326 skb_reset_tail_pointer(skb);
327 skb->end = skb->tail + size;
328 #ifdef NET_SKBUFF_DATA_USES_OFFSET
329 skb->mac_header = ~0U;
330 #endif
332 /* make sure we initialize shinfo sequentially */
333 shinfo = skb_shinfo(skb);
334 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
335 atomic_set(&shinfo->dataref, 1);
336 kmemcheck_annotate_variable(shinfo->destructor_arg);
338 return skb;
340 EXPORT_SYMBOL(build_skb);
342 struct netdev_alloc_cache {
343 struct page *page;
344 unsigned int offset;
345 unsigned int pagecnt_bias;
347 static DEFINE_PER_CPU(struct netdev_alloc_cache, netdev_alloc_cache);
349 #define NETDEV_PAGECNT_BIAS (PAGE_SIZE / SMP_CACHE_BYTES)
351 static void *__netdev_alloc_frag(unsigned int fragsz, gfp_t gfp_mask)
353 struct netdev_alloc_cache *nc;
354 void *data = NULL;
355 unsigned long flags;
357 local_irq_save(flags);
358 nc = &__get_cpu_var(netdev_alloc_cache);
359 if (unlikely(!nc->page)) {
360 refill:
361 nc->page = alloc_page(gfp_mask);
362 if (unlikely(!nc->page))
363 goto end;
364 recycle:
365 atomic_set(&nc->page->_count, NETDEV_PAGECNT_BIAS);
366 nc->pagecnt_bias = NETDEV_PAGECNT_BIAS;
367 nc->offset = 0;
370 if (nc->offset + fragsz > PAGE_SIZE) {
371 /* avoid unnecessary locked operations if possible */
372 if ((atomic_read(&nc->page->_count) == nc->pagecnt_bias) ||
373 atomic_sub_and_test(nc->pagecnt_bias, &nc->page->_count))
374 goto recycle;
375 goto refill;
378 data = page_address(nc->page) + nc->offset;
379 nc->offset += fragsz;
380 nc->pagecnt_bias--;
381 end:
382 local_irq_restore(flags);
383 return data;
387 * netdev_alloc_frag - allocate a page fragment
388 * @fragsz: fragment size
390 * Allocates a frag from a page for receive buffer.
391 * Uses GFP_ATOMIC allocations.
393 void *netdev_alloc_frag(unsigned int fragsz)
395 return __netdev_alloc_frag(fragsz, GFP_ATOMIC | __GFP_COLD);
397 EXPORT_SYMBOL(netdev_alloc_frag);
400 * __netdev_alloc_skb - allocate an skbuff for rx on a specific device
401 * @dev: network device to receive on
402 * @length: length to allocate
403 * @gfp_mask: get_free_pages mask, passed to alloc_skb
405 * Allocate a new &sk_buff and assign it a usage count of one. The
406 * buffer has unspecified headroom built in. Users should allocate
407 * the headroom they think they need without accounting for the
408 * built in space. The built in space is used for optimisations.
410 * %NULL is returned if there is no free memory.
412 struct sk_buff *__netdev_alloc_skb(struct net_device *dev,
413 unsigned int length, gfp_t gfp_mask)
415 struct sk_buff *skb = NULL;
416 unsigned int fragsz = SKB_DATA_ALIGN(length + NET_SKB_PAD) +
417 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
419 if (fragsz <= PAGE_SIZE && !(gfp_mask & (__GFP_WAIT | GFP_DMA))) {
420 void *data;
422 if (sk_memalloc_socks())
423 gfp_mask |= __GFP_MEMALLOC;
425 data = __netdev_alloc_frag(fragsz, gfp_mask);
427 if (likely(data)) {
428 skb = build_skb(data, fragsz);
429 if (unlikely(!skb))
430 put_page(virt_to_head_page(data));
432 } else {
433 skb = __alloc_skb(length + NET_SKB_PAD, gfp_mask,
434 SKB_ALLOC_RX, NUMA_NO_NODE);
436 if (likely(skb)) {
437 skb_reserve(skb, NET_SKB_PAD);
438 skb->dev = dev;
440 return skb;
442 EXPORT_SYMBOL(__netdev_alloc_skb);
444 void skb_add_rx_frag(struct sk_buff *skb, int i, struct page *page, int off,
445 int size, unsigned int truesize)
447 skb_fill_page_desc(skb, i, page, off, size);
448 skb->len += size;
449 skb->data_len += size;
450 skb->truesize += truesize;
452 EXPORT_SYMBOL(skb_add_rx_frag);
454 static void skb_drop_list(struct sk_buff **listp)
456 struct sk_buff *list = *listp;
458 *listp = NULL;
460 do {
461 struct sk_buff *this = list;
462 list = list->next;
463 kfree_skb(this);
464 } while (list);
467 static inline void skb_drop_fraglist(struct sk_buff *skb)
469 skb_drop_list(&skb_shinfo(skb)->frag_list);
472 static void skb_clone_fraglist(struct sk_buff *skb)
474 struct sk_buff *list;
476 skb_walk_frags(skb, list)
477 skb_get(list);
480 static void skb_free_head(struct sk_buff *skb)
482 if (skb->head_frag)
483 put_page(virt_to_head_page(skb->head));
484 else
485 kfree(skb->head);
488 static void skb_release_data(struct sk_buff *skb)
490 if (!skb->cloned ||
491 !atomic_sub_return(skb->nohdr ? (1 << SKB_DATAREF_SHIFT) + 1 : 1,
492 &skb_shinfo(skb)->dataref)) {
493 if (skb_shinfo(skb)->nr_frags) {
494 int i;
495 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
496 skb_frag_unref(skb, i);
500 * If skb buf is from userspace, we need to notify the caller
501 * the lower device DMA has done;
503 if (skb_shinfo(skb)->tx_flags & SKBTX_DEV_ZEROCOPY) {
504 struct ubuf_info *uarg;
506 uarg = skb_shinfo(skb)->destructor_arg;
507 if (uarg->callback)
508 uarg->callback(uarg);
511 if (skb_has_frag_list(skb))
512 skb_drop_fraglist(skb);
514 skb_free_head(skb);
519 * Free an skbuff by memory without cleaning the state.
521 static void kfree_skbmem(struct sk_buff *skb)
523 struct sk_buff *other;
524 atomic_t *fclone_ref;
526 switch (skb->fclone) {
527 case SKB_FCLONE_UNAVAILABLE:
528 kmem_cache_free(skbuff_head_cache, skb);
529 break;
531 case SKB_FCLONE_ORIG:
532 fclone_ref = (atomic_t *) (skb + 2);
533 if (atomic_dec_and_test(fclone_ref))
534 kmem_cache_free(skbuff_fclone_cache, skb);
535 break;
537 case SKB_FCLONE_CLONE:
538 fclone_ref = (atomic_t *) (skb + 1);
539 other = skb - 1;
541 /* The clone portion is available for
542 * fast-cloning again.
544 skb->fclone = SKB_FCLONE_UNAVAILABLE;
546 if (atomic_dec_and_test(fclone_ref))
547 kmem_cache_free(skbuff_fclone_cache, other);
548 break;
552 static void skb_release_head_state(struct sk_buff *skb)
554 skb_dst_drop(skb);
555 #ifdef CONFIG_XFRM
556 secpath_put(skb->sp);
557 #endif
558 if (skb->destructor) {
559 WARN_ON(in_irq());
560 skb->destructor(skb);
562 #if IS_ENABLED(CONFIG_NF_CONNTRACK)
563 nf_conntrack_put(skb->nfct);
564 #endif
565 #ifdef NET_SKBUFF_NF_DEFRAG_NEEDED
566 nf_conntrack_put_reasm(skb->nfct_reasm);
567 #endif
568 #ifdef CONFIG_BRIDGE_NETFILTER
569 nf_bridge_put(skb->nf_bridge);
570 #endif
571 /* XXX: IS this still necessary? - JHS */
572 #ifdef CONFIG_NET_SCHED
573 skb->tc_index = 0;
574 #ifdef CONFIG_NET_CLS_ACT
575 skb->tc_verd = 0;
576 #endif
577 #endif
580 /* Free everything but the sk_buff shell. */
581 static void skb_release_all(struct sk_buff *skb)
583 skb_release_head_state(skb);
584 skb_release_data(skb);
588 * __kfree_skb - private function
589 * @skb: buffer
591 * Free an sk_buff. Release anything attached to the buffer.
592 * Clean the state. This is an internal helper function. Users should
593 * always call kfree_skb
596 void __kfree_skb(struct sk_buff *skb)
598 skb_release_all(skb);
599 kfree_skbmem(skb);
601 EXPORT_SYMBOL(__kfree_skb);
604 * kfree_skb - free an sk_buff
605 * @skb: buffer to free
607 * Drop a reference to the buffer and free it if the usage count has
608 * hit zero.
610 void kfree_skb(struct sk_buff *skb)
612 if (unlikely(!skb))
613 return;
614 if (likely(atomic_read(&skb->users) == 1))
615 smp_rmb();
616 else if (likely(!atomic_dec_and_test(&skb->users)))
617 return;
618 trace_kfree_skb(skb, __builtin_return_address(0));
619 __kfree_skb(skb);
621 EXPORT_SYMBOL(kfree_skb);
624 * consume_skb - free an skbuff
625 * @skb: buffer to free
627 * Drop a ref to the buffer and free it if the usage count has hit zero
628 * Functions identically to kfree_skb, but kfree_skb assumes that the frame
629 * is being dropped after a failure and notes that
631 void consume_skb(struct sk_buff *skb)
633 if (unlikely(!skb))
634 return;
635 if (likely(atomic_read(&skb->users) == 1))
636 smp_rmb();
637 else if (likely(!atomic_dec_and_test(&skb->users)))
638 return;
639 trace_consume_skb(skb);
640 __kfree_skb(skb);
642 EXPORT_SYMBOL(consume_skb);
645 * skb_recycle - clean up an skb for reuse
646 * @skb: buffer
648 * Recycles the skb to be reused as a receive buffer. This
649 * function does any necessary reference count dropping, and
650 * cleans up the skbuff as if it just came from __alloc_skb().
652 void skb_recycle(struct sk_buff *skb)
654 struct skb_shared_info *shinfo;
656 skb_release_head_state(skb);
658 shinfo = skb_shinfo(skb);
659 memset(shinfo, 0, offsetof(struct skb_shared_info, dataref));
660 atomic_set(&shinfo->dataref, 1);
662 memset(skb, 0, offsetof(struct sk_buff, tail));
663 skb->data = skb->head + NET_SKB_PAD;
664 skb_reset_tail_pointer(skb);
666 EXPORT_SYMBOL(skb_recycle);
669 * skb_recycle_check - check if skb can be reused for receive
670 * @skb: buffer
671 * @skb_size: minimum receive buffer size
673 * Checks that the skb passed in is not shared or cloned, and
674 * that it is linear and its head portion at least as large as
675 * skb_size so that it can be recycled as a receive buffer.
676 * If these conditions are met, this function does any necessary
677 * reference count dropping and cleans up the skbuff as if it
678 * just came from __alloc_skb().
680 bool skb_recycle_check(struct sk_buff *skb, int skb_size)
682 if (!skb_is_recycleable(skb, skb_size))
683 return false;
685 skb_recycle(skb);
687 return true;
689 EXPORT_SYMBOL(skb_recycle_check);
691 static void __copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
693 new->tstamp = old->tstamp;
694 new->dev = old->dev;
695 new->transport_header = old->transport_header;
696 new->network_header = old->network_header;
697 new->mac_header = old->mac_header;
698 skb_dst_copy(new, old);
699 new->rxhash = old->rxhash;
700 new->ooo_okay = old->ooo_okay;
701 new->l4_rxhash = old->l4_rxhash;
702 new->no_fcs = old->no_fcs;
703 #ifdef CONFIG_XFRM
704 new->sp = secpath_get(old->sp);
705 #endif
706 memcpy(new->cb, old->cb, sizeof(old->cb));
707 new->csum = old->csum;
708 new->local_df = old->local_df;
709 new->pkt_type = old->pkt_type;
710 new->ip_summed = old->ip_summed;
711 skb_copy_queue_mapping(new, old);
712 new->priority = old->priority;
713 #if IS_ENABLED(CONFIG_IP_VS)
714 new->ipvs_property = old->ipvs_property;
715 #endif
716 new->pfmemalloc = old->pfmemalloc;
717 new->protocol = old->protocol;
718 new->mark = old->mark;
719 new->skb_iif = old->skb_iif;
720 __nf_copy(new, old);
721 #if IS_ENABLED(CONFIG_NETFILTER_XT_TARGET_TRACE)
722 new->nf_trace = old->nf_trace;
723 #endif
724 #ifdef CONFIG_NET_SCHED
725 new->tc_index = old->tc_index;
726 #ifdef CONFIG_NET_CLS_ACT
727 new->tc_verd = old->tc_verd;
728 #endif
729 #endif
730 new->vlan_tci = old->vlan_tci;
732 skb_copy_secmark(new, old);
736 * You should not add any new code to this function. Add it to
737 * __copy_skb_header above instead.
739 static struct sk_buff *__skb_clone(struct sk_buff *n, struct sk_buff *skb)
741 #define C(x) n->x = skb->x
743 n->next = n->prev = NULL;
744 n->sk = NULL;
745 __copy_skb_header(n, skb);
747 C(len);
748 C(data_len);
749 C(mac_len);
750 n->hdr_len = skb->nohdr ? skb_headroom(skb) : skb->hdr_len;
751 n->cloned = 1;
752 n->nohdr = 0;
753 n->destructor = NULL;
754 C(tail);
755 C(end);
756 C(head);
757 C(head_frag);
758 C(data);
759 C(truesize);
760 atomic_set(&n->users, 1);
762 atomic_inc(&(skb_shinfo(skb)->dataref));
763 skb->cloned = 1;
765 return n;
766 #undef C
770 * skb_morph - morph one skb into another
771 * @dst: the skb to receive the contents
772 * @src: the skb to supply the contents
774 * This is identical to skb_clone except that the target skb is
775 * supplied by the user.
777 * The target skb is returned upon exit.
779 struct sk_buff *skb_morph(struct sk_buff *dst, struct sk_buff *src)
781 skb_release_all(dst);
782 return __skb_clone(dst, src);
784 EXPORT_SYMBOL_GPL(skb_morph);
787 * skb_copy_ubufs - copy userspace skb frags buffers to kernel
788 * @skb: the skb to modify
789 * @gfp_mask: allocation priority
791 * This must be called on SKBTX_DEV_ZEROCOPY skb.
792 * It will copy all frags into kernel and drop the reference
793 * to userspace pages.
795 * If this function is called from an interrupt gfp_mask() must be
796 * %GFP_ATOMIC.
798 * Returns 0 on success or a negative error code on failure
799 * to allocate kernel memory to copy to.
801 int skb_copy_ubufs(struct sk_buff *skb, gfp_t gfp_mask)
803 int i;
804 int num_frags = skb_shinfo(skb)->nr_frags;
805 struct page *page, *head = NULL;
806 struct ubuf_info *uarg = skb_shinfo(skb)->destructor_arg;
808 for (i = 0; i < num_frags; i++) {
809 u8 *vaddr;
810 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
812 page = alloc_page(gfp_mask);
813 if (!page) {
814 while (head) {
815 struct page *next = (struct page *)head->private;
816 put_page(head);
817 head = next;
819 return -ENOMEM;
821 vaddr = kmap_atomic(skb_frag_page(f));
822 memcpy(page_address(page),
823 vaddr + f->page_offset, skb_frag_size(f));
824 kunmap_atomic(vaddr);
825 page->private = (unsigned long)head;
826 head = page;
829 /* skb frags release userspace buffers */
830 for (i = 0; i < num_frags; i++)
831 skb_frag_unref(skb, i);
833 uarg->callback(uarg);
835 /* skb frags point to kernel buffers */
836 for (i = num_frags - 1; i >= 0; i--) {
837 __skb_fill_page_desc(skb, i, head, 0,
838 skb_shinfo(skb)->frags[i].size);
839 head = (struct page *)head->private;
842 skb_shinfo(skb)->tx_flags &= ~SKBTX_DEV_ZEROCOPY;
843 return 0;
845 EXPORT_SYMBOL_GPL(skb_copy_ubufs);
848 * skb_clone - duplicate an sk_buff
849 * @skb: buffer to clone
850 * @gfp_mask: allocation priority
852 * Duplicate an &sk_buff. The new one is not owned by a socket. Both
853 * copies share the same packet data but not structure. The new
854 * buffer has a reference count of 1. If the allocation fails the
855 * function returns %NULL otherwise the new buffer is returned.
857 * If this function is called from an interrupt gfp_mask() must be
858 * %GFP_ATOMIC.
861 struct sk_buff *skb_clone(struct sk_buff *skb, gfp_t gfp_mask)
863 struct sk_buff *n;
865 if (skb_orphan_frags(skb, gfp_mask))
866 return NULL;
868 n = skb + 1;
869 if (skb->fclone == SKB_FCLONE_ORIG &&
870 n->fclone == SKB_FCLONE_UNAVAILABLE) {
871 atomic_t *fclone_ref = (atomic_t *) (n + 1);
872 n->fclone = SKB_FCLONE_CLONE;
873 atomic_inc(fclone_ref);
874 } else {
875 if (skb_pfmemalloc(skb))
876 gfp_mask |= __GFP_MEMALLOC;
878 n = kmem_cache_alloc(skbuff_head_cache, gfp_mask);
879 if (!n)
880 return NULL;
882 kmemcheck_annotate_bitfield(n, flags1);
883 kmemcheck_annotate_bitfield(n, flags2);
884 n->fclone = SKB_FCLONE_UNAVAILABLE;
887 return __skb_clone(n, skb);
889 EXPORT_SYMBOL(skb_clone);
891 static void copy_skb_header(struct sk_buff *new, const struct sk_buff *old)
893 #ifndef NET_SKBUFF_DATA_USES_OFFSET
895 * Shift between the two data areas in bytes
897 unsigned long offset = new->data - old->data;
898 #endif
900 __copy_skb_header(new, old);
902 #ifndef NET_SKBUFF_DATA_USES_OFFSET
903 /* {transport,network,mac}_header are relative to skb->head */
904 new->transport_header += offset;
905 new->network_header += offset;
906 if (skb_mac_header_was_set(new))
907 new->mac_header += offset;
908 #endif
909 skb_shinfo(new)->gso_size = skb_shinfo(old)->gso_size;
910 skb_shinfo(new)->gso_segs = skb_shinfo(old)->gso_segs;
911 skb_shinfo(new)->gso_type = skb_shinfo(old)->gso_type;
914 static inline int skb_alloc_rx_flag(const struct sk_buff *skb)
916 if (skb_pfmemalloc(skb))
917 return SKB_ALLOC_RX;
918 return 0;
922 * skb_copy - create private copy of an sk_buff
923 * @skb: buffer to copy
924 * @gfp_mask: allocation priority
926 * Make a copy of both an &sk_buff and its data. This is used when the
927 * caller wishes to modify the data and needs a private copy of the
928 * data to alter. Returns %NULL on failure or the pointer to the buffer
929 * on success. The returned buffer has a reference count of 1.
931 * As by-product this function converts non-linear &sk_buff to linear
932 * one, so that &sk_buff becomes completely private and caller is allowed
933 * to modify all the data of returned buffer. This means that this
934 * function is not recommended for use in circumstances when only
935 * header is going to be modified. Use pskb_copy() instead.
938 struct sk_buff *skb_copy(const struct sk_buff *skb, gfp_t gfp_mask)
940 int headerlen = skb_headroom(skb);
941 unsigned int size = skb_end_offset(skb) + skb->data_len;
942 struct sk_buff *n = __alloc_skb(size, gfp_mask,
943 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
945 if (!n)
946 return NULL;
948 /* Set the data pointer */
949 skb_reserve(n, headerlen);
950 /* Set the tail pointer and length */
951 skb_put(n, skb->len);
953 if (skb_copy_bits(skb, -headerlen, n->head, headerlen + skb->len))
954 BUG();
956 copy_skb_header(n, skb);
957 return n;
959 EXPORT_SYMBOL(skb_copy);
962 * __pskb_copy - create copy of an sk_buff with private head.
963 * @skb: buffer to copy
964 * @headroom: headroom of new skb
965 * @gfp_mask: allocation priority
967 * Make a copy of both an &sk_buff and part of its data, located
968 * in header. Fragmented data remain shared. This is used when
969 * the caller wishes to modify only header of &sk_buff and needs
970 * private copy of the header to alter. Returns %NULL on failure
971 * or the pointer to the buffer on success.
972 * The returned buffer has a reference count of 1.
975 struct sk_buff *__pskb_copy(struct sk_buff *skb, int headroom, gfp_t gfp_mask)
977 unsigned int size = skb_headlen(skb) + headroom;
978 struct sk_buff *n = __alloc_skb(size, gfp_mask,
979 skb_alloc_rx_flag(skb), NUMA_NO_NODE);
981 if (!n)
982 goto out;
984 /* Set the data pointer */
985 skb_reserve(n, headroom);
986 /* Set the tail pointer and length */
987 skb_put(n, skb_headlen(skb));
988 /* Copy the bytes */
989 skb_copy_from_linear_data(skb, n->data, n->len);
991 n->truesize += skb->data_len;
992 n->data_len = skb->data_len;
993 n->len = skb->len;
995 if (skb_shinfo(skb)->nr_frags) {
996 int i;
998 if (skb_orphan_frags(skb, gfp_mask)) {
999 kfree_skb(n);
1000 n = NULL;
1001 goto out;
1003 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1004 skb_shinfo(n)->frags[i] = skb_shinfo(skb)->frags[i];
1005 skb_frag_ref(skb, i);
1007 skb_shinfo(n)->nr_frags = i;
1010 if (skb_has_frag_list(skb)) {
1011 skb_shinfo(n)->frag_list = skb_shinfo(skb)->frag_list;
1012 skb_clone_fraglist(n);
1015 copy_skb_header(n, skb);
1016 out:
1017 return n;
1019 EXPORT_SYMBOL(__pskb_copy);
1022 * pskb_expand_head - reallocate header of &sk_buff
1023 * @skb: buffer to reallocate
1024 * @nhead: room to add at head
1025 * @ntail: room to add at tail
1026 * @gfp_mask: allocation priority
1028 * Expands (or creates identical copy, if &nhead and &ntail are zero)
1029 * header of skb. &sk_buff itself is not changed. &sk_buff MUST have
1030 * reference count of 1. Returns zero in the case of success or error,
1031 * if expansion failed. In the last case, &sk_buff is not changed.
1033 * All the pointers pointing into skb header may change and must be
1034 * reloaded after call to this function.
1037 int pskb_expand_head(struct sk_buff *skb, int nhead, int ntail,
1038 gfp_t gfp_mask)
1040 int i;
1041 u8 *data;
1042 int size = nhead + skb_end_offset(skb) + ntail;
1043 long off;
1045 BUG_ON(nhead < 0);
1047 if (skb_shared(skb))
1048 BUG();
1050 size = SKB_DATA_ALIGN(size);
1052 if (skb_pfmemalloc(skb))
1053 gfp_mask |= __GFP_MEMALLOC;
1054 data = kmalloc_reserve(size + SKB_DATA_ALIGN(sizeof(struct skb_shared_info)),
1055 gfp_mask, NUMA_NO_NODE, NULL);
1056 if (!data)
1057 goto nodata;
1058 size = SKB_WITH_OVERHEAD(ksize(data));
1060 /* Copy only real data... and, alas, header. This should be
1061 * optimized for the cases when header is void.
1063 memcpy(data + nhead, skb->head, skb_tail_pointer(skb) - skb->head);
1065 memcpy((struct skb_shared_info *)(data + size),
1066 skb_shinfo(skb),
1067 offsetof(struct skb_shared_info, frags[skb_shinfo(skb)->nr_frags]));
1070 * if shinfo is shared we must drop the old head gracefully, but if it
1071 * is not we can just drop the old head and let the existing refcount
1072 * be since all we did is relocate the values
1074 if (skb_cloned(skb)) {
1075 /* copy this zero copy skb frags */
1076 if (skb_orphan_frags(skb, gfp_mask))
1077 goto nofrags;
1078 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
1079 skb_frag_ref(skb, i);
1081 if (skb_has_frag_list(skb))
1082 skb_clone_fraglist(skb);
1084 skb_release_data(skb);
1085 } else {
1086 skb_free_head(skb);
1088 off = (data + nhead) - skb->head;
1090 skb->head = data;
1091 skb->head_frag = 0;
1092 skb->data += off;
1093 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1094 skb->end = size;
1095 off = nhead;
1096 #else
1097 skb->end = skb->head + size;
1098 #endif
1099 /* {transport,network,mac}_header and tail are relative to skb->head */
1100 skb->tail += off;
1101 skb->transport_header += off;
1102 skb->network_header += off;
1103 if (skb_mac_header_was_set(skb))
1104 skb->mac_header += off;
1105 /* Only adjust this if it actually is csum_start rather than csum */
1106 if (skb->ip_summed == CHECKSUM_PARTIAL)
1107 skb->csum_start += nhead;
1108 skb->cloned = 0;
1109 skb->hdr_len = 0;
1110 skb->nohdr = 0;
1111 atomic_set(&skb_shinfo(skb)->dataref, 1);
1112 return 0;
1114 nofrags:
1115 kfree(data);
1116 nodata:
1117 return -ENOMEM;
1119 EXPORT_SYMBOL(pskb_expand_head);
1121 /* Make private copy of skb with writable head and some headroom */
1123 struct sk_buff *skb_realloc_headroom(struct sk_buff *skb, unsigned int headroom)
1125 struct sk_buff *skb2;
1126 int delta = headroom - skb_headroom(skb);
1128 if (delta <= 0)
1129 skb2 = pskb_copy(skb, GFP_ATOMIC);
1130 else {
1131 skb2 = skb_clone(skb, GFP_ATOMIC);
1132 if (skb2 && pskb_expand_head(skb2, SKB_DATA_ALIGN(delta), 0,
1133 GFP_ATOMIC)) {
1134 kfree_skb(skb2);
1135 skb2 = NULL;
1138 return skb2;
1140 EXPORT_SYMBOL(skb_realloc_headroom);
1143 * skb_copy_expand - copy and expand sk_buff
1144 * @skb: buffer to copy
1145 * @newheadroom: new free bytes at head
1146 * @newtailroom: new free bytes at tail
1147 * @gfp_mask: allocation priority
1149 * Make a copy of both an &sk_buff and its data and while doing so
1150 * allocate additional space.
1152 * This is used when the caller wishes to modify the data and needs a
1153 * private copy of the data to alter as well as more space for new fields.
1154 * Returns %NULL on failure or the pointer to the buffer
1155 * on success. The returned buffer has a reference count of 1.
1157 * You must pass %GFP_ATOMIC as the allocation priority if this function
1158 * is called from an interrupt.
1160 struct sk_buff *skb_copy_expand(const struct sk_buff *skb,
1161 int newheadroom, int newtailroom,
1162 gfp_t gfp_mask)
1165 * Allocate the copy buffer
1167 struct sk_buff *n = __alloc_skb(newheadroom + skb->len + newtailroom,
1168 gfp_mask, skb_alloc_rx_flag(skb),
1169 NUMA_NO_NODE);
1170 int oldheadroom = skb_headroom(skb);
1171 int head_copy_len, head_copy_off;
1172 int off;
1174 if (!n)
1175 return NULL;
1177 skb_reserve(n, newheadroom);
1179 /* Set the tail pointer and length */
1180 skb_put(n, skb->len);
1182 head_copy_len = oldheadroom;
1183 head_copy_off = 0;
1184 if (newheadroom <= head_copy_len)
1185 head_copy_len = newheadroom;
1186 else
1187 head_copy_off = newheadroom - head_copy_len;
1189 /* Copy the linear header and data. */
1190 if (skb_copy_bits(skb, -head_copy_len, n->head + head_copy_off,
1191 skb->len + head_copy_len))
1192 BUG();
1194 copy_skb_header(n, skb);
1196 off = newheadroom - oldheadroom;
1197 if (n->ip_summed == CHECKSUM_PARTIAL)
1198 n->csum_start += off;
1199 #ifdef NET_SKBUFF_DATA_USES_OFFSET
1200 n->transport_header += off;
1201 n->network_header += off;
1202 if (skb_mac_header_was_set(skb))
1203 n->mac_header += off;
1204 #endif
1206 return n;
1208 EXPORT_SYMBOL(skb_copy_expand);
1211 * skb_pad - zero pad the tail of an skb
1212 * @skb: buffer to pad
1213 * @pad: space to pad
1215 * Ensure that a buffer is followed by a padding area that is zero
1216 * filled. Used by network drivers which may DMA or transfer data
1217 * beyond the buffer end onto the wire.
1219 * May return error in out of memory cases. The skb is freed on error.
1222 int skb_pad(struct sk_buff *skb, int pad)
1224 int err;
1225 int ntail;
1227 /* If the skbuff is non linear tailroom is always zero.. */
1228 if (!skb_cloned(skb) && skb_tailroom(skb) >= pad) {
1229 memset(skb->data+skb->len, 0, pad);
1230 return 0;
1233 ntail = skb->data_len + pad - (skb->end - skb->tail);
1234 if (likely(skb_cloned(skb) || ntail > 0)) {
1235 err = pskb_expand_head(skb, 0, ntail, GFP_ATOMIC);
1236 if (unlikely(err))
1237 goto free_skb;
1240 /* FIXME: The use of this function with non-linear skb's really needs
1241 * to be audited.
1243 err = skb_linearize(skb);
1244 if (unlikely(err))
1245 goto free_skb;
1247 memset(skb->data + skb->len, 0, pad);
1248 return 0;
1250 free_skb:
1251 kfree_skb(skb);
1252 return err;
1254 EXPORT_SYMBOL(skb_pad);
1257 * skb_put - add data to a buffer
1258 * @skb: buffer to use
1259 * @len: amount of data to add
1261 * This function extends the used data area of the buffer. If this would
1262 * exceed the total buffer size the kernel will panic. A pointer to the
1263 * first byte of the extra data is returned.
1265 unsigned char *skb_put(struct sk_buff *skb, unsigned int len)
1267 unsigned char *tmp = skb_tail_pointer(skb);
1268 SKB_LINEAR_ASSERT(skb);
1269 skb->tail += len;
1270 skb->len += len;
1271 if (unlikely(skb->tail > skb->end))
1272 skb_over_panic(skb, len, __builtin_return_address(0));
1273 return tmp;
1275 EXPORT_SYMBOL(skb_put);
1278 * skb_push - add data to the start of a buffer
1279 * @skb: buffer to use
1280 * @len: amount of data to add
1282 * This function extends the used data area of the buffer at the buffer
1283 * start. If this would exceed the total buffer headroom the kernel will
1284 * panic. A pointer to the first byte of the extra data is returned.
1286 unsigned char *skb_push(struct sk_buff *skb, unsigned int len)
1288 skb->data -= len;
1289 skb->len += len;
1290 if (unlikely(skb->data<skb->head))
1291 skb_under_panic(skb, len, __builtin_return_address(0));
1292 return skb->data;
1294 EXPORT_SYMBOL(skb_push);
1297 * skb_pull - remove data from the start of a buffer
1298 * @skb: buffer to use
1299 * @len: amount of data to remove
1301 * This function removes data from the start of a buffer, returning
1302 * the memory to the headroom. A pointer to the next data in the buffer
1303 * is returned. Once the data has been pulled future pushes will overwrite
1304 * the old data.
1306 unsigned char *skb_pull(struct sk_buff *skb, unsigned int len)
1308 return skb_pull_inline(skb, len);
1310 EXPORT_SYMBOL(skb_pull);
1313 * skb_trim - remove end from a buffer
1314 * @skb: buffer to alter
1315 * @len: new length
1317 * Cut the length of a buffer down by removing data from the tail. If
1318 * the buffer is already under the length specified it is not modified.
1319 * The skb must be linear.
1321 void skb_trim(struct sk_buff *skb, unsigned int len)
1323 if (skb->len > len)
1324 __skb_trim(skb, len);
1326 EXPORT_SYMBOL(skb_trim);
1328 /* Trims skb to length len. It can change skb pointers.
1331 int ___pskb_trim(struct sk_buff *skb, unsigned int len)
1333 struct sk_buff **fragp;
1334 struct sk_buff *frag;
1335 int offset = skb_headlen(skb);
1336 int nfrags = skb_shinfo(skb)->nr_frags;
1337 int i;
1338 int err;
1340 if (skb_cloned(skb) &&
1341 unlikely((err = pskb_expand_head(skb, 0, 0, GFP_ATOMIC))))
1342 return err;
1344 i = 0;
1345 if (offset >= len)
1346 goto drop_pages;
1348 for (; i < nfrags; i++) {
1349 int end = offset + skb_frag_size(&skb_shinfo(skb)->frags[i]);
1351 if (end < len) {
1352 offset = end;
1353 continue;
1356 skb_frag_size_set(&skb_shinfo(skb)->frags[i++], len - offset);
1358 drop_pages:
1359 skb_shinfo(skb)->nr_frags = i;
1361 for (; i < nfrags; i++)
1362 skb_frag_unref(skb, i);
1364 if (skb_has_frag_list(skb))
1365 skb_drop_fraglist(skb);
1366 goto done;
1369 for (fragp = &skb_shinfo(skb)->frag_list; (frag = *fragp);
1370 fragp = &frag->next) {
1371 int end = offset + frag->len;
1373 if (skb_shared(frag)) {
1374 struct sk_buff *nfrag;
1376 nfrag = skb_clone(frag, GFP_ATOMIC);
1377 if (unlikely(!nfrag))
1378 return -ENOMEM;
1380 nfrag->next = frag->next;
1381 consume_skb(frag);
1382 frag = nfrag;
1383 *fragp = frag;
1386 if (end < len) {
1387 offset = end;
1388 continue;
1391 if (end > len &&
1392 unlikely((err = pskb_trim(frag, len - offset))))
1393 return err;
1395 if (frag->next)
1396 skb_drop_list(&frag->next);
1397 break;
1400 done:
1401 if (len > skb_headlen(skb)) {
1402 skb->data_len -= skb->len - len;
1403 skb->len = len;
1404 } else {
1405 skb->len = len;
1406 skb->data_len = 0;
1407 skb_set_tail_pointer(skb, len);
1410 return 0;
1412 EXPORT_SYMBOL(___pskb_trim);
1415 * __pskb_pull_tail - advance tail of skb header
1416 * @skb: buffer to reallocate
1417 * @delta: number of bytes to advance tail
1419 * The function makes a sense only on a fragmented &sk_buff,
1420 * it expands header moving its tail forward and copying necessary
1421 * data from fragmented part.
1423 * &sk_buff MUST have reference count of 1.
1425 * Returns %NULL (and &sk_buff does not change) if pull failed
1426 * or value of new tail of skb in the case of success.
1428 * All the pointers pointing into skb header may change and must be
1429 * reloaded after call to this function.
1432 /* Moves tail of skb head forward, copying data from fragmented part,
1433 * when it is necessary.
1434 * 1. It may fail due to malloc failure.
1435 * 2. It may change skb pointers.
1437 * It is pretty complicated. Luckily, it is called only in exceptional cases.
1439 unsigned char *__pskb_pull_tail(struct sk_buff *skb, int delta)
1441 /* If skb has not enough free space at tail, get new one
1442 * plus 128 bytes for future expansions. If we have enough
1443 * room at tail, reallocate without expansion only if skb is cloned.
1445 int i, k, eat = (skb->tail + delta) - skb->end;
1447 if (eat > 0 || skb_cloned(skb)) {
1448 if (pskb_expand_head(skb, 0, eat > 0 ? eat + 128 : 0,
1449 GFP_ATOMIC))
1450 return NULL;
1453 if (skb_copy_bits(skb, skb_headlen(skb), skb_tail_pointer(skb), delta))
1454 BUG();
1456 /* Optimization: no fragments, no reasons to preestimate
1457 * size of pulled pages. Superb.
1459 if (!skb_has_frag_list(skb))
1460 goto pull_pages;
1462 /* Estimate size of pulled pages. */
1463 eat = delta;
1464 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1465 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1467 if (size >= eat)
1468 goto pull_pages;
1469 eat -= size;
1472 /* If we need update frag list, we are in troubles.
1473 * Certainly, it possible to add an offset to skb data,
1474 * but taking into account that pulling is expected to
1475 * be very rare operation, it is worth to fight against
1476 * further bloating skb head and crucify ourselves here instead.
1477 * Pure masohism, indeed. 8)8)
1479 if (eat) {
1480 struct sk_buff *list = skb_shinfo(skb)->frag_list;
1481 struct sk_buff *clone = NULL;
1482 struct sk_buff *insp = NULL;
1484 do {
1485 BUG_ON(!list);
1487 if (list->len <= eat) {
1488 /* Eaten as whole. */
1489 eat -= list->len;
1490 list = list->next;
1491 insp = list;
1492 } else {
1493 /* Eaten partially. */
1495 if (skb_shared(list)) {
1496 /* Sucks! We need to fork list. :-( */
1497 clone = skb_clone(list, GFP_ATOMIC);
1498 if (!clone)
1499 return NULL;
1500 insp = list->next;
1501 list = clone;
1502 } else {
1503 /* This may be pulled without
1504 * problems. */
1505 insp = list;
1507 if (!pskb_pull(list, eat)) {
1508 kfree_skb(clone);
1509 return NULL;
1511 break;
1513 } while (eat);
1515 /* Free pulled out fragments. */
1516 while ((list = skb_shinfo(skb)->frag_list) != insp) {
1517 skb_shinfo(skb)->frag_list = list->next;
1518 kfree_skb(list);
1520 /* And insert new clone at head. */
1521 if (clone) {
1522 clone->next = list;
1523 skb_shinfo(skb)->frag_list = clone;
1526 /* Success! Now we may commit changes to skb data. */
1528 pull_pages:
1529 eat = delta;
1530 k = 0;
1531 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1532 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
1534 if (size <= eat) {
1535 skb_frag_unref(skb, i);
1536 eat -= size;
1537 } else {
1538 skb_shinfo(skb)->frags[k] = skb_shinfo(skb)->frags[i];
1539 if (eat) {
1540 skb_shinfo(skb)->frags[k].page_offset += eat;
1541 skb_frag_size_sub(&skb_shinfo(skb)->frags[k], eat);
1542 eat = 0;
1544 k++;
1547 skb_shinfo(skb)->nr_frags = k;
1549 skb->tail += delta;
1550 skb->data_len -= delta;
1552 return skb_tail_pointer(skb);
1554 EXPORT_SYMBOL(__pskb_pull_tail);
1557 * skb_copy_bits - copy bits from skb to kernel buffer
1558 * @skb: source skb
1559 * @offset: offset in source
1560 * @to: destination buffer
1561 * @len: number of bytes to copy
1563 * Copy the specified number of bytes from the source skb to the
1564 * destination buffer.
1566 * CAUTION ! :
1567 * If its prototype is ever changed,
1568 * check arch/{*}/net/{*}.S files,
1569 * since it is called from BPF assembly code.
1571 int skb_copy_bits(const struct sk_buff *skb, int offset, void *to, int len)
1573 int start = skb_headlen(skb);
1574 struct sk_buff *frag_iter;
1575 int i, copy;
1577 if (offset > (int)skb->len - len)
1578 goto fault;
1580 /* Copy header. */
1581 if ((copy = start - offset) > 0) {
1582 if (copy > len)
1583 copy = len;
1584 skb_copy_from_linear_data_offset(skb, offset, to, copy);
1585 if ((len -= copy) == 0)
1586 return 0;
1587 offset += copy;
1588 to += copy;
1591 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1592 int end;
1593 skb_frag_t *f = &skb_shinfo(skb)->frags[i];
1595 WARN_ON(start > offset + len);
1597 end = start + skb_frag_size(f);
1598 if ((copy = end - offset) > 0) {
1599 u8 *vaddr;
1601 if (copy > len)
1602 copy = len;
1604 vaddr = kmap_atomic(skb_frag_page(f));
1605 memcpy(to,
1606 vaddr + f->page_offset + offset - start,
1607 copy);
1608 kunmap_atomic(vaddr);
1610 if ((len -= copy) == 0)
1611 return 0;
1612 offset += copy;
1613 to += copy;
1615 start = end;
1618 skb_walk_frags(skb, frag_iter) {
1619 int end;
1621 WARN_ON(start > offset + len);
1623 end = start + frag_iter->len;
1624 if ((copy = end - offset) > 0) {
1625 if (copy > len)
1626 copy = len;
1627 if (skb_copy_bits(frag_iter, offset - start, to, copy))
1628 goto fault;
1629 if ((len -= copy) == 0)
1630 return 0;
1631 offset += copy;
1632 to += copy;
1634 start = end;
1637 if (!len)
1638 return 0;
1640 fault:
1641 return -EFAULT;
1643 EXPORT_SYMBOL(skb_copy_bits);
1646 * Callback from splice_to_pipe(), if we need to release some pages
1647 * at the end of the spd in case we error'ed out in filling the pipe.
1649 static void sock_spd_release(struct splice_pipe_desc *spd, unsigned int i)
1651 put_page(spd->pages[i]);
1654 static struct page *linear_to_page(struct page *page, unsigned int *len,
1655 unsigned int *offset,
1656 struct sk_buff *skb, struct sock *sk)
1658 struct page *p = sk->sk_sndmsg_page;
1659 unsigned int off;
1661 if (!p) {
1662 new_page:
1663 p = sk->sk_sndmsg_page = alloc_pages(sk->sk_allocation, 0);
1664 if (!p)
1665 return NULL;
1667 off = sk->sk_sndmsg_off = 0;
1668 /* hold one ref to this page until it's full */
1669 } else {
1670 unsigned int mlen;
1672 /* If we are the only user of the page, we can reset offset */
1673 if (page_count(p) == 1)
1674 sk->sk_sndmsg_off = 0;
1675 off = sk->sk_sndmsg_off;
1676 mlen = PAGE_SIZE - off;
1677 if (mlen < 64 && mlen < *len) {
1678 put_page(p);
1679 goto new_page;
1682 *len = min_t(unsigned int, *len, mlen);
1685 memcpy(page_address(p) + off, page_address(page) + *offset, *len);
1686 sk->sk_sndmsg_off += *len;
1687 *offset = off;
1689 return p;
1692 static bool spd_can_coalesce(const struct splice_pipe_desc *spd,
1693 struct page *page,
1694 unsigned int offset)
1696 return spd->nr_pages &&
1697 spd->pages[spd->nr_pages - 1] == page &&
1698 (spd->partial[spd->nr_pages - 1].offset +
1699 spd->partial[spd->nr_pages - 1].len == offset);
1703 * Fill page/offset/length into spd, if it can hold more pages.
1705 static bool spd_fill_page(struct splice_pipe_desc *spd,
1706 struct pipe_inode_info *pipe, struct page *page,
1707 unsigned int *len, unsigned int offset,
1708 struct sk_buff *skb, bool linear,
1709 struct sock *sk)
1711 if (unlikely(spd->nr_pages == MAX_SKB_FRAGS))
1712 return true;
1714 if (linear) {
1715 page = linear_to_page(page, len, &offset, skb, sk);
1716 if (!page)
1717 return true;
1719 if (spd_can_coalesce(spd, page, offset)) {
1720 spd->partial[spd->nr_pages - 1].len += *len;
1721 return false;
1723 get_page(page);
1724 spd->pages[spd->nr_pages] = page;
1725 spd->partial[spd->nr_pages].len = *len;
1726 spd->partial[spd->nr_pages].offset = offset;
1727 spd->nr_pages++;
1729 return false;
1732 static inline void __segment_seek(struct page **page, unsigned int *poff,
1733 unsigned int *plen, unsigned int off)
1735 unsigned long n;
1737 *poff += off;
1738 n = *poff / PAGE_SIZE;
1739 if (n)
1740 *page = nth_page(*page, n);
1742 *poff = *poff % PAGE_SIZE;
1743 *plen -= off;
1746 static bool __splice_segment(struct page *page, unsigned int poff,
1747 unsigned int plen, unsigned int *off,
1748 unsigned int *len, struct sk_buff *skb,
1749 struct splice_pipe_desc *spd, bool linear,
1750 struct sock *sk,
1751 struct pipe_inode_info *pipe)
1753 if (!*len)
1754 return true;
1756 /* skip this segment if already processed */
1757 if (*off >= plen) {
1758 *off -= plen;
1759 return false;
1762 /* ignore any bits we already processed */
1763 if (*off) {
1764 __segment_seek(&page, &poff, &plen, *off);
1765 *off = 0;
1768 do {
1769 unsigned int flen = min(*len, plen);
1771 /* the linear region may spread across several pages */
1772 flen = min_t(unsigned int, flen, PAGE_SIZE - poff);
1774 if (spd_fill_page(spd, pipe, page, &flen, poff, skb, linear, sk))
1775 return true;
1777 __segment_seek(&page, &poff, &plen, flen);
1778 *len -= flen;
1780 } while (*len && plen);
1782 return false;
1786 * Map linear and fragment data from the skb to spd. It reports true if the
1787 * pipe is full or if we already spliced the requested length.
1789 static bool __skb_splice_bits(struct sk_buff *skb, struct pipe_inode_info *pipe,
1790 unsigned int *offset, unsigned int *len,
1791 struct splice_pipe_desc *spd, struct sock *sk)
1793 int seg;
1795 /* map the linear part :
1796 * If skb->head_frag is set, this 'linear' part is backed by a
1797 * fragment, and if the head is not shared with any clones then
1798 * we can avoid a copy since we own the head portion of this page.
1800 if (__splice_segment(virt_to_page(skb->data),
1801 (unsigned long) skb->data & (PAGE_SIZE - 1),
1802 skb_headlen(skb),
1803 offset, len, skb, spd,
1804 skb_head_is_locked(skb),
1805 sk, pipe))
1806 return true;
1809 * then map the fragments
1811 for (seg = 0; seg < skb_shinfo(skb)->nr_frags; seg++) {
1812 const skb_frag_t *f = &skb_shinfo(skb)->frags[seg];
1814 if (__splice_segment(skb_frag_page(f),
1815 f->page_offset, skb_frag_size(f),
1816 offset, len, skb, spd, false, sk, pipe))
1817 return true;
1820 return false;
1824 * Map data from the skb to a pipe. Should handle both the linear part,
1825 * the fragments, and the frag list. It does NOT handle frag lists within
1826 * the frag list, if such a thing exists. We'd probably need to recurse to
1827 * handle that cleanly.
1829 int skb_splice_bits(struct sk_buff *skb, unsigned int offset,
1830 struct pipe_inode_info *pipe, unsigned int tlen,
1831 unsigned int flags)
1833 struct partial_page partial[MAX_SKB_FRAGS];
1834 struct page *pages[MAX_SKB_FRAGS];
1835 struct splice_pipe_desc spd = {
1836 .pages = pages,
1837 .partial = partial,
1838 .nr_pages_max = MAX_SKB_FRAGS,
1839 .flags = flags,
1840 .ops = &sock_pipe_buf_ops,
1841 .spd_release = sock_spd_release,
1843 struct sk_buff *frag_iter;
1844 struct sock *sk = skb->sk;
1845 int ret = 0;
1848 * __skb_splice_bits() only fails if the output has no room left,
1849 * so no point in going over the frag_list for the error case.
1851 if (__skb_splice_bits(skb, pipe, &offset, &tlen, &spd, sk))
1852 goto done;
1853 else if (!tlen)
1854 goto done;
1857 * now see if we have a frag_list to map
1859 skb_walk_frags(skb, frag_iter) {
1860 if (!tlen)
1861 break;
1862 if (__skb_splice_bits(frag_iter, pipe, &offset, &tlen, &spd, sk))
1863 break;
1866 done:
1867 if (spd.nr_pages) {
1869 * Drop the socket lock, otherwise we have reverse
1870 * locking dependencies between sk_lock and i_mutex
1871 * here as compared to sendfile(). We enter here
1872 * with the socket lock held, and splice_to_pipe() will
1873 * grab the pipe inode lock. For sendfile() emulation,
1874 * we call into ->sendpage() with the i_mutex lock held
1875 * and networking will grab the socket lock.
1877 release_sock(sk);
1878 ret = splice_to_pipe(pipe, &spd);
1879 lock_sock(sk);
1882 return ret;
1886 * skb_store_bits - store bits from kernel buffer to skb
1887 * @skb: destination buffer
1888 * @offset: offset in destination
1889 * @from: source buffer
1890 * @len: number of bytes to copy
1892 * Copy the specified number of bytes from the source buffer to the
1893 * destination skb. This function handles all the messy bits of
1894 * traversing fragment lists and such.
1897 int skb_store_bits(struct sk_buff *skb, int offset, const void *from, int len)
1899 int start = skb_headlen(skb);
1900 struct sk_buff *frag_iter;
1901 int i, copy;
1903 if (offset > (int)skb->len - len)
1904 goto fault;
1906 if ((copy = start - offset) > 0) {
1907 if (copy > len)
1908 copy = len;
1909 skb_copy_to_linear_data_offset(skb, offset, from, copy);
1910 if ((len -= copy) == 0)
1911 return 0;
1912 offset += copy;
1913 from += copy;
1916 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1917 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1918 int end;
1920 WARN_ON(start > offset + len);
1922 end = start + skb_frag_size(frag);
1923 if ((copy = end - offset) > 0) {
1924 u8 *vaddr;
1926 if (copy > len)
1927 copy = len;
1929 vaddr = kmap_atomic(skb_frag_page(frag));
1930 memcpy(vaddr + frag->page_offset + offset - start,
1931 from, copy);
1932 kunmap_atomic(vaddr);
1934 if ((len -= copy) == 0)
1935 return 0;
1936 offset += copy;
1937 from += copy;
1939 start = end;
1942 skb_walk_frags(skb, frag_iter) {
1943 int end;
1945 WARN_ON(start > offset + len);
1947 end = start + frag_iter->len;
1948 if ((copy = end - offset) > 0) {
1949 if (copy > len)
1950 copy = len;
1951 if (skb_store_bits(frag_iter, offset - start,
1952 from, copy))
1953 goto fault;
1954 if ((len -= copy) == 0)
1955 return 0;
1956 offset += copy;
1957 from += copy;
1959 start = end;
1961 if (!len)
1962 return 0;
1964 fault:
1965 return -EFAULT;
1967 EXPORT_SYMBOL(skb_store_bits);
1969 /* Checksum skb data. */
1971 __wsum skb_checksum(const struct sk_buff *skb, int offset,
1972 int len, __wsum csum)
1974 int start = skb_headlen(skb);
1975 int i, copy = start - offset;
1976 struct sk_buff *frag_iter;
1977 int pos = 0;
1979 /* Checksum header. */
1980 if (copy > 0) {
1981 if (copy > len)
1982 copy = len;
1983 csum = csum_partial(skb->data + offset, copy, csum);
1984 if ((len -= copy) == 0)
1985 return csum;
1986 offset += copy;
1987 pos = copy;
1990 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1991 int end;
1992 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
1994 WARN_ON(start > offset + len);
1996 end = start + skb_frag_size(frag);
1997 if ((copy = end - offset) > 0) {
1998 __wsum csum2;
1999 u8 *vaddr;
2001 if (copy > len)
2002 copy = len;
2003 vaddr = kmap_atomic(skb_frag_page(frag));
2004 csum2 = csum_partial(vaddr + frag->page_offset +
2005 offset - start, copy, 0);
2006 kunmap_atomic(vaddr);
2007 csum = csum_block_add(csum, csum2, pos);
2008 if (!(len -= copy))
2009 return csum;
2010 offset += copy;
2011 pos += copy;
2013 start = end;
2016 skb_walk_frags(skb, frag_iter) {
2017 int end;
2019 WARN_ON(start > offset + len);
2021 end = start + frag_iter->len;
2022 if ((copy = end - offset) > 0) {
2023 __wsum csum2;
2024 if (copy > len)
2025 copy = len;
2026 csum2 = skb_checksum(frag_iter, offset - start,
2027 copy, 0);
2028 csum = csum_block_add(csum, csum2, pos);
2029 if ((len -= copy) == 0)
2030 return csum;
2031 offset += copy;
2032 pos += copy;
2034 start = end;
2036 BUG_ON(len);
2038 return csum;
2040 EXPORT_SYMBOL(skb_checksum);
2042 /* Both of above in one bottle. */
2044 __wsum skb_copy_and_csum_bits(const struct sk_buff *skb, int offset,
2045 u8 *to, int len, __wsum csum)
2047 int start = skb_headlen(skb);
2048 int i, copy = start - offset;
2049 struct sk_buff *frag_iter;
2050 int pos = 0;
2052 /* Copy header. */
2053 if (copy > 0) {
2054 if (copy > len)
2055 copy = len;
2056 csum = csum_partial_copy_nocheck(skb->data + offset, to,
2057 copy, csum);
2058 if ((len -= copy) == 0)
2059 return csum;
2060 offset += copy;
2061 to += copy;
2062 pos = copy;
2065 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2066 int end;
2068 WARN_ON(start > offset + len);
2070 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
2071 if ((copy = end - offset) > 0) {
2072 __wsum csum2;
2073 u8 *vaddr;
2074 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2076 if (copy > len)
2077 copy = len;
2078 vaddr = kmap_atomic(skb_frag_page(frag));
2079 csum2 = csum_partial_copy_nocheck(vaddr +
2080 frag->page_offset +
2081 offset - start, to,
2082 copy, 0);
2083 kunmap_atomic(vaddr);
2084 csum = csum_block_add(csum, csum2, pos);
2085 if (!(len -= copy))
2086 return csum;
2087 offset += copy;
2088 to += copy;
2089 pos += copy;
2091 start = end;
2094 skb_walk_frags(skb, frag_iter) {
2095 __wsum csum2;
2096 int end;
2098 WARN_ON(start > offset + len);
2100 end = start + frag_iter->len;
2101 if ((copy = end - offset) > 0) {
2102 if (copy > len)
2103 copy = len;
2104 csum2 = skb_copy_and_csum_bits(frag_iter,
2105 offset - start,
2106 to, copy, 0);
2107 csum = csum_block_add(csum, csum2, pos);
2108 if ((len -= copy) == 0)
2109 return csum;
2110 offset += copy;
2111 to += copy;
2112 pos += copy;
2114 start = end;
2116 BUG_ON(len);
2117 return csum;
2119 EXPORT_SYMBOL(skb_copy_and_csum_bits);
2121 void skb_copy_and_csum_dev(const struct sk_buff *skb, u8 *to)
2123 __wsum csum;
2124 long csstart;
2126 if (skb->ip_summed == CHECKSUM_PARTIAL)
2127 csstart = skb_checksum_start_offset(skb);
2128 else
2129 csstart = skb_headlen(skb);
2131 BUG_ON(csstart > skb_headlen(skb));
2133 skb_copy_from_linear_data(skb, to, csstart);
2135 csum = 0;
2136 if (csstart != skb->len)
2137 csum = skb_copy_and_csum_bits(skb, csstart, to + csstart,
2138 skb->len - csstart, 0);
2140 if (skb->ip_summed == CHECKSUM_PARTIAL) {
2141 long csstuff = csstart + skb->csum_offset;
2143 *((__sum16 *)(to + csstuff)) = csum_fold(csum);
2146 EXPORT_SYMBOL(skb_copy_and_csum_dev);
2149 * skb_dequeue - remove from the head of the queue
2150 * @list: list to dequeue from
2152 * Remove the head of the list. The list lock is taken so the function
2153 * may be used safely with other locking list functions. The head item is
2154 * returned or %NULL if the list is empty.
2157 struct sk_buff *skb_dequeue(struct sk_buff_head *list)
2159 unsigned long flags;
2160 struct sk_buff *result;
2162 spin_lock_irqsave(&list->lock, flags);
2163 result = __skb_dequeue(list);
2164 spin_unlock_irqrestore(&list->lock, flags);
2165 return result;
2167 EXPORT_SYMBOL(skb_dequeue);
2170 * skb_dequeue_tail - remove from the tail of the queue
2171 * @list: list to dequeue from
2173 * Remove the tail of the list. The list lock is taken so the function
2174 * may be used safely with other locking list functions. The tail item is
2175 * returned or %NULL if the list is empty.
2177 struct sk_buff *skb_dequeue_tail(struct sk_buff_head *list)
2179 unsigned long flags;
2180 struct sk_buff *result;
2182 spin_lock_irqsave(&list->lock, flags);
2183 result = __skb_dequeue_tail(list);
2184 spin_unlock_irqrestore(&list->lock, flags);
2185 return result;
2187 EXPORT_SYMBOL(skb_dequeue_tail);
2190 * skb_queue_purge - empty a list
2191 * @list: list to empty
2193 * Delete all buffers on an &sk_buff list. Each buffer is removed from
2194 * the list and one reference dropped. This function takes the list
2195 * lock and is atomic with respect to other list locking functions.
2197 void skb_queue_purge(struct sk_buff_head *list)
2199 struct sk_buff *skb;
2200 while ((skb = skb_dequeue(list)) != NULL)
2201 kfree_skb(skb);
2203 EXPORT_SYMBOL(skb_queue_purge);
2206 * skb_queue_head - queue a buffer at the list head
2207 * @list: list to use
2208 * @newsk: buffer to queue
2210 * Queue a buffer at the start of the list. This function takes the
2211 * list lock and can be used safely with other locking &sk_buff functions
2212 * safely.
2214 * A buffer cannot be placed on two lists at the same time.
2216 void skb_queue_head(struct sk_buff_head *list, struct sk_buff *newsk)
2218 unsigned long flags;
2220 spin_lock_irqsave(&list->lock, flags);
2221 __skb_queue_head(list, newsk);
2222 spin_unlock_irqrestore(&list->lock, flags);
2224 EXPORT_SYMBOL(skb_queue_head);
2227 * skb_queue_tail - queue a buffer at the list tail
2228 * @list: list to use
2229 * @newsk: buffer to queue
2231 * Queue a buffer at the tail of the list. This function takes the
2232 * list lock and can be used safely with other locking &sk_buff functions
2233 * safely.
2235 * A buffer cannot be placed on two lists at the same time.
2237 void skb_queue_tail(struct sk_buff_head *list, struct sk_buff *newsk)
2239 unsigned long flags;
2241 spin_lock_irqsave(&list->lock, flags);
2242 __skb_queue_tail(list, newsk);
2243 spin_unlock_irqrestore(&list->lock, flags);
2245 EXPORT_SYMBOL(skb_queue_tail);
2248 * skb_unlink - remove a buffer from a list
2249 * @skb: buffer to remove
2250 * @list: list to use
2252 * Remove a packet from a list. The list locks are taken and this
2253 * function is atomic with respect to other list locked calls
2255 * You must know what list the SKB is on.
2257 void skb_unlink(struct sk_buff *skb, struct sk_buff_head *list)
2259 unsigned long flags;
2261 spin_lock_irqsave(&list->lock, flags);
2262 __skb_unlink(skb, list);
2263 spin_unlock_irqrestore(&list->lock, flags);
2265 EXPORT_SYMBOL(skb_unlink);
2268 * skb_append - append a buffer
2269 * @old: buffer to insert after
2270 * @newsk: buffer to insert
2271 * @list: list to use
2273 * Place a packet after a given packet in a list. The list locks are taken
2274 * and this function is atomic with respect to other list locked calls.
2275 * A buffer cannot be placed on two lists at the same time.
2277 void skb_append(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2279 unsigned long flags;
2281 spin_lock_irqsave(&list->lock, flags);
2282 __skb_queue_after(list, old, newsk);
2283 spin_unlock_irqrestore(&list->lock, flags);
2285 EXPORT_SYMBOL(skb_append);
2288 * skb_insert - insert a buffer
2289 * @old: buffer to insert before
2290 * @newsk: buffer to insert
2291 * @list: list to use
2293 * Place a packet before a given packet in a list. The list locks are
2294 * taken and this function is atomic with respect to other list locked
2295 * calls.
2297 * A buffer cannot be placed on two lists at the same time.
2299 void skb_insert(struct sk_buff *old, struct sk_buff *newsk, struct sk_buff_head *list)
2301 unsigned long flags;
2303 spin_lock_irqsave(&list->lock, flags);
2304 __skb_insert(newsk, old->prev, old, list);
2305 spin_unlock_irqrestore(&list->lock, flags);
2307 EXPORT_SYMBOL(skb_insert);
2309 static inline void skb_split_inside_header(struct sk_buff *skb,
2310 struct sk_buff* skb1,
2311 const u32 len, const int pos)
2313 int i;
2315 skb_copy_from_linear_data_offset(skb, len, skb_put(skb1, pos - len),
2316 pos - len);
2317 /* And move data appendix as is. */
2318 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++)
2319 skb_shinfo(skb1)->frags[i] = skb_shinfo(skb)->frags[i];
2321 skb_shinfo(skb1)->nr_frags = skb_shinfo(skb)->nr_frags;
2322 skb_shinfo(skb)->nr_frags = 0;
2323 skb1->data_len = skb->data_len;
2324 skb1->len += skb1->data_len;
2325 skb->data_len = 0;
2326 skb->len = len;
2327 skb_set_tail_pointer(skb, len);
2330 static inline void skb_split_no_header(struct sk_buff *skb,
2331 struct sk_buff* skb1,
2332 const u32 len, int pos)
2334 int i, k = 0;
2335 const int nfrags = skb_shinfo(skb)->nr_frags;
2337 skb_shinfo(skb)->nr_frags = 0;
2338 skb1->len = skb1->data_len = skb->len - len;
2339 skb->len = len;
2340 skb->data_len = len - pos;
2342 for (i = 0; i < nfrags; i++) {
2343 int size = skb_frag_size(&skb_shinfo(skb)->frags[i]);
2345 if (pos + size > len) {
2346 skb_shinfo(skb1)->frags[k] = skb_shinfo(skb)->frags[i];
2348 if (pos < len) {
2349 /* Split frag.
2350 * We have two variants in this case:
2351 * 1. Move all the frag to the second
2352 * part, if it is possible. F.e.
2353 * this approach is mandatory for TUX,
2354 * where splitting is expensive.
2355 * 2. Split is accurately. We make this.
2357 skb_frag_ref(skb, i);
2358 skb_shinfo(skb1)->frags[0].page_offset += len - pos;
2359 skb_frag_size_sub(&skb_shinfo(skb1)->frags[0], len - pos);
2360 skb_frag_size_set(&skb_shinfo(skb)->frags[i], len - pos);
2361 skb_shinfo(skb)->nr_frags++;
2363 k++;
2364 } else
2365 skb_shinfo(skb)->nr_frags++;
2366 pos += size;
2368 skb_shinfo(skb1)->nr_frags = k;
2372 * skb_split - Split fragmented skb to two parts at length len.
2373 * @skb: the buffer to split
2374 * @skb1: the buffer to receive the second part
2375 * @len: new length for skb
2377 void skb_split(struct sk_buff *skb, struct sk_buff *skb1, const u32 len)
2379 int pos = skb_headlen(skb);
2381 if (len < pos) /* Split line is inside header. */
2382 skb_split_inside_header(skb, skb1, len, pos);
2383 else /* Second chunk has no header, nothing to copy. */
2384 skb_split_no_header(skb, skb1, len, pos);
2386 EXPORT_SYMBOL(skb_split);
2388 /* Shifting from/to a cloned skb is a no-go.
2390 * Caller cannot keep skb_shinfo related pointers past calling here!
2392 static int skb_prepare_for_shift(struct sk_buff *skb)
2394 return skb_cloned(skb) && pskb_expand_head(skb, 0, 0, GFP_ATOMIC);
2398 * skb_shift - Shifts paged data partially from skb to another
2399 * @tgt: buffer into which tail data gets added
2400 * @skb: buffer from which the paged data comes from
2401 * @shiftlen: shift up to this many bytes
2403 * Attempts to shift up to shiftlen worth of bytes, which may be less than
2404 * the length of the skb, from skb to tgt. Returns number bytes shifted.
2405 * It's up to caller to free skb if everything was shifted.
2407 * If @tgt runs out of frags, the whole operation is aborted.
2409 * Skb cannot include anything else but paged data while tgt is allowed
2410 * to have non-paged data as well.
2412 * TODO: full sized shift could be optimized but that would need
2413 * specialized skb free'er to handle frags without up-to-date nr_frags.
2415 int skb_shift(struct sk_buff *tgt, struct sk_buff *skb, int shiftlen)
2417 int from, to, merge, todo;
2418 struct skb_frag_struct *fragfrom, *fragto;
2420 BUG_ON(shiftlen > skb->len);
2421 BUG_ON(skb_headlen(skb)); /* Would corrupt stream */
2423 todo = shiftlen;
2424 from = 0;
2425 to = skb_shinfo(tgt)->nr_frags;
2426 fragfrom = &skb_shinfo(skb)->frags[from];
2428 /* Actual merge is delayed until the point when we know we can
2429 * commit all, so that we don't have to undo partial changes
2431 if (!to ||
2432 !skb_can_coalesce(tgt, to, skb_frag_page(fragfrom),
2433 fragfrom->page_offset)) {
2434 merge = -1;
2435 } else {
2436 merge = to - 1;
2438 todo -= skb_frag_size(fragfrom);
2439 if (todo < 0) {
2440 if (skb_prepare_for_shift(skb) ||
2441 skb_prepare_for_shift(tgt))
2442 return 0;
2444 /* All previous frag pointers might be stale! */
2445 fragfrom = &skb_shinfo(skb)->frags[from];
2446 fragto = &skb_shinfo(tgt)->frags[merge];
2448 skb_frag_size_add(fragto, shiftlen);
2449 skb_frag_size_sub(fragfrom, shiftlen);
2450 fragfrom->page_offset += shiftlen;
2452 goto onlymerged;
2455 from++;
2458 /* Skip full, not-fitting skb to avoid expensive operations */
2459 if ((shiftlen == skb->len) &&
2460 (skb_shinfo(skb)->nr_frags - from) > (MAX_SKB_FRAGS - to))
2461 return 0;
2463 if (skb_prepare_for_shift(skb) || skb_prepare_for_shift(tgt))
2464 return 0;
2466 while ((todo > 0) && (from < skb_shinfo(skb)->nr_frags)) {
2467 if (to == MAX_SKB_FRAGS)
2468 return 0;
2470 fragfrom = &skb_shinfo(skb)->frags[from];
2471 fragto = &skb_shinfo(tgt)->frags[to];
2473 if (todo >= skb_frag_size(fragfrom)) {
2474 *fragto = *fragfrom;
2475 todo -= skb_frag_size(fragfrom);
2476 from++;
2477 to++;
2479 } else {
2480 __skb_frag_ref(fragfrom);
2481 fragto->page = fragfrom->page;
2482 fragto->page_offset = fragfrom->page_offset;
2483 skb_frag_size_set(fragto, todo);
2485 fragfrom->page_offset += todo;
2486 skb_frag_size_sub(fragfrom, todo);
2487 todo = 0;
2489 to++;
2490 break;
2494 /* Ready to "commit" this state change to tgt */
2495 skb_shinfo(tgt)->nr_frags = to;
2497 if (merge >= 0) {
2498 fragfrom = &skb_shinfo(skb)->frags[0];
2499 fragto = &skb_shinfo(tgt)->frags[merge];
2501 skb_frag_size_add(fragto, skb_frag_size(fragfrom));
2502 __skb_frag_unref(fragfrom);
2505 /* Reposition in the original skb */
2506 to = 0;
2507 while (from < skb_shinfo(skb)->nr_frags)
2508 skb_shinfo(skb)->frags[to++] = skb_shinfo(skb)->frags[from++];
2509 skb_shinfo(skb)->nr_frags = to;
2511 BUG_ON(todo > 0 && !skb_shinfo(skb)->nr_frags);
2513 onlymerged:
2514 /* Most likely the tgt won't ever need its checksum anymore, skb on
2515 * the other hand might need it if it needs to be resent
2517 tgt->ip_summed = CHECKSUM_PARTIAL;
2518 skb->ip_summed = CHECKSUM_PARTIAL;
2520 /* Yak, is it really working this way? Some helper please? */
2521 skb->len -= shiftlen;
2522 skb->data_len -= shiftlen;
2523 skb->truesize -= shiftlen;
2524 tgt->len += shiftlen;
2525 tgt->data_len += shiftlen;
2526 tgt->truesize += shiftlen;
2528 return shiftlen;
2532 * skb_prepare_seq_read - Prepare a sequential read of skb data
2533 * @skb: the buffer to read
2534 * @from: lower offset of data to be read
2535 * @to: upper offset of data to be read
2536 * @st: state variable
2538 * Initializes the specified state variable. Must be called before
2539 * invoking skb_seq_read() for the first time.
2541 void skb_prepare_seq_read(struct sk_buff *skb, unsigned int from,
2542 unsigned int to, struct skb_seq_state *st)
2544 st->lower_offset = from;
2545 st->upper_offset = to;
2546 st->root_skb = st->cur_skb = skb;
2547 st->frag_idx = st->stepped_offset = 0;
2548 st->frag_data = NULL;
2550 EXPORT_SYMBOL(skb_prepare_seq_read);
2553 * skb_seq_read - Sequentially read skb data
2554 * @consumed: number of bytes consumed by the caller so far
2555 * @data: destination pointer for data to be returned
2556 * @st: state variable
2558 * Reads a block of skb data at &consumed relative to the
2559 * lower offset specified to skb_prepare_seq_read(). Assigns
2560 * the head of the data block to &data and returns the length
2561 * of the block or 0 if the end of the skb data or the upper
2562 * offset has been reached.
2564 * The caller is not required to consume all of the data
2565 * returned, i.e. &consumed is typically set to the number
2566 * of bytes already consumed and the next call to
2567 * skb_seq_read() will return the remaining part of the block.
2569 * Note 1: The size of each block of data returned can be arbitrary,
2570 * this limitation is the cost for zerocopy seqeuental
2571 * reads of potentially non linear data.
2573 * Note 2: Fragment lists within fragments are not implemented
2574 * at the moment, state->root_skb could be replaced with
2575 * a stack for this purpose.
2577 unsigned int skb_seq_read(unsigned int consumed, const u8 **data,
2578 struct skb_seq_state *st)
2580 unsigned int block_limit, abs_offset = consumed + st->lower_offset;
2581 skb_frag_t *frag;
2583 if (unlikely(abs_offset >= st->upper_offset))
2584 return 0;
2586 next_skb:
2587 block_limit = skb_headlen(st->cur_skb) + st->stepped_offset;
2589 if (abs_offset < block_limit && !st->frag_data) {
2590 *data = st->cur_skb->data + (abs_offset - st->stepped_offset);
2591 return block_limit - abs_offset;
2594 if (st->frag_idx == 0 && !st->frag_data)
2595 st->stepped_offset += skb_headlen(st->cur_skb);
2597 while (st->frag_idx < skb_shinfo(st->cur_skb)->nr_frags) {
2598 frag = &skb_shinfo(st->cur_skb)->frags[st->frag_idx];
2599 block_limit = skb_frag_size(frag) + st->stepped_offset;
2601 if (abs_offset < block_limit) {
2602 if (!st->frag_data)
2603 st->frag_data = kmap_atomic(skb_frag_page(frag));
2605 *data = (u8 *) st->frag_data + frag->page_offset +
2606 (abs_offset - st->stepped_offset);
2608 return block_limit - abs_offset;
2611 if (st->frag_data) {
2612 kunmap_atomic(st->frag_data);
2613 st->frag_data = NULL;
2616 st->frag_idx++;
2617 st->stepped_offset += skb_frag_size(frag);
2620 if (st->frag_data) {
2621 kunmap_atomic(st->frag_data);
2622 st->frag_data = NULL;
2625 if (st->root_skb == st->cur_skb && skb_has_frag_list(st->root_skb)) {
2626 st->cur_skb = skb_shinfo(st->root_skb)->frag_list;
2627 st->frag_idx = 0;
2628 goto next_skb;
2629 } else if (st->cur_skb->next) {
2630 st->cur_skb = st->cur_skb->next;
2631 st->frag_idx = 0;
2632 goto next_skb;
2635 return 0;
2637 EXPORT_SYMBOL(skb_seq_read);
2640 * skb_abort_seq_read - Abort a sequential read of skb data
2641 * @st: state variable
2643 * Must be called if skb_seq_read() was not called until it
2644 * returned 0.
2646 void skb_abort_seq_read(struct skb_seq_state *st)
2648 if (st->frag_data)
2649 kunmap_atomic(st->frag_data);
2651 EXPORT_SYMBOL(skb_abort_seq_read);
2653 #define TS_SKB_CB(state) ((struct skb_seq_state *) &((state)->cb))
2655 static unsigned int skb_ts_get_next_block(unsigned int offset, const u8 **text,
2656 struct ts_config *conf,
2657 struct ts_state *state)
2659 return skb_seq_read(offset, text, TS_SKB_CB(state));
2662 static void skb_ts_finish(struct ts_config *conf, struct ts_state *state)
2664 skb_abort_seq_read(TS_SKB_CB(state));
2668 * skb_find_text - Find a text pattern in skb data
2669 * @skb: the buffer to look in
2670 * @from: search offset
2671 * @to: search limit
2672 * @config: textsearch configuration
2673 * @state: uninitialized textsearch state variable
2675 * Finds a pattern in the skb data according to the specified
2676 * textsearch configuration. Use textsearch_next() to retrieve
2677 * subsequent occurrences of the pattern. Returns the offset
2678 * to the first occurrence or UINT_MAX if no match was found.
2680 unsigned int skb_find_text(struct sk_buff *skb, unsigned int from,
2681 unsigned int to, struct ts_config *config,
2682 struct ts_state *state)
2684 unsigned int ret;
2686 config->get_next_block = skb_ts_get_next_block;
2687 config->finish = skb_ts_finish;
2689 skb_prepare_seq_read(skb, from, to, TS_SKB_CB(state));
2691 ret = textsearch_find(config, state);
2692 return (ret <= to - from ? ret : UINT_MAX);
2694 EXPORT_SYMBOL(skb_find_text);
2697 * skb_append_datato_frags - append the user data to a skb
2698 * @sk: sock structure
2699 * @skb: skb structure to be appened with user data.
2700 * @getfrag: call back function to be used for getting the user data
2701 * @from: pointer to user message iov
2702 * @length: length of the iov message
2704 * Description: This procedure append the user data in the fragment part
2705 * of the skb if any page alloc fails user this procedure returns -ENOMEM
2707 int skb_append_datato_frags(struct sock *sk, struct sk_buff *skb,
2708 int (*getfrag)(void *from, char *to, int offset,
2709 int len, int odd, struct sk_buff *skb),
2710 void *from, int length)
2712 int frg_cnt = 0;
2713 skb_frag_t *frag = NULL;
2714 struct page *page = NULL;
2715 int copy, left;
2716 int offset = 0;
2717 int ret;
2719 do {
2720 /* Return error if we don't have space for new frag */
2721 frg_cnt = skb_shinfo(skb)->nr_frags;
2722 if (frg_cnt >= MAX_SKB_FRAGS)
2723 return -EFAULT;
2725 /* allocate a new page for next frag */
2726 page = alloc_pages(sk->sk_allocation, 0);
2728 /* If alloc_page fails just return failure and caller will
2729 * free previous allocated pages by doing kfree_skb()
2731 if (page == NULL)
2732 return -ENOMEM;
2734 /* initialize the next frag */
2735 skb_fill_page_desc(skb, frg_cnt, page, 0, 0);
2736 skb->truesize += PAGE_SIZE;
2737 atomic_add(PAGE_SIZE, &sk->sk_wmem_alloc);
2739 /* get the new initialized frag */
2740 frg_cnt = skb_shinfo(skb)->nr_frags;
2741 frag = &skb_shinfo(skb)->frags[frg_cnt - 1];
2743 /* copy the user data to page */
2744 left = PAGE_SIZE - frag->page_offset;
2745 copy = (length > left)? left : length;
2747 ret = getfrag(from, skb_frag_address(frag) + skb_frag_size(frag),
2748 offset, copy, 0, skb);
2749 if (ret < 0)
2750 return -EFAULT;
2752 /* copy was successful so update the size parameters */
2753 skb_frag_size_add(frag, copy);
2754 skb->len += copy;
2755 skb->data_len += copy;
2756 offset += copy;
2757 length -= copy;
2759 } while (length > 0);
2761 return 0;
2763 EXPORT_SYMBOL(skb_append_datato_frags);
2766 * skb_pull_rcsum - pull skb and update receive checksum
2767 * @skb: buffer to update
2768 * @len: length of data pulled
2770 * This function performs an skb_pull on the packet and updates
2771 * the CHECKSUM_COMPLETE checksum. It should be used on
2772 * receive path processing instead of skb_pull unless you know
2773 * that the checksum difference is zero (e.g., a valid IP header)
2774 * or you are setting ip_summed to CHECKSUM_NONE.
2776 unsigned char *skb_pull_rcsum(struct sk_buff *skb, unsigned int len)
2778 BUG_ON(len > skb->len);
2779 skb->len -= len;
2780 BUG_ON(skb->len < skb->data_len);
2781 skb_postpull_rcsum(skb, skb->data, len);
2782 return skb->data += len;
2784 EXPORT_SYMBOL_GPL(skb_pull_rcsum);
2787 * skb_segment - Perform protocol segmentation on skb.
2788 * @skb: buffer to segment
2789 * @features: features for the output path (see dev->features)
2791 * This function performs segmentation on the given skb. It returns
2792 * a pointer to the first in a list of new skbs for the segments.
2793 * In case of error it returns ERR_PTR(err).
2795 struct sk_buff *skb_segment(struct sk_buff *skb, netdev_features_t features)
2797 struct sk_buff *segs = NULL;
2798 struct sk_buff *tail = NULL;
2799 struct sk_buff *fskb = skb_shinfo(skb)->frag_list;
2800 unsigned int mss = skb_shinfo(skb)->gso_size;
2801 unsigned int doffset = skb->data - skb_mac_header(skb);
2802 unsigned int offset = doffset;
2803 unsigned int headroom;
2804 unsigned int len;
2805 int sg = !!(features & NETIF_F_SG);
2806 int nfrags = skb_shinfo(skb)->nr_frags;
2807 int err = -ENOMEM;
2808 int i = 0;
2809 int pos;
2811 __skb_push(skb, doffset);
2812 headroom = skb_headroom(skb);
2813 pos = skb_headlen(skb);
2815 do {
2816 struct sk_buff *nskb;
2817 skb_frag_t *frag;
2818 int hsize;
2819 int size;
2821 len = skb->len - offset;
2822 if (len > mss)
2823 len = mss;
2825 hsize = skb_headlen(skb) - offset;
2826 if (hsize < 0)
2827 hsize = 0;
2828 if (hsize > len || !sg)
2829 hsize = len;
2831 if (!hsize && i >= nfrags) {
2832 BUG_ON(fskb->len != len);
2834 pos += len;
2835 nskb = skb_clone(fskb, GFP_ATOMIC);
2836 fskb = fskb->next;
2838 if (unlikely(!nskb))
2839 goto err;
2841 hsize = skb_end_offset(nskb);
2842 if (skb_cow_head(nskb, doffset + headroom)) {
2843 kfree_skb(nskb);
2844 goto err;
2847 nskb->truesize += skb_end_offset(nskb) - hsize;
2848 skb_release_head_state(nskb);
2849 __skb_push(nskb, doffset);
2850 } else {
2851 nskb = __alloc_skb(hsize + doffset + headroom,
2852 GFP_ATOMIC, skb_alloc_rx_flag(skb),
2853 NUMA_NO_NODE);
2855 if (unlikely(!nskb))
2856 goto err;
2858 skb_reserve(nskb, headroom);
2859 __skb_put(nskb, doffset);
2862 if (segs)
2863 tail->next = nskb;
2864 else
2865 segs = nskb;
2866 tail = nskb;
2868 __copy_skb_header(nskb, skb);
2869 nskb->mac_len = skb->mac_len;
2871 /* nskb and skb might have different headroom */
2872 if (nskb->ip_summed == CHECKSUM_PARTIAL)
2873 nskb->csum_start += skb_headroom(nskb) - headroom;
2875 skb_reset_mac_header(nskb);
2876 skb_set_network_header(nskb, skb->mac_len);
2877 nskb->transport_header = (nskb->network_header +
2878 skb_network_header_len(skb));
2879 skb_copy_from_linear_data(skb, nskb->data, doffset);
2881 if (fskb != skb_shinfo(skb)->frag_list)
2882 continue;
2884 if (!sg) {
2885 nskb->ip_summed = CHECKSUM_NONE;
2886 nskb->csum = skb_copy_and_csum_bits(skb, offset,
2887 skb_put(nskb, len),
2888 len, 0);
2889 continue;
2892 frag = skb_shinfo(nskb)->frags;
2894 skb_copy_from_linear_data_offset(skb, offset,
2895 skb_put(nskb, hsize), hsize);
2897 while (pos < offset + len && i < nfrags) {
2898 *frag = skb_shinfo(skb)->frags[i];
2899 __skb_frag_ref(frag);
2900 size = skb_frag_size(frag);
2902 if (pos < offset) {
2903 frag->page_offset += offset - pos;
2904 skb_frag_size_sub(frag, offset - pos);
2907 skb_shinfo(nskb)->nr_frags++;
2909 if (pos + size <= offset + len) {
2910 i++;
2911 pos += size;
2912 } else {
2913 skb_frag_size_sub(frag, pos + size - (offset + len));
2914 goto skip_fraglist;
2917 frag++;
2920 if (pos < offset + len) {
2921 struct sk_buff *fskb2 = fskb;
2923 BUG_ON(pos + fskb->len != offset + len);
2925 pos += fskb->len;
2926 fskb = fskb->next;
2928 if (fskb2->next) {
2929 fskb2 = skb_clone(fskb2, GFP_ATOMIC);
2930 if (!fskb2)
2931 goto err;
2932 } else
2933 skb_get(fskb2);
2935 SKB_FRAG_ASSERT(nskb);
2936 skb_shinfo(nskb)->frag_list = fskb2;
2939 skip_fraglist:
2940 nskb->data_len = len - hsize;
2941 nskb->len += nskb->data_len;
2942 nskb->truesize += nskb->data_len;
2943 } while ((offset += len) < skb->len);
2945 return segs;
2947 err:
2948 while ((skb = segs)) {
2949 segs = skb->next;
2950 kfree_skb(skb);
2952 return ERR_PTR(err);
2954 EXPORT_SYMBOL_GPL(skb_segment);
2956 int skb_gro_receive(struct sk_buff **head, struct sk_buff *skb)
2958 struct sk_buff *p = *head;
2959 struct sk_buff *nskb;
2960 struct skb_shared_info *skbinfo = skb_shinfo(skb);
2961 struct skb_shared_info *pinfo = skb_shinfo(p);
2962 unsigned int headroom;
2963 unsigned int len = skb_gro_len(skb);
2964 unsigned int offset = skb_gro_offset(skb);
2965 unsigned int headlen = skb_headlen(skb);
2966 unsigned int delta_truesize;
2968 if (p->len + len >= 65536)
2969 return -E2BIG;
2971 if (pinfo->frag_list)
2972 goto merge;
2973 else if (headlen <= offset) {
2974 skb_frag_t *frag;
2975 skb_frag_t *frag2;
2976 int i = skbinfo->nr_frags;
2977 int nr_frags = pinfo->nr_frags + i;
2979 offset -= headlen;
2981 if (nr_frags > MAX_SKB_FRAGS)
2982 return -E2BIG;
2984 pinfo->nr_frags = nr_frags;
2985 skbinfo->nr_frags = 0;
2987 frag = pinfo->frags + nr_frags;
2988 frag2 = skbinfo->frags + i;
2989 do {
2990 *--frag = *--frag2;
2991 } while (--i);
2993 frag->page_offset += offset;
2994 skb_frag_size_sub(frag, offset);
2996 /* all fragments truesize : remove (head size + sk_buff) */
2997 delta_truesize = skb->truesize -
2998 SKB_TRUESIZE(skb_end_offset(skb));
3000 skb->truesize -= skb->data_len;
3001 skb->len -= skb->data_len;
3002 skb->data_len = 0;
3004 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE;
3005 goto done;
3006 } else if (skb->head_frag) {
3007 int nr_frags = pinfo->nr_frags;
3008 skb_frag_t *frag = pinfo->frags + nr_frags;
3009 struct page *page = virt_to_head_page(skb->head);
3010 unsigned int first_size = headlen - offset;
3011 unsigned int first_offset;
3013 if (nr_frags + 1 + skbinfo->nr_frags > MAX_SKB_FRAGS)
3014 return -E2BIG;
3016 first_offset = skb->data -
3017 (unsigned char *)page_address(page) +
3018 offset;
3020 pinfo->nr_frags = nr_frags + 1 + skbinfo->nr_frags;
3022 frag->page.p = page;
3023 frag->page_offset = first_offset;
3024 skb_frag_size_set(frag, first_size);
3026 memcpy(frag + 1, skbinfo->frags, sizeof(*frag) * skbinfo->nr_frags);
3027 /* We dont need to clear skbinfo->nr_frags here */
3029 delta_truesize = skb->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3030 NAPI_GRO_CB(skb)->free = NAPI_GRO_FREE_STOLEN_HEAD;
3031 goto done;
3032 } else if (skb_gro_len(p) != pinfo->gso_size)
3033 return -E2BIG;
3035 headroom = skb_headroom(p);
3036 nskb = alloc_skb(headroom + skb_gro_offset(p), GFP_ATOMIC);
3037 if (unlikely(!nskb))
3038 return -ENOMEM;
3040 __copy_skb_header(nskb, p);
3041 nskb->mac_len = p->mac_len;
3043 skb_reserve(nskb, headroom);
3044 __skb_put(nskb, skb_gro_offset(p));
3046 skb_set_mac_header(nskb, skb_mac_header(p) - p->data);
3047 skb_set_network_header(nskb, skb_network_offset(p));
3048 skb_set_transport_header(nskb, skb_transport_offset(p));
3050 __skb_pull(p, skb_gro_offset(p));
3051 memcpy(skb_mac_header(nskb), skb_mac_header(p),
3052 p->data - skb_mac_header(p));
3054 *NAPI_GRO_CB(nskb) = *NAPI_GRO_CB(p);
3055 skb_shinfo(nskb)->frag_list = p;
3056 skb_shinfo(nskb)->gso_size = pinfo->gso_size;
3057 pinfo->gso_size = 0;
3058 skb_header_release(p);
3059 nskb->prev = p;
3061 nskb->data_len += p->len;
3062 nskb->truesize += p->truesize;
3063 nskb->len += p->len;
3065 *head = nskb;
3066 nskb->next = p->next;
3067 p->next = NULL;
3069 p = nskb;
3071 merge:
3072 delta_truesize = skb->truesize;
3073 if (offset > headlen) {
3074 unsigned int eat = offset - headlen;
3076 skbinfo->frags[0].page_offset += eat;
3077 skb_frag_size_sub(&skbinfo->frags[0], eat);
3078 skb->data_len -= eat;
3079 skb->len -= eat;
3080 offset = headlen;
3083 __skb_pull(skb, offset);
3085 p->prev->next = skb;
3086 p->prev = skb;
3087 skb_header_release(skb);
3089 done:
3090 NAPI_GRO_CB(p)->count++;
3091 p->data_len += len;
3092 p->truesize += delta_truesize;
3093 p->len += len;
3095 NAPI_GRO_CB(skb)->same_flow = 1;
3096 return 0;
3098 EXPORT_SYMBOL_GPL(skb_gro_receive);
3100 void __init skb_init(void)
3102 skbuff_head_cache = kmem_cache_create("skbuff_head_cache",
3103 sizeof(struct sk_buff),
3105 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3106 NULL);
3107 skbuff_fclone_cache = kmem_cache_create("skbuff_fclone_cache",
3108 (2*sizeof(struct sk_buff)) +
3109 sizeof(atomic_t),
3111 SLAB_HWCACHE_ALIGN|SLAB_PANIC,
3112 NULL);
3116 * skb_to_sgvec - Fill a scatter-gather list from a socket buffer
3117 * @skb: Socket buffer containing the buffers to be mapped
3118 * @sg: The scatter-gather list to map into
3119 * @offset: The offset into the buffer's contents to start mapping
3120 * @len: Length of buffer space to be mapped
3122 * Fill the specified scatter-gather list with mappings/pointers into a
3123 * region of the buffer space attached to a socket buffer.
3125 static int
3126 __skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3128 int start = skb_headlen(skb);
3129 int i, copy = start - offset;
3130 struct sk_buff *frag_iter;
3131 int elt = 0;
3133 if (copy > 0) {
3134 if (copy > len)
3135 copy = len;
3136 sg_set_buf(sg, skb->data + offset, copy);
3137 elt++;
3138 if ((len -= copy) == 0)
3139 return elt;
3140 offset += copy;
3143 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
3144 int end;
3146 WARN_ON(start > offset + len);
3148 end = start + skb_frag_size(&skb_shinfo(skb)->frags[i]);
3149 if ((copy = end - offset) > 0) {
3150 skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
3152 if (copy > len)
3153 copy = len;
3154 sg_set_page(&sg[elt], skb_frag_page(frag), copy,
3155 frag->page_offset+offset-start);
3156 elt++;
3157 if (!(len -= copy))
3158 return elt;
3159 offset += copy;
3161 start = end;
3164 skb_walk_frags(skb, frag_iter) {
3165 int end;
3167 WARN_ON(start > offset + len);
3169 end = start + frag_iter->len;
3170 if ((copy = end - offset) > 0) {
3171 if (copy > len)
3172 copy = len;
3173 elt += __skb_to_sgvec(frag_iter, sg+elt, offset - start,
3174 copy);
3175 if ((len -= copy) == 0)
3176 return elt;
3177 offset += copy;
3179 start = end;
3181 BUG_ON(len);
3182 return elt;
3185 int skb_to_sgvec(struct sk_buff *skb, struct scatterlist *sg, int offset, int len)
3187 int nsg = __skb_to_sgvec(skb, sg, offset, len);
3189 sg_mark_end(&sg[nsg - 1]);
3191 return nsg;
3193 EXPORT_SYMBOL_GPL(skb_to_sgvec);
3196 * skb_cow_data - Check that a socket buffer's data buffers are writable
3197 * @skb: The socket buffer to check.
3198 * @tailbits: Amount of trailing space to be added
3199 * @trailer: Returned pointer to the skb where the @tailbits space begins
3201 * Make sure that the data buffers attached to a socket buffer are
3202 * writable. If they are not, private copies are made of the data buffers
3203 * and the socket buffer is set to use these instead.
3205 * If @tailbits is given, make sure that there is space to write @tailbits
3206 * bytes of data beyond current end of socket buffer. @trailer will be
3207 * set to point to the skb in which this space begins.
3209 * The number of scatterlist elements required to completely map the
3210 * COW'd and extended socket buffer will be returned.
3212 int skb_cow_data(struct sk_buff *skb, int tailbits, struct sk_buff **trailer)
3214 int copyflag;
3215 int elt;
3216 struct sk_buff *skb1, **skb_p;
3218 /* If skb is cloned or its head is paged, reallocate
3219 * head pulling out all the pages (pages are considered not writable
3220 * at the moment even if they are anonymous).
3222 if ((skb_cloned(skb) || skb_shinfo(skb)->nr_frags) &&
3223 __pskb_pull_tail(skb, skb_pagelen(skb)-skb_headlen(skb)) == NULL)
3224 return -ENOMEM;
3226 /* Easy case. Most of packets will go this way. */
3227 if (!skb_has_frag_list(skb)) {
3228 /* A little of trouble, not enough of space for trailer.
3229 * This should not happen, when stack is tuned to generate
3230 * good frames. OK, on miss we reallocate and reserve even more
3231 * space, 128 bytes is fair. */
3233 if (skb_tailroom(skb) < tailbits &&
3234 pskb_expand_head(skb, 0, tailbits-skb_tailroom(skb)+128, GFP_ATOMIC))
3235 return -ENOMEM;
3237 /* Voila! */
3238 *trailer = skb;
3239 return 1;
3242 /* Misery. We are in troubles, going to mincer fragments... */
3244 elt = 1;
3245 skb_p = &skb_shinfo(skb)->frag_list;
3246 copyflag = 0;
3248 while ((skb1 = *skb_p) != NULL) {
3249 int ntail = 0;
3251 /* The fragment is partially pulled by someone,
3252 * this can happen on input. Copy it and everything
3253 * after it. */
3255 if (skb_shared(skb1))
3256 copyflag = 1;
3258 /* If the skb is the last, worry about trailer. */
3260 if (skb1->next == NULL && tailbits) {
3261 if (skb_shinfo(skb1)->nr_frags ||
3262 skb_has_frag_list(skb1) ||
3263 skb_tailroom(skb1) < tailbits)
3264 ntail = tailbits + 128;
3267 if (copyflag ||
3268 skb_cloned(skb1) ||
3269 ntail ||
3270 skb_shinfo(skb1)->nr_frags ||
3271 skb_has_frag_list(skb1)) {
3272 struct sk_buff *skb2;
3274 /* Fuck, we are miserable poor guys... */
3275 if (ntail == 0)
3276 skb2 = skb_copy(skb1, GFP_ATOMIC);
3277 else
3278 skb2 = skb_copy_expand(skb1,
3279 skb_headroom(skb1),
3280 ntail,
3281 GFP_ATOMIC);
3282 if (unlikely(skb2 == NULL))
3283 return -ENOMEM;
3285 if (skb1->sk)
3286 skb_set_owner_w(skb2, skb1->sk);
3288 /* Looking around. Are we still alive?
3289 * OK, link new skb, drop old one */
3291 skb2->next = skb1->next;
3292 *skb_p = skb2;
3293 kfree_skb(skb1);
3294 skb1 = skb2;
3296 elt++;
3297 *trailer = skb1;
3298 skb_p = &skb1->next;
3301 return elt;
3303 EXPORT_SYMBOL_GPL(skb_cow_data);
3305 static void sock_rmem_free(struct sk_buff *skb)
3307 struct sock *sk = skb->sk;
3309 atomic_sub(skb->truesize, &sk->sk_rmem_alloc);
3313 * Note: We dont mem charge error packets (no sk_forward_alloc changes)
3315 int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb)
3317 int len = skb->len;
3319 if (atomic_read(&sk->sk_rmem_alloc) + skb->truesize >=
3320 (unsigned int)sk->sk_rcvbuf)
3321 return -ENOMEM;
3323 skb_orphan(skb);
3324 skb->sk = sk;
3325 skb->destructor = sock_rmem_free;
3326 atomic_add(skb->truesize, &sk->sk_rmem_alloc);
3328 /* before exiting rcu section, make sure dst is refcounted */
3329 skb_dst_force(skb);
3331 skb_queue_tail(&sk->sk_error_queue, skb);
3332 if (!sock_flag(sk, SOCK_DEAD))
3333 sk->sk_data_ready(sk, len);
3334 return 0;
3336 EXPORT_SYMBOL(sock_queue_err_skb);
3338 void skb_tstamp_tx(struct sk_buff *orig_skb,
3339 struct skb_shared_hwtstamps *hwtstamps)
3341 struct sock *sk = orig_skb->sk;
3342 struct sock_exterr_skb *serr;
3343 struct sk_buff *skb;
3344 int err;
3346 if (!sk)
3347 return;
3349 skb = skb_clone(orig_skb, GFP_ATOMIC);
3350 if (!skb)
3351 return;
3353 if (hwtstamps) {
3354 *skb_hwtstamps(skb) =
3355 *hwtstamps;
3356 } else {
3358 * no hardware time stamps available,
3359 * so keep the shared tx_flags and only
3360 * store software time stamp
3362 skb->tstamp = ktime_get_real();
3365 serr = SKB_EXT_ERR(skb);
3366 memset(serr, 0, sizeof(*serr));
3367 serr->ee.ee_errno = ENOMSG;
3368 serr->ee.ee_origin = SO_EE_ORIGIN_TIMESTAMPING;
3370 err = sock_queue_err_skb(sk, skb);
3372 if (err)
3373 kfree_skb(skb);
3375 EXPORT_SYMBOL_GPL(skb_tstamp_tx);
3377 void skb_complete_wifi_ack(struct sk_buff *skb, bool acked)
3379 struct sock *sk = skb->sk;
3380 struct sock_exterr_skb *serr;
3381 int err;
3383 skb->wifi_acked_valid = 1;
3384 skb->wifi_acked = acked;
3386 serr = SKB_EXT_ERR(skb);
3387 memset(serr, 0, sizeof(*serr));
3388 serr->ee.ee_errno = ENOMSG;
3389 serr->ee.ee_origin = SO_EE_ORIGIN_TXSTATUS;
3391 err = sock_queue_err_skb(sk, skb);
3392 if (err)
3393 kfree_skb(skb);
3395 EXPORT_SYMBOL_GPL(skb_complete_wifi_ack);
3399 * skb_partial_csum_set - set up and verify partial csum values for packet
3400 * @skb: the skb to set
3401 * @start: the number of bytes after skb->data to start checksumming.
3402 * @off: the offset from start to place the checksum.
3404 * For untrusted partially-checksummed packets, we need to make sure the values
3405 * for skb->csum_start and skb->csum_offset are valid so we don't oops.
3407 * This function checks and sets those values and skb->ip_summed: if this
3408 * returns false you should drop the packet.
3410 bool skb_partial_csum_set(struct sk_buff *skb, u16 start, u16 off)
3412 if (unlikely(start > skb_headlen(skb)) ||
3413 unlikely((int)start + off > skb_headlen(skb) - 2)) {
3414 net_warn_ratelimited("bad partial csum: csum=%u/%u len=%u\n",
3415 start, off, skb_headlen(skb));
3416 return false;
3418 skb->ip_summed = CHECKSUM_PARTIAL;
3419 skb->csum_start = skb_headroom(skb) + start;
3420 skb->csum_offset = off;
3421 return true;
3423 EXPORT_SYMBOL_GPL(skb_partial_csum_set);
3425 void __skb_warn_lro_forwarding(const struct sk_buff *skb)
3427 net_warn_ratelimited("%s: received packets cannot be forwarded while LRO is enabled\n",
3428 skb->dev->name);
3430 EXPORT_SYMBOL(__skb_warn_lro_forwarding);
3432 void kfree_skb_partial(struct sk_buff *skb, bool head_stolen)
3434 if (head_stolen)
3435 kmem_cache_free(skbuff_head_cache, skb);
3436 else
3437 __kfree_skb(skb);
3439 EXPORT_SYMBOL(kfree_skb_partial);
3442 * skb_try_coalesce - try to merge skb to prior one
3443 * @to: prior buffer
3444 * @from: buffer to add
3445 * @fragstolen: pointer to boolean
3446 * @delta_truesize: how much more was allocated than was requested
3448 bool skb_try_coalesce(struct sk_buff *to, struct sk_buff *from,
3449 bool *fragstolen, int *delta_truesize)
3451 int i, delta, len = from->len;
3453 *fragstolen = false;
3455 if (skb_cloned(to))
3456 return false;
3458 if (len <= skb_tailroom(to)) {
3459 BUG_ON(skb_copy_bits(from, 0, skb_put(to, len), len));
3460 *delta_truesize = 0;
3461 return true;
3464 if (skb_has_frag_list(to) || skb_has_frag_list(from))
3465 return false;
3467 if (skb_headlen(from) != 0) {
3468 struct page *page;
3469 unsigned int offset;
3471 if (skb_shinfo(to)->nr_frags +
3472 skb_shinfo(from)->nr_frags >= MAX_SKB_FRAGS)
3473 return false;
3475 if (skb_head_is_locked(from))
3476 return false;
3478 delta = from->truesize - SKB_DATA_ALIGN(sizeof(struct sk_buff));
3480 page = virt_to_head_page(from->head);
3481 offset = from->data - (unsigned char *)page_address(page);
3483 skb_fill_page_desc(to, skb_shinfo(to)->nr_frags,
3484 page, offset, skb_headlen(from));
3485 *fragstolen = true;
3486 } else {
3487 if (skb_shinfo(to)->nr_frags +
3488 skb_shinfo(from)->nr_frags > MAX_SKB_FRAGS)
3489 return false;
3491 delta = from->truesize -
3492 SKB_TRUESIZE(skb_end_pointer(from) - from->head);
3495 WARN_ON_ONCE(delta < len);
3497 memcpy(skb_shinfo(to)->frags + skb_shinfo(to)->nr_frags,
3498 skb_shinfo(from)->frags,
3499 skb_shinfo(from)->nr_frags * sizeof(skb_frag_t));
3500 skb_shinfo(to)->nr_frags += skb_shinfo(from)->nr_frags;
3502 if (!skb_cloned(from))
3503 skb_shinfo(from)->nr_frags = 0;
3505 /* if the skb is not cloned this does nothing
3506 * since we set nr_frags to 0.
3508 for (i = 0; i < skb_shinfo(from)->nr_frags; i++)
3509 skb_frag_ref(from, i);
3511 to->truesize += delta;
3512 to->len += len;
3513 to->data_len += len;
3515 *delta_truesize = delta;
3516 return true;
3518 EXPORT_SYMBOL(skb_try_coalesce);