4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/proc_fs.h>
59 #include <linux/seq_file.h>
60 #include <linux/stop_machine.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
74 #include <linux/slab.h>
77 #include <asm/irq_regs.h>
79 #include "sched_cpupri.h"
80 #include "workqueue_sched.h"
82 #define CREATE_TRACE_POINTS
83 #include <trace/events/sched.h>
86 * Convert user-nice values [ -20 ... 0 ... 19 ]
87 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
90 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
91 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
92 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
95 * 'User priority' is the nice value converted to something we
96 * can work with better when scaling various scheduler parameters,
97 * it's a [ 0 ... 39 ] range.
99 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
100 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
101 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
104 * Helpers for converting nanosecond timing to jiffy resolution
106 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
108 #define NICE_0_LOAD SCHED_LOAD_SCALE
109 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
112 * These are the 'tuning knobs' of the scheduler:
114 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
115 * Timeslices get refilled after they expire.
117 #define DEF_TIMESLICE (100 * HZ / 1000)
120 * single value that denotes runtime == period, ie unlimited time.
122 #define RUNTIME_INF ((u64)~0ULL)
124 static inline int rt_policy(int policy
)
126 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
131 static inline int task_has_rt_policy(struct task_struct
*p
)
133 return rt_policy(p
->policy
);
137 * This is the priority-queue data structure of the RT scheduling class:
139 struct rt_prio_array
{
140 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
141 struct list_head queue
[MAX_RT_PRIO
];
144 struct rt_bandwidth
{
145 /* nests inside the rq lock: */
146 raw_spinlock_t rt_runtime_lock
;
149 struct hrtimer rt_period_timer
;
152 static struct rt_bandwidth def_rt_bandwidth
;
154 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
156 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
158 struct rt_bandwidth
*rt_b
=
159 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
165 now
= hrtimer_cb_get_time(timer
);
166 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
171 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
174 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
178 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
180 rt_b
->rt_period
= ns_to_ktime(period
);
181 rt_b
->rt_runtime
= runtime
;
183 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
185 hrtimer_init(&rt_b
->rt_period_timer
,
186 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
187 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
190 static inline int rt_bandwidth_enabled(void)
192 return sysctl_sched_rt_runtime
>= 0;
195 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
199 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
202 if (hrtimer_active(&rt_b
->rt_period_timer
))
205 raw_spin_lock(&rt_b
->rt_runtime_lock
);
210 if (hrtimer_active(&rt_b
->rt_period_timer
))
213 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
214 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
216 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
217 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
218 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
219 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
220 HRTIMER_MODE_ABS_PINNED
, 0);
222 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
225 #ifdef CONFIG_RT_GROUP_SCHED
226 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
228 hrtimer_cancel(&rt_b
->rt_period_timer
);
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
236 static DEFINE_MUTEX(sched_domains_mutex
);
238 #ifdef CONFIG_CGROUP_SCHED
240 #include <linux/cgroup.h>
244 static LIST_HEAD(task_groups
);
246 /* task group related information */
248 struct cgroup_subsys_state css
;
250 #ifdef CONFIG_FAIR_GROUP_SCHED
251 /* schedulable entities of this group on each cpu */
252 struct sched_entity
**se
;
253 /* runqueue "owned" by this group on each cpu */
254 struct cfs_rq
**cfs_rq
;
255 unsigned long shares
;
258 #ifdef CONFIG_RT_GROUP_SCHED
259 struct sched_rt_entity
**rt_se
;
260 struct rt_rq
**rt_rq
;
262 struct rt_bandwidth rt_bandwidth
;
266 struct list_head list
;
268 struct task_group
*parent
;
269 struct list_head siblings
;
270 struct list_head children
;
273 #define root_task_group init_task_group
275 /* task_group_lock serializes add/remove of task groups and also changes to
276 * a task group's cpu shares.
278 static DEFINE_SPINLOCK(task_group_lock
);
280 #ifdef CONFIG_FAIR_GROUP_SCHED
283 static int root_task_group_empty(void)
285 return list_empty(&root_task_group
.children
);
289 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
292 * A weight of 0 or 1 can cause arithmetics problems.
293 * A weight of a cfs_rq is the sum of weights of which entities
294 * are queued on this cfs_rq, so a weight of a entity should not be
295 * too large, so as the shares value of a task group.
296 * (The default weight is 1024 - so there's no practical
297 * limitation from this.)
300 #define MAX_SHARES (1UL << 18)
302 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
305 /* Default task group.
306 * Every task in system belong to this group at bootup.
308 struct task_group init_task_group
;
310 #endif /* CONFIG_CGROUP_SCHED */
312 /* CFS-related fields in a runqueue */
314 struct load_weight load
;
315 unsigned long nr_running
;
320 struct rb_root tasks_timeline
;
321 struct rb_node
*rb_leftmost
;
323 struct list_head tasks
;
324 struct list_head
*balance_iterator
;
327 * 'curr' points to currently running entity on this cfs_rq.
328 * It is set to NULL otherwise (i.e when none are currently running).
330 struct sched_entity
*curr
, *next
, *last
;
332 unsigned int nr_spread_over
;
334 #ifdef CONFIG_FAIR_GROUP_SCHED
335 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
338 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
339 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
340 * (like users, containers etc.)
342 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
343 * list is used during load balance.
345 struct list_head leaf_cfs_rq_list
;
346 struct task_group
*tg
; /* group that "owns" this runqueue */
350 * the part of load.weight contributed by tasks
352 unsigned long task_weight
;
355 * h_load = weight * f(tg)
357 * Where f(tg) is the recursive weight fraction assigned to
360 unsigned long h_load
;
363 * this cpu's part of tg->shares
365 unsigned long shares
;
368 * load.weight at the time we set shares
370 unsigned long rq_weight
;
375 /* Real-Time classes' related field in a runqueue: */
377 struct rt_prio_array active
;
378 unsigned long rt_nr_running
;
379 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
381 int curr
; /* highest queued rt task prio */
383 int next
; /* next highest */
388 unsigned long rt_nr_migratory
;
389 unsigned long rt_nr_total
;
391 struct plist_head pushable_tasks
;
396 /* Nests inside the rq lock: */
397 raw_spinlock_t rt_runtime_lock
;
399 #ifdef CONFIG_RT_GROUP_SCHED
400 unsigned long rt_nr_boosted
;
403 struct list_head leaf_rt_rq_list
;
404 struct task_group
*tg
;
411 * We add the notion of a root-domain which will be used to define per-domain
412 * variables. Each exclusive cpuset essentially defines an island domain by
413 * fully partitioning the member cpus from any other cpuset. Whenever a new
414 * exclusive cpuset is created, we also create and attach a new root-domain
421 cpumask_var_t online
;
424 * The "RT overload" flag: it gets set if a CPU has more than
425 * one runnable RT task.
427 cpumask_var_t rto_mask
;
430 struct cpupri cpupri
;
435 * By default the system creates a single root-domain with all cpus as
436 * members (mimicking the global state we have today).
438 static struct root_domain def_root_domain
;
443 * This is the main, per-CPU runqueue data structure.
445 * Locking rule: those places that want to lock multiple runqueues
446 * (such as the load balancing or the thread migration code), lock
447 * acquire operations must be ordered by ascending &runqueue.
454 * nr_running and cpu_load should be in the same cacheline because
455 * remote CPUs use both these fields when doing load calculation.
457 unsigned long nr_running
;
458 #define CPU_LOAD_IDX_MAX 5
459 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
460 unsigned long last_load_update_tick
;
463 unsigned char nohz_balance_kick
;
465 unsigned int skip_clock_update
;
467 /* capture load from *all* tasks on this cpu: */
468 struct load_weight load
;
469 unsigned long nr_load_updates
;
475 #ifdef CONFIG_FAIR_GROUP_SCHED
476 /* list of leaf cfs_rq on this cpu: */
477 struct list_head leaf_cfs_rq_list
;
479 #ifdef CONFIG_RT_GROUP_SCHED
480 struct list_head leaf_rt_rq_list
;
484 * This is part of a global counter where only the total sum
485 * over all CPUs matters. A task can increase this counter on
486 * one CPU and if it got migrated afterwards it may decrease
487 * it on another CPU. Always updated under the runqueue lock:
489 unsigned long nr_uninterruptible
;
491 struct task_struct
*curr
, *idle
;
492 unsigned long next_balance
;
493 struct mm_struct
*prev_mm
;
500 struct root_domain
*rd
;
501 struct sched_domain
*sd
;
503 unsigned long cpu_power
;
505 unsigned char idle_at_tick
;
506 /* For active balancing */
510 struct cpu_stop_work active_balance_work
;
511 /* cpu of this runqueue: */
515 unsigned long avg_load_per_task
;
523 /* calc_load related fields */
524 unsigned long calc_load_update
;
525 long calc_load_active
;
527 #ifdef CONFIG_SCHED_HRTICK
529 int hrtick_csd_pending
;
530 struct call_single_data hrtick_csd
;
532 struct hrtimer hrtick_timer
;
535 #ifdef CONFIG_SCHEDSTATS
537 struct sched_info rq_sched_info
;
538 unsigned long long rq_cpu_time
;
539 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
541 /* sys_sched_yield() stats */
542 unsigned int yld_count
;
544 /* schedule() stats */
545 unsigned int sched_switch
;
546 unsigned int sched_count
;
547 unsigned int sched_goidle
;
549 /* try_to_wake_up() stats */
550 unsigned int ttwu_count
;
551 unsigned int ttwu_local
;
554 unsigned int bkl_count
;
558 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
561 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
563 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
566 * A queue event has occurred, and we're going to schedule. In
567 * this case, we can save a useless back to back clock update.
569 if (test_tsk_need_resched(p
))
570 rq
->skip_clock_update
= 1;
573 static inline int cpu_of(struct rq
*rq
)
582 #define rcu_dereference_check_sched_domain(p) \
583 rcu_dereference_check((p), \
584 rcu_read_lock_sched_held() || \
585 lockdep_is_held(&sched_domains_mutex))
588 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
589 * See detach_destroy_domains: synchronize_sched for details.
591 * The domain tree of any CPU may only be accessed from within
592 * preempt-disabled sections.
594 #define for_each_domain(cpu, __sd) \
595 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
597 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
598 #define this_rq() (&__get_cpu_var(runqueues))
599 #define task_rq(p) cpu_rq(task_cpu(p))
600 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
601 #define raw_rq() (&__raw_get_cpu_var(runqueues))
603 #ifdef CONFIG_CGROUP_SCHED
606 * Return the group to which this tasks belongs.
608 * We use task_subsys_state_check() and extend the RCU verification
609 * with lockdep_is_held(&task_rq(p)->lock) because cpu_cgroup_attach()
610 * holds that lock for each task it moves into the cgroup. Therefore
611 * by holding that lock, we pin the task to the current cgroup.
613 static inline struct task_group
*task_group(struct task_struct
*p
)
615 struct cgroup_subsys_state
*css
;
617 css
= task_subsys_state_check(p
, cpu_cgroup_subsys_id
,
618 lockdep_is_held(&task_rq(p
)->lock
));
619 return container_of(css
, struct task_group
, css
);
622 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
623 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
625 #ifdef CONFIG_FAIR_GROUP_SCHED
626 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
627 p
->se
.parent
= task_group(p
)->se
[cpu
];
630 #ifdef CONFIG_RT_GROUP_SCHED
631 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
632 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
636 #else /* CONFIG_CGROUP_SCHED */
638 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
639 static inline struct task_group
*task_group(struct task_struct
*p
)
644 #endif /* CONFIG_CGROUP_SCHED */
646 inline void update_rq_clock(struct rq
*rq
)
648 if (!rq
->skip_clock_update
)
649 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
653 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
655 #ifdef CONFIG_SCHED_DEBUG
656 # define const_debug __read_mostly
658 # define const_debug static const
663 * @cpu: the processor in question.
665 * Returns true if the current cpu runqueue is locked.
666 * This interface allows printk to be called with the runqueue lock
667 * held and know whether or not it is OK to wake up the klogd.
669 int runqueue_is_locked(int cpu
)
671 return raw_spin_is_locked(&cpu_rq(cpu
)->lock
);
675 * Debugging: various feature bits
678 #define SCHED_FEAT(name, enabled) \
679 __SCHED_FEAT_##name ,
682 #include "sched_features.h"
687 #define SCHED_FEAT(name, enabled) \
688 (1UL << __SCHED_FEAT_##name) * enabled |
690 const_debug
unsigned int sysctl_sched_features
=
691 #include "sched_features.h"
696 #ifdef CONFIG_SCHED_DEBUG
697 #define SCHED_FEAT(name, enabled) \
700 static __read_mostly
char *sched_feat_names
[] = {
701 #include "sched_features.h"
707 static int sched_feat_show(struct seq_file
*m
, void *v
)
711 for (i
= 0; sched_feat_names
[i
]; i
++) {
712 if (!(sysctl_sched_features
& (1UL << i
)))
714 seq_printf(m
, "%s ", sched_feat_names
[i
]);
722 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
723 size_t cnt
, loff_t
*ppos
)
733 if (copy_from_user(&buf
, ubuf
, cnt
))
738 if (strncmp(buf
, "NO_", 3) == 0) {
743 for (i
= 0; sched_feat_names
[i
]; i
++) {
744 int len
= strlen(sched_feat_names
[i
]);
746 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
748 sysctl_sched_features
&= ~(1UL << i
);
750 sysctl_sched_features
|= (1UL << i
);
755 if (!sched_feat_names
[i
])
763 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
765 return single_open(filp
, sched_feat_show
, NULL
);
768 static const struct file_operations sched_feat_fops
= {
769 .open
= sched_feat_open
,
770 .write
= sched_feat_write
,
773 .release
= single_release
,
776 static __init
int sched_init_debug(void)
778 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
783 late_initcall(sched_init_debug
);
787 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
790 * Number of tasks to iterate in a single balance run.
791 * Limited because this is done with IRQs disabled.
793 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
796 * ratelimit for updating the group shares.
799 unsigned int sysctl_sched_shares_ratelimit
= 250000;
800 unsigned int normalized_sysctl_sched_shares_ratelimit
= 250000;
803 * Inject some fuzzyness into changing the per-cpu group shares
804 * this avoids remote rq-locks at the expense of fairness.
807 unsigned int sysctl_sched_shares_thresh
= 4;
810 * period over which we average the RT time consumption, measured
815 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
818 * period over which we measure -rt task cpu usage in us.
821 unsigned int sysctl_sched_rt_period
= 1000000;
823 static __read_mostly
int scheduler_running
;
826 * part of the period that we allow rt tasks to run in us.
829 int sysctl_sched_rt_runtime
= 950000;
831 static inline u64
global_rt_period(void)
833 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
836 static inline u64
global_rt_runtime(void)
838 if (sysctl_sched_rt_runtime
< 0)
841 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
844 #ifndef prepare_arch_switch
845 # define prepare_arch_switch(next) do { } while (0)
847 #ifndef finish_arch_switch
848 # define finish_arch_switch(prev) do { } while (0)
851 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
853 return rq
->curr
== p
;
856 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
857 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
859 return task_current(rq
, p
);
862 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
866 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
868 #ifdef CONFIG_DEBUG_SPINLOCK
869 /* this is a valid case when another task releases the spinlock */
870 rq
->lock
.owner
= current
;
873 * If we are tracking spinlock dependencies then we have to
874 * fix up the runqueue lock - which gets 'carried over' from
877 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
879 raw_spin_unlock_irq(&rq
->lock
);
882 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
883 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
888 return task_current(rq
, p
);
892 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
896 * We can optimise this out completely for !SMP, because the
897 * SMP rebalancing from interrupt is the only thing that cares
902 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
903 raw_spin_unlock_irq(&rq
->lock
);
905 raw_spin_unlock(&rq
->lock
);
909 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
913 * After ->oncpu is cleared, the task can be moved to a different CPU.
914 * We must ensure this doesn't happen until the switch is completely
920 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
924 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
927 * Check whether the task is waking, we use this to synchronize ->cpus_allowed
930 static inline int task_is_waking(struct task_struct
*p
)
932 return unlikely(p
->state
== TASK_WAKING
);
936 * __task_rq_lock - lock the runqueue a given task resides on.
937 * Must be called interrupts disabled.
939 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
946 raw_spin_lock(&rq
->lock
);
947 if (likely(rq
== task_rq(p
)))
949 raw_spin_unlock(&rq
->lock
);
954 * task_rq_lock - lock the runqueue a given task resides on and disable
955 * interrupts. Note the ordering: we can safely lookup the task_rq without
956 * explicitly disabling preemption.
958 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
964 local_irq_save(*flags
);
966 raw_spin_lock(&rq
->lock
);
967 if (likely(rq
== task_rq(p
)))
969 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
973 static void __task_rq_unlock(struct rq
*rq
)
976 raw_spin_unlock(&rq
->lock
);
979 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
982 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
986 * this_rq_lock - lock this runqueue and disable interrupts.
988 static struct rq
*this_rq_lock(void)
995 raw_spin_lock(&rq
->lock
);
1000 #ifdef CONFIG_SCHED_HRTICK
1002 * Use HR-timers to deliver accurate preemption points.
1004 * Its all a bit involved since we cannot program an hrt while holding the
1005 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1008 * When we get rescheduled we reprogram the hrtick_timer outside of the
1014 * - enabled by features
1015 * - hrtimer is actually high res
1017 static inline int hrtick_enabled(struct rq
*rq
)
1019 if (!sched_feat(HRTICK
))
1021 if (!cpu_active(cpu_of(rq
)))
1023 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1026 static void hrtick_clear(struct rq
*rq
)
1028 if (hrtimer_active(&rq
->hrtick_timer
))
1029 hrtimer_cancel(&rq
->hrtick_timer
);
1033 * High-resolution timer tick.
1034 * Runs from hardirq context with interrupts disabled.
1036 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1038 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1040 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1042 raw_spin_lock(&rq
->lock
);
1043 update_rq_clock(rq
);
1044 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1045 raw_spin_unlock(&rq
->lock
);
1047 return HRTIMER_NORESTART
;
1052 * called from hardirq (IPI) context
1054 static void __hrtick_start(void *arg
)
1056 struct rq
*rq
= arg
;
1058 raw_spin_lock(&rq
->lock
);
1059 hrtimer_restart(&rq
->hrtick_timer
);
1060 rq
->hrtick_csd_pending
= 0;
1061 raw_spin_unlock(&rq
->lock
);
1065 * Called to set the hrtick timer state.
1067 * called with rq->lock held and irqs disabled
1069 static void hrtick_start(struct rq
*rq
, u64 delay
)
1071 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1072 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1074 hrtimer_set_expires(timer
, time
);
1076 if (rq
== this_rq()) {
1077 hrtimer_restart(timer
);
1078 } else if (!rq
->hrtick_csd_pending
) {
1079 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1080 rq
->hrtick_csd_pending
= 1;
1085 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1087 int cpu
= (int)(long)hcpu
;
1090 case CPU_UP_CANCELED
:
1091 case CPU_UP_CANCELED_FROZEN
:
1092 case CPU_DOWN_PREPARE
:
1093 case CPU_DOWN_PREPARE_FROZEN
:
1095 case CPU_DEAD_FROZEN
:
1096 hrtick_clear(cpu_rq(cpu
));
1103 static __init
void init_hrtick(void)
1105 hotcpu_notifier(hotplug_hrtick
, 0);
1109 * Called to set the hrtick timer state.
1111 * called with rq->lock held and irqs disabled
1113 static void hrtick_start(struct rq
*rq
, u64 delay
)
1115 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1116 HRTIMER_MODE_REL_PINNED
, 0);
1119 static inline void init_hrtick(void)
1122 #endif /* CONFIG_SMP */
1124 static void init_rq_hrtick(struct rq
*rq
)
1127 rq
->hrtick_csd_pending
= 0;
1129 rq
->hrtick_csd
.flags
= 0;
1130 rq
->hrtick_csd
.func
= __hrtick_start
;
1131 rq
->hrtick_csd
.info
= rq
;
1134 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1135 rq
->hrtick_timer
.function
= hrtick
;
1137 #else /* CONFIG_SCHED_HRTICK */
1138 static inline void hrtick_clear(struct rq
*rq
)
1142 static inline void init_rq_hrtick(struct rq
*rq
)
1146 static inline void init_hrtick(void)
1149 #endif /* CONFIG_SCHED_HRTICK */
1152 * resched_task - mark a task 'to be rescheduled now'.
1154 * On UP this means the setting of the need_resched flag, on SMP it
1155 * might also involve a cross-CPU call to trigger the scheduler on
1160 #ifndef tsk_is_polling
1161 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1164 static void resched_task(struct task_struct
*p
)
1168 assert_raw_spin_locked(&task_rq(p
)->lock
);
1170 if (test_tsk_need_resched(p
))
1173 set_tsk_need_resched(p
);
1176 if (cpu
== smp_processor_id())
1179 /* NEED_RESCHED must be visible before we test polling */
1181 if (!tsk_is_polling(p
))
1182 smp_send_reschedule(cpu
);
1185 static void resched_cpu(int cpu
)
1187 struct rq
*rq
= cpu_rq(cpu
);
1188 unsigned long flags
;
1190 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
1192 resched_task(cpu_curr(cpu
));
1193 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1198 * In the semi idle case, use the nearest busy cpu for migrating timers
1199 * from an idle cpu. This is good for power-savings.
1201 * We don't do similar optimization for completely idle system, as
1202 * selecting an idle cpu will add more delays to the timers than intended
1203 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
1205 int get_nohz_timer_target(void)
1207 int cpu
= smp_processor_id();
1209 struct sched_domain
*sd
;
1211 for_each_domain(cpu
, sd
) {
1212 for_each_cpu(i
, sched_domain_span(sd
))
1219 * When add_timer_on() enqueues a timer into the timer wheel of an
1220 * idle CPU then this timer might expire before the next timer event
1221 * which is scheduled to wake up that CPU. In case of a completely
1222 * idle system the next event might even be infinite time into the
1223 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1224 * leaves the inner idle loop so the newly added timer is taken into
1225 * account when the CPU goes back to idle and evaluates the timer
1226 * wheel for the next timer event.
1228 void wake_up_idle_cpu(int cpu
)
1230 struct rq
*rq
= cpu_rq(cpu
);
1232 if (cpu
== smp_processor_id())
1236 * This is safe, as this function is called with the timer
1237 * wheel base lock of (cpu) held. When the CPU is on the way
1238 * to idle and has not yet set rq->curr to idle then it will
1239 * be serialized on the timer wheel base lock and take the new
1240 * timer into account automatically.
1242 if (rq
->curr
!= rq
->idle
)
1246 * We can set TIF_RESCHED on the idle task of the other CPU
1247 * lockless. The worst case is that the other CPU runs the
1248 * idle task through an additional NOOP schedule()
1250 set_tsk_need_resched(rq
->idle
);
1252 /* NEED_RESCHED must be visible before we test polling */
1254 if (!tsk_is_polling(rq
->idle
))
1255 smp_send_reschedule(cpu
);
1258 #endif /* CONFIG_NO_HZ */
1260 static u64
sched_avg_period(void)
1262 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1265 static void sched_avg_update(struct rq
*rq
)
1267 s64 period
= sched_avg_period();
1269 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1271 * Inline assembly required to prevent the compiler
1272 * optimising this loop into a divmod call.
1273 * See __iter_div_u64_rem() for another example of this.
1275 asm("" : "+rm" (rq
->age_stamp
));
1276 rq
->age_stamp
+= period
;
1281 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1283 rq
->rt_avg
+= rt_delta
;
1284 sched_avg_update(rq
);
1287 #else /* !CONFIG_SMP */
1288 static void resched_task(struct task_struct
*p
)
1290 assert_raw_spin_locked(&task_rq(p
)->lock
);
1291 set_tsk_need_resched(p
);
1294 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1297 #endif /* CONFIG_SMP */
1299 #if BITS_PER_LONG == 32
1300 # define WMULT_CONST (~0UL)
1302 # define WMULT_CONST (1UL << 32)
1305 #define WMULT_SHIFT 32
1308 * Shift right and round:
1310 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1313 * delta *= weight / lw
1315 static unsigned long
1316 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1317 struct load_weight
*lw
)
1321 if (!lw
->inv_weight
) {
1322 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1325 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1329 tmp
= (u64
)delta_exec
* weight
;
1331 * Check whether we'd overflow the 64-bit multiplication:
1333 if (unlikely(tmp
> WMULT_CONST
))
1334 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1337 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1339 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1342 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1348 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1355 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1356 * of tasks with abnormal "nice" values across CPUs the contribution that
1357 * each task makes to its run queue's load is weighted according to its
1358 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1359 * scaled version of the new time slice allocation that they receive on time
1363 #define WEIGHT_IDLEPRIO 3
1364 #define WMULT_IDLEPRIO 1431655765
1367 * Nice levels are multiplicative, with a gentle 10% change for every
1368 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1369 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1370 * that remained on nice 0.
1372 * The "10% effect" is relative and cumulative: from _any_ nice level,
1373 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1374 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1375 * If a task goes up by ~10% and another task goes down by ~10% then
1376 * the relative distance between them is ~25%.)
1378 static const int prio_to_weight
[40] = {
1379 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1380 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1381 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1382 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1383 /* 0 */ 1024, 820, 655, 526, 423,
1384 /* 5 */ 335, 272, 215, 172, 137,
1385 /* 10 */ 110, 87, 70, 56, 45,
1386 /* 15 */ 36, 29, 23, 18, 15,
1390 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1392 * In cases where the weight does not change often, we can use the
1393 * precalculated inverse to speed up arithmetics by turning divisions
1394 * into multiplications:
1396 static const u32 prio_to_wmult
[40] = {
1397 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1398 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1399 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1400 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1401 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1402 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1403 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1404 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1407 /* Time spent by the tasks of the cpu accounting group executing in ... */
1408 enum cpuacct_stat_index
{
1409 CPUACCT_STAT_USER
, /* ... user mode */
1410 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1412 CPUACCT_STAT_NSTATS
,
1415 #ifdef CONFIG_CGROUP_CPUACCT
1416 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1417 static void cpuacct_update_stats(struct task_struct
*tsk
,
1418 enum cpuacct_stat_index idx
, cputime_t val
);
1420 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1421 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1422 enum cpuacct_stat_index idx
, cputime_t val
) {}
1425 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1427 update_load_add(&rq
->load
, load
);
1430 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1432 update_load_sub(&rq
->load
, load
);
1435 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1436 typedef int (*tg_visitor
)(struct task_group
*, void *);
1439 * Iterate the full tree, calling @down when first entering a node and @up when
1440 * leaving it for the final time.
1442 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1444 struct task_group
*parent
, *child
;
1448 parent
= &root_task_group
;
1450 ret
= (*down
)(parent
, data
);
1453 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1460 ret
= (*up
)(parent
, data
);
1465 parent
= parent
->parent
;
1474 static int tg_nop(struct task_group
*tg
, void *data
)
1481 /* Used instead of source_load when we know the type == 0 */
1482 static unsigned long weighted_cpuload(const int cpu
)
1484 return cpu_rq(cpu
)->load
.weight
;
1488 * Return a low guess at the load of a migration-source cpu weighted
1489 * according to the scheduling class and "nice" value.
1491 * We want to under-estimate the load of migration sources, to
1492 * balance conservatively.
1494 static unsigned long source_load(int cpu
, int type
)
1496 struct rq
*rq
= cpu_rq(cpu
);
1497 unsigned long total
= weighted_cpuload(cpu
);
1499 if (type
== 0 || !sched_feat(LB_BIAS
))
1502 return min(rq
->cpu_load
[type
-1], total
);
1506 * Return a high guess at the load of a migration-target cpu weighted
1507 * according to the scheduling class and "nice" value.
1509 static unsigned long target_load(int cpu
, int type
)
1511 struct rq
*rq
= cpu_rq(cpu
);
1512 unsigned long total
= weighted_cpuload(cpu
);
1514 if (type
== 0 || !sched_feat(LB_BIAS
))
1517 return max(rq
->cpu_load
[type
-1], total
);
1520 static unsigned long power_of(int cpu
)
1522 return cpu_rq(cpu
)->cpu_power
;
1525 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1527 static unsigned long cpu_avg_load_per_task(int cpu
)
1529 struct rq
*rq
= cpu_rq(cpu
);
1530 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1533 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1535 rq
->avg_load_per_task
= 0;
1537 return rq
->avg_load_per_task
;
1540 #ifdef CONFIG_FAIR_GROUP_SCHED
1542 static __read_mostly
unsigned long __percpu
*update_shares_data
;
1544 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1547 * Calculate and set the cpu's group shares.
1549 static void update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1550 unsigned long sd_shares
,
1551 unsigned long sd_rq_weight
,
1552 unsigned long *usd_rq_weight
)
1554 unsigned long shares
, rq_weight
;
1557 rq_weight
= usd_rq_weight
[cpu
];
1560 rq_weight
= NICE_0_LOAD
;
1564 * \Sum_j shares_j * rq_weight_i
1565 * shares_i = -----------------------------
1566 * \Sum_j rq_weight_j
1568 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1569 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1571 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1572 sysctl_sched_shares_thresh
) {
1573 struct rq
*rq
= cpu_rq(cpu
);
1574 unsigned long flags
;
1576 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1577 tg
->cfs_rq
[cpu
]->rq_weight
= boost
? 0 : rq_weight
;
1578 tg
->cfs_rq
[cpu
]->shares
= boost
? 0 : shares
;
1579 __set_se_shares(tg
->se
[cpu
], shares
);
1580 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1585 * Re-compute the task group their per cpu shares over the given domain.
1586 * This needs to be done in a bottom-up fashion because the rq weight of a
1587 * parent group depends on the shares of its child groups.
1589 static int tg_shares_up(struct task_group
*tg
, void *data
)
1591 unsigned long weight
, rq_weight
= 0, sum_weight
= 0, shares
= 0;
1592 unsigned long *usd_rq_weight
;
1593 struct sched_domain
*sd
= data
;
1594 unsigned long flags
;
1600 local_irq_save(flags
);
1601 usd_rq_weight
= per_cpu_ptr(update_shares_data
, smp_processor_id());
1603 for_each_cpu(i
, sched_domain_span(sd
)) {
1604 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1605 usd_rq_weight
[i
] = weight
;
1607 rq_weight
+= weight
;
1609 * If there are currently no tasks on the cpu pretend there
1610 * is one of average load so that when a new task gets to
1611 * run here it will not get delayed by group starvation.
1614 weight
= NICE_0_LOAD
;
1616 sum_weight
+= weight
;
1617 shares
+= tg
->cfs_rq
[i
]->shares
;
1621 rq_weight
= sum_weight
;
1623 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1624 shares
= tg
->shares
;
1626 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1627 shares
= tg
->shares
;
1629 for_each_cpu(i
, sched_domain_span(sd
))
1630 update_group_shares_cpu(tg
, i
, shares
, rq_weight
, usd_rq_weight
);
1632 local_irq_restore(flags
);
1638 * Compute the cpu's hierarchical load factor for each task group.
1639 * This needs to be done in a top-down fashion because the load of a child
1640 * group is a fraction of its parents load.
1642 static int tg_load_down(struct task_group
*tg
, void *data
)
1645 long cpu
= (long)data
;
1648 load
= cpu_rq(cpu
)->load
.weight
;
1650 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1651 load
*= tg
->cfs_rq
[cpu
]->shares
;
1652 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1655 tg
->cfs_rq
[cpu
]->h_load
= load
;
1660 static void update_shares(struct sched_domain
*sd
)
1665 if (root_task_group_empty())
1668 now
= local_clock();
1669 elapsed
= now
- sd
->last_update
;
1671 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1672 sd
->last_update
= now
;
1673 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1677 static void update_h_load(long cpu
)
1679 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1684 static inline void update_shares(struct sched_domain
*sd
)
1690 #ifdef CONFIG_PREEMPT
1692 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1695 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1696 * way at the expense of forcing extra atomic operations in all
1697 * invocations. This assures that the double_lock is acquired using the
1698 * same underlying policy as the spinlock_t on this architecture, which
1699 * reduces latency compared to the unfair variant below. However, it
1700 * also adds more overhead and therefore may reduce throughput.
1702 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1703 __releases(this_rq
->lock
)
1704 __acquires(busiest
->lock
)
1705 __acquires(this_rq
->lock
)
1707 raw_spin_unlock(&this_rq
->lock
);
1708 double_rq_lock(this_rq
, busiest
);
1715 * Unfair double_lock_balance: Optimizes throughput at the expense of
1716 * latency by eliminating extra atomic operations when the locks are
1717 * already in proper order on entry. This favors lower cpu-ids and will
1718 * grant the double lock to lower cpus over higher ids under contention,
1719 * regardless of entry order into the function.
1721 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1722 __releases(this_rq
->lock
)
1723 __acquires(busiest
->lock
)
1724 __acquires(this_rq
->lock
)
1728 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1729 if (busiest
< this_rq
) {
1730 raw_spin_unlock(&this_rq
->lock
);
1731 raw_spin_lock(&busiest
->lock
);
1732 raw_spin_lock_nested(&this_rq
->lock
,
1733 SINGLE_DEPTH_NESTING
);
1736 raw_spin_lock_nested(&busiest
->lock
,
1737 SINGLE_DEPTH_NESTING
);
1742 #endif /* CONFIG_PREEMPT */
1745 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1747 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1749 if (unlikely(!irqs_disabled())) {
1750 /* printk() doesn't work good under rq->lock */
1751 raw_spin_unlock(&this_rq
->lock
);
1755 return _double_lock_balance(this_rq
, busiest
);
1758 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1759 __releases(busiest
->lock
)
1761 raw_spin_unlock(&busiest
->lock
);
1762 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1766 * double_rq_lock - safely lock two runqueues
1768 * Note this does not disable interrupts like task_rq_lock,
1769 * you need to do so manually before calling.
1771 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1772 __acquires(rq1
->lock
)
1773 __acquires(rq2
->lock
)
1775 BUG_ON(!irqs_disabled());
1777 raw_spin_lock(&rq1
->lock
);
1778 __acquire(rq2
->lock
); /* Fake it out ;) */
1781 raw_spin_lock(&rq1
->lock
);
1782 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1784 raw_spin_lock(&rq2
->lock
);
1785 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1791 * double_rq_unlock - safely unlock two runqueues
1793 * Note this does not restore interrupts like task_rq_unlock,
1794 * you need to do so manually after calling.
1796 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1797 __releases(rq1
->lock
)
1798 __releases(rq2
->lock
)
1800 raw_spin_unlock(&rq1
->lock
);
1802 raw_spin_unlock(&rq2
->lock
);
1804 __release(rq2
->lock
);
1809 #ifdef CONFIG_FAIR_GROUP_SCHED
1810 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1813 cfs_rq
->shares
= shares
;
1818 static void calc_load_account_idle(struct rq
*this_rq
);
1819 static void update_sysctl(void);
1820 static int get_update_sysctl_factor(void);
1821 static void update_cpu_load(struct rq
*this_rq
);
1823 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1825 set_task_rq(p
, cpu
);
1828 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1829 * successfuly executed on another CPU. We must ensure that updates of
1830 * per-task data have been completed by this moment.
1833 task_thread_info(p
)->cpu
= cpu
;
1837 static const struct sched_class rt_sched_class
;
1839 #define sched_class_highest (&rt_sched_class)
1840 #define for_each_class(class) \
1841 for (class = sched_class_highest; class; class = class->next)
1843 #include "sched_stats.h"
1845 static void inc_nr_running(struct rq
*rq
)
1850 static void dec_nr_running(struct rq
*rq
)
1855 static void set_load_weight(struct task_struct
*p
)
1857 if (task_has_rt_policy(p
)) {
1858 p
->se
.load
.weight
= 0;
1859 p
->se
.load
.inv_weight
= WMULT_CONST
;
1864 * SCHED_IDLE tasks get minimal weight:
1866 if (p
->policy
== SCHED_IDLE
) {
1867 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1868 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1872 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1873 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1876 static void enqueue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1878 update_rq_clock(rq
);
1879 sched_info_queued(p
);
1880 p
->sched_class
->enqueue_task(rq
, p
, flags
);
1884 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1886 update_rq_clock(rq
);
1887 sched_info_dequeued(p
);
1888 p
->sched_class
->dequeue_task(rq
, p
, flags
);
1893 * activate_task - move a task to the runqueue.
1895 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1897 if (task_contributes_to_load(p
))
1898 rq
->nr_uninterruptible
--;
1900 enqueue_task(rq
, p
, flags
);
1905 * deactivate_task - remove a task from the runqueue.
1907 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int flags
)
1909 if (task_contributes_to_load(p
))
1910 rq
->nr_uninterruptible
++;
1912 dequeue_task(rq
, p
, flags
);
1916 #include "sched_idletask.c"
1917 #include "sched_fair.c"
1918 #include "sched_rt.c"
1919 #ifdef CONFIG_SCHED_DEBUG
1920 # include "sched_debug.c"
1924 * __normal_prio - return the priority that is based on the static prio
1926 static inline int __normal_prio(struct task_struct
*p
)
1928 return p
->static_prio
;
1932 * Calculate the expected normal priority: i.e. priority
1933 * without taking RT-inheritance into account. Might be
1934 * boosted by interactivity modifiers. Changes upon fork,
1935 * setprio syscalls, and whenever the interactivity
1936 * estimator recalculates.
1938 static inline int normal_prio(struct task_struct
*p
)
1942 if (task_has_rt_policy(p
))
1943 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1945 prio
= __normal_prio(p
);
1950 * Calculate the current priority, i.e. the priority
1951 * taken into account by the scheduler. This value might
1952 * be boosted by RT tasks, or might be boosted by
1953 * interactivity modifiers. Will be RT if the task got
1954 * RT-boosted. If not then it returns p->normal_prio.
1956 static int effective_prio(struct task_struct
*p
)
1958 p
->normal_prio
= normal_prio(p
);
1960 * If we are RT tasks or we were boosted to RT priority,
1961 * keep the priority unchanged. Otherwise, update priority
1962 * to the normal priority:
1964 if (!rt_prio(p
->prio
))
1965 return p
->normal_prio
;
1970 * task_curr - is this task currently executing on a CPU?
1971 * @p: the task in question.
1973 inline int task_curr(const struct task_struct
*p
)
1975 return cpu_curr(task_cpu(p
)) == p
;
1978 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1979 const struct sched_class
*prev_class
,
1980 int oldprio
, int running
)
1982 if (prev_class
!= p
->sched_class
) {
1983 if (prev_class
->switched_from
)
1984 prev_class
->switched_from(rq
, p
, running
);
1985 p
->sched_class
->switched_to(rq
, p
, running
);
1987 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
1992 * Is this task likely cache-hot:
1995 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
1999 if (p
->sched_class
!= &fair_sched_class
)
2003 * Buddy candidates are cache hot:
2005 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
2006 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2007 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2010 if (sysctl_sched_migration_cost
== -1)
2012 if (sysctl_sched_migration_cost
== 0)
2015 delta
= now
- p
->se
.exec_start
;
2017 return delta
< (s64
)sysctl_sched_migration_cost
;
2020 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2022 #ifdef CONFIG_SCHED_DEBUG
2024 * We should never call set_task_cpu() on a blocked task,
2025 * ttwu() will sort out the placement.
2027 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
2028 !(task_thread_info(p
)->preempt_count
& PREEMPT_ACTIVE
));
2031 trace_sched_migrate_task(p
, new_cpu
);
2033 if (task_cpu(p
) != new_cpu
) {
2034 p
->se
.nr_migrations
++;
2035 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, 1, NULL
, 0);
2038 __set_task_cpu(p
, new_cpu
);
2041 struct migration_arg
{
2042 struct task_struct
*task
;
2046 static int migration_cpu_stop(void *data
);
2049 * The task's runqueue lock must be held.
2050 * Returns true if you have to wait for migration thread.
2052 static bool migrate_task(struct task_struct
*p
, int dest_cpu
)
2054 struct rq
*rq
= task_rq(p
);
2057 * If the task is not on a runqueue (and not running), then
2058 * the next wake-up will properly place the task.
2060 return p
->se
.on_rq
|| task_running(rq
, p
);
2064 * wait_task_inactive - wait for a thread to unschedule.
2066 * If @match_state is nonzero, it's the @p->state value just checked and
2067 * not expected to change. If it changes, i.e. @p might have woken up,
2068 * then return zero. When we succeed in waiting for @p to be off its CPU,
2069 * we return a positive number (its total switch count). If a second call
2070 * a short while later returns the same number, the caller can be sure that
2071 * @p has remained unscheduled the whole time.
2073 * The caller must ensure that the task *will* unschedule sometime soon,
2074 * else this function might spin for a *long* time. This function can't
2075 * be called with interrupts off, or it may introduce deadlock with
2076 * smp_call_function() if an IPI is sent by the same process we are
2077 * waiting to become inactive.
2079 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2081 unsigned long flags
;
2088 * We do the initial early heuristics without holding
2089 * any task-queue locks at all. We'll only try to get
2090 * the runqueue lock when things look like they will
2096 * If the task is actively running on another CPU
2097 * still, just relax and busy-wait without holding
2100 * NOTE! Since we don't hold any locks, it's not
2101 * even sure that "rq" stays as the right runqueue!
2102 * But we don't care, since "task_running()" will
2103 * return false if the runqueue has changed and p
2104 * is actually now running somewhere else!
2106 while (task_running(rq
, p
)) {
2107 if (match_state
&& unlikely(p
->state
!= match_state
))
2113 * Ok, time to look more closely! We need the rq
2114 * lock now, to be *sure*. If we're wrong, we'll
2115 * just go back and repeat.
2117 rq
= task_rq_lock(p
, &flags
);
2118 trace_sched_wait_task(p
);
2119 running
= task_running(rq
, p
);
2120 on_rq
= p
->se
.on_rq
;
2122 if (!match_state
|| p
->state
== match_state
)
2123 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2124 task_rq_unlock(rq
, &flags
);
2127 * If it changed from the expected state, bail out now.
2129 if (unlikely(!ncsw
))
2133 * Was it really running after all now that we
2134 * checked with the proper locks actually held?
2136 * Oops. Go back and try again..
2138 if (unlikely(running
)) {
2144 * It's not enough that it's not actively running,
2145 * it must be off the runqueue _entirely_, and not
2148 * So if it was still runnable (but just not actively
2149 * running right now), it's preempted, and we should
2150 * yield - it could be a while.
2152 if (unlikely(on_rq
)) {
2153 schedule_timeout_uninterruptible(1);
2158 * Ahh, all good. It wasn't running, and it wasn't
2159 * runnable, which means that it will never become
2160 * running in the future either. We're all done!
2169 * kick_process - kick a running thread to enter/exit the kernel
2170 * @p: the to-be-kicked thread
2172 * Cause a process which is running on another CPU to enter
2173 * kernel-mode, without any delay. (to get signals handled.)
2175 * NOTE: this function doesnt have to take the runqueue lock,
2176 * because all it wants to ensure is that the remote task enters
2177 * the kernel. If the IPI races and the task has been migrated
2178 * to another CPU then no harm is done and the purpose has been
2181 void kick_process(struct task_struct
*p
)
2187 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2188 smp_send_reschedule(cpu
);
2191 EXPORT_SYMBOL_GPL(kick_process
);
2192 #endif /* CONFIG_SMP */
2195 * task_oncpu_function_call - call a function on the cpu on which a task runs
2196 * @p: the task to evaluate
2197 * @func: the function to be called
2198 * @info: the function call argument
2200 * Calls the function @func when the task is currently running. This might
2201 * be on the current CPU, which just calls the function directly
2203 void task_oncpu_function_call(struct task_struct
*p
,
2204 void (*func
) (void *info
), void *info
)
2211 smp_call_function_single(cpu
, func
, info
, 1);
2217 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2219 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
2222 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(cpu
));
2224 /* Look for allowed, online CPU in same node. */
2225 for_each_cpu_and(dest_cpu
, nodemask
, cpu_active_mask
)
2226 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
2229 /* Any allowed, online CPU? */
2230 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_active_mask
);
2231 if (dest_cpu
< nr_cpu_ids
)
2234 /* No more Mr. Nice Guy. */
2235 if (unlikely(dest_cpu
>= nr_cpu_ids
)) {
2236 dest_cpu
= cpuset_cpus_allowed_fallback(p
);
2238 * Don't tell them about moving exiting tasks or
2239 * kernel threads (both mm NULL), since they never
2242 if (p
->mm
&& printk_ratelimit()) {
2243 printk(KERN_INFO
"process %d (%s) no "
2244 "longer affine to cpu%d\n",
2245 task_pid_nr(p
), p
->comm
, cpu
);
2253 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2256 int select_task_rq(struct rq
*rq
, struct task_struct
*p
, int sd_flags
, int wake_flags
)
2258 int cpu
= p
->sched_class
->select_task_rq(rq
, p
, sd_flags
, wake_flags
);
2261 * In order not to call set_task_cpu() on a blocking task we need
2262 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2265 * Since this is common to all placement strategies, this lives here.
2267 * [ this allows ->select_task() to simply return task_cpu(p) and
2268 * not worry about this generic constraint ]
2270 if (unlikely(!cpumask_test_cpu(cpu
, &p
->cpus_allowed
) ||
2272 cpu
= select_fallback_rq(task_cpu(p
), p
);
2277 static void update_avg(u64
*avg
, u64 sample
)
2279 s64 diff
= sample
- *avg
;
2284 static inline void ttwu_activate(struct task_struct
*p
, struct rq
*rq
,
2285 bool is_sync
, bool is_migrate
, bool is_local
,
2286 unsigned long en_flags
)
2288 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
2290 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
2292 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
2294 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
2296 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
2298 activate_task(rq
, p
, en_flags
);
2301 static inline void ttwu_post_activation(struct task_struct
*p
, struct rq
*rq
,
2302 int wake_flags
, bool success
)
2304 trace_sched_wakeup(p
, success
);
2305 check_preempt_curr(rq
, p
, wake_flags
);
2307 p
->state
= TASK_RUNNING
;
2309 if (p
->sched_class
->task_woken
)
2310 p
->sched_class
->task_woken(rq
, p
);
2312 if (unlikely(rq
->idle_stamp
)) {
2313 u64 delta
= rq
->clock
- rq
->idle_stamp
;
2314 u64 max
= 2*sysctl_sched_migration_cost
;
2319 update_avg(&rq
->avg_idle
, delta
);
2323 /* if a worker is waking up, notify workqueue */
2324 if ((p
->flags
& PF_WQ_WORKER
) && success
)
2325 wq_worker_waking_up(p
, cpu_of(rq
));
2329 * try_to_wake_up - wake up a thread
2330 * @p: the thread to be awakened
2331 * @state: the mask of task states that can be woken
2332 * @wake_flags: wake modifier flags (WF_*)
2334 * Put it on the run-queue if it's not already there. The "current"
2335 * thread is always on the run-queue (except when the actual
2336 * re-schedule is in progress), and as such you're allowed to do
2337 * the simpler "current->state = TASK_RUNNING" to mark yourself
2338 * runnable without the overhead of this.
2340 * Returns %true if @p was woken up, %false if it was already running
2341 * or @state didn't match @p's state.
2343 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
,
2346 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2347 unsigned long flags
;
2348 unsigned long en_flags
= ENQUEUE_WAKEUP
;
2351 this_cpu
= get_cpu();
2354 rq
= task_rq_lock(p
, &flags
);
2355 if (!(p
->state
& state
))
2365 if (unlikely(task_running(rq
, p
)))
2369 * In order to handle concurrent wakeups and release the rq->lock
2370 * we put the task in TASK_WAKING state.
2372 * First fix up the nr_uninterruptible count:
2374 if (task_contributes_to_load(p
)) {
2375 if (likely(cpu_online(orig_cpu
)))
2376 rq
->nr_uninterruptible
--;
2378 this_rq()->nr_uninterruptible
--;
2380 p
->state
= TASK_WAKING
;
2382 if (p
->sched_class
->task_waking
) {
2383 p
->sched_class
->task_waking(rq
, p
);
2384 en_flags
|= ENQUEUE_WAKING
;
2387 cpu
= select_task_rq(rq
, p
, SD_BALANCE_WAKE
, wake_flags
);
2388 if (cpu
!= orig_cpu
)
2389 set_task_cpu(p
, cpu
);
2390 __task_rq_unlock(rq
);
2393 raw_spin_lock(&rq
->lock
);
2396 * We migrated the task without holding either rq->lock, however
2397 * since the task is not on the task list itself, nobody else
2398 * will try and migrate the task, hence the rq should match the
2399 * cpu we just moved it to.
2401 WARN_ON(task_cpu(p
) != cpu
);
2402 WARN_ON(p
->state
!= TASK_WAKING
);
2404 #ifdef CONFIG_SCHEDSTATS
2405 schedstat_inc(rq
, ttwu_count
);
2406 if (cpu
== this_cpu
)
2407 schedstat_inc(rq
, ttwu_local
);
2409 struct sched_domain
*sd
;
2410 for_each_domain(this_cpu
, sd
) {
2411 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2412 schedstat_inc(sd
, ttwu_wake_remote
);
2417 #endif /* CONFIG_SCHEDSTATS */
2420 #endif /* CONFIG_SMP */
2421 ttwu_activate(p
, rq
, wake_flags
& WF_SYNC
, orig_cpu
!= cpu
,
2422 cpu
== this_cpu
, en_flags
);
2425 ttwu_post_activation(p
, rq
, wake_flags
, success
);
2427 task_rq_unlock(rq
, &flags
);
2434 * try_to_wake_up_local - try to wake up a local task with rq lock held
2435 * @p: the thread to be awakened
2437 * Put @p on the run-queue if it's not alredy there. The caller must
2438 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2439 * the current task. this_rq() stays locked over invocation.
2441 static void try_to_wake_up_local(struct task_struct
*p
)
2443 struct rq
*rq
= task_rq(p
);
2444 bool success
= false;
2446 BUG_ON(rq
!= this_rq());
2447 BUG_ON(p
== current
);
2448 lockdep_assert_held(&rq
->lock
);
2450 if (!(p
->state
& TASK_NORMAL
))
2454 if (likely(!task_running(rq
, p
))) {
2455 schedstat_inc(rq
, ttwu_count
);
2456 schedstat_inc(rq
, ttwu_local
);
2458 ttwu_activate(p
, rq
, false, false, true, ENQUEUE_WAKEUP
);
2461 ttwu_post_activation(p
, rq
, 0, success
);
2465 * wake_up_process - Wake up a specific process
2466 * @p: The process to be woken up.
2468 * Attempt to wake up the nominated process and move it to the set of runnable
2469 * processes. Returns 1 if the process was woken up, 0 if it was already
2472 * It may be assumed that this function implies a write memory barrier before
2473 * changing the task state if and only if any tasks are woken up.
2475 int wake_up_process(struct task_struct
*p
)
2477 return try_to_wake_up(p
, TASK_ALL
, 0);
2479 EXPORT_SYMBOL(wake_up_process
);
2481 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2483 return try_to_wake_up(p
, state
, 0);
2487 * Perform scheduler related setup for a newly forked process p.
2488 * p is forked by current.
2490 * __sched_fork() is basic setup used by init_idle() too:
2492 static void __sched_fork(struct task_struct
*p
)
2494 p
->se
.exec_start
= 0;
2495 p
->se
.sum_exec_runtime
= 0;
2496 p
->se
.prev_sum_exec_runtime
= 0;
2497 p
->se
.nr_migrations
= 0;
2499 #ifdef CONFIG_SCHEDSTATS
2500 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
2503 INIT_LIST_HEAD(&p
->rt
.run_list
);
2505 INIT_LIST_HEAD(&p
->se
.group_node
);
2507 #ifdef CONFIG_PREEMPT_NOTIFIERS
2508 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2513 * fork()/clone()-time setup:
2515 void sched_fork(struct task_struct
*p
, int clone_flags
)
2517 int cpu
= get_cpu();
2521 * We mark the process as running here. This guarantees that
2522 * nobody will actually run it, and a signal or other external
2523 * event cannot wake it up and insert it on the runqueue either.
2525 p
->state
= TASK_RUNNING
;
2528 * Revert to default priority/policy on fork if requested.
2530 if (unlikely(p
->sched_reset_on_fork
)) {
2531 if (p
->policy
== SCHED_FIFO
|| p
->policy
== SCHED_RR
) {
2532 p
->policy
= SCHED_NORMAL
;
2533 p
->normal_prio
= p
->static_prio
;
2536 if (PRIO_TO_NICE(p
->static_prio
) < 0) {
2537 p
->static_prio
= NICE_TO_PRIO(0);
2538 p
->normal_prio
= p
->static_prio
;
2543 * We don't need the reset flag anymore after the fork. It has
2544 * fulfilled its duty:
2546 p
->sched_reset_on_fork
= 0;
2550 * Make sure we do not leak PI boosting priority to the child.
2552 p
->prio
= current
->normal_prio
;
2554 if (!rt_prio(p
->prio
))
2555 p
->sched_class
= &fair_sched_class
;
2557 if (p
->sched_class
->task_fork
)
2558 p
->sched_class
->task_fork(p
);
2561 * The child is not yet in the pid-hash so no cgroup attach races,
2562 * and the cgroup is pinned to this child due to cgroup_fork()
2563 * is ran before sched_fork().
2565 * Silence PROVE_RCU.
2568 set_task_cpu(p
, cpu
);
2571 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2572 if (likely(sched_info_on()))
2573 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2575 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2578 #ifdef CONFIG_PREEMPT
2579 /* Want to start with kernel preemption disabled. */
2580 task_thread_info(p
)->preempt_count
= 1;
2582 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2588 * wake_up_new_task - wake up a newly created task for the first time.
2590 * This function will do some initial scheduler statistics housekeeping
2591 * that must be done for every newly created context, then puts the task
2592 * on the runqueue and wakes it.
2594 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2596 unsigned long flags
;
2598 int cpu __maybe_unused
= get_cpu();
2601 rq
= task_rq_lock(p
, &flags
);
2602 p
->state
= TASK_WAKING
;
2605 * Fork balancing, do it here and not earlier because:
2606 * - cpus_allowed can change in the fork path
2607 * - any previously selected cpu might disappear through hotplug
2609 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2610 * without people poking at ->cpus_allowed.
2612 cpu
= select_task_rq(rq
, p
, SD_BALANCE_FORK
, 0);
2613 set_task_cpu(p
, cpu
);
2615 p
->state
= TASK_RUNNING
;
2616 task_rq_unlock(rq
, &flags
);
2619 rq
= task_rq_lock(p
, &flags
);
2620 activate_task(rq
, p
, 0);
2621 trace_sched_wakeup_new(p
, 1);
2622 check_preempt_curr(rq
, p
, WF_FORK
);
2624 if (p
->sched_class
->task_woken
)
2625 p
->sched_class
->task_woken(rq
, p
);
2627 task_rq_unlock(rq
, &flags
);
2631 #ifdef CONFIG_PREEMPT_NOTIFIERS
2634 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2635 * @notifier: notifier struct to register
2637 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2639 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2641 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2644 * preempt_notifier_unregister - no longer interested in preemption notifications
2645 * @notifier: notifier struct to unregister
2647 * This is safe to call from within a preemption notifier.
2649 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2651 hlist_del(¬ifier
->link
);
2653 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2655 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2657 struct preempt_notifier
*notifier
;
2658 struct hlist_node
*node
;
2660 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2661 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2665 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2666 struct task_struct
*next
)
2668 struct preempt_notifier
*notifier
;
2669 struct hlist_node
*node
;
2671 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2672 notifier
->ops
->sched_out(notifier
, next
);
2675 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2677 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2682 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2683 struct task_struct
*next
)
2687 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2690 * prepare_task_switch - prepare to switch tasks
2691 * @rq: the runqueue preparing to switch
2692 * @prev: the current task that is being switched out
2693 * @next: the task we are going to switch to.
2695 * This is called with the rq lock held and interrupts off. It must
2696 * be paired with a subsequent finish_task_switch after the context
2699 * prepare_task_switch sets up locking and calls architecture specific
2703 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2704 struct task_struct
*next
)
2706 fire_sched_out_preempt_notifiers(prev
, next
);
2707 prepare_lock_switch(rq
, next
);
2708 prepare_arch_switch(next
);
2712 * finish_task_switch - clean up after a task-switch
2713 * @rq: runqueue associated with task-switch
2714 * @prev: the thread we just switched away from.
2716 * finish_task_switch must be called after the context switch, paired
2717 * with a prepare_task_switch call before the context switch.
2718 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2719 * and do any other architecture-specific cleanup actions.
2721 * Note that we may have delayed dropping an mm in context_switch(). If
2722 * so, we finish that here outside of the runqueue lock. (Doing it
2723 * with the lock held can cause deadlocks; see schedule() for
2726 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2727 __releases(rq
->lock
)
2729 struct mm_struct
*mm
= rq
->prev_mm
;
2735 * A task struct has one reference for the use as "current".
2736 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2737 * schedule one last time. The schedule call will never return, and
2738 * the scheduled task must drop that reference.
2739 * The test for TASK_DEAD must occur while the runqueue locks are
2740 * still held, otherwise prev could be scheduled on another cpu, die
2741 * there before we look at prev->state, and then the reference would
2743 * Manfred Spraul <manfred@colorfullife.com>
2745 prev_state
= prev
->state
;
2746 finish_arch_switch(prev
);
2747 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2748 local_irq_disable();
2749 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2750 perf_event_task_sched_in(current
);
2751 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2753 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2754 finish_lock_switch(rq
, prev
);
2756 fire_sched_in_preempt_notifiers(current
);
2759 if (unlikely(prev_state
== TASK_DEAD
)) {
2761 * Remove function-return probe instances associated with this
2762 * task and put them back on the free list.
2764 kprobe_flush_task(prev
);
2765 put_task_struct(prev
);
2771 /* assumes rq->lock is held */
2772 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
2774 if (prev
->sched_class
->pre_schedule
)
2775 prev
->sched_class
->pre_schedule(rq
, prev
);
2778 /* rq->lock is NOT held, but preemption is disabled */
2779 static inline void post_schedule(struct rq
*rq
)
2781 if (rq
->post_schedule
) {
2782 unsigned long flags
;
2784 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2785 if (rq
->curr
->sched_class
->post_schedule
)
2786 rq
->curr
->sched_class
->post_schedule(rq
);
2787 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2789 rq
->post_schedule
= 0;
2795 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
2799 static inline void post_schedule(struct rq
*rq
)
2806 * schedule_tail - first thing a freshly forked thread must call.
2807 * @prev: the thread we just switched away from.
2809 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2810 __releases(rq
->lock
)
2812 struct rq
*rq
= this_rq();
2814 finish_task_switch(rq
, prev
);
2817 * FIXME: do we need to worry about rq being invalidated by the
2822 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2823 /* In this case, finish_task_switch does not reenable preemption */
2826 if (current
->set_child_tid
)
2827 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2831 * context_switch - switch to the new MM and the new
2832 * thread's register state.
2835 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2836 struct task_struct
*next
)
2838 struct mm_struct
*mm
, *oldmm
;
2840 prepare_task_switch(rq
, prev
, next
);
2841 trace_sched_switch(prev
, next
);
2843 oldmm
= prev
->active_mm
;
2845 * For paravirt, this is coupled with an exit in switch_to to
2846 * combine the page table reload and the switch backend into
2849 arch_start_context_switch(prev
);
2852 next
->active_mm
= oldmm
;
2853 atomic_inc(&oldmm
->mm_count
);
2854 enter_lazy_tlb(oldmm
, next
);
2856 switch_mm(oldmm
, mm
, next
);
2858 if (likely(!prev
->mm
)) {
2859 prev
->active_mm
= NULL
;
2860 rq
->prev_mm
= oldmm
;
2863 * Since the runqueue lock will be released by the next
2864 * task (which is an invalid locking op but in the case
2865 * of the scheduler it's an obvious special-case), so we
2866 * do an early lockdep release here:
2868 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2869 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2872 /* Here we just switch the register state and the stack. */
2873 switch_to(prev
, next
, prev
);
2877 * this_rq must be evaluated again because prev may have moved
2878 * CPUs since it called schedule(), thus the 'rq' on its stack
2879 * frame will be invalid.
2881 finish_task_switch(this_rq(), prev
);
2885 * nr_running, nr_uninterruptible and nr_context_switches:
2887 * externally visible scheduler statistics: current number of runnable
2888 * threads, current number of uninterruptible-sleeping threads, total
2889 * number of context switches performed since bootup.
2891 unsigned long nr_running(void)
2893 unsigned long i
, sum
= 0;
2895 for_each_online_cpu(i
)
2896 sum
+= cpu_rq(i
)->nr_running
;
2901 unsigned long nr_uninterruptible(void)
2903 unsigned long i
, sum
= 0;
2905 for_each_possible_cpu(i
)
2906 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2909 * Since we read the counters lockless, it might be slightly
2910 * inaccurate. Do not allow it to go below zero though:
2912 if (unlikely((long)sum
< 0))
2918 unsigned long long nr_context_switches(void)
2921 unsigned long long sum
= 0;
2923 for_each_possible_cpu(i
)
2924 sum
+= cpu_rq(i
)->nr_switches
;
2929 unsigned long nr_iowait(void)
2931 unsigned long i
, sum
= 0;
2933 for_each_possible_cpu(i
)
2934 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2939 unsigned long nr_iowait_cpu(int cpu
)
2941 struct rq
*this = cpu_rq(cpu
);
2942 return atomic_read(&this->nr_iowait
);
2945 unsigned long this_cpu_load(void)
2947 struct rq
*this = this_rq();
2948 return this->cpu_load
[0];
2952 /* Variables and functions for calc_load */
2953 static atomic_long_t calc_load_tasks
;
2954 static unsigned long calc_load_update
;
2955 unsigned long avenrun
[3];
2956 EXPORT_SYMBOL(avenrun
);
2958 static long calc_load_fold_active(struct rq
*this_rq
)
2960 long nr_active
, delta
= 0;
2962 nr_active
= this_rq
->nr_running
;
2963 nr_active
+= (long) this_rq
->nr_uninterruptible
;
2965 if (nr_active
!= this_rq
->calc_load_active
) {
2966 delta
= nr_active
- this_rq
->calc_load_active
;
2967 this_rq
->calc_load_active
= nr_active
;
2975 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2977 * When making the ILB scale, we should try to pull this in as well.
2979 static atomic_long_t calc_load_tasks_idle
;
2981 static void calc_load_account_idle(struct rq
*this_rq
)
2985 delta
= calc_load_fold_active(this_rq
);
2987 atomic_long_add(delta
, &calc_load_tasks_idle
);
2990 static long calc_load_fold_idle(void)
2995 * Its got a race, we don't care...
2997 if (atomic_long_read(&calc_load_tasks_idle
))
2998 delta
= atomic_long_xchg(&calc_load_tasks_idle
, 0);
3003 static void calc_load_account_idle(struct rq
*this_rq
)
3007 static inline long calc_load_fold_idle(void)
3014 * get_avenrun - get the load average array
3015 * @loads: pointer to dest load array
3016 * @offset: offset to add
3017 * @shift: shift count to shift the result left
3019 * These values are estimates at best, so no need for locking.
3021 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
3023 loads
[0] = (avenrun
[0] + offset
) << shift
;
3024 loads
[1] = (avenrun
[1] + offset
) << shift
;
3025 loads
[2] = (avenrun
[2] + offset
) << shift
;
3028 static unsigned long
3029 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
3032 load
+= active
* (FIXED_1
- exp
);
3033 return load
>> FSHIFT
;
3037 * calc_load - update the avenrun load estimates 10 ticks after the
3038 * CPUs have updated calc_load_tasks.
3040 void calc_global_load(void)
3042 unsigned long upd
= calc_load_update
+ 10;
3045 if (time_before(jiffies
, upd
))
3048 active
= atomic_long_read(&calc_load_tasks
);
3049 active
= active
> 0 ? active
* FIXED_1
: 0;
3051 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
3052 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
3053 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
3055 calc_load_update
+= LOAD_FREQ
;
3059 * Called from update_cpu_load() to periodically update this CPU's
3062 static void calc_load_account_active(struct rq
*this_rq
)
3066 if (time_before(jiffies
, this_rq
->calc_load_update
))
3069 delta
= calc_load_fold_active(this_rq
);
3070 delta
+= calc_load_fold_idle();
3072 atomic_long_add(delta
, &calc_load_tasks
);
3074 this_rq
->calc_load_update
+= LOAD_FREQ
;
3078 * The exact cpuload at various idx values, calculated at every tick would be
3079 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
3081 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
3082 * on nth tick when cpu may be busy, then we have:
3083 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3084 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
3086 * decay_load_missed() below does efficient calculation of
3087 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
3088 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
3090 * The calculation is approximated on a 128 point scale.
3091 * degrade_zero_ticks is the number of ticks after which load at any
3092 * particular idx is approximated to be zero.
3093 * degrade_factor is a precomputed table, a row for each load idx.
3094 * Each column corresponds to degradation factor for a power of two ticks,
3095 * based on 128 point scale.
3097 * row 2, col 3 (=12) says that the degradation at load idx 2 after
3098 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
3100 * With this power of 2 load factors, we can degrade the load n times
3101 * by looking at 1 bits in n and doing as many mult/shift instead of
3102 * n mult/shifts needed by the exact degradation.
3104 #define DEGRADE_SHIFT 7
3105 static const unsigned char
3106 degrade_zero_ticks
[CPU_LOAD_IDX_MAX
] = {0, 8, 32, 64, 128};
3107 static const unsigned char
3108 degrade_factor
[CPU_LOAD_IDX_MAX
][DEGRADE_SHIFT
+ 1] = {
3109 {0, 0, 0, 0, 0, 0, 0, 0},
3110 {64, 32, 8, 0, 0, 0, 0, 0},
3111 {96, 72, 40, 12, 1, 0, 0},
3112 {112, 98, 75, 43, 15, 1, 0},
3113 {120, 112, 98, 76, 45, 16, 2} };
3116 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
3117 * would be when CPU is idle and so we just decay the old load without
3118 * adding any new load.
3120 static unsigned long
3121 decay_load_missed(unsigned long load
, unsigned long missed_updates
, int idx
)
3125 if (!missed_updates
)
3128 if (missed_updates
>= degrade_zero_ticks
[idx
])
3132 return load
>> missed_updates
;
3134 while (missed_updates
) {
3135 if (missed_updates
% 2)
3136 load
= (load
* degrade_factor
[idx
][j
]) >> DEGRADE_SHIFT
;
3138 missed_updates
>>= 1;
3145 * Update rq->cpu_load[] statistics. This function is usually called every
3146 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
3147 * every tick. We fix it up based on jiffies.
3149 static void update_cpu_load(struct rq
*this_rq
)
3151 unsigned long this_load
= this_rq
->load
.weight
;
3152 unsigned long curr_jiffies
= jiffies
;
3153 unsigned long pending_updates
;
3156 this_rq
->nr_load_updates
++;
3158 /* Avoid repeated calls on same jiffy, when moving in and out of idle */
3159 if (curr_jiffies
== this_rq
->last_load_update_tick
)
3162 pending_updates
= curr_jiffies
- this_rq
->last_load_update_tick
;
3163 this_rq
->last_load_update_tick
= curr_jiffies
;
3165 /* Update our load: */
3166 this_rq
->cpu_load
[0] = this_load
; /* Fasttrack for idx 0 */
3167 for (i
= 1, scale
= 2; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3168 unsigned long old_load
, new_load
;
3170 /* scale is effectively 1 << i now, and >> i divides by scale */
3172 old_load
= this_rq
->cpu_load
[i
];
3173 old_load
= decay_load_missed(old_load
, pending_updates
- 1, i
);
3174 new_load
= this_load
;
3176 * Round up the averaging division if load is increasing. This
3177 * prevents us from getting stuck on 9 if the load is 10, for
3180 if (new_load
> old_load
)
3181 new_load
+= scale
- 1;
3183 this_rq
->cpu_load
[i
] = (old_load
* (scale
- 1) + new_load
) >> i
;
3187 static void update_cpu_load_active(struct rq
*this_rq
)
3189 update_cpu_load(this_rq
);
3191 calc_load_account_active(this_rq
);
3197 * sched_exec - execve() is a valuable balancing opportunity, because at
3198 * this point the task has the smallest effective memory and cache footprint.
3200 void sched_exec(void)
3202 struct task_struct
*p
= current
;
3203 unsigned long flags
;
3207 rq
= task_rq_lock(p
, &flags
);
3208 dest_cpu
= p
->sched_class
->select_task_rq(rq
, p
, SD_BALANCE_EXEC
, 0);
3209 if (dest_cpu
== smp_processor_id())
3213 * select_task_rq() can race against ->cpus_allowed
3215 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
) &&
3216 likely(cpu_active(dest_cpu
)) && migrate_task(p
, dest_cpu
)) {
3217 struct migration_arg arg
= { p
, dest_cpu
};
3219 task_rq_unlock(rq
, &flags
);
3220 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
3224 task_rq_unlock(rq
, &flags
);
3229 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3231 EXPORT_PER_CPU_SYMBOL(kstat
);
3234 * Return any ns on the sched_clock that have not yet been accounted in
3235 * @p in case that task is currently running.
3237 * Called with task_rq_lock() held on @rq.
3239 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
3243 if (task_current(rq
, p
)) {
3244 update_rq_clock(rq
);
3245 ns
= rq
->clock
- p
->se
.exec_start
;
3253 unsigned long long task_delta_exec(struct task_struct
*p
)
3255 unsigned long flags
;
3259 rq
= task_rq_lock(p
, &flags
);
3260 ns
= do_task_delta_exec(p
, rq
);
3261 task_rq_unlock(rq
, &flags
);
3267 * Return accounted runtime for the task.
3268 * In case the task is currently running, return the runtime plus current's
3269 * pending runtime that have not been accounted yet.
3271 unsigned long long task_sched_runtime(struct task_struct
*p
)
3273 unsigned long flags
;
3277 rq
= task_rq_lock(p
, &flags
);
3278 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3279 task_rq_unlock(rq
, &flags
);
3285 * Return sum_exec_runtime for the thread group.
3286 * In case the task is currently running, return the sum plus current's
3287 * pending runtime that have not been accounted yet.
3289 * Note that the thread group might have other running tasks as well,
3290 * so the return value not includes other pending runtime that other
3291 * running tasks might have.
3293 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
3295 struct task_cputime totals
;
3296 unsigned long flags
;
3300 rq
= task_rq_lock(p
, &flags
);
3301 thread_group_cputime(p
, &totals
);
3302 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3303 task_rq_unlock(rq
, &flags
);
3309 * Account user cpu time to a process.
3310 * @p: the process that the cpu time gets accounted to
3311 * @cputime: the cpu time spent in user space since the last update
3312 * @cputime_scaled: cputime scaled by cpu frequency
3314 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
3315 cputime_t cputime_scaled
)
3317 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3320 /* Add user time to process. */
3321 p
->utime
= cputime_add(p
->utime
, cputime
);
3322 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3323 account_group_user_time(p
, cputime
);
3325 /* Add user time to cpustat. */
3326 tmp
= cputime_to_cputime64(cputime
);
3327 if (TASK_NICE(p
) > 0)
3328 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3330 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3332 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
3333 /* Account for user time used */
3334 acct_update_integrals(p
);
3338 * Account guest cpu time to a process.
3339 * @p: the process that the cpu time gets accounted to
3340 * @cputime: the cpu time spent in virtual machine since the last update
3341 * @cputime_scaled: cputime scaled by cpu frequency
3343 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
3344 cputime_t cputime_scaled
)
3347 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3349 tmp
= cputime_to_cputime64(cputime
);
3351 /* Add guest time to process. */
3352 p
->utime
= cputime_add(p
->utime
, cputime
);
3353 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3354 account_group_user_time(p
, cputime
);
3355 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3357 /* Add guest time to cpustat. */
3358 if (TASK_NICE(p
) > 0) {
3359 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3360 cpustat
->guest_nice
= cputime64_add(cpustat
->guest_nice
, tmp
);
3362 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3363 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3368 * Account system cpu time to a process.
3369 * @p: the process that the cpu time gets accounted to
3370 * @hardirq_offset: the offset to subtract from hardirq_count()
3371 * @cputime: the cpu time spent in kernel space since the last update
3372 * @cputime_scaled: cputime scaled by cpu frequency
3374 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3375 cputime_t cputime
, cputime_t cputime_scaled
)
3377 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3380 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
3381 account_guest_time(p
, cputime
, cputime_scaled
);
3385 /* Add system time to process. */
3386 p
->stime
= cputime_add(p
->stime
, cputime
);
3387 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
3388 account_group_system_time(p
, cputime
);
3390 /* Add system time to cpustat. */
3391 tmp
= cputime_to_cputime64(cputime
);
3392 if (hardirq_count() - hardirq_offset
)
3393 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3394 else if (softirq_count())
3395 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3397 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3399 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
3401 /* Account for system time used */
3402 acct_update_integrals(p
);
3406 * Account for involuntary wait time.
3407 * @steal: the cpu time spent in involuntary wait
3409 void account_steal_time(cputime_t cputime
)
3411 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3412 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3414 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
3418 * Account for idle time.
3419 * @cputime: the cpu time spent in idle wait
3421 void account_idle_time(cputime_t cputime
)
3423 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3424 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3425 struct rq
*rq
= this_rq();
3427 if (atomic_read(&rq
->nr_iowait
) > 0)
3428 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
3430 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
3433 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3436 * Account a single tick of cpu time.
3437 * @p: the process that the cpu time gets accounted to
3438 * @user_tick: indicates if the tick is a user or a system tick
3440 void account_process_tick(struct task_struct
*p
, int user_tick
)
3442 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
3443 struct rq
*rq
= this_rq();
3446 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3447 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
3448 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
3451 account_idle_time(cputime_one_jiffy
);
3455 * Account multiple ticks of steal time.
3456 * @p: the process from which the cpu time has been stolen
3457 * @ticks: number of stolen ticks
3459 void account_steal_ticks(unsigned long ticks
)
3461 account_steal_time(jiffies_to_cputime(ticks
));
3465 * Account multiple ticks of idle time.
3466 * @ticks: number of stolen ticks
3468 void account_idle_ticks(unsigned long ticks
)
3470 account_idle_time(jiffies_to_cputime(ticks
));
3476 * Use precise platform statistics if available:
3478 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3479 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3485 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3487 struct task_cputime cputime
;
3489 thread_group_cputime(p
, &cputime
);
3491 *ut
= cputime
.utime
;
3492 *st
= cputime
.stime
;
3496 #ifndef nsecs_to_cputime
3497 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3500 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3502 cputime_t rtime
, utime
= p
->utime
, total
= cputime_add(utime
, p
->stime
);
3505 * Use CFS's precise accounting:
3507 rtime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
);
3512 temp
= (u64
)(rtime
* utime
);
3513 do_div(temp
, total
);
3514 utime
= (cputime_t
)temp
;
3519 * Compare with previous values, to keep monotonicity:
3521 p
->prev_utime
= max(p
->prev_utime
, utime
);
3522 p
->prev_stime
= max(p
->prev_stime
, cputime_sub(rtime
, p
->prev_utime
));
3524 *ut
= p
->prev_utime
;
3525 *st
= p
->prev_stime
;
3529 * Must be called with siglock held.
3531 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3533 struct signal_struct
*sig
= p
->signal
;
3534 struct task_cputime cputime
;
3535 cputime_t rtime
, utime
, total
;
3537 thread_group_cputime(p
, &cputime
);
3539 total
= cputime_add(cputime
.utime
, cputime
.stime
);
3540 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
3545 temp
= (u64
)(rtime
* cputime
.utime
);
3546 do_div(temp
, total
);
3547 utime
= (cputime_t
)temp
;
3551 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
3552 sig
->prev_stime
= max(sig
->prev_stime
,
3553 cputime_sub(rtime
, sig
->prev_utime
));
3555 *ut
= sig
->prev_utime
;
3556 *st
= sig
->prev_stime
;
3561 * This function gets called by the timer code, with HZ frequency.
3562 * We call it with interrupts disabled.
3564 * It also gets called by the fork code, when changing the parent's
3567 void scheduler_tick(void)
3569 int cpu
= smp_processor_id();
3570 struct rq
*rq
= cpu_rq(cpu
);
3571 struct task_struct
*curr
= rq
->curr
;
3575 raw_spin_lock(&rq
->lock
);
3576 update_rq_clock(rq
);
3577 update_cpu_load_active(rq
);
3578 curr
->sched_class
->task_tick(rq
, curr
, 0);
3579 raw_spin_unlock(&rq
->lock
);
3581 perf_event_task_tick(curr
);
3584 rq
->idle_at_tick
= idle_cpu(cpu
);
3585 trigger_load_balance(rq
, cpu
);
3589 notrace
unsigned long get_parent_ip(unsigned long addr
)
3591 if (in_lock_functions(addr
)) {
3592 addr
= CALLER_ADDR2
;
3593 if (in_lock_functions(addr
))
3594 addr
= CALLER_ADDR3
;
3599 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3600 defined(CONFIG_PREEMPT_TRACER))
3602 void __kprobes
add_preempt_count(int val
)
3604 #ifdef CONFIG_DEBUG_PREEMPT
3608 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3611 preempt_count() += val
;
3612 #ifdef CONFIG_DEBUG_PREEMPT
3614 * Spinlock count overflowing soon?
3616 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3619 if (preempt_count() == val
)
3620 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3622 EXPORT_SYMBOL(add_preempt_count
);
3624 void __kprobes
sub_preempt_count(int val
)
3626 #ifdef CONFIG_DEBUG_PREEMPT
3630 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3633 * Is the spinlock portion underflowing?
3635 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3636 !(preempt_count() & PREEMPT_MASK
)))
3640 if (preempt_count() == val
)
3641 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3642 preempt_count() -= val
;
3644 EXPORT_SYMBOL(sub_preempt_count
);
3649 * Print scheduling while atomic bug:
3651 static noinline
void __schedule_bug(struct task_struct
*prev
)
3653 struct pt_regs
*regs
= get_irq_regs();
3655 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3656 prev
->comm
, prev
->pid
, preempt_count());
3658 debug_show_held_locks(prev
);
3660 if (irqs_disabled())
3661 print_irqtrace_events(prev
);
3670 * Various schedule()-time debugging checks and statistics:
3672 static inline void schedule_debug(struct task_struct
*prev
)
3675 * Test if we are atomic. Since do_exit() needs to call into
3676 * schedule() atomically, we ignore that path for now.
3677 * Otherwise, whine if we are scheduling when we should not be.
3679 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
3680 __schedule_bug(prev
);
3682 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3684 schedstat_inc(this_rq(), sched_count
);
3685 #ifdef CONFIG_SCHEDSTATS
3686 if (unlikely(prev
->lock_depth
>= 0)) {
3687 schedstat_inc(this_rq(), bkl_count
);
3688 schedstat_inc(prev
, sched_info
.bkl_count
);
3693 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
3696 update_rq_clock(rq
);
3697 rq
->skip_clock_update
= 0;
3698 prev
->sched_class
->put_prev_task(rq
, prev
);
3702 * Pick up the highest-prio task:
3704 static inline struct task_struct
*
3705 pick_next_task(struct rq
*rq
)
3707 const struct sched_class
*class;
3708 struct task_struct
*p
;
3711 * Optimization: we know that if all tasks are in
3712 * the fair class we can call that function directly:
3714 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3715 p
= fair_sched_class
.pick_next_task(rq
);
3720 class = sched_class_highest
;
3722 p
= class->pick_next_task(rq
);
3726 * Will never be NULL as the idle class always
3727 * returns a non-NULL p:
3729 class = class->next
;
3734 * schedule() is the main scheduler function.
3736 asmlinkage
void __sched
schedule(void)
3738 struct task_struct
*prev
, *next
;
3739 unsigned long *switch_count
;
3745 cpu
= smp_processor_id();
3747 rcu_note_context_switch(cpu
);
3750 release_kernel_lock(prev
);
3751 need_resched_nonpreemptible
:
3753 schedule_debug(prev
);
3755 if (sched_feat(HRTICK
))
3758 raw_spin_lock_irq(&rq
->lock
);
3759 clear_tsk_need_resched(prev
);
3761 switch_count
= &prev
->nivcsw
;
3762 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3763 if (unlikely(signal_pending_state(prev
->state
, prev
))) {
3764 prev
->state
= TASK_RUNNING
;
3767 * If a worker is going to sleep, notify and
3768 * ask workqueue whether it wants to wake up a
3769 * task to maintain concurrency. If so, wake
3772 if (prev
->flags
& PF_WQ_WORKER
) {
3773 struct task_struct
*to_wakeup
;
3775 to_wakeup
= wq_worker_sleeping(prev
, cpu
);
3777 try_to_wake_up_local(to_wakeup
);
3779 deactivate_task(rq
, prev
, DEQUEUE_SLEEP
);
3781 switch_count
= &prev
->nvcsw
;
3784 pre_schedule(rq
, prev
);
3786 if (unlikely(!rq
->nr_running
))
3787 idle_balance(cpu
, rq
);
3789 put_prev_task(rq
, prev
);
3790 next
= pick_next_task(rq
);
3792 if (likely(prev
!= next
)) {
3793 sched_info_switch(prev
, next
);
3794 perf_event_task_sched_out(prev
, next
);
3800 context_switch(rq
, prev
, next
); /* unlocks the rq */
3802 * The context switch have flipped the stack from under us
3803 * and restored the local variables which were saved when
3804 * this task called schedule() in the past. prev == current
3805 * is still correct, but it can be moved to another cpu/rq.
3807 cpu
= smp_processor_id();
3810 raw_spin_unlock_irq(&rq
->lock
);
3814 if (unlikely(reacquire_kernel_lock(prev
)))
3815 goto need_resched_nonpreemptible
;
3817 preempt_enable_no_resched();
3821 EXPORT_SYMBOL(schedule
);
3823 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3825 * Look out! "owner" is an entirely speculative pointer
3826 * access and not reliable.
3828 int mutex_spin_on_owner(struct mutex
*lock
, struct thread_info
*owner
)
3833 if (!sched_feat(OWNER_SPIN
))
3836 #ifdef CONFIG_DEBUG_PAGEALLOC
3838 * Need to access the cpu field knowing that
3839 * DEBUG_PAGEALLOC could have unmapped it if
3840 * the mutex owner just released it and exited.
3842 if (probe_kernel_address(&owner
->cpu
, cpu
))
3849 * Even if the access succeeded (likely case),
3850 * the cpu field may no longer be valid.
3852 if (cpu
>= nr_cpumask_bits
)
3856 * We need to validate that we can do a
3857 * get_cpu() and that we have the percpu area.
3859 if (!cpu_online(cpu
))
3866 * Owner changed, break to re-assess state.
3868 if (lock
->owner
!= owner
)
3872 * Is that owner really running on that cpu?
3874 if (task_thread_info(rq
->curr
) != owner
|| need_resched())
3884 #ifdef CONFIG_PREEMPT
3886 * this is the entry point to schedule() from in-kernel preemption
3887 * off of preempt_enable. Kernel preemptions off return from interrupt
3888 * occur there and call schedule directly.
3890 asmlinkage
void __sched notrace
preempt_schedule(void)
3892 struct thread_info
*ti
= current_thread_info();
3895 * If there is a non-zero preempt_count or interrupts are disabled,
3896 * we do not want to preempt the current task. Just return..
3898 if (likely(ti
->preempt_count
|| irqs_disabled()))
3902 add_preempt_count_notrace(PREEMPT_ACTIVE
);
3904 sub_preempt_count_notrace(PREEMPT_ACTIVE
);
3907 * Check again in case we missed a preemption opportunity
3908 * between schedule and now.
3911 } while (need_resched());
3913 EXPORT_SYMBOL(preempt_schedule
);
3916 * this is the entry point to schedule() from kernel preemption
3917 * off of irq context.
3918 * Note, that this is called and return with irqs disabled. This will
3919 * protect us against recursive calling from irq.
3921 asmlinkage
void __sched
preempt_schedule_irq(void)
3923 struct thread_info
*ti
= current_thread_info();
3925 /* Catch callers which need to be fixed */
3926 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3929 add_preempt_count(PREEMPT_ACTIVE
);
3932 local_irq_disable();
3933 sub_preempt_count(PREEMPT_ACTIVE
);
3936 * Check again in case we missed a preemption opportunity
3937 * between schedule and now.
3940 } while (need_resched());
3943 #endif /* CONFIG_PREEMPT */
3945 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
3948 return try_to_wake_up(curr
->private, mode
, wake_flags
);
3950 EXPORT_SYMBOL(default_wake_function
);
3953 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3954 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3955 * number) then we wake all the non-exclusive tasks and one exclusive task.
3957 * There are circumstances in which we can try to wake a task which has already
3958 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3959 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3961 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3962 int nr_exclusive
, int wake_flags
, void *key
)
3964 wait_queue_t
*curr
, *next
;
3966 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
3967 unsigned flags
= curr
->flags
;
3969 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
3970 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3976 * __wake_up - wake up threads blocked on a waitqueue.
3978 * @mode: which threads
3979 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3980 * @key: is directly passed to the wakeup function
3982 * It may be assumed that this function implies a write memory barrier before
3983 * changing the task state if and only if any tasks are woken up.
3985 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3986 int nr_exclusive
, void *key
)
3988 unsigned long flags
;
3990 spin_lock_irqsave(&q
->lock
, flags
);
3991 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3992 spin_unlock_irqrestore(&q
->lock
, flags
);
3994 EXPORT_SYMBOL(__wake_up
);
3997 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3999 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
4001 __wake_up_common(q
, mode
, 1, 0, NULL
);
4003 EXPORT_SYMBOL_GPL(__wake_up_locked
);
4005 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
4007 __wake_up_common(q
, mode
, 1, 0, key
);
4011 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
4013 * @mode: which threads
4014 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4015 * @key: opaque value to be passed to wakeup targets
4017 * The sync wakeup differs that the waker knows that it will schedule
4018 * away soon, so while the target thread will be woken up, it will not
4019 * be migrated to another CPU - ie. the two threads are 'synchronized'
4020 * with each other. This can prevent needless bouncing between CPUs.
4022 * On UP it can prevent extra preemption.
4024 * It may be assumed that this function implies a write memory barrier before
4025 * changing the task state if and only if any tasks are woken up.
4027 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
4028 int nr_exclusive
, void *key
)
4030 unsigned long flags
;
4031 int wake_flags
= WF_SYNC
;
4036 if (unlikely(!nr_exclusive
))
4039 spin_lock_irqsave(&q
->lock
, flags
);
4040 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
4041 spin_unlock_irqrestore(&q
->lock
, flags
);
4043 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
4046 * __wake_up_sync - see __wake_up_sync_key()
4048 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
4050 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
4052 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
4055 * complete: - signals a single thread waiting on this completion
4056 * @x: holds the state of this particular completion
4058 * This will wake up a single thread waiting on this completion. Threads will be
4059 * awakened in the same order in which they were queued.
4061 * See also complete_all(), wait_for_completion() and related routines.
4063 * It may be assumed that this function implies a write memory barrier before
4064 * changing the task state if and only if any tasks are woken up.
4066 void complete(struct completion
*x
)
4068 unsigned long flags
;
4070 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4072 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
4073 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4075 EXPORT_SYMBOL(complete
);
4078 * complete_all: - signals all threads waiting on this completion
4079 * @x: holds the state of this particular completion
4081 * This will wake up all threads waiting on this particular completion event.
4083 * It may be assumed that this function implies a write memory barrier before
4084 * changing the task state if and only if any tasks are woken up.
4086 void complete_all(struct completion
*x
)
4088 unsigned long flags
;
4090 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4091 x
->done
+= UINT_MAX
/2;
4092 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
4093 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4095 EXPORT_SYMBOL(complete_all
);
4097 static inline long __sched
4098 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
4101 DECLARE_WAITQUEUE(wait
, current
);
4103 __add_wait_queue_tail_exclusive(&x
->wait
, &wait
);
4105 if (signal_pending_state(state
, current
)) {
4106 timeout
= -ERESTARTSYS
;
4109 __set_current_state(state
);
4110 spin_unlock_irq(&x
->wait
.lock
);
4111 timeout
= schedule_timeout(timeout
);
4112 spin_lock_irq(&x
->wait
.lock
);
4113 } while (!x
->done
&& timeout
);
4114 __remove_wait_queue(&x
->wait
, &wait
);
4119 return timeout
?: 1;
4123 wait_for_common(struct completion
*x
, long timeout
, int state
)
4127 spin_lock_irq(&x
->wait
.lock
);
4128 timeout
= do_wait_for_common(x
, timeout
, state
);
4129 spin_unlock_irq(&x
->wait
.lock
);
4134 * wait_for_completion: - waits for completion of a task
4135 * @x: holds the state of this particular completion
4137 * This waits to be signaled for completion of a specific task. It is NOT
4138 * interruptible and there is no timeout.
4140 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
4141 * and interrupt capability. Also see complete().
4143 void __sched
wait_for_completion(struct completion
*x
)
4145 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
4147 EXPORT_SYMBOL(wait_for_completion
);
4150 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
4151 * @x: holds the state of this particular completion
4152 * @timeout: timeout value in jiffies
4154 * This waits for either a completion of a specific task to be signaled or for a
4155 * specified timeout to expire. The timeout is in jiffies. It is not
4158 unsigned long __sched
4159 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4161 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4163 EXPORT_SYMBOL(wait_for_completion_timeout
);
4166 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4167 * @x: holds the state of this particular completion
4169 * This waits for completion of a specific task to be signaled. It is
4172 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4174 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4175 if (t
== -ERESTARTSYS
)
4179 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4182 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4183 * @x: holds the state of this particular completion
4184 * @timeout: timeout value in jiffies
4186 * This waits for either a completion of a specific task to be signaled or for a
4187 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4189 unsigned long __sched
4190 wait_for_completion_interruptible_timeout(struct completion
*x
,
4191 unsigned long timeout
)
4193 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4195 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4198 * wait_for_completion_killable: - waits for completion of a task (killable)
4199 * @x: holds the state of this particular completion
4201 * This waits to be signaled for completion of a specific task. It can be
4202 * interrupted by a kill signal.
4204 int __sched
wait_for_completion_killable(struct completion
*x
)
4206 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4207 if (t
== -ERESTARTSYS
)
4211 EXPORT_SYMBOL(wait_for_completion_killable
);
4214 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
4215 * @x: holds the state of this particular completion
4216 * @timeout: timeout value in jiffies
4218 * This waits for either a completion of a specific task to be
4219 * signaled or for a specified timeout to expire. It can be
4220 * interrupted by a kill signal. The timeout is in jiffies.
4222 unsigned long __sched
4223 wait_for_completion_killable_timeout(struct completion
*x
,
4224 unsigned long timeout
)
4226 return wait_for_common(x
, timeout
, TASK_KILLABLE
);
4228 EXPORT_SYMBOL(wait_for_completion_killable_timeout
);
4231 * try_wait_for_completion - try to decrement a completion without blocking
4232 * @x: completion structure
4234 * Returns: 0 if a decrement cannot be done without blocking
4235 * 1 if a decrement succeeded.
4237 * If a completion is being used as a counting completion,
4238 * attempt to decrement the counter without blocking. This
4239 * enables us to avoid waiting if the resource the completion
4240 * is protecting is not available.
4242 bool try_wait_for_completion(struct completion
*x
)
4244 unsigned long flags
;
4247 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4252 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4255 EXPORT_SYMBOL(try_wait_for_completion
);
4258 * completion_done - Test to see if a completion has any waiters
4259 * @x: completion structure
4261 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4262 * 1 if there are no waiters.
4265 bool completion_done(struct completion
*x
)
4267 unsigned long flags
;
4270 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4273 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4276 EXPORT_SYMBOL(completion_done
);
4279 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4281 unsigned long flags
;
4284 init_waitqueue_entry(&wait
, current
);
4286 __set_current_state(state
);
4288 spin_lock_irqsave(&q
->lock
, flags
);
4289 __add_wait_queue(q
, &wait
);
4290 spin_unlock(&q
->lock
);
4291 timeout
= schedule_timeout(timeout
);
4292 spin_lock_irq(&q
->lock
);
4293 __remove_wait_queue(q
, &wait
);
4294 spin_unlock_irqrestore(&q
->lock
, flags
);
4299 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4301 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4303 EXPORT_SYMBOL(interruptible_sleep_on
);
4306 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4308 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4310 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4312 void __sched
sleep_on(wait_queue_head_t
*q
)
4314 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4316 EXPORT_SYMBOL(sleep_on
);
4318 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4320 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4322 EXPORT_SYMBOL(sleep_on_timeout
);
4324 #ifdef CONFIG_RT_MUTEXES
4327 * rt_mutex_setprio - set the current priority of a task
4329 * @prio: prio value (kernel-internal form)
4331 * This function changes the 'effective' priority of a task. It does
4332 * not touch ->normal_prio like __setscheduler().
4334 * Used by the rt_mutex code to implement priority inheritance logic.
4336 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4338 unsigned long flags
;
4339 int oldprio
, on_rq
, running
;
4341 const struct sched_class
*prev_class
;
4343 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4345 rq
= task_rq_lock(p
, &flags
);
4348 prev_class
= p
->sched_class
;
4349 on_rq
= p
->se
.on_rq
;
4350 running
= task_current(rq
, p
);
4352 dequeue_task(rq
, p
, 0);
4354 p
->sched_class
->put_prev_task(rq
, p
);
4357 p
->sched_class
= &rt_sched_class
;
4359 p
->sched_class
= &fair_sched_class
;
4364 p
->sched_class
->set_curr_task(rq
);
4366 enqueue_task(rq
, p
, oldprio
< prio
? ENQUEUE_HEAD
: 0);
4368 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4370 task_rq_unlock(rq
, &flags
);
4375 void set_user_nice(struct task_struct
*p
, long nice
)
4377 int old_prio
, delta
, on_rq
;
4378 unsigned long flags
;
4381 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4384 * We have to be careful, if called from sys_setpriority(),
4385 * the task might be in the middle of scheduling on another CPU.
4387 rq
= task_rq_lock(p
, &flags
);
4389 * The RT priorities are set via sched_setscheduler(), but we still
4390 * allow the 'normal' nice value to be set - but as expected
4391 * it wont have any effect on scheduling until the task is
4392 * SCHED_FIFO/SCHED_RR:
4394 if (task_has_rt_policy(p
)) {
4395 p
->static_prio
= NICE_TO_PRIO(nice
);
4398 on_rq
= p
->se
.on_rq
;
4400 dequeue_task(rq
, p
, 0);
4402 p
->static_prio
= NICE_TO_PRIO(nice
);
4405 p
->prio
= effective_prio(p
);
4406 delta
= p
->prio
- old_prio
;
4409 enqueue_task(rq
, p
, 0);
4411 * If the task increased its priority or is running and
4412 * lowered its priority, then reschedule its CPU:
4414 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4415 resched_task(rq
->curr
);
4418 task_rq_unlock(rq
, &flags
);
4420 EXPORT_SYMBOL(set_user_nice
);
4423 * can_nice - check if a task can reduce its nice value
4427 int can_nice(const struct task_struct
*p
, const int nice
)
4429 /* convert nice value [19,-20] to rlimit style value [1,40] */
4430 int nice_rlim
= 20 - nice
;
4432 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
4433 capable(CAP_SYS_NICE
));
4436 #ifdef __ARCH_WANT_SYS_NICE
4439 * sys_nice - change the priority of the current process.
4440 * @increment: priority increment
4442 * sys_setpriority is a more generic, but much slower function that
4443 * does similar things.
4445 SYSCALL_DEFINE1(nice
, int, increment
)
4450 * Setpriority might change our priority at the same moment.
4451 * We don't have to worry. Conceptually one call occurs first
4452 * and we have a single winner.
4454 if (increment
< -40)
4459 nice
= TASK_NICE(current
) + increment
;
4465 if (increment
< 0 && !can_nice(current
, nice
))
4468 retval
= security_task_setnice(current
, nice
);
4472 set_user_nice(current
, nice
);
4479 * task_prio - return the priority value of a given task.
4480 * @p: the task in question.
4482 * This is the priority value as seen by users in /proc.
4483 * RT tasks are offset by -200. Normal tasks are centered
4484 * around 0, value goes from -16 to +15.
4486 int task_prio(const struct task_struct
*p
)
4488 return p
->prio
- MAX_RT_PRIO
;
4492 * task_nice - return the nice value of a given task.
4493 * @p: the task in question.
4495 int task_nice(const struct task_struct
*p
)
4497 return TASK_NICE(p
);
4499 EXPORT_SYMBOL(task_nice
);
4502 * idle_cpu - is a given cpu idle currently?
4503 * @cpu: the processor in question.
4505 int idle_cpu(int cpu
)
4507 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4511 * idle_task - return the idle task for a given cpu.
4512 * @cpu: the processor in question.
4514 struct task_struct
*idle_task(int cpu
)
4516 return cpu_rq(cpu
)->idle
;
4520 * find_process_by_pid - find a process with a matching PID value.
4521 * @pid: the pid in question.
4523 static struct task_struct
*find_process_by_pid(pid_t pid
)
4525 return pid
? find_task_by_vpid(pid
) : current
;
4528 /* Actually do priority change: must hold rq lock. */
4530 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4532 BUG_ON(p
->se
.on_rq
);
4535 p
->rt_priority
= prio
;
4536 p
->normal_prio
= normal_prio(p
);
4537 /* we are holding p->pi_lock already */
4538 p
->prio
= rt_mutex_getprio(p
);
4539 if (rt_prio(p
->prio
))
4540 p
->sched_class
= &rt_sched_class
;
4542 p
->sched_class
= &fair_sched_class
;
4547 * check the target process has a UID that matches the current process's
4549 static bool check_same_owner(struct task_struct
*p
)
4551 const struct cred
*cred
= current_cred(), *pcred
;
4555 pcred
= __task_cred(p
);
4556 match
= (cred
->euid
== pcred
->euid
||
4557 cred
->euid
== pcred
->uid
);
4562 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
4563 struct sched_param
*param
, bool user
)
4565 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4566 unsigned long flags
;
4567 const struct sched_class
*prev_class
;
4571 /* may grab non-irq protected spin_locks */
4572 BUG_ON(in_interrupt());
4574 /* double check policy once rq lock held */
4576 reset_on_fork
= p
->sched_reset_on_fork
;
4577 policy
= oldpolicy
= p
->policy
;
4579 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
4580 policy
&= ~SCHED_RESET_ON_FORK
;
4582 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4583 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4584 policy
!= SCHED_IDLE
)
4589 * Valid priorities for SCHED_FIFO and SCHED_RR are
4590 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4591 * SCHED_BATCH and SCHED_IDLE is 0.
4593 if (param
->sched_priority
< 0 ||
4594 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4595 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4597 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4601 * Allow unprivileged RT tasks to decrease priority:
4603 if (user
&& !capable(CAP_SYS_NICE
)) {
4604 if (rt_policy(policy
)) {
4605 unsigned long rlim_rtprio
=
4606 task_rlimit(p
, RLIMIT_RTPRIO
);
4608 /* can't set/change the rt policy */
4609 if (policy
!= p
->policy
&& !rlim_rtprio
)
4612 /* can't increase priority */
4613 if (param
->sched_priority
> p
->rt_priority
&&
4614 param
->sched_priority
> rlim_rtprio
)
4618 * Like positive nice levels, dont allow tasks to
4619 * move out of SCHED_IDLE either:
4621 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4624 /* can't change other user's priorities */
4625 if (!check_same_owner(p
))
4628 /* Normal users shall not reset the sched_reset_on_fork flag */
4629 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
4634 retval
= security_task_setscheduler(p
, policy
, param
);
4640 * make sure no PI-waiters arrive (or leave) while we are
4641 * changing the priority of the task:
4643 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
4645 * To be able to change p->policy safely, the apropriate
4646 * runqueue lock must be held.
4648 rq
= __task_rq_lock(p
);
4650 #ifdef CONFIG_RT_GROUP_SCHED
4653 * Do not allow realtime tasks into groups that have no runtime
4656 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
4657 task_group(p
)->rt_bandwidth
.rt_runtime
== 0) {
4658 __task_rq_unlock(rq
);
4659 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4665 /* recheck policy now with rq lock held */
4666 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4667 policy
= oldpolicy
= -1;
4668 __task_rq_unlock(rq
);
4669 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4672 on_rq
= p
->se
.on_rq
;
4673 running
= task_current(rq
, p
);
4675 deactivate_task(rq
, p
, 0);
4677 p
->sched_class
->put_prev_task(rq
, p
);
4679 p
->sched_reset_on_fork
= reset_on_fork
;
4682 prev_class
= p
->sched_class
;
4683 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4686 p
->sched_class
->set_curr_task(rq
);
4688 activate_task(rq
, p
, 0);
4690 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4692 __task_rq_unlock(rq
);
4693 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4695 rt_mutex_adjust_pi(p
);
4701 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4702 * @p: the task in question.
4703 * @policy: new policy.
4704 * @param: structure containing the new RT priority.
4706 * NOTE that the task may be already dead.
4708 int sched_setscheduler(struct task_struct
*p
, int policy
,
4709 struct sched_param
*param
)
4711 return __sched_setscheduler(p
, policy
, param
, true);
4713 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4716 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4717 * @p: the task in question.
4718 * @policy: new policy.
4719 * @param: structure containing the new RT priority.
4721 * Just like sched_setscheduler, only don't bother checking if the
4722 * current context has permission. For example, this is needed in
4723 * stop_machine(): we create temporary high priority worker threads,
4724 * but our caller might not have that capability.
4726 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
4727 struct sched_param
*param
)
4729 return __sched_setscheduler(p
, policy
, param
, false);
4733 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4735 struct sched_param lparam
;
4736 struct task_struct
*p
;
4739 if (!param
|| pid
< 0)
4741 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4746 p
= find_process_by_pid(pid
);
4748 retval
= sched_setscheduler(p
, policy
, &lparam
);
4755 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4756 * @pid: the pid in question.
4757 * @policy: new policy.
4758 * @param: structure containing the new RT priority.
4760 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
4761 struct sched_param __user
*, param
)
4763 /* negative values for policy are not valid */
4767 return do_sched_setscheduler(pid
, policy
, param
);
4771 * sys_sched_setparam - set/change the RT priority of a thread
4772 * @pid: the pid in question.
4773 * @param: structure containing the new RT priority.
4775 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4777 return do_sched_setscheduler(pid
, -1, param
);
4781 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4782 * @pid: the pid in question.
4784 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
4786 struct task_struct
*p
;
4794 p
= find_process_by_pid(pid
);
4796 retval
= security_task_getscheduler(p
);
4799 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
4806 * sys_sched_getparam - get the RT priority of a thread
4807 * @pid: the pid in question.
4808 * @param: structure containing the RT priority.
4810 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4812 struct sched_param lp
;
4813 struct task_struct
*p
;
4816 if (!param
|| pid
< 0)
4820 p
= find_process_by_pid(pid
);
4825 retval
= security_task_getscheduler(p
);
4829 lp
.sched_priority
= p
->rt_priority
;
4833 * This one might sleep, we cannot do it with a spinlock held ...
4835 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4844 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
4846 cpumask_var_t cpus_allowed
, new_mask
;
4847 struct task_struct
*p
;
4853 p
= find_process_by_pid(pid
);
4860 /* Prevent p going away */
4864 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
4868 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
4870 goto out_free_cpus_allowed
;
4873 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
4876 retval
= security_task_setscheduler(p
, 0, NULL
);
4880 cpuset_cpus_allowed(p
, cpus_allowed
);
4881 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
4883 retval
= set_cpus_allowed_ptr(p
, new_mask
);
4886 cpuset_cpus_allowed(p
, cpus_allowed
);
4887 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
4889 * We must have raced with a concurrent cpuset
4890 * update. Just reset the cpus_allowed to the
4891 * cpuset's cpus_allowed
4893 cpumask_copy(new_mask
, cpus_allowed
);
4898 free_cpumask_var(new_mask
);
4899 out_free_cpus_allowed
:
4900 free_cpumask_var(cpus_allowed
);
4907 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4908 struct cpumask
*new_mask
)
4910 if (len
< cpumask_size())
4911 cpumask_clear(new_mask
);
4912 else if (len
> cpumask_size())
4913 len
= cpumask_size();
4915 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4919 * sys_sched_setaffinity - set the cpu affinity of a process
4920 * @pid: pid of the process
4921 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4922 * @user_mask_ptr: user-space pointer to the new cpu mask
4924 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
4925 unsigned long __user
*, user_mask_ptr
)
4927 cpumask_var_t new_mask
;
4930 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
4933 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
4935 retval
= sched_setaffinity(pid
, new_mask
);
4936 free_cpumask_var(new_mask
);
4940 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
4942 struct task_struct
*p
;
4943 unsigned long flags
;
4951 p
= find_process_by_pid(pid
);
4955 retval
= security_task_getscheduler(p
);
4959 rq
= task_rq_lock(p
, &flags
);
4960 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
4961 task_rq_unlock(rq
, &flags
);
4971 * sys_sched_getaffinity - get the cpu affinity of a process
4972 * @pid: pid of the process
4973 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4974 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4976 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
4977 unsigned long __user
*, user_mask_ptr
)
4982 if ((len
* BITS_PER_BYTE
) < nr_cpu_ids
)
4984 if (len
& (sizeof(unsigned long)-1))
4987 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
4990 ret
= sched_getaffinity(pid
, mask
);
4992 size_t retlen
= min_t(size_t, len
, cpumask_size());
4994 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
4999 free_cpumask_var(mask
);
5005 * sys_sched_yield - yield the current processor to other threads.
5007 * This function yields the current CPU to other tasks. If there are no
5008 * other threads running on this CPU then this function will return.
5010 SYSCALL_DEFINE0(sched_yield
)
5012 struct rq
*rq
= this_rq_lock();
5014 schedstat_inc(rq
, yld_count
);
5015 current
->sched_class
->yield_task(rq
);
5018 * Since we are going to call schedule() anyway, there's
5019 * no need to preempt or enable interrupts:
5021 __release(rq
->lock
);
5022 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
5023 do_raw_spin_unlock(&rq
->lock
);
5024 preempt_enable_no_resched();
5031 static inline int should_resched(void)
5033 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
5036 static void __cond_resched(void)
5038 add_preempt_count(PREEMPT_ACTIVE
);
5040 sub_preempt_count(PREEMPT_ACTIVE
);
5043 int __sched
_cond_resched(void)
5045 if (should_resched()) {
5051 EXPORT_SYMBOL(_cond_resched
);
5054 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
5055 * call schedule, and on return reacquire the lock.
5057 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
5058 * operations here to prevent schedule() from being called twice (once via
5059 * spin_unlock(), once by hand).
5061 int __cond_resched_lock(spinlock_t
*lock
)
5063 int resched
= should_resched();
5066 lockdep_assert_held(lock
);
5068 if (spin_needbreak(lock
) || resched
) {
5079 EXPORT_SYMBOL(__cond_resched_lock
);
5081 int __sched
__cond_resched_softirq(void)
5083 BUG_ON(!in_softirq());
5085 if (should_resched()) {
5093 EXPORT_SYMBOL(__cond_resched_softirq
);
5096 * yield - yield the current processor to other threads.
5098 * This is a shortcut for kernel-space yielding - it marks the
5099 * thread runnable and calls sys_sched_yield().
5101 void __sched
yield(void)
5103 set_current_state(TASK_RUNNING
);
5106 EXPORT_SYMBOL(yield
);
5109 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
5110 * that process accounting knows that this is a task in IO wait state.
5112 void __sched
io_schedule(void)
5114 struct rq
*rq
= raw_rq();
5116 delayacct_blkio_start();
5117 atomic_inc(&rq
->nr_iowait
);
5118 current
->in_iowait
= 1;
5120 current
->in_iowait
= 0;
5121 atomic_dec(&rq
->nr_iowait
);
5122 delayacct_blkio_end();
5124 EXPORT_SYMBOL(io_schedule
);
5126 long __sched
io_schedule_timeout(long timeout
)
5128 struct rq
*rq
= raw_rq();
5131 delayacct_blkio_start();
5132 atomic_inc(&rq
->nr_iowait
);
5133 current
->in_iowait
= 1;
5134 ret
= schedule_timeout(timeout
);
5135 current
->in_iowait
= 0;
5136 atomic_dec(&rq
->nr_iowait
);
5137 delayacct_blkio_end();
5142 * sys_sched_get_priority_max - return maximum RT priority.
5143 * @policy: scheduling class.
5145 * this syscall returns the maximum rt_priority that can be used
5146 * by a given scheduling class.
5148 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
5155 ret
= MAX_USER_RT_PRIO
-1;
5167 * sys_sched_get_priority_min - return minimum RT priority.
5168 * @policy: scheduling class.
5170 * this syscall returns the minimum rt_priority that can be used
5171 * by a given scheduling class.
5173 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5191 * sys_sched_rr_get_interval - return the default timeslice of a process.
5192 * @pid: pid of the process.
5193 * @interval: userspace pointer to the timeslice value.
5195 * this syscall writes the default timeslice value of a given process
5196 * into the user-space timespec buffer. A value of '0' means infinity.
5198 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5199 struct timespec __user
*, interval
)
5201 struct task_struct
*p
;
5202 unsigned int time_slice
;
5203 unsigned long flags
;
5213 p
= find_process_by_pid(pid
);
5217 retval
= security_task_getscheduler(p
);
5221 rq
= task_rq_lock(p
, &flags
);
5222 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
5223 task_rq_unlock(rq
, &flags
);
5226 jiffies_to_timespec(time_slice
, &t
);
5227 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5235 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5237 void sched_show_task(struct task_struct
*p
)
5239 unsigned long free
= 0;
5242 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5243 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5244 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5245 #if BITS_PER_LONG == 32
5246 if (state
== TASK_RUNNING
)
5247 printk(KERN_CONT
" running ");
5249 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5251 if (state
== TASK_RUNNING
)
5252 printk(KERN_CONT
" running task ");
5254 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5256 #ifdef CONFIG_DEBUG_STACK_USAGE
5257 free
= stack_not_used(p
);
5259 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
5260 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
5261 (unsigned long)task_thread_info(p
)->flags
);
5263 show_stack(p
, NULL
);
5266 void show_state_filter(unsigned long state_filter
)
5268 struct task_struct
*g
, *p
;
5270 #if BITS_PER_LONG == 32
5272 " task PC stack pid father\n");
5275 " task PC stack pid father\n");
5277 read_lock(&tasklist_lock
);
5278 do_each_thread(g
, p
) {
5280 * reset the NMI-timeout, listing all files on a slow
5281 * console might take alot of time:
5283 touch_nmi_watchdog();
5284 if (!state_filter
|| (p
->state
& state_filter
))
5286 } while_each_thread(g
, p
);
5288 touch_all_softlockup_watchdogs();
5290 #ifdef CONFIG_SCHED_DEBUG
5291 sysrq_sched_debug_show();
5293 read_unlock(&tasklist_lock
);
5295 * Only show locks if all tasks are dumped:
5298 debug_show_all_locks();
5301 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5303 idle
->sched_class
= &idle_sched_class
;
5307 * init_idle - set up an idle thread for a given CPU
5308 * @idle: task in question
5309 * @cpu: cpu the idle task belongs to
5311 * NOTE: this function does not set the idle thread's NEED_RESCHED
5312 * flag, to make booting more robust.
5314 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5316 struct rq
*rq
= cpu_rq(cpu
);
5317 unsigned long flags
;
5319 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5322 idle
->state
= TASK_RUNNING
;
5323 idle
->se
.exec_start
= sched_clock();
5325 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
5326 __set_task_cpu(idle
, cpu
);
5328 rq
->curr
= rq
->idle
= idle
;
5329 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5332 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5334 /* Set the preempt count _outside_ the spinlocks! */
5335 #if defined(CONFIG_PREEMPT)
5336 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
5338 task_thread_info(idle
)->preempt_count
= 0;
5341 * The idle tasks have their own, simple scheduling class:
5343 idle
->sched_class
= &idle_sched_class
;
5344 ftrace_graph_init_task(idle
);
5348 * In a system that switches off the HZ timer nohz_cpu_mask
5349 * indicates which cpus entered this state. This is used
5350 * in the rcu update to wait only for active cpus. For system
5351 * which do not switch off the HZ timer nohz_cpu_mask should
5352 * always be CPU_BITS_NONE.
5354 cpumask_var_t nohz_cpu_mask
;
5357 * Increase the granularity value when there are more CPUs,
5358 * because with more CPUs the 'effective latency' as visible
5359 * to users decreases. But the relationship is not linear,
5360 * so pick a second-best guess by going with the log2 of the
5363 * This idea comes from the SD scheduler of Con Kolivas:
5365 static int get_update_sysctl_factor(void)
5367 unsigned int cpus
= min_t(int, num_online_cpus(), 8);
5368 unsigned int factor
;
5370 switch (sysctl_sched_tunable_scaling
) {
5371 case SCHED_TUNABLESCALING_NONE
:
5374 case SCHED_TUNABLESCALING_LINEAR
:
5377 case SCHED_TUNABLESCALING_LOG
:
5379 factor
= 1 + ilog2(cpus
);
5386 static void update_sysctl(void)
5388 unsigned int factor
= get_update_sysctl_factor();
5390 #define SET_SYSCTL(name) \
5391 (sysctl_##name = (factor) * normalized_sysctl_##name)
5392 SET_SYSCTL(sched_min_granularity
);
5393 SET_SYSCTL(sched_latency
);
5394 SET_SYSCTL(sched_wakeup_granularity
);
5395 SET_SYSCTL(sched_shares_ratelimit
);
5399 static inline void sched_init_granularity(void)
5406 * This is how migration works:
5408 * 1) we invoke migration_cpu_stop() on the target CPU using
5410 * 2) stopper starts to run (implicitly forcing the migrated thread
5412 * 3) it checks whether the migrated task is still in the wrong runqueue.
5413 * 4) if it's in the wrong runqueue then the migration thread removes
5414 * it and puts it into the right queue.
5415 * 5) stopper completes and stop_one_cpu() returns and the migration
5420 * Change a given task's CPU affinity. Migrate the thread to a
5421 * proper CPU and schedule it away if the CPU it's executing on
5422 * is removed from the allowed bitmask.
5424 * NOTE: the caller must have a valid reference to the task, the
5425 * task must not exit() & deallocate itself prematurely. The
5426 * call is not atomic; no spinlocks may be held.
5428 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
5430 unsigned long flags
;
5432 unsigned int dest_cpu
;
5436 * Serialize against TASK_WAKING so that ttwu() and wunt() can
5437 * drop the rq->lock and still rely on ->cpus_allowed.
5440 while (task_is_waking(p
))
5442 rq
= task_rq_lock(p
, &flags
);
5443 if (task_is_waking(p
)) {
5444 task_rq_unlock(rq
, &flags
);
5448 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
5453 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
5454 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
5459 if (p
->sched_class
->set_cpus_allowed
)
5460 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5462 cpumask_copy(&p
->cpus_allowed
, new_mask
);
5463 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
5466 /* Can the task run on the task's current CPU? If so, we're done */
5467 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
5470 dest_cpu
= cpumask_any_and(cpu_active_mask
, new_mask
);
5471 if (migrate_task(p
, dest_cpu
)) {
5472 struct migration_arg arg
= { p
, dest_cpu
};
5473 /* Need help from migration thread: drop lock and wait. */
5474 task_rq_unlock(rq
, &flags
);
5475 stop_one_cpu(cpu_of(rq
), migration_cpu_stop
, &arg
);
5476 tlb_migrate_finish(p
->mm
);
5480 task_rq_unlock(rq
, &flags
);
5484 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
5487 * Move (not current) task off this cpu, onto dest cpu. We're doing
5488 * this because either it can't run here any more (set_cpus_allowed()
5489 * away from this CPU, or CPU going down), or because we're
5490 * attempting to rebalance this task on exec (sched_exec).
5492 * So we race with normal scheduler movements, but that's OK, as long
5493 * as the task is no longer on this CPU.
5495 * Returns non-zero if task was successfully migrated.
5497 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5499 struct rq
*rq_dest
, *rq_src
;
5502 if (unlikely(!cpu_active(dest_cpu
)))
5505 rq_src
= cpu_rq(src_cpu
);
5506 rq_dest
= cpu_rq(dest_cpu
);
5508 double_rq_lock(rq_src
, rq_dest
);
5509 /* Already moved. */
5510 if (task_cpu(p
) != src_cpu
)
5512 /* Affinity changed (again). */
5513 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
5517 * If we're not on a rq, the next wake-up will ensure we're
5521 deactivate_task(rq_src
, p
, 0);
5522 set_task_cpu(p
, dest_cpu
);
5523 activate_task(rq_dest
, p
, 0);
5524 check_preempt_curr(rq_dest
, p
, 0);
5529 double_rq_unlock(rq_src
, rq_dest
);
5534 * migration_cpu_stop - this will be executed by a highprio stopper thread
5535 * and performs thread migration by bumping thread off CPU then
5536 * 'pushing' onto another runqueue.
5538 static int migration_cpu_stop(void *data
)
5540 struct migration_arg
*arg
= data
;
5543 * The original target cpu might have gone down and we might
5544 * be on another cpu but it doesn't matter.
5546 local_irq_disable();
5547 __migrate_task(arg
->task
, raw_smp_processor_id(), arg
->dest_cpu
);
5552 #ifdef CONFIG_HOTPLUG_CPU
5554 * Figure out where task on dead CPU should go, use force if necessary.
5556 void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5558 struct rq
*rq
= cpu_rq(dead_cpu
);
5559 int needs_cpu
, uninitialized_var(dest_cpu
);
5560 unsigned long flags
;
5562 local_irq_save(flags
);
5564 raw_spin_lock(&rq
->lock
);
5565 needs_cpu
= (task_cpu(p
) == dead_cpu
) && (p
->state
!= TASK_WAKING
);
5567 dest_cpu
= select_fallback_rq(dead_cpu
, p
);
5568 raw_spin_unlock(&rq
->lock
);
5570 * It can only fail if we race with set_cpus_allowed(),
5571 * in the racer should migrate the task anyway.
5574 __migrate_task(p
, dead_cpu
, dest_cpu
);
5575 local_irq_restore(flags
);
5579 * While a dead CPU has no uninterruptible tasks queued at this point,
5580 * it might still have a nonzero ->nr_uninterruptible counter, because
5581 * for performance reasons the counter is not stricly tracking tasks to
5582 * their home CPUs. So we just add the counter to another CPU's counter,
5583 * to keep the global sum constant after CPU-down:
5585 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5587 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
5588 unsigned long flags
;
5590 local_irq_save(flags
);
5591 double_rq_lock(rq_src
, rq_dest
);
5592 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5593 rq_src
->nr_uninterruptible
= 0;
5594 double_rq_unlock(rq_src
, rq_dest
);
5595 local_irq_restore(flags
);
5598 /* Run through task list and migrate tasks from the dead cpu. */
5599 static void migrate_live_tasks(int src_cpu
)
5601 struct task_struct
*p
, *t
;
5603 read_lock(&tasklist_lock
);
5605 do_each_thread(t
, p
) {
5609 if (task_cpu(p
) == src_cpu
)
5610 move_task_off_dead_cpu(src_cpu
, p
);
5611 } while_each_thread(t
, p
);
5613 read_unlock(&tasklist_lock
);
5617 * Schedules idle task to be the next runnable task on current CPU.
5618 * It does so by boosting its priority to highest possible.
5619 * Used by CPU offline code.
5621 void sched_idle_next(void)
5623 int this_cpu
= smp_processor_id();
5624 struct rq
*rq
= cpu_rq(this_cpu
);
5625 struct task_struct
*p
= rq
->idle
;
5626 unsigned long flags
;
5628 /* cpu has to be offline */
5629 BUG_ON(cpu_online(this_cpu
));
5632 * Strictly not necessary since rest of the CPUs are stopped by now
5633 * and interrupts disabled on the current cpu.
5635 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5637 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5639 activate_task(rq
, p
, 0);
5641 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5645 * Ensures that the idle task is using init_mm right before its cpu goes
5648 void idle_task_exit(void)
5650 struct mm_struct
*mm
= current
->active_mm
;
5652 BUG_ON(cpu_online(smp_processor_id()));
5655 switch_mm(mm
, &init_mm
, current
);
5659 /* called under rq->lock with disabled interrupts */
5660 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5662 struct rq
*rq
= cpu_rq(dead_cpu
);
5664 /* Must be exiting, otherwise would be on tasklist. */
5665 BUG_ON(!p
->exit_state
);
5667 /* Cannot have done final schedule yet: would have vanished. */
5668 BUG_ON(p
->state
== TASK_DEAD
);
5673 * Drop lock around migration; if someone else moves it,
5674 * that's OK. No task can be added to this CPU, so iteration is
5677 raw_spin_unlock_irq(&rq
->lock
);
5678 move_task_off_dead_cpu(dead_cpu
, p
);
5679 raw_spin_lock_irq(&rq
->lock
);
5684 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5685 static void migrate_dead_tasks(unsigned int dead_cpu
)
5687 struct rq
*rq
= cpu_rq(dead_cpu
);
5688 struct task_struct
*next
;
5691 if (!rq
->nr_running
)
5693 next
= pick_next_task(rq
);
5696 next
->sched_class
->put_prev_task(rq
, next
);
5697 migrate_dead(dead_cpu
, next
);
5703 * remove the tasks which were accounted by rq from calc_load_tasks.
5705 static void calc_global_load_remove(struct rq
*rq
)
5707 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
5708 rq
->calc_load_active
= 0;
5710 #endif /* CONFIG_HOTPLUG_CPU */
5712 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5714 static struct ctl_table sd_ctl_dir
[] = {
5716 .procname
= "sched_domain",
5722 static struct ctl_table sd_ctl_root
[] = {
5724 .procname
= "kernel",
5726 .child
= sd_ctl_dir
,
5731 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5733 struct ctl_table
*entry
=
5734 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5739 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5741 struct ctl_table
*entry
;
5744 * In the intermediate directories, both the child directory and
5745 * procname are dynamically allocated and could fail but the mode
5746 * will always be set. In the lowest directory the names are
5747 * static strings and all have proc handlers.
5749 for (entry
= *tablep
; entry
->mode
; entry
++) {
5751 sd_free_ctl_entry(&entry
->child
);
5752 if (entry
->proc_handler
== NULL
)
5753 kfree(entry
->procname
);
5761 set_table_entry(struct ctl_table
*entry
,
5762 const char *procname
, void *data
, int maxlen
,
5763 mode_t mode
, proc_handler
*proc_handler
)
5765 entry
->procname
= procname
;
5767 entry
->maxlen
= maxlen
;
5769 entry
->proc_handler
= proc_handler
;
5772 static struct ctl_table
*
5773 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5775 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
5780 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5781 sizeof(long), 0644, proc_doulongvec_minmax
);
5782 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5783 sizeof(long), 0644, proc_doulongvec_minmax
);
5784 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5785 sizeof(int), 0644, proc_dointvec_minmax
);
5786 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5787 sizeof(int), 0644, proc_dointvec_minmax
);
5788 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5789 sizeof(int), 0644, proc_dointvec_minmax
);
5790 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5791 sizeof(int), 0644, proc_dointvec_minmax
);
5792 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5793 sizeof(int), 0644, proc_dointvec_minmax
);
5794 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5795 sizeof(int), 0644, proc_dointvec_minmax
);
5796 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5797 sizeof(int), 0644, proc_dointvec_minmax
);
5798 set_table_entry(&table
[9], "cache_nice_tries",
5799 &sd
->cache_nice_tries
,
5800 sizeof(int), 0644, proc_dointvec_minmax
);
5801 set_table_entry(&table
[10], "flags", &sd
->flags
,
5802 sizeof(int), 0644, proc_dointvec_minmax
);
5803 set_table_entry(&table
[11], "name", sd
->name
,
5804 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
5805 /* &table[12] is terminator */
5810 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5812 struct ctl_table
*entry
, *table
;
5813 struct sched_domain
*sd
;
5814 int domain_num
= 0, i
;
5817 for_each_domain(cpu
, sd
)
5819 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5824 for_each_domain(cpu
, sd
) {
5825 snprintf(buf
, 32, "domain%d", i
);
5826 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5828 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5835 static struct ctl_table_header
*sd_sysctl_header
;
5836 static void register_sched_domain_sysctl(void)
5838 int i
, cpu_num
= num_possible_cpus();
5839 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5842 WARN_ON(sd_ctl_dir
[0].child
);
5843 sd_ctl_dir
[0].child
= entry
;
5848 for_each_possible_cpu(i
) {
5849 snprintf(buf
, 32, "cpu%d", i
);
5850 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5852 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5856 WARN_ON(sd_sysctl_header
);
5857 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5860 /* may be called multiple times per register */
5861 static void unregister_sched_domain_sysctl(void)
5863 if (sd_sysctl_header
)
5864 unregister_sysctl_table(sd_sysctl_header
);
5865 sd_sysctl_header
= NULL
;
5866 if (sd_ctl_dir
[0].child
)
5867 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5870 static void register_sched_domain_sysctl(void)
5873 static void unregister_sched_domain_sysctl(void)
5878 static void set_rq_online(struct rq
*rq
)
5881 const struct sched_class
*class;
5883 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
5886 for_each_class(class) {
5887 if (class->rq_online
)
5888 class->rq_online(rq
);
5893 static void set_rq_offline(struct rq
*rq
)
5896 const struct sched_class
*class;
5898 for_each_class(class) {
5899 if (class->rq_offline
)
5900 class->rq_offline(rq
);
5903 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
5909 * migration_call - callback that gets triggered when a CPU is added.
5910 * Here we can start up the necessary migration thread for the new CPU.
5912 static int __cpuinit
5913 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5915 int cpu
= (long)hcpu
;
5916 unsigned long flags
;
5917 struct rq
*rq
= cpu_rq(cpu
);
5921 case CPU_UP_PREPARE
:
5922 case CPU_UP_PREPARE_FROZEN
:
5923 rq
->calc_load_update
= calc_load_update
;
5927 case CPU_ONLINE_FROZEN
:
5928 /* Update our root-domain */
5929 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5931 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5935 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5938 #ifdef CONFIG_HOTPLUG_CPU
5940 case CPU_DEAD_FROZEN
:
5941 migrate_live_tasks(cpu
);
5942 /* Idle task back to normal (off runqueue, low prio) */
5943 raw_spin_lock_irq(&rq
->lock
);
5944 deactivate_task(rq
, rq
->idle
, 0);
5945 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5946 rq
->idle
->sched_class
= &idle_sched_class
;
5947 migrate_dead_tasks(cpu
);
5948 raw_spin_unlock_irq(&rq
->lock
);
5949 migrate_nr_uninterruptible(rq
);
5950 BUG_ON(rq
->nr_running
!= 0);
5951 calc_global_load_remove(rq
);
5955 case CPU_DYING_FROZEN
:
5956 /* Update our root-domain */
5957 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5959 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5962 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5970 * Register at high priority so that task migration (migrate_all_tasks)
5971 * happens before everything else. This has to be lower priority than
5972 * the notifier in the perf_event subsystem, though.
5974 static struct notifier_block __cpuinitdata migration_notifier
= {
5975 .notifier_call
= migration_call
,
5976 .priority
= CPU_PRI_MIGRATION
,
5979 static int __cpuinit
sched_cpu_active(struct notifier_block
*nfb
,
5980 unsigned long action
, void *hcpu
)
5982 switch (action
& ~CPU_TASKS_FROZEN
) {
5984 case CPU_DOWN_FAILED
:
5985 set_cpu_active((long)hcpu
, true);
5992 static int __cpuinit
sched_cpu_inactive(struct notifier_block
*nfb
,
5993 unsigned long action
, void *hcpu
)
5995 switch (action
& ~CPU_TASKS_FROZEN
) {
5996 case CPU_DOWN_PREPARE
:
5997 set_cpu_active((long)hcpu
, false);
6004 static int __init
migration_init(void)
6006 void *cpu
= (void *)(long)smp_processor_id();
6009 /* Initialize migration for the boot CPU */
6010 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
6011 BUG_ON(err
== NOTIFY_BAD
);
6012 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
6013 register_cpu_notifier(&migration_notifier
);
6015 /* Register cpu active notifiers */
6016 cpu_notifier(sched_cpu_active
, CPU_PRI_SCHED_ACTIVE
);
6017 cpu_notifier(sched_cpu_inactive
, CPU_PRI_SCHED_INACTIVE
);
6021 early_initcall(migration_init
);
6026 #ifdef CONFIG_SCHED_DEBUG
6028 static __read_mostly
int sched_domain_debug_enabled
;
6030 static int __init
sched_domain_debug_setup(char *str
)
6032 sched_domain_debug_enabled
= 1;
6036 early_param("sched_debug", sched_domain_debug_setup
);
6038 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
6039 struct cpumask
*groupmask
)
6041 struct sched_group
*group
= sd
->groups
;
6044 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
6045 cpumask_clear(groupmask
);
6047 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
6049 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
6050 printk("does not load-balance\n");
6052 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
6057 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
6059 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
6060 printk(KERN_ERR
"ERROR: domain->span does not contain "
6063 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
6064 printk(KERN_ERR
"ERROR: domain->groups does not contain"
6068 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
6072 printk(KERN_ERR
"ERROR: group is NULL\n");
6076 if (!group
->cpu_power
) {
6077 printk(KERN_CONT
"\n");
6078 printk(KERN_ERR
"ERROR: domain->cpu_power not "
6083 if (!cpumask_weight(sched_group_cpus(group
))) {
6084 printk(KERN_CONT
"\n");
6085 printk(KERN_ERR
"ERROR: empty group\n");
6089 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
6090 printk(KERN_CONT
"\n");
6091 printk(KERN_ERR
"ERROR: repeated CPUs\n");
6095 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
6097 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
6099 printk(KERN_CONT
" %s", str
);
6100 if (group
->cpu_power
!= SCHED_LOAD_SCALE
) {
6101 printk(KERN_CONT
" (cpu_power = %d)",
6105 group
= group
->next
;
6106 } while (group
!= sd
->groups
);
6107 printk(KERN_CONT
"\n");
6109 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
6110 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6113 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
6114 printk(KERN_ERR
"ERROR: parent span is not a superset "
6115 "of domain->span\n");
6119 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6121 cpumask_var_t groupmask
;
6124 if (!sched_domain_debug_enabled
)
6128 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6132 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6134 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
6135 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
6140 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
6147 free_cpumask_var(groupmask
);
6149 #else /* !CONFIG_SCHED_DEBUG */
6150 # define sched_domain_debug(sd, cpu) do { } while (0)
6151 #endif /* CONFIG_SCHED_DEBUG */
6153 static int sd_degenerate(struct sched_domain
*sd
)
6155 if (cpumask_weight(sched_domain_span(sd
)) == 1)
6158 /* Following flags need at least 2 groups */
6159 if (sd
->flags
& (SD_LOAD_BALANCE
|
6160 SD_BALANCE_NEWIDLE
|
6164 SD_SHARE_PKG_RESOURCES
)) {
6165 if (sd
->groups
!= sd
->groups
->next
)
6169 /* Following flags don't use groups */
6170 if (sd
->flags
& (SD_WAKE_AFFINE
))
6177 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6179 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6181 if (sd_degenerate(parent
))
6184 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
6187 /* Flags needing groups don't count if only 1 group in parent */
6188 if (parent
->groups
== parent
->groups
->next
) {
6189 pflags
&= ~(SD_LOAD_BALANCE
|
6190 SD_BALANCE_NEWIDLE
|
6194 SD_SHARE_PKG_RESOURCES
);
6195 if (nr_node_ids
== 1)
6196 pflags
&= ~SD_SERIALIZE
;
6198 if (~cflags
& pflags
)
6204 static void free_rootdomain(struct root_domain
*rd
)
6206 synchronize_sched();
6208 cpupri_cleanup(&rd
->cpupri
);
6210 free_cpumask_var(rd
->rto_mask
);
6211 free_cpumask_var(rd
->online
);
6212 free_cpumask_var(rd
->span
);
6216 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6218 struct root_domain
*old_rd
= NULL
;
6219 unsigned long flags
;
6221 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6226 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
6229 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
6232 * If we dont want to free the old_rt yet then
6233 * set old_rd to NULL to skip the freeing later
6236 if (!atomic_dec_and_test(&old_rd
->refcount
))
6240 atomic_inc(&rd
->refcount
);
6243 cpumask_set_cpu(rq
->cpu
, rd
->span
);
6244 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
6247 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6250 free_rootdomain(old_rd
);
6253 static int init_rootdomain(struct root_domain
*rd
)
6255 memset(rd
, 0, sizeof(*rd
));
6257 if (!alloc_cpumask_var(&rd
->span
, GFP_KERNEL
))
6259 if (!alloc_cpumask_var(&rd
->online
, GFP_KERNEL
))
6261 if (!alloc_cpumask_var(&rd
->rto_mask
, GFP_KERNEL
))
6264 if (cpupri_init(&rd
->cpupri
) != 0)
6269 free_cpumask_var(rd
->rto_mask
);
6271 free_cpumask_var(rd
->online
);
6273 free_cpumask_var(rd
->span
);
6278 static void init_defrootdomain(void)
6280 init_rootdomain(&def_root_domain
);
6282 atomic_set(&def_root_domain
.refcount
, 1);
6285 static struct root_domain
*alloc_rootdomain(void)
6287 struct root_domain
*rd
;
6289 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6293 if (init_rootdomain(rd
) != 0) {
6302 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6303 * hold the hotplug lock.
6306 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6308 struct rq
*rq
= cpu_rq(cpu
);
6309 struct sched_domain
*tmp
;
6311 for (tmp
= sd
; tmp
; tmp
= tmp
->parent
)
6312 tmp
->span_weight
= cpumask_weight(sched_domain_span(tmp
));
6314 /* Remove the sched domains which do not contribute to scheduling. */
6315 for (tmp
= sd
; tmp
; ) {
6316 struct sched_domain
*parent
= tmp
->parent
;
6320 if (sd_parent_degenerate(tmp
, parent
)) {
6321 tmp
->parent
= parent
->parent
;
6323 parent
->parent
->child
= tmp
;
6328 if (sd
&& sd_degenerate(sd
)) {
6334 sched_domain_debug(sd
, cpu
);
6336 rq_attach_root(rq
, rd
);
6337 rcu_assign_pointer(rq
->sd
, sd
);
6340 /* cpus with isolated domains */
6341 static cpumask_var_t cpu_isolated_map
;
6343 /* Setup the mask of cpus configured for isolated domains */
6344 static int __init
isolated_cpu_setup(char *str
)
6346 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
6347 cpulist_parse(str
, cpu_isolated_map
);
6351 __setup("isolcpus=", isolated_cpu_setup
);
6354 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6355 * to a function which identifies what group(along with sched group) a CPU
6356 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6357 * (due to the fact that we keep track of groups covered with a struct cpumask).
6359 * init_sched_build_groups will build a circular linked list of the groups
6360 * covered by the given span, and will set each group's ->cpumask correctly,
6361 * and ->cpu_power to 0.
6364 init_sched_build_groups(const struct cpumask
*span
,
6365 const struct cpumask
*cpu_map
,
6366 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
6367 struct sched_group
**sg
,
6368 struct cpumask
*tmpmask
),
6369 struct cpumask
*covered
, struct cpumask
*tmpmask
)
6371 struct sched_group
*first
= NULL
, *last
= NULL
;
6374 cpumask_clear(covered
);
6376 for_each_cpu(i
, span
) {
6377 struct sched_group
*sg
;
6378 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
6381 if (cpumask_test_cpu(i
, covered
))
6384 cpumask_clear(sched_group_cpus(sg
));
6387 for_each_cpu(j
, span
) {
6388 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
6391 cpumask_set_cpu(j
, covered
);
6392 cpumask_set_cpu(j
, sched_group_cpus(sg
));
6403 #define SD_NODES_PER_DOMAIN 16
6408 * find_next_best_node - find the next node to include in a sched_domain
6409 * @node: node whose sched_domain we're building
6410 * @used_nodes: nodes already in the sched_domain
6412 * Find the next node to include in a given scheduling domain. Simply
6413 * finds the closest node not already in the @used_nodes map.
6415 * Should use nodemask_t.
6417 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6419 int i
, n
, val
, min_val
, best_node
= 0;
6423 for (i
= 0; i
< nr_node_ids
; i
++) {
6424 /* Start at @node */
6425 n
= (node
+ i
) % nr_node_ids
;
6427 if (!nr_cpus_node(n
))
6430 /* Skip already used nodes */
6431 if (node_isset(n
, *used_nodes
))
6434 /* Simple min distance search */
6435 val
= node_distance(node
, n
);
6437 if (val
< min_val
) {
6443 node_set(best_node
, *used_nodes
);
6448 * sched_domain_node_span - get a cpumask for a node's sched_domain
6449 * @node: node whose cpumask we're constructing
6450 * @span: resulting cpumask
6452 * Given a node, construct a good cpumask for its sched_domain to span. It
6453 * should be one that prevents unnecessary balancing, but also spreads tasks
6456 static void sched_domain_node_span(int node
, struct cpumask
*span
)
6458 nodemask_t used_nodes
;
6461 cpumask_clear(span
);
6462 nodes_clear(used_nodes
);
6464 cpumask_or(span
, span
, cpumask_of_node(node
));
6465 node_set(node
, used_nodes
);
6467 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6468 int next_node
= find_next_best_node(node
, &used_nodes
);
6470 cpumask_or(span
, span
, cpumask_of_node(next_node
));
6473 #endif /* CONFIG_NUMA */
6475 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6478 * The cpus mask in sched_group and sched_domain hangs off the end.
6480 * ( See the the comments in include/linux/sched.h:struct sched_group
6481 * and struct sched_domain. )
6483 struct static_sched_group
{
6484 struct sched_group sg
;
6485 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
6488 struct static_sched_domain
{
6489 struct sched_domain sd
;
6490 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
6496 cpumask_var_t domainspan
;
6497 cpumask_var_t covered
;
6498 cpumask_var_t notcovered
;
6500 cpumask_var_t nodemask
;
6501 cpumask_var_t this_sibling_map
;
6502 cpumask_var_t this_core_map
;
6503 cpumask_var_t send_covered
;
6504 cpumask_var_t tmpmask
;
6505 struct sched_group
**sched_group_nodes
;
6506 struct root_domain
*rd
;
6510 sa_sched_groups
= 0,
6515 sa_this_sibling_map
,
6517 sa_sched_group_nodes
,
6527 * SMT sched-domains:
6529 #ifdef CONFIG_SCHED_SMT
6530 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
6531 static DEFINE_PER_CPU(struct static_sched_group
, sched_groups
);
6534 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
6535 struct sched_group
**sg
, struct cpumask
*unused
)
6538 *sg
= &per_cpu(sched_groups
, cpu
).sg
;
6541 #endif /* CONFIG_SCHED_SMT */
6544 * multi-core sched-domains:
6546 #ifdef CONFIG_SCHED_MC
6547 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
6548 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
6549 #endif /* CONFIG_SCHED_MC */
6551 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6553 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
6554 struct sched_group
**sg
, struct cpumask
*mask
)
6558 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6559 group
= cpumask_first(mask
);
6561 *sg
= &per_cpu(sched_group_core
, group
).sg
;
6564 #elif defined(CONFIG_SCHED_MC)
6566 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
6567 struct sched_group
**sg
, struct cpumask
*unused
)
6570 *sg
= &per_cpu(sched_group_core
, cpu
).sg
;
6575 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
6576 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
6579 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
6580 struct sched_group
**sg
, struct cpumask
*mask
)
6583 #ifdef CONFIG_SCHED_MC
6584 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
6585 group
= cpumask_first(mask
);
6586 #elif defined(CONFIG_SCHED_SMT)
6587 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6588 group
= cpumask_first(mask
);
6593 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
6599 * The init_sched_build_groups can't handle what we want to do with node
6600 * groups, so roll our own. Now each node has its own list of groups which
6601 * gets dynamically allocated.
6603 static DEFINE_PER_CPU(struct static_sched_domain
, node_domains
);
6604 static struct sched_group
***sched_group_nodes_bycpu
;
6606 static DEFINE_PER_CPU(struct static_sched_domain
, allnodes_domains
);
6607 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
6609 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
6610 struct sched_group
**sg
,
6611 struct cpumask
*nodemask
)
6615 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
6616 group
= cpumask_first(nodemask
);
6619 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
6623 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6625 struct sched_group
*sg
= group_head
;
6631 for_each_cpu(j
, sched_group_cpus(sg
)) {
6632 struct sched_domain
*sd
;
6634 sd
= &per_cpu(phys_domains
, j
).sd
;
6635 if (j
!= group_first_cpu(sd
->groups
)) {
6637 * Only add "power" once for each
6643 sg
->cpu_power
+= sd
->groups
->cpu_power
;
6646 } while (sg
!= group_head
);
6649 static int build_numa_sched_groups(struct s_data
*d
,
6650 const struct cpumask
*cpu_map
, int num
)
6652 struct sched_domain
*sd
;
6653 struct sched_group
*sg
, *prev
;
6656 cpumask_clear(d
->covered
);
6657 cpumask_and(d
->nodemask
, cpumask_of_node(num
), cpu_map
);
6658 if (cpumask_empty(d
->nodemask
)) {
6659 d
->sched_group_nodes
[num
] = NULL
;
6663 sched_domain_node_span(num
, d
->domainspan
);
6664 cpumask_and(d
->domainspan
, d
->domainspan
, cpu_map
);
6666 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6669 printk(KERN_WARNING
"Can not alloc domain group for node %d\n",
6673 d
->sched_group_nodes
[num
] = sg
;
6675 for_each_cpu(j
, d
->nodemask
) {
6676 sd
= &per_cpu(node_domains
, j
).sd
;
6681 cpumask_copy(sched_group_cpus(sg
), d
->nodemask
);
6683 cpumask_or(d
->covered
, d
->covered
, d
->nodemask
);
6686 for (j
= 0; j
< nr_node_ids
; j
++) {
6687 n
= (num
+ j
) % nr_node_ids
;
6688 cpumask_complement(d
->notcovered
, d
->covered
);
6689 cpumask_and(d
->tmpmask
, d
->notcovered
, cpu_map
);
6690 cpumask_and(d
->tmpmask
, d
->tmpmask
, d
->domainspan
);
6691 if (cpumask_empty(d
->tmpmask
))
6693 cpumask_and(d
->tmpmask
, d
->tmpmask
, cpumask_of_node(n
));
6694 if (cpumask_empty(d
->tmpmask
))
6696 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6700 "Can not alloc domain group for node %d\n", j
);
6704 cpumask_copy(sched_group_cpus(sg
), d
->tmpmask
);
6705 sg
->next
= prev
->next
;
6706 cpumask_or(d
->covered
, d
->covered
, d
->tmpmask
);
6713 #endif /* CONFIG_NUMA */
6716 /* Free memory allocated for various sched_group structures */
6717 static void free_sched_groups(const struct cpumask
*cpu_map
,
6718 struct cpumask
*nodemask
)
6722 for_each_cpu(cpu
, cpu_map
) {
6723 struct sched_group
**sched_group_nodes
6724 = sched_group_nodes_bycpu
[cpu
];
6726 if (!sched_group_nodes
)
6729 for (i
= 0; i
< nr_node_ids
; i
++) {
6730 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6732 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
6733 if (cpumask_empty(nodemask
))
6743 if (oldsg
!= sched_group_nodes
[i
])
6746 kfree(sched_group_nodes
);
6747 sched_group_nodes_bycpu
[cpu
] = NULL
;
6750 #else /* !CONFIG_NUMA */
6751 static void free_sched_groups(const struct cpumask
*cpu_map
,
6752 struct cpumask
*nodemask
)
6755 #endif /* CONFIG_NUMA */
6758 * Initialize sched groups cpu_power.
6760 * cpu_power indicates the capacity of sched group, which is used while
6761 * distributing the load between different sched groups in a sched domain.
6762 * Typically cpu_power for all the groups in a sched domain will be same unless
6763 * there are asymmetries in the topology. If there are asymmetries, group
6764 * having more cpu_power will pickup more load compared to the group having
6767 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6769 struct sched_domain
*child
;
6770 struct sched_group
*group
;
6774 WARN_ON(!sd
|| !sd
->groups
);
6776 if (cpu
!= group_first_cpu(sd
->groups
))
6781 sd
->groups
->cpu_power
= 0;
6784 power
= SCHED_LOAD_SCALE
;
6785 weight
= cpumask_weight(sched_domain_span(sd
));
6787 * SMT siblings share the power of a single core.
6788 * Usually multiple threads get a better yield out of
6789 * that one core than a single thread would have,
6790 * reflect that in sd->smt_gain.
6792 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
6793 power
*= sd
->smt_gain
;
6795 power
>>= SCHED_LOAD_SHIFT
;
6797 sd
->groups
->cpu_power
+= power
;
6802 * Add cpu_power of each child group to this groups cpu_power.
6804 group
= child
->groups
;
6806 sd
->groups
->cpu_power
+= group
->cpu_power
;
6807 group
= group
->next
;
6808 } while (group
!= child
->groups
);
6812 * Initializers for schedule domains
6813 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6816 #ifdef CONFIG_SCHED_DEBUG
6817 # define SD_INIT_NAME(sd, type) sd->name = #type
6819 # define SD_INIT_NAME(sd, type) do { } while (0)
6822 #define SD_INIT(sd, type) sd_init_##type(sd)
6824 #define SD_INIT_FUNC(type) \
6825 static noinline void sd_init_##type(struct sched_domain *sd) \
6827 memset(sd, 0, sizeof(*sd)); \
6828 *sd = SD_##type##_INIT; \
6829 sd->level = SD_LV_##type; \
6830 SD_INIT_NAME(sd, type); \
6835 SD_INIT_FUNC(ALLNODES
)
6838 #ifdef CONFIG_SCHED_SMT
6839 SD_INIT_FUNC(SIBLING
)
6841 #ifdef CONFIG_SCHED_MC
6845 static int default_relax_domain_level
= -1;
6847 static int __init
setup_relax_domain_level(char *str
)
6851 val
= simple_strtoul(str
, NULL
, 0);
6852 if (val
< SD_LV_MAX
)
6853 default_relax_domain_level
= val
;
6857 __setup("relax_domain_level=", setup_relax_domain_level
);
6859 static void set_domain_attribute(struct sched_domain
*sd
,
6860 struct sched_domain_attr
*attr
)
6864 if (!attr
|| attr
->relax_domain_level
< 0) {
6865 if (default_relax_domain_level
< 0)
6868 request
= default_relax_domain_level
;
6870 request
= attr
->relax_domain_level
;
6871 if (request
< sd
->level
) {
6872 /* turn off idle balance on this domain */
6873 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
6875 /* turn on idle balance on this domain */
6876 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
6880 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
6881 const struct cpumask
*cpu_map
)
6884 case sa_sched_groups
:
6885 free_sched_groups(cpu_map
, d
->tmpmask
); /* fall through */
6886 d
->sched_group_nodes
= NULL
;
6888 free_rootdomain(d
->rd
); /* fall through */
6890 free_cpumask_var(d
->tmpmask
); /* fall through */
6891 case sa_send_covered
:
6892 free_cpumask_var(d
->send_covered
); /* fall through */
6893 case sa_this_core_map
:
6894 free_cpumask_var(d
->this_core_map
); /* fall through */
6895 case sa_this_sibling_map
:
6896 free_cpumask_var(d
->this_sibling_map
); /* fall through */
6898 free_cpumask_var(d
->nodemask
); /* fall through */
6899 case sa_sched_group_nodes
:
6901 kfree(d
->sched_group_nodes
); /* fall through */
6903 free_cpumask_var(d
->notcovered
); /* fall through */
6905 free_cpumask_var(d
->covered
); /* fall through */
6907 free_cpumask_var(d
->domainspan
); /* fall through */
6914 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
6915 const struct cpumask
*cpu_map
)
6918 if (!alloc_cpumask_var(&d
->domainspan
, GFP_KERNEL
))
6920 if (!alloc_cpumask_var(&d
->covered
, GFP_KERNEL
))
6921 return sa_domainspan
;
6922 if (!alloc_cpumask_var(&d
->notcovered
, GFP_KERNEL
))
6924 /* Allocate the per-node list of sched groups */
6925 d
->sched_group_nodes
= kcalloc(nr_node_ids
,
6926 sizeof(struct sched_group
*), GFP_KERNEL
);
6927 if (!d
->sched_group_nodes
) {
6928 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6929 return sa_notcovered
;
6931 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = d
->sched_group_nodes
;
6933 if (!alloc_cpumask_var(&d
->nodemask
, GFP_KERNEL
))
6934 return sa_sched_group_nodes
;
6935 if (!alloc_cpumask_var(&d
->this_sibling_map
, GFP_KERNEL
))
6937 if (!alloc_cpumask_var(&d
->this_core_map
, GFP_KERNEL
))
6938 return sa_this_sibling_map
;
6939 if (!alloc_cpumask_var(&d
->send_covered
, GFP_KERNEL
))
6940 return sa_this_core_map
;
6941 if (!alloc_cpumask_var(&d
->tmpmask
, GFP_KERNEL
))
6942 return sa_send_covered
;
6943 d
->rd
= alloc_rootdomain();
6945 printk(KERN_WARNING
"Cannot alloc root domain\n");
6948 return sa_rootdomain
;
6951 static struct sched_domain
*__build_numa_sched_domains(struct s_data
*d
,
6952 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
, int i
)
6954 struct sched_domain
*sd
= NULL
;
6956 struct sched_domain
*parent
;
6959 if (cpumask_weight(cpu_map
) >
6960 SD_NODES_PER_DOMAIN
* cpumask_weight(d
->nodemask
)) {
6961 sd
= &per_cpu(allnodes_domains
, i
).sd
;
6962 SD_INIT(sd
, ALLNODES
);
6963 set_domain_attribute(sd
, attr
);
6964 cpumask_copy(sched_domain_span(sd
), cpu_map
);
6965 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
6970 sd
= &per_cpu(node_domains
, i
).sd
;
6972 set_domain_attribute(sd
, attr
);
6973 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
6974 sd
->parent
= parent
;
6977 cpumask_and(sched_domain_span(sd
), sched_domain_span(sd
), cpu_map
);
6982 static struct sched_domain
*__build_cpu_sched_domain(struct s_data
*d
,
6983 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
6984 struct sched_domain
*parent
, int i
)
6986 struct sched_domain
*sd
;
6987 sd
= &per_cpu(phys_domains
, i
).sd
;
6989 set_domain_attribute(sd
, attr
);
6990 cpumask_copy(sched_domain_span(sd
), d
->nodemask
);
6991 sd
->parent
= parent
;
6994 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
6998 static struct sched_domain
*__build_mc_sched_domain(struct s_data
*d
,
6999 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7000 struct sched_domain
*parent
, int i
)
7002 struct sched_domain
*sd
= parent
;
7003 #ifdef CONFIG_SCHED_MC
7004 sd
= &per_cpu(core_domains
, i
).sd
;
7006 set_domain_attribute(sd
, attr
);
7007 cpumask_and(sched_domain_span(sd
), cpu_map
, cpu_coregroup_mask(i
));
7008 sd
->parent
= parent
;
7010 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7015 static struct sched_domain
*__build_smt_sched_domain(struct s_data
*d
,
7016 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
7017 struct sched_domain
*parent
, int i
)
7019 struct sched_domain
*sd
= parent
;
7020 #ifdef CONFIG_SCHED_SMT
7021 sd
= &per_cpu(cpu_domains
, i
).sd
;
7022 SD_INIT(sd
, SIBLING
);
7023 set_domain_attribute(sd
, attr
);
7024 cpumask_and(sched_domain_span(sd
), cpu_map
, topology_thread_cpumask(i
));
7025 sd
->parent
= parent
;
7027 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
7032 static void build_sched_groups(struct s_data
*d
, enum sched_domain_level l
,
7033 const struct cpumask
*cpu_map
, int cpu
)
7036 #ifdef CONFIG_SCHED_SMT
7037 case SD_LV_SIBLING
: /* set up CPU (sibling) groups */
7038 cpumask_and(d
->this_sibling_map
, cpu_map
,
7039 topology_thread_cpumask(cpu
));
7040 if (cpu
== cpumask_first(d
->this_sibling_map
))
7041 init_sched_build_groups(d
->this_sibling_map
, cpu_map
,
7043 d
->send_covered
, d
->tmpmask
);
7046 #ifdef CONFIG_SCHED_MC
7047 case SD_LV_MC
: /* set up multi-core groups */
7048 cpumask_and(d
->this_core_map
, cpu_map
, cpu_coregroup_mask(cpu
));
7049 if (cpu
== cpumask_first(d
->this_core_map
))
7050 init_sched_build_groups(d
->this_core_map
, cpu_map
,
7052 d
->send_covered
, d
->tmpmask
);
7055 case SD_LV_CPU
: /* set up physical groups */
7056 cpumask_and(d
->nodemask
, cpumask_of_node(cpu
), cpu_map
);
7057 if (!cpumask_empty(d
->nodemask
))
7058 init_sched_build_groups(d
->nodemask
, cpu_map
,
7060 d
->send_covered
, d
->tmpmask
);
7063 case SD_LV_ALLNODES
:
7064 init_sched_build_groups(cpu_map
, cpu_map
, &cpu_to_allnodes_group
,
7065 d
->send_covered
, d
->tmpmask
);
7074 * Build sched domains for a given set of cpus and attach the sched domains
7075 * to the individual cpus
7077 static int __build_sched_domains(const struct cpumask
*cpu_map
,
7078 struct sched_domain_attr
*attr
)
7080 enum s_alloc alloc_state
= sa_none
;
7082 struct sched_domain
*sd
;
7088 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
7089 if (alloc_state
!= sa_rootdomain
)
7091 alloc_state
= sa_sched_groups
;
7094 * Set up domains for cpus specified by the cpu_map.
7096 for_each_cpu(i
, cpu_map
) {
7097 cpumask_and(d
.nodemask
, cpumask_of_node(cpu_to_node(i
)),
7100 sd
= __build_numa_sched_domains(&d
, cpu_map
, attr
, i
);
7101 sd
= __build_cpu_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7102 sd
= __build_mc_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7103 sd
= __build_smt_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
7106 for_each_cpu(i
, cpu_map
) {
7107 build_sched_groups(&d
, SD_LV_SIBLING
, cpu_map
, i
);
7108 build_sched_groups(&d
, SD_LV_MC
, cpu_map
, i
);
7111 /* Set up physical groups */
7112 for (i
= 0; i
< nr_node_ids
; i
++)
7113 build_sched_groups(&d
, SD_LV_CPU
, cpu_map
, i
);
7116 /* Set up node groups */
7118 build_sched_groups(&d
, SD_LV_ALLNODES
, cpu_map
, 0);
7120 for (i
= 0; i
< nr_node_ids
; i
++)
7121 if (build_numa_sched_groups(&d
, cpu_map
, i
))
7125 /* Calculate CPU power for physical packages and nodes */
7126 #ifdef CONFIG_SCHED_SMT
7127 for_each_cpu(i
, cpu_map
) {
7128 sd
= &per_cpu(cpu_domains
, i
).sd
;
7129 init_sched_groups_power(i
, sd
);
7132 #ifdef CONFIG_SCHED_MC
7133 for_each_cpu(i
, cpu_map
) {
7134 sd
= &per_cpu(core_domains
, i
).sd
;
7135 init_sched_groups_power(i
, sd
);
7139 for_each_cpu(i
, cpu_map
) {
7140 sd
= &per_cpu(phys_domains
, i
).sd
;
7141 init_sched_groups_power(i
, sd
);
7145 for (i
= 0; i
< nr_node_ids
; i
++)
7146 init_numa_sched_groups_power(d
.sched_group_nodes
[i
]);
7148 if (d
.sd_allnodes
) {
7149 struct sched_group
*sg
;
7151 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
7153 init_numa_sched_groups_power(sg
);
7157 /* Attach the domains */
7158 for_each_cpu(i
, cpu_map
) {
7159 #ifdef CONFIG_SCHED_SMT
7160 sd
= &per_cpu(cpu_domains
, i
).sd
;
7161 #elif defined(CONFIG_SCHED_MC)
7162 sd
= &per_cpu(core_domains
, i
).sd
;
7164 sd
= &per_cpu(phys_domains
, i
).sd
;
7166 cpu_attach_domain(sd
, d
.rd
, i
);
7169 d
.sched_group_nodes
= NULL
; /* don't free this we still need it */
7170 __free_domain_allocs(&d
, sa_tmpmask
, cpu_map
);
7174 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
7178 static int build_sched_domains(const struct cpumask
*cpu_map
)
7180 return __build_sched_domains(cpu_map
, NULL
);
7183 static cpumask_var_t
*doms_cur
; /* current sched domains */
7184 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7185 static struct sched_domain_attr
*dattr_cur
;
7186 /* attribues of custom domains in 'doms_cur' */
7189 * Special case: If a kmalloc of a doms_cur partition (array of
7190 * cpumask) fails, then fallback to a single sched domain,
7191 * as determined by the single cpumask fallback_doms.
7193 static cpumask_var_t fallback_doms
;
7196 * arch_update_cpu_topology lets virtualized architectures update the
7197 * cpu core maps. It is supposed to return 1 if the topology changed
7198 * or 0 if it stayed the same.
7200 int __attribute__((weak
)) arch_update_cpu_topology(void)
7205 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
7208 cpumask_var_t
*doms
;
7210 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
7213 for (i
= 0; i
< ndoms
; i
++) {
7214 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
7215 free_sched_domains(doms
, i
);
7222 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
7225 for (i
= 0; i
< ndoms
; i
++)
7226 free_cpumask_var(doms
[i
]);
7231 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7232 * For now this just excludes isolated cpus, but could be used to
7233 * exclude other special cases in the future.
7235 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
7239 arch_update_cpu_topology();
7241 doms_cur
= alloc_sched_domains(ndoms_cur
);
7243 doms_cur
= &fallback_doms
;
7244 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
7246 err
= build_sched_domains(doms_cur
[0]);
7247 register_sched_domain_sysctl();
7252 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
7253 struct cpumask
*tmpmask
)
7255 free_sched_groups(cpu_map
, tmpmask
);
7259 * Detach sched domains from a group of cpus specified in cpu_map
7260 * These cpus will now be attached to the NULL domain
7262 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7264 /* Save because hotplug lock held. */
7265 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
7268 for_each_cpu(i
, cpu_map
)
7269 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7270 synchronize_sched();
7271 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
7274 /* handle null as "default" */
7275 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7276 struct sched_domain_attr
*new, int idx_new
)
7278 struct sched_domain_attr tmp
;
7285 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7286 new ? (new + idx_new
) : &tmp
,
7287 sizeof(struct sched_domain_attr
));
7291 * Partition sched domains as specified by the 'ndoms_new'
7292 * cpumasks in the array doms_new[] of cpumasks. This compares
7293 * doms_new[] to the current sched domain partitioning, doms_cur[].
7294 * It destroys each deleted domain and builds each new domain.
7296 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7297 * The masks don't intersect (don't overlap.) We should setup one
7298 * sched domain for each mask. CPUs not in any of the cpumasks will
7299 * not be load balanced. If the same cpumask appears both in the
7300 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7303 * The passed in 'doms_new' should be allocated using
7304 * alloc_sched_domains. This routine takes ownership of it and will
7305 * free_sched_domains it when done with it. If the caller failed the
7306 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7307 * and partition_sched_domains() will fallback to the single partition
7308 * 'fallback_doms', it also forces the domains to be rebuilt.
7310 * If doms_new == NULL it will be replaced with cpu_online_mask.
7311 * ndoms_new == 0 is a special case for destroying existing domains,
7312 * and it will not create the default domain.
7314 * Call with hotplug lock held
7316 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
7317 struct sched_domain_attr
*dattr_new
)
7322 mutex_lock(&sched_domains_mutex
);
7324 /* always unregister in case we don't destroy any domains */
7325 unregister_sched_domain_sysctl();
7327 /* Let architecture update cpu core mappings. */
7328 new_topology
= arch_update_cpu_topology();
7330 n
= doms_new
? ndoms_new
: 0;
7332 /* Destroy deleted domains */
7333 for (i
= 0; i
< ndoms_cur
; i
++) {
7334 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7335 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
7336 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7339 /* no match - a current sched domain not in new doms_new[] */
7340 detach_destroy_domains(doms_cur
[i
]);
7345 if (doms_new
== NULL
) {
7347 doms_new
= &fallback_doms
;
7348 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
7349 WARN_ON_ONCE(dattr_new
);
7352 /* Build new domains */
7353 for (i
= 0; i
< ndoms_new
; i
++) {
7354 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
7355 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
7356 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7359 /* no match - add a new doms_new */
7360 __build_sched_domains(doms_new
[i
],
7361 dattr_new
? dattr_new
+ i
: NULL
);
7366 /* Remember the new sched domains */
7367 if (doms_cur
!= &fallback_doms
)
7368 free_sched_domains(doms_cur
, ndoms_cur
);
7369 kfree(dattr_cur
); /* kfree(NULL) is safe */
7370 doms_cur
= doms_new
;
7371 dattr_cur
= dattr_new
;
7372 ndoms_cur
= ndoms_new
;
7374 register_sched_domain_sysctl();
7376 mutex_unlock(&sched_domains_mutex
);
7379 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7380 static void arch_reinit_sched_domains(void)
7384 /* Destroy domains first to force the rebuild */
7385 partition_sched_domains(0, NULL
, NULL
);
7387 rebuild_sched_domains();
7391 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7393 unsigned int level
= 0;
7395 if (sscanf(buf
, "%u", &level
) != 1)
7399 * level is always be positive so don't check for
7400 * level < POWERSAVINGS_BALANCE_NONE which is 0
7401 * What happens on 0 or 1 byte write,
7402 * need to check for count as well?
7405 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
7409 sched_smt_power_savings
= level
;
7411 sched_mc_power_savings
= level
;
7413 arch_reinit_sched_domains();
7418 #ifdef CONFIG_SCHED_MC
7419 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
7420 struct sysdev_class_attribute
*attr
,
7423 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7425 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
7426 struct sysdev_class_attribute
*attr
,
7427 const char *buf
, size_t count
)
7429 return sched_power_savings_store(buf
, count
, 0);
7431 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
7432 sched_mc_power_savings_show
,
7433 sched_mc_power_savings_store
);
7436 #ifdef CONFIG_SCHED_SMT
7437 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
7438 struct sysdev_class_attribute
*attr
,
7441 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7443 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
7444 struct sysdev_class_attribute
*attr
,
7445 const char *buf
, size_t count
)
7447 return sched_power_savings_store(buf
, count
, 1);
7449 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
7450 sched_smt_power_savings_show
,
7451 sched_smt_power_savings_store
);
7454 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7458 #ifdef CONFIG_SCHED_SMT
7460 err
= sysfs_create_file(&cls
->kset
.kobj
,
7461 &attr_sched_smt_power_savings
.attr
);
7463 #ifdef CONFIG_SCHED_MC
7464 if (!err
&& mc_capable())
7465 err
= sysfs_create_file(&cls
->kset
.kobj
,
7466 &attr_sched_mc_power_savings
.attr
);
7470 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7473 * Update cpusets according to cpu_active mask. If cpusets are
7474 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7475 * around partition_sched_domains().
7477 static int cpuset_cpu_active(struct notifier_block
*nfb
, unsigned long action
,
7480 switch (action
& ~CPU_TASKS_FROZEN
) {
7482 case CPU_DOWN_FAILED
:
7483 cpuset_update_active_cpus();
7490 static int cpuset_cpu_inactive(struct notifier_block
*nfb
, unsigned long action
,
7493 switch (action
& ~CPU_TASKS_FROZEN
) {
7494 case CPU_DOWN_PREPARE
:
7495 cpuset_update_active_cpus();
7502 static int update_runtime(struct notifier_block
*nfb
,
7503 unsigned long action
, void *hcpu
)
7505 int cpu
= (int)(long)hcpu
;
7508 case CPU_DOWN_PREPARE
:
7509 case CPU_DOWN_PREPARE_FROZEN
:
7510 disable_runtime(cpu_rq(cpu
));
7513 case CPU_DOWN_FAILED
:
7514 case CPU_DOWN_FAILED_FROZEN
:
7516 case CPU_ONLINE_FROZEN
:
7517 enable_runtime(cpu_rq(cpu
));
7525 void __init
sched_init_smp(void)
7527 cpumask_var_t non_isolated_cpus
;
7529 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
7530 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
7532 #if defined(CONFIG_NUMA)
7533 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
7535 BUG_ON(sched_group_nodes_bycpu
== NULL
);
7538 mutex_lock(&sched_domains_mutex
);
7539 arch_init_sched_domains(cpu_active_mask
);
7540 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
7541 if (cpumask_empty(non_isolated_cpus
))
7542 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
7543 mutex_unlock(&sched_domains_mutex
);
7546 hotcpu_notifier(cpuset_cpu_active
, CPU_PRI_CPUSET_ACTIVE
);
7547 hotcpu_notifier(cpuset_cpu_inactive
, CPU_PRI_CPUSET_INACTIVE
);
7549 /* RT runtime code needs to handle some hotplug events */
7550 hotcpu_notifier(update_runtime
, 0);
7554 /* Move init over to a non-isolated CPU */
7555 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
7557 sched_init_granularity();
7558 free_cpumask_var(non_isolated_cpus
);
7560 init_sched_rt_class();
7563 void __init
sched_init_smp(void)
7565 sched_init_granularity();
7567 #endif /* CONFIG_SMP */
7569 const_debug
unsigned int sysctl_timer_migration
= 1;
7571 int in_sched_functions(unsigned long addr
)
7573 return in_lock_functions(addr
) ||
7574 (addr
>= (unsigned long)__sched_text_start
7575 && addr
< (unsigned long)__sched_text_end
);
7578 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7580 cfs_rq
->tasks_timeline
= RB_ROOT
;
7581 INIT_LIST_HEAD(&cfs_rq
->tasks
);
7582 #ifdef CONFIG_FAIR_GROUP_SCHED
7585 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7588 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7590 struct rt_prio_array
*array
;
7593 array
= &rt_rq
->active
;
7594 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7595 INIT_LIST_HEAD(array
->queue
+ i
);
7596 __clear_bit(i
, array
->bitmap
);
7598 /* delimiter for bitsearch: */
7599 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7601 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7602 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
7604 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
7608 rt_rq
->rt_nr_migratory
= 0;
7609 rt_rq
->overloaded
= 0;
7610 plist_head_init_raw(&rt_rq
->pushable_tasks
, &rq
->lock
);
7614 rt_rq
->rt_throttled
= 0;
7615 rt_rq
->rt_runtime
= 0;
7616 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
7618 #ifdef CONFIG_RT_GROUP_SCHED
7619 rt_rq
->rt_nr_boosted
= 0;
7624 #ifdef CONFIG_FAIR_GROUP_SCHED
7625 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
7626 struct sched_entity
*se
, int cpu
, int add
,
7627 struct sched_entity
*parent
)
7629 struct rq
*rq
= cpu_rq(cpu
);
7630 tg
->cfs_rq
[cpu
] = cfs_rq
;
7631 init_cfs_rq(cfs_rq
, rq
);
7634 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7637 /* se could be NULL for init_task_group */
7642 se
->cfs_rq
= &rq
->cfs
;
7644 se
->cfs_rq
= parent
->my_q
;
7647 se
->load
.weight
= tg
->shares
;
7648 se
->load
.inv_weight
= 0;
7649 se
->parent
= parent
;
7653 #ifdef CONFIG_RT_GROUP_SCHED
7654 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
7655 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
7656 struct sched_rt_entity
*parent
)
7658 struct rq
*rq
= cpu_rq(cpu
);
7660 tg
->rt_rq
[cpu
] = rt_rq
;
7661 init_rt_rq(rt_rq
, rq
);
7663 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7665 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
7667 tg
->rt_se
[cpu
] = rt_se
;
7672 rt_se
->rt_rq
= &rq
->rt
;
7674 rt_se
->rt_rq
= parent
->my_q
;
7676 rt_se
->my_q
= rt_rq
;
7677 rt_se
->parent
= parent
;
7678 INIT_LIST_HEAD(&rt_se
->run_list
);
7682 void __init
sched_init(void)
7685 unsigned long alloc_size
= 0, ptr
;
7687 #ifdef CONFIG_FAIR_GROUP_SCHED
7688 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7690 #ifdef CONFIG_RT_GROUP_SCHED
7691 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7693 #ifdef CONFIG_CPUMASK_OFFSTACK
7694 alloc_size
+= num_possible_cpus() * cpumask_size();
7697 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
7699 #ifdef CONFIG_FAIR_GROUP_SCHED
7700 init_task_group
.se
= (struct sched_entity
**)ptr
;
7701 ptr
+= nr_cpu_ids
* sizeof(void **);
7703 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
7704 ptr
+= nr_cpu_ids
* sizeof(void **);
7706 #endif /* CONFIG_FAIR_GROUP_SCHED */
7707 #ifdef CONFIG_RT_GROUP_SCHED
7708 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
7709 ptr
+= nr_cpu_ids
* sizeof(void **);
7711 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
7712 ptr
+= nr_cpu_ids
* sizeof(void **);
7714 #endif /* CONFIG_RT_GROUP_SCHED */
7715 #ifdef CONFIG_CPUMASK_OFFSTACK
7716 for_each_possible_cpu(i
) {
7717 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
7718 ptr
+= cpumask_size();
7720 #endif /* CONFIG_CPUMASK_OFFSTACK */
7724 init_defrootdomain();
7727 init_rt_bandwidth(&def_rt_bandwidth
,
7728 global_rt_period(), global_rt_runtime());
7730 #ifdef CONFIG_RT_GROUP_SCHED
7731 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
7732 global_rt_period(), global_rt_runtime());
7733 #endif /* CONFIG_RT_GROUP_SCHED */
7735 #ifdef CONFIG_CGROUP_SCHED
7736 list_add(&init_task_group
.list
, &task_groups
);
7737 INIT_LIST_HEAD(&init_task_group
.children
);
7739 #endif /* CONFIG_CGROUP_SCHED */
7741 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7742 update_shares_data
= __alloc_percpu(nr_cpu_ids
* sizeof(unsigned long),
7743 __alignof__(unsigned long));
7745 for_each_possible_cpu(i
) {
7749 raw_spin_lock_init(&rq
->lock
);
7751 rq
->calc_load_active
= 0;
7752 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
7753 init_cfs_rq(&rq
->cfs
, rq
);
7754 init_rt_rq(&rq
->rt
, rq
);
7755 #ifdef CONFIG_FAIR_GROUP_SCHED
7756 init_task_group
.shares
= init_task_group_load
;
7757 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7758 #ifdef CONFIG_CGROUP_SCHED
7760 * How much cpu bandwidth does init_task_group get?
7762 * In case of task-groups formed thr' the cgroup filesystem, it
7763 * gets 100% of the cpu resources in the system. This overall
7764 * system cpu resource is divided among the tasks of
7765 * init_task_group and its child task-groups in a fair manner,
7766 * based on each entity's (task or task-group's) weight
7767 * (se->load.weight).
7769 * In other words, if init_task_group has 10 tasks of weight
7770 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7771 * then A0's share of the cpu resource is:
7773 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7775 * We achieve this by letting init_task_group's tasks sit
7776 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7778 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
7780 #endif /* CONFIG_FAIR_GROUP_SCHED */
7782 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
7783 #ifdef CONFIG_RT_GROUP_SCHED
7784 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
7785 #ifdef CONFIG_CGROUP_SCHED
7786 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
7790 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
7791 rq
->cpu_load
[j
] = 0;
7793 rq
->last_load_update_tick
= jiffies
;
7798 rq
->cpu_power
= SCHED_LOAD_SCALE
;
7799 rq
->post_schedule
= 0;
7800 rq
->active_balance
= 0;
7801 rq
->next_balance
= jiffies
;
7806 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
7807 rq_attach_root(rq
, &def_root_domain
);
7809 rq
->nohz_balance_kick
= 0;
7810 init_sched_softirq_csd(&per_cpu(remote_sched_softirq_cb
, i
));
7814 atomic_set(&rq
->nr_iowait
, 0);
7817 set_load_weight(&init_task
);
7819 #ifdef CONFIG_PREEMPT_NOTIFIERS
7820 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
7824 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
7827 #ifdef CONFIG_RT_MUTEXES
7828 plist_head_init_raw(&init_task
.pi_waiters
, &init_task
.pi_lock
);
7832 * The boot idle thread does lazy MMU switching as well:
7834 atomic_inc(&init_mm
.mm_count
);
7835 enter_lazy_tlb(&init_mm
, current
);
7838 * Make us the idle thread. Technically, schedule() should not be
7839 * called from this thread, however somewhere below it might be,
7840 * but because we are the idle thread, we just pick up running again
7841 * when this runqueue becomes "idle".
7843 init_idle(current
, smp_processor_id());
7845 calc_load_update
= jiffies
+ LOAD_FREQ
;
7848 * During early bootup we pretend to be a normal task:
7850 current
->sched_class
= &fair_sched_class
;
7852 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7853 zalloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
7856 zalloc_cpumask_var(&nohz
.idle_cpus_mask
, GFP_NOWAIT
);
7857 alloc_cpumask_var(&nohz
.grp_idle_mask
, GFP_NOWAIT
);
7858 atomic_set(&nohz
.load_balancer
, nr_cpu_ids
);
7859 atomic_set(&nohz
.first_pick_cpu
, nr_cpu_ids
);
7860 atomic_set(&nohz
.second_pick_cpu
, nr_cpu_ids
);
7862 /* May be allocated at isolcpus cmdline parse time */
7863 if (cpu_isolated_map
== NULL
)
7864 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
7869 scheduler_running
= 1;
7872 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7873 static inline int preempt_count_equals(int preempt_offset
)
7875 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
7877 return (nested
== PREEMPT_INATOMIC_BASE
+ preempt_offset
);
7880 void __might_sleep(const char *file
, int line
, int preempt_offset
)
7883 static unsigned long prev_jiffy
; /* ratelimiting */
7885 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
7886 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
7888 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
7890 prev_jiffy
= jiffies
;
7893 "BUG: sleeping function called from invalid context at %s:%d\n",
7896 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7897 in_atomic(), irqs_disabled(),
7898 current
->pid
, current
->comm
);
7900 debug_show_held_locks(current
);
7901 if (irqs_disabled())
7902 print_irqtrace_events(current
);
7906 EXPORT_SYMBOL(__might_sleep
);
7909 #ifdef CONFIG_MAGIC_SYSRQ
7910 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
7914 on_rq
= p
->se
.on_rq
;
7916 deactivate_task(rq
, p
, 0);
7917 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
7919 activate_task(rq
, p
, 0);
7920 resched_task(rq
->curr
);
7924 void normalize_rt_tasks(void)
7926 struct task_struct
*g
, *p
;
7927 unsigned long flags
;
7930 read_lock_irqsave(&tasklist_lock
, flags
);
7931 do_each_thread(g
, p
) {
7933 * Only normalize user tasks:
7938 p
->se
.exec_start
= 0;
7939 #ifdef CONFIG_SCHEDSTATS
7940 p
->se
.statistics
.wait_start
= 0;
7941 p
->se
.statistics
.sleep_start
= 0;
7942 p
->se
.statistics
.block_start
= 0;
7947 * Renice negative nice level userspace
7950 if (TASK_NICE(p
) < 0 && p
->mm
)
7951 set_user_nice(p
, 0);
7955 raw_spin_lock(&p
->pi_lock
);
7956 rq
= __task_rq_lock(p
);
7958 normalize_task(rq
, p
);
7960 __task_rq_unlock(rq
);
7961 raw_spin_unlock(&p
->pi_lock
);
7962 } while_each_thread(g
, p
);
7964 read_unlock_irqrestore(&tasklist_lock
, flags
);
7967 #endif /* CONFIG_MAGIC_SYSRQ */
7969 #if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
7971 * These functions are only useful for the IA64 MCA handling, or kdb.
7973 * They can only be called when the whole system has been
7974 * stopped - every CPU needs to be quiescent, and no scheduling
7975 * activity can take place. Using them for anything else would
7976 * be a serious bug, and as a result, they aren't even visible
7977 * under any other configuration.
7981 * curr_task - return the current task for a given cpu.
7982 * @cpu: the processor in question.
7984 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7986 struct task_struct
*curr_task(int cpu
)
7988 return cpu_curr(cpu
);
7991 #endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7995 * set_curr_task - set the current task for a given cpu.
7996 * @cpu: the processor in question.
7997 * @p: the task pointer to set.
7999 * Description: This function must only be used when non-maskable interrupts
8000 * are serviced on a separate stack. It allows the architecture to switch the
8001 * notion of the current task on a cpu in a non-blocking manner. This function
8002 * must be called with all CPU's synchronized, and interrupts disabled, the
8003 * and caller must save the original value of the current task (see
8004 * curr_task() above) and restore that value before reenabling interrupts and
8005 * re-starting the system.
8007 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
8009 void set_curr_task(int cpu
, struct task_struct
*p
)
8016 #ifdef CONFIG_FAIR_GROUP_SCHED
8017 static void free_fair_sched_group(struct task_group
*tg
)
8021 for_each_possible_cpu(i
) {
8023 kfree(tg
->cfs_rq
[i
]);
8033 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8035 struct cfs_rq
*cfs_rq
;
8036 struct sched_entity
*se
;
8040 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8043 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
8047 tg
->shares
= NICE_0_LOAD
;
8049 for_each_possible_cpu(i
) {
8052 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
8053 GFP_KERNEL
, cpu_to_node(i
));
8057 se
= kzalloc_node(sizeof(struct sched_entity
),
8058 GFP_KERNEL
, cpu_to_node(i
));
8062 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
8073 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8075 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
8076 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
8079 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8081 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
8083 #else /* !CONFG_FAIR_GROUP_SCHED */
8084 static inline void free_fair_sched_group(struct task_group
*tg
)
8089 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8094 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
8098 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
8101 #endif /* CONFIG_FAIR_GROUP_SCHED */
8103 #ifdef CONFIG_RT_GROUP_SCHED
8104 static void free_rt_sched_group(struct task_group
*tg
)
8108 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
8110 for_each_possible_cpu(i
) {
8112 kfree(tg
->rt_rq
[i
]);
8114 kfree(tg
->rt_se
[i
]);
8122 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8124 struct rt_rq
*rt_rq
;
8125 struct sched_rt_entity
*rt_se
;
8129 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8132 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8136 init_rt_bandwidth(&tg
->rt_bandwidth
,
8137 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8139 for_each_possible_cpu(i
) {
8142 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
8143 GFP_KERNEL
, cpu_to_node(i
));
8147 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
8148 GFP_KERNEL
, cpu_to_node(i
));
8152 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
8163 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8165 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
8166 &cpu_rq(cpu
)->leaf_rt_rq_list
);
8169 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8171 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
8173 #else /* !CONFIG_RT_GROUP_SCHED */
8174 static inline void free_rt_sched_group(struct task_group
*tg
)
8179 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8184 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8188 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8191 #endif /* CONFIG_RT_GROUP_SCHED */
8193 #ifdef CONFIG_CGROUP_SCHED
8194 static void free_sched_group(struct task_group
*tg
)
8196 free_fair_sched_group(tg
);
8197 free_rt_sched_group(tg
);
8201 /* allocate runqueue etc for a new task group */
8202 struct task_group
*sched_create_group(struct task_group
*parent
)
8204 struct task_group
*tg
;
8205 unsigned long flags
;
8208 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8210 return ERR_PTR(-ENOMEM
);
8212 if (!alloc_fair_sched_group(tg
, parent
))
8215 if (!alloc_rt_sched_group(tg
, parent
))
8218 spin_lock_irqsave(&task_group_lock
, flags
);
8219 for_each_possible_cpu(i
) {
8220 register_fair_sched_group(tg
, i
);
8221 register_rt_sched_group(tg
, i
);
8223 list_add_rcu(&tg
->list
, &task_groups
);
8225 WARN_ON(!parent
); /* root should already exist */
8227 tg
->parent
= parent
;
8228 INIT_LIST_HEAD(&tg
->children
);
8229 list_add_rcu(&tg
->siblings
, &parent
->children
);
8230 spin_unlock_irqrestore(&task_group_lock
, flags
);
8235 free_sched_group(tg
);
8236 return ERR_PTR(-ENOMEM
);
8239 /* rcu callback to free various structures associated with a task group */
8240 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8242 /* now it should be safe to free those cfs_rqs */
8243 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8246 /* Destroy runqueue etc associated with a task group */
8247 void sched_destroy_group(struct task_group
*tg
)
8249 unsigned long flags
;
8252 spin_lock_irqsave(&task_group_lock
, flags
);
8253 for_each_possible_cpu(i
) {
8254 unregister_fair_sched_group(tg
, i
);
8255 unregister_rt_sched_group(tg
, i
);
8257 list_del_rcu(&tg
->list
);
8258 list_del_rcu(&tg
->siblings
);
8259 spin_unlock_irqrestore(&task_group_lock
, flags
);
8261 /* wait for possible concurrent references to cfs_rqs complete */
8262 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8265 /* change task's runqueue when it moves between groups.
8266 * The caller of this function should have put the task in its new group
8267 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8268 * reflect its new group.
8270 void sched_move_task(struct task_struct
*tsk
)
8273 unsigned long flags
;
8276 rq
= task_rq_lock(tsk
, &flags
);
8278 running
= task_current(rq
, tsk
);
8279 on_rq
= tsk
->se
.on_rq
;
8282 dequeue_task(rq
, tsk
, 0);
8283 if (unlikely(running
))
8284 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8286 set_task_rq(tsk
, task_cpu(tsk
));
8288 #ifdef CONFIG_FAIR_GROUP_SCHED
8289 if (tsk
->sched_class
->moved_group
)
8290 tsk
->sched_class
->moved_group(tsk
, on_rq
);
8293 if (unlikely(running
))
8294 tsk
->sched_class
->set_curr_task(rq
);
8296 enqueue_task(rq
, tsk
, 0);
8298 task_rq_unlock(rq
, &flags
);
8300 #endif /* CONFIG_CGROUP_SCHED */
8302 #ifdef CONFIG_FAIR_GROUP_SCHED
8303 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8305 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8310 dequeue_entity(cfs_rq
, se
, 0);
8312 se
->load
.weight
= shares
;
8313 se
->load
.inv_weight
= 0;
8316 enqueue_entity(cfs_rq
, se
, 0);
8319 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8321 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8322 struct rq
*rq
= cfs_rq
->rq
;
8323 unsigned long flags
;
8325 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8326 __set_se_shares(se
, shares
);
8327 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8330 static DEFINE_MUTEX(shares_mutex
);
8332 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8335 unsigned long flags
;
8338 * We can't change the weight of the root cgroup.
8343 if (shares
< MIN_SHARES
)
8344 shares
= MIN_SHARES
;
8345 else if (shares
> MAX_SHARES
)
8346 shares
= MAX_SHARES
;
8348 mutex_lock(&shares_mutex
);
8349 if (tg
->shares
== shares
)
8352 spin_lock_irqsave(&task_group_lock
, flags
);
8353 for_each_possible_cpu(i
)
8354 unregister_fair_sched_group(tg
, i
);
8355 list_del_rcu(&tg
->siblings
);
8356 spin_unlock_irqrestore(&task_group_lock
, flags
);
8358 /* wait for any ongoing reference to this group to finish */
8359 synchronize_sched();
8362 * Now we are free to modify the group's share on each cpu
8363 * w/o tripping rebalance_share or load_balance_fair.
8365 tg
->shares
= shares
;
8366 for_each_possible_cpu(i
) {
8370 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
8371 set_se_shares(tg
->se
[i
], shares
);
8375 * Enable load balance activity on this group, by inserting it back on
8376 * each cpu's rq->leaf_cfs_rq_list.
8378 spin_lock_irqsave(&task_group_lock
, flags
);
8379 for_each_possible_cpu(i
)
8380 register_fair_sched_group(tg
, i
);
8381 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
8382 spin_unlock_irqrestore(&task_group_lock
, flags
);
8384 mutex_unlock(&shares_mutex
);
8388 unsigned long sched_group_shares(struct task_group
*tg
)
8394 #ifdef CONFIG_RT_GROUP_SCHED
8396 * Ensure that the real time constraints are schedulable.
8398 static DEFINE_MUTEX(rt_constraints_mutex
);
8400 static unsigned long to_ratio(u64 period
, u64 runtime
)
8402 if (runtime
== RUNTIME_INF
)
8405 return div64_u64(runtime
<< 20, period
);
8408 /* Must be called with tasklist_lock held */
8409 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8411 struct task_struct
*g
, *p
;
8413 do_each_thread(g
, p
) {
8414 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8416 } while_each_thread(g
, p
);
8421 struct rt_schedulable_data
{
8422 struct task_group
*tg
;
8427 static int tg_schedulable(struct task_group
*tg
, void *data
)
8429 struct rt_schedulable_data
*d
= data
;
8430 struct task_group
*child
;
8431 unsigned long total
, sum
= 0;
8432 u64 period
, runtime
;
8434 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8435 runtime
= tg
->rt_bandwidth
.rt_runtime
;
8438 period
= d
->rt_period
;
8439 runtime
= d
->rt_runtime
;
8443 * Cannot have more runtime than the period.
8445 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8449 * Ensure we don't starve existing RT tasks.
8451 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
8454 total
= to_ratio(period
, runtime
);
8457 * Nobody can have more than the global setting allows.
8459 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
8463 * The sum of our children's runtime should not exceed our own.
8465 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
8466 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
8467 runtime
= child
->rt_bandwidth
.rt_runtime
;
8469 if (child
== d
->tg
) {
8470 period
= d
->rt_period
;
8471 runtime
= d
->rt_runtime
;
8474 sum
+= to_ratio(period
, runtime
);
8483 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8485 struct rt_schedulable_data data
= {
8487 .rt_period
= period
,
8488 .rt_runtime
= runtime
,
8491 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
8494 static int tg_set_bandwidth(struct task_group
*tg
,
8495 u64 rt_period
, u64 rt_runtime
)
8499 mutex_lock(&rt_constraints_mutex
);
8500 read_lock(&tasklist_lock
);
8501 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
8505 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8506 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8507 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8509 for_each_possible_cpu(i
) {
8510 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8512 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8513 rt_rq
->rt_runtime
= rt_runtime
;
8514 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8516 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8518 read_unlock(&tasklist_lock
);
8519 mutex_unlock(&rt_constraints_mutex
);
8524 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8526 u64 rt_runtime
, rt_period
;
8528 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8529 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8530 if (rt_runtime_us
< 0)
8531 rt_runtime
= RUNTIME_INF
;
8533 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8536 long sched_group_rt_runtime(struct task_group
*tg
)
8540 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8543 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8544 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8545 return rt_runtime_us
;
8548 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8550 u64 rt_runtime
, rt_period
;
8552 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8553 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8558 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8561 long sched_group_rt_period(struct task_group
*tg
)
8565 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8566 do_div(rt_period_us
, NSEC_PER_USEC
);
8567 return rt_period_us
;
8570 static int sched_rt_global_constraints(void)
8572 u64 runtime
, period
;
8575 if (sysctl_sched_rt_period
<= 0)
8578 runtime
= global_rt_runtime();
8579 period
= global_rt_period();
8582 * Sanity check on the sysctl variables.
8584 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8587 mutex_lock(&rt_constraints_mutex
);
8588 read_lock(&tasklist_lock
);
8589 ret
= __rt_schedulable(NULL
, 0, 0);
8590 read_unlock(&tasklist_lock
);
8591 mutex_unlock(&rt_constraints_mutex
);
8596 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
8598 /* Don't accept realtime tasks when there is no way for them to run */
8599 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
8605 #else /* !CONFIG_RT_GROUP_SCHED */
8606 static int sched_rt_global_constraints(void)
8608 unsigned long flags
;
8611 if (sysctl_sched_rt_period
<= 0)
8615 * There's always some RT tasks in the root group
8616 * -- migration, kstopmachine etc..
8618 if (sysctl_sched_rt_runtime
== 0)
8621 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8622 for_each_possible_cpu(i
) {
8623 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
8625 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8626 rt_rq
->rt_runtime
= global_rt_runtime();
8627 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8629 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8633 #endif /* CONFIG_RT_GROUP_SCHED */
8635 int sched_rt_handler(struct ctl_table
*table
, int write
,
8636 void __user
*buffer
, size_t *lenp
,
8640 int old_period
, old_runtime
;
8641 static DEFINE_MUTEX(mutex
);
8644 old_period
= sysctl_sched_rt_period
;
8645 old_runtime
= sysctl_sched_rt_runtime
;
8647 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
8649 if (!ret
&& write
) {
8650 ret
= sched_rt_global_constraints();
8652 sysctl_sched_rt_period
= old_period
;
8653 sysctl_sched_rt_runtime
= old_runtime
;
8655 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
8656 def_rt_bandwidth
.rt_period
=
8657 ns_to_ktime(global_rt_period());
8660 mutex_unlock(&mutex
);
8665 #ifdef CONFIG_CGROUP_SCHED
8667 /* return corresponding task_group object of a cgroup */
8668 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
8670 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
8671 struct task_group
, css
);
8674 static struct cgroup_subsys_state
*
8675 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8677 struct task_group
*tg
, *parent
;
8679 if (!cgrp
->parent
) {
8680 /* This is early initialization for the top cgroup */
8681 return &init_task_group
.css
;
8684 parent
= cgroup_tg(cgrp
->parent
);
8685 tg
= sched_create_group(parent
);
8687 return ERR_PTR(-ENOMEM
);
8693 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8695 struct task_group
*tg
= cgroup_tg(cgrp
);
8697 sched_destroy_group(tg
);
8701 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
8703 #ifdef CONFIG_RT_GROUP_SCHED
8704 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
8707 /* We don't support RT-tasks being in separate groups */
8708 if (tsk
->sched_class
!= &fair_sched_class
)
8715 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8716 struct task_struct
*tsk
, bool threadgroup
)
8718 int retval
= cpu_cgroup_can_attach_task(cgrp
, tsk
);
8722 struct task_struct
*c
;
8724 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
8725 retval
= cpu_cgroup_can_attach_task(cgrp
, c
);
8737 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8738 struct cgroup
*old_cont
, struct task_struct
*tsk
,
8741 sched_move_task(tsk
);
8743 struct task_struct
*c
;
8745 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
8752 #ifdef CONFIG_FAIR_GROUP_SCHED
8753 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
8756 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
8759 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
8761 struct task_group
*tg
= cgroup_tg(cgrp
);
8763 return (u64
) tg
->shares
;
8765 #endif /* CONFIG_FAIR_GROUP_SCHED */
8767 #ifdef CONFIG_RT_GROUP_SCHED
8768 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
8771 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
8774 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
8776 return sched_group_rt_runtime(cgroup_tg(cgrp
));
8779 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
8782 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
8785 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
8787 return sched_group_rt_period(cgroup_tg(cgrp
));
8789 #endif /* CONFIG_RT_GROUP_SCHED */
8791 static struct cftype cpu_files
[] = {
8792 #ifdef CONFIG_FAIR_GROUP_SCHED
8795 .read_u64
= cpu_shares_read_u64
,
8796 .write_u64
= cpu_shares_write_u64
,
8799 #ifdef CONFIG_RT_GROUP_SCHED
8801 .name
= "rt_runtime_us",
8802 .read_s64
= cpu_rt_runtime_read
,
8803 .write_s64
= cpu_rt_runtime_write
,
8806 .name
= "rt_period_us",
8807 .read_u64
= cpu_rt_period_read_uint
,
8808 .write_u64
= cpu_rt_period_write_uint
,
8813 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8815 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
8818 struct cgroup_subsys cpu_cgroup_subsys
= {
8820 .create
= cpu_cgroup_create
,
8821 .destroy
= cpu_cgroup_destroy
,
8822 .can_attach
= cpu_cgroup_can_attach
,
8823 .attach
= cpu_cgroup_attach
,
8824 .populate
= cpu_cgroup_populate
,
8825 .subsys_id
= cpu_cgroup_subsys_id
,
8829 #endif /* CONFIG_CGROUP_SCHED */
8831 #ifdef CONFIG_CGROUP_CPUACCT
8834 * CPU accounting code for task groups.
8836 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8837 * (balbir@in.ibm.com).
8840 /* track cpu usage of a group of tasks and its child groups */
8842 struct cgroup_subsys_state css
;
8843 /* cpuusage holds pointer to a u64-type object on every cpu */
8844 u64 __percpu
*cpuusage
;
8845 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
8846 struct cpuacct
*parent
;
8849 struct cgroup_subsys cpuacct_subsys
;
8851 /* return cpu accounting group corresponding to this container */
8852 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
8854 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
8855 struct cpuacct
, css
);
8858 /* return cpu accounting group to which this task belongs */
8859 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
8861 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
8862 struct cpuacct
, css
);
8865 /* create a new cpu accounting group */
8866 static struct cgroup_subsys_state
*cpuacct_create(
8867 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8869 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
8875 ca
->cpuusage
= alloc_percpu(u64
);
8879 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
8880 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
8881 goto out_free_counters
;
8884 ca
->parent
= cgroup_ca(cgrp
->parent
);
8890 percpu_counter_destroy(&ca
->cpustat
[i
]);
8891 free_percpu(ca
->cpuusage
);
8895 return ERR_PTR(-ENOMEM
);
8898 /* destroy an existing cpu accounting group */
8900 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8902 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8905 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
8906 percpu_counter_destroy(&ca
->cpustat
[i
]);
8907 free_percpu(ca
->cpuusage
);
8911 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
8913 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8916 #ifndef CONFIG_64BIT
8918 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8920 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
8922 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
8930 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
8932 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8934 #ifndef CONFIG_64BIT
8936 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8938 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
8940 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
8946 /* return total cpu usage (in nanoseconds) of a group */
8947 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
8949 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8950 u64 totalcpuusage
= 0;
8953 for_each_present_cpu(i
)
8954 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
8956 return totalcpuusage
;
8959 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
8962 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8971 for_each_present_cpu(i
)
8972 cpuacct_cpuusage_write(ca
, i
, 0);
8978 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
8981 struct cpuacct
*ca
= cgroup_ca(cgroup
);
8985 for_each_present_cpu(i
) {
8986 percpu
= cpuacct_cpuusage_read(ca
, i
);
8987 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
8989 seq_printf(m
, "\n");
8993 static const char *cpuacct_stat_desc
[] = {
8994 [CPUACCT_STAT_USER
] = "user",
8995 [CPUACCT_STAT_SYSTEM
] = "system",
8998 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
8999 struct cgroup_map_cb
*cb
)
9001 struct cpuacct
*ca
= cgroup_ca(cgrp
);
9004 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
9005 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
9006 val
= cputime64_to_clock_t(val
);
9007 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
9012 static struct cftype files
[] = {
9015 .read_u64
= cpuusage_read
,
9016 .write_u64
= cpuusage_write
,
9019 .name
= "usage_percpu",
9020 .read_seq_string
= cpuacct_percpu_seq_read
,
9024 .read_map
= cpuacct_stats_show
,
9028 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
9030 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
9034 * charge this task's execution time to its accounting group.
9036 * called with rq->lock held.
9038 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
9043 if (unlikely(!cpuacct_subsys
.active
))
9046 cpu
= task_cpu(tsk
);
9052 for (; ca
; ca
= ca
->parent
) {
9053 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
9054 *cpuusage
+= cputime
;
9061 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
9062 * in cputime_t units. As a result, cpuacct_update_stats calls
9063 * percpu_counter_add with values large enough to always overflow the
9064 * per cpu batch limit causing bad SMP scalability.
9066 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
9067 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
9068 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
9071 #define CPUACCT_BATCH \
9072 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
9074 #define CPUACCT_BATCH 0
9078 * Charge the system/user time to the task's accounting group.
9080 static void cpuacct_update_stats(struct task_struct
*tsk
,
9081 enum cpuacct_stat_index idx
, cputime_t val
)
9084 int batch
= CPUACCT_BATCH
;
9086 if (unlikely(!cpuacct_subsys
.active
))
9093 __percpu_counter_add(&ca
->cpustat
[idx
], val
, batch
);
9099 struct cgroup_subsys cpuacct_subsys
= {
9101 .create
= cpuacct_create
,
9102 .destroy
= cpuacct_destroy
,
9103 .populate
= cpuacct_populate
,
9104 .subsys_id
= cpuacct_subsys_id
,
9106 #endif /* CONFIG_CGROUP_CPUACCT */
9110 void synchronize_sched_expedited(void)
9114 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
9116 #else /* #ifndef CONFIG_SMP */
9118 static atomic_t synchronize_sched_expedited_count
= ATOMIC_INIT(0);
9120 static int synchronize_sched_expedited_cpu_stop(void *data
)
9123 * There must be a full memory barrier on each affected CPU
9124 * between the time that try_stop_cpus() is called and the
9125 * time that it returns.
9127 * In the current initial implementation of cpu_stop, the
9128 * above condition is already met when the control reaches
9129 * this point and the following smp_mb() is not strictly
9130 * necessary. Do smp_mb() anyway for documentation and
9131 * robustness against future implementation changes.
9133 smp_mb(); /* See above comment block. */
9138 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9139 * approach to force grace period to end quickly. This consumes
9140 * significant time on all CPUs, and is thus not recommended for
9141 * any sort of common-case code.
9143 * Note that it is illegal to call this function while holding any
9144 * lock that is acquired by a CPU-hotplug notifier. Failing to
9145 * observe this restriction will result in deadlock.
9147 void synchronize_sched_expedited(void)
9149 int snap
, trycount
= 0;
9151 smp_mb(); /* ensure prior mod happens before capturing snap. */
9152 snap
= atomic_read(&synchronize_sched_expedited_count
) + 1;
9154 while (try_stop_cpus(cpu_online_mask
,
9155 synchronize_sched_expedited_cpu_stop
,
9158 if (trycount
++ < 10)
9159 udelay(trycount
* num_online_cpus());
9161 synchronize_sched();
9164 if (atomic_read(&synchronize_sched_expedited_count
) - snap
> 0) {
9165 smp_mb(); /* ensure test happens before caller kfree */
9170 atomic_inc(&synchronize_sched_expedited_count
);
9171 smp_mb__after_atomic_inc(); /* ensure post-GP actions seen after GP. */
9174 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
9176 #endif /* #else #ifndef CONFIG_SMP */