2 * Copyright (C) 2007 Oracle. All rights reserved.
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
18 #include <linux/sched.h>
19 #include <linux/pagemap.h>
20 #include <linux/writeback.h>
21 #include <linux/blkdev.h>
22 #include <linux/sort.h>
23 #include <linux/rcupdate.h>
24 #include <linux/kthread.h>
25 #include <linux/slab.h>
30 #include "print-tree.h"
31 #include "transaction.h"
34 #include "free-space-cache.h"
36 static int update_block_group(struct btrfs_trans_handle
*trans
,
37 struct btrfs_root
*root
,
38 u64 bytenr
, u64 num_bytes
, int alloc
);
39 static int update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
40 u64 num_bytes
, int reserve
, int sinfo
);
41 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
42 struct btrfs_root
*root
,
43 u64 bytenr
, u64 num_bytes
, u64 parent
,
44 u64 root_objectid
, u64 owner_objectid
,
45 u64 owner_offset
, int refs_to_drop
,
46 struct btrfs_delayed_extent_op
*extra_op
);
47 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
48 struct extent_buffer
*leaf
,
49 struct btrfs_extent_item
*ei
);
50 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
51 struct btrfs_root
*root
,
52 u64 parent
, u64 root_objectid
,
53 u64 flags
, u64 owner
, u64 offset
,
54 struct btrfs_key
*ins
, int ref_mod
);
55 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
56 struct btrfs_root
*root
,
57 u64 parent
, u64 root_objectid
,
58 u64 flags
, struct btrfs_disk_key
*key
,
59 int level
, struct btrfs_key
*ins
);
60 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
61 struct btrfs_root
*extent_root
, u64 alloc_bytes
,
62 u64 flags
, int force
);
63 static int find_next_key(struct btrfs_path
*path
, int level
,
64 struct btrfs_key
*key
);
65 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
66 int dump_block_groups
);
69 block_group_cache_done(struct btrfs_block_group_cache
*cache
)
72 return cache
->cached
== BTRFS_CACHE_FINISHED
;
75 static int block_group_bits(struct btrfs_block_group_cache
*cache
, u64 bits
)
77 return (cache
->flags
& bits
) == bits
;
80 void btrfs_get_block_group(struct btrfs_block_group_cache
*cache
)
82 atomic_inc(&cache
->count
);
85 void btrfs_put_block_group(struct btrfs_block_group_cache
*cache
)
87 if (atomic_dec_and_test(&cache
->count
)) {
88 WARN_ON(cache
->pinned
> 0);
89 WARN_ON(cache
->reserved
> 0);
90 WARN_ON(cache
->reserved_pinned
> 0);
96 * this adds the block group to the fs_info rb tree for the block group
99 static int btrfs_add_block_group_cache(struct btrfs_fs_info
*info
,
100 struct btrfs_block_group_cache
*block_group
)
103 struct rb_node
*parent
= NULL
;
104 struct btrfs_block_group_cache
*cache
;
106 spin_lock(&info
->block_group_cache_lock
);
107 p
= &info
->block_group_cache_tree
.rb_node
;
111 cache
= rb_entry(parent
, struct btrfs_block_group_cache
,
113 if (block_group
->key
.objectid
< cache
->key
.objectid
) {
115 } else if (block_group
->key
.objectid
> cache
->key
.objectid
) {
118 spin_unlock(&info
->block_group_cache_lock
);
123 rb_link_node(&block_group
->cache_node
, parent
, p
);
124 rb_insert_color(&block_group
->cache_node
,
125 &info
->block_group_cache_tree
);
126 spin_unlock(&info
->block_group_cache_lock
);
132 * This will return the block group at or after bytenr if contains is 0, else
133 * it will return the block group that contains the bytenr
135 static struct btrfs_block_group_cache
*
136 block_group_cache_tree_search(struct btrfs_fs_info
*info
, u64 bytenr
,
139 struct btrfs_block_group_cache
*cache
, *ret
= NULL
;
143 spin_lock(&info
->block_group_cache_lock
);
144 n
= info
->block_group_cache_tree
.rb_node
;
147 cache
= rb_entry(n
, struct btrfs_block_group_cache
,
149 end
= cache
->key
.objectid
+ cache
->key
.offset
- 1;
150 start
= cache
->key
.objectid
;
152 if (bytenr
< start
) {
153 if (!contains
&& (!ret
|| start
< ret
->key
.objectid
))
156 } else if (bytenr
> start
) {
157 if (contains
&& bytenr
<= end
) {
168 btrfs_get_block_group(ret
);
169 spin_unlock(&info
->block_group_cache_lock
);
174 static int add_excluded_extent(struct btrfs_root
*root
,
175 u64 start
, u64 num_bytes
)
177 u64 end
= start
+ num_bytes
- 1;
178 set_extent_bits(&root
->fs_info
->freed_extents
[0],
179 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
180 set_extent_bits(&root
->fs_info
->freed_extents
[1],
181 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
185 static void free_excluded_extents(struct btrfs_root
*root
,
186 struct btrfs_block_group_cache
*cache
)
190 start
= cache
->key
.objectid
;
191 end
= start
+ cache
->key
.offset
- 1;
193 clear_extent_bits(&root
->fs_info
->freed_extents
[0],
194 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
195 clear_extent_bits(&root
->fs_info
->freed_extents
[1],
196 start
, end
, EXTENT_UPTODATE
, GFP_NOFS
);
199 static int exclude_super_stripes(struct btrfs_root
*root
,
200 struct btrfs_block_group_cache
*cache
)
207 if (cache
->key
.objectid
< BTRFS_SUPER_INFO_OFFSET
) {
208 stripe_len
= BTRFS_SUPER_INFO_OFFSET
- cache
->key
.objectid
;
209 cache
->bytes_super
+= stripe_len
;
210 ret
= add_excluded_extent(root
, cache
->key
.objectid
,
215 for (i
= 0; i
< BTRFS_SUPER_MIRROR_MAX
; i
++) {
216 bytenr
= btrfs_sb_offset(i
);
217 ret
= btrfs_rmap_block(&root
->fs_info
->mapping_tree
,
218 cache
->key
.objectid
, bytenr
,
219 0, &logical
, &nr
, &stripe_len
);
223 cache
->bytes_super
+= stripe_len
;
224 ret
= add_excluded_extent(root
, logical
[nr
],
234 static struct btrfs_caching_control
*
235 get_caching_control(struct btrfs_block_group_cache
*cache
)
237 struct btrfs_caching_control
*ctl
;
239 spin_lock(&cache
->lock
);
240 if (cache
->cached
!= BTRFS_CACHE_STARTED
) {
241 spin_unlock(&cache
->lock
);
245 /* We're loading it the fast way, so we don't have a caching_ctl. */
246 if (!cache
->caching_ctl
) {
247 spin_unlock(&cache
->lock
);
251 ctl
= cache
->caching_ctl
;
252 atomic_inc(&ctl
->count
);
253 spin_unlock(&cache
->lock
);
257 static void put_caching_control(struct btrfs_caching_control
*ctl
)
259 if (atomic_dec_and_test(&ctl
->count
))
264 * this is only called by cache_block_group, since we could have freed extents
265 * we need to check the pinned_extents for any extents that can't be used yet
266 * since their free space will be released as soon as the transaction commits.
268 static u64
add_new_free_space(struct btrfs_block_group_cache
*block_group
,
269 struct btrfs_fs_info
*info
, u64 start
, u64 end
)
271 u64 extent_start
, extent_end
, size
, total_added
= 0;
274 while (start
< end
) {
275 ret
= find_first_extent_bit(info
->pinned_extents
, start
,
276 &extent_start
, &extent_end
,
277 EXTENT_DIRTY
| EXTENT_UPTODATE
);
281 if (extent_start
<= start
) {
282 start
= extent_end
+ 1;
283 } else if (extent_start
> start
&& extent_start
< end
) {
284 size
= extent_start
- start
;
286 ret
= btrfs_add_free_space(block_group
, start
,
289 start
= extent_end
+ 1;
298 ret
= btrfs_add_free_space(block_group
, start
, size
);
305 static int caching_kthread(void *data
)
307 struct btrfs_block_group_cache
*block_group
= data
;
308 struct btrfs_fs_info
*fs_info
= block_group
->fs_info
;
309 struct btrfs_caching_control
*caching_ctl
= block_group
->caching_ctl
;
310 struct btrfs_root
*extent_root
= fs_info
->extent_root
;
311 struct btrfs_path
*path
;
312 struct extent_buffer
*leaf
;
313 struct btrfs_key key
;
319 path
= btrfs_alloc_path();
323 last
= max_t(u64
, block_group
->key
.objectid
, BTRFS_SUPER_INFO_OFFSET
);
326 * We don't want to deadlock with somebody trying to allocate a new
327 * extent for the extent root while also trying to search the extent
328 * root to add free space. So we skip locking and search the commit
329 * root, since its read-only
331 path
->skip_locking
= 1;
332 path
->search_commit_root
= 1;
337 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
339 mutex_lock(&caching_ctl
->mutex
);
340 /* need to make sure the commit_root doesn't disappear */
341 down_read(&fs_info
->extent_commit_sem
);
343 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
347 leaf
= path
->nodes
[0];
348 nritems
= btrfs_header_nritems(leaf
);
352 if (fs_info
->closing
> 1) {
357 if (path
->slots
[0] < nritems
) {
358 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
360 ret
= find_next_key(path
, 0, &key
);
364 caching_ctl
->progress
= last
;
365 btrfs_release_path(extent_root
, path
);
366 up_read(&fs_info
->extent_commit_sem
);
367 mutex_unlock(&caching_ctl
->mutex
);
368 if (btrfs_transaction_in_commit(fs_info
))
375 if (key
.objectid
< block_group
->key
.objectid
) {
380 if (key
.objectid
>= block_group
->key
.objectid
+
381 block_group
->key
.offset
)
384 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
) {
385 total_found
+= add_new_free_space(block_group
,
388 last
= key
.objectid
+ key
.offset
;
390 if (total_found
> (1024 * 1024 * 2)) {
392 wake_up(&caching_ctl
->wait
);
399 total_found
+= add_new_free_space(block_group
, fs_info
, last
,
400 block_group
->key
.objectid
+
401 block_group
->key
.offset
);
402 caching_ctl
->progress
= (u64
)-1;
404 spin_lock(&block_group
->lock
);
405 block_group
->caching_ctl
= NULL
;
406 block_group
->cached
= BTRFS_CACHE_FINISHED
;
407 spin_unlock(&block_group
->lock
);
410 btrfs_free_path(path
);
411 up_read(&fs_info
->extent_commit_sem
);
413 free_excluded_extents(extent_root
, block_group
);
415 mutex_unlock(&caching_ctl
->mutex
);
416 wake_up(&caching_ctl
->wait
);
418 put_caching_control(caching_ctl
);
419 atomic_dec(&block_group
->space_info
->caching_threads
);
420 btrfs_put_block_group(block_group
);
425 static int cache_block_group(struct btrfs_block_group_cache
*cache
,
426 struct btrfs_trans_handle
*trans
,
427 struct btrfs_root
*root
,
430 struct btrfs_fs_info
*fs_info
= cache
->fs_info
;
431 struct btrfs_caching_control
*caching_ctl
;
432 struct task_struct
*tsk
;
436 if (cache
->cached
!= BTRFS_CACHE_NO
)
440 * We can't do the read from on-disk cache during a commit since we need
441 * to have the normal tree locking. Also if we are currently trying to
442 * allocate blocks for the tree root we can't do the fast caching since
443 * we likely hold important locks.
445 if (!trans
->transaction
->in_commit
&&
446 (root
&& root
!= root
->fs_info
->tree_root
)) {
447 spin_lock(&cache
->lock
);
448 if (cache
->cached
!= BTRFS_CACHE_NO
) {
449 spin_unlock(&cache
->lock
);
452 cache
->cached
= BTRFS_CACHE_STARTED
;
453 spin_unlock(&cache
->lock
);
455 ret
= load_free_space_cache(fs_info
, cache
);
457 spin_lock(&cache
->lock
);
459 cache
->cached
= BTRFS_CACHE_FINISHED
;
460 cache
->last_byte_to_unpin
= (u64
)-1;
462 cache
->cached
= BTRFS_CACHE_NO
;
464 spin_unlock(&cache
->lock
);
466 free_excluded_extents(fs_info
->extent_root
, cache
);
474 caching_ctl
= kzalloc(sizeof(*caching_ctl
), GFP_KERNEL
);
475 BUG_ON(!caching_ctl
);
477 INIT_LIST_HEAD(&caching_ctl
->list
);
478 mutex_init(&caching_ctl
->mutex
);
479 init_waitqueue_head(&caching_ctl
->wait
);
480 caching_ctl
->block_group
= cache
;
481 caching_ctl
->progress
= cache
->key
.objectid
;
482 /* one for caching kthread, one for caching block group list */
483 atomic_set(&caching_ctl
->count
, 2);
485 spin_lock(&cache
->lock
);
486 if (cache
->cached
!= BTRFS_CACHE_NO
) {
487 spin_unlock(&cache
->lock
);
491 cache
->caching_ctl
= caching_ctl
;
492 cache
->cached
= BTRFS_CACHE_STARTED
;
493 spin_unlock(&cache
->lock
);
495 down_write(&fs_info
->extent_commit_sem
);
496 list_add_tail(&caching_ctl
->list
, &fs_info
->caching_block_groups
);
497 up_write(&fs_info
->extent_commit_sem
);
499 atomic_inc(&cache
->space_info
->caching_threads
);
500 btrfs_get_block_group(cache
);
502 tsk
= kthread_run(caching_kthread
, cache
, "btrfs-cache-%llu\n",
503 cache
->key
.objectid
);
506 printk(KERN_ERR
"error running thread %d\n", ret
);
514 * return the block group that starts at or after bytenr
516 static struct btrfs_block_group_cache
*
517 btrfs_lookup_first_block_group(struct btrfs_fs_info
*info
, u64 bytenr
)
519 struct btrfs_block_group_cache
*cache
;
521 cache
= block_group_cache_tree_search(info
, bytenr
, 0);
527 * return the block group that contains the given bytenr
529 struct btrfs_block_group_cache
*btrfs_lookup_block_group(
530 struct btrfs_fs_info
*info
,
533 struct btrfs_block_group_cache
*cache
;
535 cache
= block_group_cache_tree_search(info
, bytenr
, 1);
540 static struct btrfs_space_info
*__find_space_info(struct btrfs_fs_info
*info
,
543 struct list_head
*head
= &info
->space_info
;
544 struct btrfs_space_info
*found
;
546 flags
&= BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_SYSTEM
|
547 BTRFS_BLOCK_GROUP_METADATA
;
550 list_for_each_entry_rcu(found
, head
, list
) {
551 if (found
->flags
& flags
) {
561 * after adding space to the filesystem, we need to clear the full flags
562 * on all the space infos.
564 void btrfs_clear_space_info_full(struct btrfs_fs_info
*info
)
566 struct list_head
*head
= &info
->space_info
;
567 struct btrfs_space_info
*found
;
570 list_for_each_entry_rcu(found
, head
, list
)
575 static u64
div_factor(u64 num
, int factor
)
584 static u64
div_factor_fine(u64 num
, int factor
)
593 u64
btrfs_find_block_group(struct btrfs_root
*root
,
594 u64 search_start
, u64 search_hint
, int owner
)
596 struct btrfs_block_group_cache
*cache
;
598 u64 last
= max(search_hint
, search_start
);
605 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
609 spin_lock(&cache
->lock
);
610 last
= cache
->key
.objectid
+ cache
->key
.offset
;
611 used
= btrfs_block_group_used(&cache
->item
);
613 if ((full_search
|| !cache
->ro
) &&
614 block_group_bits(cache
, BTRFS_BLOCK_GROUP_METADATA
)) {
615 if (used
+ cache
->pinned
+ cache
->reserved
<
616 div_factor(cache
->key
.offset
, factor
)) {
617 group_start
= cache
->key
.objectid
;
618 spin_unlock(&cache
->lock
);
619 btrfs_put_block_group(cache
);
623 spin_unlock(&cache
->lock
);
624 btrfs_put_block_group(cache
);
632 if (!full_search
&& factor
< 10) {
642 /* simple helper to search for an existing extent at a given offset */
643 int btrfs_lookup_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
646 struct btrfs_key key
;
647 struct btrfs_path
*path
;
649 path
= btrfs_alloc_path();
651 key
.objectid
= start
;
653 btrfs_set_key_type(&key
, BTRFS_EXTENT_ITEM_KEY
);
654 ret
= btrfs_search_slot(NULL
, root
->fs_info
->extent_root
, &key
, path
,
656 btrfs_free_path(path
);
661 * helper function to lookup reference count and flags of extent.
663 * the head node for delayed ref is used to store the sum of all the
664 * reference count modifications queued up in the rbtree. the head
665 * node may also store the extent flags to set. This way you can check
666 * to see what the reference count and extent flags would be if all of
667 * the delayed refs are not processed.
669 int btrfs_lookup_extent_info(struct btrfs_trans_handle
*trans
,
670 struct btrfs_root
*root
, u64 bytenr
,
671 u64 num_bytes
, u64
*refs
, u64
*flags
)
673 struct btrfs_delayed_ref_head
*head
;
674 struct btrfs_delayed_ref_root
*delayed_refs
;
675 struct btrfs_path
*path
;
676 struct btrfs_extent_item
*ei
;
677 struct extent_buffer
*leaf
;
678 struct btrfs_key key
;
684 path
= btrfs_alloc_path();
688 key
.objectid
= bytenr
;
689 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
690 key
.offset
= num_bytes
;
692 path
->skip_locking
= 1;
693 path
->search_commit_root
= 1;
696 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
,
702 leaf
= path
->nodes
[0];
703 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
704 if (item_size
>= sizeof(*ei
)) {
705 ei
= btrfs_item_ptr(leaf
, path
->slots
[0],
706 struct btrfs_extent_item
);
707 num_refs
= btrfs_extent_refs(leaf
, ei
);
708 extent_flags
= btrfs_extent_flags(leaf
, ei
);
710 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
711 struct btrfs_extent_item_v0
*ei0
;
712 BUG_ON(item_size
!= sizeof(*ei0
));
713 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
714 struct btrfs_extent_item_v0
);
715 num_refs
= btrfs_extent_refs_v0(leaf
, ei0
);
716 /* FIXME: this isn't correct for data */
717 extent_flags
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
722 BUG_ON(num_refs
== 0);
732 delayed_refs
= &trans
->transaction
->delayed_refs
;
733 spin_lock(&delayed_refs
->lock
);
734 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
736 if (!mutex_trylock(&head
->mutex
)) {
737 atomic_inc(&head
->node
.refs
);
738 spin_unlock(&delayed_refs
->lock
);
740 btrfs_release_path(root
->fs_info
->extent_root
, path
);
742 mutex_lock(&head
->mutex
);
743 mutex_unlock(&head
->mutex
);
744 btrfs_put_delayed_ref(&head
->node
);
747 if (head
->extent_op
&& head
->extent_op
->update_flags
)
748 extent_flags
|= head
->extent_op
->flags_to_set
;
750 BUG_ON(num_refs
== 0);
752 num_refs
+= head
->node
.ref_mod
;
753 mutex_unlock(&head
->mutex
);
755 spin_unlock(&delayed_refs
->lock
);
757 WARN_ON(num_refs
== 0);
761 *flags
= extent_flags
;
763 btrfs_free_path(path
);
768 * Back reference rules. Back refs have three main goals:
770 * 1) differentiate between all holders of references to an extent so that
771 * when a reference is dropped we can make sure it was a valid reference
772 * before freeing the extent.
774 * 2) Provide enough information to quickly find the holders of an extent
775 * if we notice a given block is corrupted or bad.
777 * 3) Make it easy to migrate blocks for FS shrinking or storage pool
778 * maintenance. This is actually the same as #2, but with a slightly
779 * different use case.
781 * There are two kinds of back refs. The implicit back refs is optimized
782 * for pointers in non-shared tree blocks. For a given pointer in a block,
783 * back refs of this kind provide information about the block's owner tree
784 * and the pointer's key. These information allow us to find the block by
785 * b-tree searching. The full back refs is for pointers in tree blocks not
786 * referenced by their owner trees. The location of tree block is recorded
787 * in the back refs. Actually the full back refs is generic, and can be
788 * used in all cases the implicit back refs is used. The major shortcoming
789 * of the full back refs is its overhead. Every time a tree block gets
790 * COWed, we have to update back refs entry for all pointers in it.
792 * For a newly allocated tree block, we use implicit back refs for
793 * pointers in it. This means most tree related operations only involve
794 * implicit back refs. For a tree block created in old transaction, the
795 * only way to drop a reference to it is COW it. So we can detect the
796 * event that tree block loses its owner tree's reference and do the
797 * back refs conversion.
799 * When a tree block is COW'd through a tree, there are four cases:
801 * The reference count of the block is one and the tree is the block's
802 * owner tree. Nothing to do in this case.
804 * The reference count of the block is one and the tree is not the
805 * block's owner tree. In this case, full back refs is used for pointers
806 * in the block. Remove these full back refs, add implicit back refs for
807 * every pointers in the new block.
809 * The reference count of the block is greater than one and the tree is
810 * the block's owner tree. In this case, implicit back refs is used for
811 * pointers in the block. Add full back refs for every pointers in the
812 * block, increase lower level extents' reference counts. The original
813 * implicit back refs are entailed to the new block.
815 * The reference count of the block is greater than one and the tree is
816 * not the block's owner tree. Add implicit back refs for every pointer in
817 * the new block, increase lower level extents' reference count.
819 * Back Reference Key composing:
821 * The key objectid corresponds to the first byte in the extent,
822 * The key type is used to differentiate between types of back refs.
823 * There are different meanings of the key offset for different types
826 * File extents can be referenced by:
828 * - multiple snapshots, subvolumes, or different generations in one subvol
829 * - different files inside a single subvolume
830 * - different offsets inside a file (bookend extents in file.c)
832 * The extent ref structure for the implicit back refs has fields for:
834 * - Objectid of the subvolume root
835 * - objectid of the file holding the reference
836 * - original offset in the file
837 * - how many bookend extents
839 * The key offset for the implicit back refs is hash of the first
842 * The extent ref structure for the full back refs has field for:
844 * - number of pointers in the tree leaf
846 * The key offset for the implicit back refs is the first byte of
849 * When a file extent is allocated, The implicit back refs is used.
850 * the fields are filled in:
852 * (root_key.objectid, inode objectid, offset in file, 1)
854 * When a file extent is removed file truncation, we find the
855 * corresponding implicit back refs and check the following fields:
857 * (btrfs_header_owner(leaf), inode objectid, offset in file)
859 * Btree extents can be referenced by:
861 * - Different subvolumes
863 * Both the implicit back refs and the full back refs for tree blocks
864 * only consist of key. The key offset for the implicit back refs is
865 * objectid of block's owner tree. The key offset for the full back refs
866 * is the first byte of parent block.
868 * When implicit back refs is used, information about the lowest key and
869 * level of the tree block are required. These information are stored in
870 * tree block info structure.
873 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
874 static int convert_extent_item_v0(struct btrfs_trans_handle
*trans
,
875 struct btrfs_root
*root
,
876 struct btrfs_path
*path
,
877 u64 owner
, u32 extra_size
)
879 struct btrfs_extent_item
*item
;
880 struct btrfs_extent_item_v0
*ei0
;
881 struct btrfs_extent_ref_v0
*ref0
;
882 struct btrfs_tree_block_info
*bi
;
883 struct extent_buffer
*leaf
;
884 struct btrfs_key key
;
885 struct btrfs_key found_key
;
886 u32 new_size
= sizeof(*item
);
890 leaf
= path
->nodes
[0];
891 BUG_ON(btrfs_item_size_nr(leaf
, path
->slots
[0]) != sizeof(*ei0
));
893 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
894 ei0
= btrfs_item_ptr(leaf
, path
->slots
[0],
895 struct btrfs_extent_item_v0
);
896 refs
= btrfs_extent_refs_v0(leaf
, ei0
);
898 if (owner
== (u64
)-1) {
900 if (path
->slots
[0] >= btrfs_header_nritems(leaf
)) {
901 ret
= btrfs_next_leaf(root
, path
);
905 leaf
= path
->nodes
[0];
907 btrfs_item_key_to_cpu(leaf
, &found_key
,
909 BUG_ON(key
.objectid
!= found_key
.objectid
);
910 if (found_key
.type
!= BTRFS_EXTENT_REF_V0_KEY
) {
914 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
915 struct btrfs_extent_ref_v0
);
916 owner
= btrfs_ref_objectid_v0(leaf
, ref0
);
920 btrfs_release_path(root
, path
);
922 if (owner
< BTRFS_FIRST_FREE_OBJECTID
)
923 new_size
+= sizeof(*bi
);
925 new_size
-= sizeof(*ei0
);
926 ret
= btrfs_search_slot(trans
, root
, &key
, path
,
927 new_size
+ extra_size
, 1);
932 ret
= btrfs_extend_item(trans
, root
, path
, new_size
);
935 leaf
= path
->nodes
[0];
936 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
937 btrfs_set_extent_refs(leaf
, item
, refs
);
938 /* FIXME: get real generation */
939 btrfs_set_extent_generation(leaf
, item
, 0);
940 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
941 btrfs_set_extent_flags(leaf
, item
,
942 BTRFS_EXTENT_FLAG_TREE_BLOCK
|
943 BTRFS_BLOCK_FLAG_FULL_BACKREF
);
944 bi
= (struct btrfs_tree_block_info
*)(item
+ 1);
945 /* FIXME: get first key of the block */
946 memset_extent_buffer(leaf
, 0, (unsigned long)bi
, sizeof(*bi
));
947 btrfs_set_tree_block_level(leaf
, bi
, (int)owner
);
949 btrfs_set_extent_flags(leaf
, item
, BTRFS_EXTENT_FLAG_DATA
);
951 btrfs_mark_buffer_dirty(leaf
);
956 static u64
hash_extent_data_ref(u64 root_objectid
, u64 owner
, u64 offset
)
958 u32 high_crc
= ~(u32
)0;
959 u32 low_crc
= ~(u32
)0;
962 lenum
= cpu_to_le64(root_objectid
);
963 high_crc
= crc32c(high_crc
, &lenum
, sizeof(lenum
));
964 lenum
= cpu_to_le64(owner
);
965 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
966 lenum
= cpu_to_le64(offset
);
967 low_crc
= crc32c(low_crc
, &lenum
, sizeof(lenum
));
969 return ((u64
)high_crc
<< 31) ^ (u64
)low_crc
;
972 static u64
hash_extent_data_ref_item(struct extent_buffer
*leaf
,
973 struct btrfs_extent_data_ref
*ref
)
975 return hash_extent_data_ref(btrfs_extent_data_ref_root(leaf
, ref
),
976 btrfs_extent_data_ref_objectid(leaf
, ref
),
977 btrfs_extent_data_ref_offset(leaf
, ref
));
980 static int match_extent_data_ref(struct extent_buffer
*leaf
,
981 struct btrfs_extent_data_ref
*ref
,
982 u64 root_objectid
, u64 owner
, u64 offset
)
984 if (btrfs_extent_data_ref_root(leaf
, ref
) != root_objectid
||
985 btrfs_extent_data_ref_objectid(leaf
, ref
) != owner
||
986 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
991 static noinline
int lookup_extent_data_ref(struct btrfs_trans_handle
*trans
,
992 struct btrfs_root
*root
,
993 struct btrfs_path
*path
,
994 u64 bytenr
, u64 parent
,
996 u64 owner
, u64 offset
)
998 struct btrfs_key key
;
999 struct btrfs_extent_data_ref
*ref
;
1000 struct extent_buffer
*leaf
;
1006 key
.objectid
= bytenr
;
1008 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1009 key
.offset
= parent
;
1011 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1012 key
.offset
= hash_extent_data_ref(root_objectid
,
1017 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1026 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1027 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1028 btrfs_release_path(root
, path
);
1029 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1040 leaf
= path
->nodes
[0];
1041 nritems
= btrfs_header_nritems(leaf
);
1043 if (path
->slots
[0] >= nritems
) {
1044 ret
= btrfs_next_leaf(root
, path
);
1050 leaf
= path
->nodes
[0];
1051 nritems
= btrfs_header_nritems(leaf
);
1055 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1056 if (key
.objectid
!= bytenr
||
1057 key
.type
!= BTRFS_EXTENT_DATA_REF_KEY
)
1060 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1061 struct btrfs_extent_data_ref
);
1063 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1066 btrfs_release_path(root
, path
);
1078 static noinline
int insert_extent_data_ref(struct btrfs_trans_handle
*trans
,
1079 struct btrfs_root
*root
,
1080 struct btrfs_path
*path
,
1081 u64 bytenr
, u64 parent
,
1082 u64 root_objectid
, u64 owner
,
1083 u64 offset
, int refs_to_add
)
1085 struct btrfs_key key
;
1086 struct extent_buffer
*leaf
;
1091 key
.objectid
= bytenr
;
1093 key
.type
= BTRFS_SHARED_DATA_REF_KEY
;
1094 key
.offset
= parent
;
1095 size
= sizeof(struct btrfs_shared_data_ref
);
1097 key
.type
= BTRFS_EXTENT_DATA_REF_KEY
;
1098 key
.offset
= hash_extent_data_ref(root_objectid
,
1100 size
= sizeof(struct btrfs_extent_data_ref
);
1103 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, size
);
1104 if (ret
&& ret
!= -EEXIST
)
1107 leaf
= path
->nodes
[0];
1109 struct btrfs_shared_data_ref
*ref
;
1110 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1111 struct btrfs_shared_data_ref
);
1113 btrfs_set_shared_data_ref_count(leaf
, ref
, refs_to_add
);
1115 num_refs
= btrfs_shared_data_ref_count(leaf
, ref
);
1116 num_refs
+= refs_to_add
;
1117 btrfs_set_shared_data_ref_count(leaf
, ref
, num_refs
);
1120 struct btrfs_extent_data_ref
*ref
;
1121 while (ret
== -EEXIST
) {
1122 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1123 struct btrfs_extent_data_ref
);
1124 if (match_extent_data_ref(leaf
, ref
, root_objectid
,
1127 btrfs_release_path(root
, path
);
1129 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
,
1131 if (ret
&& ret
!= -EEXIST
)
1134 leaf
= path
->nodes
[0];
1136 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
1137 struct btrfs_extent_data_ref
);
1139 btrfs_set_extent_data_ref_root(leaf
, ref
,
1141 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
1142 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
1143 btrfs_set_extent_data_ref_count(leaf
, ref
, refs_to_add
);
1145 num_refs
= btrfs_extent_data_ref_count(leaf
, ref
);
1146 num_refs
+= refs_to_add
;
1147 btrfs_set_extent_data_ref_count(leaf
, ref
, num_refs
);
1150 btrfs_mark_buffer_dirty(leaf
);
1153 btrfs_release_path(root
, path
);
1157 static noinline
int remove_extent_data_ref(struct btrfs_trans_handle
*trans
,
1158 struct btrfs_root
*root
,
1159 struct btrfs_path
*path
,
1162 struct btrfs_key key
;
1163 struct btrfs_extent_data_ref
*ref1
= NULL
;
1164 struct btrfs_shared_data_ref
*ref2
= NULL
;
1165 struct extent_buffer
*leaf
;
1169 leaf
= path
->nodes
[0];
1170 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1172 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1173 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1174 struct btrfs_extent_data_ref
);
1175 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1176 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1177 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1178 struct btrfs_shared_data_ref
);
1179 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1180 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1181 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1182 struct btrfs_extent_ref_v0
*ref0
;
1183 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1184 struct btrfs_extent_ref_v0
);
1185 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1191 BUG_ON(num_refs
< refs_to_drop
);
1192 num_refs
-= refs_to_drop
;
1194 if (num_refs
== 0) {
1195 ret
= btrfs_del_item(trans
, root
, path
);
1197 if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
)
1198 btrfs_set_extent_data_ref_count(leaf
, ref1
, num_refs
);
1199 else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
)
1200 btrfs_set_shared_data_ref_count(leaf
, ref2
, num_refs
);
1201 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1203 struct btrfs_extent_ref_v0
*ref0
;
1204 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1205 struct btrfs_extent_ref_v0
);
1206 btrfs_set_ref_count_v0(leaf
, ref0
, num_refs
);
1209 btrfs_mark_buffer_dirty(leaf
);
1214 static noinline u32
extent_data_ref_count(struct btrfs_root
*root
,
1215 struct btrfs_path
*path
,
1216 struct btrfs_extent_inline_ref
*iref
)
1218 struct btrfs_key key
;
1219 struct extent_buffer
*leaf
;
1220 struct btrfs_extent_data_ref
*ref1
;
1221 struct btrfs_shared_data_ref
*ref2
;
1224 leaf
= path
->nodes
[0];
1225 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
1227 if (btrfs_extent_inline_ref_type(leaf
, iref
) ==
1228 BTRFS_EXTENT_DATA_REF_KEY
) {
1229 ref1
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1230 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1232 ref2
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1233 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1235 } else if (key
.type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1236 ref1
= btrfs_item_ptr(leaf
, path
->slots
[0],
1237 struct btrfs_extent_data_ref
);
1238 num_refs
= btrfs_extent_data_ref_count(leaf
, ref1
);
1239 } else if (key
.type
== BTRFS_SHARED_DATA_REF_KEY
) {
1240 ref2
= btrfs_item_ptr(leaf
, path
->slots
[0],
1241 struct btrfs_shared_data_ref
);
1242 num_refs
= btrfs_shared_data_ref_count(leaf
, ref2
);
1243 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1244 } else if (key
.type
== BTRFS_EXTENT_REF_V0_KEY
) {
1245 struct btrfs_extent_ref_v0
*ref0
;
1246 ref0
= btrfs_item_ptr(leaf
, path
->slots
[0],
1247 struct btrfs_extent_ref_v0
);
1248 num_refs
= btrfs_ref_count_v0(leaf
, ref0
);
1256 static noinline
int lookup_tree_block_ref(struct btrfs_trans_handle
*trans
,
1257 struct btrfs_root
*root
,
1258 struct btrfs_path
*path
,
1259 u64 bytenr
, u64 parent
,
1262 struct btrfs_key key
;
1265 key
.objectid
= bytenr
;
1267 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1268 key
.offset
= parent
;
1270 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1271 key
.offset
= root_objectid
;
1274 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1277 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1278 if (ret
== -ENOENT
&& parent
) {
1279 btrfs_release_path(root
, path
);
1280 key
.type
= BTRFS_EXTENT_REF_V0_KEY
;
1281 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
1289 static noinline
int insert_tree_block_ref(struct btrfs_trans_handle
*trans
,
1290 struct btrfs_root
*root
,
1291 struct btrfs_path
*path
,
1292 u64 bytenr
, u64 parent
,
1295 struct btrfs_key key
;
1298 key
.objectid
= bytenr
;
1300 key
.type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1301 key
.offset
= parent
;
1303 key
.type
= BTRFS_TREE_BLOCK_REF_KEY
;
1304 key
.offset
= root_objectid
;
1307 ret
= btrfs_insert_empty_item(trans
, root
, path
, &key
, 0);
1308 btrfs_release_path(root
, path
);
1312 static inline int extent_ref_type(u64 parent
, u64 owner
)
1315 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1317 type
= BTRFS_SHARED_BLOCK_REF_KEY
;
1319 type
= BTRFS_TREE_BLOCK_REF_KEY
;
1322 type
= BTRFS_SHARED_DATA_REF_KEY
;
1324 type
= BTRFS_EXTENT_DATA_REF_KEY
;
1329 static int find_next_key(struct btrfs_path
*path
, int level
,
1330 struct btrfs_key
*key
)
1333 for (; level
< BTRFS_MAX_LEVEL
; level
++) {
1334 if (!path
->nodes
[level
])
1336 if (path
->slots
[level
] + 1 >=
1337 btrfs_header_nritems(path
->nodes
[level
]))
1340 btrfs_item_key_to_cpu(path
->nodes
[level
], key
,
1341 path
->slots
[level
] + 1);
1343 btrfs_node_key_to_cpu(path
->nodes
[level
], key
,
1344 path
->slots
[level
] + 1);
1351 * look for inline back ref. if back ref is found, *ref_ret is set
1352 * to the address of inline back ref, and 0 is returned.
1354 * if back ref isn't found, *ref_ret is set to the address where it
1355 * should be inserted, and -ENOENT is returned.
1357 * if insert is true and there are too many inline back refs, the path
1358 * points to the extent item, and -EAGAIN is returned.
1360 * NOTE: inline back refs are ordered in the same way that back ref
1361 * items in the tree are ordered.
1363 static noinline_for_stack
1364 int lookup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1365 struct btrfs_root
*root
,
1366 struct btrfs_path
*path
,
1367 struct btrfs_extent_inline_ref
**ref_ret
,
1368 u64 bytenr
, u64 num_bytes
,
1369 u64 parent
, u64 root_objectid
,
1370 u64 owner
, u64 offset
, int insert
)
1372 struct btrfs_key key
;
1373 struct extent_buffer
*leaf
;
1374 struct btrfs_extent_item
*ei
;
1375 struct btrfs_extent_inline_ref
*iref
;
1386 key
.objectid
= bytenr
;
1387 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1388 key
.offset
= num_bytes
;
1390 want
= extent_ref_type(parent
, owner
);
1392 extra_size
= btrfs_extent_inline_ref_size(want
);
1393 path
->keep_locks
= 1;
1396 ret
= btrfs_search_slot(trans
, root
, &key
, path
, extra_size
, 1);
1403 leaf
= path
->nodes
[0];
1404 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1405 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1406 if (item_size
< sizeof(*ei
)) {
1411 ret
= convert_extent_item_v0(trans
, root
, path
, owner
,
1417 leaf
= path
->nodes
[0];
1418 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1421 BUG_ON(item_size
< sizeof(*ei
));
1423 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1424 flags
= btrfs_extent_flags(leaf
, ei
);
1426 ptr
= (unsigned long)(ei
+ 1);
1427 end
= (unsigned long)ei
+ item_size
;
1429 if (flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
) {
1430 ptr
+= sizeof(struct btrfs_tree_block_info
);
1433 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_DATA
));
1442 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1443 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1447 ptr
+= btrfs_extent_inline_ref_size(type
);
1451 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1452 struct btrfs_extent_data_ref
*dref
;
1453 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1454 if (match_extent_data_ref(leaf
, dref
, root_objectid
,
1459 if (hash_extent_data_ref_item(leaf
, dref
) <
1460 hash_extent_data_ref(root_objectid
, owner
, offset
))
1464 ref_offset
= btrfs_extent_inline_ref_offset(leaf
, iref
);
1466 if (parent
== ref_offset
) {
1470 if (ref_offset
< parent
)
1473 if (root_objectid
== ref_offset
) {
1477 if (ref_offset
< root_objectid
)
1481 ptr
+= btrfs_extent_inline_ref_size(type
);
1483 if (err
== -ENOENT
&& insert
) {
1484 if (item_size
+ extra_size
>=
1485 BTRFS_MAX_EXTENT_ITEM_SIZE(root
)) {
1490 * To add new inline back ref, we have to make sure
1491 * there is no corresponding back ref item.
1492 * For simplicity, we just do not add new inline back
1493 * ref if there is any kind of item for this block
1495 if (find_next_key(path
, 0, &key
) == 0 &&
1496 key
.objectid
== bytenr
&&
1497 key
.type
< BTRFS_BLOCK_GROUP_ITEM_KEY
) {
1502 *ref_ret
= (struct btrfs_extent_inline_ref
*)ptr
;
1505 path
->keep_locks
= 0;
1506 btrfs_unlock_up_safe(path
, 1);
1512 * helper to add new inline back ref
1514 static noinline_for_stack
1515 int setup_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1516 struct btrfs_root
*root
,
1517 struct btrfs_path
*path
,
1518 struct btrfs_extent_inline_ref
*iref
,
1519 u64 parent
, u64 root_objectid
,
1520 u64 owner
, u64 offset
, int refs_to_add
,
1521 struct btrfs_delayed_extent_op
*extent_op
)
1523 struct extent_buffer
*leaf
;
1524 struct btrfs_extent_item
*ei
;
1527 unsigned long item_offset
;
1533 leaf
= path
->nodes
[0];
1534 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1535 item_offset
= (unsigned long)iref
- (unsigned long)ei
;
1537 type
= extent_ref_type(parent
, owner
);
1538 size
= btrfs_extent_inline_ref_size(type
);
1540 ret
= btrfs_extend_item(trans
, root
, path
, size
);
1543 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1544 refs
= btrfs_extent_refs(leaf
, ei
);
1545 refs
+= refs_to_add
;
1546 btrfs_set_extent_refs(leaf
, ei
, refs
);
1548 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1550 ptr
= (unsigned long)ei
+ item_offset
;
1551 end
= (unsigned long)ei
+ btrfs_item_size_nr(leaf
, path
->slots
[0]);
1552 if (ptr
< end
- size
)
1553 memmove_extent_buffer(leaf
, ptr
+ size
, ptr
,
1556 iref
= (struct btrfs_extent_inline_ref
*)ptr
;
1557 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
1558 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1559 struct btrfs_extent_data_ref
*dref
;
1560 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1561 btrfs_set_extent_data_ref_root(leaf
, dref
, root_objectid
);
1562 btrfs_set_extent_data_ref_objectid(leaf
, dref
, owner
);
1563 btrfs_set_extent_data_ref_offset(leaf
, dref
, offset
);
1564 btrfs_set_extent_data_ref_count(leaf
, dref
, refs_to_add
);
1565 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1566 struct btrfs_shared_data_ref
*sref
;
1567 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1568 btrfs_set_shared_data_ref_count(leaf
, sref
, refs_to_add
);
1569 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1570 } else if (type
== BTRFS_SHARED_BLOCK_REF_KEY
) {
1571 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
1573 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
1575 btrfs_mark_buffer_dirty(leaf
);
1579 static int lookup_extent_backref(struct btrfs_trans_handle
*trans
,
1580 struct btrfs_root
*root
,
1581 struct btrfs_path
*path
,
1582 struct btrfs_extent_inline_ref
**ref_ret
,
1583 u64 bytenr
, u64 num_bytes
, u64 parent
,
1584 u64 root_objectid
, u64 owner
, u64 offset
)
1588 ret
= lookup_inline_extent_backref(trans
, root
, path
, ref_ret
,
1589 bytenr
, num_bytes
, parent
,
1590 root_objectid
, owner
, offset
, 0);
1594 btrfs_release_path(root
, path
);
1597 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1598 ret
= lookup_tree_block_ref(trans
, root
, path
, bytenr
, parent
,
1601 ret
= lookup_extent_data_ref(trans
, root
, path
, bytenr
, parent
,
1602 root_objectid
, owner
, offset
);
1608 * helper to update/remove inline back ref
1610 static noinline_for_stack
1611 int update_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1612 struct btrfs_root
*root
,
1613 struct btrfs_path
*path
,
1614 struct btrfs_extent_inline_ref
*iref
,
1616 struct btrfs_delayed_extent_op
*extent_op
)
1618 struct extent_buffer
*leaf
;
1619 struct btrfs_extent_item
*ei
;
1620 struct btrfs_extent_data_ref
*dref
= NULL
;
1621 struct btrfs_shared_data_ref
*sref
= NULL
;
1630 leaf
= path
->nodes
[0];
1631 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1632 refs
= btrfs_extent_refs(leaf
, ei
);
1633 WARN_ON(refs_to_mod
< 0 && refs
+ refs_to_mod
<= 0);
1634 refs
+= refs_to_mod
;
1635 btrfs_set_extent_refs(leaf
, ei
, refs
);
1637 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1639 type
= btrfs_extent_inline_ref_type(leaf
, iref
);
1641 if (type
== BTRFS_EXTENT_DATA_REF_KEY
) {
1642 dref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
1643 refs
= btrfs_extent_data_ref_count(leaf
, dref
);
1644 } else if (type
== BTRFS_SHARED_DATA_REF_KEY
) {
1645 sref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
1646 refs
= btrfs_shared_data_ref_count(leaf
, sref
);
1649 BUG_ON(refs_to_mod
!= -1);
1652 BUG_ON(refs_to_mod
< 0 && refs
< -refs_to_mod
);
1653 refs
+= refs_to_mod
;
1656 if (type
== BTRFS_EXTENT_DATA_REF_KEY
)
1657 btrfs_set_extent_data_ref_count(leaf
, dref
, refs
);
1659 btrfs_set_shared_data_ref_count(leaf
, sref
, refs
);
1661 size
= btrfs_extent_inline_ref_size(type
);
1662 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1663 ptr
= (unsigned long)iref
;
1664 end
= (unsigned long)ei
+ item_size
;
1665 if (ptr
+ size
< end
)
1666 memmove_extent_buffer(leaf
, ptr
, ptr
+ size
,
1669 ret
= btrfs_truncate_item(trans
, root
, path
, item_size
, 1);
1672 btrfs_mark_buffer_dirty(leaf
);
1676 static noinline_for_stack
1677 int insert_inline_extent_backref(struct btrfs_trans_handle
*trans
,
1678 struct btrfs_root
*root
,
1679 struct btrfs_path
*path
,
1680 u64 bytenr
, u64 num_bytes
, u64 parent
,
1681 u64 root_objectid
, u64 owner
,
1682 u64 offset
, int refs_to_add
,
1683 struct btrfs_delayed_extent_op
*extent_op
)
1685 struct btrfs_extent_inline_ref
*iref
;
1688 ret
= lookup_inline_extent_backref(trans
, root
, path
, &iref
,
1689 bytenr
, num_bytes
, parent
,
1690 root_objectid
, owner
, offset
, 1);
1692 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
);
1693 ret
= update_inline_extent_backref(trans
, root
, path
, iref
,
1694 refs_to_add
, extent_op
);
1695 } else if (ret
== -ENOENT
) {
1696 ret
= setup_inline_extent_backref(trans
, root
, path
, iref
,
1697 parent
, root_objectid
,
1698 owner
, offset
, refs_to_add
,
1704 static int insert_extent_backref(struct btrfs_trans_handle
*trans
,
1705 struct btrfs_root
*root
,
1706 struct btrfs_path
*path
,
1707 u64 bytenr
, u64 parent
, u64 root_objectid
,
1708 u64 owner
, u64 offset
, int refs_to_add
)
1711 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1712 BUG_ON(refs_to_add
!= 1);
1713 ret
= insert_tree_block_ref(trans
, root
, path
, bytenr
,
1714 parent
, root_objectid
);
1716 ret
= insert_extent_data_ref(trans
, root
, path
, bytenr
,
1717 parent
, root_objectid
,
1718 owner
, offset
, refs_to_add
);
1723 static int remove_extent_backref(struct btrfs_trans_handle
*trans
,
1724 struct btrfs_root
*root
,
1725 struct btrfs_path
*path
,
1726 struct btrfs_extent_inline_ref
*iref
,
1727 int refs_to_drop
, int is_data
)
1731 BUG_ON(!is_data
&& refs_to_drop
!= 1);
1733 ret
= update_inline_extent_backref(trans
, root
, path
, iref
,
1734 -refs_to_drop
, NULL
);
1735 } else if (is_data
) {
1736 ret
= remove_extent_data_ref(trans
, root
, path
, refs_to_drop
);
1738 ret
= btrfs_del_item(trans
, root
, path
);
1743 static void btrfs_issue_discard(struct block_device
*bdev
,
1746 blkdev_issue_discard(bdev
, start
>> 9, len
>> 9, GFP_KERNEL
, 0);
1749 static int btrfs_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
1753 u64 map_length
= num_bytes
;
1754 struct btrfs_multi_bio
*multi
= NULL
;
1756 if (!btrfs_test_opt(root
, DISCARD
))
1759 /* Tell the block device(s) that the sectors can be discarded */
1760 ret
= btrfs_map_block(&root
->fs_info
->mapping_tree
, READ
,
1761 bytenr
, &map_length
, &multi
, 0);
1763 struct btrfs_bio_stripe
*stripe
= multi
->stripes
;
1766 if (map_length
> num_bytes
)
1767 map_length
= num_bytes
;
1769 for (i
= 0; i
< multi
->num_stripes
; i
++, stripe
++) {
1770 btrfs_issue_discard(stripe
->dev
->bdev
,
1780 int btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1781 struct btrfs_root
*root
,
1782 u64 bytenr
, u64 num_bytes
, u64 parent
,
1783 u64 root_objectid
, u64 owner
, u64 offset
)
1786 BUG_ON(owner
< BTRFS_FIRST_FREE_OBJECTID
&&
1787 root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
1789 if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
1790 ret
= btrfs_add_delayed_tree_ref(trans
, bytenr
, num_bytes
,
1791 parent
, root_objectid
, (int)owner
,
1792 BTRFS_ADD_DELAYED_REF
, NULL
);
1794 ret
= btrfs_add_delayed_data_ref(trans
, bytenr
, num_bytes
,
1795 parent
, root_objectid
, owner
, offset
,
1796 BTRFS_ADD_DELAYED_REF
, NULL
);
1801 static int __btrfs_inc_extent_ref(struct btrfs_trans_handle
*trans
,
1802 struct btrfs_root
*root
,
1803 u64 bytenr
, u64 num_bytes
,
1804 u64 parent
, u64 root_objectid
,
1805 u64 owner
, u64 offset
, int refs_to_add
,
1806 struct btrfs_delayed_extent_op
*extent_op
)
1808 struct btrfs_path
*path
;
1809 struct extent_buffer
*leaf
;
1810 struct btrfs_extent_item
*item
;
1815 path
= btrfs_alloc_path();
1820 path
->leave_spinning
= 1;
1821 /* this will setup the path even if it fails to insert the back ref */
1822 ret
= insert_inline_extent_backref(trans
, root
->fs_info
->extent_root
,
1823 path
, bytenr
, num_bytes
, parent
,
1824 root_objectid
, owner
, offset
,
1825 refs_to_add
, extent_op
);
1829 if (ret
!= -EAGAIN
) {
1834 leaf
= path
->nodes
[0];
1835 item
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1836 refs
= btrfs_extent_refs(leaf
, item
);
1837 btrfs_set_extent_refs(leaf
, item
, refs
+ refs_to_add
);
1839 __run_delayed_extent_op(extent_op
, leaf
, item
);
1841 btrfs_mark_buffer_dirty(leaf
);
1842 btrfs_release_path(root
->fs_info
->extent_root
, path
);
1845 path
->leave_spinning
= 1;
1847 /* now insert the actual backref */
1848 ret
= insert_extent_backref(trans
, root
->fs_info
->extent_root
,
1849 path
, bytenr
, parent
, root_objectid
,
1850 owner
, offset
, refs_to_add
);
1853 btrfs_free_path(path
);
1857 static int run_delayed_data_ref(struct btrfs_trans_handle
*trans
,
1858 struct btrfs_root
*root
,
1859 struct btrfs_delayed_ref_node
*node
,
1860 struct btrfs_delayed_extent_op
*extent_op
,
1861 int insert_reserved
)
1864 struct btrfs_delayed_data_ref
*ref
;
1865 struct btrfs_key ins
;
1870 ins
.objectid
= node
->bytenr
;
1871 ins
.offset
= node
->num_bytes
;
1872 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1874 ref
= btrfs_delayed_node_to_data_ref(node
);
1875 if (node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
1876 parent
= ref
->parent
;
1878 ref_root
= ref
->root
;
1880 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
1882 BUG_ON(extent_op
->update_key
);
1883 flags
|= extent_op
->flags_to_set
;
1885 ret
= alloc_reserved_file_extent(trans
, root
,
1886 parent
, ref_root
, flags
,
1887 ref
->objectid
, ref
->offset
,
1888 &ins
, node
->ref_mod
);
1889 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
1890 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
1891 node
->num_bytes
, parent
,
1892 ref_root
, ref
->objectid
,
1893 ref
->offset
, node
->ref_mod
,
1895 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
1896 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
1897 node
->num_bytes
, parent
,
1898 ref_root
, ref
->objectid
,
1899 ref
->offset
, node
->ref_mod
,
1907 static void __run_delayed_extent_op(struct btrfs_delayed_extent_op
*extent_op
,
1908 struct extent_buffer
*leaf
,
1909 struct btrfs_extent_item
*ei
)
1911 u64 flags
= btrfs_extent_flags(leaf
, ei
);
1912 if (extent_op
->update_flags
) {
1913 flags
|= extent_op
->flags_to_set
;
1914 btrfs_set_extent_flags(leaf
, ei
, flags
);
1917 if (extent_op
->update_key
) {
1918 struct btrfs_tree_block_info
*bi
;
1919 BUG_ON(!(flags
& BTRFS_EXTENT_FLAG_TREE_BLOCK
));
1920 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
1921 btrfs_set_tree_block_key(leaf
, bi
, &extent_op
->key
);
1925 static int run_delayed_extent_op(struct btrfs_trans_handle
*trans
,
1926 struct btrfs_root
*root
,
1927 struct btrfs_delayed_ref_node
*node
,
1928 struct btrfs_delayed_extent_op
*extent_op
)
1930 struct btrfs_key key
;
1931 struct btrfs_path
*path
;
1932 struct btrfs_extent_item
*ei
;
1933 struct extent_buffer
*leaf
;
1938 path
= btrfs_alloc_path();
1942 key
.objectid
= node
->bytenr
;
1943 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
1944 key
.offset
= node
->num_bytes
;
1947 path
->leave_spinning
= 1;
1948 ret
= btrfs_search_slot(trans
, root
->fs_info
->extent_root
, &key
,
1959 leaf
= path
->nodes
[0];
1960 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1961 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
1962 if (item_size
< sizeof(*ei
)) {
1963 ret
= convert_extent_item_v0(trans
, root
->fs_info
->extent_root
,
1969 leaf
= path
->nodes
[0];
1970 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
1973 BUG_ON(item_size
< sizeof(*ei
));
1974 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
1975 __run_delayed_extent_op(extent_op
, leaf
, ei
);
1977 btrfs_mark_buffer_dirty(leaf
);
1979 btrfs_free_path(path
);
1983 static int run_delayed_tree_ref(struct btrfs_trans_handle
*trans
,
1984 struct btrfs_root
*root
,
1985 struct btrfs_delayed_ref_node
*node
,
1986 struct btrfs_delayed_extent_op
*extent_op
,
1987 int insert_reserved
)
1990 struct btrfs_delayed_tree_ref
*ref
;
1991 struct btrfs_key ins
;
1995 ins
.objectid
= node
->bytenr
;
1996 ins
.offset
= node
->num_bytes
;
1997 ins
.type
= BTRFS_EXTENT_ITEM_KEY
;
1999 ref
= btrfs_delayed_node_to_tree_ref(node
);
2000 if (node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2001 parent
= ref
->parent
;
2003 ref_root
= ref
->root
;
2005 BUG_ON(node
->ref_mod
!= 1);
2006 if (node
->action
== BTRFS_ADD_DELAYED_REF
&& insert_reserved
) {
2007 BUG_ON(!extent_op
|| !extent_op
->update_flags
||
2008 !extent_op
->update_key
);
2009 ret
= alloc_reserved_tree_block(trans
, root
,
2011 extent_op
->flags_to_set
,
2014 } else if (node
->action
== BTRFS_ADD_DELAYED_REF
) {
2015 ret
= __btrfs_inc_extent_ref(trans
, root
, node
->bytenr
,
2016 node
->num_bytes
, parent
, ref_root
,
2017 ref
->level
, 0, 1, extent_op
);
2018 } else if (node
->action
== BTRFS_DROP_DELAYED_REF
) {
2019 ret
= __btrfs_free_extent(trans
, root
, node
->bytenr
,
2020 node
->num_bytes
, parent
, ref_root
,
2021 ref
->level
, 0, 1, extent_op
);
2028 /* helper function to actually process a single delayed ref entry */
2029 static int run_one_delayed_ref(struct btrfs_trans_handle
*trans
,
2030 struct btrfs_root
*root
,
2031 struct btrfs_delayed_ref_node
*node
,
2032 struct btrfs_delayed_extent_op
*extent_op
,
2033 int insert_reserved
)
2036 if (btrfs_delayed_ref_is_head(node
)) {
2037 struct btrfs_delayed_ref_head
*head
;
2039 * we've hit the end of the chain and we were supposed
2040 * to insert this extent into the tree. But, it got
2041 * deleted before we ever needed to insert it, so all
2042 * we have to do is clean up the accounting
2045 head
= btrfs_delayed_node_to_head(node
);
2046 if (insert_reserved
) {
2047 btrfs_pin_extent(root
, node
->bytenr
,
2048 node
->num_bytes
, 1);
2049 if (head
->is_data
) {
2050 ret
= btrfs_del_csums(trans
, root
,
2056 mutex_unlock(&head
->mutex
);
2060 if (node
->type
== BTRFS_TREE_BLOCK_REF_KEY
||
2061 node
->type
== BTRFS_SHARED_BLOCK_REF_KEY
)
2062 ret
= run_delayed_tree_ref(trans
, root
, node
, extent_op
,
2064 else if (node
->type
== BTRFS_EXTENT_DATA_REF_KEY
||
2065 node
->type
== BTRFS_SHARED_DATA_REF_KEY
)
2066 ret
= run_delayed_data_ref(trans
, root
, node
, extent_op
,
2073 static noinline
struct btrfs_delayed_ref_node
*
2074 select_delayed_ref(struct btrfs_delayed_ref_head
*head
)
2076 struct rb_node
*node
;
2077 struct btrfs_delayed_ref_node
*ref
;
2078 int action
= BTRFS_ADD_DELAYED_REF
;
2081 * select delayed ref of type BTRFS_ADD_DELAYED_REF first.
2082 * this prevents ref count from going down to zero when
2083 * there still are pending delayed ref.
2085 node
= rb_prev(&head
->node
.rb_node
);
2089 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2091 if (ref
->bytenr
!= head
->node
.bytenr
)
2093 if (ref
->action
== action
)
2095 node
= rb_prev(node
);
2097 if (action
== BTRFS_ADD_DELAYED_REF
) {
2098 action
= BTRFS_DROP_DELAYED_REF
;
2104 static noinline
int run_clustered_refs(struct btrfs_trans_handle
*trans
,
2105 struct btrfs_root
*root
,
2106 struct list_head
*cluster
)
2108 struct btrfs_delayed_ref_root
*delayed_refs
;
2109 struct btrfs_delayed_ref_node
*ref
;
2110 struct btrfs_delayed_ref_head
*locked_ref
= NULL
;
2111 struct btrfs_delayed_extent_op
*extent_op
;
2114 int must_insert_reserved
= 0;
2116 delayed_refs
= &trans
->transaction
->delayed_refs
;
2119 /* pick a new head ref from the cluster list */
2120 if (list_empty(cluster
))
2123 locked_ref
= list_entry(cluster
->next
,
2124 struct btrfs_delayed_ref_head
, cluster
);
2126 /* grab the lock that says we are going to process
2127 * all the refs for this head */
2128 ret
= btrfs_delayed_ref_lock(trans
, locked_ref
);
2131 * we may have dropped the spin lock to get the head
2132 * mutex lock, and that might have given someone else
2133 * time to free the head. If that's true, it has been
2134 * removed from our list and we can move on.
2136 if (ret
== -EAGAIN
) {
2144 * record the must insert reserved flag before we
2145 * drop the spin lock.
2147 must_insert_reserved
= locked_ref
->must_insert_reserved
;
2148 locked_ref
->must_insert_reserved
= 0;
2150 extent_op
= locked_ref
->extent_op
;
2151 locked_ref
->extent_op
= NULL
;
2154 * locked_ref is the head node, so we have to go one
2155 * node back for any delayed ref updates
2157 ref
= select_delayed_ref(locked_ref
);
2159 /* All delayed refs have been processed, Go ahead
2160 * and send the head node to run_one_delayed_ref,
2161 * so that any accounting fixes can happen
2163 ref
= &locked_ref
->node
;
2165 if (extent_op
&& must_insert_reserved
) {
2171 spin_unlock(&delayed_refs
->lock
);
2173 ret
= run_delayed_extent_op(trans
, root
,
2179 spin_lock(&delayed_refs
->lock
);
2183 list_del_init(&locked_ref
->cluster
);
2188 rb_erase(&ref
->rb_node
, &delayed_refs
->root
);
2189 delayed_refs
->num_entries
--;
2191 spin_unlock(&delayed_refs
->lock
);
2193 ret
= run_one_delayed_ref(trans
, root
, ref
, extent_op
,
2194 must_insert_reserved
);
2197 btrfs_put_delayed_ref(ref
);
2202 spin_lock(&delayed_refs
->lock
);
2208 * this starts processing the delayed reference count updates and
2209 * extent insertions we have queued up so far. count can be
2210 * 0, which means to process everything in the tree at the start
2211 * of the run (but not newly added entries), or it can be some target
2212 * number you'd like to process.
2214 int btrfs_run_delayed_refs(struct btrfs_trans_handle
*trans
,
2215 struct btrfs_root
*root
, unsigned long count
)
2217 struct rb_node
*node
;
2218 struct btrfs_delayed_ref_root
*delayed_refs
;
2219 struct btrfs_delayed_ref_node
*ref
;
2220 struct list_head cluster
;
2222 int run_all
= count
== (unsigned long)-1;
2225 if (root
== root
->fs_info
->extent_root
)
2226 root
= root
->fs_info
->tree_root
;
2228 delayed_refs
= &trans
->transaction
->delayed_refs
;
2229 INIT_LIST_HEAD(&cluster
);
2231 spin_lock(&delayed_refs
->lock
);
2233 count
= delayed_refs
->num_entries
* 2;
2237 if (!(run_all
|| run_most
) &&
2238 delayed_refs
->num_heads_ready
< 64)
2242 * go find something we can process in the rbtree. We start at
2243 * the beginning of the tree, and then build a cluster
2244 * of refs to process starting at the first one we are able to
2247 ret
= btrfs_find_ref_cluster(trans
, &cluster
,
2248 delayed_refs
->run_delayed_start
);
2252 ret
= run_clustered_refs(trans
, root
, &cluster
);
2255 count
-= min_t(unsigned long, ret
, count
);
2262 node
= rb_first(&delayed_refs
->root
);
2265 count
= (unsigned long)-1;
2268 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
,
2270 if (btrfs_delayed_ref_is_head(ref
)) {
2271 struct btrfs_delayed_ref_head
*head
;
2273 head
= btrfs_delayed_node_to_head(ref
);
2274 atomic_inc(&ref
->refs
);
2276 spin_unlock(&delayed_refs
->lock
);
2277 mutex_lock(&head
->mutex
);
2278 mutex_unlock(&head
->mutex
);
2280 btrfs_put_delayed_ref(ref
);
2284 node
= rb_next(node
);
2286 spin_unlock(&delayed_refs
->lock
);
2287 schedule_timeout(1);
2291 spin_unlock(&delayed_refs
->lock
);
2295 int btrfs_set_disk_extent_flags(struct btrfs_trans_handle
*trans
,
2296 struct btrfs_root
*root
,
2297 u64 bytenr
, u64 num_bytes
, u64 flags
,
2300 struct btrfs_delayed_extent_op
*extent_op
;
2303 extent_op
= kmalloc(sizeof(*extent_op
), GFP_NOFS
);
2307 extent_op
->flags_to_set
= flags
;
2308 extent_op
->update_flags
= 1;
2309 extent_op
->update_key
= 0;
2310 extent_op
->is_data
= is_data
? 1 : 0;
2312 ret
= btrfs_add_delayed_extent_op(trans
, bytenr
, num_bytes
, extent_op
);
2318 static noinline
int check_delayed_ref(struct btrfs_trans_handle
*trans
,
2319 struct btrfs_root
*root
,
2320 struct btrfs_path
*path
,
2321 u64 objectid
, u64 offset
, u64 bytenr
)
2323 struct btrfs_delayed_ref_head
*head
;
2324 struct btrfs_delayed_ref_node
*ref
;
2325 struct btrfs_delayed_data_ref
*data_ref
;
2326 struct btrfs_delayed_ref_root
*delayed_refs
;
2327 struct rb_node
*node
;
2331 delayed_refs
= &trans
->transaction
->delayed_refs
;
2332 spin_lock(&delayed_refs
->lock
);
2333 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
2337 if (!mutex_trylock(&head
->mutex
)) {
2338 atomic_inc(&head
->node
.refs
);
2339 spin_unlock(&delayed_refs
->lock
);
2341 btrfs_release_path(root
->fs_info
->extent_root
, path
);
2343 mutex_lock(&head
->mutex
);
2344 mutex_unlock(&head
->mutex
);
2345 btrfs_put_delayed_ref(&head
->node
);
2349 node
= rb_prev(&head
->node
.rb_node
);
2353 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2355 if (ref
->bytenr
!= bytenr
)
2359 if (ref
->type
!= BTRFS_EXTENT_DATA_REF_KEY
)
2362 data_ref
= btrfs_delayed_node_to_data_ref(ref
);
2364 node
= rb_prev(node
);
2366 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
2367 if (ref
->bytenr
== bytenr
)
2371 if (data_ref
->root
!= root
->root_key
.objectid
||
2372 data_ref
->objectid
!= objectid
|| data_ref
->offset
!= offset
)
2377 mutex_unlock(&head
->mutex
);
2379 spin_unlock(&delayed_refs
->lock
);
2383 static noinline
int check_committed_ref(struct btrfs_trans_handle
*trans
,
2384 struct btrfs_root
*root
,
2385 struct btrfs_path
*path
,
2386 u64 objectid
, u64 offset
, u64 bytenr
)
2388 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2389 struct extent_buffer
*leaf
;
2390 struct btrfs_extent_data_ref
*ref
;
2391 struct btrfs_extent_inline_ref
*iref
;
2392 struct btrfs_extent_item
*ei
;
2393 struct btrfs_key key
;
2397 key
.objectid
= bytenr
;
2398 key
.offset
= (u64
)-1;
2399 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
2401 ret
= btrfs_search_slot(NULL
, extent_root
, &key
, path
, 0, 0);
2407 if (path
->slots
[0] == 0)
2411 leaf
= path
->nodes
[0];
2412 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
2414 if (key
.objectid
!= bytenr
|| key
.type
!= BTRFS_EXTENT_ITEM_KEY
)
2418 item_size
= btrfs_item_size_nr(leaf
, path
->slots
[0]);
2419 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
2420 if (item_size
< sizeof(*ei
)) {
2421 WARN_ON(item_size
!= sizeof(struct btrfs_extent_item_v0
));
2425 ei
= btrfs_item_ptr(leaf
, path
->slots
[0], struct btrfs_extent_item
);
2427 if (item_size
!= sizeof(*ei
) +
2428 btrfs_extent_inline_ref_size(BTRFS_EXTENT_DATA_REF_KEY
))
2431 if (btrfs_extent_generation(leaf
, ei
) <=
2432 btrfs_root_last_snapshot(&root
->root_item
))
2435 iref
= (struct btrfs_extent_inline_ref
*)(ei
+ 1);
2436 if (btrfs_extent_inline_ref_type(leaf
, iref
) !=
2437 BTRFS_EXTENT_DATA_REF_KEY
)
2440 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
2441 if (btrfs_extent_refs(leaf
, ei
) !=
2442 btrfs_extent_data_ref_count(leaf
, ref
) ||
2443 btrfs_extent_data_ref_root(leaf
, ref
) !=
2444 root
->root_key
.objectid
||
2445 btrfs_extent_data_ref_objectid(leaf
, ref
) != objectid
||
2446 btrfs_extent_data_ref_offset(leaf
, ref
) != offset
)
2454 int btrfs_cross_ref_exist(struct btrfs_trans_handle
*trans
,
2455 struct btrfs_root
*root
,
2456 u64 objectid
, u64 offset
, u64 bytenr
)
2458 struct btrfs_path
*path
;
2462 path
= btrfs_alloc_path();
2467 ret
= check_committed_ref(trans
, root
, path
, objectid
,
2469 if (ret
&& ret
!= -ENOENT
)
2472 ret2
= check_delayed_ref(trans
, root
, path
, objectid
,
2474 } while (ret2
== -EAGAIN
);
2476 if (ret2
&& ret2
!= -ENOENT
) {
2481 if (ret
!= -ENOENT
|| ret2
!= -ENOENT
)
2484 btrfs_free_path(path
);
2485 if (root
->root_key
.objectid
== BTRFS_DATA_RELOC_TREE_OBJECTID
)
2491 int btrfs_cache_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2492 struct extent_buffer
*buf
, u32 nr_extents
)
2494 struct btrfs_key key
;
2495 struct btrfs_file_extent_item
*fi
;
2503 if (!root
->ref_cows
)
2506 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
2508 root_gen
= root
->root_key
.offset
;
2511 root_gen
= trans
->transid
- 1;
2514 level
= btrfs_header_level(buf
);
2515 nritems
= btrfs_header_nritems(buf
);
2518 struct btrfs_leaf_ref
*ref
;
2519 struct btrfs_extent_info
*info
;
2521 ref
= btrfs_alloc_leaf_ref(root
, nr_extents
);
2527 ref
->root_gen
= root_gen
;
2528 ref
->bytenr
= buf
->start
;
2529 ref
->owner
= btrfs_header_owner(buf
);
2530 ref
->generation
= btrfs_header_generation(buf
);
2531 ref
->nritems
= nr_extents
;
2532 info
= ref
->extents
;
2534 for (i
= 0; nr_extents
> 0 && i
< nritems
; i
++) {
2536 btrfs_item_key_to_cpu(buf
, &key
, i
);
2537 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
2539 fi
= btrfs_item_ptr(buf
, i
,
2540 struct btrfs_file_extent_item
);
2541 if (btrfs_file_extent_type(buf
, fi
) ==
2542 BTRFS_FILE_EXTENT_INLINE
)
2544 disk_bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
2545 if (disk_bytenr
== 0)
2548 info
->bytenr
= disk_bytenr
;
2550 btrfs_file_extent_disk_num_bytes(buf
, fi
);
2551 info
->objectid
= key
.objectid
;
2552 info
->offset
= key
.offset
;
2556 ret
= btrfs_add_leaf_ref(root
, ref
, shared
);
2557 if (ret
== -EEXIST
&& shared
) {
2558 struct btrfs_leaf_ref
*old
;
2559 old
= btrfs_lookup_leaf_ref(root
, ref
->bytenr
);
2561 btrfs_remove_leaf_ref(root
, old
);
2562 btrfs_free_leaf_ref(root
, old
);
2563 ret
= btrfs_add_leaf_ref(root
, ref
, shared
);
2566 btrfs_free_leaf_ref(root
, ref
);
2572 /* when a block goes through cow, we update the reference counts of
2573 * everything that block points to. The internal pointers of the block
2574 * can be in just about any order, and it is likely to have clusters of
2575 * things that are close together and clusters of things that are not.
2577 * To help reduce the seeks that come with updating all of these reference
2578 * counts, sort them by byte number before actual updates are done.
2580 * struct refsort is used to match byte number to slot in the btree block.
2581 * we sort based on the byte number and then use the slot to actually
2584 * struct refsort is smaller than strcut btrfs_item and smaller than
2585 * struct btrfs_key_ptr. Since we're currently limited to the page size
2586 * for a btree block, there's no way for a kmalloc of refsorts for a
2587 * single node to be bigger than a page.
2595 * for passing into sort()
2597 static int refsort_cmp(const void *a_void
, const void *b_void
)
2599 const struct refsort
*a
= a_void
;
2600 const struct refsort
*b
= b_void
;
2602 if (a
->bytenr
< b
->bytenr
)
2604 if (a
->bytenr
> b
->bytenr
)
2610 static int __btrfs_mod_ref(struct btrfs_trans_handle
*trans
,
2611 struct btrfs_root
*root
,
2612 struct extent_buffer
*buf
,
2613 int full_backref
, int inc
)
2620 struct btrfs_key key
;
2621 struct btrfs_file_extent_item
*fi
;
2625 int (*process_func
)(struct btrfs_trans_handle
*, struct btrfs_root
*,
2626 u64
, u64
, u64
, u64
, u64
, u64
);
2628 ref_root
= btrfs_header_owner(buf
);
2629 nritems
= btrfs_header_nritems(buf
);
2630 level
= btrfs_header_level(buf
);
2632 if (!root
->ref_cows
&& level
== 0)
2636 process_func
= btrfs_inc_extent_ref
;
2638 process_func
= btrfs_free_extent
;
2641 parent
= buf
->start
;
2645 for (i
= 0; i
< nritems
; i
++) {
2647 btrfs_item_key_to_cpu(buf
, &key
, i
);
2648 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
2650 fi
= btrfs_item_ptr(buf
, i
,
2651 struct btrfs_file_extent_item
);
2652 if (btrfs_file_extent_type(buf
, fi
) ==
2653 BTRFS_FILE_EXTENT_INLINE
)
2655 bytenr
= btrfs_file_extent_disk_bytenr(buf
, fi
);
2659 num_bytes
= btrfs_file_extent_disk_num_bytes(buf
, fi
);
2660 key
.offset
-= btrfs_file_extent_offset(buf
, fi
);
2661 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
2662 parent
, ref_root
, key
.objectid
,
2667 bytenr
= btrfs_node_blockptr(buf
, i
);
2668 num_bytes
= btrfs_level_size(root
, level
- 1);
2669 ret
= process_func(trans
, root
, bytenr
, num_bytes
,
2670 parent
, ref_root
, level
- 1, 0);
2681 int btrfs_inc_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2682 struct extent_buffer
*buf
, int full_backref
)
2684 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 1);
2687 int btrfs_dec_ref(struct btrfs_trans_handle
*trans
, struct btrfs_root
*root
,
2688 struct extent_buffer
*buf
, int full_backref
)
2690 return __btrfs_mod_ref(trans
, root
, buf
, full_backref
, 0);
2693 static int write_one_cache_group(struct btrfs_trans_handle
*trans
,
2694 struct btrfs_root
*root
,
2695 struct btrfs_path
*path
,
2696 struct btrfs_block_group_cache
*cache
)
2699 struct btrfs_root
*extent_root
= root
->fs_info
->extent_root
;
2701 struct extent_buffer
*leaf
;
2703 ret
= btrfs_search_slot(trans
, extent_root
, &cache
->key
, path
, 0, 1);
2708 leaf
= path
->nodes
[0];
2709 bi
= btrfs_item_ptr_offset(leaf
, path
->slots
[0]);
2710 write_extent_buffer(leaf
, &cache
->item
, bi
, sizeof(cache
->item
));
2711 btrfs_mark_buffer_dirty(leaf
);
2712 btrfs_release_path(extent_root
, path
);
2720 static struct btrfs_block_group_cache
*
2721 next_block_group(struct btrfs_root
*root
,
2722 struct btrfs_block_group_cache
*cache
)
2724 struct rb_node
*node
;
2725 spin_lock(&root
->fs_info
->block_group_cache_lock
);
2726 node
= rb_next(&cache
->cache_node
);
2727 btrfs_put_block_group(cache
);
2729 cache
= rb_entry(node
, struct btrfs_block_group_cache
,
2731 btrfs_get_block_group(cache
);
2734 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
2738 static int cache_save_setup(struct btrfs_block_group_cache
*block_group
,
2739 struct btrfs_trans_handle
*trans
,
2740 struct btrfs_path
*path
)
2742 struct btrfs_root
*root
= block_group
->fs_info
->tree_root
;
2743 struct inode
*inode
= NULL
;
2745 int dcs
= BTRFS_DC_ERROR
;
2751 * If this block group is smaller than 100 megs don't bother caching the
2754 if (block_group
->key
.offset
< (100 * 1024 * 1024)) {
2755 spin_lock(&block_group
->lock
);
2756 block_group
->disk_cache_state
= BTRFS_DC_WRITTEN
;
2757 spin_unlock(&block_group
->lock
);
2762 inode
= lookup_free_space_inode(root
, block_group
, path
);
2763 if (IS_ERR(inode
) && PTR_ERR(inode
) != -ENOENT
) {
2764 ret
= PTR_ERR(inode
);
2765 btrfs_release_path(root
, path
);
2769 if (IS_ERR(inode
)) {
2773 if (block_group
->ro
)
2776 ret
= create_free_space_inode(root
, trans
, block_group
, path
);
2783 * We want to set the generation to 0, that way if anything goes wrong
2784 * from here on out we know not to trust this cache when we load up next
2787 BTRFS_I(inode
)->generation
= 0;
2788 ret
= btrfs_update_inode(trans
, root
, inode
);
2791 if (i_size_read(inode
) > 0) {
2792 ret
= btrfs_truncate_free_space_cache(root
, trans
, path
,
2798 spin_lock(&block_group
->lock
);
2799 if (block_group
->cached
!= BTRFS_CACHE_FINISHED
) {
2800 /* We're not cached, don't bother trying to write stuff out */
2801 dcs
= BTRFS_DC_WRITTEN
;
2802 spin_unlock(&block_group
->lock
);
2805 spin_unlock(&block_group
->lock
);
2807 num_pages
= (int)div64_u64(block_group
->key
.offset
, 1024 * 1024 * 1024);
2812 * Just to make absolutely sure we have enough space, we're going to
2813 * preallocate 12 pages worth of space for each block group. In
2814 * practice we ought to use at most 8, but we need extra space so we can
2815 * add our header and have a terminator between the extents and the
2819 num_pages
*= PAGE_CACHE_SIZE
;
2821 ret
= btrfs_check_data_free_space(inode
, num_pages
);
2825 ret
= btrfs_prealloc_file_range_trans(inode
, trans
, 0, 0, num_pages
,
2826 num_pages
, num_pages
,
2829 dcs
= BTRFS_DC_SETUP
;
2830 btrfs_free_reserved_data_space(inode
, num_pages
);
2834 btrfs_release_path(root
, path
);
2836 spin_lock(&block_group
->lock
);
2837 block_group
->disk_cache_state
= dcs
;
2838 spin_unlock(&block_group
->lock
);
2843 int btrfs_write_dirty_block_groups(struct btrfs_trans_handle
*trans
,
2844 struct btrfs_root
*root
)
2846 struct btrfs_block_group_cache
*cache
;
2848 struct btrfs_path
*path
;
2851 path
= btrfs_alloc_path();
2857 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
2859 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
)
2861 cache
= next_block_group(root
, cache
);
2869 err
= cache_save_setup(cache
, trans
, path
);
2870 last
= cache
->key
.objectid
+ cache
->key
.offset
;
2871 btrfs_put_block_group(cache
);
2876 err
= btrfs_run_delayed_refs(trans
, root
,
2881 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
2883 if (cache
->disk_cache_state
== BTRFS_DC_CLEAR
) {
2884 btrfs_put_block_group(cache
);
2890 cache
= next_block_group(root
, cache
);
2899 if (cache
->disk_cache_state
== BTRFS_DC_SETUP
)
2900 cache
->disk_cache_state
= BTRFS_DC_NEED_WRITE
;
2902 last
= cache
->key
.objectid
+ cache
->key
.offset
;
2904 err
= write_one_cache_group(trans
, root
, path
, cache
);
2906 btrfs_put_block_group(cache
);
2911 * I don't think this is needed since we're just marking our
2912 * preallocated extent as written, but just in case it can't
2916 err
= btrfs_run_delayed_refs(trans
, root
,
2921 cache
= btrfs_lookup_first_block_group(root
->fs_info
, last
);
2924 * Really this shouldn't happen, but it could if we
2925 * couldn't write the entire preallocated extent and
2926 * splitting the extent resulted in a new block.
2929 btrfs_put_block_group(cache
);
2932 if (cache
->disk_cache_state
== BTRFS_DC_NEED_WRITE
)
2934 cache
= next_block_group(root
, cache
);
2943 btrfs_write_out_cache(root
, trans
, cache
, path
);
2946 * If we didn't have an error then the cache state is still
2947 * NEED_WRITE, so we can set it to WRITTEN.
2949 if (cache
->disk_cache_state
== BTRFS_DC_NEED_WRITE
)
2950 cache
->disk_cache_state
= BTRFS_DC_WRITTEN
;
2951 last
= cache
->key
.objectid
+ cache
->key
.offset
;
2952 btrfs_put_block_group(cache
);
2955 btrfs_free_path(path
);
2959 int btrfs_extent_readonly(struct btrfs_root
*root
, u64 bytenr
)
2961 struct btrfs_block_group_cache
*block_group
;
2964 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
2965 if (!block_group
|| block_group
->ro
)
2968 btrfs_put_block_group(block_group
);
2972 static int update_space_info(struct btrfs_fs_info
*info
, u64 flags
,
2973 u64 total_bytes
, u64 bytes_used
,
2974 struct btrfs_space_info
**space_info
)
2976 struct btrfs_space_info
*found
;
2980 if (flags
& (BTRFS_BLOCK_GROUP_DUP
| BTRFS_BLOCK_GROUP_RAID1
|
2981 BTRFS_BLOCK_GROUP_RAID10
))
2986 found
= __find_space_info(info
, flags
);
2988 spin_lock(&found
->lock
);
2989 found
->total_bytes
+= total_bytes
;
2990 found
->disk_total
+= total_bytes
* factor
;
2991 found
->bytes_used
+= bytes_used
;
2992 found
->disk_used
+= bytes_used
* factor
;
2994 spin_unlock(&found
->lock
);
2995 *space_info
= found
;
2998 found
= kzalloc(sizeof(*found
), GFP_NOFS
);
3002 for (i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
3003 INIT_LIST_HEAD(&found
->block_groups
[i
]);
3004 init_rwsem(&found
->groups_sem
);
3005 spin_lock_init(&found
->lock
);
3006 found
->flags
= flags
& (BTRFS_BLOCK_GROUP_DATA
|
3007 BTRFS_BLOCK_GROUP_SYSTEM
|
3008 BTRFS_BLOCK_GROUP_METADATA
);
3009 found
->total_bytes
= total_bytes
;
3010 found
->disk_total
= total_bytes
* factor
;
3011 found
->bytes_used
= bytes_used
;
3012 found
->disk_used
= bytes_used
* factor
;
3013 found
->bytes_pinned
= 0;
3014 found
->bytes_reserved
= 0;
3015 found
->bytes_readonly
= 0;
3016 found
->bytes_may_use
= 0;
3018 found
->force_alloc
= 0;
3019 *space_info
= found
;
3020 list_add_rcu(&found
->list
, &info
->space_info
);
3021 atomic_set(&found
->caching_threads
, 0);
3025 static void set_avail_alloc_bits(struct btrfs_fs_info
*fs_info
, u64 flags
)
3027 u64 extra_flags
= flags
& (BTRFS_BLOCK_GROUP_RAID0
|
3028 BTRFS_BLOCK_GROUP_RAID1
|
3029 BTRFS_BLOCK_GROUP_RAID10
|
3030 BTRFS_BLOCK_GROUP_DUP
);
3032 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3033 fs_info
->avail_data_alloc_bits
|= extra_flags
;
3034 if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3035 fs_info
->avail_metadata_alloc_bits
|= extra_flags
;
3036 if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3037 fs_info
->avail_system_alloc_bits
|= extra_flags
;
3041 u64
btrfs_reduce_alloc_profile(struct btrfs_root
*root
, u64 flags
)
3044 * we add in the count of missing devices because we want
3045 * to make sure that any RAID levels on a degraded FS
3046 * continue to be honored.
3048 u64 num_devices
= root
->fs_info
->fs_devices
->rw_devices
+
3049 root
->fs_info
->fs_devices
->missing_devices
;
3051 if (num_devices
== 1)
3052 flags
&= ~(BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID0
);
3053 if (num_devices
< 4)
3054 flags
&= ~BTRFS_BLOCK_GROUP_RAID10
;
3056 if ((flags
& BTRFS_BLOCK_GROUP_DUP
) &&
3057 (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
3058 BTRFS_BLOCK_GROUP_RAID10
))) {
3059 flags
&= ~BTRFS_BLOCK_GROUP_DUP
;
3062 if ((flags
& BTRFS_BLOCK_GROUP_RAID1
) &&
3063 (flags
& BTRFS_BLOCK_GROUP_RAID10
)) {
3064 flags
&= ~BTRFS_BLOCK_GROUP_RAID1
;
3067 if ((flags
& BTRFS_BLOCK_GROUP_RAID0
) &&
3068 ((flags
& BTRFS_BLOCK_GROUP_RAID1
) |
3069 (flags
& BTRFS_BLOCK_GROUP_RAID10
) |
3070 (flags
& BTRFS_BLOCK_GROUP_DUP
)))
3071 flags
&= ~BTRFS_BLOCK_GROUP_RAID0
;
3075 static u64
get_alloc_profile(struct btrfs_root
*root
, u64 flags
)
3077 if (flags
& BTRFS_BLOCK_GROUP_DATA
)
3078 flags
|= root
->fs_info
->avail_data_alloc_bits
&
3079 root
->fs_info
->data_alloc_profile
;
3080 else if (flags
& BTRFS_BLOCK_GROUP_SYSTEM
)
3081 flags
|= root
->fs_info
->avail_system_alloc_bits
&
3082 root
->fs_info
->system_alloc_profile
;
3083 else if (flags
& BTRFS_BLOCK_GROUP_METADATA
)
3084 flags
|= root
->fs_info
->avail_metadata_alloc_bits
&
3085 root
->fs_info
->metadata_alloc_profile
;
3086 return btrfs_reduce_alloc_profile(root
, flags
);
3089 u64
btrfs_get_alloc_profile(struct btrfs_root
*root
, int data
)
3094 flags
= BTRFS_BLOCK_GROUP_DATA
;
3095 else if (root
== root
->fs_info
->chunk_root
)
3096 flags
= BTRFS_BLOCK_GROUP_SYSTEM
;
3098 flags
= BTRFS_BLOCK_GROUP_METADATA
;
3100 return get_alloc_profile(root
, flags
);
3103 void btrfs_set_inode_space_info(struct btrfs_root
*root
, struct inode
*inode
)
3105 BTRFS_I(inode
)->space_info
= __find_space_info(root
->fs_info
,
3106 BTRFS_BLOCK_GROUP_DATA
);
3110 * This will check the space that the inode allocates from to make sure we have
3111 * enough space for bytes.
3113 int btrfs_check_data_free_space(struct inode
*inode
, u64 bytes
)
3115 struct btrfs_space_info
*data_sinfo
;
3116 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3118 int ret
= 0, committed
= 0, alloc_chunk
= 1;
3120 /* make sure bytes are sectorsize aligned */
3121 bytes
= (bytes
+ root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
3123 if (root
== root
->fs_info
->tree_root
) {
3128 data_sinfo
= BTRFS_I(inode
)->space_info
;
3133 /* make sure we have enough space to handle the data first */
3134 spin_lock(&data_sinfo
->lock
);
3135 used
= data_sinfo
->bytes_used
+ data_sinfo
->bytes_reserved
+
3136 data_sinfo
->bytes_pinned
+ data_sinfo
->bytes_readonly
+
3137 data_sinfo
->bytes_may_use
;
3139 if (used
+ bytes
> data_sinfo
->total_bytes
) {
3140 struct btrfs_trans_handle
*trans
;
3143 * if we don't have enough free bytes in this space then we need
3144 * to alloc a new chunk.
3146 if (!data_sinfo
->full
&& alloc_chunk
) {
3149 data_sinfo
->force_alloc
= 1;
3150 spin_unlock(&data_sinfo
->lock
);
3152 alloc_target
= btrfs_get_alloc_profile(root
, 1);
3153 trans
= btrfs_join_transaction(root
, 1);
3155 return PTR_ERR(trans
);
3157 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
3158 bytes
+ 2 * 1024 * 1024,
3160 btrfs_end_transaction(trans
, root
);
3169 btrfs_set_inode_space_info(root
, inode
);
3170 data_sinfo
= BTRFS_I(inode
)->space_info
;
3174 spin_unlock(&data_sinfo
->lock
);
3176 /* commit the current transaction and try again */
3178 if (!committed
&& !root
->fs_info
->open_ioctl_trans
) {
3180 trans
= btrfs_join_transaction(root
, 1);
3182 return PTR_ERR(trans
);
3183 ret
= btrfs_commit_transaction(trans
, root
);
3189 #if 0 /* I hope we never need this code again, just in case */
3190 printk(KERN_ERR
"no space left, need %llu, %llu bytes_used, "
3191 "%llu bytes_reserved, " "%llu bytes_pinned, "
3192 "%llu bytes_readonly, %llu may use %llu total\n",
3193 (unsigned long long)bytes
,
3194 (unsigned long long)data_sinfo
->bytes_used
,
3195 (unsigned long long)data_sinfo
->bytes_reserved
,
3196 (unsigned long long)data_sinfo
->bytes_pinned
,
3197 (unsigned long long)data_sinfo
->bytes_readonly
,
3198 (unsigned long long)data_sinfo
->bytes_may_use
,
3199 (unsigned long long)data_sinfo
->total_bytes
);
3203 data_sinfo
->bytes_may_use
+= bytes
;
3204 BTRFS_I(inode
)->reserved_bytes
+= bytes
;
3205 spin_unlock(&data_sinfo
->lock
);
3211 * called when we are clearing an delalloc extent from the
3212 * inode's io_tree or there was an error for whatever reason
3213 * after calling btrfs_check_data_free_space
3215 void btrfs_free_reserved_data_space(struct inode
*inode
, u64 bytes
)
3217 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3218 struct btrfs_space_info
*data_sinfo
;
3220 /* make sure bytes are sectorsize aligned */
3221 bytes
= (bytes
+ root
->sectorsize
- 1) & ~((u64
)root
->sectorsize
- 1);
3223 data_sinfo
= BTRFS_I(inode
)->space_info
;
3224 spin_lock(&data_sinfo
->lock
);
3225 data_sinfo
->bytes_may_use
-= bytes
;
3226 BTRFS_I(inode
)->reserved_bytes
-= bytes
;
3227 spin_unlock(&data_sinfo
->lock
);
3230 static void force_metadata_allocation(struct btrfs_fs_info
*info
)
3232 struct list_head
*head
= &info
->space_info
;
3233 struct btrfs_space_info
*found
;
3236 list_for_each_entry_rcu(found
, head
, list
) {
3237 if (found
->flags
& BTRFS_BLOCK_GROUP_METADATA
)
3238 found
->force_alloc
= 1;
3243 static int should_alloc_chunk(struct btrfs_root
*root
,
3244 struct btrfs_space_info
*sinfo
, u64 alloc_bytes
)
3246 u64 num_bytes
= sinfo
->total_bytes
- sinfo
->bytes_readonly
;
3249 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+
3250 alloc_bytes
+ 256 * 1024 * 1024 < num_bytes
)
3253 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+
3254 alloc_bytes
< div_factor(num_bytes
, 8))
3257 thresh
= btrfs_super_total_bytes(&root
->fs_info
->super_copy
);
3258 thresh
= max_t(u64
, 256 * 1024 * 1024, div_factor_fine(thresh
, 5));
3260 if (num_bytes
> thresh
&& sinfo
->bytes_used
< div_factor(num_bytes
, 3))
3266 static int do_chunk_alloc(struct btrfs_trans_handle
*trans
,
3267 struct btrfs_root
*extent_root
, u64 alloc_bytes
,
3268 u64 flags
, int force
)
3270 struct btrfs_space_info
*space_info
;
3271 struct btrfs_fs_info
*fs_info
= extent_root
->fs_info
;
3274 mutex_lock(&fs_info
->chunk_mutex
);
3276 flags
= btrfs_reduce_alloc_profile(extent_root
, flags
);
3278 space_info
= __find_space_info(extent_root
->fs_info
, flags
);
3280 ret
= update_space_info(extent_root
->fs_info
, flags
,
3284 BUG_ON(!space_info
);
3286 spin_lock(&space_info
->lock
);
3287 if (space_info
->force_alloc
)
3289 if (space_info
->full
) {
3290 spin_unlock(&space_info
->lock
);
3294 if (!force
&& !should_alloc_chunk(extent_root
, space_info
,
3296 spin_unlock(&space_info
->lock
);
3299 spin_unlock(&space_info
->lock
);
3302 * If we have mixed data/metadata chunks we want to make sure we keep
3303 * allocating mixed chunks instead of individual chunks.
3305 if (btrfs_mixed_space_info(space_info
))
3306 flags
|= (BTRFS_BLOCK_GROUP_DATA
| BTRFS_BLOCK_GROUP_METADATA
);
3309 * if we're doing a data chunk, go ahead and make sure that
3310 * we keep a reasonable number of metadata chunks allocated in the
3313 if (flags
& BTRFS_BLOCK_GROUP_DATA
&& fs_info
->metadata_ratio
) {
3314 fs_info
->data_chunk_allocations
++;
3315 if (!(fs_info
->data_chunk_allocations
%
3316 fs_info
->metadata_ratio
))
3317 force_metadata_allocation(fs_info
);
3320 ret
= btrfs_alloc_chunk(trans
, extent_root
, flags
);
3321 spin_lock(&space_info
->lock
);
3323 space_info
->full
= 1;
3326 space_info
->force_alloc
= 0;
3327 spin_unlock(&space_info
->lock
);
3329 mutex_unlock(&extent_root
->fs_info
->chunk_mutex
);
3334 * shrink metadata reservation for delalloc
3336 static int shrink_delalloc(struct btrfs_trans_handle
*trans
,
3337 struct btrfs_root
*root
, u64 to_reclaim
, int sync
)
3339 struct btrfs_block_rsv
*block_rsv
;
3340 struct btrfs_space_info
*space_info
;
3346 int nr_pages
= (2 * 1024 * 1024) >> PAGE_CACHE_SHIFT
;
3349 block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
3350 space_info
= block_rsv
->space_info
;
3353 reserved
= space_info
->bytes_reserved
;
3358 max_reclaim
= min(reserved
, to_reclaim
);
3360 while (loops
< 1024) {
3361 /* have the flusher threads jump in and do some IO */
3363 nr_pages
= min_t(unsigned long, nr_pages
,
3364 root
->fs_info
->delalloc_bytes
>> PAGE_CACHE_SHIFT
);
3365 writeback_inodes_sb_nr_if_idle(root
->fs_info
->sb
, nr_pages
);
3367 spin_lock(&space_info
->lock
);
3368 if (reserved
> space_info
->bytes_reserved
) {
3370 reclaimed
+= reserved
- space_info
->bytes_reserved
;
3374 reserved
= space_info
->bytes_reserved
;
3375 spin_unlock(&space_info
->lock
);
3377 if (reserved
== 0 || reclaimed
>= max_reclaim
)
3380 if (trans
&& trans
->transaction
->blocked
)
3383 __set_current_state(TASK_INTERRUPTIBLE
);
3384 time_left
= schedule_timeout(pause
);
3386 /* We were interrupted, exit */
3391 if (pause
> HZ
/ 10)
3395 return reclaimed
>= to_reclaim
;
3399 * Retries tells us how many times we've called reserve_metadata_bytes. The
3400 * idea is if this is the first call (retries == 0) then we will add to our
3401 * reserved count if we can't make the allocation in order to hold our place
3402 * while we go and try and free up space. That way for retries > 1 we don't try
3403 * and add space, we just check to see if the amount of unused space is >= the
3404 * total space, meaning that our reservation is valid.
3406 * However if we don't intend to retry this reservation, pass -1 as retries so
3407 * that it short circuits this logic.
3409 static int reserve_metadata_bytes(struct btrfs_trans_handle
*trans
,
3410 struct btrfs_root
*root
,
3411 struct btrfs_block_rsv
*block_rsv
,
3412 u64 orig_bytes
, int flush
)
3414 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
3416 u64 num_bytes
= orig_bytes
;
3419 bool reserved
= false;
3420 bool committed
= false;
3427 spin_lock(&space_info
->lock
);
3428 unused
= space_info
->bytes_used
+ space_info
->bytes_reserved
+
3429 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
3430 space_info
->bytes_may_use
;
3433 * The idea here is that we've not already over-reserved the block group
3434 * then we can go ahead and save our reservation first and then start
3435 * flushing if we need to. Otherwise if we've already overcommitted
3436 * lets start flushing stuff first and then come back and try to make
3439 if (unused
<= space_info
->total_bytes
) {
3440 unused
= space_info
->total_bytes
- unused
;
3441 if (unused
>= num_bytes
) {
3443 space_info
->bytes_reserved
+= orig_bytes
;
3447 * Ok set num_bytes to orig_bytes since we aren't
3448 * overocmmitted, this way we only try and reclaim what
3451 num_bytes
= orig_bytes
;
3455 * Ok we're over committed, set num_bytes to the overcommitted
3456 * amount plus the amount of bytes that we need for this
3459 num_bytes
= unused
- space_info
->total_bytes
+
3460 (orig_bytes
* (retries
+ 1));
3464 * Couldn't make our reservation, save our place so while we're trying
3465 * to reclaim space we can actually use it instead of somebody else
3466 * stealing it from us.
3468 if (ret
&& !reserved
) {
3469 space_info
->bytes_reserved
+= orig_bytes
;
3473 spin_unlock(&space_info
->lock
);
3482 * We do synchronous shrinking since we don't actually unreserve
3483 * metadata until after the IO is completed.
3485 ret
= shrink_delalloc(trans
, root
, num_bytes
, 1);
3492 * So if we were overcommitted it's possible that somebody else flushed
3493 * out enough space and we simply didn't have enough space to reclaim,
3494 * so go back around and try again.
3501 spin_lock(&space_info
->lock
);
3503 * Not enough space to be reclaimed, don't bother committing the
3506 if (space_info
->bytes_pinned
< orig_bytes
)
3508 spin_unlock(&space_info
->lock
);
3513 if (trans
|| committed
)
3517 trans
= btrfs_join_transaction(root
, 1);
3520 ret
= btrfs_commit_transaction(trans
, root
);
3529 spin_lock(&space_info
->lock
);
3530 space_info
->bytes_reserved
-= orig_bytes
;
3531 spin_unlock(&space_info
->lock
);
3537 static struct btrfs_block_rsv
*get_block_rsv(struct btrfs_trans_handle
*trans
,
3538 struct btrfs_root
*root
)
3540 struct btrfs_block_rsv
*block_rsv
;
3542 block_rsv
= trans
->block_rsv
;
3544 block_rsv
= root
->block_rsv
;
3547 block_rsv
= &root
->fs_info
->empty_block_rsv
;
3552 static int block_rsv_use_bytes(struct btrfs_block_rsv
*block_rsv
,
3556 spin_lock(&block_rsv
->lock
);
3557 if (block_rsv
->reserved
>= num_bytes
) {
3558 block_rsv
->reserved
-= num_bytes
;
3559 if (block_rsv
->reserved
< block_rsv
->size
)
3560 block_rsv
->full
= 0;
3563 spin_unlock(&block_rsv
->lock
);
3567 static void block_rsv_add_bytes(struct btrfs_block_rsv
*block_rsv
,
3568 u64 num_bytes
, int update_size
)
3570 spin_lock(&block_rsv
->lock
);
3571 block_rsv
->reserved
+= num_bytes
;
3573 block_rsv
->size
+= num_bytes
;
3574 else if (block_rsv
->reserved
>= block_rsv
->size
)
3575 block_rsv
->full
= 1;
3576 spin_unlock(&block_rsv
->lock
);
3579 void block_rsv_release_bytes(struct btrfs_block_rsv
*block_rsv
,
3580 struct btrfs_block_rsv
*dest
, u64 num_bytes
)
3582 struct btrfs_space_info
*space_info
= block_rsv
->space_info
;
3584 spin_lock(&block_rsv
->lock
);
3585 if (num_bytes
== (u64
)-1)
3586 num_bytes
= block_rsv
->size
;
3587 block_rsv
->size
-= num_bytes
;
3588 if (block_rsv
->reserved
>= block_rsv
->size
) {
3589 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
3590 block_rsv
->reserved
= block_rsv
->size
;
3591 block_rsv
->full
= 1;
3595 spin_unlock(&block_rsv
->lock
);
3597 if (num_bytes
> 0) {
3599 spin_lock(&dest
->lock
);
3603 bytes_to_add
= dest
->size
- dest
->reserved
;
3604 bytes_to_add
= min(num_bytes
, bytes_to_add
);
3605 dest
->reserved
+= bytes_to_add
;
3606 if (dest
->reserved
>= dest
->size
)
3608 num_bytes
-= bytes_to_add
;
3610 spin_unlock(&dest
->lock
);
3613 spin_lock(&space_info
->lock
);
3614 space_info
->bytes_reserved
-= num_bytes
;
3615 spin_unlock(&space_info
->lock
);
3620 static int block_rsv_migrate_bytes(struct btrfs_block_rsv
*src
,
3621 struct btrfs_block_rsv
*dst
, u64 num_bytes
)
3625 ret
= block_rsv_use_bytes(src
, num_bytes
);
3629 block_rsv_add_bytes(dst
, num_bytes
, 1);
3633 void btrfs_init_block_rsv(struct btrfs_block_rsv
*rsv
)
3635 memset(rsv
, 0, sizeof(*rsv
));
3636 spin_lock_init(&rsv
->lock
);
3637 atomic_set(&rsv
->usage
, 1);
3639 INIT_LIST_HEAD(&rsv
->list
);
3642 struct btrfs_block_rsv
*btrfs_alloc_block_rsv(struct btrfs_root
*root
)
3644 struct btrfs_block_rsv
*block_rsv
;
3645 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
3647 block_rsv
= kmalloc(sizeof(*block_rsv
), GFP_NOFS
);
3651 btrfs_init_block_rsv(block_rsv
);
3652 block_rsv
->space_info
= __find_space_info(fs_info
,
3653 BTRFS_BLOCK_GROUP_METADATA
);
3657 void btrfs_free_block_rsv(struct btrfs_root
*root
,
3658 struct btrfs_block_rsv
*rsv
)
3660 if (rsv
&& atomic_dec_and_test(&rsv
->usage
)) {
3661 btrfs_block_rsv_release(root
, rsv
, (u64
)-1);
3668 * make the block_rsv struct be able to capture freed space.
3669 * the captured space will re-add to the the block_rsv struct
3670 * after transaction commit
3672 void btrfs_add_durable_block_rsv(struct btrfs_fs_info
*fs_info
,
3673 struct btrfs_block_rsv
*block_rsv
)
3675 block_rsv
->durable
= 1;
3676 mutex_lock(&fs_info
->durable_block_rsv_mutex
);
3677 list_add_tail(&block_rsv
->list
, &fs_info
->durable_block_rsv_list
);
3678 mutex_unlock(&fs_info
->durable_block_rsv_mutex
);
3681 int btrfs_block_rsv_add(struct btrfs_trans_handle
*trans
,
3682 struct btrfs_root
*root
,
3683 struct btrfs_block_rsv
*block_rsv
,
3691 ret
= reserve_metadata_bytes(trans
, root
, block_rsv
, num_bytes
, 1);
3693 block_rsv_add_bytes(block_rsv
, num_bytes
, 1);
3700 int btrfs_block_rsv_check(struct btrfs_trans_handle
*trans
,
3701 struct btrfs_root
*root
,
3702 struct btrfs_block_rsv
*block_rsv
,
3703 u64 min_reserved
, int min_factor
)
3706 int commit_trans
= 0;
3712 spin_lock(&block_rsv
->lock
);
3714 num_bytes
= div_factor(block_rsv
->size
, min_factor
);
3715 if (min_reserved
> num_bytes
)
3716 num_bytes
= min_reserved
;
3718 if (block_rsv
->reserved
>= num_bytes
) {
3721 num_bytes
-= block_rsv
->reserved
;
3722 if (block_rsv
->durable
&&
3723 block_rsv
->freed
[0] + block_rsv
->freed
[1] >= num_bytes
)
3726 spin_unlock(&block_rsv
->lock
);
3730 if (block_rsv
->refill_used
) {
3731 ret
= reserve_metadata_bytes(trans
, root
, block_rsv
,
3734 block_rsv_add_bytes(block_rsv
, num_bytes
, 0);
3743 trans
= btrfs_join_transaction(root
, 1);
3744 BUG_ON(IS_ERR(trans
));
3745 ret
= btrfs_commit_transaction(trans
, root
);
3752 int btrfs_block_rsv_migrate(struct btrfs_block_rsv
*src_rsv
,
3753 struct btrfs_block_rsv
*dst_rsv
,
3756 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
3759 void btrfs_block_rsv_release(struct btrfs_root
*root
,
3760 struct btrfs_block_rsv
*block_rsv
,
3763 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
3764 if (global_rsv
->full
|| global_rsv
== block_rsv
||
3765 block_rsv
->space_info
!= global_rsv
->space_info
)
3767 block_rsv_release_bytes(block_rsv
, global_rsv
, num_bytes
);
3771 * helper to calculate size of global block reservation.
3772 * the desired value is sum of space used by extent tree,
3773 * checksum tree and root tree
3775 static u64
calc_global_metadata_size(struct btrfs_fs_info
*fs_info
)
3777 struct btrfs_space_info
*sinfo
;
3781 int csum_size
= btrfs_super_csum_size(&fs_info
->super_copy
);
3784 * per tree used space accounting can be inaccuracy, so we
3787 spin_lock(&fs_info
->extent_root
->accounting_lock
);
3788 num_bytes
= btrfs_root_used(&fs_info
->extent_root
->root_item
);
3789 spin_unlock(&fs_info
->extent_root
->accounting_lock
);
3791 spin_lock(&fs_info
->csum_root
->accounting_lock
);
3792 num_bytes
+= btrfs_root_used(&fs_info
->csum_root
->root_item
);
3793 spin_unlock(&fs_info
->csum_root
->accounting_lock
);
3795 spin_lock(&fs_info
->tree_root
->accounting_lock
);
3796 num_bytes
+= btrfs_root_used(&fs_info
->tree_root
->root_item
);
3797 spin_unlock(&fs_info
->tree_root
->accounting_lock
);
3799 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_DATA
);
3800 spin_lock(&sinfo
->lock
);
3801 data_used
= sinfo
->bytes_used
;
3802 spin_unlock(&sinfo
->lock
);
3804 sinfo
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
3805 spin_lock(&sinfo
->lock
);
3806 if (sinfo
->flags
& BTRFS_BLOCK_GROUP_DATA
)
3808 meta_used
= sinfo
->bytes_used
;
3809 spin_unlock(&sinfo
->lock
);
3811 num_bytes
= (data_used
>> fs_info
->sb
->s_blocksize_bits
) *
3813 num_bytes
+= div64_u64(data_used
+ meta_used
, 50);
3815 if (num_bytes
* 3 > meta_used
)
3816 num_bytes
= div64_u64(meta_used
, 3);
3818 return ALIGN(num_bytes
, fs_info
->extent_root
->leafsize
<< 10);
3821 static void update_global_block_rsv(struct btrfs_fs_info
*fs_info
)
3823 struct btrfs_block_rsv
*block_rsv
= &fs_info
->global_block_rsv
;
3824 struct btrfs_space_info
*sinfo
= block_rsv
->space_info
;
3827 num_bytes
= calc_global_metadata_size(fs_info
);
3829 spin_lock(&block_rsv
->lock
);
3830 spin_lock(&sinfo
->lock
);
3832 block_rsv
->size
= num_bytes
;
3834 num_bytes
= sinfo
->bytes_used
+ sinfo
->bytes_pinned
+
3835 sinfo
->bytes_reserved
+ sinfo
->bytes_readonly
+
3836 sinfo
->bytes_may_use
;
3838 if (sinfo
->total_bytes
> num_bytes
) {
3839 num_bytes
= sinfo
->total_bytes
- num_bytes
;
3840 block_rsv
->reserved
+= num_bytes
;
3841 sinfo
->bytes_reserved
+= num_bytes
;
3844 if (block_rsv
->reserved
>= block_rsv
->size
) {
3845 num_bytes
= block_rsv
->reserved
- block_rsv
->size
;
3846 sinfo
->bytes_reserved
-= num_bytes
;
3847 block_rsv
->reserved
= block_rsv
->size
;
3848 block_rsv
->full
= 1;
3851 printk(KERN_INFO
"global block rsv size %llu reserved %llu\n",
3852 block_rsv
->size
, block_rsv
->reserved
);
3854 spin_unlock(&sinfo
->lock
);
3855 spin_unlock(&block_rsv
->lock
);
3858 static void init_global_block_rsv(struct btrfs_fs_info
*fs_info
)
3860 struct btrfs_space_info
*space_info
;
3862 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_SYSTEM
);
3863 fs_info
->chunk_block_rsv
.space_info
= space_info
;
3864 fs_info
->chunk_block_rsv
.priority
= 10;
3866 space_info
= __find_space_info(fs_info
, BTRFS_BLOCK_GROUP_METADATA
);
3867 fs_info
->global_block_rsv
.space_info
= space_info
;
3868 fs_info
->global_block_rsv
.priority
= 10;
3869 fs_info
->global_block_rsv
.refill_used
= 1;
3870 fs_info
->delalloc_block_rsv
.space_info
= space_info
;
3871 fs_info
->trans_block_rsv
.space_info
= space_info
;
3872 fs_info
->empty_block_rsv
.space_info
= space_info
;
3873 fs_info
->empty_block_rsv
.priority
= 10;
3875 fs_info
->extent_root
->block_rsv
= &fs_info
->global_block_rsv
;
3876 fs_info
->csum_root
->block_rsv
= &fs_info
->global_block_rsv
;
3877 fs_info
->dev_root
->block_rsv
= &fs_info
->global_block_rsv
;
3878 fs_info
->tree_root
->block_rsv
= &fs_info
->global_block_rsv
;
3879 fs_info
->chunk_root
->block_rsv
= &fs_info
->chunk_block_rsv
;
3881 btrfs_add_durable_block_rsv(fs_info
, &fs_info
->global_block_rsv
);
3883 btrfs_add_durable_block_rsv(fs_info
, &fs_info
->delalloc_block_rsv
);
3885 update_global_block_rsv(fs_info
);
3888 static void release_global_block_rsv(struct btrfs_fs_info
*fs_info
)
3890 block_rsv_release_bytes(&fs_info
->global_block_rsv
, NULL
, (u64
)-1);
3891 WARN_ON(fs_info
->delalloc_block_rsv
.size
> 0);
3892 WARN_ON(fs_info
->delalloc_block_rsv
.reserved
> 0);
3893 WARN_ON(fs_info
->trans_block_rsv
.size
> 0);
3894 WARN_ON(fs_info
->trans_block_rsv
.reserved
> 0);
3895 WARN_ON(fs_info
->chunk_block_rsv
.size
> 0);
3896 WARN_ON(fs_info
->chunk_block_rsv
.reserved
> 0);
3899 static u64
calc_trans_metadata_size(struct btrfs_root
*root
, int num_items
)
3901 return (root
->leafsize
+ root
->nodesize
* (BTRFS_MAX_LEVEL
- 1)) *
3905 int btrfs_trans_reserve_metadata(struct btrfs_trans_handle
*trans
,
3906 struct btrfs_root
*root
,
3912 if (num_items
== 0 || root
->fs_info
->chunk_root
== root
)
3915 num_bytes
= calc_trans_metadata_size(root
, num_items
);
3916 ret
= btrfs_block_rsv_add(trans
, root
, &root
->fs_info
->trans_block_rsv
,
3919 trans
->bytes_reserved
+= num_bytes
;
3920 trans
->block_rsv
= &root
->fs_info
->trans_block_rsv
;
3925 void btrfs_trans_release_metadata(struct btrfs_trans_handle
*trans
,
3926 struct btrfs_root
*root
)
3928 if (!trans
->bytes_reserved
)
3931 BUG_ON(trans
->block_rsv
!= &root
->fs_info
->trans_block_rsv
);
3932 btrfs_block_rsv_release(root
, trans
->block_rsv
,
3933 trans
->bytes_reserved
);
3934 trans
->bytes_reserved
= 0;
3937 int btrfs_orphan_reserve_metadata(struct btrfs_trans_handle
*trans
,
3938 struct inode
*inode
)
3940 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3941 struct btrfs_block_rsv
*src_rsv
= get_block_rsv(trans
, root
);
3942 struct btrfs_block_rsv
*dst_rsv
= root
->orphan_block_rsv
;
3945 * one for deleting orphan item, one for updating inode and
3946 * two for calling btrfs_truncate_inode_items.
3948 * btrfs_truncate_inode_items is a delete operation, it frees
3949 * more space than it uses in most cases. So two units of
3950 * metadata space should be enough for calling it many times.
3951 * If all of the metadata space is used, we can commit
3952 * transaction and use space it freed.
3954 u64 num_bytes
= calc_trans_metadata_size(root
, 4);
3955 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
3958 void btrfs_orphan_release_metadata(struct inode
*inode
)
3960 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3961 u64 num_bytes
= calc_trans_metadata_size(root
, 4);
3962 btrfs_block_rsv_release(root
, root
->orphan_block_rsv
, num_bytes
);
3965 int btrfs_snap_reserve_metadata(struct btrfs_trans_handle
*trans
,
3966 struct btrfs_pending_snapshot
*pending
)
3968 struct btrfs_root
*root
= pending
->root
;
3969 struct btrfs_block_rsv
*src_rsv
= get_block_rsv(trans
, root
);
3970 struct btrfs_block_rsv
*dst_rsv
= &pending
->block_rsv
;
3972 * two for root back/forward refs, two for directory entries
3973 * and one for root of the snapshot.
3975 u64 num_bytes
= calc_trans_metadata_size(root
, 5);
3976 dst_rsv
->space_info
= src_rsv
->space_info
;
3977 return block_rsv_migrate_bytes(src_rsv
, dst_rsv
, num_bytes
);
3980 static u64
calc_csum_metadata_size(struct inode
*inode
, u64 num_bytes
)
3982 return num_bytes
>>= 3;
3985 int btrfs_delalloc_reserve_metadata(struct inode
*inode
, u64 num_bytes
)
3987 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
3988 struct btrfs_block_rsv
*block_rsv
= &root
->fs_info
->delalloc_block_rsv
;
3993 if (btrfs_transaction_in_commit(root
->fs_info
))
3994 schedule_timeout(1);
3996 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
3998 spin_lock(&BTRFS_I(inode
)->accounting_lock
);
3999 nr_extents
= atomic_read(&BTRFS_I(inode
)->outstanding_extents
) + 1;
4000 if (nr_extents
> BTRFS_I(inode
)->reserved_extents
) {
4001 nr_extents
-= BTRFS_I(inode
)->reserved_extents
;
4002 to_reserve
= calc_trans_metadata_size(root
, nr_extents
);
4007 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
4009 to_reserve
+= calc_csum_metadata_size(inode
, num_bytes
);
4010 ret
= reserve_metadata_bytes(NULL
, root
, block_rsv
, to_reserve
, 1);
4014 spin_lock(&BTRFS_I(inode
)->accounting_lock
);
4015 BTRFS_I(inode
)->reserved_extents
+= nr_extents
;
4016 atomic_inc(&BTRFS_I(inode
)->outstanding_extents
);
4017 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
4019 block_rsv_add_bytes(block_rsv
, to_reserve
, 1);
4021 if (block_rsv
->size
> 512 * 1024 * 1024)
4022 shrink_delalloc(NULL
, root
, to_reserve
, 0);
4027 void btrfs_delalloc_release_metadata(struct inode
*inode
, u64 num_bytes
)
4029 struct btrfs_root
*root
= BTRFS_I(inode
)->root
;
4033 num_bytes
= ALIGN(num_bytes
, root
->sectorsize
);
4034 atomic_dec(&BTRFS_I(inode
)->outstanding_extents
);
4035 WARN_ON(atomic_read(&BTRFS_I(inode
)->outstanding_extents
) < 0);
4037 spin_lock(&BTRFS_I(inode
)->accounting_lock
);
4038 nr_extents
= atomic_read(&BTRFS_I(inode
)->outstanding_extents
);
4039 if (nr_extents
< BTRFS_I(inode
)->reserved_extents
) {
4040 nr_extents
= BTRFS_I(inode
)->reserved_extents
- nr_extents
;
4041 BTRFS_I(inode
)->reserved_extents
-= nr_extents
;
4045 spin_unlock(&BTRFS_I(inode
)->accounting_lock
);
4047 to_free
= calc_csum_metadata_size(inode
, num_bytes
);
4049 to_free
+= calc_trans_metadata_size(root
, nr_extents
);
4051 btrfs_block_rsv_release(root
, &root
->fs_info
->delalloc_block_rsv
,
4055 int btrfs_delalloc_reserve_space(struct inode
*inode
, u64 num_bytes
)
4059 ret
= btrfs_check_data_free_space(inode
, num_bytes
);
4063 ret
= btrfs_delalloc_reserve_metadata(inode
, num_bytes
);
4065 btrfs_free_reserved_data_space(inode
, num_bytes
);
4072 void btrfs_delalloc_release_space(struct inode
*inode
, u64 num_bytes
)
4074 btrfs_delalloc_release_metadata(inode
, num_bytes
);
4075 btrfs_free_reserved_data_space(inode
, num_bytes
);
4078 static int update_block_group(struct btrfs_trans_handle
*trans
,
4079 struct btrfs_root
*root
,
4080 u64 bytenr
, u64 num_bytes
, int alloc
)
4082 struct btrfs_block_group_cache
*cache
= NULL
;
4083 struct btrfs_fs_info
*info
= root
->fs_info
;
4084 u64 total
= num_bytes
;
4089 /* block accounting for super block */
4090 spin_lock(&info
->delalloc_lock
);
4091 old_val
= btrfs_super_bytes_used(&info
->super_copy
);
4093 old_val
+= num_bytes
;
4095 old_val
-= num_bytes
;
4096 btrfs_set_super_bytes_used(&info
->super_copy
, old_val
);
4097 spin_unlock(&info
->delalloc_lock
);
4100 cache
= btrfs_lookup_block_group(info
, bytenr
);
4103 if (cache
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
4104 BTRFS_BLOCK_GROUP_RAID1
|
4105 BTRFS_BLOCK_GROUP_RAID10
))
4110 * If this block group has free space cache written out, we
4111 * need to make sure to load it if we are removing space. This
4112 * is because we need the unpinning stage to actually add the
4113 * space back to the block group, otherwise we will leak space.
4115 if (!alloc
&& cache
->cached
== BTRFS_CACHE_NO
)
4116 cache_block_group(cache
, trans
, NULL
, 1);
4118 byte_in_group
= bytenr
- cache
->key
.objectid
;
4119 WARN_ON(byte_in_group
> cache
->key
.offset
);
4121 spin_lock(&cache
->space_info
->lock
);
4122 spin_lock(&cache
->lock
);
4124 if (btrfs_super_cache_generation(&info
->super_copy
) != 0 &&
4125 cache
->disk_cache_state
< BTRFS_DC_CLEAR
)
4126 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
4129 old_val
= btrfs_block_group_used(&cache
->item
);
4130 num_bytes
= min(total
, cache
->key
.offset
- byte_in_group
);
4132 old_val
+= num_bytes
;
4133 btrfs_set_block_group_used(&cache
->item
, old_val
);
4134 cache
->reserved
-= num_bytes
;
4135 cache
->space_info
->bytes_reserved
-= num_bytes
;
4136 cache
->space_info
->bytes_used
+= num_bytes
;
4137 cache
->space_info
->disk_used
+= num_bytes
* factor
;
4138 spin_unlock(&cache
->lock
);
4139 spin_unlock(&cache
->space_info
->lock
);
4141 old_val
-= num_bytes
;
4142 btrfs_set_block_group_used(&cache
->item
, old_val
);
4143 cache
->pinned
+= num_bytes
;
4144 cache
->space_info
->bytes_pinned
+= num_bytes
;
4145 cache
->space_info
->bytes_used
-= num_bytes
;
4146 cache
->space_info
->disk_used
-= num_bytes
* factor
;
4147 spin_unlock(&cache
->lock
);
4148 spin_unlock(&cache
->space_info
->lock
);
4150 set_extent_dirty(info
->pinned_extents
,
4151 bytenr
, bytenr
+ num_bytes
- 1,
4152 GFP_NOFS
| __GFP_NOFAIL
);
4154 btrfs_put_block_group(cache
);
4156 bytenr
+= num_bytes
;
4161 static u64
first_logical_byte(struct btrfs_root
*root
, u64 search_start
)
4163 struct btrfs_block_group_cache
*cache
;
4166 cache
= btrfs_lookup_first_block_group(root
->fs_info
, search_start
);
4170 bytenr
= cache
->key
.objectid
;
4171 btrfs_put_block_group(cache
);
4176 static int pin_down_extent(struct btrfs_root
*root
,
4177 struct btrfs_block_group_cache
*cache
,
4178 u64 bytenr
, u64 num_bytes
, int reserved
)
4180 spin_lock(&cache
->space_info
->lock
);
4181 spin_lock(&cache
->lock
);
4182 cache
->pinned
+= num_bytes
;
4183 cache
->space_info
->bytes_pinned
+= num_bytes
;
4185 cache
->reserved
-= num_bytes
;
4186 cache
->space_info
->bytes_reserved
-= num_bytes
;
4188 spin_unlock(&cache
->lock
);
4189 spin_unlock(&cache
->space_info
->lock
);
4191 set_extent_dirty(root
->fs_info
->pinned_extents
, bytenr
,
4192 bytenr
+ num_bytes
- 1, GFP_NOFS
| __GFP_NOFAIL
);
4197 * this function must be called within transaction
4199 int btrfs_pin_extent(struct btrfs_root
*root
,
4200 u64 bytenr
, u64 num_bytes
, int reserved
)
4202 struct btrfs_block_group_cache
*cache
;
4204 cache
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
4207 pin_down_extent(root
, cache
, bytenr
, num_bytes
, reserved
);
4209 btrfs_put_block_group(cache
);
4214 * update size of reserved extents. this function may return -EAGAIN
4215 * if 'reserve' is true or 'sinfo' is false.
4217 static int update_reserved_bytes(struct btrfs_block_group_cache
*cache
,
4218 u64 num_bytes
, int reserve
, int sinfo
)
4222 struct btrfs_space_info
*space_info
= cache
->space_info
;
4223 spin_lock(&space_info
->lock
);
4224 spin_lock(&cache
->lock
);
4229 cache
->reserved
+= num_bytes
;
4230 space_info
->bytes_reserved
+= num_bytes
;
4234 space_info
->bytes_readonly
+= num_bytes
;
4235 cache
->reserved
-= num_bytes
;
4236 space_info
->bytes_reserved
-= num_bytes
;
4238 spin_unlock(&cache
->lock
);
4239 spin_unlock(&space_info
->lock
);
4241 spin_lock(&cache
->lock
);
4246 cache
->reserved
+= num_bytes
;
4248 cache
->reserved
-= num_bytes
;
4250 spin_unlock(&cache
->lock
);
4255 int btrfs_prepare_extent_commit(struct btrfs_trans_handle
*trans
,
4256 struct btrfs_root
*root
)
4258 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4259 struct btrfs_caching_control
*next
;
4260 struct btrfs_caching_control
*caching_ctl
;
4261 struct btrfs_block_group_cache
*cache
;
4263 down_write(&fs_info
->extent_commit_sem
);
4265 list_for_each_entry_safe(caching_ctl
, next
,
4266 &fs_info
->caching_block_groups
, list
) {
4267 cache
= caching_ctl
->block_group
;
4268 if (block_group_cache_done(cache
)) {
4269 cache
->last_byte_to_unpin
= (u64
)-1;
4270 list_del_init(&caching_ctl
->list
);
4271 put_caching_control(caching_ctl
);
4273 cache
->last_byte_to_unpin
= caching_ctl
->progress
;
4277 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
4278 fs_info
->pinned_extents
= &fs_info
->freed_extents
[1];
4280 fs_info
->pinned_extents
= &fs_info
->freed_extents
[0];
4282 up_write(&fs_info
->extent_commit_sem
);
4284 update_global_block_rsv(fs_info
);
4288 static int unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
4290 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4291 struct btrfs_block_group_cache
*cache
= NULL
;
4294 while (start
<= end
) {
4296 start
>= cache
->key
.objectid
+ cache
->key
.offset
) {
4298 btrfs_put_block_group(cache
);
4299 cache
= btrfs_lookup_block_group(fs_info
, start
);
4303 len
= cache
->key
.objectid
+ cache
->key
.offset
- start
;
4304 len
= min(len
, end
+ 1 - start
);
4306 if (start
< cache
->last_byte_to_unpin
) {
4307 len
= min(len
, cache
->last_byte_to_unpin
- start
);
4308 btrfs_add_free_space(cache
, start
, len
);
4313 spin_lock(&cache
->space_info
->lock
);
4314 spin_lock(&cache
->lock
);
4315 cache
->pinned
-= len
;
4316 cache
->space_info
->bytes_pinned
-= len
;
4318 cache
->space_info
->bytes_readonly
+= len
;
4319 } else if (cache
->reserved_pinned
> 0) {
4320 len
= min(len
, cache
->reserved_pinned
);
4321 cache
->reserved_pinned
-= len
;
4322 cache
->space_info
->bytes_reserved
+= len
;
4324 spin_unlock(&cache
->lock
);
4325 spin_unlock(&cache
->space_info
->lock
);
4329 btrfs_put_block_group(cache
);
4333 int btrfs_finish_extent_commit(struct btrfs_trans_handle
*trans
,
4334 struct btrfs_root
*root
)
4336 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
4337 struct extent_io_tree
*unpin
;
4338 struct btrfs_block_rsv
*block_rsv
;
4339 struct btrfs_block_rsv
*next_rsv
;
4345 if (fs_info
->pinned_extents
== &fs_info
->freed_extents
[0])
4346 unpin
= &fs_info
->freed_extents
[1];
4348 unpin
= &fs_info
->freed_extents
[0];
4351 ret
= find_first_extent_bit(unpin
, 0, &start
, &end
,
4356 ret
= btrfs_discard_extent(root
, start
, end
+ 1 - start
);
4358 clear_extent_dirty(unpin
, start
, end
, GFP_NOFS
);
4359 unpin_extent_range(root
, start
, end
);
4363 mutex_lock(&fs_info
->durable_block_rsv_mutex
);
4364 list_for_each_entry_safe(block_rsv
, next_rsv
,
4365 &fs_info
->durable_block_rsv_list
, list
) {
4367 idx
= trans
->transid
& 0x1;
4368 if (block_rsv
->freed
[idx
] > 0) {
4369 block_rsv_add_bytes(block_rsv
,
4370 block_rsv
->freed
[idx
], 0);
4371 block_rsv
->freed
[idx
] = 0;
4373 if (atomic_read(&block_rsv
->usage
) == 0) {
4374 btrfs_block_rsv_release(root
, block_rsv
, (u64
)-1);
4376 if (block_rsv
->freed
[0] == 0 &&
4377 block_rsv
->freed
[1] == 0) {
4378 list_del_init(&block_rsv
->list
);
4382 btrfs_block_rsv_release(root
, block_rsv
, 0);
4385 mutex_unlock(&fs_info
->durable_block_rsv_mutex
);
4390 static int __btrfs_free_extent(struct btrfs_trans_handle
*trans
,
4391 struct btrfs_root
*root
,
4392 u64 bytenr
, u64 num_bytes
, u64 parent
,
4393 u64 root_objectid
, u64 owner_objectid
,
4394 u64 owner_offset
, int refs_to_drop
,
4395 struct btrfs_delayed_extent_op
*extent_op
)
4397 struct btrfs_key key
;
4398 struct btrfs_path
*path
;
4399 struct btrfs_fs_info
*info
= root
->fs_info
;
4400 struct btrfs_root
*extent_root
= info
->extent_root
;
4401 struct extent_buffer
*leaf
;
4402 struct btrfs_extent_item
*ei
;
4403 struct btrfs_extent_inline_ref
*iref
;
4406 int extent_slot
= 0;
4407 int found_extent
= 0;
4412 path
= btrfs_alloc_path();
4417 path
->leave_spinning
= 1;
4419 is_data
= owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
;
4420 BUG_ON(!is_data
&& refs_to_drop
!= 1);
4422 ret
= lookup_extent_backref(trans
, extent_root
, path
, &iref
,
4423 bytenr
, num_bytes
, parent
,
4424 root_objectid
, owner_objectid
,
4427 extent_slot
= path
->slots
[0];
4428 while (extent_slot
>= 0) {
4429 btrfs_item_key_to_cpu(path
->nodes
[0], &key
,
4431 if (key
.objectid
!= bytenr
)
4433 if (key
.type
== BTRFS_EXTENT_ITEM_KEY
&&
4434 key
.offset
== num_bytes
) {
4438 if (path
->slots
[0] - extent_slot
> 5)
4442 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4443 item_size
= btrfs_item_size_nr(path
->nodes
[0], extent_slot
);
4444 if (found_extent
&& item_size
< sizeof(*ei
))
4447 if (!found_extent
) {
4449 ret
= remove_extent_backref(trans
, extent_root
, path
,
4453 btrfs_release_path(extent_root
, path
);
4454 path
->leave_spinning
= 1;
4456 key
.objectid
= bytenr
;
4457 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
4458 key
.offset
= num_bytes
;
4460 ret
= btrfs_search_slot(trans
, extent_root
,
4463 printk(KERN_ERR
"umm, got %d back from search"
4464 ", was looking for %llu\n", ret
,
4465 (unsigned long long)bytenr
);
4466 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
4469 extent_slot
= path
->slots
[0];
4472 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
4474 printk(KERN_ERR
"btrfs unable to find ref byte nr %llu "
4475 "parent %llu root %llu owner %llu offset %llu\n",
4476 (unsigned long long)bytenr
,
4477 (unsigned long long)parent
,
4478 (unsigned long long)root_objectid
,
4479 (unsigned long long)owner_objectid
,
4480 (unsigned long long)owner_offset
);
4483 leaf
= path
->nodes
[0];
4484 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
4485 #ifdef BTRFS_COMPAT_EXTENT_TREE_V0
4486 if (item_size
< sizeof(*ei
)) {
4487 BUG_ON(found_extent
|| extent_slot
!= path
->slots
[0]);
4488 ret
= convert_extent_item_v0(trans
, extent_root
, path
,
4492 btrfs_release_path(extent_root
, path
);
4493 path
->leave_spinning
= 1;
4495 key
.objectid
= bytenr
;
4496 key
.type
= BTRFS_EXTENT_ITEM_KEY
;
4497 key
.offset
= num_bytes
;
4499 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
,
4502 printk(KERN_ERR
"umm, got %d back from search"
4503 ", was looking for %llu\n", ret
,
4504 (unsigned long long)bytenr
);
4505 btrfs_print_leaf(extent_root
, path
->nodes
[0]);
4508 extent_slot
= path
->slots
[0];
4509 leaf
= path
->nodes
[0];
4510 item_size
= btrfs_item_size_nr(leaf
, extent_slot
);
4513 BUG_ON(item_size
< sizeof(*ei
));
4514 ei
= btrfs_item_ptr(leaf
, extent_slot
,
4515 struct btrfs_extent_item
);
4516 if (owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
) {
4517 struct btrfs_tree_block_info
*bi
;
4518 BUG_ON(item_size
< sizeof(*ei
) + sizeof(*bi
));
4519 bi
= (struct btrfs_tree_block_info
*)(ei
+ 1);
4520 WARN_ON(owner_objectid
!= btrfs_tree_block_level(leaf
, bi
));
4523 refs
= btrfs_extent_refs(leaf
, ei
);
4524 BUG_ON(refs
< refs_to_drop
);
4525 refs
-= refs_to_drop
;
4529 __run_delayed_extent_op(extent_op
, leaf
, ei
);
4531 * In the case of inline back ref, reference count will
4532 * be updated by remove_extent_backref
4535 BUG_ON(!found_extent
);
4537 btrfs_set_extent_refs(leaf
, ei
, refs
);
4538 btrfs_mark_buffer_dirty(leaf
);
4541 ret
= remove_extent_backref(trans
, extent_root
, path
,
4548 BUG_ON(is_data
&& refs_to_drop
!=
4549 extent_data_ref_count(root
, path
, iref
));
4551 BUG_ON(path
->slots
[0] != extent_slot
);
4553 BUG_ON(path
->slots
[0] != extent_slot
+ 1);
4554 path
->slots
[0] = extent_slot
;
4559 ret
= btrfs_del_items(trans
, extent_root
, path
, path
->slots
[0],
4562 btrfs_release_path(extent_root
, path
);
4565 ret
= btrfs_del_csums(trans
, root
, bytenr
, num_bytes
);
4568 invalidate_mapping_pages(info
->btree_inode
->i_mapping
,
4569 bytenr
>> PAGE_CACHE_SHIFT
,
4570 (bytenr
+ num_bytes
- 1) >> PAGE_CACHE_SHIFT
);
4573 ret
= update_block_group(trans
, root
, bytenr
, num_bytes
, 0);
4576 btrfs_free_path(path
);
4581 * when we free an block, it is possible (and likely) that we free the last
4582 * delayed ref for that extent as well. This searches the delayed ref tree for
4583 * a given extent, and if there are no other delayed refs to be processed, it
4584 * removes it from the tree.
4586 static noinline
int check_ref_cleanup(struct btrfs_trans_handle
*trans
,
4587 struct btrfs_root
*root
, u64 bytenr
)
4589 struct btrfs_delayed_ref_head
*head
;
4590 struct btrfs_delayed_ref_root
*delayed_refs
;
4591 struct btrfs_delayed_ref_node
*ref
;
4592 struct rb_node
*node
;
4595 delayed_refs
= &trans
->transaction
->delayed_refs
;
4596 spin_lock(&delayed_refs
->lock
);
4597 head
= btrfs_find_delayed_ref_head(trans
, bytenr
);
4601 node
= rb_prev(&head
->node
.rb_node
);
4605 ref
= rb_entry(node
, struct btrfs_delayed_ref_node
, rb_node
);
4607 /* there are still entries for this ref, we can't drop it */
4608 if (ref
->bytenr
== bytenr
)
4611 if (head
->extent_op
) {
4612 if (!head
->must_insert_reserved
)
4614 kfree(head
->extent_op
);
4615 head
->extent_op
= NULL
;
4619 * waiting for the lock here would deadlock. If someone else has it
4620 * locked they are already in the process of dropping it anyway
4622 if (!mutex_trylock(&head
->mutex
))
4626 * at this point we have a head with no other entries. Go
4627 * ahead and process it.
4629 head
->node
.in_tree
= 0;
4630 rb_erase(&head
->node
.rb_node
, &delayed_refs
->root
);
4632 delayed_refs
->num_entries
--;
4635 * we don't take a ref on the node because we're removing it from the
4636 * tree, so we just steal the ref the tree was holding.
4638 delayed_refs
->num_heads
--;
4639 if (list_empty(&head
->cluster
))
4640 delayed_refs
->num_heads_ready
--;
4642 list_del_init(&head
->cluster
);
4643 spin_unlock(&delayed_refs
->lock
);
4645 BUG_ON(head
->extent_op
);
4646 if (head
->must_insert_reserved
)
4649 mutex_unlock(&head
->mutex
);
4650 btrfs_put_delayed_ref(&head
->node
);
4653 spin_unlock(&delayed_refs
->lock
);
4657 void btrfs_free_tree_block(struct btrfs_trans_handle
*trans
,
4658 struct btrfs_root
*root
,
4659 struct extent_buffer
*buf
,
4660 u64 parent
, int last_ref
)
4662 struct btrfs_block_rsv
*block_rsv
;
4663 struct btrfs_block_group_cache
*cache
= NULL
;
4666 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4667 ret
= btrfs_add_delayed_tree_ref(trans
, buf
->start
, buf
->len
,
4668 parent
, root
->root_key
.objectid
,
4669 btrfs_header_level(buf
),
4670 BTRFS_DROP_DELAYED_REF
, NULL
);
4677 block_rsv
= get_block_rsv(trans
, root
);
4678 cache
= btrfs_lookup_block_group(root
->fs_info
, buf
->start
);
4679 if (block_rsv
->space_info
!= cache
->space_info
)
4682 if (btrfs_header_generation(buf
) == trans
->transid
) {
4683 if (root
->root_key
.objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
4684 ret
= check_ref_cleanup(trans
, root
, buf
->start
);
4689 if (btrfs_header_flag(buf
, BTRFS_HEADER_FLAG_WRITTEN
)) {
4690 pin_down_extent(root
, cache
, buf
->start
, buf
->len
, 1);
4694 WARN_ON(test_bit(EXTENT_BUFFER_DIRTY
, &buf
->bflags
));
4696 btrfs_add_free_space(cache
, buf
->start
, buf
->len
);
4697 ret
= update_reserved_bytes(cache
, buf
->len
, 0, 0);
4698 if (ret
== -EAGAIN
) {
4699 /* block group became read-only */
4700 update_reserved_bytes(cache
, buf
->len
, 0, 1);
4705 spin_lock(&block_rsv
->lock
);
4706 if (block_rsv
->reserved
< block_rsv
->size
) {
4707 block_rsv
->reserved
+= buf
->len
;
4710 spin_unlock(&block_rsv
->lock
);
4713 spin_lock(&cache
->space_info
->lock
);
4714 cache
->space_info
->bytes_reserved
-= buf
->len
;
4715 spin_unlock(&cache
->space_info
->lock
);
4720 if (block_rsv
->durable
&& !cache
->ro
) {
4722 spin_lock(&cache
->lock
);
4724 cache
->reserved_pinned
+= buf
->len
;
4727 spin_unlock(&cache
->lock
);
4730 spin_lock(&block_rsv
->lock
);
4731 block_rsv
->freed
[trans
->transid
& 0x1] += buf
->len
;
4732 spin_unlock(&block_rsv
->lock
);
4736 btrfs_put_block_group(cache
);
4739 int btrfs_free_extent(struct btrfs_trans_handle
*trans
,
4740 struct btrfs_root
*root
,
4741 u64 bytenr
, u64 num_bytes
, u64 parent
,
4742 u64 root_objectid
, u64 owner
, u64 offset
)
4747 * tree log blocks never actually go into the extent allocation
4748 * tree, just update pinning info and exit early.
4750 if (root_objectid
== BTRFS_TREE_LOG_OBJECTID
) {
4751 WARN_ON(owner
>= BTRFS_FIRST_FREE_OBJECTID
);
4752 /* unlocks the pinned mutex */
4753 btrfs_pin_extent(root
, bytenr
, num_bytes
, 1);
4755 } else if (owner
< BTRFS_FIRST_FREE_OBJECTID
) {
4756 ret
= btrfs_add_delayed_tree_ref(trans
, bytenr
, num_bytes
,
4757 parent
, root_objectid
, (int)owner
,
4758 BTRFS_DROP_DELAYED_REF
, NULL
);
4761 ret
= btrfs_add_delayed_data_ref(trans
, bytenr
, num_bytes
,
4762 parent
, root_objectid
, owner
,
4763 offset
, BTRFS_DROP_DELAYED_REF
, NULL
);
4769 static u64
stripe_align(struct btrfs_root
*root
, u64 val
)
4771 u64 mask
= ((u64
)root
->stripesize
- 1);
4772 u64 ret
= (val
+ mask
) & ~mask
;
4777 * when we wait for progress in the block group caching, its because
4778 * our allocation attempt failed at least once. So, we must sleep
4779 * and let some progress happen before we try again.
4781 * This function will sleep at least once waiting for new free space to
4782 * show up, and then it will check the block group free space numbers
4783 * for our min num_bytes. Another option is to have it go ahead
4784 * and look in the rbtree for a free extent of a given size, but this
4788 wait_block_group_cache_progress(struct btrfs_block_group_cache
*cache
,
4791 struct btrfs_caching_control
*caching_ctl
;
4794 caching_ctl
= get_caching_control(cache
);
4798 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
) ||
4799 (cache
->free_space
>= num_bytes
));
4801 put_caching_control(caching_ctl
);
4806 wait_block_group_cache_done(struct btrfs_block_group_cache
*cache
)
4808 struct btrfs_caching_control
*caching_ctl
;
4811 caching_ctl
= get_caching_control(cache
);
4815 wait_event(caching_ctl
->wait
, block_group_cache_done(cache
));
4817 put_caching_control(caching_ctl
);
4821 static int get_block_group_index(struct btrfs_block_group_cache
*cache
)
4824 if (cache
->flags
& BTRFS_BLOCK_GROUP_RAID10
)
4826 else if (cache
->flags
& BTRFS_BLOCK_GROUP_RAID1
)
4828 else if (cache
->flags
& BTRFS_BLOCK_GROUP_DUP
)
4830 else if (cache
->flags
& BTRFS_BLOCK_GROUP_RAID0
)
4837 enum btrfs_loop_type
{
4838 LOOP_FIND_IDEAL
= 0,
4839 LOOP_CACHING_NOWAIT
= 1,
4840 LOOP_CACHING_WAIT
= 2,
4841 LOOP_ALLOC_CHUNK
= 3,
4842 LOOP_NO_EMPTY_SIZE
= 4,
4846 * walks the btree of allocated extents and find a hole of a given size.
4847 * The key ins is changed to record the hole:
4848 * ins->objectid == block start
4849 * ins->flags = BTRFS_EXTENT_ITEM_KEY
4850 * ins->offset == number of blocks
4851 * Any available blocks before search_start are skipped.
4853 static noinline
int find_free_extent(struct btrfs_trans_handle
*trans
,
4854 struct btrfs_root
*orig_root
,
4855 u64 num_bytes
, u64 empty_size
,
4856 u64 search_start
, u64 search_end
,
4857 u64 hint_byte
, struct btrfs_key
*ins
,
4861 struct btrfs_root
*root
= orig_root
->fs_info
->extent_root
;
4862 struct btrfs_free_cluster
*last_ptr
= NULL
;
4863 struct btrfs_block_group_cache
*block_group
= NULL
;
4864 int empty_cluster
= 2 * 1024 * 1024;
4865 int allowed_chunk_alloc
= 0;
4866 int done_chunk_alloc
= 0;
4867 struct btrfs_space_info
*space_info
;
4868 int last_ptr_loop
= 0;
4871 bool found_uncached_bg
= false;
4872 bool failed_cluster_refill
= false;
4873 bool failed_alloc
= false;
4874 bool use_cluster
= true;
4875 u64 ideal_cache_percent
= 0;
4876 u64 ideal_cache_offset
= 0;
4878 WARN_ON(num_bytes
< root
->sectorsize
);
4879 btrfs_set_key_type(ins
, BTRFS_EXTENT_ITEM_KEY
);
4883 space_info
= __find_space_info(root
->fs_info
, data
);
4885 printk(KERN_ERR
"No space info for %d\n", data
);
4890 * If the space info is for both data and metadata it means we have a
4891 * small filesystem and we can't use the clustering stuff.
4893 if (btrfs_mixed_space_info(space_info
))
4894 use_cluster
= false;
4896 if (orig_root
->ref_cows
|| empty_size
)
4897 allowed_chunk_alloc
= 1;
4899 if (data
& BTRFS_BLOCK_GROUP_METADATA
&& use_cluster
) {
4900 last_ptr
= &root
->fs_info
->meta_alloc_cluster
;
4901 if (!btrfs_test_opt(root
, SSD
))
4902 empty_cluster
= 64 * 1024;
4905 if ((data
& BTRFS_BLOCK_GROUP_DATA
) && use_cluster
&&
4906 btrfs_test_opt(root
, SSD
)) {
4907 last_ptr
= &root
->fs_info
->data_alloc_cluster
;
4911 spin_lock(&last_ptr
->lock
);
4912 if (last_ptr
->block_group
)
4913 hint_byte
= last_ptr
->window_start
;
4914 spin_unlock(&last_ptr
->lock
);
4917 search_start
= max(search_start
, first_logical_byte(root
, 0));
4918 search_start
= max(search_start
, hint_byte
);
4923 if (search_start
== hint_byte
) {
4925 block_group
= btrfs_lookup_block_group(root
->fs_info
,
4928 * we don't want to use the block group if it doesn't match our
4929 * allocation bits, or if its not cached.
4931 * However if we are re-searching with an ideal block group
4932 * picked out then we don't care that the block group is cached.
4934 if (block_group
&& block_group_bits(block_group
, data
) &&
4935 (block_group
->cached
!= BTRFS_CACHE_NO
||
4936 search_start
== ideal_cache_offset
)) {
4937 down_read(&space_info
->groups_sem
);
4938 if (list_empty(&block_group
->list
) ||
4941 * someone is removing this block group,
4942 * we can't jump into the have_block_group
4943 * target because our list pointers are not
4946 btrfs_put_block_group(block_group
);
4947 up_read(&space_info
->groups_sem
);
4949 index
= get_block_group_index(block_group
);
4950 goto have_block_group
;
4952 } else if (block_group
) {
4953 btrfs_put_block_group(block_group
);
4957 down_read(&space_info
->groups_sem
);
4958 list_for_each_entry(block_group
, &space_info
->block_groups
[index
],
4963 btrfs_get_block_group(block_group
);
4964 search_start
= block_group
->key
.objectid
;
4967 * this can happen if we end up cycling through all the
4968 * raid types, but we want to make sure we only allocate
4969 * for the proper type.
4971 if (!block_group_bits(block_group
, data
)) {
4972 u64 extra
= BTRFS_BLOCK_GROUP_DUP
|
4973 BTRFS_BLOCK_GROUP_RAID1
|
4974 BTRFS_BLOCK_GROUP_RAID10
;
4977 * if they asked for extra copies and this block group
4978 * doesn't provide them, bail. This does allow us to
4979 * fill raid0 from raid1.
4981 if ((data
& extra
) && !(block_group
->flags
& extra
))
4986 if (unlikely(block_group
->cached
== BTRFS_CACHE_NO
)) {
4989 ret
= cache_block_group(block_group
, trans
,
4991 if (block_group
->cached
== BTRFS_CACHE_FINISHED
)
4992 goto have_block_group
;
4994 free_percent
= btrfs_block_group_used(&block_group
->item
);
4995 free_percent
*= 100;
4996 free_percent
= div64_u64(free_percent
,
4997 block_group
->key
.offset
);
4998 free_percent
= 100 - free_percent
;
4999 if (free_percent
> ideal_cache_percent
&&
5000 likely(!block_group
->ro
)) {
5001 ideal_cache_offset
= block_group
->key
.objectid
;
5002 ideal_cache_percent
= free_percent
;
5006 * We only want to start kthread caching if we are at
5007 * the point where we will wait for caching to make
5008 * progress, or if our ideal search is over and we've
5009 * found somebody to start caching.
5011 if (loop
> LOOP_CACHING_NOWAIT
||
5012 (loop
> LOOP_FIND_IDEAL
&&
5013 atomic_read(&space_info
->caching_threads
) < 2)) {
5014 ret
= cache_block_group(block_group
, trans
,
5018 found_uncached_bg
= true;
5021 * If loop is set for cached only, try the next block
5024 if (loop
== LOOP_FIND_IDEAL
)
5028 cached
= block_group_cache_done(block_group
);
5029 if (unlikely(!cached
))
5030 found_uncached_bg
= true;
5032 if (unlikely(block_group
->ro
))
5036 * Ok we want to try and use the cluster allocator, so lets look
5037 * there, unless we are on LOOP_NO_EMPTY_SIZE, since we will
5038 * have tried the cluster allocator plenty of times at this
5039 * point and not have found anything, so we are likely way too
5040 * fragmented for the clustering stuff to find anything, so lets
5041 * just skip it and let the allocator find whatever block it can
5044 if (last_ptr
&& loop
< LOOP_NO_EMPTY_SIZE
) {
5046 * the refill lock keeps out other
5047 * people trying to start a new cluster
5049 spin_lock(&last_ptr
->refill_lock
);
5050 if (last_ptr
->block_group
&&
5051 (last_ptr
->block_group
->ro
||
5052 !block_group_bits(last_ptr
->block_group
, data
))) {
5054 goto refill_cluster
;
5057 offset
= btrfs_alloc_from_cluster(block_group
, last_ptr
,
5058 num_bytes
, search_start
);
5060 /* we have a block, we're done */
5061 spin_unlock(&last_ptr
->refill_lock
);
5065 spin_lock(&last_ptr
->lock
);
5067 * whoops, this cluster doesn't actually point to
5068 * this block group. Get a ref on the block
5069 * group is does point to and try again
5071 if (!last_ptr_loop
&& last_ptr
->block_group
&&
5072 last_ptr
->block_group
!= block_group
) {
5074 btrfs_put_block_group(block_group
);
5075 block_group
= last_ptr
->block_group
;
5076 btrfs_get_block_group(block_group
);
5077 spin_unlock(&last_ptr
->lock
);
5078 spin_unlock(&last_ptr
->refill_lock
);
5081 search_start
= block_group
->key
.objectid
;
5083 * we know this block group is properly
5084 * in the list because
5085 * btrfs_remove_block_group, drops the
5086 * cluster before it removes the block
5087 * group from the list
5089 goto have_block_group
;
5091 spin_unlock(&last_ptr
->lock
);
5094 * this cluster didn't work out, free it and
5097 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
5101 /* allocate a cluster in this block group */
5102 ret
= btrfs_find_space_cluster(trans
, root
,
5103 block_group
, last_ptr
,
5105 empty_cluster
+ empty_size
);
5108 * now pull our allocation out of this
5111 offset
= btrfs_alloc_from_cluster(block_group
,
5112 last_ptr
, num_bytes
,
5115 /* we found one, proceed */
5116 spin_unlock(&last_ptr
->refill_lock
);
5119 } else if (!cached
&& loop
> LOOP_CACHING_NOWAIT
5120 && !failed_cluster_refill
) {
5121 spin_unlock(&last_ptr
->refill_lock
);
5123 failed_cluster_refill
= true;
5124 wait_block_group_cache_progress(block_group
,
5125 num_bytes
+ empty_cluster
+ empty_size
);
5126 goto have_block_group
;
5130 * at this point we either didn't find a cluster
5131 * or we weren't able to allocate a block from our
5132 * cluster. Free the cluster we've been trying
5133 * to use, and go to the next block group
5135 btrfs_return_cluster_to_free_space(NULL
, last_ptr
);
5136 spin_unlock(&last_ptr
->refill_lock
);
5140 offset
= btrfs_find_space_for_alloc(block_group
, search_start
,
5141 num_bytes
, empty_size
);
5143 * If we didn't find a chunk, and we haven't failed on this
5144 * block group before, and this block group is in the middle of
5145 * caching and we are ok with waiting, then go ahead and wait
5146 * for progress to be made, and set failed_alloc to true.
5148 * If failed_alloc is true then we've already waited on this
5149 * block group once and should move on to the next block group.
5151 if (!offset
&& !failed_alloc
&& !cached
&&
5152 loop
> LOOP_CACHING_NOWAIT
) {
5153 wait_block_group_cache_progress(block_group
,
5154 num_bytes
+ empty_size
);
5155 failed_alloc
= true;
5156 goto have_block_group
;
5157 } else if (!offset
) {
5161 search_start
= stripe_align(root
, offset
);
5162 /* move on to the next group */
5163 if (search_start
+ num_bytes
>= search_end
) {
5164 btrfs_add_free_space(block_group
, offset
, num_bytes
);
5168 /* move on to the next group */
5169 if (search_start
+ num_bytes
>
5170 block_group
->key
.objectid
+ block_group
->key
.offset
) {
5171 btrfs_add_free_space(block_group
, offset
, num_bytes
);
5175 ins
->objectid
= search_start
;
5176 ins
->offset
= num_bytes
;
5178 if (offset
< search_start
)
5179 btrfs_add_free_space(block_group
, offset
,
5180 search_start
- offset
);
5181 BUG_ON(offset
> search_start
);
5183 ret
= update_reserved_bytes(block_group
, num_bytes
, 1,
5184 (data
& BTRFS_BLOCK_GROUP_DATA
));
5185 if (ret
== -EAGAIN
) {
5186 btrfs_add_free_space(block_group
, offset
, num_bytes
);
5190 /* we are all good, lets return */
5191 ins
->objectid
= search_start
;
5192 ins
->offset
= num_bytes
;
5194 if (offset
< search_start
)
5195 btrfs_add_free_space(block_group
, offset
,
5196 search_start
- offset
);
5197 BUG_ON(offset
> search_start
);
5200 failed_cluster_refill
= false;
5201 failed_alloc
= false;
5202 BUG_ON(index
!= get_block_group_index(block_group
));
5203 btrfs_put_block_group(block_group
);
5205 up_read(&space_info
->groups_sem
);
5207 if (!ins
->objectid
&& ++index
< BTRFS_NR_RAID_TYPES
)
5210 /* LOOP_FIND_IDEAL, only search caching/cached bg's, and don't wait for
5211 * for them to make caching progress. Also
5212 * determine the best possible bg to cache
5213 * LOOP_CACHING_NOWAIT, search partially cached block groups, kicking
5214 * caching kthreads as we move along
5215 * LOOP_CACHING_WAIT, search everything, and wait if our bg is caching
5216 * LOOP_ALLOC_CHUNK, force a chunk allocation and try again
5217 * LOOP_NO_EMPTY_SIZE, set empty_size and empty_cluster to 0 and try
5220 if (!ins
->objectid
&& loop
< LOOP_NO_EMPTY_SIZE
&&
5221 (found_uncached_bg
|| empty_size
|| empty_cluster
||
5222 allowed_chunk_alloc
)) {
5224 if (loop
== LOOP_FIND_IDEAL
&& found_uncached_bg
) {
5225 found_uncached_bg
= false;
5227 if (!ideal_cache_percent
&&
5228 atomic_read(&space_info
->caching_threads
))
5232 * 1 of the following 2 things have happened so far
5234 * 1) We found an ideal block group for caching that
5235 * is mostly full and will cache quickly, so we might
5236 * as well wait for it.
5238 * 2) We searched for cached only and we didn't find
5239 * anything, and we didn't start any caching kthreads
5240 * either, so chances are we will loop through and
5241 * start a couple caching kthreads, and then come back
5242 * around and just wait for them. This will be slower
5243 * because we will have 2 caching kthreads reading at
5244 * the same time when we could have just started one
5245 * and waited for it to get far enough to give us an
5246 * allocation, so go ahead and go to the wait caching
5249 loop
= LOOP_CACHING_WAIT
;
5250 search_start
= ideal_cache_offset
;
5251 ideal_cache_percent
= 0;
5253 } else if (loop
== LOOP_FIND_IDEAL
) {
5255 * Didn't find a uncached bg, wait on anything we find
5258 loop
= LOOP_CACHING_WAIT
;
5262 if (loop
< LOOP_CACHING_WAIT
) {
5267 if (loop
== LOOP_ALLOC_CHUNK
) {
5272 if (allowed_chunk_alloc
) {
5273 ret
= do_chunk_alloc(trans
, root
, num_bytes
+
5274 2 * 1024 * 1024, data
, 1);
5275 allowed_chunk_alloc
= 0;
5276 done_chunk_alloc
= 1;
5277 } else if (!done_chunk_alloc
) {
5278 space_info
->force_alloc
= 1;
5281 if (loop
< LOOP_NO_EMPTY_SIZE
) {
5286 } else if (!ins
->objectid
) {
5290 /* we found what we needed */
5291 if (ins
->objectid
) {
5292 if (!(data
& BTRFS_BLOCK_GROUP_DATA
))
5293 trans
->block_group
= block_group
->key
.objectid
;
5295 btrfs_put_block_group(block_group
);
5302 static void dump_space_info(struct btrfs_space_info
*info
, u64 bytes
,
5303 int dump_block_groups
)
5305 struct btrfs_block_group_cache
*cache
;
5308 spin_lock(&info
->lock
);
5309 printk(KERN_INFO
"space_info has %llu free, is %sfull\n",
5310 (unsigned long long)(info
->total_bytes
- info
->bytes_used
-
5311 info
->bytes_pinned
- info
->bytes_reserved
-
5312 info
->bytes_readonly
),
5313 (info
->full
) ? "" : "not ");
5314 printk(KERN_INFO
"space_info total=%llu, used=%llu, pinned=%llu, "
5315 "reserved=%llu, may_use=%llu, readonly=%llu\n",
5316 (unsigned long long)info
->total_bytes
,
5317 (unsigned long long)info
->bytes_used
,
5318 (unsigned long long)info
->bytes_pinned
,
5319 (unsigned long long)info
->bytes_reserved
,
5320 (unsigned long long)info
->bytes_may_use
,
5321 (unsigned long long)info
->bytes_readonly
);
5322 spin_unlock(&info
->lock
);
5324 if (!dump_block_groups
)
5327 down_read(&info
->groups_sem
);
5329 list_for_each_entry(cache
, &info
->block_groups
[index
], list
) {
5330 spin_lock(&cache
->lock
);
5331 printk(KERN_INFO
"block group %llu has %llu bytes, %llu used "
5332 "%llu pinned %llu reserved\n",
5333 (unsigned long long)cache
->key
.objectid
,
5334 (unsigned long long)cache
->key
.offset
,
5335 (unsigned long long)btrfs_block_group_used(&cache
->item
),
5336 (unsigned long long)cache
->pinned
,
5337 (unsigned long long)cache
->reserved
);
5338 btrfs_dump_free_space(cache
, bytes
);
5339 spin_unlock(&cache
->lock
);
5341 if (++index
< BTRFS_NR_RAID_TYPES
)
5343 up_read(&info
->groups_sem
);
5346 int btrfs_reserve_extent(struct btrfs_trans_handle
*trans
,
5347 struct btrfs_root
*root
,
5348 u64 num_bytes
, u64 min_alloc_size
,
5349 u64 empty_size
, u64 hint_byte
,
5350 u64 search_end
, struct btrfs_key
*ins
,
5354 u64 search_start
= 0;
5356 data
= btrfs_get_alloc_profile(root
, data
);
5359 * the only place that sets empty_size is btrfs_realloc_node, which
5360 * is not called recursively on allocations
5362 if (empty_size
|| root
->ref_cows
)
5363 ret
= do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
5364 num_bytes
+ 2 * 1024 * 1024, data
, 0);
5366 WARN_ON(num_bytes
< root
->sectorsize
);
5367 ret
= find_free_extent(trans
, root
, num_bytes
, empty_size
,
5368 search_start
, search_end
, hint_byte
,
5371 if (ret
== -ENOSPC
&& num_bytes
> min_alloc_size
) {
5372 num_bytes
= num_bytes
>> 1;
5373 num_bytes
= num_bytes
& ~(root
->sectorsize
- 1);
5374 num_bytes
= max(num_bytes
, min_alloc_size
);
5375 do_chunk_alloc(trans
, root
->fs_info
->extent_root
,
5376 num_bytes
, data
, 1);
5379 if (ret
== -ENOSPC
) {
5380 struct btrfs_space_info
*sinfo
;
5382 sinfo
= __find_space_info(root
->fs_info
, data
);
5383 printk(KERN_ERR
"btrfs allocation failed flags %llu, "
5384 "wanted %llu\n", (unsigned long long)data
,
5385 (unsigned long long)num_bytes
);
5386 dump_space_info(sinfo
, num_bytes
, 1);
5392 int btrfs_free_reserved_extent(struct btrfs_root
*root
, u64 start
, u64 len
)
5394 struct btrfs_block_group_cache
*cache
;
5397 cache
= btrfs_lookup_block_group(root
->fs_info
, start
);
5399 printk(KERN_ERR
"Unable to find block group for %llu\n",
5400 (unsigned long long)start
);
5404 ret
= btrfs_discard_extent(root
, start
, len
);
5406 btrfs_add_free_space(cache
, start
, len
);
5407 update_reserved_bytes(cache
, len
, 0, 1);
5408 btrfs_put_block_group(cache
);
5413 static int alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
5414 struct btrfs_root
*root
,
5415 u64 parent
, u64 root_objectid
,
5416 u64 flags
, u64 owner
, u64 offset
,
5417 struct btrfs_key
*ins
, int ref_mod
)
5420 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5421 struct btrfs_extent_item
*extent_item
;
5422 struct btrfs_extent_inline_ref
*iref
;
5423 struct btrfs_path
*path
;
5424 struct extent_buffer
*leaf
;
5429 type
= BTRFS_SHARED_DATA_REF_KEY
;
5431 type
= BTRFS_EXTENT_DATA_REF_KEY
;
5433 size
= sizeof(*extent_item
) + btrfs_extent_inline_ref_size(type
);
5435 path
= btrfs_alloc_path();
5438 path
->leave_spinning
= 1;
5439 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
5443 leaf
= path
->nodes
[0];
5444 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5445 struct btrfs_extent_item
);
5446 btrfs_set_extent_refs(leaf
, extent_item
, ref_mod
);
5447 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
5448 btrfs_set_extent_flags(leaf
, extent_item
,
5449 flags
| BTRFS_EXTENT_FLAG_DATA
);
5451 iref
= (struct btrfs_extent_inline_ref
*)(extent_item
+ 1);
5452 btrfs_set_extent_inline_ref_type(leaf
, iref
, type
);
5454 struct btrfs_shared_data_ref
*ref
;
5455 ref
= (struct btrfs_shared_data_ref
*)(iref
+ 1);
5456 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
5457 btrfs_set_shared_data_ref_count(leaf
, ref
, ref_mod
);
5459 struct btrfs_extent_data_ref
*ref
;
5460 ref
= (struct btrfs_extent_data_ref
*)(&iref
->offset
);
5461 btrfs_set_extent_data_ref_root(leaf
, ref
, root_objectid
);
5462 btrfs_set_extent_data_ref_objectid(leaf
, ref
, owner
);
5463 btrfs_set_extent_data_ref_offset(leaf
, ref
, offset
);
5464 btrfs_set_extent_data_ref_count(leaf
, ref
, ref_mod
);
5467 btrfs_mark_buffer_dirty(path
->nodes
[0]);
5468 btrfs_free_path(path
);
5470 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
5472 printk(KERN_ERR
"btrfs update block group failed for %llu "
5473 "%llu\n", (unsigned long long)ins
->objectid
,
5474 (unsigned long long)ins
->offset
);
5480 static int alloc_reserved_tree_block(struct btrfs_trans_handle
*trans
,
5481 struct btrfs_root
*root
,
5482 u64 parent
, u64 root_objectid
,
5483 u64 flags
, struct btrfs_disk_key
*key
,
5484 int level
, struct btrfs_key
*ins
)
5487 struct btrfs_fs_info
*fs_info
= root
->fs_info
;
5488 struct btrfs_extent_item
*extent_item
;
5489 struct btrfs_tree_block_info
*block_info
;
5490 struct btrfs_extent_inline_ref
*iref
;
5491 struct btrfs_path
*path
;
5492 struct extent_buffer
*leaf
;
5493 u32 size
= sizeof(*extent_item
) + sizeof(*block_info
) + sizeof(*iref
);
5495 path
= btrfs_alloc_path();
5498 path
->leave_spinning
= 1;
5499 ret
= btrfs_insert_empty_item(trans
, fs_info
->extent_root
, path
,
5503 leaf
= path
->nodes
[0];
5504 extent_item
= btrfs_item_ptr(leaf
, path
->slots
[0],
5505 struct btrfs_extent_item
);
5506 btrfs_set_extent_refs(leaf
, extent_item
, 1);
5507 btrfs_set_extent_generation(leaf
, extent_item
, trans
->transid
);
5508 btrfs_set_extent_flags(leaf
, extent_item
,
5509 flags
| BTRFS_EXTENT_FLAG_TREE_BLOCK
);
5510 block_info
= (struct btrfs_tree_block_info
*)(extent_item
+ 1);
5512 btrfs_set_tree_block_key(leaf
, block_info
, key
);
5513 btrfs_set_tree_block_level(leaf
, block_info
, level
);
5515 iref
= (struct btrfs_extent_inline_ref
*)(block_info
+ 1);
5517 BUG_ON(!(flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
));
5518 btrfs_set_extent_inline_ref_type(leaf
, iref
,
5519 BTRFS_SHARED_BLOCK_REF_KEY
);
5520 btrfs_set_extent_inline_ref_offset(leaf
, iref
, parent
);
5522 btrfs_set_extent_inline_ref_type(leaf
, iref
,
5523 BTRFS_TREE_BLOCK_REF_KEY
);
5524 btrfs_set_extent_inline_ref_offset(leaf
, iref
, root_objectid
);
5527 btrfs_mark_buffer_dirty(leaf
);
5528 btrfs_free_path(path
);
5530 ret
= update_block_group(trans
, root
, ins
->objectid
, ins
->offset
, 1);
5532 printk(KERN_ERR
"btrfs update block group failed for %llu "
5533 "%llu\n", (unsigned long long)ins
->objectid
,
5534 (unsigned long long)ins
->offset
);
5540 int btrfs_alloc_reserved_file_extent(struct btrfs_trans_handle
*trans
,
5541 struct btrfs_root
*root
,
5542 u64 root_objectid
, u64 owner
,
5543 u64 offset
, struct btrfs_key
*ins
)
5547 BUG_ON(root_objectid
== BTRFS_TREE_LOG_OBJECTID
);
5549 ret
= btrfs_add_delayed_data_ref(trans
, ins
->objectid
, ins
->offset
,
5550 0, root_objectid
, owner
, offset
,
5551 BTRFS_ADD_DELAYED_EXTENT
, NULL
);
5556 * this is used by the tree logging recovery code. It records that
5557 * an extent has been allocated and makes sure to clear the free
5558 * space cache bits as well
5560 int btrfs_alloc_logged_file_extent(struct btrfs_trans_handle
*trans
,
5561 struct btrfs_root
*root
,
5562 u64 root_objectid
, u64 owner
, u64 offset
,
5563 struct btrfs_key
*ins
)
5566 struct btrfs_block_group_cache
*block_group
;
5567 struct btrfs_caching_control
*caching_ctl
;
5568 u64 start
= ins
->objectid
;
5569 u64 num_bytes
= ins
->offset
;
5571 block_group
= btrfs_lookup_block_group(root
->fs_info
, ins
->objectid
);
5572 cache_block_group(block_group
, trans
, NULL
, 0);
5573 caching_ctl
= get_caching_control(block_group
);
5576 BUG_ON(!block_group_cache_done(block_group
));
5577 ret
= btrfs_remove_free_space(block_group
, start
, num_bytes
);
5580 mutex_lock(&caching_ctl
->mutex
);
5582 if (start
>= caching_ctl
->progress
) {
5583 ret
= add_excluded_extent(root
, start
, num_bytes
);
5585 } else if (start
+ num_bytes
<= caching_ctl
->progress
) {
5586 ret
= btrfs_remove_free_space(block_group
,
5590 num_bytes
= caching_ctl
->progress
- start
;
5591 ret
= btrfs_remove_free_space(block_group
,
5595 start
= caching_ctl
->progress
;
5596 num_bytes
= ins
->objectid
+ ins
->offset
-
5597 caching_ctl
->progress
;
5598 ret
= add_excluded_extent(root
, start
, num_bytes
);
5602 mutex_unlock(&caching_ctl
->mutex
);
5603 put_caching_control(caching_ctl
);
5606 ret
= update_reserved_bytes(block_group
, ins
->offset
, 1, 1);
5608 btrfs_put_block_group(block_group
);
5609 ret
= alloc_reserved_file_extent(trans
, root
, 0, root_objectid
,
5610 0, owner
, offset
, ins
, 1);
5614 struct extent_buffer
*btrfs_init_new_buffer(struct btrfs_trans_handle
*trans
,
5615 struct btrfs_root
*root
,
5616 u64 bytenr
, u32 blocksize
,
5619 struct extent_buffer
*buf
;
5621 buf
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
5623 return ERR_PTR(-ENOMEM
);
5624 btrfs_set_header_generation(buf
, trans
->transid
);
5625 btrfs_set_buffer_lockdep_class(buf
, level
);
5626 btrfs_tree_lock(buf
);
5627 clean_tree_block(trans
, root
, buf
);
5629 btrfs_set_lock_blocking(buf
);
5630 btrfs_set_buffer_uptodate(buf
);
5632 if (root
->root_key
.objectid
== BTRFS_TREE_LOG_OBJECTID
) {
5634 * we allow two log transactions at a time, use different
5635 * EXENT bit to differentiate dirty pages.
5637 if (root
->log_transid
% 2 == 0)
5638 set_extent_dirty(&root
->dirty_log_pages
, buf
->start
,
5639 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
5641 set_extent_new(&root
->dirty_log_pages
, buf
->start
,
5642 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
5644 set_extent_dirty(&trans
->transaction
->dirty_pages
, buf
->start
,
5645 buf
->start
+ buf
->len
- 1, GFP_NOFS
);
5647 trans
->blocks_used
++;
5648 /* this returns a buffer locked for blocking */
5652 static struct btrfs_block_rsv
*
5653 use_block_rsv(struct btrfs_trans_handle
*trans
,
5654 struct btrfs_root
*root
, u32 blocksize
)
5656 struct btrfs_block_rsv
*block_rsv
;
5657 struct btrfs_block_rsv
*global_rsv
= &root
->fs_info
->global_block_rsv
;
5660 block_rsv
= get_block_rsv(trans
, root
);
5662 if (block_rsv
->size
== 0) {
5663 ret
= reserve_metadata_bytes(trans
, root
, block_rsv
,
5666 * If we couldn't reserve metadata bytes try and use some from
5667 * the global reserve.
5669 if (ret
&& block_rsv
!= global_rsv
) {
5670 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
5673 return ERR_PTR(ret
);
5675 return ERR_PTR(ret
);
5680 ret
= block_rsv_use_bytes(block_rsv
, blocksize
);
5685 ret
= reserve_metadata_bytes(trans
, root
, block_rsv
, blocksize
,
5688 spin_lock(&block_rsv
->lock
);
5689 block_rsv
->size
+= blocksize
;
5690 spin_unlock(&block_rsv
->lock
);
5692 } else if (ret
&& block_rsv
!= global_rsv
) {
5693 ret
= block_rsv_use_bytes(global_rsv
, blocksize
);
5699 return ERR_PTR(-ENOSPC
);
5702 static void unuse_block_rsv(struct btrfs_block_rsv
*block_rsv
, u32 blocksize
)
5704 block_rsv_add_bytes(block_rsv
, blocksize
, 0);
5705 block_rsv_release_bytes(block_rsv
, NULL
, 0);
5709 * finds a free extent and does all the dirty work required for allocation
5710 * returns the key for the extent through ins, and a tree buffer for
5711 * the first block of the extent through buf.
5713 * returns the tree buffer or NULL.
5715 struct extent_buffer
*btrfs_alloc_free_block(struct btrfs_trans_handle
*trans
,
5716 struct btrfs_root
*root
, u32 blocksize
,
5717 u64 parent
, u64 root_objectid
,
5718 struct btrfs_disk_key
*key
, int level
,
5719 u64 hint
, u64 empty_size
)
5721 struct btrfs_key ins
;
5722 struct btrfs_block_rsv
*block_rsv
;
5723 struct extent_buffer
*buf
;
5728 block_rsv
= use_block_rsv(trans
, root
, blocksize
);
5729 if (IS_ERR(block_rsv
))
5730 return ERR_CAST(block_rsv
);
5732 ret
= btrfs_reserve_extent(trans
, root
, blocksize
, blocksize
,
5733 empty_size
, hint
, (u64
)-1, &ins
, 0);
5735 unuse_block_rsv(block_rsv
, blocksize
);
5736 return ERR_PTR(ret
);
5739 buf
= btrfs_init_new_buffer(trans
, root
, ins
.objectid
,
5741 BUG_ON(IS_ERR(buf
));
5743 if (root_objectid
== BTRFS_TREE_RELOC_OBJECTID
) {
5745 parent
= ins
.objectid
;
5746 flags
|= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
5750 if (root_objectid
!= BTRFS_TREE_LOG_OBJECTID
) {
5751 struct btrfs_delayed_extent_op
*extent_op
;
5752 extent_op
= kmalloc(sizeof(*extent_op
), GFP_NOFS
);
5755 memcpy(&extent_op
->key
, key
, sizeof(extent_op
->key
));
5757 memset(&extent_op
->key
, 0, sizeof(extent_op
->key
));
5758 extent_op
->flags_to_set
= flags
;
5759 extent_op
->update_key
= 1;
5760 extent_op
->update_flags
= 1;
5761 extent_op
->is_data
= 0;
5763 ret
= btrfs_add_delayed_tree_ref(trans
, ins
.objectid
,
5764 ins
.offset
, parent
, root_objectid
,
5765 level
, BTRFS_ADD_DELAYED_EXTENT
,
5772 struct walk_control
{
5773 u64 refs
[BTRFS_MAX_LEVEL
];
5774 u64 flags
[BTRFS_MAX_LEVEL
];
5775 struct btrfs_key update_progress
;
5785 #define DROP_REFERENCE 1
5786 #define UPDATE_BACKREF 2
5788 static noinline
void reada_walk_down(struct btrfs_trans_handle
*trans
,
5789 struct btrfs_root
*root
,
5790 struct walk_control
*wc
,
5791 struct btrfs_path
*path
)
5799 struct btrfs_key key
;
5800 struct extent_buffer
*eb
;
5805 if (path
->slots
[wc
->level
] < wc
->reada_slot
) {
5806 wc
->reada_count
= wc
->reada_count
* 2 / 3;
5807 wc
->reada_count
= max(wc
->reada_count
, 2);
5809 wc
->reada_count
= wc
->reada_count
* 3 / 2;
5810 wc
->reada_count
= min_t(int, wc
->reada_count
,
5811 BTRFS_NODEPTRS_PER_BLOCK(root
));
5814 eb
= path
->nodes
[wc
->level
];
5815 nritems
= btrfs_header_nritems(eb
);
5816 blocksize
= btrfs_level_size(root
, wc
->level
- 1);
5818 for (slot
= path
->slots
[wc
->level
]; slot
< nritems
; slot
++) {
5819 if (nread
>= wc
->reada_count
)
5823 bytenr
= btrfs_node_blockptr(eb
, slot
);
5824 generation
= btrfs_node_ptr_generation(eb
, slot
);
5826 if (slot
== path
->slots
[wc
->level
])
5829 if (wc
->stage
== UPDATE_BACKREF
&&
5830 generation
<= root
->root_key
.offset
)
5833 /* We don't lock the tree block, it's OK to be racy here */
5834 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, blocksize
,
5839 if (wc
->stage
== DROP_REFERENCE
) {
5843 if (wc
->level
== 1 &&
5844 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
5846 if (!wc
->update_ref
||
5847 generation
<= root
->root_key
.offset
)
5849 btrfs_node_key_to_cpu(eb
, &key
, slot
);
5850 ret
= btrfs_comp_cpu_keys(&key
,
5851 &wc
->update_progress
);
5855 if (wc
->level
== 1 &&
5856 (flags
& BTRFS_BLOCK_FLAG_FULL_BACKREF
))
5860 ret
= readahead_tree_block(root
, bytenr
, blocksize
,
5866 wc
->reada_slot
= slot
;
5870 * hepler to process tree block while walking down the tree.
5872 * when wc->stage == UPDATE_BACKREF, this function updates
5873 * back refs for pointers in the block.
5875 * NOTE: return value 1 means we should stop walking down.
5877 static noinline
int walk_down_proc(struct btrfs_trans_handle
*trans
,
5878 struct btrfs_root
*root
,
5879 struct btrfs_path
*path
,
5880 struct walk_control
*wc
, int lookup_info
)
5882 int level
= wc
->level
;
5883 struct extent_buffer
*eb
= path
->nodes
[level
];
5884 u64 flag
= BTRFS_BLOCK_FLAG_FULL_BACKREF
;
5887 if (wc
->stage
== UPDATE_BACKREF
&&
5888 btrfs_header_owner(eb
) != root
->root_key
.objectid
)
5892 * when reference count of tree block is 1, it won't increase
5893 * again. once full backref flag is set, we never clear it.
5896 ((wc
->stage
== DROP_REFERENCE
&& wc
->refs
[level
] != 1) ||
5897 (wc
->stage
== UPDATE_BACKREF
&& !(wc
->flags
[level
] & flag
)))) {
5898 BUG_ON(!path
->locks
[level
]);
5899 ret
= btrfs_lookup_extent_info(trans
, root
,
5904 BUG_ON(wc
->refs
[level
] == 0);
5907 if (wc
->stage
== DROP_REFERENCE
) {
5908 if (wc
->refs
[level
] > 1)
5911 if (path
->locks
[level
] && !wc
->keep_locks
) {
5912 btrfs_tree_unlock(eb
);
5913 path
->locks
[level
] = 0;
5918 /* wc->stage == UPDATE_BACKREF */
5919 if (!(wc
->flags
[level
] & flag
)) {
5920 BUG_ON(!path
->locks
[level
]);
5921 ret
= btrfs_inc_ref(trans
, root
, eb
, 1);
5923 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
5925 ret
= btrfs_set_disk_extent_flags(trans
, root
, eb
->start
,
5928 wc
->flags
[level
] |= flag
;
5932 * the block is shared by multiple trees, so it's not good to
5933 * keep the tree lock
5935 if (path
->locks
[level
] && level
> 0) {
5936 btrfs_tree_unlock(eb
);
5937 path
->locks
[level
] = 0;
5943 * hepler to process tree block pointer.
5945 * when wc->stage == DROP_REFERENCE, this function checks
5946 * reference count of the block pointed to. if the block
5947 * is shared and we need update back refs for the subtree
5948 * rooted at the block, this function changes wc->stage to
5949 * UPDATE_BACKREF. if the block is shared and there is no
5950 * need to update back, this function drops the reference
5953 * NOTE: return value 1 means we should stop walking down.
5955 static noinline
int do_walk_down(struct btrfs_trans_handle
*trans
,
5956 struct btrfs_root
*root
,
5957 struct btrfs_path
*path
,
5958 struct walk_control
*wc
, int *lookup_info
)
5964 struct btrfs_key key
;
5965 struct extent_buffer
*next
;
5966 int level
= wc
->level
;
5970 generation
= btrfs_node_ptr_generation(path
->nodes
[level
],
5971 path
->slots
[level
]);
5973 * if the lower level block was created before the snapshot
5974 * was created, we know there is no need to update back refs
5977 if (wc
->stage
== UPDATE_BACKREF
&&
5978 generation
<= root
->root_key
.offset
) {
5983 bytenr
= btrfs_node_blockptr(path
->nodes
[level
], path
->slots
[level
]);
5984 blocksize
= btrfs_level_size(root
, level
- 1);
5986 next
= btrfs_find_tree_block(root
, bytenr
, blocksize
);
5988 next
= btrfs_find_create_tree_block(root
, bytenr
, blocksize
);
5993 btrfs_tree_lock(next
);
5994 btrfs_set_lock_blocking(next
);
5996 ret
= btrfs_lookup_extent_info(trans
, root
, bytenr
, blocksize
,
5997 &wc
->refs
[level
- 1],
5998 &wc
->flags
[level
- 1]);
6000 BUG_ON(wc
->refs
[level
- 1] == 0);
6003 if (wc
->stage
== DROP_REFERENCE
) {
6004 if (wc
->refs
[level
- 1] > 1) {
6006 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
6009 if (!wc
->update_ref
||
6010 generation
<= root
->root_key
.offset
)
6013 btrfs_node_key_to_cpu(path
->nodes
[level
], &key
,
6014 path
->slots
[level
]);
6015 ret
= btrfs_comp_cpu_keys(&key
, &wc
->update_progress
);
6019 wc
->stage
= UPDATE_BACKREF
;
6020 wc
->shared_level
= level
- 1;
6024 (wc
->flags
[0] & BTRFS_BLOCK_FLAG_FULL_BACKREF
))
6028 if (!btrfs_buffer_uptodate(next
, generation
)) {
6029 btrfs_tree_unlock(next
);
6030 free_extent_buffer(next
);
6036 if (reada
&& level
== 1)
6037 reada_walk_down(trans
, root
, wc
, path
);
6038 next
= read_tree_block(root
, bytenr
, blocksize
, generation
);
6039 btrfs_tree_lock(next
);
6040 btrfs_set_lock_blocking(next
);
6044 BUG_ON(level
!= btrfs_header_level(next
));
6045 path
->nodes
[level
] = next
;
6046 path
->slots
[level
] = 0;
6047 path
->locks
[level
] = 1;
6053 wc
->refs
[level
- 1] = 0;
6054 wc
->flags
[level
- 1] = 0;
6055 if (wc
->stage
== DROP_REFERENCE
) {
6056 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
) {
6057 parent
= path
->nodes
[level
]->start
;
6059 BUG_ON(root
->root_key
.objectid
!=
6060 btrfs_header_owner(path
->nodes
[level
]));
6064 ret
= btrfs_free_extent(trans
, root
, bytenr
, blocksize
, parent
,
6065 root
->root_key
.objectid
, level
- 1, 0);
6068 btrfs_tree_unlock(next
);
6069 free_extent_buffer(next
);
6075 * hepler to process tree block while walking up the tree.
6077 * when wc->stage == DROP_REFERENCE, this function drops
6078 * reference count on the block.
6080 * when wc->stage == UPDATE_BACKREF, this function changes
6081 * wc->stage back to DROP_REFERENCE if we changed wc->stage
6082 * to UPDATE_BACKREF previously while processing the block.
6084 * NOTE: return value 1 means we should stop walking up.
6086 static noinline
int walk_up_proc(struct btrfs_trans_handle
*trans
,
6087 struct btrfs_root
*root
,
6088 struct btrfs_path
*path
,
6089 struct walk_control
*wc
)
6092 int level
= wc
->level
;
6093 struct extent_buffer
*eb
= path
->nodes
[level
];
6096 if (wc
->stage
== UPDATE_BACKREF
) {
6097 BUG_ON(wc
->shared_level
< level
);
6098 if (level
< wc
->shared_level
)
6101 ret
= find_next_key(path
, level
+ 1, &wc
->update_progress
);
6105 wc
->stage
= DROP_REFERENCE
;
6106 wc
->shared_level
= -1;
6107 path
->slots
[level
] = 0;
6110 * check reference count again if the block isn't locked.
6111 * we should start walking down the tree again if reference
6114 if (!path
->locks
[level
]) {
6116 btrfs_tree_lock(eb
);
6117 btrfs_set_lock_blocking(eb
);
6118 path
->locks
[level
] = 1;
6120 ret
= btrfs_lookup_extent_info(trans
, root
,
6125 BUG_ON(wc
->refs
[level
] == 0);
6126 if (wc
->refs
[level
] == 1) {
6127 btrfs_tree_unlock(eb
);
6128 path
->locks
[level
] = 0;
6134 /* wc->stage == DROP_REFERENCE */
6135 BUG_ON(wc
->refs
[level
] > 1 && !path
->locks
[level
]);
6137 if (wc
->refs
[level
] == 1) {
6139 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
6140 ret
= btrfs_dec_ref(trans
, root
, eb
, 1);
6142 ret
= btrfs_dec_ref(trans
, root
, eb
, 0);
6145 /* make block locked assertion in clean_tree_block happy */
6146 if (!path
->locks
[level
] &&
6147 btrfs_header_generation(eb
) == trans
->transid
) {
6148 btrfs_tree_lock(eb
);
6149 btrfs_set_lock_blocking(eb
);
6150 path
->locks
[level
] = 1;
6152 clean_tree_block(trans
, root
, eb
);
6155 if (eb
== root
->node
) {
6156 if (wc
->flags
[level
] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
6159 BUG_ON(root
->root_key
.objectid
!=
6160 btrfs_header_owner(eb
));
6162 if (wc
->flags
[level
+ 1] & BTRFS_BLOCK_FLAG_FULL_BACKREF
)
6163 parent
= path
->nodes
[level
+ 1]->start
;
6165 BUG_ON(root
->root_key
.objectid
!=
6166 btrfs_header_owner(path
->nodes
[level
+ 1]));
6169 btrfs_free_tree_block(trans
, root
, eb
, parent
, wc
->refs
[level
] == 1);
6171 wc
->refs
[level
] = 0;
6172 wc
->flags
[level
] = 0;
6176 static noinline
int walk_down_tree(struct btrfs_trans_handle
*trans
,
6177 struct btrfs_root
*root
,
6178 struct btrfs_path
*path
,
6179 struct walk_control
*wc
)
6181 int level
= wc
->level
;
6182 int lookup_info
= 1;
6185 while (level
>= 0) {
6186 ret
= walk_down_proc(trans
, root
, path
, wc
, lookup_info
);
6193 if (path
->slots
[level
] >=
6194 btrfs_header_nritems(path
->nodes
[level
]))
6197 ret
= do_walk_down(trans
, root
, path
, wc
, &lookup_info
);
6199 path
->slots
[level
]++;
6208 static noinline
int walk_up_tree(struct btrfs_trans_handle
*trans
,
6209 struct btrfs_root
*root
,
6210 struct btrfs_path
*path
,
6211 struct walk_control
*wc
, int max_level
)
6213 int level
= wc
->level
;
6216 path
->slots
[level
] = btrfs_header_nritems(path
->nodes
[level
]);
6217 while (level
< max_level
&& path
->nodes
[level
]) {
6219 if (path
->slots
[level
] + 1 <
6220 btrfs_header_nritems(path
->nodes
[level
])) {
6221 path
->slots
[level
]++;
6224 ret
= walk_up_proc(trans
, root
, path
, wc
);
6228 if (path
->locks
[level
]) {
6229 btrfs_tree_unlock(path
->nodes
[level
]);
6230 path
->locks
[level
] = 0;
6232 free_extent_buffer(path
->nodes
[level
]);
6233 path
->nodes
[level
] = NULL
;
6241 * drop a subvolume tree.
6243 * this function traverses the tree freeing any blocks that only
6244 * referenced by the tree.
6246 * when a shared tree block is found. this function decreases its
6247 * reference count by one. if update_ref is true, this function
6248 * also make sure backrefs for the shared block and all lower level
6249 * blocks are properly updated.
6251 int btrfs_drop_snapshot(struct btrfs_root
*root
,
6252 struct btrfs_block_rsv
*block_rsv
, int update_ref
)
6254 struct btrfs_path
*path
;
6255 struct btrfs_trans_handle
*trans
;
6256 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
6257 struct btrfs_root_item
*root_item
= &root
->root_item
;
6258 struct walk_control
*wc
;
6259 struct btrfs_key key
;
6264 path
= btrfs_alloc_path();
6267 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
6270 trans
= btrfs_start_transaction(tree_root
, 0);
6271 BUG_ON(IS_ERR(trans
));
6274 trans
->block_rsv
= block_rsv
;
6276 if (btrfs_disk_key_objectid(&root_item
->drop_progress
) == 0) {
6277 level
= btrfs_header_level(root
->node
);
6278 path
->nodes
[level
] = btrfs_lock_root_node(root
);
6279 btrfs_set_lock_blocking(path
->nodes
[level
]);
6280 path
->slots
[level
] = 0;
6281 path
->locks
[level
] = 1;
6282 memset(&wc
->update_progress
, 0,
6283 sizeof(wc
->update_progress
));
6285 btrfs_disk_key_to_cpu(&key
, &root_item
->drop_progress
);
6286 memcpy(&wc
->update_progress
, &key
,
6287 sizeof(wc
->update_progress
));
6289 level
= root_item
->drop_level
;
6291 path
->lowest_level
= level
;
6292 ret
= btrfs_search_slot(NULL
, root
, &key
, path
, 0, 0);
6293 path
->lowest_level
= 0;
6301 * unlock our path, this is safe because only this
6302 * function is allowed to delete this snapshot
6304 btrfs_unlock_up_safe(path
, 0);
6306 level
= btrfs_header_level(root
->node
);
6308 btrfs_tree_lock(path
->nodes
[level
]);
6309 btrfs_set_lock_blocking(path
->nodes
[level
]);
6311 ret
= btrfs_lookup_extent_info(trans
, root
,
6312 path
->nodes
[level
]->start
,
6313 path
->nodes
[level
]->len
,
6317 BUG_ON(wc
->refs
[level
] == 0);
6319 if (level
== root_item
->drop_level
)
6322 btrfs_tree_unlock(path
->nodes
[level
]);
6323 WARN_ON(wc
->refs
[level
] != 1);
6329 wc
->shared_level
= -1;
6330 wc
->stage
= DROP_REFERENCE
;
6331 wc
->update_ref
= update_ref
;
6333 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
6336 ret
= walk_down_tree(trans
, root
, path
, wc
);
6342 ret
= walk_up_tree(trans
, root
, path
, wc
, BTRFS_MAX_LEVEL
);
6349 BUG_ON(wc
->stage
!= DROP_REFERENCE
);
6353 if (wc
->stage
== DROP_REFERENCE
) {
6355 btrfs_node_key(path
->nodes
[level
],
6356 &root_item
->drop_progress
,
6357 path
->slots
[level
]);
6358 root_item
->drop_level
= level
;
6361 BUG_ON(wc
->level
== 0);
6362 if (btrfs_should_end_transaction(trans
, tree_root
)) {
6363 ret
= btrfs_update_root(trans
, tree_root
,
6368 btrfs_end_transaction_throttle(trans
, tree_root
);
6369 trans
= btrfs_start_transaction(tree_root
, 0);
6370 BUG_ON(IS_ERR(trans
));
6372 trans
->block_rsv
= block_rsv
;
6375 btrfs_release_path(root
, path
);
6378 ret
= btrfs_del_root(trans
, tree_root
, &root
->root_key
);
6381 if (root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
) {
6382 ret
= btrfs_find_last_root(tree_root
, root
->root_key
.objectid
,
6386 /* if we fail to delete the orphan item this time
6387 * around, it'll get picked up the next time.
6389 * The most common failure here is just -ENOENT.
6391 btrfs_del_orphan_item(trans
, tree_root
,
6392 root
->root_key
.objectid
);
6396 if (root
->in_radix
) {
6397 btrfs_free_fs_root(tree_root
->fs_info
, root
);
6399 free_extent_buffer(root
->node
);
6400 free_extent_buffer(root
->commit_root
);
6404 btrfs_end_transaction_throttle(trans
, tree_root
);
6406 btrfs_free_path(path
);
6411 * drop subtree rooted at tree block 'node'.
6413 * NOTE: this function will unlock and release tree block 'node'
6415 int btrfs_drop_subtree(struct btrfs_trans_handle
*trans
,
6416 struct btrfs_root
*root
,
6417 struct extent_buffer
*node
,
6418 struct extent_buffer
*parent
)
6420 struct btrfs_path
*path
;
6421 struct walk_control
*wc
;
6427 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
6429 path
= btrfs_alloc_path();
6432 wc
= kzalloc(sizeof(*wc
), GFP_NOFS
);
6435 btrfs_assert_tree_locked(parent
);
6436 parent_level
= btrfs_header_level(parent
);
6437 extent_buffer_get(parent
);
6438 path
->nodes
[parent_level
] = parent
;
6439 path
->slots
[parent_level
] = btrfs_header_nritems(parent
);
6441 btrfs_assert_tree_locked(node
);
6442 level
= btrfs_header_level(node
);
6443 path
->nodes
[level
] = node
;
6444 path
->slots
[level
] = 0;
6445 path
->locks
[level
] = 1;
6447 wc
->refs
[parent_level
] = 1;
6448 wc
->flags
[parent_level
] = BTRFS_BLOCK_FLAG_FULL_BACKREF
;
6450 wc
->shared_level
= -1;
6451 wc
->stage
= DROP_REFERENCE
;
6454 wc
->reada_count
= BTRFS_NODEPTRS_PER_BLOCK(root
);
6457 wret
= walk_down_tree(trans
, root
, path
, wc
);
6463 wret
= walk_up_tree(trans
, root
, path
, wc
, parent_level
);
6471 btrfs_free_path(path
);
6476 static unsigned long calc_ra(unsigned long start
, unsigned long last
,
6479 return min(last
, start
+ nr
- 1);
6482 static noinline
int relocate_inode_pages(struct inode
*inode
, u64 start
,
6487 unsigned long first_index
;
6488 unsigned long last_index
;
6491 struct extent_io_tree
*io_tree
= &BTRFS_I(inode
)->io_tree
;
6492 struct file_ra_state
*ra
;
6493 struct btrfs_ordered_extent
*ordered
;
6494 unsigned int total_read
= 0;
6495 unsigned int total_dirty
= 0;
6498 ra
= kzalloc(sizeof(*ra
), GFP_NOFS
);
6502 mutex_lock(&inode
->i_mutex
);
6503 first_index
= start
>> PAGE_CACHE_SHIFT
;
6504 last_index
= (start
+ len
- 1) >> PAGE_CACHE_SHIFT
;
6506 /* make sure the dirty trick played by the caller work */
6507 ret
= invalidate_inode_pages2_range(inode
->i_mapping
,
6508 first_index
, last_index
);
6512 file_ra_state_init(ra
, inode
->i_mapping
);
6514 for (i
= first_index
; i
<= last_index
; i
++) {
6515 if (total_read
% ra
->ra_pages
== 0) {
6516 btrfs_force_ra(inode
->i_mapping
, ra
, NULL
, i
,
6517 calc_ra(i
, last_index
, ra
->ra_pages
));
6521 if (((u64
)i
<< PAGE_CACHE_SHIFT
) > i_size_read(inode
))
6523 page
= grab_cache_page(inode
->i_mapping
, i
);
6528 if (!PageUptodate(page
)) {
6529 btrfs_readpage(NULL
, page
);
6531 if (!PageUptodate(page
)) {
6533 page_cache_release(page
);
6538 wait_on_page_writeback(page
);
6540 page_start
= (u64
)page
->index
<< PAGE_CACHE_SHIFT
;
6541 page_end
= page_start
+ PAGE_CACHE_SIZE
- 1;
6542 lock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
6544 ordered
= btrfs_lookup_ordered_extent(inode
, page_start
);
6546 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
6548 page_cache_release(page
);
6549 btrfs_start_ordered_extent(inode
, ordered
, 1);
6550 btrfs_put_ordered_extent(ordered
);
6553 set_page_extent_mapped(page
);
6555 if (i
== first_index
)
6556 set_extent_bits(io_tree
, page_start
, page_end
,
6557 EXTENT_BOUNDARY
, GFP_NOFS
);
6558 btrfs_set_extent_delalloc(inode
, page_start
, page_end
);
6560 set_page_dirty(page
);
6563 unlock_extent(io_tree
, page_start
, page_end
, GFP_NOFS
);
6565 page_cache_release(page
);
6570 mutex_unlock(&inode
->i_mutex
);
6571 balance_dirty_pages_ratelimited_nr(inode
->i_mapping
, total_dirty
);
6575 static noinline
int relocate_data_extent(struct inode
*reloc_inode
,
6576 struct btrfs_key
*extent_key
,
6579 struct btrfs_root
*root
= BTRFS_I(reloc_inode
)->root
;
6580 struct extent_map_tree
*em_tree
= &BTRFS_I(reloc_inode
)->extent_tree
;
6581 struct extent_map
*em
;
6582 u64 start
= extent_key
->objectid
- offset
;
6583 u64 end
= start
+ extent_key
->offset
- 1;
6585 em
= alloc_extent_map(GFP_NOFS
);
6589 em
->len
= extent_key
->offset
;
6590 em
->block_len
= extent_key
->offset
;
6591 em
->block_start
= extent_key
->objectid
;
6592 em
->bdev
= root
->fs_info
->fs_devices
->latest_bdev
;
6593 set_bit(EXTENT_FLAG_PINNED
, &em
->flags
);
6595 /* setup extent map to cheat btrfs_readpage */
6596 lock_extent(&BTRFS_I(reloc_inode
)->io_tree
, start
, end
, GFP_NOFS
);
6599 write_lock(&em_tree
->lock
);
6600 ret
= add_extent_mapping(em_tree
, em
);
6601 write_unlock(&em_tree
->lock
);
6602 if (ret
!= -EEXIST
) {
6603 free_extent_map(em
);
6606 btrfs_drop_extent_cache(reloc_inode
, start
, end
, 0);
6608 unlock_extent(&BTRFS_I(reloc_inode
)->io_tree
, start
, end
, GFP_NOFS
);
6610 return relocate_inode_pages(reloc_inode
, start
, extent_key
->offset
);
6613 struct btrfs_ref_path
{
6615 u64 nodes
[BTRFS_MAX_LEVEL
];
6617 u64 root_generation
;
6624 struct btrfs_key node_keys
[BTRFS_MAX_LEVEL
];
6625 u64 new_nodes
[BTRFS_MAX_LEVEL
];
6628 struct disk_extent
{
6639 static int is_cowonly_root(u64 root_objectid
)
6641 if (root_objectid
== BTRFS_ROOT_TREE_OBJECTID
||
6642 root_objectid
== BTRFS_EXTENT_TREE_OBJECTID
||
6643 root_objectid
== BTRFS_CHUNK_TREE_OBJECTID
||
6644 root_objectid
== BTRFS_DEV_TREE_OBJECTID
||
6645 root_objectid
== BTRFS_TREE_LOG_OBJECTID
||
6646 root_objectid
== BTRFS_CSUM_TREE_OBJECTID
)
6651 static noinline
int __next_ref_path(struct btrfs_trans_handle
*trans
,
6652 struct btrfs_root
*extent_root
,
6653 struct btrfs_ref_path
*ref_path
,
6656 struct extent_buffer
*leaf
;
6657 struct btrfs_path
*path
;
6658 struct btrfs_extent_ref
*ref
;
6659 struct btrfs_key key
;
6660 struct btrfs_key found_key
;
6666 path
= btrfs_alloc_path();
6671 ref_path
->lowest_level
= -1;
6672 ref_path
->current_level
= -1;
6673 ref_path
->shared_level
= -1;
6677 level
= ref_path
->current_level
- 1;
6678 while (level
>= -1) {
6680 if (level
< ref_path
->lowest_level
)
6684 bytenr
= ref_path
->nodes
[level
];
6686 bytenr
= ref_path
->extent_start
;
6687 BUG_ON(bytenr
== 0);
6689 parent
= ref_path
->nodes
[level
+ 1];
6690 ref_path
->nodes
[level
+ 1] = 0;
6691 ref_path
->current_level
= level
;
6692 BUG_ON(parent
== 0);
6694 key
.objectid
= bytenr
;
6695 key
.offset
= parent
+ 1;
6696 key
.type
= BTRFS_EXTENT_REF_KEY
;
6698 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
, 0, 0);
6703 leaf
= path
->nodes
[0];
6704 nritems
= btrfs_header_nritems(leaf
);
6705 if (path
->slots
[0] >= nritems
) {
6706 ret
= btrfs_next_leaf(extent_root
, path
);
6711 leaf
= path
->nodes
[0];
6714 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6715 if (found_key
.objectid
== bytenr
&&
6716 found_key
.type
== BTRFS_EXTENT_REF_KEY
) {
6717 if (level
< ref_path
->shared_level
)
6718 ref_path
->shared_level
= level
;
6723 btrfs_release_path(extent_root
, path
);
6726 /* reached lowest level */
6730 level
= ref_path
->current_level
;
6731 while (level
< BTRFS_MAX_LEVEL
- 1) {
6735 bytenr
= ref_path
->nodes
[level
];
6737 bytenr
= ref_path
->extent_start
;
6739 BUG_ON(bytenr
== 0);
6741 key
.objectid
= bytenr
;
6743 key
.type
= BTRFS_EXTENT_REF_KEY
;
6745 ret
= btrfs_search_slot(trans
, extent_root
, &key
, path
, 0, 0);
6749 leaf
= path
->nodes
[0];
6750 nritems
= btrfs_header_nritems(leaf
);
6751 if (path
->slots
[0] >= nritems
) {
6752 ret
= btrfs_next_leaf(extent_root
, path
);
6756 /* the extent was freed by someone */
6757 if (ref_path
->lowest_level
== level
)
6759 btrfs_release_path(extent_root
, path
);
6762 leaf
= path
->nodes
[0];
6765 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6766 if (found_key
.objectid
!= bytenr
||
6767 found_key
.type
!= BTRFS_EXTENT_REF_KEY
) {
6768 /* the extent was freed by someone */
6769 if (ref_path
->lowest_level
== level
) {
6773 btrfs_release_path(extent_root
, path
);
6777 ref
= btrfs_item_ptr(leaf
, path
->slots
[0],
6778 struct btrfs_extent_ref
);
6779 ref_objectid
= btrfs_ref_objectid(leaf
, ref
);
6780 if (ref_objectid
< BTRFS_FIRST_FREE_OBJECTID
) {
6782 level
= (int)ref_objectid
;
6783 BUG_ON(level
>= BTRFS_MAX_LEVEL
);
6784 ref_path
->lowest_level
= level
;
6785 ref_path
->current_level
= level
;
6786 ref_path
->nodes
[level
] = bytenr
;
6788 WARN_ON(ref_objectid
!= level
);
6791 WARN_ON(level
!= -1);
6795 if (ref_path
->lowest_level
== level
) {
6796 ref_path
->owner_objectid
= ref_objectid
;
6797 ref_path
->num_refs
= btrfs_ref_num_refs(leaf
, ref
);
6801 * the block is tree root or the block isn't in reference
6804 if (found_key
.objectid
== found_key
.offset
||
6805 is_cowonly_root(btrfs_ref_root(leaf
, ref
))) {
6806 ref_path
->root_objectid
= btrfs_ref_root(leaf
, ref
);
6807 ref_path
->root_generation
=
6808 btrfs_ref_generation(leaf
, ref
);
6810 /* special reference from the tree log */
6811 ref_path
->nodes
[0] = found_key
.offset
;
6812 ref_path
->current_level
= 0;
6819 BUG_ON(ref_path
->nodes
[level
] != 0);
6820 ref_path
->nodes
[level
] = found_key
.offset
;
6821 ref_path
->current_level
= level
;
6824 * the reference was created in the running transaction,
6825 * no need to continue walking up.
6827 if (btrfs_ref_generation(leaf
, ref
) == trans
->transid
) {
6828 ref_path
->root_objectid
= btrfs_ref_root(leaf
, ref
);
6829 ref_path
->root_generation
=
6830 btrfs_ref_generation(leaf
, ref
);
6835 btrfs_release_path(extent_root
, path
);
6838 /* reached max tree level, but no tree root found. */
6841 btrfs_free_path(path
);
6845 static int btrfs_first_ref_path(struct btrfs_trans_handle
*trans
,
6846 struct btrfs_root
*extent_root
,
6847 struct btrfs_ref_path
*ref_path
,
6850 memset(ref_path
, 0, sizeof(*ref_path
));
6851 ref_path
->extent_start
= extent_start
;
6853 return __next_ref_path(trans
, extent_root
, ref_path
, 1);
6856 static int btrfs_next_ref_path(struct btrfs_trans_handle
*trans
,
6857 struct btrfs_root
*extent_root
,
6858 struct btrfs_ref_path
*ref_path
)
6860 return __next_ref_path(trans
, extent_root
, ref_path
, 0);
6863 static noinline
int get_new_locations(struct inode
*reloc_inode
,
6864 struct btrfs_key
*extent_key
,
6865 u64 offset
, int no_fragment
,
6866 struct disk_extent
**extents
,
6869 struct btrfs_root
*root
= BTRFS_I(reloc_inode
)->root
;
6870 struct btrfs_path
*path
;
6871 struct btrfs_file_extent_item
*fi
;
6872 struct extent_buffer
*leaf
;
6873 struct disk_extent
*exts
= *extents
;
6874 struct btrfs_key found_key
;
6879 int max
= *nr_extents
;
6882 WARN_ON(!no_fragment
&& *extents
);
6885 exts
= kmalloc(sizeof(*exts
) * max
, GFP_NOFS
);
6890 path
= btrfs_alloc_path();
6893 cur_pos
= extent_key
->objectid
- offset
;
6894 last_byte
= extent_key
->objectid
+ extent_key
->offset
;
6895 ret
= btrfs_lookup_file_extent(NULL
, root
, path
, reloc_inode
->i_ino
,
6905 leaf
= path
->nodes
[0];
6906 nritems
= btrfs_header_nritems(leaf
);
6907 if (path
->slots
[0] >= nritems
) {
6908 ret
= btrfs_next_leaf(root
, path
);
6913 leaf
= path
->nodes
[0];
6916 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
6917 if (found_key
.offset
!= cur_pos
||
6918 found_key
.type
!= BTRFS_EXTENT_DATA_KEY
||
6919 found_key
.objectid
!= reloc_inode
->i_ino
)
6922 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
6923 struct btrfs_file_extent_item
);
6924 if (btrfs_file_extent_type(leaf
, fi
) !=
6925 BTRFS_FILE_EXTENT_REG
||
6926 btrfs_file_extent_disk_bytenr(leaf
, fi
) == 0)
6930 struct disk_extent
*old
= exts
;
6932 exts
= kzalloc(sizeof(*exts
) * max
, GFP_NOFS
);
6933 memcpy(exts
, old
, sizeof(*exts
) * nr
);
6934 if (old
!= *extents
)
6938 exts
[nr
].disk_bytenr
=
6939 btrfs_file_extent_disk_bytenr(leaf
, fi
);
6940 exts
[nr
].disk_num_bytes
=
6941 btrfs_file_extent_disk_num_bytes(leaf
, fi
);
6942 exts
[nr
].offset
= btrfs_file_extent_offset(leaf
, fi
);
6943 exts
[nr
].num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
);
6944 exts
[nr
].ram_bytes
= btrfs_file_extent_ram_bytes(leaf
, fi
);
6945 exts
[nr
].compression
= btrfs_file_extent_compression(leaf
, fi
);
6946 exts
[nr
].encryption
= btrfs_file_extent_encryption(leaf
, fi
);
6947 exts
[nr
].other_encoding
= btrfs_file_extent_other_encoding(leaf
,
6949 BUG_ON(exts
[nr
].offset
> 0);
6950 BUG_ON(exts
[nr
].compression
|| exts
[nr
].encryption
);
6951 BUG_ON(exts
[nr
].num_bytes
!= exts
[nr
].disk_num_bytes
);
6953 cur_pos
+= exts
[nr
].num_bytes
;
6956 if (cur_pos
+ offset
>= last_byte
)
6966 BUG_ON(cur_pos
+ offset
> last_byte
);
6967 if (cur_pos
+ offset
< last_byte
) {
6973 btrfs_free_path(path
);
6975 if (exts
!= *extents
)
6984 static noinline
int replace_one_extent(struct btrfs_trans_handle
*trans
,
6985 struct btrfs_root
*root
,
6986 struct btrfs_path
*path
,
6987 struct btrfs_key
*extent_key
,
6988 struct btrfs_key
*leaf_key
,
6989 struct btrfs_ref_path
*ref_path
,
6990 struct disk_extent
*new_extents
,
6993 struct extent_buffer
*leaf
;
6994 struct btrfs_file_extent_item
*fi
;
6995 struct inode
*inode
= NULL
;
6996 struct btrfs_key key
;
7001 u64 search_end
= (u64
)-1;
7004 int extent_locked
= 0;
7008 memcpy(&key
, leaf_key
, sizeof(key
));
7009 if (ref_path
->owner_objectid
!= BTRFS_MULTIPLE_OBJECTIDS
) {
7010 if (key
.objectid
< ref_path
->owner_objectid
||
7011 (key
.objectid
== ref_path
->owner_objectid
&&
7012 key
.type
< BTRFS_EXTENT_DATA_KEY
)) {
7013 key
.objectid
= ref_path
->owner_objectid
;
7014 key
.type
= BTRFS_EXTENT_DATA_KEY
;
7020 ret
= btrfs_search_slot(trans
, root
, &key
, path
, 0, 1);
7024 leaf
= path
->nodes
[0];
7025 nritems
= btrfs_header_nritems(leaf
);
7027 if (extent_locked
&& ret
> 0) {
7029 * the file extent item was modified by someone
7030 * before the extent got locked.
7032 unlock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
7033 lock_end
, GFP_NOFS
);
7037 if (path
->slots
[0] >= nritems
) {
7038 if (++nr_scaned
> 2)
7041 BUG_ON(extent_locked
);
7042 ret
= btrfs_next_leaf(root
, path
);
7047 leaf
= path
->nodes
[0];
7048 nritems
= btrfs_header_nritems(leaf
);
7051 btrfs_item_key_to_cpu(leaf
, &key
, path
->slots
[0]);
7053 if (ref_path
->owner_objectid
!= BTRFS_MULTIPLE_OBJECTIDS
) {
7054 if ((key
.objectid
> ref_path
->owner_objectid
) ||
7055 (key
.objectid
== ref_path
->owner_objectid
&&
7056 key
.type
> BTRFS_EXTENT_DATA_KEY
) ||
7057 key
.offset
>= search_end
)
7061 if (inode
&& key
.objectid
!= inode
->i_ino
) {
7062 BUG_ON(extent_locked
);
7063 btrfs_release_path(root
, path
);
7064 mutex_unlock(&inode
->i_mutex
);
7070 if (key
.type
!= BTRFS_EXTENT_DATA_KEY
) {
7075 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
7076 struct btrfs_file_extent_item
);
7077 extent_type
= btrfs_file_extent_type(leaf
, fi
);
7078 if ((extent_type
!= BTRFS_FILE_EXTENT_REG
&&
7079 extent_type
!= BTRFS_FILE_EXTENT_PREALLOC
) ||
7080 (btrfs_file_extent_disk_bytenr(leaf
, fi
) !=
7081 extent_key
->objectid
)) {
7087 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
);
7088 ext_offset
= btrfs_file_extent_offset(leaf
, fi
);
7090 if (search_end
== (u64
)-1) {
7091 search_end
= key
.offset
- ext_offset
+
7092 btrfs_file_extent_ram_bytes(leaf
, fi
);
7095 if (!extent_locked
) {
7096 lock_start
= key
.offset
;
7097 lock_end
= lock_start
+ num_bytes
- 1;
7099 if (lock_start
> key
.offset
||
7100 lock_end
+ 1 < key
.offset
+ num_bytes
) {
7101 unlock_extent(&BTRFS_I(inode
)->io_tree
,
7102 lock_start
, lock_end
, GFP_NOFS
);
7108 btrfs_release_path(root
, path
);
7110 inode
= btrfs_iget_locked(root
->fs_info
->sb
,
7111 key
.objectid
, root
);
7112 if (inode
->i_state
& I_NEW
) {
7113 BTRFS_I(inode
)->root
= root
;
7114 BTRFS_I(inode
)->location
.objectid
=
7116 BTRFS_I(inode
)->location
.type
=
7117 BTRFS_INODE_ITEM_KEY
;
7118 BTRFS_I(inode
)->location
.offset
= 0;
7119 btrfs_read_locked_inode(inode
);
7120 unlock_new_inode(inode
);
7123 * some code call btrfs_commit_transaction while
7124 * holding the i_mutex, so we can't use mutex_lock
7127 if (is_bad_inode(inode
) ||
7128 !mutex_trylock(&inode
->i_mutex
)) {
7131 key
.offset
= (u64
)-1;
7136 if (!extent_locked
) {
7137 struct btrfs_ordered_extent
*ordered
;
7139 btrfs_release_path(root
, path
);
7141 lock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
7142 lock_end
, GFP_NOFS
);
7143 ordered
= btrfs_lookup_first_ordered_extent(inode
,
7146 ordered
->file_offset
<= lock_end
&&
7147 ordered
->file_offset
+ ordered
->len
> lock_start
) {
7148 unlock_extent(&BTRFS_I(inode
)->io_tree
,
7149 lock_start
, lock_end
, GFP_NOFS
);
7150 btrfs_start_ordered_extent(inode
, ordered
, 1);
7151 btrfs_put_ordered_extent(ordered
);
7152 key
.offset
+= num_bytes
;
7156 btrfs_put_ordered_extent(ordered
);
7162 if (nr_extents
== 1) {
7163 /* update extent pointer in place */
7164 btrfs_set_file_extent_disk_bytenr(leaf
, fi
,
7165 new_extents
[0].disk_bytenr
);
7166 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
,
7167 new_extents
[0].disk_num_bytes
);
7168 btrfs_mark_buffer_dirty(leaf
);
7170 btrfs_drop_extent_cache(inode
, key
.offset
,
7171 key
.offset
+ num_bytes
- 1, 0);
7173 ret
= btrfs_inc_extent_ref(trans
, root
,
7174 new_extents
[0].disk_bytenr
,
7175 new_extents
[0].disk_num_bytes
,
7177 root
->root_key
.objectid
,
7182 ret
= btrfs_free_extent(trans
, root
,
7183 extent_key
->objectid
,
7186 btrfs_header_owner(leaf
),
7187 btrfs_header_generation(leaf
),
7191 btrfs_release_path(root
, path
);
7192 key
.offset
+= num_bytes
;
7200 * drop old extent pointer at first, then insert the
7201 * new pointers one bye one
7203 btrfs_release_path(root
, path
);
7204 ret
= btrfs_drop_extents(trans
, root
, inode
, key
.offset
,
7205 key
.offset
+ num_bytes
,
7206 key
.offset
, &alloc_hint
);
7209 for (i
= 0; i
< nr_extents
; i
++) {
7210 if (ext_offset
>= new_extents
[i
].num_bytes
) {
7211 ext_offset
-= new_extents
[i
].num_bytes
;
7214 extent_len
= min(new_extents
[i
].num_bytes
-
7215 ext_offset
, num_bytes
);
7217 ret
= btrfs_insert_empty_item(trans
, root
,
7222 leaf
= path
->nodes
[0];
7223 fi
= btrfs_item_ptr(leaf
, path
->slots
[0],
7224 struct btrfs_file_extent_item
);
7225 btrfs_set_file_extent_generation(leaf
, fi
,
7227 btrfs_set_file_extent_type(leaf
, fi
,
7228 BTRFS_FILE_EXTENT_REG
);
7229 btrfs_set_file_extent_disk_bytenr(leaf
, fi
,
7230 new_extents
[i
].disk_bytenr
);
7231 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
,
7232 new_extents
[i
].disk_num_bytes
);
7233 btrfs_set_file_extent_ram_bytes(leaf
, fi
,
7234 new_extents
[i
].ram_bytes
);
7236 btrfs_set_file_extent_compression(leaf
, fi
,
7237 new_extents
[i
].compression
);
7238 btrfs_set_file_extent_encryption(leaf
, fi
,
7239 new_extents
[i
].encryption
);
7240 btrfs_set_file_extent_other_encoding(leaf
, fi
,
7241 new_extents
[i
].other_encoding
);
7243 btrfs_set_file_extent_num_bytes(leaf
, fi
,
7245 ext_offset
+= new_extents
[i
].offset
;
7246 btrfs_set_file_extent_offset(leaf
, fi
,
7248 btrfs_mark_buffer_dirty(leaf
);
7250 btrfs_drop_extent_cache(inode
, key
.offset
,
7251 key
.offset
+ extent_len
- 1, 0);
7253 ret
= btrfs_inc_extent_ref(trans
, root
,
7254 new_extents
[i
].disk_bytenr
,
7255 new_extents
[i
].disk_num_bytes
,
7257 root
->root_key
.objectid
,
7258 trans
->transid
, key
.objectid
);
7260 btrfs_release_path(root
, path
);
7262 inode_add_bytes(inode
, extent_len
);
7265 num_bytes
-= extent_len
;
7266 key
.offset
+= extent_len
;
7271 BUG_ON(i
>= nr_extents
);
7275 if (extent_locked
) {
7276 unlock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
7277 lock_end
, GFP_NOFS
);
7281 if (ref_path
->owner_objectid
!= BTRFS_MULTIPLE_OBJECTIDS
&&
7282 key
.offset
>= search_end
)
7289 btrfs_release_path(root
, path
);
7291 mutex_unlock(&inode
->i_mutex
);
7292 if (extent_locked
) {
7293 unlock_extent(&BTRFS_I(inode
)->io_tree
, lock_start
,
7294 lock_end
, GFP_NOFS
);
7301 int btrfs_reloc_tree_cache_ref(struct btrfs_trans_handle
*trans
,
7302 struct btrfs_root
*root
,
7303 struct extent_buffer
*buf
, u64 orig_start
)
7308 BUG_ON(btrfs_header_generation(buf
) != trans
->transid
);
7309 BUG_ON(root
->root_key
.objectid
!= BTRFS_TREE_RELOC_OBJECTID
);
7311 level
= btrfs_header_level(buf
);
7313 struct btrfs_leaf_ref
*ref
;
7314 struct btrfs_leaf_ref
*orig_ref
;
7316 orig_ref
= btrfs_lookup_leaf_ref(root
, orig_start
);
7320 ref
= btrfs_alloc_leaf_ref(root
, orig_ref
->nritems
);
7322 btrfs_free_leaf_ref(root
, orig_ref
);
7326 ref
->nritems
= orig_ref
->nritems
;
7327 memcpy(ref
->extents
, orig_ref
->extents
,
7328 sizeof(ref
->extents
[0]) * ref
->nritems
);
7330 btrfs_free_leaf_ref(root
, orig_ref
);
7332 ref
->root_gen
= trans
->transid
;
7333 ref
->bytenr
= buf
->start
;
7334 ref
->owner
= btrfs_header_owner(buf
);
7335 ref
->generation
= btrfs_header_generation(buf
);
7337 ret
= btrfs_add_leaf_ref(root
, ref
, 0);
7339 btrfs_free_leaf_ref(root
, ref
);
7344 static noinline
int invalidate_extent_cache(struct btrfs_root
*root
,
7345 struct extent_buffer
*leaf
,
7346 struct btrfs_block_group_cache
*group
,
7347 struct btrfs_root
*target_root
)
7349 struct btrfs_key key
;
7350 struct inode
*inode
= NULL
;
7351 struct btrfs_file_extent_item
*fi
;
7352 struct extent_state
*cached_state
= NULL
;
7354 u64 skip_objectid
= 0;
7358 nritems
= btrfs_header_nritems(leaf
);
7359 for (i
= 0; i
< nritems
; i
++) {
7360 btrfs_item_key_to_cpu(leaf
, &key
, i
);
7361 if (key
.objectid
== skip_objectid
||
7362 key
.type
!= BTRFS_EXTENT_DATA_KEY
)
7364 fi
= btrfs_item_ptr(leaf
, i
, struct btrfs_file_extent_item
);
7365 if (btrfs_file_extent_type(leaf
, fi
) ==
7366 BTRFS_FILE_EXTENT_INLINE
)
7368 if (btrfs_file_extent_disk_bytenr(leaf
, fi
) == 0)
7370 if (!inode
|| inode
->i_ino
!= key
.objectid
) {
7372 inode
= btrfs_ilookup(target_root
->fs_info
->sb
,
7373 key
.objectid
, target_root
, 1);
7376 skip_objectid
= key
.objectid
;
7379 num_bytes
= btrfs_file_extent_num_bytes(leaf
, fi
);
7381 lock_extent_bits(&BTRFS_I(inode
)->io_tree
, key
.offset
,
7382 key
.offset
+ num_bytes
- 1, 0, &cached_state
,
7384 btrfs_drop_extent_cache(inode
, key
.offset
,
7385 key
.offset
+ num_bytes
- 1, 1);
7386 unlock_extent_cached(&BTRFS_I(inode
)->io_tree
, key
.offset
,
7387 key
.offset
+ num_bytes
- 1, &cached_state
,
7395 static noinline
int replace_extents_in_leaf(struct btrfs_trans_handle
*trans
,
7396 struct btrfs_root
*root
,
7397 struct extent_buffer
*leaf
,
7398 struct btrfs_block_group_cache
*group
,
7399 struct inode
*reloc_inode
)
7401 struct btrfs_key key
;
7402 struct btrfs_key extent_key
;
7403 struct btrfs_file_extent_item
*fi
;
7404 struct btrfs_leaf_ref
*ref
;
7405 struct disk_extent
*new_extent
;
7414 new_extent
= kmalloc(sizeof(*new_extent
), GFP_NOFS
);
7415 BUG_ON(!new_extent
);
7417 ref
= btrfs_lookup_leaf_ref(root
, leaf
->start
);
7421 nritems
= btrfs_header_nritems(leaf
);
7422 for (i
= 0; i
< nritems
; i
++) {
7423 btrfs_item_key_to_cpu(leaf
, &key
, i
);
7424 if (btrfs_key_type(&key
) != BTRFS_EXTENT_DATA_KEY
)
7426 fi
= btrfs_item_ptr(leaf
, i
, struct btrfs_file_extent_item
);
7427 if (btrfs_file_extent_type(leaf
, fi
) ==
7428 BTRFS_FILE_EXTENT_INLINE
)
7430 bytenr
= btrfs_file_extent_disk_bytenr(leaf
, fi
);
7431 num_bytes
= btrfs_file_extent_disk_num_bytes(leaf
, fi
);
7436 if (bytenr
>= group
->key
.objectid
+ group
->key
.offset
||
7437 bytenr
+ num_bytes
<= group
->key
.objectid
)
7440 extent_key
.objectid
= bytenr
;
7441 extent_key
.offset
= num_bytes
;
7442 extent_key
.type
= BTRFS_EXTENT_ITEM_KEY
;
7444 ret
= get_new_locations(reloc_inode
, &extent_key
,
7445 group
->key
.objectid
, 1,
7446 &new_extent
, &nr_extent
);
7451 BUG_ON(ref
->extents
[ext_index
].bytenr
!= bytenr
);
7452 BUG_ON(ref
->extents
[ext_index
].num_bytes
!= num_bytes
);
7453 ref
->extents
[ext_index
].bytenr
= new_extent
->disk_bytenr
;
7454 ref
->extents
[ext_index
].num_bytes
= new_extent
->disk_num_bytes
;
7456 btrfs_set_file_extent_disk_bytenr(leaf
, fi
,
7457 new_extent
->disk_bytenr
);
7458 btrfs_set_file_extent_disk_num_bytes(leaf
, fi
,
7459 new_extent
->disk_num_bytes
);
7460 btrfs_mark_buffer_dirty(leaf
);
7462 ret
= btrfs_inc_extent_ref(trans
, root
,
7463 new_extent
->disk_bytenr
,
7464 new_extent
->disk_num_bytes
,
7466 root
->root_key
.objectid
,
7467 trans
->transid
, key
.objectid
);
7470 ret
= btrfs_free_extent(trans
, root
,
7471 bytenr
, num_bytes
, leaf
->start
,
7472 btrfs_header_owner(leaf
),
7473 btrfs_header_generation(leaf
),
7479 BUG_ON(ext_index
+ 1 != ref
->nritems
);
7480 btrfs_free_leaf_ref(root
, ref
);
7484 int btrfs_free_reloc_root(struct btrfs_trans_handle
*trans
,
7485 struct btrfs_root
*root
)
7487 struct btrfs_root
*reloc_root
;
7490 if (root
->reloc_root
) {
7491 reloc_root
= root
->reloc_root
;
7492 root
->reloc_root
= NULL
;
7493 list_add(&reloc_root
->dead_list
,
7494 &root
->fs_info
->dead_reloc_roots
);
7496 btrfs_set_root_bytenr(&reloc_root
->root_item
,
7497 reloc_root
->node
->start
);
7498 btrfs_set_root_level(&root
->root_item
,
7499 btrfs_header_level(reloc_root
->node
));
7500 memset(&reloc_root
->root_item
.drop_progress
, 0,
7501 sizeof(struct btrfs_disk_key
));
7502 reloc_root
->root_item
.drop_level
= 0;
7504 ret
= btrfs_update_root(trans
, root
->fs_info
->tree_root
,
7505 &reloc_root
->root_key
,
7506 &reloc_root
->root_item
);
7512 int btrfs_drop_dead_reloc_roots(struct btrfs_root
*root
)
7514 struct btrfs_trans_handle
*trans
;
7515 struct btrfs_root
*reloc_root
;
7516 struct btrfs_root
*prev_root
= NULL
;
7517 struct list_head dead_roots
;
7521 INIT_LIST_HEAD(&dead_roots
);
7522 list_splice_init(&root
->fs_info
->dead_reloc_roots
, &dead_roots
);
7524 while (!list_empty(&dead_roots
)) {
7525 reloc_root
= list_entry(dead_roots
.prev
,
7526 struct btrfs_root
, dead_list
);
7527 list_del_init(&reloc_root
->dead_list
);
7529 BUG_ON(reloc_root
->commit_root
!= NULL
);
7531 trans
= btrfs_join_transaction(root
, 1);
7532 BUG_ON(IS_ERR(trans
));
7534 mutex_lock(&root
->fs_info
->drop_mutex
);
7535 ret
= btrfs_drop_snapshot(trans
, reloc_root
);
7538 mutex_unlock(&root
->fs_info
->drop_mutex
);
7540 nr
= trans
->blocks_used
;
7541 ret
= btrfs_end_transaction(trans
, root
);
7543 btrfs_btree_balance_dirty(root
, nr
);
7546 free_extent_buffer(reloc_root
->node
);
7548 ret
= btrfs_del_root(trans
, root
->fs_info
->tree_root
,
7549 &reloc_root
->root_key
);
7551 mutex_unlock(&root
->fs_info
->drop_mutex
);
7553 nr
= trans
->blocks_used
;
7554 ret
= btrfs_end_transaction(trans
, root
);
7556 btrfs_btree_balance_dirty(root
, nr
);
7559 prev_root
= reloc_root
;
7562 btrfs_remove_leaf_refs(prev_root
, (u64
)-1, 0);
7568 int btrfs_add_dead_reloc_root(struct btrfs_root
*root
)
7570 list_add(&root
->dead_list
, &root
->fs_info
->dead_reloc_roots
);
7574 int btrfs_cleanup_reloc_trees(struct btrfs_root
*root
)
7576 struct btrfs_root
*reloc_root
;
7577 struct btrfs_trans_handle
*trans
;
7578 struct btrfs_key location
;
7582 mutex_lock(&root
->fs_info
->tree_reloc_mutex
);
7583 ret
= btrfs_find_dead_roots(root
, BTRFS_TREE_RELOC_OBJECTID
, NULL
);
7585 found
= !list_empty(&root
->fs_info
->dead_reloc_roots
);
7586 mutex_unlock(&root
->fs_info
->tree_reloc_mutex
);
7589 trans
= btrfs_start_transaction(root
, 1);
7590 BUG_ON(IS_ERR(trans
));
7591 ret
= btrfs_commit_transaction(trans
, root
);
7595 location
.objectid
= BTRFS_DATA_RELOC_TREE_OBJECTID
;
7596 location
.offset
= (u64
)-1;
7597 location
.type
= BTRFS_ROOT_ITEM_KEY
;
7599 reloc_root
= btrfs_read_fs_root_no_name(root
->fs_info
, &location
);
7600 BUG_ON(!reloc_root
);
7601 btrfs_orphan_cleanup(reloc_root
);
7605 static noinline
int init_reloc_tree(struct btrfs_trans_handle
*trans
,
7606 struct btrfs_root
*root
)
7608 struct btrfs_root
*reloc_root
;
7609 struct extent_buffer
*eb
;
7610 struct btrfs_root_item
*root_item
;
7611 struct btrfs_key root_key
;
7614 BUG_ON(!root
->ref_cows
);
7615 if (root
->reloc_root
)
7618 root_item
= kmalloc(sizeof(*root_item
), GFP_NOFS
);
7621 ret
= btrfs_copy_root(trans
, root
, root
->commit_root
,
7622 &eb
, BTRFS_TREE_RELOC_OBJECTID
);
7625 root_key
.objectid
= BTRFS_TREE_RELOC_OBJECTID
;
7626 root_key
.offset
= root
->root_key
.objectid
;
7627 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
7629 memcpy(root_item
, &root
->root_item
, sizeof(root_item
));
7630 btrfs_set_root_refs(root_item
, 0);
7631 btrfs_set_root_bytenr(root_item
, eb
->start
);
7632 btrfs_set_root_level(root_item
, btrfs_header_level(eb
));
7633 btrfs_set_root_generation(root_item
, trans
->transid
);
7635 btrfs_tree_unlock(eb
);
7636 free_extent_buffer(eb
);
7638 ret
= btrfs_insert_root(trans
, root
->fs_info
->tree_root
,
7639 &root_key
, root_item
);
7643 reloc_root
= btrfs_read_fs_root_no_radix(root
->fs_info
->tree_root
,
7645 BUG_ON(!reloc_root
);
7646 reloc_root
->last_trans
= trans
->transid
;
7647 reloc_root
->commit_root
= NULL
;
7648 reloc_root
->ref_tree
= &root
->fs_info
->reloc_ref_tree
;
7650 root
->reloc_root
= reloc_root
;
7655 * Core function of space balance.
7657 * The idea is using reloc trees to relocate tree blocks in reference
7658 * counted roots. There is one reloc tree for each subvol, and all
7659 * reloc trees share same root key objectid. Reloc trees are snapshots
7660 * of the latest committed roots of subvols (root->commit_root).
7662 * To relocate a tree block referenced by a subvol, there are two steps.
7663 * COW the block through subvol's reloc tree, then update block pointer
7664 * in the subvol to point to the new block. Since all reloc trees share
7665 * same root key objectid, doing special handing for tree blocks owned
7666 * by them is easy. Once a tree block has been COWed in one reloc tree,
7667 * we can use the resulting new block directly when the same block is
7668 * required to COW again through other reloc trees. By this way, relocated
7669 * tree blocks are shared between reloc trees, so they are also shared
7672 static noinline
int relocate_one_path(struct btrfs_trans_handle
*trans
,
7673 struct btrfs_root
*root
,
7674 struct btrfs_path
*path
,
7675 struct btrfs_key
*first_key
,
7676 struct btrfs_ref_path
*ref_path
,
7677 struct btrfs_block_group_cache
*group
,
7678 struct inode
*reloc_inode
)
7680 struct btrfs_root
*reloc_root
;
7681 struct extent_buffer
*eb
= NULL
;
7682 struct btrfs_key
*keys
;
7686 int lowest_level
= 0;
7689 if (ref_path
->owner_objectid
< BTRFS_FIRST_FREE_OBJECTID
)
7690 lowest_level
= ref_path
->owner_objectid
;
7692 if (!root
->ref_cows
) {
7693 path
->lowest_level
= lowest_level
;
7694 ret
= btrfs_search_slot(trans
, root
, first_key
, path
, 0, 1);
7696 path
->lowest_level
= 0;
7697 btrfs_release_path(root
, path
);
7701 mutex_lock(&root
->fs_info
->tree_reloc_mutex
);
7702 ret
= init_reloc_tree(trans
, root
);
7704 reloc_root
= root
->reloc_root
;
7706 shared_level
= ref_path
->shared_level
;
7707 ref_path
->shared_level
= BTRFS_MAX_LEVEL
- 1;
7709 keys
= ref_path
->node_keys
;
7710 nodes
= ref_path
->new_nodes
;
7711 memset(&keys
[shared_level
+ 1], 0,
7712 sizeof(*keys
) * (BTRFS_MAX_LEVEL
- shared_level
- 1));
7713 memset(&nodes
[shared_level
+ 1], 0,
7714 sizeof(*nodes
) * (BTRFS_MAX_LEVEL
- shared_level
- 1));
7716 if (nodes
[lowest_level
] == 0) {
7717 path
->lowest_level
= lowest_level
;
7718 ret
= btrfs_search_slot(trans
, reloc_root
, first_key
, path
,
7721 for (level
= lowest_level
; level
< BTRFS_MAX_LEVEL
; level
++) {
7722 eb
= path
->nodes
[level
];
7723 if (!eb
|| eb
== reloc_root
->node
)
7725 nodes
[level
] = eb
->start
;
7727 btrfs_item_key_to_cpu(eb
, &keys
[level
], 0);
7729 btrfs_node_key_to_cpu(eb
, &keys
[level
], 0);
7732 ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
7733 eb
= path
->nodes
[0];
7734 ret
= replace_extents_in_leaf(trans
, reloc_root
, eb
,
7735 group
, reloc_inode
);
7738 btrfs_release_path(reloc_root
, path
);
7740 ret
= btrfs_merge_path(trans
, reloc_root
, keys
, nodes
,
7746 * replace tree blocks in the fs tree with tree blocks in
7749 ret
= btrfs_merge_path(trans
, root
, keys
, nodes
, lowest_level
);
7752 if (ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
7753 ret
= btrfs_search_slot(trans
, reloc_root
, first_key
, path
,
7756 extent_buffer_get(path
->nodes
[0]);
7757 eb
= path
->nodes
[0];
7758 btrfs_release_path(reloc_root
, path
);
7759 ret
= invalidate_extent_cache(reloc_root
, eb
, group
, root
);
7761 free_extent_buffer(eb
);
7764 mutex_unlock(&root
->fs_info
->tree_reloc_mutex
);
7765 path
->lowest_level
= 0;
7769 static noinline
int relocate_tree_block(struct btrfs_trans_handle
*trans
,
7770 struct btrfs_root
*root
,
7771 struct btrfs_path
*path
,
7772 struct btrfs_key
*first_key
,
7773 struct btrfs_ref_path
*ref_path
)
7777 ret
= relocate_one_path(trans
, root
, path
, first_key
,
7778 ref_path
, NULL
, NULL
);
7784 static noinline
int del_extent_zero(struct btrfs_trans_handle
*trans
,
7785 struct btrfs_root
*extent_root
,
7786 struct btrfs_path
*path
,
7787 struct btrfs_key
*extent_key
)
7791 ret
= btrfs_search_slot(trans
, extent_root
, extent_key
, path
, -1, 1);
7794 ret
= btrfs_del_item(trans
, extent_root
, path
);
7796 btrfs_release_path(extent_root
, path
);
7800 static noinline
struct btrfs_root
*read_ref_root(struct btrfs_fs_info
*fs_info
,
7801 struct btrfs_ref_path
*ref_path
)
7803 struct btrfs_key root_key
;
7805 root_key
.objectid
= ref_path
->root_objectid
;
7806 root_key
.type
= BTRFS_ROOT_ITEM_KEY
;
7807 if (is_cowonly_root(ref_path
->root_objectid
))
7808 root_key
.offset
= 0;
7810 root_key
.offset
= (u64
)-1;
7812 return btrfs_read_fs_root_no_name(fs_info
, &root_key
);
7815 static noinline
int relocate_one_extent(struct btrfs_root
*extent_root
,
7816 struct btrfs_path
*path
,
7817 struct btrfs_key
*extent_key
,
7818 struct btrfs_block_group_cache
*group
,
7819 struct inode
*reloc_inode
, int pass
)
7821 struct btrfs_trans_handle
*trans
;
7822 struct btrfs_root
*found_root
;
7823 struct btrfs_ref_path
*ref_path
= NULL
;
7824 struct disk_extent
*new_extents
= NULL
;
7829 struct btrfs_key first_key
;
7833 trans
= btrfs_start_transaction(extent_root
, 1);
7834 BUG_ON(IS_ERR(trans
));
7836 if (extent_key
->objectid
== 0) {
7837 ret
= del_extent_zero(trans
, extent_root
, path
, extent_key
);
7841 ref_path
= kmalloc(sizeof(*ref_path
), GFP_NOFS
);
7847 for (loops
= 0; ; loops
++) {
7849 ret
= btrfs_first_ref_path(trans
, extent_root
, ref_path
,
7850 extent_key
->objectid
);
7852 ret
= btrfs_next_ref_path(trans
, extent_root
, ref_path
);
7859 if (ref_path
->root_objectid
== BTRFS_TREE_LOG_OBJECTID
||
7860 ref_path
->root_objectid
== BTRFS_TREE_RELOC_OBJECTID
)
7863 found_root
= read_ref_root(extent_root
->fs_info
, ref_path
);
7864 BUG_ON(!found_root
);
7866 * for reference counted tree, only process reference paths
7867 * rooted at the latest committed root.
7869 if (found_root
->ref_cows
&&
7870 ref_path
->root_generation
!= found_root
->root_key
.offset
)
7873 if (ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
7876 * copy data extents to new locations
7878 u64 group_start
= group
->key
.objectid
;
7879 ret
= relocate_data_extent(reloc_inode
,
7888 level
= ref_path
->owner_objectid
;
7891 if (prev_block
!= ref_path
->nodes
[level
]) {
7892 struct extent_buffer
*eb
;
7893 u64 block_start
= ref_path
->nodes
[level
];
7894 u64 block_size
= btrfs_level_size(found_root
, level
);
7896 eb
= read_tree_block(found_root
, block_start
,
7898 btrfs_tree_lock(eb
);
7899 BUG_ON(level
!= btrfs_header_level(eb
));
7902 btrfs_item_key_to_cpu(eb
, &first_key
, 0);
7904 btrfs_node_key_to_cpu(eb
, &first_key
, 0);
7906 btrfs_tree_unlock(eb
);
7907 free_extent_buffer(eb
);
7908 prev_block
= block_start
;
7911 mutex_lock(&extent_root
->fs_info
->trans_mutex
);
7912 btrfs_record_root_in_trans(found_root
);
7913 mutex_unlock(&extent_root
->fs_info
->trans_mutex
);
7914 if (ref_path
->owner_objectid
>= BTRFS_FIRST_FREE_OBJECTID
) {
7916 * try to update data extent references while
7917 * keeping metadata shared between snapshots.
7920 ret
= relocate_one_path(trans
, found_root
,
7921 path
, &first_key
, ref_path
,
7922 group
, reloc_inode
);
7928 * use fallback method to process the remaining
7932 u64 group_start
= group
->key
.objectid
;
7933 new_extents
= kmalloc(sizeof(*new_extents
),
7936 ret
= get_new_locations(reloc_inode
,
7944 ret
= replace_one_extent(trans
, found_root
,
7946 &first_key
, ref_path
,
7947 new_extents
, nr_extents
);
7949 ret
= relocate_tree_block(trans
, found_root
, path
,
7950 &first_key
, ref_path
);
7957 btrfs_end_transaction(trans
, extent_root
);
7964 static u64
update_block_group_flags(struct btrfs_root
*root
, u64 flags
)
7967 u64 stripped
= BTRFS_BLOCK_GROUP_RAID0
|
7968 BTRFS_BLOCK_GROUP_RAID1
| BTRFS_BLOCK_GROUP_RAID10
;
7971 * we add in the count of missing devices because we want
7972 * to make sure that any RAID levels on a degraded FS
7973 * continue to be honored.
7975 num_devices
= root
->fs_info
->fs_devices
->rw_devices
+
7976 root
->fs_info
->fs_devices
->missing_devices
;
7978 if (num_devices
== 1) {
7979 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
7980 stripped
= flags
& ~stripped
;
7982 /* turn raid0 into single device chunks */
7983 if (flags
& BTRFS_BLOCK_GROUP_RAID0
)
7986 /* turn mirroring into duplication */
7987 if (flags
& (BTRFS_BLOCK_GROUP_RAID1
|
7988 BTRFS_BLOCK_GROUP_RAID10
))
7989 return stripped
| BTRFS_BLOCK_GROUP_DUP
;
7992 /* they already had raid on here, just return */
7993 if (flags
& stripped
)
7996 stripped
|= BTRFS_BLOCK_GROUP_DUP
;
7997 stripped
= flags
& ~stripped
;
7999 /* switch duplicated blocks with raid1 */
8000 if (flags
& BTRFS_BLOCK_GROUP_DUP
)
8001 return stripped
| BTRFS_BLOCK_GROUP_RAID1
;
8003 /* turn single device chunks into raid0 */
8004 return stripped
| BTRFS_BLOCK_GROUP_RAID0
;
8009 static int set_block_group_ro(struct btrfs_block_group_cache
*cache
)
8011 struct btrfs_space_info
*sinfo
= cache
->space_info
;
8018 spin_lock(&sinfo
->lock
);
8019 spin_lock(&cache
->lock
);
8020 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
8021 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
8023 if (sinfo
->bytes_used
+ sinfo
->bytes_reserved
+ sinfo
->bytes_pinned
+
8024 sinfo
->bytes_may_use
+ sinfo
->bytes_readonly
+
8025 cache
->reserved_pinned
+ num_bytes
<= sinfo
->total_bytes
) {
8026 sinfo
->bytes_readonly
+= num_bytes
;
8027 sinfo
->bytes_reserved
+= cache
->reserved_pinned
;
8028 cache
->reserved_pinned
= 0;
8033 spin_unlock(&cache
->lock
);
8034 spin_unlock(&sinfo
->lock
);
8038 int btrfs_set_block_group_ro(struct btrfs_root
*root
,
8039 struct btrfs_block_group_cache
*cache
)
8042 struct btrfs_trans_handle
*trans
;
8048 trans
= btrfs_join_transaction(root
, 1);
8049 BUG_ON(IS_ERR(trans
));
8051 alloc_flags
= update_block_group_flags(root
, cache
->flags
);
8052 if (alloc_flags
!= cache
->flags
)
8053 do_chunk_alloc(trans
, root
, 2 * 1024 * 1024, alloc_flags
, 1);
8055 ret
= set_block_group_ro(cache
);
8058 alloc_flags
= get_alloc_profile(root
, cache
->space_info
->flags
);
8059 ret
= do_chunk_alloc(trans
, root
, 2 * 1024 * 1024, alloc_flags
, 1);
8062 ret
= set_block_group_ro(cache
);
8064 btrfs_end_transaction(trans
, root
);
8069 * helper to account the unused space of all the readonly block group in the
8070 * list. takes mirrors into account.
8072 static u64
__btrfs_get_ro_block_group_free_space(struct list_head
*groups_list
)
8074 struct btrfs_block_group_cache
*block_group
;
8078 list_for_each_entry(block_group
, groups_list
, list
) {
8079 spin_lock(&block_group
->lock
);
8081 if (!block_group
->ro
) {
8082 spin_unlock(&block_group
->lock
);
8086 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_RAID1
|
8087 BTRFS_BLOCK_GROUP_RAID10
|
8088 BTRFS_BLOCK_GROUP_DUP
))
8093 free_bytes
+= (block_group
->key
.offset
-
8094 btrfs_block_group_used(&block_group
->item
)) *
8097 spin_unlock(&block_group
->lock
);
8104 * helper to account the unused space of all the readonly block group in the
8105 * space_info. takes mirrors into account.
8107 u64
btrfs_account_ro_block_groups_free_space(struct btrfs_space_info
*sinfo
)
8112 spin_lock(&sinfo
->lock
);
8114 for(i
= 0; i
< BTRFS_NR_RAID_TYPES
; i
++)
8115 if (!list_empty(&sinfo
->block_groups
[i
]))
8116 free_bytes
+= __btrfs_get_ro_block_group_free_space(
8117 &sinfo
->block_groups
[i
]);
8119 spin_unlock(&sinfo
->lock
);
8124 int btrfs_set_block_group_rw(struct btrfs_root
*root
,
8125 struct btrfs_block_group_cache
*cache
)
8127 struct btrfs_space_info
*sinfo
= cache
->space_info
;
8132 spin_lock(&sinfo
->lock
);
8133 spin_lock(&cache
->lock
);
8134 num_bytes
= cache
->key
.offset
- cache
->reserved
- cache
->pinned
-
8135 cache
->bytes_super
- btrfs_block_group_used(&cache
->item
);
8136 sinfo
->bytes_readonly
-= num_bytes
;
8138 spin_unlock(&cache
->lock
);
8139 spin_unlock(&sinfo
->lock
);
8144 * checks to see if its even possible to relocate this block group.
8146 * @return - -1 if it's not a good idea to relocate this block group, 0 if its
8147 * ok to go ahead and try.
8149 int btrfs_can_relocate(struct btrfs_root
*root
, u64 bytenr
)
8151 struct btrfs_block_group_cache
*block_group
;
8152 struct btrfs_space_info
*space_info
;
8153 struct btrfs_fs_devices
*fs_devices
= root
->fs_info
->fs_devices
;
8154 struct btrfs_device
*device
;
8158 block_group
= btrfs_lookup_block_group(root
->fs_info
, bytenr
);
8160 /* odd, couldn't find the block group, leave it alone */
8164 /* no bytes used, we're good */
8165 if (!btrfs_block_group_used(&block_group
->item
))
8168 space_info
= block_group
->space_info
;
8169 spin_lock(&space_info
->lock
);
8171 full
= space_info
->full
;
8174 * if this is the last block group we have in this space, we can't
8175 * relocate it unless we're able to allocate a new chunk below.
8177 * Otherwise, we need to make sure we have room in the space to handle
8178 * all of the extents from this block group. If we can, we're good
8180 if ((space_info
->total_bytes
!= block_group
->key
.offset
) &&
8181 (space_info
->bytes_used
+ space_info
->bytes_reserved
+
8182 space_info
->bytes_pinned
+ space_info
->bytes_readonly
+
8183 btrfs_block_group_used(&block_group
->item
) <
8184 space_info
->total_bytes
)) {
8185 spin_unlock(&space_info
->lock
);
8188 spin_unlock(&space_info
->lock
);
8191 * ok we don't have enough space, but maybe we have free space on our
8192 * devices to allocate new chunks for relocation, so loop through our
8193 * alloc devices and guess if we have enough space. However, if we
8194 * were marked as full, then we know there aren't enough chunks, and we
8201 mutex_lock(&root
->fs_info
->chunk_mutex
);
8202 list_for_each_entry(device
, &fs_devices
->alloc_list
, dev_alloc_list
) {
8203 u64 min_free
= btrfs_block_group_used(&block_group
->item
);
8207 * check to make sure we can actually find a chunk with enough
8208 * space to fit our block group in.
8210 if (device
->total_bytes
> device
->bytes_used
+ min_free
) {
8211 ret
= find_free_dev_extent(NULL
, device
, min_free
,
8218 mutex_unlock(&root
->fs_info
->chunk_mutex
);
8220 btrfs_put_block_group(block_group
);
8224 static int find_first_block_group(struct btrfs_root
*root
,
8225 struct btrfs_path
*path
, struct btrfs_key
*key
)
8228 struct btrfs_key found_key
;
8229 struct extent_buffer
*leaf
;
8232 ret
= btrfs_search_slot(NULL
, root
, key
, path
, 0, 0);
8237 slot
= path
->slots
[0];
8238 leaf
= path
->nodes
[0];
8239 if (slot
>= btrfs_header_nritems(leaf
)) {
8240 ret
= btrfs_next_leaf(root
, path
);
8247 btrfs_item_key_to_cpu(leaf
, &found_key
, slot
);
8249 if (found_key
.objectid
>= key
->objectid
&&
8250 found_key
.type
== BTRFS_BLOCK_GROUP_ITEM_KEY
) {
8260 void btrfs_put_block_group_cache(struct btrfs_fs_info
*info
)
8262 struct btrfs_block_group_cache
*block_group
;
8266 struct inode
*inode
;
8268 block_group
= btrfs_lookup_first_block_group(info
, last
);
8269 while (block_group
) {
8270 spin_lock(&block_group
->lock
);
8271 if (block_group
->iref
)
8273 spin_unlock(&block_group
->lock
);
8274 block_group
= next_block_group(info
->tree_root
,
8284 inode
= block_group
->inode
;
8285 block_group
->iref
= 0;
8286 block_group
->inode
= NULL
;
8287 spin_unlock(&block_group
->lock
);
8289 last
= block_group
->key
.objectid
+ block_group
->key
.offset
;
8290 btrfs_put_block_group(block_group
);
8294 int btrfs_free_block_groups(struct btrfs_fs_info
*info
)
8296 struct btrfs_block_group_cache
*block_group
;
8297 struct btrfs_space_info
*space_info
;
8298 struct btrfs_caching_control
*caching_ctl
;
8301 down_write(&info
->extent_commit_sem
);
8302 while (!list_empty(&info
->caching_block_groups
)) {
8303 caching_ctl
= list_entry(info
->caching_block_groups
.next
,
8304 struct btrfs_caching_control
, list
);
8305 list_del(&caching_ctl
->list
);
8306 put_caching_control(caching_ctl
);
8308 up_write(&info
->extent_commit_sem
);
8310 spin_lock(&info
->block_group_cache_lock
);
8311 while ((n
= rb_last(&info
->block_group_cache_tree
)) != NULL
) {
8312 block_group
= rb_entry(n
, struct btrfs_block_group_cache
,
8314 rb_erase(&block_group
->cache_node
,
8315 &info
->block_group_cache_tree
);
8316 spin_unlock(&info
->block_group_cache_lock
);
8318 down_write(&block_group
->space_info
->groups_sem
);
8319 list_del(&block_group
->list
);
8320 up_write(&block_group
->space_info
->groups_sem
);
8322 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
8323 wait_block_group_cache_done(block_group
);
8326 * We haven't cached this block group, which means we could
8327 * possibly have excluded extents on this block group.
8329 if (block_group
->cached
== BTRFS_CACHE_NO
)
8330 free_excluded_extents(info
->extent_root
, block_group
);
8332 btrfs_remove_free_space_cache(block_group
);
8333 btrfs_put_block_group(block_group
);
8335 spin_lock(&info
->block_group_cache_lock
);
8337 spin_unlock(&info
->block_group_cache_lock
);
8339 /* now that all the block groups are freed, go through and
8340 * free all the space_info structs. This is only called during
8341 * the final stages of unmount, and so we know nobody is
8342 * using them. We call synchronize_rcu() once before we start,
8343 * just to be on the safe side.
8347 release_global_block_rsv(info
);
8349 while(!list_empty(&info
->space_info
)) {
8350 space_info
= list_entry(info
->space_info
.next
,
8351 struct btrfs_space_info
,
8353 if (space_info
->bytes_pinned
> 0 ||
8354 space_info
->bytes_reserved
> 0) {
8356 dump_space_info(space_info
, 0, 0);
8358 list_del(&space_info
->list
);
8364 static void __link_block_group(struct btrfs_space_info
*space_info
,
8365 struct btrfs_block_group_cache
*cache
)
8367 int index
= get_block_group_index(cache
);
8369 down_write(&space_info
->groups_sem
);
8370 list_add_tail(&cache
->list
, &space_info
->block_groups
[index
]);
8371 up_write(&space_info
->groups_sem
);
8374 int btrfs_read_block_groups(struct btrfs_root
*root
)
8376 struct btrfs_path
*path
;
8378 struct btrfs_block_group_cache
*cache
;
8379 struct btrfs_fs_info
*info
= root
->fs_info
;
8380 struct btrfs_space_info
*space_info
;
8381 struct btrfs_key key
;
8382 struct btrfs_key found_key
;
8383 struct extent_buffer
*leaf
;
8387 root
= info
->extent_root
;
8390 btrfs_set_key_type(&key
, BTRFS_BLOCK_GROUP_ITEM_KEY
);
8391 path
= btrfs_alloc_path();
8395 cache_gen
= btrfs_super_cache_generation(&root
->fs_info
->super_copy
);
8396 if (cache_gen
!= 0 &&
8397 btrfs_super_generation(&root
->fs_info
->super_copy
) != cache_gen
)
8399 if (btrfs_test_opt(root
, CLEAR_CACHE
))
8401 if (!btrfs_test_opt(root
, SPACE_CACHE
) && cache_gen
)
8402 printk(KERN_INFO
"btrfs: disk space caching is enabled\n");
8405 ret
= find_first_block_group(root
, path
, &key
);
8410 leaf
= path
->nodes
[0];
8411 btrfs_item_key_to_cpu(leaf
, &found_key
, path
->slots
[0]);
8412 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
8418 atomic_set(&cache
->count
, 1);
8419 spin_lock_init(&cache
->lock
);
8420 spin_lock_init(&cache
->tree_lock
);
8421 cache
->fs_info
= info
;
8422 INIT_LIST_HEAD(&cache
->list
);
8423 INIT_LIST_HEAD(&cache
->cluster_list
);
8426 cache
->disk_cache_state
= BTRFS_DC_CLEAR
;
8429 * we only want to have 32k of ram per block group for keeping
8430 * track of free space, and if we pass 1/2 of that we want to
8431 * start converting things over to using bitmaps
8433 cache
->extents_thresh
= ((1024 * 32) / 2) /
8434 sizeof(struct btrfs_free_space
);
8436 read_extent_buffer(leaf
, &cache
->item
,
8437 btrfs_item_ptr_offset(leaf
, path
->slots
[0]),
8438 sizeof(cache
->item
));
8439 memcpy(&cache
->key
, &found_key
, sizeof(found_key
));
8441 key
.objectid
= found_key
.objectid
+ found_key
.offset
;
8442 btrfs_release_path(root
, path
);
8443 cache
->flags
= btrfs_block_group_flags(&cache
->item
);
8444 cache
->sectorsize
= root
->sectorsize
;
8447 * We need to exclude the super stripes now so that the space
8448 * info has super bytes accounted for, otherwise we'll think
8449 * we have more space than we actually do.
8451 exclude_super_stripes(root
, cache
);
8454 * check for two cases, either we are full, and therefore
8455 * don't need to bother with the caching work since we won't
8456 * find any space, or we are empty, and we can just add all
8457 * the space in and be done with it. This saves us _alot_ of
8458 * time, particularly in the full case.
8460 if (found_key
.offset
== btrfs_block_group_used(&cache
->item
)) {
8461 cache
->last_byte_to_unpin
= (u64
)-1;
8462 cache
->cached
= BTRFS_CACHE_FINISHED
;
8463 free_excluded_extents(root
, cache
);
8464 } else if (btrfs_block_group_used(&cache
->item
) == 0) {
8465 cache
->last_byte_to_unpin
= (u64
)-1;
8466 cache
->cached
= BTRFS_CACHE_FINISHED
;
8467 add_new_free_space(cache
, root
->fs_info
,
8469 found_key
.objectid
+
8471 free_excluded_extents(root
, cache
);
8474 ret
= update_space_info(info
, cache
->flags
, found_key
.offset
,
8475 btrfs_block_group_used(&cache
->item
),
8478 cache
->space_info
= space_info
;
8479 spin_lock(&cache
->space_info
->lock
);
8480 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
8481 spin_unlock(&cache
->space_info
->lock
);
8483 __link_block_group(space_info
, cache
);
8485 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
8488 set_avail_alloc_bits(root
->fs_info
, cache
->flags
);
8489 if (btrfs_chunk_readonly(root
, cache
->key
.objectid
))
8490 set_block_group_ro(cache
);
8493 list_for_each_entry_rcu(space_info
, &root
->fs_info
->space_info
, list
) {
8494 if (!(get_alloc_profile(root
, space_info
->flags
) &
8495 (BTRFS_BLOCK_GROUP_RAID10
|
8496 BTRFS_BLOCK_GROUP_RAID1
|
8497 BTRFS_BLOCK_GROUP_DUP
)))
8500 * avoid allocating from un-mirrored block group if there are
8501 * mirrored block groups.
8503 list_for_each_entry(cache
, &space_info
->block_groups
[3], list
)
8504 set_block_group_ro(cache
);
8505 list_for_each_entry(cache
, &space_info
->block_groups
[4], list
)
8506 set_block_group_ro(cache
);
8509 init_global_block_rsv(info
);
8512 btrfs_free_path(path
);
8516 int btrfs_make_block_group(struct btrfs_trans_handle
*trans
,
8517 struct btrfs_root
*root
, u64 bytes_used
,
8518 u64 type
, u64 chunk_objectid
, u64 chunk_offset
,
8522 struct btrfs_root
*extent_root
;
8523 struct btrfs_block_group_cache
*cache
;
8525 extent_root
= root
->fs_info
->extent_root
;
8527 root
->fs_info
->last_trans_log_full_commit
= trans
->transid
;
8529 cache
= kzalloc(sizeof(*cache
), GFP_NOFS
);
8533 cache
->key
.objectid
= chunk_offset
;
8534 cache
->key
.offset
= size
;
8535 cache
->key
.type
= BTRFS_BLOCK_GROUP_ITEM_KEY
;
8536 cache
->sectorsize
= root
->sectorsize
;
8537 cache
->fs_info
= root
->fs_info
;
8540 * we only want to have 32k of ram per block group for keeping track
8541 * of free space, and if we pass 1/2 of that we want to start
8542 * converting things over to using bitmaps
8544 cache
->extents_thresh
= ((1024 * 32) / 2) /
8545 sizeof(struct btrfs_free_space
);
8546 atomic_set(&cache
->count
, 1);
8547 spin_lock_init(&cache
->lock
);
8548 spin_lock_init(&cache
->tree_lock
);
8549 INIT_LIST_HEAD(&cache
->list
);
8550 INIT_LIST_HEAD(&cache
->cluster_list
);
8552 btrfs_set_block_group_used(&cache
->item
, bytes_used
);
8553 btrfs_set_block_group_chunk_objectid(&cache
->item
, chunk_objectid
);
8554 cache
->flags
= type
;
8555 btrfs_set_block_group_flags(&cache
->item
, type
);
8557 cache
->last_byte_to_unpin
= (u64
)-1;
8558 cache
->cached
= BTRFS_CACHE_FINISHED
;
8559 exclude_super_stripes(root
, cache
);
8561 add_new_free_space(cache
, root
->fs_info
, chunk_offset
,
8562 chunk_offset
+ size
);
8564 free_excluded_extents(root
, cache
);
8566 ret
= update_space_info(root
->fs_info
, cache
->flags
, size
, bytes_used
,
8567 &cache
->space_info
);
8570 spin_lock(&cache
->space_info
->lock
);
8571 cache
->space_info
->bytes_readonly
+= cache
->bytes_super
;
8572 spin_unlock(&cache
->space_info
->lock
);
8574 __link_block_group(cache
->space_info
, cache
);
8576 ret
= btrfs_add_block_group_cache(root
->fs_info
, cache
);
8579 ret
= btrfs_insert_item(trans
, extent_root
, &cache
->key
, &cache
->item
,
8580 sizeof(cache
->item
));
8583 set_avail_alloc_bits(extent_root
->fs_info
, type
);
8588 int btrfs_remove_block_group(struct btrfs_trans_handle
*trans
,
8589 struct btrfs_root
*root
, u64 group_start
)
8591 struct btrfs_path
*path
;
8592 struct btrfs_block_group_cache
*block_group
;
8593 struct btrfs_free_cluster
*cluster
;
8594 struct btrfs_root
*tree_root
= root
->fs_info
->tree_root
;
8595 struct btrfs_key key
;
8596 struct inode
*inode
;
8600 root
= root
->fs_info
->extent_root
;
8602 block_group
= btrfs_lookup_block_group(root
->fs_info
, group_start
);
8603 BUG_ON(!block_group
);
8604 BUG_ON(!block_group
->ro
);
8606 memcpy(&key
, &block_group
->key
, sizeof(key
));
8607 if (block_group
->flags
& (BTRFS_BLOCK_GROUP_DUP
|
8608 BTRFS_BLOCK_GROUP_RAID1
|
8609 BTRFS_BLOCK_GROUP_RAID10
))
8614 /* make sure this block group isn't part of an allocation cluster */
8615 cluster
= &root
->fs_info
->data_alloc_cluster
;
8616 spin_lock(&cluster
->refill_lock
);
8617 btrfs_return_cluster_to_free_space(block_group
, cluster
);
8618 spin_unlock(&cluster
->refill_lock
);
8621 * make sure this block group isn't part of a metadata
8622 * allocation cluster
8624 cluster
= &root
->fs_info
->meta_alloc_cluster
;
8625 spin_lock(&cluster
->refill_lock
);
8626 btrfs_return_cluster_to_free_space(block_group
, cluster
);
8627 spin_unlock(&cluster
->refill_lock
);
8629 path
= btrfs_alloc_path();
8632 inode
= lookup_free_space_inode(root
, block_group
, path
);
8633 if (!IS_ERR(inode
)) {
8634 btrfs_orphan_add(trans
, inode
);
8636 /* One for the block groups ref */
8637 spin_lock(&block_group
->lock
);
8638 if (block_group
->iref
) {
8639 block_group
->iref
= 0;
8640 block_group
->inode
= NULL
;
8641 spin_unlock(&block_group
->lock
);
8644 spin_unlock(&block_group
->lock
);
8646 /* One for our lookup ref */
8650 key
.objectid
= BTRFS_FREE_SPACE_OBJECTID
;
8651 key
.offset
= block_group
->key
.objectid
;
8654 ret
= btrfs_search_slot(trans
, tree_root
, &key
, path
, -1, 1);
8658 btrfs_release_path(tree_root
, path
);
8660 ret
= btrfs_del_item(trans
, tree_root
, path
);
8663 btrfs_release_path(tree_root
, path
);
8666 spin_lock(&root
->fs_info
->block_group_cache_lock
);
8667 rb_erase(&block_group
->cache_node
,
8668 &root
->fs_info
->block_group_cache_tree
);
8669 spin_unlock(&root
->fs_info
->block_group_cache_lock
);
8671 down_write(&block_group
->space_info
->groups_sem
);
8673 * we must use list_del_init so people can check to see if they
8674 * are still on the list after taking the semaphore
8676 list_del_init(&block_group
->list
);
8677 up_write(&block_group
->space_info
->groups_sem
);
8679 if (block_group
->cached
== BTRFS_CACHE_STARTED
)
8680 wait_block_group_cache_done(block_group
);
8682 btrfs_remove_free_space_cache(block_group
);
8684 spin_lock(&block_group
->space_info
->lock
);
8685 block_group
->space_info
->total_bytes
-= block_group
->key
.offset
;
8686 block_group
->space_info
->bytes_readonly
-= block_group
->key
.offset
;
8687 block_group
->space_info
->disk_total
-= block_group
->key
.offset
* factor
;
8688 spin_unlock(&block_group
->space_info
->lock
);
8690 memcpy(&key
, &block_group
->key
, sizeof(key
));
8692 btrfs_clear_space_info_full(root
->fs_info
);
8694 btrfs_put_block_group(block_group
);
8695 btrfs_put_block_group(block_group
);
8697 ret
= btrfs_search_slot(trans
, root
, &key
, path
, -1, 1);
8703 ret
= btrfs_del_item(trans
, root
, path
);
8705 btrfs_free_path(path
);
8709 int btrfs_error_unpin_extent_range(struct btrfs_root
*root
, u64 start
, u64 end
)
8711 return unpin_extent_range(root
, start
, end
);
8714 int btrfs_error_discard_extent(struct btrfs_root
*root
, u64 bytenr
,
8717 return btrfs_discard_extent(root
, bytenr
, num_bytes
);