Merge branch 'perf/urgent' into perf/core
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / perf_event.c
bloba3d568fbacc60b8103830c2910c0f0302d2037c5
1 /*
2 * Performance events core code:
4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
5 * Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
6 * Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
9 * For licensing details see kernel-base/COPYING
12 #include <linux/fs.h>
13 #include <linux/mm.h>
14 #include <linux/cpu.h>
15 #include <linux/smp.h>
16 #include <linux/file.h>
17 #include <linux/poll.h>
18 #include <linux/slab.h>
19 #include <linux/hash.h>
20 #include <linux/sysfs.h>
21 #include <linux/dcache.h>
22 #include <linux/percpu.h>
23 #include <linux/ptrace.h>
24 #include <linux/reboot.h>
25 #include <linux/vmstat.h>
26 #include <linux/vmalloc.h>
27 #include <linux/hardirq.h>
28 #include <linux/rculist.h>
29 #include <linux/uaccess.h>
30 #include <linux/syscalls.h>
31 #include <linux/anon_inodes.h>
32 #include <linux/kernel_stat.h>
33 #include <linux/perf_event.h>
34 #include <linux/ftrace_event.h>
35 #include <linux/hw_breakpoint.h>
37 #include <asm/irq_regs.h>
39 atomic_t perf_task_events __read_mostly;
40 static atomic_t nr_mmap_events __read_mostly;
41 static atomic_t nr_comm_events __read_mostly;
42 static atomic_t nr_task_events __read_mostly;
44 static LIST_HEAD(pmus);
45 static DEFINE_MUTEX(pmus_lock);
46 static struct srcu_struct pmus_srcu;
49 * perf event paranoia level:
50 * -1 - not paranoid at all
51 * 0 - disallow raw tracepoint access for unpriv
52 * 1 - disallow cpu events for unpriv
53 * 2 - disallow kernel profiling for unpriv
55 int sysctl_perf_event_paranoid __read_mostly = 1;
57 int sysctl_perf_event_mlock __read_mostly = 512; /* 'free' kb per user */
60 * max perf event sample rate
62 int sysctl_perf_event_sample_rate __read_mostly = 100000;
64 static atomic64_t perf_event_id;
66 void __weak perf_event_print_debug(void) { }
68 extern __weak const char *perf_pmu_name(void)
70 return "pmu";
73 void perf_pmu_disable(struct pmu *pmu)
75 int *count = this_cpu_ptr(pmu->pmu_disable_count);
76 if (!(*count)++)
77 pmu->pmu_disable(pmu);
80 void perf_pmu_enable(struct pmu *pmu)
82 int *count = this_cpu_ptr(pmu->pmu_disable_count);
83 if (!--(*count))
84 pmu->pmu_enable(pmu);
87 static DEFINE_PER_CPU(struct list_head, rotation_list);
90 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
91 * because they're strictly cpu affine and rotate_start is called with IRQs
92 * disabled, while rotate_context is called from IRQ context.
94 static void perf_pmu_rotate_start(struct pmu *pmu)
96 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
97 struct list_head *head = &__get_cpu_var(rotation_list);
99 WARN_ON(!irqs_disabled());
101 if (list_empty(&cpuctx->rotation_list))
102 list_add(&cpuctx->rotation_list, head);
105 static void get_ctx(struct perf_event_context *ctx)
107 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
110 static void free_ctx(struct rcu_head *head)
112 struct perf_event_context *ctx;
114 ctx = container_of(head, struct perf_event_context, rcu_head);
115 kfree(ctx);
118 static void put_ctx(struct perf_event_context *ctx)
120 if (atomic_dec_and_test(&ctx->refcount)) {
121 if (ctx->parent_ctx)
122 put_ctx(ctx->parent_ctx);
123 if (ctx->task)
124 put_task_struct(ctx->task);
125 call_rcu(&ctx->rcu_head, free_ctx);
129 static void unclone_ctx(struct perf_event_context *ctx)
131 if (ctx->parent_ctx) {
132 put_ctx(ctx->parent_ctx);
133 ctx->parent_ctx = NULL;
137 static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
140 * only top level events have the pid namespace they were created in
142 if (event->parent)
143 event = event->parent;
145 return task_tgid_nr_ns(p, event->ns);
148 static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
151 * only top level events have the pid namespace they were created in
153 if (event->parent)
154 event = event->parent;
156 return task_pid_nr_ns(p, event->ns);
160 * If we inherit events we want to return the parent event id
161 * to userspace.
163 static u64 primary_event_id(struct perf_event *event)
165 u64 id = event->id;
167 if (event->parent)
168 id = event->parent->id;
170 return id;
174 * Get the perf_event_context for a task and lock it.
175 * This has to cope with with the fact that until it is locked,
176 * the context could get moved to another task.
178 static struct perf_event_context *
179 perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
181 struct perf_event_context *ctx;
183 rcu_read_lock();
184 retry:
185 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
186 if (ctx) {
188 * If this context is a clone of another, it might
189 * get swapped for another underneath us by
190 * perf_event_task_sched_out, though the
191 * rcu_read_lock() protects us from any context
192 * getting freed. Lock the context and check if it
193 * got swapped before we could get the lock, and retry
194 * if so. If we locked the right context, then it
195 * can't get swapped on us any more.
197 raw_spin_lock_irqsave(&ctx->lock, *flags);
198 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
199 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
200 goto retry;
203 if (!atomic_inc_not_zero(&ctx->refcount)) {
204 raw_spin_unlock_irqrestore(&ctx->lock, *flags);
205 ctx = NULL;
208 rcu_read_unlock();
209 return ctx;
213 * Get the context for a task and increment its pin_count so it
214 * can't get swapped to another task. This also increments its
215 * reference count so that the context can't get freed.
217 static struct perf_event_context *
218 perf_pin_task_context(struct task_struct *task, int ctxn)
220 struct perf_event_context *ctx;
221 unsigned long flags;
223 ctx = perf_lock_task_context(task, ctxn, &flags);
224 if (ctx) {
225 ++ctx->pin_count;
226 raw_spin_unlock_irqrestore(&ctx->lock, flags);
228 return ctx;
231 static void perf_unpin_context(struct perf_event_context *ctx)
233 unsigned long flags;
235 raw_spin_lock_irqsave(&ctx->lock, flags);
236 --ctx->pin_count;
237 raw_spin_unlock_irqrestore(&ctx->lock, flags);
238 put_ctx(ctx);
241 static inline u64 perf_clock(void)
243 return local_clock();
247 * Update the record of the current time in a context.
249 static void update_context_time(struct perf_event_context *ctx)
251 u64 now = perf_clock();
253 ctx->time += now - ctx->timestamp;
254 ctx->timestamp = now;
258 * Update the total_time_enabled and total_time_running fields for a event.
260 static void update_event_times(struct perf_event *event)
262 struct perf_event_context *ctx = event->ctx;
263 u64 run_end;
265 if (event->state < PERF_EVENT_STATE_INACTIVE ||
266 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
267 return;
269 if (ctx->is_active)
270 run_end = ctx->time;
271 else
272 run_end = event->tstamp_stopped;
274 event->total_time_enabled = run_end - event->tstamp_enabled;
276 if (event->state == PERF_EVENT_STATE_INACTIVE)
277 run_end = event->tstamp_stopped;
278 else
279 run_end = ctx->time;
281 event->total_time_running = run_end - event->tstamp_running;
285 * Update total_time_enabled and total_time_running for all events in a group.
287 static void update_group_times(struct perf_event *leader)
289 struct perf_event *event;
291 update_event_times(leader);
292 list_for_each_entry(event, &leader->sibling_list, group_entry)
293 update_event_times(event);
296 static struct list_head *
297 ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
299 if (event->attr.pinned)
300 return &ctx->pinned_groups;
301 else
302 return &ctx->flexible_groups;
306 * Add a event from the lists for its context.
307 * Must be called with ctx->mutex and ctx->lock held.
309 static void
310 list_add_event(struct perf_event *event, struct perf_event_context *ctx)
312 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
313 event->attach_state |= PERF_ATTACH_CONTEXT;
316 * If we're a stand alone event or group leader, we go to the context
317 * list, group events are kept attached to the group so that
318 * perf_group_detach can, at all times, locate all siblings.
320 if (event->group_leader == event) {
321 struct list_head *list;
323 if (is_software_event(event))
324 event->group_flags |= PERF_GROUP_SOFTWARE;
326 list = ctx_group_list(event, ctx);
327 list_add_tail(&event->group_entry, list);
330 list_add_rcu(&event->event_entry, &ctx->event_list);
331 if (!ctx->nr_events)
332 perf_pmu_rotate_start(ctx->pmu);
333 ctx->nr_events++;
334 if (event->attr.inherit_stat)
335 ctx->nr_stat++;
339 * Called at perf_event creation and when events are attached/detached from a
340 * group.
342 static void perf_event__read_size(struct perf_event *event)
344 int entry = sizeof(u64); /* value */
345 int size = 0;
346 int nr = 1;
348 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
349 size += sizeof(u64);
351 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
352 size += sizeof(u64);
354 if (event->attr.read_format & PERF_FORMAT_ID)
355 entry += sizeof(u64);
357 if (event->attr.read_format & PERF_FORMAT_GROUP) {
358 nr += event->group_leader->nr_siblings;
359 size += sizeof(u64);
362 size += entry * nr;
363 event->read_size = size;
366 static void perf_event__header_size(struct perf_event *event)
368 struct perf_sample_data *data;
369 u64 sample_type = event->attr.sample_type;
370 u16 size = 0;
372 perf_event__read_size(event);
374 if (sample_type & PERF_SAMPLE_IP)
375 size += sizeof(data->ip);
377 if (sample_type & PERF_SAMPLE_ADDR)
378 size += sizeof(data->addr);
380 if (sample_type & PERF_SAMPLE_PERIOD)
381 size += sizeof(data->period);
383 if (sample_type & PERF_SAMPLE_READ)
384 size += event->read_size;
386 event->header_size = size;
389 static void perf_event__id_header_size(struct perf_event *event)
391 struct perf_sample_data *data;
392 u64 sample_type = event->attr.sample_type;
393 u16 size = 0;
395 if (sample_type & PERF_SAMPLE_TID)
396 size += sizeof(data->tid_entry);
398 if (sample_type & PERF_SAMPLE_TIME)
399 size += sizeof(data->time);
401 if (sample_type & PERF_SAMPLE_ID)
402 size += sizeof(data->id);
404 if (sample_type & PERF_SAMPLE_STREAM_ID)
405 size += sizeof(data->stream_id);
407 if (sample_type & PERF_SAMPLE_CPU)
408 size += sizeof(data->cpu_entry);
410 event->id_header_size = size;
413 static void perf_group_attach(struct perf_event *event)
415 struct perf_event *group_leader = event->group_leader, *pos;
418 * We can have double attach due to group movement in perf_event_open.
420 if (event->attach_state & PERF_ATTACH_GROUP)
421 return;
423 event->attach_state |= PERF_ATTACH_GROUP;
425 if (group_leader == event)
426 return;
428 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
429 !is_software_event(event))
430 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
432 list_add_tail(&event->group_entry, &group_leader->sibling_list);
433 group_leader->nr_siblings++;
435 perf_event__header_size(group_leader);
437 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
438 perf_event__header_size(pos);
442 * Remove a event from the lists for its context.
443 * Must be called with ctx->mutex and ctx->lock held.
445 static void
446 list_del_event(struct perf_event *event, struct perf_event_context *ctx)
449 * We can have double detach due to exit/hot-unplug + close.
451 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
452 return;
454 event->attach_state &= ~PERF_ATTACH_CONTEXT;
456 ctx->nr_events--;
457 if (event->attr.inherit_stat)
458 ctx->nr_stat--;
460 list_del_rcu(&event->event_entry);
462 if (event->group_leader == event)
463 list_del_init(&event->group_entry);
465 update_group_times(event);
468 * If event was in error state, then keep it
469 * that way, otherwise bogus counts will be
470 * returned on read(). The only way to get out
471 * of error state is by explicit re-enabling
472 * of the event
474 if (event->state > PERF_EVENT_STATE_OFF)
475 event->state = PERF_EVENT_STATE_OFF;
478 static void perf_group_detach(struct perf_event *event)
480 struct perf_event *sibling, *tmp;
481 struct list_head *list = NULL;
484 * We can have double detach due to exit/hot-unplug + close.
486 if (!(event->attach_state & PERF_ATTACH_GROUP))
487 return;
489 event->attach_state &= ~PERF_ATTACH_GROUP;
492 * If this is a sibling, remove it from its group.
494 if (event->group_leader != event) {
495 list_del_init(&event->group_entry);
496 event->group_leader->nr_siblings--;
497 goto out;
500 if (!list_empty(&event->group_entry))
501 list = &event->group_entry;
504 * If this was a group event with sibling events then
505 * upgrade the siblings to singleton events by adding them
506 * to whatever list we are on.
508 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
509 if (list)
510 list_move_tail(&sibling->group_entry, list);
511 sibling->group_leader = sibling;
513 /* Inherit group flags from the previous leader */
514 sibling->group_flags = event->group_flags;
517 out:
518 perf_event__header_size(event->group_leader);
520 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
521 perf_event__header_size(tmp);
524 static inline int
525 event_filter_match(struct perf_event *event)
527 return event->cpu == -1 || event->cpu == smp_processor_id();
530 static void
531 event_sched_out(struct perf_event *event,
532 struct perf_cpu_context *cpuctx,
533 struct perf_event_context *ctx)
535 u64 delta;
537 * An event which could not be activated because of
538 * filter mismatch still needs to have its timings
539 * maintained, otherwise bogus information is return
540 * via read() for time_enabled, time_running:
542 if (event->state == PERF_EVENT_STATE_INACTIVE
543 && !event_filter_match(event)) {
544 delta = ctx->time - event->tstamp_stopped;
545 event->tstamp_running += delta;
546 event->tstamp_stopped = ctx->time;
549 if (event->state != PERF_EVENT_STATE_ACTIVE)
550 return;
552 event->state = PERF_EVENT_STATE_INACTIVE;
553 if (event->pending_disable) {
554 event->pending_disable = 0;
555 event->state = PERF_EVENT_STATE_OFF;
557 event->tstamp_stopped = ctx->time;
558 event->pmu->del(event, 0);
559 event->oncpu = -1;
561 if (!is_software_event(event))
562 cpuctx->active_oncpu--;
563 ctx->nr_active--;
564 if (event->attr.exclusive || !cpuctx->active_oncpu)
565 cpuctx->exclusive = 0;
568 static void
569 group_sched_out(struct perf_event *group_event,
570 struct perf_cpu_context *cpuctx,
571 struct perf_event_context *ctx)
573 struct perf_event *event;
574 int state = group_event->state;
576 event_sched_out(group_event, cpuctx, ctx);
579 * Schedule out siblings (if any):
581 list_for_each_entry(event, &group_event->sibling_list, group_entry)
582 event_sched_out(event, cpuctx, ctx);
584 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
585 cpuctx->exclusive = 0;
588 static inline struct perf_cpu_context *
589 __get_cpu_context(struct perf_event_context *ctx)
591 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
595 * Cross CPU call to remove a performance event
597 * We disable the event on the hardware level first. After that we
598 * remove it from the context list.
600 static void __perf_event_remove_from_context(void *info)
602 struct perf_event *event = info;
603 struct perf_event_context *ctx = event->ctx;
604 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
607 * If this is a task context, we need to check whether it is
608 * the current task context of this cpu. If not it has been
609 * scheduled out before the smp call arrived.
611 if (ctx->task && cpuctx->task_ctx != ctx)
612 return;
614 raw_spin_lock(&ctx->lock);
616 event_sched_out(event, cpuctx, ctx);
618 list_del_event(event, ctx);
620 raw_spin_unlock(&ctx->lock);
625 * Remove the event from a task's (or a CPU's) list of events.
627 * Must be called with ctx->mutex held.
629 * CPU events are removed with a smp call. For task events we only
630 * call when the task is on a CPU.
632 * If event->ctx is a cloned context, callers must make sure that
633 * every task struct that event->ctx->task could possibly point to
634 * remains valid. This is OK when called from perf_release since
635 * that only calls us on the top-level context, which can't be a clone.
636 * When called from perf_event_exit_task, it's OK because the
637 * context has been detached from its task.
639 static void perf_event_remove_from_context(struct perf_event *event)
641 struct perf_event_context *ctx = event->ctx;
642 struct task_struct *task = ctx->task;
644 if (!task) {
646 * Per cpu events are removed via an smp call and
647 * the removal is always successful.
649 smp_call_function_single(event->cpu,
650 __perf_event_remove_from_context,
651 event, 1);
652 return;
655 retry:
656 task_oncpu_function_call(task, __perf_event_remove_from_context,
657 event);
659 raw_spin_lock_irq(&ctx->lock);
661 * If the context is active we need to retry the smp call.
663 if (ctx->nr_active && !list_empty(&event->group_entry)) {
664 raw_spin_unlock_irq(&ctx->lock);
665 goto retry;
669 * The lock prevents that this context is scheduled in so we
670 * can remove the event safely, if the call above did not
671 * succeed.
673 if (!list_empty(&event->group_entry))
674 list_del_event(event, ctx);
675 raw_spin_unlock_irq(&ctx->lock);
679 * Cross CPU call to disable a performance event
681 static void __perf_event_disable(void *info)
683 struct perf_event *event = info;
684 struct perf_event_context *ctx = event->ctx;
685 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
688 * If this is a per-task event, need to check whether this
689 * event's task is the current task on this cpu.
691 if (ctx->task && cpuctx->task_ctx != ctx)
692 return;
694 raw_spin_lock(&ctx->lock);
697 * If the event is on, turn it off.
698 * If it is in error state, leave it in error state.
700 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
701 update_context_time(ctx);
702 update_group_times(event);
703 if (event == event->group_leader)
704 group_sched_out(event, cpuctx, ctx);
705 else
706 event_sched_out(event, cpuctx, ctx);
707 event->state = PERF_EVENT_STATE_OFF;
710 raw_spin_unlock(&ctx->lock);
714 * Disable a event.
716 * If event->ctx is a cloned context, callers must make sure that
717 * every task struct that event->ctx->task could possibly point to
718 * remains valid. This condition is satisifed when called through
719 * perf_event_for_each_child or perf_event_for_each because they
720 * hold the top-level event's child_mutex, so any descendant that
721 * goes to exit will block in sync_child_event.
722 * When called from perf_pending_event it's OK because event->ctx
723 * is the current context on this CPU and preemption is disabled,
724 * hence we can't get into perf_event_task_sched_out for this context.
726 void perf_event_disable(struct perf_event *event)
728 struct perf_event_context *ctx = event->ctx;
729 struct task_struct *task = ctx->task;
731 if (!task) {
733 * Disable the event on the cpu that it's on
735 smp_call_function_single(event->cpu, __perf_event_disable,
736 event, 1);
737 return;
740 retry:
741 task_oncpu_function_call(task, __perf_event_disable, event);
743 raw_spin_lock_irq(&ctx->lock);
745 * If the event is still active, we need to retry the cross-call.
747 if (event->state == PERF_EVENT_STATE_ACTIVE) {
748 raw_spin_unlock_irq(&ctx->lock);
749 goto retry;
753 * Since we have the lock this context can't be scheduled
754 * in, so we can change the state safely.
756 if (event->state == PERF_EVENT_STATE_INACTIVE) {
757 update_group_times(event);
758 event->state = PERF_EVENT_STATE_OFF;
761 raw_spin_unlock_irq(&ctx->lock);
764 static int
765 event_sched_in(struct perf_event *event,
766 struct perf_cpu_context *cpuctx,
767 struct perf_event_context *ctx)
769 if (event->state <= PERF_EVENT_STATE_OFF)
770 return 0;
772 event->state = PERF_EVENT_STATE_ACTIVE;
773 event->oncpu = smp_processor_id();
775 * The new state must be visible before we turn it on in the hardware:
777 smp_wmb();
779 if (event->pmu->add(event, PERF_EF_START)) {
780 event->state = PERF_EVENT_STATE_INACTIVE;
781 event->oncpu = -1;
782 return -EAGAIN;
785 event->tstamp_running += ctx->time - event->tstamp_stopped;
787 event->shadow_ctx_time = ctx->time - ctx->timestamp;
789 if (!is_software_event(event))
790 cpuctx->active_oncpu++;
791 ctx->nr_active++;
793 if (event->attr.exclusive)
794 cpuctx->exclusive = 1;
796 return 0;
799 static int
800 group_sched_in(struct perf_event *group_event,
801 struct perf_cpu_context *cpuctx,
802 struct perf_event_context *ctx)
804 struct perf_event *event, *partial_group = NULL;
805 struct pmu *pmu = group_event->pmu;
806 u64 now = ctx->time;
807 bool simulate = false;
809 if (group_event->state == PERF_EVENT_STATE_OFF)
810 return 0;
812 pmu->start_txn(pmu);
814 if (event_sched_in(group_event, cpuctx, ctx)) {
815 pmu->cancel_txn(pmu);
816 return -EAGAIN;
820 * Schedule in siblings as one group (if any):
822 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
823 if (event_sched_in(event, cpuctx, ctx)) {
824 partial_group = event;
825 goto group_error;
829 if (!pmu->commit_txn(pmu))
830 return 0;
832 group_error:
834 * Groups can be scheduled in as one unit only, so undo any
835 * partial group before returning:
836 * The events up to the failed event are scheduled out normally,
837 * tstamp_stopped will be updated.
839 * The failed events and the remaining siblings need to have
840 * their timings updated as if they had gone thru event_sched_in()
841 * and event_sched_out(). This is required to get consistent timings
842 * across the group. This also takes care of the case where the group
843 * could never be scheduled by ensuring tstamp_stopped is set to mark
844 * the time the event was actually stopped, such that time delta
845 * calculation in update_event_times() is correct.
847 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
848 if (event == partial_group)
849 simulate = true;
851 if (simulate) {
852 event->tstamp_running += now - event->tstamp_stopped;
853 event->tstamp_stopped = now;
854 } else {
855 event_sched_out(event, cpuctx, ctx);
858 event_sched_out(group_event, cpuctx, ctx);
860 pmu->cancel_txn(pmu);
862 return -EAGAIN;
866 * Work out whether we can put this event group on the CPU now.
868 static int group_can_go_on(struct perf_event *event,
869 struct perf_cpu_context *cpuctx,
870 int can_add_hw)
873 * Groups consisting entirely of software events can always go on.
875 if (event->group_flags & PERF_GROUP_SOFTWARE)
876 return 1;
878 * If an exclusive group is already on, no other hardware
879 * events can go on.
881 if (cpuctx->exclusive)
882 return 0;
884 * If this group is exclusive and there are already
885 * events on the CPU, it can't go on.
887 if (event->attr.exclusive && cpuctx->active_oncpu)
888 return 0;
890 * Otherwise, try to add it if all previous groups were able
891 * to go on.
893 return can_add_hw;
896 static void add_event_to_ctx(struct perf_event *event,
897 struct perf_event_context *ctx)
899 list_add_event(event, ctx);
900 perf_group_attach(event);
901 event->tstamp_enabled = ctx->time;
902 event->tstamp_running = ctx->time;
903 event->tstamp_stopped = ctx->time;
907 * Cross CPU call to install and enable a performance event
909 * Must be called with ctx->mutex held
911 static void __perf_install_in_context(void *info)
913 struct perf_event *event = info;
914 struct perf_event_context *ctx = event->ctx;
915 struct perf_event *leader = event->group_leader;
916 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
917 int err;
920 * If this is a task context, we need to check whether it is
921 * the current task context of this cpu. If not it has been
922 * scheduled out before the smp call arrived.
923 * Or possibly this is the right context but it isn't
924 * on this cpu because it had no events.
926 if (ctx->task && cpuctx->task_ctx != ctx) {
927 if (cpuctx->task_ctx || ctx->task != current)
928 return;
929 cpuctx->task_ctx = ctx;
932 raw_spin_lock(&ctx->lock);
933 ctx->is_active = 1;
934 update_context_time(ctx);
936 add_event_to_ctx(event, ctx);
938 if (event->cpu != -1 && event->cpu != smp_processor_id())
939 goto unlock;
942 * Don't put the event on if it is disabled or if
943 * it is in a group and the group isn't on.
945 if (event->state != PERF_EVENT_STATE_INACTIVE ||
946 (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE))
947 goto unlock;
950 * An exclusive event can't go on if there are already active
951 * hardware events, and no hardware event can go on if there
952 * is already an exclusive event on.
954 if (!group_can_go_on(event, cpuctx, 1))
955 err = -EEXIST;
956 else
957 err = event_sched_in(event, cpuctx, ctx);
959 if (err) {
961 * This event couldn't go on. If it is in a group
962 * then we have to pull the whole group off.
963 * If the event group is pinned then put it in error state.
965 if (leader != event)
966 group_sched_out(leader, cpuctx, ctx);
967 if (leader->attr.pinned) {
968 update_group_times(leader);
969 leader->state = PERF_EVENT_STATE_ERROR;
973 unlock:
974 raw_spin_unlock(&ctx->lock);
978 * Attach a performance event to a context
980 * First we add the event to the list with the hardware enable bit
981 * in event->hw_config cleared.
983 * If the event is attached to a task which is on a CPU we use a smp
984 * call to enable it in the task context. The task might have been
985 * scheduled away, but we check this in the smp call again.
987 * Must be called with ctx->mutex held.
989 static void
990 perf_install_in_context(struct perf_event_context *ctx,
991 struct perf_event *event,
992 int cpu)
994 struct task_struct *task = ctx->task;
996 event->ctx = ctx;
998 if (!task) {
1000 * Per cpu events are installed via an smp call and
1001 * the install is always successful.
1003 smp_call_function_single(cpu, __perf_install_in_context,
1004 event, 1);
1005 return;
1008 retry:
1009 task_oncpu_function_call(task, __perf_install_in_context,
1010 event);
1012 raw_spin_lock_irq(&ctx->lock);
1014 * we need to retry the smp call.
1016 if (ctx->is_active && list_empty(&event->group_entry)) {
1017 raw_spin_unlock_irq(&ctx->lock);
1018 goto retry;
1022 * The lock prevents that this context is scheduled in so we
1023 * can add the event safely, if it the call above did not
1024 * succeed.
1026 if (list_empty(&event->group_entry))
1027 add_event_to_ctx(event, ctx);
1028 raw_spin_unlock_irq(&ctx->lock);
1032 * Put a event into inactive state and update time fields.
1033 * Enabling the leader of a group effectively enables all
1034 * the group members that aren't explicitly disabled, so we
1035 * have to update their ->tstamp_enabled also.
1036 * Note: this works for group members as well as group leaders
1037 * since the non-leader members' sibling_lists will be empty.
1039 static void __perf_event_mark_enabled(struct perf_event *event,
1040 struct perf_event_context *ctx)
1042 struct perf_event *sub;
1044 event->state = PERF_EVENT_STATE_INACTIVE;
1045 event->tstamp_enabled = ctx->time - event->total_time_enabled;
1046 list_for_each_entry(sub, &event->sibling_list, group_entry) {
1047 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
1048 sub->tstamp_enabled =
1049 ctx->time - sub->total_time_enabled;
1055 * Cross CPU call to enable a performance event
1057 static void __perf_event_enable(void *info)
1059 struct perf_event *event = info;
1060 struct perf_event_context *ctx = event->ctx;
1061 struct perf_event *leader = event->group_leader;
1062 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1063 int err;
1066 * If this is a per-task event, need to check whether this
1067 * event's task is the current task on this cpu.
1069 if (ctx->task && cpuctx->task_ctx != ctx) {
1070 if (cpuctx->task_ctx || ctx->task != current)
1071 return;
1072 cpuctx->task_ctx = ctx;
1075 raw_spin_lock(&ctx->lock);
1076 ctx->is_active = 1;
1077 update_context_time(ctx);
1079 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1080 goto unlock;
1081 __perf_event_mark_enabled(event, ctx);
1083 if (event->cpu != -1 && event->cpu != smp_processor_id())
1084 goto unlock;
1087 * If the event is in a group and isn't the group leader,
1088 * then don't put it on unless the group is on.
1090 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
1091 goto unlock;
1093 if (!group_can_go_on(event, cpuctx, 1)) {
1094 err = -EEXIST;
1095 } else {
1096 if (event == leader)
1097 err = group_sched_in(event, cpuctx, ctx);
1098 else
1099 err = event_sched_in(event, cpuctx, ctx);
1102 if (err) {
1104 * If this event can't go on and it's part of a
1105 * group, then the whole group has to come off.
1107 if (leader != event)
1108 group_sched_out(leader, cpuctx, ctx);
1109 if (leader->attr.pinned) {
1110 update_group_times(leader);
1111 leader->state = PERF_EVENT_STATE_ERROR;
1115 unlock:
1116 raw_spin_unlock(&ctx->lock);
1120 * Enable a event.
1122 * If event->ctx is a cloned context, callers must make sure that
1123 * every task struct that event->ctx->task could possibly point to
1124 * remains valid. This condition is satisfied when called through
1125 * perf_event_for_each_child or perf_event_for_each as described
1126 * for perf_event_disable.
1128 void perf_event_enable(struct perf_event *event)
1130 struct perf_event_context *ctx = event->ctx;
1131 struct task_struct *task = ctx->task;
1133 if (!task) {
1135 * Enable the event on the cpu that it's on
1137 smp_call_function_single(event->cpu, __perf_event_enable,
1138 event, 1);
1139 return;
1142 raw_spin_lock_irq(&ctx->lock);
1143 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1144 goto out;
1147 * If the event is in error state, clear that first.
1148 * That way, if we see the event in error state below, we
1149 * know that it has gone back into error state, as distinct
1150 * from the task having been scheduled away before the
1151 * cross-call arrived.
1153 if (event->state == PERF_EVENT_STATE_ERROR)
1154 event->state = PERF_EVENT_STATE_OFF;
1156 retry:
1157 raw_spin_unlock_irq(&ctx->lock);
1158 task_oncpu_function_call(task, __perf_event_enable, event);
1160 raw_spin_lock_irq(&ctx->lock);
1163 * If the context is active and the event is still off,
1164 * we need to retry the cross-call.
1166 if (ctx->is_active && event->state == PERF_EVENT_STATE_OFF)
1167 goto retry;
1170 * Since we have the lock this context can't be scheduled
1171 * in, so we can change the state safely.
1173 if (event->state == PERF_EVENT_STATE_OFF)
1174 __perf_event_mark_enabled(event, ctx);
1176 out:
1177 raw_spin_unlock_irq(&ctx->lock);
1180 static int perf_event_refresh(struct perf_event *event, int refresh)
1183 * not supported on inherited events
1185 if (event->attr.inherit || !is_sampling_event(event))
1186 return -EINVAL;
1188 atomic_add(refresh, &event->event_limit);
1189 perf_event_enable(event);
1191 return 0;
1194 enum event_type_t {
1195 EVENT_FLEXIBLE = 0x1,
1196 EVENT_PINNED = 0x2,
1197 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
1200 static void ctx_sched_out(struct perf_event_context *ctx,
1201 struct perf_cpu_context *cpuctx,
1202 enum event_type_t event_type)
1204 struct perf_event *event;
1206 raw_spin_lock(&ctx->lock);
1207 perf_pmu_disable(ctx->pmu);
1208 ctx->is_active = 0;
1209 if (likely(!ctx->nr_events))
1210 goto out;
1211 update_context_time(ctx);
1213 if (!ctx->nr_active)
1214 goto out;
1216 if (event_type & EVENT_PINNED) {
1217 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
1218 group_sched_out(event, cpuctx, ctx);
1221 if (event_type & EVENT_FLEXIBLE) {
1222 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
1223 group_sched_out(event, cpuctx, ctx);
1225 out:
1226 perf_pmu_enable(ctx->pmu);
1227 raw_spin_unlock(&ctx->lock);
1231 * Test whether two contexts are equivalent, i.e. whether they
1232 * have both been cloned from the same version of the same context
1233 * and they both have the same number of enabled events.
1234 * If the number of enabled events is the same, then the set
1235 * of enabled events should be the same, because these are both
1236 * inherited contexts, therefore we can't access individual events
1237 * in them directly with an fd; we can only enable/disable all
1238 * events via prctl, or enable/disable all events in a family
1239 * via ioctl, which will have the same effect on both contexts.
1241 static int context_equiv(struct perf_event_context *ctx1,
1242 struct perf_event_context *ctx2)
1244 return ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx
1245 && ctx1->parent_gen == ctx2->parent_gen
1246 && !ctx1->pin_count && !ctx2->pin_count;
1249 static void __perf_event_sync_stat(struct perf_event *event,
1250 struct perf_event *next_event)
1252 u64 value;
1254 if (!event->attr.inherit_stat)
1255 return;
1258 * Update the event value, we cannot use perf_event_read()
1259 * because we're in the middle of a context switch and have IRQs
1260 * disabled, which upsets smp_call_function_single(), however
1261 * we know the event must be on the current CPU, therefore we
1262 * don't need to use it.
1264 switch (event->state) {
1265 case PERF_EVENT_STATE_ACTIVE:
1266 event->pmu->read(event);
1267 /* fall-through */
1269 case PERF_EVENT_STATE_INACTIVE:
1270 update_event_times(event);
1271 break;
1273 default:
1274 break;
1278 * In order to keep per-task stats reliable we need to flip the event
1279 * values when we flip the contexts.
1281 value = local64_read(&next_event->count);
1282 value = local64_xchg(&event->count, value);
1283 local64_set(&next_event->count, value);
1285 swap(event->total_time_enabled, next_event->total_time_enabled);
1286 swap(event->total_time_running, next_event->total_time_running);
1289 * Since we swizzled the values, update the user visible data too.
1291 perf_event_update_userpage(event);
1292 perf_event_update_userpage(next_event);
1295 #define list_next_entry(pos, member) \
1296 list_entry(pos->member.next, typeof(*pos), member)
1298 static void perf_event_sync_stat(struct perf_event_context *ctx,
1299 struct perf_event_context *next_ctx)
1301 struct perf_event *event, *next_event;
1303 if (!ctx->nr_stat)
1304 return;
1306 update_context_time(ctx);
1308 event = list_first_entry(&ctx->event_list,
1309 struct perf_event, event_entry);
1311 next_event = list_first_entry(&next_ctx->event_list,
1312 struct perf_event, event_entry);
1314 while (&event->event_entry != &ctx->event_list &&
1315 &next_event->event_entry != &next_ctx->event_list) {
1317 __perf_event_sync_stat(event, next_event);
1319 event = list_next_entry(event, event_entry);
1320 next_event = list_next_entry(next_event, event_entry);
1324 void perf_event_context_sched_out(struct task_struct *task, int ctxn,
1325 struct task_struct *next)
1327 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
1328 struct perf_event_context *next_ctx;
1329 struct perf_event_context *parent;
1330 struct perf_cpu_context *cpuctx;
1331 int do_switch = 1;
1333 if (likely(!ctx))
1334 return;
1336 cpuctx = __get_cpu_context(ctx);
1337 if (!cpuctx->task_ctx)
1338 return;
1340 rcu_read_lock();
1341 parent = rcu_dereference(ctx->parent_ctx);
1342 next_ctx = next->perf_event_ctxp[ctxn];
1343 if (parent && next_ctx &&
1344 rcu_dereference(next_ctx->parent_ctx) == parent) {
1346 * Looks like the two contexts are clones, so we might be
1347 * able to optimize the context switch. We lock both
1348 * contexts and check that they are clones under the
1349 * lock (including re-checking that neither has been
1350 * uncloned in the meantime). It doesn't matter which
1351 * order we take the locks because no other cpu could
1352 * be trying to lock both of these tasks.
1354 raw_spin_lock(&ctx->lock);
1355 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
1356 if (context_equiv(ctx, next_ctx)) {
1358 * XXX do we need a memory barrier of sorts
1359 * wrt to rcu_dereference() of perf_event_ctxp
1361 task->perf_event_ctxp[ctxn] = next_ctx;
1362 next->perf_event_ctxp[ctxn] = ctx;
1363 ctx->task = next;
1364 next_ctx->task = task;
1365 do_switch = 0;
1367 perf_event_sync_stat(ctx, next_ctx);
1369 raw_spin_unlock(&next_ctx->lock);
1370 raw_spin_unlock(&ctx->lock);
1372 rcu_read_unlock();
1374 if (do_switch) {
1375 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
1376 cpuctx->task_ctx = NULL;
1380 #define for_each_task_context_nr(ctxn) \
1381 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
1384 * Called from scheduler to remove the events of the current task,
1385 * with interrupts disabled.
1387 * We stop each event and update the event value in event->count.
1389 * This does not protect us against NMI, but disable()
1390 * sets the disabled bit in the control field of event _before_
1391 * accessing the event control register. If a NMI hits, then it will
1392 * not restart the event.
1394 void __perf_event_task_sched_out(struct task_struct *task,
1395 struct task_struct *next)
1397 int ctxn;
1399 for_each_task_context_nr(ctxn)
1400 perf_event_context_sched_out(task, ctxn, next);
1403 static void task_ctx_sched_out(struct perf_event_context *ctx,
1404 enum event_type_t event_type)
1406 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1408 if (!cpuctx->task_ctx)
1409 return;
1411 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
1412 return;
1414 ctx_sched_out(ctx, cpuctx, event_type);
1415 cpuctx->task_ctx = NULL;
1419 * Called with IRQs disabled
1421 static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
1422 enum event_type_t event_type)
1424 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
1427 static void
1428 ctx_pinned_sched_in(struct perf_event_context *ctx,
1429 struct perf_cpu_context *cpuctx)
1431 struct perf_event *event;
1433 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1434 if (event->state <= PERF_EVENT_STATE_OFF)
1435 continue;
1436 if (event->cpu != -1 && event->cpu != smp_processor_id())
1437 continue;
1439 if (group_can_go_on(event, cpuctx, 1))
1440 group_sched_in(event, cpuctx, ctx);
1443 * If this pinned group hasn't been scheduled,
1444 * put it in error state.
1446 if (event->state == PERF_EVENT_STATE_INACTIVE) {
1447 update_group_times(event);
1448 event->state = PERF_EVENT_STATE_ERROR;
1453 static void
1454 ctx_flexible_sched_in(struct perf_event_context *ctx,
1455 struct perf_cpu_context *cpuctx)
1457 struct perf_event *event;
1458 int can_add_hw = 1;
1460 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1461 /* Ignore events in OFF or ERROR state */
1462 if (event->state <= PERF_EVENT_STATE_OFF)
1463 continue;
1465 * Listen to the 'cpu' scheduling filter constraint
1466 * of events:
1468 if (event->cpu != -1 && event->cpu != smp_processor_id())
1469 continue;
1471 if (group_can_go_on(event, cpuctx, can_add_hw)) {
1472 if (group_sched_in(event, cpuctx, ctx))
1473 can_add_hw = 0;
1478 static void
1479 ctx_sched_in(struct perf_event_context *ctx,
1480 struct perf_cpu_context *cpuctx,
1481 enum event_type_t event_type)
1483 raw_spin_lock(&ctx->lock);
1484 ctx->is_active = 1;
1485 if (likely(!ctx->nr_events))
1486 goto out;
1488 ctx->timestamp = perf_clock();
1491 * First go through the list and put on any pinned groups
1492 * in order to give them the best chance of going on.
1494 if (event_type & EVENT_PINNED)
1495 ctx_pinned_sched_in(ctx, cpuctx);
1497 /* Then walk through the lower prio flexible groups */
1498 if (event_type & EVENT_FLEXIBLE)
1499 ctx_flexible_sched_in(ctx, cpuctx);
1501 out:
1502 raw_spin_unlock(&ctx->lock);
1505 static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
1506 enum event_type_t event_type)
1508 struct perf_event_context *ctx = &cpuctx->ctx;
1510 ctx_sched_in(ctx, cpuctx, event_type);
1513 static void task_ctx_sched_in(struct perf_event_context *ctx,
1514 enum event_type_t event_type)
1516 struct perf_cpu_context *cpuctx;
1518 cpuctx = __get_cpu_context(ctx);
1519 if (cpuctx->task_ctx == ctx)
1520 return;
1522 ctx_sched_in(ctx, cpuctx, event_type);
1523 cpuctx->task_ctx = ctx;
1526 void perf_event_context_sched_in(struct perf_event_context *ctx)
1528 struct perf_cpu_context *cpuctx;
1530 cpuctx = __get_cpu_context(ctx);
1531 if (cpuctx->task_ctx == ctx)
1532 return;
1534 perf_pmu_disable(ctx->pmu);
1536 * We want to keep the following priority order:
1537 * cpu pinned (that don't need to move), task pinned,
1538 * cpu flexible, task flexible.
1540 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1542 ctx_sched_in(ctx, cpuctx, EVENT_PINNED);
1543 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1544 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE);
1546 cpuctx->task_ctx = ctx;
1549 * Since these rotations are per-cpu, we need to ensure the
1550 * cpu-context we got scheduled on is actually rotating.
1552 perf_pmu_rotate_start(ctx->pmu);
1553 perf_pmu_enable(ctx->pmu);
1557 * Called from scheduler to add the events of the current task
1558 * with interrupts disabled.
1560 * We restore the event value and then enable it.
1562 * This does not protect us against NMI, but enable()
1563 * sets the enabled bit in the control field of event _before_
1564 * accessing the event control register. If a NMI hits, then it will
1565 * keep the event running.
1567 void __perf_event_task_sched_in(struct task_struct *task)
1569 struct perf_event_context *ctx;
1570 int ctxn;
1572 for_each_task_context_nr(ctxn) {
1573 ctx = task->perf_event_ctxp[ctxn];
1574 if (likely(!ctx))
1575 continue;
1577 perf_event_context_sched_in(ctx);
1581 #define MAX_INTERRUPTS (~0ULL)
1583 static void perf_log_throttle(struct perf_event *event, int enable);
1585 static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
1587 u64 frequency = event->attr.sample_freq;
1588 u64 sec = NSEC_PER_SEC;
1589 u64 divisor, dividend;
1591 int count_fls, nsec_fls, frequency_fls, sec_fls;
1593 count_fls = fls64(count);
1594 nsec_fls = fls64(nsec);
1595 frequency_fls = fls64(frequency);
1596 sec_fls = 30;
1599 * We got @count in @nsec, with a target of sample_freq HZ
1600 * the target period becomes:
1602 * @count * 10^9
1603 * period = -------------------
1604 * @nsec * sample_freq
1609 * Reduce accuracy by one bit such that @a and @b converge
1610 * to a similar magnitude.
1612 #define REDUCE_FLS(a, b) \
1613 do { \
1614 if (a##_fls > b##_fls) { \
1615 a >>= 1; \
1616 a##_fls--; \
1617 } else { \
1618 b >>= 1; \
1619 b##_fls--; \
1621 } while (0)
1624 * Reduce accuracy until either term fits in a u64, then proceed with
1625 * the other, so that finally we can do a u64/u64 division.
1627 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
1628 REDUCE_FLS(nsec, frequency);
1629 REDUCE_FLS(sec, count);
1632 if (count_fls + sec_fls > 64) {
1633 divisor = nsec * frequency;
1635 while (count_fls + sec_fls > 64) {
1636 REDUCE_FLS(count, sec);
1637 divisor >>= 1;
1640 dividend = count * sec;
1641 } else {
1642 dividend = count * sec;
1644 while (nsec_fls + frequency_fls > 64) {
1645 REDUCE_FLS(nsec, frequency);
1646 dividend >>= 1;
1649 divisor = nsec * frequency;
1652 if (!divisor)
1653 return dividend;
1655 return div64_u64(dividend, divisor);
1658 static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count)
1660 struct hw_perf_event *hwc = &event->hw;
1661 s64 period, sample_period;
1662 s64 delta;
1664 period = perf_calculate_period(event, nsec, count);
1666 delta = (s64)(period - hwc->sample_period);
1667 delta = (delta + 7) / 8; /* low pass filter */
1669 sample_period = hwc->sample_period + delta;
1671 if (!sample_period)
1672 sample_period = 1;
1674 hwc->sample_period = sample_period;
1676 if (local64_read(&hwc->period_left) > 8*sample_period) {
1677 event->pmu->stop(event, PERF_EF_UPDATE);
1678 local64_set(&hwc->period_left, 0);
1679 event->pmu->start(event, PERF_EF_RELOAD);
1683 static void perf_ctx_adjust_freq(struct perf_event_context *ctx, u64 period)
1685 struct perf_event *event;
1686 struct hw_perf_event *hwc;
1687 u64 interrupts, now;
1688 s64 delta;
1690 raw_spin_lock(&ctx->lock);
1691 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
1692 if (event->state != PERF_EVENT_STATE_ACTIVE)
1693 continue;
1695 if (event->cpu != -1 && event->cpu != smp_processor_id())
1696 continue;
1698 hwc = &event->hw;
1700 interrupts = hwc->interrupts;
1701 hwc->interrupts = 0;
1704 * unthrottle events on the tick
1706 if (interrupts == MAX_INTERRUPTS) {
1707 perf_log_throttle(event, 1);
1708 event->pmu->start(event, 0);
1711 if (!event->attr.freq || !event->attr.sample_freq)
1712 continue;
1714 event->pmu->read(event);
1715 now = local64_read(&event->count);
1716 delta = now - hwc->freq_count_stamp;
1717 hwc->freq_count_stamp = now;
1719 if (delta > 0)
1720 perf_adjust_period(event, period, delta);
1722 raw_spin_unlock(&ctx->lock);
1726 * Round-robin a context's events:
1728 static void rotate_ctx(struct perf_event_context *ctx)
1730 raw_spin_lock(&ctx->lock);
1733 * Rotate the first entry last of non-pinned groups. Rotation might be
1734 * disabled by the inheritance code.
1736 if (!ctx->rotate_disable)
1737 list_rotate_left(&ctx->flexible_groups);
1739 raw_spin_unlock(&ctx->lock);
1743 * perf_pmu_rotate_start() and perf_rotate_context() are fully serialized
1744 * because they're strictly cpu affine and rotate_start is called with IRQs
1745 * disabled, while rotate_context is called from IRQ context.
1747 static void perf_rotate_context(struct perf_cpu_context *cpuctx)
1749 u64 interval = (u64)cpuctx->jiffies_interval * TICK_NSEC;
1750 struct perf_event_context *ctx = NULL;
1751 int rotate = 0, remove = 1;
1753 if (cpuctx->ctx.nr_events) {
1754 remove = 0;
1755 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
1756 rotate = 1;
1759 ctx = cpuctx->task_ctx;
1760 if (ctx && ctx->nr_events) {
1761 remove = 0;
1762 if (ctx->nr_events != ctx->nr_active)
1763 rotate = 1;
1766 perf_pmu_disable(cpuctx->ctx.pmu);
1767 perf_ctx_adjust_freq(&cpuctx->ctx, interval);
1768 if (ctx)
1769 perf_ctx_adjust_freq(ctx, interval);
1771 if (!rotate)
1772 goto done;
1774 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
1775 if (ctx)
1776 task_ctx_sched_out(ctx, EVENT_FLEXIBLE);
1778 rotate_ctx(&cpuctx->ctx);
1779 if (ctx)
1780 rotate_ctx(ctx);
1782 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE);
1783 if (ctx)
1784 task_ctx_sched_in(ctx, EVENT_FLEXIBLE);
1786 done:
1787 if (remove)
1788 list_del_init(&cpuctx->rotation_list);
1790 perf_pmu_enable(cpuctx->ctx.pmu);
1793 void perf_event_task_tick(void)
1795 struct list_head *head = &__get_cpu_var(rotation_list);
1796 struct perf_cpu_context *cpuctx, *tmp;
1798 WARN_ON(!irqs_disabled());
1800 list_for_each_entry_safe(cpuctx, tmp, head, rotation_list) {
1801 if (cpuctx->jiffies_interval == 1 ||
1802 !(jiffies % cpuctx->jiffies_interval))
1803 perf_rotate_context(cpuctx);
1807 static int event_enable_on_exec(struct perf_event *event,
1808 struct perf_event_context *ctx)
1810 if (!event->attr.enable_on_exec)
1811 return 0;
1813 event->attr.enable_on_exec = 0;
1814 if (event->state >= PERF_EVENT_STATE_INACTIVE)
1815 return 0;
1817 __perf_event_mark_enabled(event, ctx);
1819 return 1;
1823 * Enable all of a task's events that have been marked enable-on-exec.
1824 * This expects task == current.
1826 static void perf_event_enable_on_exec(struct perf_event_context *ctx)
1828 struct perf_event *event;
1829 unsigned long flags;
1830 int enabled = 0;
1831 int ret;
1833 local_irq_save(flags);
1834 if (!ctx || !ctx->nr_events)
1835 goto out;
1837 task_ctx_sched_out(ctx, EVENT_ALL);
1839 raw_spin_lock(&ctx->lock);
1841 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
1842 ret = event_enable_on_exec(event, ctx);
1843 if (ret)
1844 enabled = 1;
1847 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
1848 ret = event_enable_on_exec(event, ctx);
1849 if (ret)
1850 enabled = 1;
1854 * Unclone this context if we enabled any event.
1856 if (enabled)
1857 unclone_ctx(ctx);
1859 raw_spin_unlock(&ctx->lock);
1861 perf_event_context_sched_in(ctx);
1862 out:
1863 local_irq_restore(flags);
1867 * Cross CPU call to read the hardware event
1869 static void __perf_event_read(void *info)
1871 struct perf_event *event = info;
1872 struct perf_event_context *ctx = event->ctx;
1873 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
1876 * If this is a task context, we need to check whether it is
1877 * the current task context of this cpu. If not it has been
1878 * scheduled out before the smp call arrived. In that case
1879 * event->count would have been updated to a recent sample
1880 * when the event was scheduled out.
1882 if (ctx->task && cpuctx->task_ctx != ctx)
1883 return;
1885 raw_spin_lock(&ctx->lock);
1886 update_context_time(ctx);
1887 update_event_times(event);
1888 raw_spin_unlock(&ctx->lock);
1890 event->pmu->read(event);
1893 static inline u64 perf_event_count(struct perf_event *event)
1895 return local64_read(&event->count) + atomic64_read(&event->child_count);
1898 static u64 perf_event_read(struct perf_event *event)
1901 * If event is enabled and currently active on a CPU, update the
1902 * value in the event structure:
1904 if (event->state == PERF_EVENT_STATE_ACTIVE) {
1905 smp_call_function_single(event->oncpu,
1906 __perf_event_read, event, 1);
1907 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
1908 struct perf_event_context *ctx = event->ctx;
1909 unsigned long flags;
1911 raw_spin_lock_irqsave(&ctx->lock, flags);
1913 * may read while context is not active
1914 * (e.g., thread is blocked), in that case
1915 * we cannot update context time
1917 if (ctx->is_active)
1918 update_context_time(ctx);
1919 update_event_times(event);
1920 raw_spin_unlock_irqrestore(&ctx->lock, flags);
1923 return perf_event_count(event);
1927 * Callchain support
1930 struct callchain_cpus_entries {
1931 struct rcu_head rcu_head;
1932 struct perf_callchain_entry *cpu_entries[0];
1935 static DEFINE_PER_CPU(int, callchain_recursion[PERF_NR_CONTEXTS]);
1936 static atomic_t nr_callchain_events;
1937 static DEFINE_MUTEX(callchain_mutex);
1938 struct callchain_cpus_entries *callchain_cpus_entries;
1941 __weak void perf_callchain_kernel(struct perf_callchain_entry *entry,
1942 struct pt_regs *regs)
1946 __weak void perf_callchain_user(struct perf_callchain_entry *entry,
1947 struct pt_regs *regs)
1951 static void release_callchain_buffers_rcu(struct rcu_head *head)
1953 struct callchain_cpus_entries *entries;
1954 int cpu;
1956 entries = container_of(head, struct callchain_cpus_entries, rcu_head);
1958 for_each_possible_cpu(cpu)
1959 kfree(entries->cpu_entries[cpu]);
1961 kfree(entries);
1964 static void release_callchain_buffers(void)
1966 struct callchain_cpus_entries *entries;
1968 entries = callchain_cpus_entries;
1969 rcu_assign_pointer(callchain_cpus_entries, NULL);
1970 call_rcu(&entries->rcu_head, release_callchain_buffers_rcu);
1973 static int alloc_callchain_buffers(void)
1975 int cpu;
1976 int size;
1977 struct callchain_cpus_entries *entries;
1980 * We can't use the percpu allocation API for data that can be
1981 * accessed from NMI. Use a temporary manual per cpu allocation
1982 * until that gets sorted out.
1984 size = sizeof(*entries) + sizeof(struct perf_callchain_entry *) *
1985 num_possible_cpus();
1987 entries = kzalloc(size, GFP_KERNEL);
1988 if (!entries)
1989 return -ENOMEM;
1991 size = sizeof(struct perf_callchain_entry) * PERF_NR_CONTEXTS;
1993 for_each_possible_cpu(cpu) {
1994 entries->cpu_entries[cpu] = kmalloc_node(size, GFP_KERNEL,
1995 cpu_to_node(cpu));
1996 if (!entries->cpu_entries[cpu])
1997 goto fail;
2000 rcu_assign_pointer(callchain_cpus_entries, entries);
2002 return 0;
2004 fail:
2005 for_each_possible_cpu(cpu)
2006 kfree(entries->cpu_entries[cpu]);
2007 kfree(entries);
2009 return -ENOMEM;
2012 static int get_callchain_buffers(void)
2014 int err = 0;
2015 int count;
2017 mutex_lock(&callchain_mutex);
2019 count = atomic_inc_return(&nr_callchain_events);
2020 if (WARN_ON_ONCE(count < 1)) {
2021 err = -EINVAL;
2022 goto exit;
2025 if (count > 1) {
2026 /* If the allocation failed, give up */
2027 if (!callchain_cpus_entries)
2028 err = -ENOMEM;
2029 goto exit;
2032 err = alloc_callchain_buffers();
2033 if (err)
2034 release_callchain_buffers();
2035 exit:
2036 mutex_unlock(&callchain_mutex);
2038 return err;
2041 static void put_callchain_buffers(void)
2043 if (atomic_dec_and_mutex_lock(&nr_callchain_events, &callchain_mutex)) {
2044 release_callchain_buffers();
2045 mutex_unlock(&callchain_mutex);
2049 static int get_recursion_context(int *recursion)
2051 int rctx;
2053 if (in_nmi())
2054 rctx = 3;
2055 else if (in_irq())
2056 rctx = 2;
2057 else if (in_softirq())
2058 rctx = 1;
2059 else
2060 rctx = 0;
2062 if (recursion[rctx])
2063 return -1;
2065 recursion[rctx]++;
2066 barrier();
2068 return rctx;
2071 static inline void put_recursion_context(int *recursion, int rctx)
2073 barrier();
2074 recursion[rctx]--;
2077 static struct perf_callchain_entry *get_callchain_entry(int *rctx)
2079 int cpu;
2080 struct callchain_cpus_entries *entries;
2082 *rctx = get_recursion_context(__get_cpu_var(callchain_recursion));
2083 if (*rctx == -1)
2084 return NULL;
2086 entries = rcu_dereference(callchain_cpus_entries);
2087 if (!entries)
2088 return NULL;
2090 cpu = smp_processor_id();
2092 return &entries->cpu_entries[cpu][*rctx];
2095 static void
2096 put_callchain_entry(int rctx)
2098 put_recursion_context(__get_cpu_var(callchain_recursion), rctx);
2101 static struct perf_callchain_entry *perf_callchain(struct pt_regs *regs)
2103 int rctx;
2104 struct perf_callchain_entry *entry;
2107 entry = get_callchain_entry(&rctx);
2108 if (rctx == -1)
2109 return NULL;
2111 if (!entry)
2112 goto exit_put;
2114 entry->nr = 0;
2116 if (!user_mode(regs)) {
2117 perf_callchain_store(entry, PERF_CONTEXT_KERNEL);
2118 perf_callchain_kernel(entry, regs);
2119 if (current->mm)
2120 regs = task_pt_regs(current);
2121 else
2122 regs = NULL;
2125 if (regs) {
2126 perf_callchain_store(entry, PERF_CONTEXT_USER);
2127 perf_callchain_user(entry, regs);
2130 exit_put:
2131 put_callchain_entry(rctx);
2133 return entry;
2137 * Initialize the perf_event context in a task_struct:
2139 static void __perf_event_init_context(struct perf_event_context *ctx)
2141 raw_spin_lock_init(&ctx->lock);
2142 mutex_init(&ctx->mutex);
2143 INIT_LIST_HEAD(&ctx->pinned_groups);
2144 INIT_LIST_HEAD(&ctx->flexible_groups);
2145 INIT_LIST_HEAD(&ctx->event_list);
2146 atomic_set(&ctx->refcount, 1);
2149 static struct perf_event_context *
2150 alloc_perf_context(struct pmu *pmu, struct task_struct *task)
2152 struct perf_event_context *ctx;
2154 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
2155 if (!ctx)
2156 return NULL;
2158 __perf_event_init_context(ctx);
2159 if (task) {
2160 ctx->task = task;
2161 get_task_struct(task);
2163 ctx->pmu = pmu;
2165 return ctx;
2168 static struct task_struct *
2169 find_lively_task_by_vpid(pid_t vpid)
2171 struct task_struct *task;
2172 int err;
2174 rcu_read_lock();
2175 if (!vpid)
2176 task = current;
2177 else
2178 task = find_task_by_vpid(vpid);
2179 if (task)
2180 get_task_struct(task);
2181 rcu_read_unlock();
2183 if (!task)
2184 return ERR_PTR(-ESRCH);
2187 * Can't attach events to a dying task.
2189 err = -ESRCH;
2190 if (task->flags & PF_EXITING)
2191 goto errout;
2193 /* Reuse ptrace permission checks for now. */
2194 err = -EACCES;
2195 if (!ptrace_may_access(task, PTRACE_MODE_READ))
2196 goto errout;
2198 return task;
2199 errout:
2200 put_task_struct(task);
2201 return ERR_PTR(err);
2205 static struct perf_event_context *
2206 find_get_context(struct pmu *pmu, struct task_struct *task, int cpu)
2208 struct perf_event_context *ctx;
2209 struct perf_cpu_context *cpuctx;
2210 unsigned long flags;
2211 int ctxn, err;
2213 if (!task && cpu != -1) {
2214 /* Must be root to operate on a CPU event: */
2215 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
2216 return ERR_PTR(-EACCES);
2218 if (cpu < 0 || cpu >= nr_cpumask_bits)
2219 return ERR_PTR(-EINVAL);
2222 * We could be clever and allow to attach a event to an
2223 * offline CPU and activate it when the CPU comes up, but
2224 * that's for later.
2226 if (!cpu_online(cpu))
2227 return ERR_PTR(-ENODEV);
2229 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
2230 ctx = &cpuctx->ctx;
2231 get_ctx(ctx);
2233 return ctx;
2236 err = -EINVAL;
2237 ctxn = pmu->task_ctx_nr;
2238 if (ctxn < 0)
2239 goto errout;
2241 retry:
2242 ctx = perf_lock_task_context(task, ctxn, &flags);
2243 if (ctx) {
2244 unclone_ctx(ctx);
2245 raw_spin_unlock_irqrestore(&ctx->lock, flags);
2248 if (!ctx) {
2249 ctx = alloc_perf_context(pmu, task);
2250 err = -ENOMEM;
2251 if (!ctx)
2252 goto errout;
2254 get_ctx(ctx);
2256 if (cmpxchg(&task->perf_event_ctxp[ctxn], NULL, ctx)) {
2258 * We raced with some other task; use
2259 * the context they set.
2261 put_task_struct(task);
2262 kfree(ctx);
2263 goto retry;
2267 return ctx;
2269 errout:
2270 return ERR_PTR(err);
2273 static void perf_event_free_filter(struct perf_event *event);
2275 static void free_event_rcu(struct rcu_head *head)
2277 struct perf_event *event;
2279 event = container_of(head, struct perf_event, rcu_head);
2280 if (event->ns)
2281 put_pid_ns(event->ns);
2282 perf_event_free_filter(event);
2283 kfree(event);
2286 static void perf_buffer_put(struct perf_buffer *buffer);
2288 static void free_event(struct perf_event *event)
2290 irq_work_sync(&event->pending);
2292 if (!event->parent) {
2293 if (event->attach_state & PERF_ATTACH_TASK)
2294 jump_label_dec(&perf_task_events);
2295 if (event->attr.mmap || event->attr.mmap_data)
2296 atomic_dec(&nr_mmap_events);
2297 if (event->attr.comm)
2298 atomic_dec(&nr_comm_events);
2299 if (event->attr.task)
2300 atomic_dec(&nr_task_events);
2301 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
2302 put_callchain_buffers();
2305 if (event->buffer) {
2306 perf_buffer_put(event->buffer);
2307 event->buffer = NULL;
2310 if (event->destroy)
2311 event->destroy(event);
2313 if (event->ctx)
2314 put_ctx(event->ctx);
2316 call_rcu(&event->rcu_head, free_event_rcu);
2319 int perf_event_release_kernel(struct perf_event *event)
2321 struct perf_event_context *ctx = event->ctx;
2324 * Remove from the PMU, can't get re-enabled since we got
2325 * here because the last ref went.
2327 perf_event_disable(event);
2329 WARN_ON_ONCE(ctx->parent_ctx);
2331 * There are two ways this annotation is useful:
2333 * 1) there is a lock recursion from perf_event_exit_task
2334 * see the comment there.
2336 * 2) there is a lock-inversion with mmap_sem through
2337 * perf_event_read_group(), which takes faults while
2338 * holding ctx->mutex, however this is called after
2339 * the last filedesc died, so there is no possibility
2340 * to trigger the AB-BA case.
2342 mutex_lock_nested(&ctx->mutex, SINGLE_DEPTH_NESTING);
2343 raw_spin_lock_irq(&ctx->lock);
2344 perf_group_detach(event);
2345 list_del_event(event, ctx);
2346 raw_spin_unlock_irq(&ctx->lock);
2347 mutex_unlock(&ctx->mutex);
2349 free_event(event);
2351 return 0;
2353 EXPORT_SYMBOL_GPL(perf_event_release_kernel);
2356 * Called when the last reference to the file is gone.
2358 static int perf_release(struct inode *inode, struct file *file)
2360 struct perf_event *event = file->private_data;
2361 struct task_struct *owner;
2363 file->private_data = NULL;
2365 rcu_read_lock();
2366 owner = ACCESS_ONCE(event->owner);
2368 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
2369 * !owner it means the list deletion is complete and we can indeed
2370 * free this event, otherwise we need to serialize on
2371 * owner->perf_event_mutex.
2373 smp_read_barrier_depends();
2374 if (owner) {
2376 * Since delayed_put_task_struct() also drops the last
2377 * task reference we can safely take a new reference
2378 * while holding the rcu_read_lock().
2380 get_task_struct(owner);
2382 rcu_read_unlock();
2384 if (owner) {
2385 mutex_lock(&owner->perf_event_mutex);
2387 * We have to re-check the event->owner field, if it is cleared
2388 * we raced with perf_event_exit_task(), acquiring the mutex
2389 * ensured they're done, and we can proceed with freeing the
2390 * event.
2392 if (event->owner)
2393 list_del_init(&event->owner_entry);
2394 mutex_unlock(&owner->perf_event_mutex);
2395 put_task_struct(owner);
2398 return perf_event_release_kernel(event);
2401 u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
2403 struct perf_event *child;
2404 u64 total = 0;
2406 *enabled = 0;
2407 *running = 0;
2409 mutex_lock(&event->child_mutex);
2410 total += perf_event_read(event);
2411 *enabled += event->total_time_enabled +
2412 atomic64_read(&event->child_total_time_enabled);
2413 *running += event->total_time_running +
2414 atomic64_read(&event->child_total_time_running);
2416 list_for_each_entry(child, &event->child_list, child_list) {
2417 total += perf_event_read(child);
2418 *enabled += child->total_time_enabled;
2419 *running += child->total_time_running;
2421 mutex_unlock(&event->child_mutex);
2423 return total;
2425 EXPORT_SYMBOL_GPL(perf_event_read_value);
2427 static int perf_event_read_group(struct perf_event *event,
2428 u64 read_format, char __user *buf)
2430 struct perf_event *leader = event->group_leader, *sub;
2431 int n = 0, size = 0, ret = -EFAULT;
2432 struct perf_event_context *ctx = leader->ctx;
2433 u64 values[5];
2434 u64 count, enabled, running;
2436 mutex_lock(&ctx->mutex);
2437 count = perf_event_read_value(leader, &enabled, &running);
2439 values[n++] = 1 + leader->nr_siblings;
2440 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2441 values[n++] = enabled;
2442 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2443 values[n++] = running;
2444 values[n++] = count;
2445 if (read_format & PERF_FORMAT_ID)
2446 values[n++] = primary_event_id(leader);
2448 size = n * sizeof(u64);
2450 if (copy_to_user(buf, values, size))
2451 goto unlock;
2453 ret = size;
2455 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
2456 n = 0;
2458 values[n++] = perf_event_read_value(sub, &enabled, &running);
2459 if (read_format & PERF_FORMAT_ID)
2460 values[n++] = primary_event_id(sub);
2462 size = n * sizeof(u64);
2464 if (copy_to_user(buf + ret, values, size)) {
2465 ret = -EFAULT;
2466 goto unlock;
2469 ret += size;
2471 unlock:
2472 mutex_unlock(&ctx->mutex);
2474 return ret;
2477 static int perf_event_read_one(struct perf_event *event,
2478 u64 read_format, char __user *buf)
2480 u64 enabled, running;
2481 u64 values[4];
2482 int n = 0;
2484 values[n++] = perf_event_read_value(event, &enabled, &running);
2485 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
2486 values[n++] = enabled;
2487 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
2488 values[n++] = running;
2489 if (read_format & PERF_FORMAT_ID)
2490 values[n++] = primary_event_id(event);
2492 if (copy_to_user(buf, values, n * sizeof(u64)))
2493 return -EFAULT;
2495 return n * sizeof(u64);
2499 * Read the performance event - simple non blocking version for now
2501 static ssize_t
2502 perf_read_hw(struct perf_event *event, char __user *buf, size_t count)
2504 u64 read_format = event->attr.read_format;
2505 int ret;
2508 * Return end-of-file for a read on a event that is in
2509 * error state (i.e. because it was pinned but it couldn't be
2510 * scheduled on to the CPU at some point).
2512 if (event->state == PERF_EVENT_STATE_ERROR)
2513 return 0;
2515 if (count < event->read_size)
2516 return -ENOSPC;
2518 WARN_ON_ONCE(event->ctx->parent_ctx);
2519 if (read_format & PERF_FORMAT_GROUP)
2520 ret = perf_event_read_group(event, read_format, buf);
2521 else
2522 ret = perf_event_read_one(event, read_format, buf);
2524 return ret;
2527 static ssize_t
2528 perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
2530 struct perf_event *event = file->private_data;
2532 return perf_read_hw(event, buf, count);
2535 static unsigned int perf_poll(struct file *file, poll_table *wait)
2537 struct perf_event *event = file->private_data;
2538 struct perf_buffer *buffer;
2539 unsigned int events = POLL_HUP;
2541 rcu_read_lock();
2542 buffer = rcu_dereference(event->buffer);
2543 if (buffer)
2544 events = atomic_xchg(&buffer->poll, 0);
2545 rcu_read_unlock();
2547 poll_wait(file, &event->waitq, wait);
2549 return events;
2552 static void perf_event_reset(struct perf_event *event)
2554 (void)perf_event_read(event);
2555 local64_set(&event->count, 0);
2556 perf_event_update_userpage(event);
2560 * Holding the top-level event's child_mutex means that any
2561 * descendant process that has inherited this event will block
2562 * in sync_child_event if it goes to exit, thus satisfying the
2563 * task existence requirements of perf_event_enable/disable.
2565 static void perf_event_for_each_child(struct perf_event *event,
2566 void (*func)(struct perf_event *))
2568 struct perf_event *child;
2570 WARN_ON_ONCE(event->ctx->parent_ctx);
2571 mutex_lock(&event->child_mutex);
2572 func(event);
2573 list_for_each_entry(child, &event->child_list, child_list)
2574 func(child);
2575 mutex_unlock(&event->child_mutex);
2578 static void perf_event_for_each(struct perf_event *event,
2579 void (*func)(struct perf_event *))
2581 struct perf_event_context *ctx = event->ctx;
2582 struct perf_event *sibling;
2584 WARN_ON_ONCE(ctx->parent_ctx);
2585 mutex_lock(&ctx->mutex);
2586 event = event->group_leader;
2588 perf_event_for_each_child(event, func);
2589 func(event);
2590 list_for_each_entry(sibling, &event->sibling_list, group_entry)
2591 perf_event_for_each_child(event, func);
2592 mutex_unlock(&ctx->mutex);
2595 static int perf_event_period(struct perf_event *event, u64 __user *arg)
2597 struct perf_event_context *ctx = event->ctx;
2598 int ret = 0;
2599 u64 value;
2601 if (!is_sampling_event(event))
2602 return -EINVAL;
2604 if (copy_from_user(&value, arg, sizeof(value)))
2605 return -EFAULT;
2607 if (!value)
2608 return -EINVAL;
2610 raw_spin_lock_irq(&ctx->lock);
2611 if (event->attr.freq) {
2612 if (value > sysctl_perf_event_sample_rate) {
2613 ret = -EINVAL;
2614 goto unlock;
2617 event->attr.sample_freq = value;
2618 } else {
2619 event->attr.sample_period = value;
2620 event->hw.sample_period = value;
2622 unlock:
2623 raw_spin_unlock_irq(&ctx->lock);
2625 return ret;
2628 static const struct file_operations perf_fops;
2630 static struct perf_event *perf_fget_light(int fd, int *fput_needed)
2632 struct file *file;
2634 file = fget_light(fd, fput_needed);
2635 if (!file)
2636 return ERR_PTR(-EBADF);
2638 if (file->f_op != &perf_fops) {
2639 fput_light(file, *fput_needed);
2640 *fput_needed = 0;
2641 return ERR_PTR(-EBADF);
2644 return file->private_data;
2647 static int perf_event_set_output(struct perf_event *event,
2648 struct perf_event *output_event);
2649 static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2651 static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
2653 struct perf_event *event = file->private_data;
2654 void (*func)(struct perf_event *);
2655 u32 flags = arg;
2657 switch (cmd) {
2658 case PERF_EVENT_IOC_ENABLE:
2659 func = perf_event_enable;
2660 break;
2661 case PERF_EVENT_IOC_DISABLE:
2662 func = perf_event_disable;
2663 break;
2664 case PERF_EVENT_IOC_RESET:
2665 func = perf_event_reset;
2666 break;
2668 case PERF_EVENT_IOC_REFRESH:
2669 return perf_event_refresh(event, arg);
2671 case PERF_EVENT_IOC_PERIOD:
2672 return perf_event_period(event, (u64 __user *)arg);
2674 case PERF_EVENT_IOC_SET_OUTPUT:
2676 struct perf_event *output_event = NULL;
2677 int fput_needed = 0;
2678 int ret;
2680 if (arg != -1) {
2681 output_event = perf_fget_light(arg, &fput_needed);
2682 if (IS_ERR(output_event))
2683 return PTR_ERR(output_event);
2686 ret = perf_event_set_output(event, output_event);
2687 if (output_event)
2688 fput_light(output_event->filp, fput_needed);
2690 return ret;
2693 case PERF_EVENT_IOC_SET_FILTER:
2694 return perf_event_set_filter(event, (void __user *)arg);
2696 default:
2697 return -ENOTTY;
2700 if (flags & PERF_IOC_FLAG_GROUP)
2701 perf_event_for_each(event, func);
2702 else
2703 perf_event_for_each_child(event, func);
2705 return 0;
2708 int perf_event_task_enable(void)
2710 struct perf_event *event;
2712 mutex_lock(&current->perf_event_mutex);
2713 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2714 perf_event_for_each_child(event, perf_event_enable);
2715 mutex_unlock(&current->perf_event_mutex);
2717 return 0;
2720 int perf_event_task_disable(void)
2722 struct perf_event *event;
2724 mutex_lock(&current->perf_event_mutex);
2725 list_for_each_entry(event, &current->perf_event_list, owner_entry)
2726 perf_event_for_each_child(event, perf_event_disable);
2727 mutex_unlock(&current->perf_event_mutex);
2729 return 0;
2732 #ifndef PERF_EVENT_INDEX_OFFSET
2733 # define PERF_EVENT_INDEX_OFFSET 0
2734 #endif
2736 static int perf_event_index(struct perf_event *event)
2738 if (event->hw.state & PERF_HES_STOPPED)
2739 return 0;
2741 if (event->state != PERF_EVENT_STATE_ACTIVE)
2742 return 0;
2744 return event->hw.idx + 1 - PERF_EVENT_INDEX_OFFSET;
2748 * Callers need to ensure there can be no nesting of this function, otherwise
2749 * the seqlock logic goes bad. We can not serialize this because the arch
2750 * code calls this from NMI context.
2752 void perf_event_update_userpage(struct perf_event *event)
2754 struct perf_event_mmap_page *userpg;
2755 struct perf_buffer *buffer;
2757 rcu_read_lock();
2758 buffer = rcu_dereference(event->buffer);
2759 if (!buffer)
2760 goto unlock;
2762 userpg = buffer->user_page;
2765 * Disable preemption so as to not let the corresponding user-space
2766 * spin too long if we get preempted.
2768 preempt_disable();
2769 ++userpg->lock;
2770 barrier();
2771 userpg->index = perf_event_index(event);
2772 userpg->offset = perf_event_count(event);
2773 if (event->state == PERF_EVENT_STATE_ACTIVE)
2774 userpg->offset -= local64_read(&event->hw.prev_count);
2776 userpg->time_enabled = event->total_time_enabled +
2777 atomic64_read(&event->child_total_time_enabled);
2779 userpg->time_running = event->total_time_running +
2780 atomic64_read(&event->child_total_time_running);
2782 barrier();
2783 ++userpg->lock;
2784 preempt_enable();
2785 unlock:
2786 rcu_read_unlock();
2789 static unsigned long perf_data_size(struct perf_buffer *buffer);
2791 static void
2792 perf_buffer_init(struct perf_buffer *buffer, long watermark, int flags)
2794 long max_size = perf_data_size(buffer);
2796 if (watermark)
2797 buffer->watermark = min(max_size, watermark);
2799 if (!buffer->watermark)
2800 buffer->watermark = max_size / 2;
2802 if (flags & PERF_BUFFER_WRITABLE)
2803 buffer->writable = 1;
2805 atomic_set(&buffer->refcount, 1);
2808 #ifndef CONFIG_PERF_USE_VMALLOC
2811 * Back perf_mmap() with regular GFP_KERNEL-0 pages.
2814 static struct page *
2815 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2817 if (pgoff > buffer->nr_pages)
2818 return NULL;
2820 if (pgoff == 0)
2821 return virt_to_page(buffer->user_page);
2823 return virt_to_page(buffer->data_pages[pgoff - 1]);
2826 static void *perf_mmap_alloc_page(int cpu)
2828 struct page *page;
2829 int node;
2831 node = (cpu == -1) ? cpu : cpu_to_node(cpu);
2832 page = alloc_pages_node(node, GFP_KERNEL | __GFP_ZERO, 0);
2833 if (!page)
2834 return NULL;
2836 return page_address(page);
2839 static struct perf_buffer *
2840 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2842 struct perf_buffer *buffer;
2843 unsigned long size;
2844 int i;
2846 size = sizeof(struct perf_buffer);
2847 size += nr_pages * sizeof(void *);
2849 buffer = kzalloc(size, GFP_KERNEL);
2850 if (!buffer)
2851 goto fail;
2853 buffer->user_page = perf_mmap_alloc_page(cpu);
2854 if (!buffer->user_page)
2855 goto fail_user_page;
2857 for (i = 0; i < nr_pages; i++) {
2858 buffer->data_pages[i] = perf_mmap_alloc_page(cpu);
2859 if (!buffer->data_pages[i])
2860 goto fail_data_pages;
2863 buffer->nr_pages = nr_pages;
2865 perf_buffer_init(buffer, watermark, flags);
2867 return buffer;
2869 fail_data_pages:
2870 for (i--; i >= 0; i--)
2871 free_page((unsigned long)buffer->data_pages[i]);
2873 free_page((unsigned long)buffer->user_page);
2875 fail_user_page:
2876 kfree(buffer);
2878 fail:
2879 return NULL;
2882 static void perf_mmap_free_page(unsigned long addr)
2884 struct page *page = virt_to_page((void *)addr);
2886 page->mapping = NULL;
2887 __free_page(page);
2890 static void perf_buffer_free(struct perf_buffer *buffer)
2892 int i;
2894 perf_mmap_free_page((unsigned long)buffer->user_page);
2895 for (i = 0; i < buffer->nr_pages; i++)
2896 perf_mmap_free_page((unsigned long)buffer->data_pages[i]);
2897 kfree(buffer);
2900 static inline int page_order(struct perf_buffer *buffer)
2902 return 0;
2905 #else
2908 * Back perf_mmap() with vmalloc memory.
2910 * Required for architectures that have d-cache aliasing issues.
2913 static inline int page_order(struct perf_buffer *buffer)
2915 return buffer->page_order;
2918 static struct page *
2919 perf_mmap_to_page(struct perf_buffer *buffer, unsigned long pgoff)
2921 if (pgoff > (1UL << page_order(buffer)))
2922 return NULL;
2924 return vmalloc_to_page((void *)buffer->user_page + pgoff * PAGE_SIZE);
2927 static void perf_mmap_unmark_page(void *addr)
2929 struct page *page = vmalloc_to_page(addr);
2931 page->mapping = NULL;
2934 static void perf_buffer_free_work(struct work_struct *work)
2936 struct perf_buffer *buffer;
2937 void *base;
2938 int i, nr;
2940 buffer = container_of(work, struct perf_buffer, work);
2941 nr = 1 << page_order(buffer);
2943 base = buffer->user_page;
2944 for (i = 0; i < nr + 1; i++)
2945 perf_mmap_unmark_page(base + (i * PAGE_SIZE));
2947 vfree(base);
2948 kfree(buffer);
2951 static void perf_buffer_free(struct perf_buffer *buffer)
2953 schedule_work(&buffer->work);
2956 static struct perf_buffer *
2957 perf_buffer_alloc(int nr_pages, long watermark, int cpu, int flags)
2959 struct perf_buffer *buffer;
2960 unsigned long size;
2961 void *all_buf;
2963 size = sizeof(struct perf_buffer);
2964 size += sizeof(void *);
2966 buffer = kzalloc(size, GFP_KERNEL);
2967 if (!buffer)
2968 goto fail;
2970 INIT_WORK(&buffer->work, perf_buffer_free_work);
2972 all_buf = vmalloc_user((nr_pages + 1) * PAGE_SIZE);
2973 if (!all_buf)
2974 goto fail_all_buf;
2976 buffer->user_page = all_buf;
2977 buffer->data_pages[0] = all_buf + PAGE_SIZE;
2978 buffer->page_order = ilog2(nr_pages);
2979 buffer->nr_pages = 1;
2981 perf_buffer_init(buffer, watermark, flags);
2983 return buffer;
2985 fail_all_buf:
2986 kfree(buffer);
2988 fail:
2989 return NULL;
2992 #endif
2994 static unsigned long perf_data_size(struct perf_buffer *buffer)
2996 return buffer->nr_pages << (PAGE_SHIFT + page_order(buffer));
2999 static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
3001 struct perf_event *event = vma->vm_file->private_data;
3002 struct perf_buffer *buffer;
3003 int ret = VM_FAULT_SIGBUS;
3005 if (vmf->flags & FAULT_FLAG_MKWRITE) {
3006 if (vmf->pgoff == 0)
3007 ret = 0;
3008 return ret;
3011 rcu_read_lock();
3012 buffer = rcu_dereference(event->buffer);
3013 if (!buffer)
3014 goto unlock;
3016 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
3017 goto unlock;
3019 vmf->page = perf_mmap_to_page(buffer, vmf->pgoff);
3020 if (!vmf->page)
3021 goto unlock;
3023 get_page(vmf->page);
3024 vmf->page->mapping = vma->vm_file->f_mapping;
3025 vmf->page->index = vmf->pgoff;
3027 ret = 0;
3028 unlock:
3029 rcu_read_unlock();
3031 return ret;
3034 static void perf_buffer_free_rcu(struct rcu_head *rcu_head)
3036 struct perf_buffer *buffer;
3038 buffer = container_of(rcu_head, struct perf_buffer, rcu_head);
3039 perf_buffer_free(buffer);
3042 static struct perf_buffer *perf_buffer_get(struct perf_event *event)
3044 struct perf_buffer *buffer;
3046 rcu_read_lock();
3047 buffer = rcu_dereference(event->buffer);
3048 if (buffer) {
3049 if (!atomic_inc_not_zero(&buffer->refcount))
3050 buffer = NULL;
3052 rcu_read_unlock();
3054 return buffer;
3057 static void perf_buffer_put(struct perf_buffer *buffer)
3059 if (!atomic_dec_and_test(&buffer->refcount))
3060 return;
3062 call_rcu(&buffer->rcu_head, perf_buffer_free_rcu);
3065 static void perf_mmap_open(struct vm_area_struct *vma)
3067 struct perf_event *event = vma->vm_file->private_data;
3069 atomic_inc(&event->mmap_count);
3072 static void perf_mmap_close(struct vm_area_struct *vma)
3074 struct perf_event *event = vma->vm_file->private_data;
3076 if (atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex)) {
3077 unsigned long size = perf_data_size(event->buffer);
3078 struct user_struct *user = event->mmap_user;
3079 struct perf_buffer *buffer = event->buffer;
3081 atomic_long_sub((size >> PAGE_SHIFT) + 1, &user->locked_vm);
3082 vma->vm_mm->locked_vm -= event->mmap_locked;
3083 rcu_assign_pointer(event->buffer, NULL);
3084 mutex_unlock(&event->mmap_mutex);
3086 perf_buffer_put(buffer);
3087 free_uid(user);
3091 static const struct vm_operations_struct perf_mmap_vmops = {
3092 .open = perf_mmap_open,
3093 .close = perf_mmap_close,
3094 .fault = perf_mmap_fault,
3095 .page_mkwrite = perf_mmap_fault,
3098 static int perf_mmap(struct file *file, struct vm_area_struct *vma)
3100 struct perf_event *event = file->private_data;
3101 unsigned long user_locked, user_lock_limit;
3102 struct user_struct *user = current_user();
3103 unsigned long locked, lock_limit;
3104 struct perf_buffer *buffer;
3105 unsigned long vma_size;
3106 unsigned long nr_pages;
3107 long user_extra, extra;
3108 int ret = 0, flags = 0;
3111 * Don't allow mmap() of inherited per-task counters. This would
3112 * create a performance issue due to all children writing to the
3113 * same buffer.
3115 if (event->cpu == -1 && event->attr.inherit)
3116 return -EINVAL;
3118 if (!(vma->vm_flags & VM_SHARED))
3119 return -EINVAL;
3121 vma_size = vma->vm_end - vma->vm_start;
3122 nr_pages = (vma_size / PAGE_SIZE) - 1;
3125 * If we have buffer pages ensure they're a power-of-two number, so we
3126 * can do bitmasks instead of modulo.
3128 if (nr_pages != 0 && !is_power_of_2(nr_pages))
3129 return -EINVAL;
3131 if (vma_size != PAGE_SIZE * (1 + nr_pages))
3132 return -EINVAL;
3134 if (vma->vm_pgoff != 0)
3135 return -EINVAL;
3137 WARN_ON_ONCE(event->ctx->parent_ctx);
3138 mutex_lock(&event->mmap_mutex);
3139 if (event->buffer) {
3140 if (event->buffer->nr_pages == nr_pages)
3141 atomic_inc(&event->buffer->refcount);
3142 else
3143 ret = -EINVAL;
3144 goto unlock;
3147 user_extra = nr_pages + 1;
3148 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
3151 * Increase the limit linearly with more CPUs:
3153 user_lock_limit *= num_online_cpus();
3155 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
3157 extra = 0;
3158 if (user_locked > user_lock_limit)
3159 extra = user_locked - user_lock_limit;
3161 lock_limit = rlimit(RLIMIT_MEMLOCK);
3162 lock_limit >>= PAGE_SHIFT;
3163 locked = vma->vm_mm->locked_vm + extra;
3165 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
3166 !capable(CAP_IPC_LOCK)) {
3167 ret = -EPERM;
3168 goto unlock;
3171 WARN_ON(event->buffer);
3173 if (vma->vm_flags & VM_WRITE)
3174 flags |= PERF_BUFFER_WRITABLE;
3176 buffer = perf_buffer_alloc(nr_pages, event->attr.wakeup_watermark,
3177 event->cpu, flags);
3178 if (!buffer) {
3179 ret = -ENOMEM;
3180 goto unlock;
3182 rcu_assign_pointer(event->buffer, buffer);
3184 atomic_long_add(user_extra, &user->locked_vm);
3185 event->mmap_locked = extra;
3186 event->mmap_user = get_current_user();
3187 vma->vm_mm->locked_vm += event->mmap_locked;
3189 unlock:
3190 if (!ret)
3191 atomic_inc(&event->mmap_count);
3192 mutex_unlock(&event->mmap_mutex);
3194 vma->vm_flags |= VM_RESERVED;
3195 vma->vm_ops = &perf_mmap_vmops;
3197 return ret;
3200 static int perf_fasync(int fd, struct file *filp, int on)
3202 struct inode *inode = filp->f_path.dentry->d_inode;
3203 struct perf_event *event = filp->private_data;
3204 int retval;
3206 mutex_lock(&inode->i_mutex);
3207 retval = fasync_helper(fd, filp, on, &event->fasync);
3208 mutex_unlock(&inode->i_mutex);
3210 if (retval < 0)
3211 return retval;
3213 return 0;
3216 static const struct file_operations perf_fops = {
3217 .llseek = no_llseek,
3218 .release = perf_release,
3219 .read = perf_read,
3220 .poll = perf_poll,
3221 .unlocked_ioctl = perf_ioctl,
3222 .compat_ioctl = perf_ioctl,
3223 .mmap = perf_mmap,
3224 .fasync = perf_fasync,
3228 * Perf event wakeup
3230 * If there's data, ensure we set the poll() state and publish everything
3231 * to user-space before waking everybody up.
3234 void perf_event_wakeup(struct perf_event *event)
3236 wake_up_all(&event->waitq);
3238 if (event->pending_kill) {
3239 kill_fasync(&event->fasync, SIGIO, event->pending_kill);
3240 event->pending_kill = 0;
3244 static void perf_pending_event(struct irq_work *entry)
3246 struct perf_event *event = container_of(entry,
3247 struct perf_event, pending);
3249 if (event->pending_disable) {
3250 event->pending_disable = 0;
3251 __perf_event_disable(event);
3254 if (event->pending_wakeup) {
3255 event->pending_wakeup = 0;
3256 perf_event_wakeup(event);
3261 * We assume there is only KVM supporting the callbacks.
3262 * Later on, we might change it to a list if there is
3263 * another virtualization implementation supporting the callbacks.
3265 struct perf_guest_info_callbacks *perf_guest_cbs;
3267 int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3269 perf_guest_cbs = cbs;
3270 return 0;
3272 EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
3274 int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
3276 perf_guest_cbs = NULL;
3277 return 0;
3279 EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
3282 * Output
3284 static bool perf_output_space(struct perf_buffer *buffer, unsigned long tail,
3285 unsigned long offset, unsigned long head)
3287 unsigned long mask;
3289 if (!buffer->writable)
3290 return true;
3292 mask = perf_data_size(buffer) - 1;
3294 offset = (offset - tail) & mask;
3295 head = (head - tail) & mask;
3297 if ((int)(head - offset) < 0)
3298 return false;
3300 return true;
3303 static void perf_output_wakeup(struct perf_output_handle *handle)
3305 atomic_set(&handle->buffer->poll, POLL_IN);
3307 if (handle->nmi) {
3308 handle->event->pending_wakeup = 1;
3309 irq_work_queue(&handle->event->pending);
3310 } else
3311 perf_event_wakeup(handle->event);
3315 * We need to ensure a later event_id doesn't publish a head when a former
3316 * event isn't done writing. However since we need to deal with NMIs we
3317 * cannot fully serialize things.
3319 * We only publish the head (and generate a wakeup) when the outer-most
3320 * event completes.
3322 static void perf_output_get_handle(struct perf_output_handle *handle)
3324 struct perf_buffer *buffer = handle->buffer;
3326 preempt_disable();
3327 local_inc(&buffer->nest);
3328 handle->wakeup = local_read(&buffer->wakeup);
3331 static void perf_output_put_handle(struct perf_output_handle *handle)
3333 struct perf_buffer *buffer = handle->buffer;
3334 unsigned long head;
3336 again:
3337 head = local_read(&buffer->head);
3340 * IRQ/NMI can happen here, which means we can miss a head update.
3343 if (!local_dec_and_test(&buffer->nest))
3344 goto out;
3347 * Publish the known good head. Rely on the full barrier implied
3348 * by atomic_dec_and_test() order the buffer->head read and this
3349 * write.
3351 buffer->user_page->data_head = head;
3354 * Now check if we missed an update, rely on the (compiler)
3355 * barrier in atomic_dec_and_test() to re-read buffer->head.
3357 if (unlikely(head != local_read(&buffer->head))) {
3358 local_inc(&buffer->nest);
3359 goto again;
3362 if (handle->wakeup != local_read(&buffer->wakeup))
3363 perf_output_wakeup(handle);
3365 out:
3366 preempt_enable();
3369 __always_inline void perf_output_copy(struct perf_output_handle *handle,
3370 const void *buf, unsigned int len)
3372 do {
3373 unsigned long size = min_t(unsigned long, handle->size, len);
3375 memcpy(handle->addr, buf, size);
3377 len -= size;
3378 handle->addr += size;
3379 buf += size;
3380 handle->size -= size;
3381 if (!handle->size) {
3382 struct perf_buffer *buffer = handle->buffer;
3384 handle->page++;
3385 handle->page &= buffer->nr_pages - 1;
3386 handle->addr = buffer->data_pages[handle->page];
3387 handle->size = PAGE_SIZE << page_order(buffer);
3389 } while (len);
3392 static void __perf_event_header__init_id(struct perf_event_header *header,
3393 struct perf_sample_data *data,
3394 struct perf_event *event)
3396 u64 sample_type = event->attr.sample_type;
3398 data->type = sample_type;
3399 header->size += event->id_header_size;
3401 if (sample_type & PERF_SAMPLE_TID) {
3402 /* namespace issues */
3403 data->tid_entry.pid = perf_event_pid(event, current);
3404 data->tid_entry.tid = perf_event_tid(event, current);
3407 if (sample_type & PERF_SAMPLE_TIME)
3408 data->time = perf_clock();
3410 if (sample_type & PERF_SAMPLE_ID)
3411 data->id = primary_event_id(event);
3413 if (sample_type & PERF_SAMPLE_STREAM_ID)
3414 data->stream_id = event->id;
3416 if (sample_type & PERF_SAMPLE_CPU) {
3417 data->cpu_entry.cpu = raw_smp_processor_id();
3418 data->cpu_entry.reserved = 0;
3422 static void perf_event_header__init_id(struct perf_event_header *header,
3423 struct perf_sample_data *data,
3424 struct perf_event *event)
3426 if (event->attr.sample_id_all)
3427 __perf_event_header__init_id(header, data, event);
3430 static void __perf_event__output_id_sample(struct perf_output_handle *handle,
3431 struct perf_sample_data *data)
3433 u64 sample_type = data->type;
3435 if (sample_type & PERF_SAMPLE_TID)
3436 perf_output_put(handle, data->tid_entry);
3438 if (sample_type & PERF_SAMPLE_TIME)
3439 perf_output_put(handle, data->time);
3441 if (sample_type & PERF_SAMPLE_ID)
3442 perf_output_put(handle, data->id);
3444 if (sample_type & PERF_SAMPLE_STREAM_ID)
3445 perf_output_put(handle, data->stream_id);
3447 if (sample_type & PERF_SAMPLE_CPU)
3448 perf_output_put(handle, data->cpu_entry);
3451 static void perf_event__output_id_sample(struct perf_event *event,
3452 struct perf_output_handle *handle,
3453 struct perf_sample_data *sample)
3455 if (event->attr.sample_id_all)
3456 __perf_event__output_id_sample(handle, sample);
3459 int perf_output_begin(struct perf_output_handle *handle,
3460 struct perf_event *event, unsigned int size,
3461 int nmi, int sample)
3463 struct perf_buffer *buffer;
3464 unsigned long tail, offset, head;
3465 int have_lost;
3466 struct perf_sample_data sample_data;
3467 struct {
3468 struct perf_event_header header;
3469 u64 id;
3470 u64 lost;
3471 } lost_event;
3473 rcu_read_lock();
3475 * For inherited events we send all the output towards the parent.
3477 if (event->parent)
3478 event = event->parent;
3480 buffer = rcu_dereference(event->buffer);
3481 if (!buffer)
3482 goto out;
3484 handle->buffer = buffer;
3485 handle->event = event;
3486 handle->nmi = nmi;
3487 handle->sample = sample;
3489 if (!buffer->nr_pages)
3490 goto out;
3492 have_lost = local_read(&buffer->lost);
3493 if (have_lost) {
3494 lost_event.header.size = sizeof(lost_event);
3495 perf_event_header__init_id(&lost_event.header, &sample_data,
3496 event);
3497 size += lost_event.header.size;
3500 perf_output_get_handle(handle);
3502 do {
3504 * Userspace could choose to issue a mb() before updating the
3505 * tail pointer. So that all reads will be completed before the
3506 * write is issued.
3508 tail = ACCESS_ONCE(buffer->user_page->data_tail);
3509 smp_rmb();
3510 offset = head = local_read(&buffer->head);
3511 head += size;
3512 if (unlikely(!perf_output_space(buffer, tail, offset, head)))
3513 goto fail;
3514 } while (local_cmpxchg(&buffer->head, offset, head) != offset);
3516 if (head - local_read(&buffer->wakeup) > buffer->watermark)
3517 local_add(buffer->watermark, &buffer->wakeup);
3519 handle->page = offset >> (PAGE_SHIFT + page_order(buffer));
3520 handle->page &= buffer->nr_pages - 1;
3521 handle->size = offset & ((PAGE_SIZE << page_order(buffer)) - 1);
3522 handle->addr = buffer->data_pages[handle->page];
3523 handle->addr += handle->size;
3524 handle->size = (PAGE_SIZE << page_order(buffer)) - handle->size;
3526 if (have_lost) {
3527 lost_event.header.type = PERF_RECORD_LOST;
3528 lost_event.header.misc = 0;
3529 lost_event.id = event->id;
3530 lost_event.lost = local_xchg(&buffer->lost, 0);
3532 perf_output_put(handle, lost_event);
3533 perf_event__output_id_sample(event, handle, &sample_data);
3536 return 0;
3538 fail:
3539 local_inc(&buffer->lost);
3540 perf_output_put_handle(handle);
3541 out:
3542 rcu_read_unlock();
3544 return -ENOSPC;
3547 void perf_output_end(struct perf_output_handle *handle)
3549 struct perf_event *event = handle->event;
3550 struct perf_buffer *buffer = handle->buffer;
3552 int wakeup_events = event->attr.wakeup_events;
3554 if (handle->sample && wakeup_events) {
3555 int events = local_inc_return(&buffer->events);
3556 if (events >= wakeup_events) {
3557 local_sub(wakeup_events, &buffer->events);
3558 local_inc(&buffer->wakeup);
3562 perf_output_put_handle(handle);
3563 rcu_read_unlock();
3566 static void perf_output_read_one(struct perf_output_handle *handle,
3567 struct perf_event *event,
3568 u64 enabled, u64 running)
3570 u64 read_format = event->attr.read_format;
3571 u64 values[4];
3572 int n = 0;
3574 values[n++] = perf_event_count(event);
3575 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3576 values[n++] = enabled +
3577 atomic64_read(&event->child_total_time_enabled);
3579 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3580 values[n++] = running +
3581 atomic64_read(&event->child_total_time_running);
3583 if (read_format & PERF_FORMAT_ID)
3584 values[n++] = primary_event_id(event);
3586 perf_output_copy(handle, values, n * sizeof(u64));
3590 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3592 static void perf_output_read_group(struct perf_output_handle *handle,
3593 struct perf_event *event,
3594 u64 enabled, u64 running)
3596 struct perf_event *leader = event->group_leader, *sub;
3597 u64 read_format = event->attr.read_format;
3598 u64 values[5];
3599 int n = 0;
3601 values[n++] = 1 + leader->nr_siblings;
3603 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3604 values[n++] = enabled;
3606 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3607 values[n++] = running;
3609 if (leader != event)
3610 leader->pmu->read(leader);
3612 values[n++] = perf_event_count(leader);
3613 if (read_format & PERF_FORMAT_ID)
3614 values[n++] = primary_event_id(leader);
3616 perf_output_copy(handle, values, n * sizeof(u64));
3618 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3619 n = 0;
3621 if (sub != event)
3622 sub->pmu->read(sub);
3624 values[n++] = perf_event_count(sub);
3625 if (read_format & PERF_FORMAT_ID)
3626 values[n++] = primary_event_id(sub);
3628 perf_output_copy(handle, values, n * sizeof(u64));
3632 #define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
3633 PERF_FORMAT_TOTAL_TIME_RUNNING)
3635 static void perf_output_read(struct perf_output_handle *handle,
3636 struct perf_event *event)
3638 u64 enabled = 0, running = 0, now, ctx_time;
3639 u64 read_format = event->attr.read_format;
3642 * compute total_time_enabled, total_time_running
3643 * based on snapshot values taken when the event
3644 * was last scheduled in.
3646 * we cannot simply called update_context_time()
3647 * because of locking issue as we are called in
3648 * NMI context
3650 if (read_format & PERF_FORMAT_TOTAL_TIMES) {
3651 now = perf_clock();
3652 ctx_time = event->shadow_ctx_time + now;
3653 enabled = ctx_time - event->tstamp_enabled;
3654 running = ctx_time - event->tstamp_running;
3657 if (event->attr.read_format & PERF_FORMAT_GROUP)
3658 perf_output_read_group(handle, event, enabled, running);
3659 else
3660 perf_output_read_one(handle, event, enabled, running);
3663 void perf_output_sample(struct perf_output_handle *handle,
3664 struct perf_event_header *header,
3665 struct perf_sample_data *data,
3666 struct perf_event *event)
3668 u64 sample_type = data->type;
3670 perf_output_put(handle, *header);
3672 if (sample_type & PERF_SAMPLE_IP)
3673 perf_output_put(handle, data->ip);
3675 if (sample_type & PERF_SAMPLE_TID)
3676 perf_output_put(handle, data->tid_entry);
3678 if (sample_type & PERF_SAMPLE_TIME)
3679 perf_output_put(handle, data->time);
3681 if (sample_type & PERF_SAMPLE_ADDR)
3682 perf_output_put(handle, data->addr);
3684 if (sample_type & PERF_SAMPLE_ID)
3685 perf_output_put(handle, data->id);
3687 if (sample_type & PERF_SAMPLE_STREAM_ID)
3688 perf_output_put(handle, data->stream_id);
3690 if (sample_type & PERF_SAMPLE_CPU)
3691 perf_output_put(handle, data->cpu_entry);
3693 if (sample_type & PERF_SAMPLE_PERIOD)
3694 perf_output_put(handle, data->period);
3696 if (sample_type & PERF_SAMPLE_READ)
3697 perf_output_read(handle, event);
3699 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3700 if (data->callchain) {
3701 int size = 1;
3703 if (data->callchain)
3704 size += data->callchain->nr;
3706 size *= sizeof(u64);
3708 perf_output_copy(handle, data->callchain, size);
3709 } else {
3710 u64 nr = 0;
3711 perf_output_put(handle, nr);
3715 if (sample_type & PERF_SAMPLE_RAW) {
3716 if (data->raw) {
3717 perf_output_put(handle, data->raw->size);
3718 perf_output_copy(handle, data->raw->data,
3719 data->raw->size);
3720 } else {
3721 struct {
3722 u32 size;
3723 u32 data;
3724 } raw = {
3725 .size = sizeof(u32),
3726 .data = 0,
3728 perf_output_put(handle, raw);
3733 void perf_prepare_sample(struct perf_event_header *header,
3734 struct perf_sample_data *data,
3735 struct perf_event *event,
3736 struct pt_regs *regs)
3738 u64 sample_type = event->attr.sample_type;
3740 header->type = PERF_RECORD_SAMPLE;
3741 header->size = sizeof(*header) + event->header_size;
3743 header->misc = 0;
3744 header->misc |= perf_misc_flags(regs);
3746 __perf_event_header__init_id(header, data, event);
3748 if (sample_type & PERF_SAMPLE_IP)
3749 data->ip = perf_instruction_pointer(regs);
3751 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
3752 int size = 1;
3754 data->callchain = perf_callchain(regs);
3756 if (data->callchain)
3757 size += data->callchain->nr;
3759 header->size += size * sizeof(u64);
3762 if (sample_type & PERF_SAMPLE_RAW) {
3763 int size = sizeof(u32);
3765 if (data->raw)
3766 size += data->raw->size;
3767 else
3768 size += sizeof(u32);
3770 WARN_ON_ONCE(size & (sizeof(u64)-1));
3771 header->size += size;
3775 static void perf_event_output(struct perf_event *event, int nmi,
3776 struct perf_sample_data *data,
3777 struct pt_regs *regs)
3779 struct perf_output_handle handle;
3780 struct perf_event_header header;
3782 /* protect the callchain buffers */
3783 rcu_read_lock();
3785 perf_prepare_sample(&header, data, event, regs);
3787 if (perf_output_begin(&handle, event, header.size, nmi, 1))
3788 goto exit;
3790 perf_output_sample(&handle, &header, data, event);
3792 perf_output_end(&handle);
3794 exit:
3795 rcu_read_unlock();
3799 * read event_id
3802 struct perf_read_event {
3803 struct perf_event_header header;
3805 u32 pid;
3806 u32 tid;
3809 static void
3810 perf_event_read_event(struct perf_event *event,
3811 struct task_struct *task)
3813 struct perf_output_handle handle;
3814 struct perf_sample_data sample;
3815 struct perf_read_event read_event = {
3816 .header = {
3817 .type = PERF_RECORD_READ,
3818 .misc = 0,
3819 .size = sizeof(read_event) + event->read_size,
3821 .pid = perf_event_pid(event, task),
3822 .tid = perf_event_tid(event, task),
3824 int ret;
3826 perf_event_header__init_id(&read_event.header, &sample, event);
3827 ret = perf_output_begin(&handle, event, read_event.header.size, 0, 0);
3828 if (ret)
3829 return;
3831 perf_output_put(&handle, read_event);
3832 perf_output_read(&handle, event);
3833 perf_event__output_id_sample(event, &handle, &sample);
3835 perf_output_end(&handle);
3839 * task tracking -- fork/exit
3841 * enabled by: attr.comm | attr.mmap | attr.mmap_data | attr.task
3844 struct perf_task_event {
3845 struct task_struct *task;
3846 struct perf_event_context *task_ctx;
3848 struct {
3849 struct perf_event_header header;
3851 u32 pid;
3852 u32 ppid;
3853 u32 tid;
3854 u32 ptid;
3855 u64 time;
3856 } event_id;
3859 static void perf_event_task_output(struct perf_event *event,
3860 struct perf_task_event *task_event)
3862 struct perf_output_handle handle;
3863 struct perf_sample_data sample;
3864 struct task_struct *task = task_event->task;
3865 int ret, size = task_event->event_id.header.size;
3867 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
3869 ret = perf_output_begin(&handle, event,
3870 task_event->event_id.header.size, 0, 0);
3871 if (ret)
3872 goto out;
3874 task_event->event_id.pid = perf_event_pid(event, task);
3875 task_event->event_id.ppid = perf_event_pid(event, current);
3877 task_event->event_id.tid = perf_event_tid(event, task);
3878 task_event->event_id.ptid = perf_event_tid(event, current);
3880 perf_output_put(&handle, task_event->event_id);
3882 perf_event__output_id_sample(event, &handle, &sample);
3884 perf_output_end(&handle);
3885 out:
3886 task_event->event_id.header.size = size;
3889 static int perf_event_task_match(struct perf_event *event)
3891 if (event->state < PERF_EVENT_STATE_INACTIVE)
3892 return 0;
3894 if (event->cpu != -1 && event->cpu != smp_processor_id())
3895 return 0;
3897 if (event->attr.comm || event->attr.mmap ||
3898 event->attr.mmap_data || event->attr.task)
3899 return 1;
3901 return 0;
3904 static void perf_event_task_ctx(struct perf_event_context *ctx,
3905 struct perf_task_event *task_event)
3907 struct perf_event *event;
3909 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
3910 if (perf_event_task_match(event))
3911 perf_event_task_output(event, task_event);
3915 static void perf_event_task_event(struct perf_task_event *task_event)
3917 struct perf_cpu_context *cpuctx;
3918 struct perf_event_context *ctx;
3919 struct pmu *pmu;
3920 int ctxn;
3922 rcu_read_lock();
3923 list_for_each_entry_rcu(pmu, &pmus, entry) {
3924 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
3925 if (cpuctx->active_pmu != pmu)
3926 goto next;
3927 perf_event_task_ctx(&cpuctx->ctx, task_event);
3929 ctx = task_event->task_ctx;
3930 if (!ctx) {
3931 ctxn = pmu->task_ctx_nr;
3932 if (ctxn < 0)
3933 goto next;
3934 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
3936 if (ctx)
3937 perf_event_task_ctx(ctx, task_event);
3938 next:
3939 put_cpu_ptr(pmu->pmu_cpu_context);
3941 rcu_read_unlock();
3944 static void perf_event_task(struct task_struct *task,
3945 struct perf_event_context *task_ctx,
3946 int new)
3948 struct perf_task_event task_event;
3950 if (!atomic_read(&nr_comm_events) &&
3951 !atomic_read(&nr_mmap_events) &&
3952 !atomic_read(&nr_task_events))
3953 return;
3955 task_event = (struct perf_task_event){
3956 .task = task,
3957 .task_ctx = task_ctx,
3958 .event_id = {
3959 .header = {
3960 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
3961 .misc = 0,
3962 .size = sizeof(task_event.event_id),
3964 /* .pid */
3965 /* .ppid */
3966 /* .tid */
3967 /* .ptid */
3968 .time = perf_clock(),
3972 perf_event_task_event(&task_event);
3975 void perf_event_fork(struct task_struct *task)
3977 perf_event_task(task, NULL, 1);
3981 * comm tracking
3984 struct perf_comm_event {
3985 struct task_struct *task;
3986 char *comm;
3987 int comm_size;
3989 struct {
3990 struct perf_event_header header;
3992 u32 pid;
3993 u32 tid;
3994 } event_id;
3997 static void perf_event_comm_output(struct perf_event *event,
3998 struct perf_comm_event *comm_event)
4000 struct perf_output_handle handle;
4001 struct perf_sample_data sample;
4002 int size = comm_event->event_id.header.size;
4003 int ret;
4005 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
4006 ret = perf_output_begin(&handle, event,
4007 comm_event->event_id.header.size, 0, 0);
4009 if (ret)
4010 goto out;
4012 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
4013 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
4015 perf_output_put(&handle, comm_event->event_id);
4016 perf_output_copy(&handle, comm_event->comm,
4017 comm_event->comm_size);
4019 perf_event__output_id_sample(event, &handle, &sample);
4021 perf_output_end(&handle);
4022 out:
4023 comm_event->event_id.header.size = size;
4026 static int perf_event_comm_match(struct perf_event *event)
4028 if (event->state < PERF_EVENT_STATE_INACTIVE)
4029 return 0;
4031 if (event->cpu != -1 && event->cpu != smp_processor_id())
4032 return 0;
4034 if (event->attr.comm)
4035 return 1;
4037 return 0;
4040 static void perf_event_comm_ctx(struct perf_event_context *ctx,
4041 struct perf_comm_event *comm_event)
4043 struct perf_event *event;
4045 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4046 if (perf_event_comm_match(event))
4047 perf_event_comm_output(event, comm_event);
4051 static void perf_event_comm_event(struct perf_comm_event *comm_event)
4053 struct perf_cpu_context *cpuctx;
4054 struct perf_event_context *ctx;
4055 char comm[TASK_COMM_LEN];
4056 unsigned int size;
4057 struct pmu *pmu;
4058 int ctxn;
4060 memset(comm, 0, sizeof(comm));
4061 strlcpy(comm, comm_event->task->comm, sizeof(comm));
4062 size = ALIGN(strlen(comm)+1, sizeof(u64));
4064 comm_event->comm = comm;
4065 comm_event->comm_size = size;
4067 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
4068 rcu_read_lock();
4069 list_for_each_entry_rcu(pmu, &pmus, entry) {
4070 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4071 if (cpuctx->active_pmu != pmu)
4072 goto next;
4073 perf_event_comm_ctx(&cpuctx->ctx, comm_event);
4075 ctxn = pmu->task_ctx_nr;
4076 if (ctxn < 0)
4077 goto next;
4079 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4080 if (ctx)
4081 perf_event_comm_ctx(ctx, comm_event);
4082 next:
4083 put_cpu_ptr(pmu->pmu_cpu_context);
4085 rcu_read_unlock();
4088 void perf_event_comm(struct task_struct *task)
4090 struct perf_comm_event comm_event;
4091 struct perf_event_context *ctx;
4092 int ctxn;
4094 for_each_task_context_nr(ctxn) {
4095 ctx = task->perf_event_ctxp[ctxn];
4096 if (!ctx)
4097 continue;
4099 perf_event_enable_on_exec(ctx);
4102 if (!atomic_read(&nr_comm_events))
4103 return;
4105 comm_event = (struct perf_comm_event){
4106 .task = task,
4107 /* .comm */
4108 /* .comm_size */
4109 .event_id = {
4110 .header = {
4111 .type = PERF_RECORD_COMM,
4112 .misc = 0,
4113 /* .size */
4115 /* .pid */
4116 /* .tid */
4120 perf_event_comm_event(&comm_event);
4124 * mmap tracking
4127 struct perf_mmap_event {
4128 struct vm_area_struct *vma;
4130 const char *file_name;
4131 int file_size;
4133 struct {
4134 struct perf_event_header header;
4136 u32 pid;
4137 u32 tid;
4138 u64 start;
4139 u64 len;
4140 u64 pgoff;
4141 } event_id;
4144 static void perf_event_mmap_output(struct perf_event *event,
4145 struct perf_mmap_event *mmap_event)
4147 struct perf_output_handle handle;
4148 struct perf_sample_data sample;
4149 int size = mmap_event->event_id.header.size;
4150 int ret;
4152 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
4153 ret = perf_output_begin(&handle, event,
4154 mmap_event->event_id.header.size, 0, 0);
4155 if (ret)
4156 goto out;
4158 mmap_event->event_id.pid = perf_event_pid(event, current);
4159 mmap_event->event_id.tid = perf_event_tid(event, current);
4161 perf_output_put(&handle, mmap_event->event_id);
4162 perf_output_copy(&handle, mmap_event->file_name,
4163 mmap_event->file_size);
4165 perf_event__output_id_sample(event, &handle, &sample);
4167 perf_output_end(&handle);
4168 out:
4169 mmap_event->event_id.header.size = size;
4172 static int perf_event_mmap_match(struct perf_event *event,
4173 struct perf_mmap_event *mmap_event,
4174 int executable)
4176 if (event->state < PERF_EVENT_STATE_INACTIVE)
4177 return 0;
4179 if (event->cpu != -1 && event->cpu != smp_processor_id())
4180 return 0;
4182 if ((!executable && event->attr.mmap_data) ||
4183 (executable && event->attr.mmap))
4184 return 1;
4186 return 0;
4189 static void perf_event_mmap_ctx(struct perf_event_context *ctx,
4190 struct perf_mmap_event *mmap_event,
4191 int executable)
4193 struct perf_event *event;
4195 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
4196 if (perf_event_mmap_match(event, mmap_event, executable))
4197 perf_event_mmap_output(event, mmap_event);
4201 static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
4203 struct perf_cpu_context *cpuctx;
4204 struct perf_event_context *ctx;
4205 struct vm_area_struct *vma = mmap_event->vma;
4206 struct file *file = vma->vm_file;
4207 unsigned int size;
4208 char tmp[16];
4209 char *buf = NULL;
4210 const char *name;
4211 struct pmu *pmu;
4212 int ctxn;
4214 memset(tmp, 0, sizeof(tmp));
4216 if (file) {
4218 * d_path works from the end of the buffer backwards, so we
4219 * need to add enough zero bytes after the string to handle
4220 * the 64bit alignment we do later.
4222 buf = kzalloc(PATH_MAX + sizeof(u64), GFP_KERNEL);
4223 if (!buf) {
4224 name = strncpy(tmp, "//enomem", sizeof(tmp));
4225 goto got_name;
4227 name = d_path(&file->f_path, buf, PATH_MAX);
4228 if (IS_ERR(name)) {
4229 name = strncpy(tmp, "//toolong", sizeof(tmp));
4230 goto got_name;
4232 } else {
4233 if (arch_vma_name(mmap_event->vma)) {
4234 name = strncpy(tmp, arch_vma_name(mmap_event->vma),
4235 sizeof(tmp));
4236 goto got_name;
4239 if (!vma->vm_mm) {
4240 name = strncpy(tmp, "[vdso]", sizeof(tmp));
4241 goto got_name;
4242 } else if (vma->vm_start <= vma->vm_mm->start_brk &&
4243 vma->vm_end >= vma->vm_mm->brk) {
4244 name = strncpy(tmp, "[heap]", sizeof(tmp));
4245 goto got_name;
4246 } else if (vma->vm_start <= vma->vm_mm->start_stack &&
4247 vma->vm_end >= vma->vm_mm->start_stack) {
4248 name = strncpy(tmp, "[stack]", sizeof(tmp));
4249 goto got_name;
4252 name = strncpy(tmp, "//anon", sizeof(tmp));
4253 goto got_name;
4256 got_name:
4257 size = ALIGN(strlen(name)+1, sizeof(u64));
4259 mmap_event->file_name = name;
4260 mmap_event->file_size = size;
4262 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
4264 rcu_read_lock();
4265 list_for_each_entry_rcu(pmu, &pmus, entry) {
4266 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
4267 if (cpuctx->active_pmu != pmu)
4268 goto next;
4269 perf_event_mmap_ctx(&cpuctx->ctx, mmap_event,
4270 vma->vm_flags & VM_EXEC);
4272 ctxn = pmu->task_ctx_nr;
4273 if (ctxn < 0)
4274 goto next;
4276 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
4277 if (ctx) {
4278 perf_event_mmap_ctx(ctx, mmap_event,
4279 vma->vm_flags & VM_EXEC);
4281 next:
4282 put_cpu_ptr(pmu->pmu_cpu_context);
4284 rcu_read_unlock();
4286 kfree(buf);
4289 void perf_event_mmap(struct vm_area_struct *vma)
4291 struct perf_mmap_event mmap_event;
4293 if (!atomic_read(&nr_mmap_events))
4294 return;
4296 mmap_event = (struct perf_mmap_event){
4297 .vma = vma,
4298 /* .file_name */
4299 /* .file_size */
4300 .event_id = {
4301 .header = {
4302 .type = PERF_RECORD_MMAP,
4303 .misc = PERF_RECORD_MISC_USER,
4304 /* .size */
4306 /* .pid */
4307 /* .tid */
4308 .start = vma->vm_start,
4309 .len = vma->vm_end - vma->vm_start,
4310 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
4314 perf_event_mmap_event(&mmap_event);
4318 * IRQ throttle logging
4321 static void perf_log_throttle(struct perf_event *event, int enable)
4323 struct perf_output_handle handle;
4324 struct perf_sample_data sample;
4325 int ret;
4327 struct {
4328 struct perf_event_header header;
4329 u64 time;
4330 u64 id;
4331 u64 stream_id;
4332 } throttle_event = {
4333 .header = {
4334 .type = PERF_RECORD_THROTTLE,
4335 .misc = 0,
4336 .size = sizeof(throttle_event),
4338 .time = perf_clock(),
4339 .id = primary_event_id(event),
4340 .stream_id = event->id,
4343 if (enable)
4344 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
4346 perf_event_header__init_id(&throttle_event.header, &sample, event);
4348 ret = perf_output_begin(&handle, event,
4349 throttle_event.header.size, 1, 0);
4350 if (ret)
4351 return;
4353 perf_output_put(&handle, throttle_event);
4354 perf_event__output_id_sample(event, &handle, &sample);
4355 perf_output_end(&handle);
4359 * Generic event overflow handling, sampling.
4362 static int __perf_event_overflow(struct perf_event *event, int nmi,
4363 int throttle, struct perf_sample_data *data,
4364 struct pt_regs *regs)
4366 int events = atomic_read(&event->event_limit);
4367 struct hw_perf_event *hwc = &event->hw;
4368 int ret = 0;
4371 * Non-sampling counters might still use the PMI to fold short
4372 * hardware counters, ignore those.
4374 if (unlikely(!is_sampling_event(event)))
4375 return 0;
4377 if (!throttle) {
4378 hwc->interrupts++;
4379 } else {
4380 if (hwc->interrupts != MAX_INTERRUPTS) {
4381 hwc->interrupts++;
4382 if (HZ * hwc->interrupts >
4383 (u64)sysctl_perf_event_sample_rate) {
4384 hwc->interrupts = MAX_INTERRUPTS;
4385 perf_log_throttle(event, 0);
4386 ret = 1;
4388 } else {
4390 * Keep re-disabling events even though on the previous
4391 * pass we disabled it - just in case we raced with a
4392 * sched-in and the event got enabled again:
4394 ret = 1;
4398 if (event->attr.freq) {
4399 u64 now = perf_clock();
4400 s64 delta = now - hwc->freq_time_stamp;
4402 hwc->freq_time_stamp = now;
4404 if (delta > 0 && delta < 2*TICK_NSEC)
4405 perf_adjust_period(event, delta, hwc->last_period);
4409 * XXX event_limit might not quite work as expected on inherited
4410 * events
4413 event->pending_kill = POLL_IN;
4414 if (events && atomic_dec_and_test(&event->event_limit)) {
4415 ret = 1;
4416 event->pending_kill = POLL_HUP;
4417 if (nmi) {
4418 event->pending_disable = 1;
4419 irq_work_queue(&event->pending);
4420 } else
4421 perf_event_disable(event);
4424 if (event->overflow_handler)
4425 event->overflow_handler(event, nmi, data, regs);
4426 else
4427 perf_event_output(event, nmi, data, regs);
4429 return ret;
4432 int perf_event_overflow(struct perf_event *event, int nmi,
4433 struct perf_sample_data *data,
4434 struct pt_regs *regs)
4436 return __perf_event_overflow(event, nmi, 1, data, regs);
4440 * Generic software event infrastructure
4443 struct swevent_htable {
4444 struct swevent_hlist *swevent_hlist;
4445 struct mutex hlist_mutex;
4446 int hlist_refcount;
4448 /* Recursion avoidance in each contexts */
4449 int recursion[PERF_NR_CONTEXTS];
4452 static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
4455 * We directly increment event->count and keep a second value in
4456 * event->hw.period_left to count intervals. This period event
4457 * is kept in the range [-sample_period, 0] so that we can use the
4458 * sign as trigger.
4461 static u64 perf_swevent_set_period(struct perf_event *event)
4463 struct hw_perf_event *hwc = &event->hw;
4464 u64 period = hwc->last_period;
4465 u64 nr, offset;
4466 s64 old, val;
4468 hwc->last_period = hwc->sample_period;
4470 again:
4471 old = val = local64_read(&hwc->period_left);
4472 if (val < 0)
4473 return 0;
4475 nr = div64_u64(period + val, period);
4476 offset = nr * period;
4477 val -= offset;
4478 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
4479 goto again;
4481 return nr;
4484 static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
4485 int nmi, struct perf_sample_data *data,
4486 struct pt_regs *regs)
4488 struct hw_perf_event *hwc = &event->hw;
4489 int throttle = 0;
4491 data->period = event->hw.last_period;
4492 if (!overflow)
4493 overflow = perf_swevent_set_period(event);
4495 if (hwc->interrupts == MAX_INTERRUPTS)
4496 return;
4498 for (; overflow; overflow--) {
4499 if (__perf_event_overflow(event, nmi, throttle,
4500 data, regs)) {
4502 * We inhibit the overflow from happening when
4503 * hwc->interrupts == MAX_INTERRUPTS.
4505 break;
4507 throttle = 1;
4511 static void perf_swevent_event(struct perf_event *event, u64 nr,
4512 int nmi, struct perf_sample_data *data,
4513 struct pt_regs *regs)
4515 struct hw_perf_event *hwc = &event->hw;
4517 local64_add(nr, &event->count);
4519 if (!regs)
4520 return;
4522 if (!is_sampling_event(event))
4523 return;
4525 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
4526 return perf_swevent_overflow(event, 1, nmi, data, regs);
4528 if (local64_add_negative(nr, &hwc->period_left))
4529 return;
4531 perf_swevent_overflow(event, 0, nmi, data, regs);
4534 static int perf_exclude_event(struct perf_event *event,
4535 struct pt_regs *regs)
4537 if (event->hw.state & PERF_HES_STOPPED)
4538 return 0;
4540 if (regs) {
4541 if (event->attr.exclude_user && user_mode(regs))
4542 return 1;
4544 if (event->attr.exclude_kernel && !user_mode(regs))
4545 return 1;
4548 return 0;
4551 static int perf_swevent_match(struct perf_event *event,
4552 enum perf_type_id type,
4553 u32 event_id,
4554 struct perf_sample_data *data,
4555 struct pt_regs *regs)
4557 if (event->attr.type != type)
4558 return 0;
4560 if (event->attr.config != event_id)
4561 return 0;
4563 if (perf_exclude_event(event, regs))
4564 return 0;
4566 return 1;
4569 static inline u64 swevent_hash(u64 type, u32 event_id)
4571 u64 val = event_id | (type << 32);
4573 return hash_64(val, SWEVENT_HLIST_BITS);
4576 static inline struct hlist_head *
4577 __find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
4579 u64 hash = swevent_hash(type, event_id);
4581 return &hlist->heads[hash];
4584 /* For the read side: events when they trigger */
4585 static inline struct hlist_head *
4586 find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
4588 struct swevent_hlist *hlist;
4590 hlist = rcu_dereference(swhash->swevent_hlist);
4591 if (!hlist)
4592 return NULL;
4594 return __find_swevent_head(hlist, type, event_id);
4597 /* For the event head insertion and removal in the hlist */
4598 static inline struct hlist_head *
4599 find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
4601 struct swevent_hlist *hlist;
4602 u32 event_id = event->attr.config;
4603 u64 type = event->attr.type;
4606 * Event scheduling is always serialized against hlist allocation
4607 * and release. Which makes the protected version suitable here.
4608 * The context lock guarantees that.
4610 hlist = rcu_dereference_protected(swhash->swevent_hlist,
4611 lockdep_is_held(&event->ctx->lock));
4612 if (!hlist)
4613 return NULL;
4615 return __find_swevent_head(hlist, type, event_id);
4618 static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
4619 u64 nr, int nmi,
4620 struct perf_sample_data *data,
4621 struct pt_regs *regs)
4623 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4624 struct perf_event *event;
4625 struct hlist_node *node;
4626 struct hlist_head *head;
4628 rcu_read_lock();
4629 head = find_swevent_head_rcu(swhash, type, event_id);
4630 if (!head)
4631 goto end;
4633 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4634 if (perf_swevent_match(event, type, event_id, data, regs))
4635 perf_swevent_event(event, nr, nmi, data, regs);
4637 end:
4638 rcu_read_unlock();
4641 int perf_swevent_get_recursion_context(void)
4643 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4645 return get_recursion_context(swhash->recursion);
4647 EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
4649 void inline perf_swevent_put_recursion_context(int rctx)
4651 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4653 put_recursion_context(swhash->recursion, rctx);
4656 void __perf_sw_event(u32 event_id, u64 nr, int nmi,
4657 struct pt_regs *regs, u64 addr)
4659 struct perf_sample_data data;
4660 int rctx;
4662 preempt_disable_notrace();
4663 rctx = perf_swevent_get_recursion_context();
4664 if (rctx < 0)
4665 return;
4667 perf_sample_data_init(&data, addr);
4669 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, nmi, &data, regs);
4671 perf_swevent_put_recursion_context(rctx);
4672 preempt_enable_notrace();
4675 static void perf_swevent_read(struct perf_event *event)
4679 static int perf_swevent_add(struct perf_event *event, int flags)
4681 struct swevent_htable *swhash = &__get_cpu_var(swevent_htable);
4682 struct hw_perf_event *hwc = &event->hw;
4683 struct hlist_head *head;
4685 if (is_sampling_event(event)) {
4686 hwc->last_period = hwc->sample_period;
4687 perf_swevent_set_period(event);
4690 hwc->state = !(flags & PERF_EF_START);
4692 head = find_swevent_head(swhash, event);
4693 if (WARN_ON_ONCE(!head))
4694 return -EINVAL;
4696 hlist_add_head_rcu(&event->hlist_entry, head);
4698 return 0;
4701 static void perf_swevent_del(struct perf_event *event, int flags)
4703 hlist_del_rcu(&event->hlist_entry);
4706 static void perf_swevent_start(struct perf_event *event, int flags)
4708 event->hw.state = 0;
4711 static void perf_swevent_stop(struct perf_event *event, int flags)
4713 event->hw.state = PERF_HES_STOPPED;
4716 /* Deref the hlist from the update side */
4717 static inline struct swevent_hlist *
4718 swevent_hlist_deref(struct swevent_htable *swhash)
4720 return rcu_dereference_protected(swhash->swevent_hlist,
4721 lockdep_is_held(&swhash->hlist_mutex));
4724 static void swevent_hlist_release_rcu(struct rcu_head *rcu_head)
4726 struct swevent_hlist *hlist;
4728 hlist = container_of(rcu_head, struct swevent_hlist, rcu_head);
4729 kfree(hlist);
4732 static void swevent_hlist_release(struct swevent_htable *swhash)
4734 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
4736 if (!hlist)
4737 return;
4739 rcu_assign_pointer(swhash->swevent_hlist, NULL);
4740 call_rcu(&hlist->rcu_head, swevent_hlist_release_rcu);
4743 static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
4745 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4747 mutex_lock(&swhash->hlist_mutex);
4749 if (!--swhash->hlist_refcount)
4750 swevent_hlist_release(swhash);
4752 mutex_unlock(&swhash->hlist_mutex);
4755 static void swevent_hlist_put(struct perf_event *event)
4757 int cpu;
4759 if (event->cpu != -1) {
4760 swevent_hlist_put_cpu(event, event->cpu);
4761 return;
4764 for_each_possible_cpu(cpu)
4765 swevent_hlist_put_cpu(event, cpu);
4768 static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
4770 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
4771 int err = 0;
4773 mutex_lock(&swhash->hlist_mutex);
4775 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
4776 struct swevent_hlist *hlist;
4778 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
4779 if (!hlist) {
4780 err = -ENOMEM;
4781 goto exit;
4783 rcu_assign_pointer(swhash->swevent_hlist, hlist);
4785 swhash->hlist_refcount++;
4786 exit:
4787 mutex_unlock(&swhash->hlist_mutex);
4789 return err;
4792 static int swevent_hlist_get(struct perf_event *event)
4794 int err;
4795 int cpu, failed_cpu;
4797 if (event->cpu != -1)
4798 return swevent_hlist_get_cpu(event, event->cpu);
4800 get_online_cpus();
4801 for_each_possible_cpu(cpu) {
4802 err = swevent_hlist_get_cpu(event, cpu);
4803 if (err) {
4804 failed_cpu = cpu;
4805 goto fail;
4808 put_online_cpus();
4810 return 0;
4811 fail:
4812 for_each_possible_cpu(cpu) {
4813 if (cpu == failed_cpu)
4814 break;
4815 swevent_hlist_put_cpu(event, cpu);
4818 put_online_cpus();
4819 return err;
4822 atomic_t perf_swevent_enabled[PERF_COUNT_SW_MAX];
4824 static void sw_perf_event_destroy(struct perf_event *event)
4826 u64 event_id = event->attr.config;
4828 WARN_ON(event->parent);
4830 jump_label_dec(&perf_swevent_enabled[event_id]);
4831 swevent_hlist_put(event);
4834 static int perf_swevent_init(struct perf_event *event)
4836 int event_id = event->attr.config;
4838 if (event->attr.type != PERF_TYPE_SOFTWARE)
4839 return -ENOENT;
4841 switch (event_id) {
4842 case PERF_COUNT_SW_CPU_CLOCK:
4843 case PERF_COUNT_SW_TASK_CLOCK:
4844 return -ENOENT;
4846 default:
4847 break;
4850 if (event_id >= PERF_COUNT_SW_MAX)
4851 return -ENOENT;
4853 if (!event->parent) {
4854 int err;
4856 err = swevent_hlist_get(event);
4857 if (err)
4858 return err;
4860 jump_label_inc(&perf_swevent_enabled[event_id]);
4861 event->destroy = sw_perf_event_destroy;
4864 return 0;
4867 static struct pmu perf_swevent = {
4868 .task_ctx_nr = perf_sw_context,
4870 .event_init = perf_swevent_init,
4871 .add = perf_swevent_add,
4872 .del = perf_swevent_del,
4873 .start = perf_swevent_start,
4874 .stop = perf_swevent_stop,
4875 .read = perf_swevent_read,
4878 #ifdef CONFIG_EVENT_TRACING
4880 static int perf_tp_filter_match(struct perf_event *event,
4881 struct perf_sample_data *data)
4883 void *record = data->raw->data;
4885 if (likely(!event->filter) || filter_match_preds(event->filter, record))
4886 return 1;
4887 return 0;
4890 static int perf_tp_event_match(struct perf_event *event,
4891 struct perf_sample_data *data,
4892 struct pt_regs *regs)
4895 * All tracepoints are from kernel-space.
4897 if (event->attr.exclude_kernel)
4898 return 0;
4900 if (!perf_tp_filter_match(event, data))
4901 return 0;
4903 return 1;
4906 void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
4907 struct pt_regs *regs, struct hlist_head *head, int rctx)
4909 struct perf_sample_data data;
4910 struct perf_event *event;
4911 struct hlist_node *node;
4913 struct perf_raw_record raw = {
4914 .size = entry_size,
4915 .data = record,
4918 perf_sample_data_init(&data, addr);
4919 data.raw = &raw;
4921 hlist_for_each_entry_rcu(event, node, head, hlist_entry) {
4922 if (perf_tp_event_match(event, &data, regs))
4923 perf_swevent_event(event, count, 1, &data, regs);
4926 perf_swevent_put_recursion_context(rctx);
4928 EXPORT_SYMBOL_GPL(perf_tp_event);
4930 static void tp_perf_event_destroy(struct perf_event *event)
4932 perf_trace_destroy(event);
4935 static int perf_tp_event_init(struct perf_event *event)
4937 int err;
4939 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4940 return -ENOENT;
4942 err = perf_trace_init(event);
4943 if (err)
4944 return err;
4946 event->destroy = tp_perf_event_destroy;
4948 return 0;
4951 static struct pmu perf_tracepoint = {
4952 .task_ctx_nr = perf_sw_context,
4954 .event_init = perf_tp_event_init,
4955 .add = perf_trace_add,
4956 .del = perf_trace_del,
4957 .start = perf_swevent_start,
4958 .stop = perf_swevent_stop,
4959 .read = perf_swevent_read,
4962 static inline void perf_tp_register(void)
4964 perf_pmu_register(&perf_tracepoint);
4967 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4969 char *filter_str;
4970 int ret;
4972 if (event->attr.type != PERF_TYPE_TRACEPOINT)
4973 return -EINVAL;
4975 filter_str = strndup_user(arg, PAGE_SIZE);
4976 if (IS_ERR(filter_str))
4977 return PTR_ERR(filter_str);
4979 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
4981 kfree(filter_str);
4982 return ret;
4985 static void perf_event_free_filter(struct perf_event *event)
4987 ftrace_profile_free_filter(event);
4990 #else
4992 static inline void perf_tp_register(void)
4996 static int perf_event_set_filter(struct perf_event *event, void __user *arg)
4998 return -ENOENT;
5001 static void perf_event_free_filter(struct perf_event *event)
5005 #endif /* CONFIG_EVENT_TRACING */
5007 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5008 void perf_bp_event(struct perf_event *bp, void *data)
5010 struct perf_sample_data sample;
5011 struct pt_regs *regs = data;
5013 perf_sample_data_init(&sample, bp->attr.bp_addr);
5015 if (!bp->hw.state && !perf_exclude_event(bp, regs))
5016 perf_swevent_event(bp, 1, 1, &sample, regs);
5018 #endif
5021 * hrtimer based swevent callback
5024 static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
5026 enum hrtimer_restart ret = HRTIMER_RESTART;
5027 struct perf_sample_data data;
5028 struct pt_regs *regs;
5029 struct perf_event *event;
5030 u64 period;
5032 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
5033 event->pmu->read(event);
5035 perf_sample_data_init(&data, 0);
5036 data.period = event->hw.last_period;
5037 regs = get_irq_regs();
5039 if (regs && !perf_exclude_event(event, regs)) {
5040 if (!(event->attr.exclude_idle && current->pid == 0))
5041 if (perf_event_overflow(event, 0, &data, regs))
5042 ret = HRTIMER_NORESTART;
5045 period = max_t(u64, 10000, event->hw.sample_period);
5046 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
5048 return ret;
5051 static void perf_swevent_start_hrtimer(struct perf_event *event)
5053 struct hw_perf_event *hwc = &event->hw;
5054 s64 period;
5056 if (!is_sampling_event(event))
5057 return;
5059 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
5060 hwc->hrtimer.function = perf_swevent_hrtimer;
5062 period = local64_read(&hwc->period_left);
5063 if (period) {
5064 if (period < 0)
5065 period = 10000;
5067 local64_set(&hwc->period_left, 0);
5068 } else {
5069 period = max_t(u64, 10000, hwc->sample_period);
5071 __hrtimer_start_range_ns(&hwc->hrtimer,
5072 ns_to_ktime(period), 0,
5073 HRTIMER_MODE_REL_PINNED, 0);
5076 static void perf_swevent_cancel_hrtimer(struct perf_event *event)
5078 struct hw_perf_event *hwc = &event->hw;
5080 if (is_sampling_event(event)) {
5081 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
5082 local64_set(&hwc->period_left, ktime_to_ns(remaining));
5084 hrtimer_cancel(&hwc->hrtimer);
5089 * Software event: cpu wall time clock
5092 static void cpu_clock_event_update(struct perf_event *event)
5094 s64 prev;
5095 u64 now;
5097 now = local_clock();
5098 prev = local64_xchg(&event->hw.prev_count, now);
5099 local64_add(now - prev, &event->count);
5102 static void cpu_clock_event_start(struct perf_event *event, int flags)
5104 local64_set(&event->hw.prev_count, local_clock());
5105 perf_swevent_start_hrtimer(event);
5108 static void cpu_clock_event_stop(struct perf_event *event, int flags)
5110 perf_swevent_cancel_hrtimer(event);
5111 cpu_clock_event_update(event);
5114 static int cpu_clock_event_add(struct perf_event *event, int flags)
5116 if (flags & PERF_EF_START)
5117 cpu_clock_event_start(event, flags);
5119 return 0;
5122 static void cpu_clock_event_del(struct perf_event *event, int flags)
5124 cpu_clock_event_stop(event, flags);
5127 static void cpu_clock_event_read(struct perf_event *event)
5129 cpu_clock_event_update(event);
5132 static int cpu_clock_event_init(struct perf_event *event)
5134 if (event->attr.type != PERF_TYPE_SOFTWARE)
5135 return -ENOENT;
5137 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
5138 return -ENOENT;
5140 return 0;
5143 static struct pmu perf_cpu_clock = {
5144 .task_ctx_nr = perf_sw_context,
5146 .event_init = cpu_clock_event_init,
5147 .add = cpu_clock_event_add,
5148 .del = cpu_clock_event_del,
5149 .start = cpu_clock_event_start,
5150 .stop = cpu_clock_event_stop,
5151 .read = cpu_clock_event_read,
5155 * Software event: task time clock
5158 static void task_clock_event_update(struct perf_event *event, u64 now)
5160 u64 prev;
5161 s64 delta;
5163 prev = local64_xchg(&event->hw.prev_count, now);
5164 delta = now - prev;
5165 local64_add(delta, &event->count);
5168 static void task_clock_event_start(struct perf_event *event, int flags)
5170 local64_set(&event->hw.prev_count, event->ctx->time);
5171 perf_swevent_start_hrtimer(event);
5174 static void task_clock_event_stop(struct perf_event *event, int flags)
5176 perf_swevent_cancel_hrtimer(event);
5177 task_clock_event_update(event, event->ctx->time);
5180 static int task_clock_event_add(struct perf_event *event, int flags)
5182 if (flags & PERF_EF_START)
5183 task_clock_event_start(event, flags);
5185 return 0;
5188 static void task_clock_event_del(struct perf_event *event, int flags)
5190 task_clock_event_stop(event, PERF_EF_UPDATE);
5193 static void task_clock_event_read(struct perf_event *event)
5195 u64 time;
5197 if (!in_nmi()) {
5198 update_context_time(event->ctx);
5199 time = event->ctx->time;
5200 } else {
5201 u64 now = perf_clock();
5202 u64 delta = now - event->ctx->timestamp;
5203 time = event->ctx->time + delta;
5206 task_clock_event_update(event, time);
5209 static int task_clock_event_init(struct perf_event *event)
5211 if (event->attr.type != PERF_TYPE_SOFTWARE)
5212 return -ENOENT;
5214 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
5215 return -ENOENT;
5217 return 0;
5220 static struct pmu perf_task_clock = {
5221 .task_ctx_nr = perf_sw_context,
5223 .event_init = task_clock_event_init,
5224 .add = task_clock_event_add,
5225 .del = task_clock_event_del,
5226 .start = task_clock_event_start,
5227 .stop = task_clock_event_stop,
5228 .read = task_clock_event_read,
5231 static void perf_pmu_nop_void(struct pmu *pmu)
5235 static int perf_pmu_nop_int(struct pmu *pmu)
5237 return 0;
5240 static void perf_pmu_start_txn(struct pmu *pmu)
5242 perf_pmu_disable(pmu);
5245 static int perf_pmu_commit_txn(struct pmu *pmu)
5247 perf_pmu_enable(pmu);
5248 return 0;
5251 static void perf_pmu_cancel_txn(struct pmu *pmu)
5253 perf_pmu_enable(pmu);
5257 * Ensures all contexts with the same task_ctx_nr have the same
5258 * pmu_cpu_context too.
5260 static void *find_pmu_context(int ctxn)
5262 struct pmu *pmu;
5264 if (ctxn < 0)
5265 return NULL;
5267 list_for_each_entry(pmu, &pmus, entry) {
5268 if (pmu->task_ctx_nr == ctxn)
5269 return pmu->pmu_cpu_context;
5272 return NULL;
5275 static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
5277 int cpu;
5279 for_each_possible_cpu(cpu) {
5280 struct perf_cpu_context *cpuctx;
5282 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5284 if (cpuctx->active_pmu == old_pmu)
5285 cpuctx->active_pmu = pmu;
5289 static void free_pmu_context(struct pmu *pmu)
5291 struct pmu *i;
5293 mutex_lock(&pmus_lock);
5295 * Like a real lame refcount.
5297 list_for_each_entry(i, &pmus, entry) {
5298 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
5299 update_pmu_context(i, pmu);
5300 goto out;
5304 free_percpu(pmu->pmu_cpu_context);
5305 out:
5306 mutex_unlock(&pmus_lock);
5309 int perf_pmu_register(struct pmu *pmu)
5311 int cpu, ret;
5313 mutex_lock(&pmus_lock);
5314 ret = -ENOMEM;
5315 pmu->pmu_disable_count = alloc_percpu(int);
5316 if (!pmu->pmu_disable_count)
5317 goto unlock;
5319 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
5320 if (pmu->pmu_cpu_context)
5321 goto got_cpu_context;
5323 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
5324 if (!pmu->pmu_cpu_context)
5325 goto free_pdc;
5327 for_each_possible_cpu(cpu) {
5328 struct perf_cpu_context *cpuctx;
5330 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
5331 __perf_event_init_context(&cpuctx->ctx);
5332 cpuctx->ctx.type = cpu_context;
5333 cpuctx->ctx.pmu = pmu;
5334 cpuctx->jiffies_interval = 1;
5335 INIT_LIST_HEAD(&cpuctx->rotation_list);
5336 cpuctx->active_pmu = pmu;
5339 got_cpu_context:
5340 if (!pmu->start_txn) {
5341 if (pmu->pmu_enable) {
5343 * If we have pmu_enable/pmu_disable calls, install
5344 * transaction stubs that use that to try and batch
5345 * hardware accesses.
5347 pmu->start_txn = perf_pmu_start_txn;
5348 pmu->commit_txn = perf_pmu_commit_txn;
5349 pmu->cancel_txn = perf_pmu_cancel_txn;
5350 } else {
5351 pmu->start_txn = perf_pmu_nop_void;
5352 pmu->commit_txn = perf_pmu_nop_int;
5353 pmu->cancel_txn = perf_pmu_nop_void;
5357 if (!pmu->pmu_enable) {
5358 pmu->pmu_enable = perf_pmu_nop_void;
5359 pmu->pmu_disable = perf_pmu_nop_void;
5362 list_add_rcu(&pmu->entry, &pmus);
5363 ret = 0;
5364 unlock:
5365 mutex_unlock(&pmus_lock);
5367 return ret;
5369 free_pdc:
5370 free_percpu(pmu->pmu_disable_count);
5371 goto unlock;
5374 void perf_pmu_unregister(struct pmu *pmu)
5376 mutex_lock(&pmus_lock);
5377 list_del_rcu(&pmu->entry);
5378 mutex_unlock(&pmus_lock);
5381 * We dereference the pmu list under both SRCU and regular RCU, so
5382 * synchronize against both of those.
5384 synchronize_srcu(&pmus_srcu);
5385 synchronize_rcu();
5387 free_percpu(pmu->pmu_disable_count);
5388 free_pmu_context(pmu);
5391 struct pmu *perf_init_event(struct perf_event *event)
5393 struct pmu *pmu = NULL;
5394 int idx;
5396 idx = srcu_read_lock(&pmus_srcu);
5397 list_for_each_entry_rcu(pmu, &pmus, entry) {
5398 int ret = pmu->event_init(event);
5399 if (!ret)
5400 goto unlock;
5402 if (ret != -ENOENT) {
5403 pmu = ERR_PTR(ret);
5404 goto unlock;
5407 pmu = ERR_PTR(-ENOENT);
5408 unlock:
5409 srcu_read_unlock(&pmus_srcu, idx);
5411 return pmu;
5415 * Allocate and initialize a event structure
5417 static struct perf_event *
5418 perf_event_alloc(struct perf_event_attr *attr, int cpu,
5419 struct task_struct *task,
5420 struct perf_event *group_leader,
5421 struct perf_event *parent_event,
5422 perf_overflow_handler_t overflow_handler)
5424 struct pmu *pmu;
5425 struct perf_event *event;
5426 struct hw_perf_event *hwc;
5427 long err;
5429 event = kzalloc(sizeof(*event), GFP_KERNEL);
5430 if (!event)
5431 return ERR_PTR(-ENOMEM);
5434 * Single events are their own group leaders, with an
5435 * empty sibling list:
5437 if (!group_leader)
5438 group_leader = event;
5440 mutex_init(&event->child_mutex);
5441 INIT_LIST_HEAD(&event->child_list);
5443 INIT_LIST_HEAD(&event->group_entry);
5444 INIT_LIST_HEAD(&event->event_entry);
5445 INIT_LIST_HEAD(&event->sibling_list);
5446 init_waitqueue_head(&event->waitq);
5447 init_irq_work(&event->pending, perf_pending_event);
5449 mutex_init(&event->mmap_mutex);
5451 event->cpu = cpu;
5452 event->attr = *attr;
5453 event->group_leader = group_leader;
5454 event->pmu = NULL;
5455 event->oncpu = -1;
5457 event->parent = parent_event;
5459 event->ns = get_pid_ns(current->nsproxy->pid_ns);
5460 event->id = atomic64_inc_return(&perf_event_id);
5462 event->state = PERF_EVENT_STATE_INACTIVE;
5464 if (task) {
5465 event->attach_state = PERF_ATTACH_TASK;
5466 #ifdef CONFIG_HAVE_HW_BREAKPOINT
5468 * hw_breakpoint is a bit difficult here..
5470 if (attr->type == PERF_TYPE_BREAKPOINT)
5471 event->hw.bp_target = task;
5472 #endif
5475 if (!overflow_handler && parent_event)
5476 overflow_handler = parent_event->overflow_handler;
5478 event->overflow_handler = overflow_handler;
5480 if (attr->disabled)
5481 event->state = PERF_EVENT_STATE_OFF;
5483 pmu = NULL;
5485 hwc = &event->hw;
5486 hwc->sample_period = attr->sample_period;
5487 if (attr->freq && attr->sample_freq)
5488 hwc->sample_period = 1;
5489 hwc->last_period = hwc->sample_period;
5491 local64_set(&hwc->period_left, hwc->sample_period);
5494 * we currently do not support PERF_FORMAT_GROUP on inherited events
5496 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
5497 goto done;
5499 pmu = perf_init_event(event);
5501 done:
5502 err = 0;
5503 if (!pmu)
5504 err = -EINVAL;
5505 else if (IS_ERR(pmu))
5506 err = PTR_ERR(pmu);
5508 if (err) {
5509 if (event->ns)
5510 put_pid_ns(event->ns);
5511 kfree(event);
5512 return ERR_PTR(err);
5515 event->pmu = pmu;
5517 if (!event->parent) {
5518 if (event->attach_state & PERF_ATTACH_TASK)
5519 jump_label_inc(&perf_task_events);
5520 if (event->attr.mmap || event->attr.mmap_data)
5521 atomic_inc(&nr_mmap_events);
5522 if (event->attr.comm)
5523 atomic_inc(&nr_comm_events);
5524 if (event->attr.task)
5525 atomic_inc(&nr_task_events);
5526 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
5527 err = get_callchain_buffers();
5528 if (err) {
5529 free_event(event);
5530 return ERR_PTR(err);
5535 return event;
5538 static int perf_copy_attr(struct perf_event_attr __user *uattr,
5539 struct perf_event_attr *attr)
5541 u32 size;
5542 int ret;
5544 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
5545 return -EFAULT;
5548 * zero the full structure, so that a short copy will be nice.
5550 memset(attr, 0, sizeof(*attr));
5552 ret = get_user(size, &uattr->size);
5553 if (ret)
5554 return ret;
5556 if (size > PAGE_SIZE) /* silly large */
5557 goto err_size;
5559 if (!size) /* abi compat */
5560 size = PERF_ATTR_SIZE_VER0;
5562 if (size < PERF_ATTR_SIZE_VER0)
5563 goto err_size;
5566 * If we're handed a bigger struct than we know of,
5567 * ensure all the unknown bits are 0 - i.e. new
5568 * user-space does not rely on any kernel feature
5569 * extensions we dont know about yet.
5571 if (size > sizeof(*attr)) {
5572 unsigned char __user *addr;
5573 unsigned char __user *end;
5574 unsigned char val;
5576 addr = (void __user *)uattr + sizeof(*attr);
5577 end = (void __user *)uattr + size;
5579 for (; addr < end; addr++) {
5580 ret = get_user(val, addr);
5581 if (ret)
5582 return ret;
5583 if (val)
5584 goto err_size;
5586 size = sizeof(*attr);
5589 ret = copy_from_user(attr, uattr, size);
5590 if (ret)
5591 return -EFAULT;
5594 * If the type exists, the corresponding creation will verify
5595 * the attr->config.
5597 if (attr->type >= PERF_TYPE_MAX)
5598 return -EINVAL;
5600 if (attr->__reserved_1)
5601 return -EINVAL;
5603 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
5604 return -EINVAL;
5606 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
5607 return -EINVAL;
5609 out:
5610 return ret;
5612 err_size:
5613 put_user(sizeof(*attr), &uattr->size);
5614 ret = -E2BIG;
5615 goto out;
5618 static int
5619 perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
5621 struct perf_buffer *buffer = NULL, *old_buffer = NULL;
5622 int ret = -EINVAL;
5624 if (!output_event)
5625 goto set;
5627 /* don't allow circular references */
5628 if (event == output_event)
5629 goto out;
5632 * Don't allow cross-cpu buffers
5634 if (output_event->cpu != event->cpu)
5635 goto out;
5638 * If its not a per-cpu buffer, it must be the same task.
5640 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
5641 goto out;
5643 set:
5644 mutex_lock(&event->mmap_mutex);
5645 /* Can't redirect output if we've got an active mmap() */
5646 if (atomic_read(&event->mmap_count))
5647 goto unlock;
5649 if (output_event) {
5650 /* get the buffer we want to redirect to */
5651 buffer = perf_buffer_get(output_event);
5652 if (!buffer)
5653 goto unlock;
5656 old_buffer = event->buffer;
5657 rcu_assign_pointer(event->buffer, buffer);
5658 ret = 0;
5659 unlock:
5660 mutex_unlock(&event->mmap_mutex);
5662 if (old_buffer)
5663 perf_buffer_put(old_buffer);
5664 out:
5665 return ret;
5669 * sys_perf_event_open - open a performance event, associate it to a task/cpu
5671 * @attr_uptr: event_id type attributes for monitoring/sampling
5672 * @pid: target pid
5673 * @cpu: target cpu
5674 * @group_fd: group leader event fd
5676 SYSCALL_DEFINE5(perf_event_open,
5677 struct perf_event_attr __user *, attr_uptr,
5678 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
5680 struct perf_event *group_leader = NULL, *output_event = NULL;
5681 struct perf_event *event, *sibling;
5682 struct perf_event_attr attr;
5683 struct perf_event_context *ctx;
5684 struct file *event_file = NULL;
5685 struct file *group_file = NULL;
5686 struct task_struct *task = NULL;
5687 struct pmu *pmu;
5688 int event_fd;
5689 int move_group = 0;
5690 int fput_needed = 0;
5691 int err;
5693 /* for future expandability... */
5694 if (flags & ~(PERF_FLAG_FD_NO_GROUP | PERF_FLAG_FD_OUTPUT))
5695 return -EINVAL;
5697 err = perf_copy_attr(attr_uptr, &attr);
5698 if (err)
5699 return err;
5701 if (!attr.exclude_kernel) {
5702 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
5703 return -EACCES;
5706 if (attr.freq) {
5707 if (attr.sample_freq > sysctl_perf_event_sample_rate)
5708 return -EINVAL;
5711 event_fd = get_unused_fd_flags(O_RDWR);
5712 if (event_fd < 0)
5713 return event_fd;
5715 if (group_fd != -1) {
5716 group_leader = perf_fget_light(group_fd, &fput_needed);
5717 if (IS_ERR(group_leader)) {
5718 err = PTR_ERR(group_leader);
5719 goto err_fd;
5721 group_file = group_leader->filp;
5722 if (flags & PERF_FLAG_FD_OUTPUT)
5723 output_event = group_leader;
5724 if (flags & PERF_FLAG_FD_NO_GROUP)
5725 group_leader = NULL;
5728 if (pid != -1) {
5729 task = find_lively_task_by_vpid(pid);
5730 if (IS_ERR(task)) {
5731 err = PTR_ERR(task);
5732 goto err_group_fd;
5736 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL, NULL);
5737 if (IS_ERR(event)) {
5738 err = PTR_ERR(event);
5739 goto err_task;
5743 * Special case software events and allow them to be part of
5744 * any hardware group.
5746 pmu = event->pmu;
5748 if (group_leader &&
5749 (is_software_event(event) != is_software_event(group_leader))) {
5750 if (is_software_event(event)) {
5752 * If event and group_leader are not both a software
5753 * event, and event is, then group leader is not.
5755 * Allow the addition of software events to !software
5756 * groups, this is safe because software events never
5757 * fail to schedule.
5759 pmu = group_leader->pmu;
5760 } else if (is_software_event(group_leader) &&
5761 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
5763 * In case the group is a pure software group, and we
5764 * try to add a hardware event, move the whole group to
5765 * the hardware context.
5767 move_group = 1;
5772 * Get the target context (task or percpu):
5774 ctx = find_get_context(pmu, task, cpu);
5775 if (IS_ERR(ctx)) {
5776 err = PTR_ERR(ctx);
5777 goto err_alloc;
5781 * Look up the group leader (we will attach this event to it):
5783 if (group_leader) {
5784 err = -EINVAL;
5787 * Do not allow a recursive hierarchy (this new sibling
5788 * becoming part of another group-sibling):
5790 if (group_leader->group_leader != group_leader)
5791 goto err_context;
5793 * Do not allow to attach to a group in a different
5794 * task or CPU context:
5796 if (move_group) {
5797 if (group_leader->ctx->type != ctx->type)
5798 goto err_context;
5799 } else {
5800 if (group_leader->ctx != ctx)
5801 goto err_context;
5805 * Only a group leader can be exclusive or pinned
5807 if (attr.exclusive || attr.pinned)
5808 goto err_context;
5811 if (output_event) {
5812 err = perf_event_set_output(event, output_event);
5813 if (err)
5814 goto err_context;
5817 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event, O_RDWR);
5818 if (IS_ERR(event_file)) {
5819 err = PTR_ERR(event_file);
5820 goto err_context;
5823 if (move_group) {
5824 struct perf_event_context *gctx = group_leader->ctx;
5826 mutex_lock(&gctx->mutex);
5827 perf_event_remove_from_context(group_leader);
5828 list_for_each_entry(sibling, &group_leader->sibling_list,
5829 group_entry) {
5830 perf_event_remove_from_context(sibling);
5831 put_ctx(gctx);
5833 mutex_unlock(&gctx->mutex);
5834 put_ctx(gctx);
5837 event->filp = event_file;
5838 WARN_ON_ONCE(ctx->parent_ctx);
5839 mutex_lock(&ctx->mutex);
5841 if (move_group) {
5842 perf_install_in_context(ctx, group_leader, cpu);
5843 get_ctx(ctx);
5844 list_for_each_entry(sibling, &group_leader->sibling_list,
5845 group_entry) {
5846 perf_install_in_context(ctx, sibling, cpu);
5847 get_ctx(ctx);
5851 perf_install_in_context(ctx, event, cpu);
5852 ++ctx->generation;
5853 mutex_unlock(&ctx->mutex);
5855 event->owner = current;
5857 mutex_lock(&current->perf_event_mutex);
5858 list_add_tail(&event->owner_entry, &current->perf_event_list);
5859 mutex_unlock(&current->perf_event_mutex);
5862 * Precalculate sample_data sizes
5864 perf_event__header_size(event);
5865 perf_event__id_header_size(event);
5868 * Drop the reference on the group_event after placing the
5869 * new event on the sibling_list. This ensures destruction
5870 * of the group leader will find the pointer to itself in
5871 * perf_group_detach().
5873 fput_light(group_file, fput_needed);
5874 fd_install(event_fd, event_file);
5875 return event_fd;
5877 err_context:
5878 put_ctx(ctx);
5879 err_alloc:
5880 free_event(event);
5881 err_task:
5882 if (task)
5883 put_task_struct(task);
5884 err_group_fd:
5885 fput_light(group_file, fput_needed);
5886 err_fd:
5887 put_unused_fd(event_fd);
5888 return err;
5892 * perf_event_create_kernel_counter
5894 * @attr: attributes of the counter to create
5895 * @cpu: cpu in which the counter is bound
5896 * @task: task to profile (NULL for percpu)
5898 struct perf_event *
5899 perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
5900 struct task_struct *task,
5901 perf_overflow_handler_t overflow_handler)
5903 struct perf_event_context *ctx;
5904 struct perf_event *event;
5905 int err;
5908 * Get the target context (task or percpu):
5911 event = perf_event_alloc(attr, cpu, task, NULL, NULL, overflow_handler);
5912 if (IS_ERR(event)) {
5913 err = PTR_ERR(event);
5914 goto err;
5917 ctx = find_get_context(event->pmu, task, cpu);
5918 if (IS_ERR(ctx)) {
5919 err = PTR_ERR(ctx);
5920 goto err_free;
5923 event->filp = NULL;
5924 WARN_ON_ONCE(ctx->parent_ctx);
5925 mutex_lock(&ctx->mutex);
5926 perf_install_in_context(ctx, event, cpu);
5927 ++ctx->generation;
5928 mutex_unlock(&ctx->mutex);
5930 return event;
5932 err_free:
5933 free_event(event);
5934 err:
5935 return ERR_PTR(err);
5937 EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
5939 static void sync_child_event(struct perf_event *child_event,
5940 struct task_struct *child)
5942 struct perf_event *parent_event = child_event->parent;
5943 u64 child_val;
5945 if (child_event->attr.inherit_stat)
5946 perf_event_read_event(child_event, child);
5948 child_val = perf_event_count(child_event);
5951 * Add back the child's count to the parent's count:
5953 atomic64_add(child_val, &parent_event->child_count);
5954 atomic64_add(child_event->total_time_enabled,
5955 &parent_event->child_total_time_enabled);
5956 atomic64_add(child_event->total_time_running,
5957 &parent_event->child_total_time_running);
5960 * Remove this event from the parent's list
5962 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
5963 mutex_lock(&parent_event->child_mutex);
5964 list_del_init(&child_event->child_list);
5965 mutex_unlock(&parent_event->child_mutex);
5968 * Release the parent event, if this was the last
5969 * reference to it.
5971 fput(parent_event->filp);
5974 static void
5975 __perf_event_exit_task(struct perf_event *child_event,
5976 struct perf_event_context *child_ctx,
5977 struct task_struct *child)
5979 struct perf_event *parent_event;
5981 perf_event_remove_from_context(child_event);
5983 parent_event = child_event->parent;
5985 * It can happen that parent exits first, and has events
5986 * that are still around due to the child reference. These
5987 * events need to be zapped - but otherwise linger.
5989 if (parent_event) {
5990 sync_child_event(child_event, child);
5991 free_event(child_event);
5995 static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
5997 struct perf_event *child_event, *tmp;
5998 struct perf_event_context *child_ctx;
5999 unsigned long flags;
6001 if (likely(!child->perf_event_ctxp[ctxn])) {
6002 perf_event_task(child, NULL, 0);
6003 return;
6006 local_irq_save(flags);
6008 * We can't reschedule here because interrupts are disabled,
6009 * and either child is current or it is a task that can't be
6010 * scheduled, so we are now safe from rescheduling changing
6011 * our context.
6013 child_ctx = child->perf_event_ctxp[ctxn];
6014 task_ctx_sched_out(child_ctx, EVENT_ALL);
6017 * Take the context lock here so that if find_get_context is
6018 * reading child->perf_event_ctxp, we wait until it has
6019 * incremented the context's refcount before we do put_ctx below.
6021 raw_spin_lock(&child_ctx->lock);
6022 child->perf_event_ctxp[ctxn] = NULL;
6024 * If this context is a clone; unclone it so it can't get
6025 * swapped to another process while we're removing all
6026 * the events from it.
6028 unclone_ctx(child_ctx);
6029 update_context_time(child_ctx);
6030 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6033 * Report the task dead after unscheduling the events so that we
6034 * won't get any samples after PERF_RECORD_EXIT. We can however still
6035 * get a few PERF_RECORD_READ events.
6037 perf_event_task(child, child_ctx, 0);
6040 * We can recurse on the same lock type through:
6042 * __perf_event_exit_task()
6043 * sync_child_event()
6044 * fput(parent_event->filp)
6045 * perf_release()
6046 * mutex_lock(&ctx->mutex)
6048 * But since its the parent context it won't be the same instance.
6050 mutex_lock(&child_ctx->mutex);
6052 again:
6053 list_for_each_entry_safe(child_event, tmp, &child_ctx->pinned_groups,
6054 group_entry)
6055 __perf_event_exit_task(child_event, child_ctx, child);
6057 list_for_each_entry_safe(child_event, tmp, &child_ctx->flexible_groups,
6058 group_entry)
6059 __perf_event_exit_task(child_event, child_ctx, child);
6062 * If the last event was a group event, it will have appended all
6063 * its siblings to the list, but we obtained 'tmp' before that which
6064 * will still point to the list head terminating the iteration.
6066 if (!list_empty(&child_ctx->pinned_groups) ||
6067 !list_empty(&child_ctx->flexible_groups))
6068 goto again;
6070 mutex_unlock(&child_ctx->mutex);
6072 put_ctx(child_ctx);
6076 * When a child task exits, feed back event values to parent events.
6078 void perf_event_exit_task(struct task_struct *child)
6080 struct perf_event *event, *tmp;
6081 int ctxn;
6083 mutex_lock(&child->perf_event_mutex);
6084 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
6085 owner_entry) {
6086 list_del_init(&event->owner_entry);
6089 * Ensure the list deletion is visible before we clear
6090 * the owner, closes a race against perf_release() where
6091 * we need to serialize on the owner->perf_event_mutex.
6093 smp_wmb();
6094 event->owner = NULL;
6096 mutex_unlock(&child->perf_event_mutex);
6098 for_each_task_context_nr(ctxn)
6099 perf_event_exit_task_context(child, ctxn);
6102 static void perf_free_event(struct perf_event *event,
6103 struct perf_event_context *ctx)
6105 struct perf_event *parent = event->parent;
6107 if (WARN_ON_ONCE(!parent))
6108 return;
6110 mutex_lock(&parent->child_mutex);
6111 list_del_init(&event->child_list);
6112 mutex_unlock(&parent->child_mutex);
6114 fput(parent->filp);
6116 perf_group_detach(event);
6117 list_del_event(event, ctx);
6118 free_event(event);
6122 * free an unexposed, unused context as created by inheritance by
6123 * perf_event_init_task below, used by fork() in case of fail.
6125 void perf_event_free_task(struct task_struct *task)
6127 struct perf_event_context *ctx;
6128 struct perf_event *event, *tmp;
6129 int ctxn;
6131 for_each_task_context_nr(ctxn) {
6132 ctx = task->perf_event_ctxp[ctxn];
6133 if (!ctx)
6134 continue;
6136 mutex_lock(&ctx->mutex);
6137 again:
6138 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
6139 group_entry)
6140 perf_free_event(event, ctx);
6142 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
6143 group_entry)
6144 perf_free_event(event, ctx);
6146 if (!list_empty(&ctx->pinned_groups) ||
6147 !list_empty(&ctx->flexible_groups))
6148 goto again;
6150 mutex_unlock(&ctx->mutex);
6152 put_ctx(ctx);
6156 void perf_event_delayed_put(struct task_struct *task)
6158 int ctxn;
6160 for_each_task_context_nr(ctxn)
6161 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
6165 * inherit a event from parent task to child task:
6167 static struct perf_event *
6168 inherit_event(struct perf_event *parent_event,
6169 struct task_struct *parent,
6170 struct perf_event_context *parent_ctx,
6171 struct task_struct *child,
6172 struct perf_event *group_leader,
6173 struct perf_event_context *child_ctx)
6175 struct perf_event *child_event;
6176 unsigned long flags;
6179 * Instead of creating recursive hierarchies of events,
6180 * we link inherited events back to the original parent,
6181 * which has a filp for sure, which we use as the reference
6182 * count:
6184 if (parent_event->parent)
6185 parent_event = parent_event->parent;
6187 child_event = perf_event_alloc(&parent_event->attr,
6188 parent_event->cpu,
6189 child,
6190 group_leader, parent_event,
6191 NULL);
6192 if (IS_ERR(child_event))
6193 return child_event;
6194 get_ctx(child_ctx);
6197 * Make the child state follow the state of the parent event,
6198 * not its attr.disabled bit. We hold the parent's mutex,
6199 * so we won't race with perf_event_{en, dis}able_family.
6201 if (parent_event->state >= PERF_EVENT_STATE_INACTIVE)
6202 child_event->state = PERF_EVENT_STATE_INACTIVE;
6203 else
6204 child_event->state = PERF_EVENT_STATE_OFF;
6206 if (parent_event->attr.freq) {
6207 u64 sample_period = parent_event->hw.sample_period;
6208 struct hw_perf_event *hwc = &child_event->hw;
6210 hwc->sample_period = sample_period;
6211 hwc->last_period = sample_period;
6213 local64_set(&hwc->period_left, sample_period);
6216 child_event->ctx = child_ctx;
6217 child_event->overflow_handler = parent_event->overflow_handler;
6220 * Precalculate sample_data sizes
6222 perf_event__header_size(child_event);
6223 perf_event__id_header_size(child_event);
6226 * Link it up in the child's context:
6228 raw_spin_lock_irqsave(&child_ctx->lock, flags);
6229 add_event_to_ctx(child_event, child_ctx);
6230 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
6233 * Get a reference to the parent filp - we will fput it
6234 * when the child event exits. This is safe to do because
6235 * we are in the parent and we know that the filp still
6236 * exists and has a nonzero count:
6238 atomic_long_inc(&parent_event->filp->f_count);
6241 * Link this into the parent event's child list
6243 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
6244 mutex_lock(&parent_event->child_mutex);
6245 list_add_tail(&child_event->child_list, &parent_event->child_list);
6246 mutex_unlock(&parent_event->child_mutex);
6248 return child_event;
6251 static int inherit_group(struct perf_event *parent_event,
6252 struct task_struct *parent,
6253 struct perf_event_context *parent_ctx,
6254 struct task_struct *child,
6255 struct perf_event_context *child_ctx)
6257 struct perf_event *leader;
6258 struct perf_event *sub;
6259 struct perf_event *child_ctr;
6261 leader = inherit_event(parent_event, parent, parent_ctx,
6262 child, NULL, child_ctx);
6263 if (IS_ERR(leader))
6264 return PTR_ERR(leader);
6265 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
6266 child_ctr = inherit_event(sub, parent, parent_ctx,
6267 child, leader, child_ctx);
6268 if (IS_ERR(child_ctr))
6269 return PTR_ERR(child_ctr);
6271 return 0;
6274 static int
6275 inherit_task_group(struct perf_event *event, struct task_struct *parent,
6276 struct perf_event_context *parent_ctx,
6277 struct task_struct *child, int ctxn,
6278 int *inherited_all)
6280 int ret;
6281 struct perf_event_context *child_ctx;
6283 if (!event->attr.inherit) {
6284 *inherited_all = 0;
6285 return 0;
6288 child_ctx = child->perf_event_ctxp[ctxn];
6289 if (!child_ctx) {
6291 * This is executed from the parent task context, so
6292 * inherit events that have been marked for cloning.
6293 * First allocate and initialize a context for the
6294 * child.
6297 child_ctx = alloc_perf_context(event->pmu, child);
6298 if (!child_ctx)
6299 return -ENOMEM;
6301 child->perf_event_ctxp[ctxn] = child_ctx;
6304 ret = inherit_group(event, parent, parent_ctx,
6305 child, child_ctx);
6307 if (ret)
6308 *inherited_all = 0;
6310 return ret;
6314 * Initialize the perf_event context in task_struct
6316 int perf_event_init_context(struct task_struct *child, int ctxn)
6318 struct perf_event_context *child_ctx, *parent_ctx;
6319 struct perf_event_context *cloned_ctx;
6320 struct perf_event *event;
6321 struct task_struct *parent = current;
6322 int inherited_all = 1;
6323 unsigned long flags;
6324 int ret = 0;
6326 child->perf_event_ctxp[ctxn] = NULL;
6328 mutex_init(&child->perf_event_mutex);
6329 INIT_LIST_HEAD(&child->perf_event_list);
6331 if (likely(!parent->perf_event_ctxp[ctxn]))
6332 return 0;
6335 * If the parent's context is a clone, pin it so it won't get
6336 * swapped under us.
6338 parent_ctx = perf_pin_task_context(parent, ctxn);
6341 * No need to check if parent_ctx != NULL here; since we saw
6342 * it non-NULL earlier, the only reason for it to become NULL
6343 * is if we exit, and since we're currently in the middle of
6344 * a fork we can't be exiting at the same time.
6348 * Lock the parent list. No need to lock the child - not PID
6349 * hashed yet and not running, so nobody can access it.
6351 mutex_lock(&parent_ctx->mutex);
6354 * We dont have to disable NMIs - we are only looking at
6355 * the list, not manipulating it:
6357 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
6358 ret = inherit_task_group(event, parent, parent_ctx,
6359 child, ctxn, &inherited_all);
6360 if (ret)
6361 break;
6365 * We can't hold ctx->lock when iterating the ->flexible_group list due
6366 * to allocations, but we need to prevent rotation because
6367 * rotate_ctx() will change the list from interrupt context.
6369 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6370 parent_ctx->rotate_disable = 1;
6371 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6373 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
6374 ret = inherit_task_group(event, parent, parent_ctx,
6375 child, ctxn, &inherited_all);
6376 if (ret)
6377 break;
6380 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
6381 parent_ctx->rotate_disable = 0;
6382 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
6384 child_ctx = child->perf_event_ctxp[ctxn];
6386 if (child_ctx && inherited_all) {
6388 * Mark the child context as a clone of the parent
6389 * context, or of whatever the parent is a clone of.
6390 * Note that if the parent is a clone, it could get
6391 * uncloned at any point, but that doesn't matter
6392 * because the list of events and the generation
6393 * count can't have changed since we took the mutex.
6395 cloned_ctx = rcu_dereference(parent_ctx->parent_ctx);
6396 if (cloned_ctx) {
6397 child_ctx->parent_ctx = cloned_ctx;
6398 child_ctx->parent_gen = parent_ctx->parent_gen;
6399 } else {
6400 child_ctx->parent_ctx = parent_ctx;
6401 child_ctx->parent_gen = parent_ctx->generation;
6403 get_ctx(child_ctx->parent_ctx);
6406 mutex_unlock(&parent_ctx->mutex);
6408 perf_unpin_context(parent_ctx);
6410 return ret;
6414 * Initialize the perf_event context in task_struct
6416 int perf_event_init_task(struct task_struct *child)
6418 int ctxn, ret;
6420 for_each_task_context_nr(ctxn) {
6421 ret = perf_event_init_context(child, ctxn);
6422 if (ret)
6423 return ret;
6426 return 0;
6429 static void __init perf_event_init_all_cpus(void)
6431 struct swevent_htable *swhash;
6432 int cpu;
6434 for_each_possible_cpu(cpu) {
6435 swhash = &per_cpu(swevent_htable, cpu);
6436 mutex_init(&swhash->hlist_mutex);
6437 INIT_LIST_HEAD(&per_cpu(rotation_list, cpu));
6441 static void __cpuinit perf_event_init_cpu(int cpu)
6443 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6445 mutex_lock(&swhash->hlist_mutex);
6446 if (swhash->hlist_refcount > 0) {
6447 struct swevent_hlist *hlist;
6449 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
6450 WARN_ON(!hlist);
6451 rcu_assign_pointer(swhash->swevent_hlist, hlist);
6453 mutex_unlock(&swhash->hlist_mutex);
6456 #if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC
6457 static void perf_pmu_rotate_stop(struct pmu *pmu)
6459 struct perf_cpu_context *cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
6461 WARN_ON(!irqs_disabled());
6463 list_del_init(&cpuctx->rotation_list);
6466 static void __perf_event_exit_context(void *__info)
6468 struct perf_event_context *ctx = __info;
6469 struct perf_event *event, *tmp;
6471 perf_pmu_rotate_stop(ctx->pmu);
6473 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups, group_entry)
6474 __perf_event_remove_from_context(event);
6475 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups, group_entry)
6476 __perf_event_remove_from_context(event);
6479 static void perf_event_exit_cpu_context(int cpu)
6481 struct perf_event_context *ctx;
6482 struct pmu *pmu;
6483 int idx;
6485 idx = srcu_read_lock(&pmus_srcu);
6486 list_for_each_entry_rcu(pmu, &pmus, entry) {
6487 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
6489 mutex_lock(&ctx->mutex);
6490 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
6491 mutex_unlock(&ctx->mutex);
6493 srcu_read_unlock(&pmus_srcu, idx);
6496 static void perf_event_exit_cpu(int cpu)
6498 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
6500 mutex_lock(&swhash->hlist_mutex);
6501 swevent_hlist_release(swhash);
6502 mutex_unlock(&swhash->hlist_mutex);
6504 perf_event_exit_cpu_context(cpu);
6506 #else
6507 static inline void perf_event_exit_cpu(int cpu) { }
6508 #endif
6510 static int
6511 perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
6513 int cpu;
6515 for_each_online_cpu(cpu)
6516 perf_event_exit_cpu(cpu);
6518 return NOTIFY_OK;
6522 * Run the perf reboot notifier at the very last possible moment so that
6523 * the generic watchdog code runs as long as possible.
6525 static struct notifier_block perf_reboot_notifier = {
6526 .notifier_call = perf_reboot,
6527 .priority = INT_MIN,
6530 static int __cpuinit
6531 perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
6533 unsigned int cpu = (long)hcpu;
6535 switch (action & ~CPU_TASKS_FROZEN) {
6537 case CPU_UP_PREPARE:
6538 case CPU_DOWN_FAILED:
6539 perf_event_init_cpu(cpu);
6540 break;
6542 case CPU_UP_CANCELED:
6543 case CPU_DOWN_PREPARE:
6544 perf_event_exit_cpu(cpu);
6545 break;
6547 default:
6548 break;
6551 return NOTIFY_OK;
6554 void __init perf_event_init(void)
6556 int ret;
6558 perf_event_init_all_cpus();
6559 init_srcu_struct(&pmus_srcu);
6560 perf_pmu_register(&perf_swevent);
6561 perf_pmu_register(&perf_cpu_clock);
6562 perf_pmu_register(&perf_task_clock);
6563 perf_tp_register();
6564 perf_cpu_notifier(perf_cpu_notify);
6565 register_reboot_notifier(&perf_reboot_notifier);
6567 ret = init_hw_breakpoint();
6568 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);