2 * This file is part of UBIFS.
4 * Copyright (C) 2006-2008 Nokia Corporation.
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of the GNU General Public License version 2 as published by
8 * the Free Software Foundation.
10 * This program is distributed in the hope that it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 * You should have received a copy of the GNU General Public License along with
16 * this program; if not, write to the Free Software Foundation, Inc., 51
17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19 * Authors: Artem Bityutskiy (Битюцкий Артём)
24 * This file contains functions for finding LEBs for various purposes e.g.
25 * garbage collection. In general, lprops category heaps and lists are used
26 * for fast access, falling back on scanning the LPT as a last resort.
29 #include <linux/sort.h>
33 * struct scan_data - data provided to scan callback functions
34 * @min_space: minimum number of bytes for which to scan
35 * @pick_free: whether it is OK to scan for empty LEBs
36 * @lnum: LEB number found is returned here
37 * @exclude_index: whether to exclude index LEBs
47 * valuable - determine whether LEB properties are valuable.
48 * @c: the UBIFS file-system description object
49 * @lprops: LEB properties
51 * This function return %1 if the LEB properties should be added to the LEB
52 * properties tree in memory. Otherwise %0 is returned.
54 static int valuable(struct ubifs_info
*c
, const struct ubifs_lprops
*lprops
)
56 int n
, cat
= lprops
->flags
& LPROPS_CAT_MASK
;
57 struct ubifs_lpt_heap
*heap
;
61 case LPROPS_DIRTY_IDX
:
63 heap
= &c
->lpt_heap
[cat
- 1];
64 if (heap
->cnt
< heap
->max_cnt
)
66 if (lprops
->free
+ lprops
->dirty
>= c
->dark_wm
)
70 n
= c
->lst
.empty_lebs
+ c
->freeable_cnt
-
71 c
->lst
.taken_empty_lebs
;
84 * scan_for_dirty_cb - dirty space scan callback.
85 * @c: the UBIFS file-system description object
86 * @lprops: LEB properties to scan
87 * @in_tree: whether the LEB properties are in main memory
88 * @data: information passed to and from the caller of the scan
90 * This function returns a code that indicates whether the scan should continue
91 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
92 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
95 static int scan_for_dirty_cb(struct ubifs_info
*c
,
96 const struct ubifs_lprops
*lprops
, int in_tree
,
97 struct scan_data
*data
)
99 int ret
= LPT_SCAN_CONTINUE
;
101 /* Exclude LEBs that are currently in use */
102 if (lprops
->flags
& LPROPS_TAKEN
)
103 return LPT_SCAN_CONTINUE
;
104 /* Determine whether to add these LEB properties to the tree */
105 if (!in_tree
&& valuable(c
, lprops
))
107 /* Exclude LEBs with too little space */
108 if (lprops
->free
+ lprops
->dirty
< data
->min_space
)
110 /* If specified, exclude index LEBs */
111 if (data
->exclude_index
&& lprops
->flags
& LPROPS_INDEX
)
113 /* If specified, exclude empty or freeable LEBs */
114 if (lprops
->free
+ lprops
->dirty
== c
->leb_size
) {
115 if (!data
->pick_free
)
117 /* Exclude LEBs with too little dirty space (unless it is empty) */
118 } else if (lprops
->dirty
< c
->dead_wm
)
120 /* Finally we found space */
121 data
->lnum
= lprops
->lnum
;
122 return LPT_SCAN_ADD
| LPT_SCAN_STOP
;
126 * scan_for_dirty - find a data LEB with free space.
127 * @c: the UBIFS file-system description object
128 * @min_space: minimum amount free plus dirty space the returned LEB has to
130 * @pick_free: if it is OK to return a free or freeable LEB
131 * @exclude_index: whether to exclude index LEBs
133 * This function returns a pointer to the LEB properties found or a negative
136 static const struct ubifs_lprops
*scan_for_dirty(struct ubifs_info
*c
,
137 int min_space
, int pick_free
,
140 const struct ubifs_lprops
*lprops
;
141 struct ubifs_lpt_heap
*heap
;
142 struct scan_data data
;
145 /* There may be an LEB with enough dirty space on the free heap */
146 heap
= &c
->lpt_heap
[LPROPS_FREE
- 1];
147 for (i
= 0; i
< heap
->cnt
; i
++) {
148 lprops
= heap
->arr
[i
];
149 if (lprops
->free
+ lprops
->dirty
< min_space
)
151 if (lprops
->dirty
< c
->dead_wm
)
156 * A LEB may have fallen off of the bottom of the dirty heap, and ended
157 * up as uncategorized even though it has enough dirty space for us now,
158 * so check the uncategorized list. N.B. neither empty nor freeable LEBs
159 * can end up as uncategorized because they are kept on lists not
160 * finite-sized heaps.
162 list_for_each_entry(lprops
, &c
->uncat_list
, list
) {
163 if (lprops
->flags
& LPROPS_TAKEN
)
165 if (lprops
->free
+ lprops
->dirty
< min_space
)
167 if (exclude_index
&& (lprops
->flags
& LPROPS_INDEX
))
169 if (lprops
->dirty
< c
->dead_wm
)
173 /* We have looked everywhere in main memory, now scan the flash */
174 if (c
->pnodes_have
>= c
->pnode_cnt
)
175 /* All pnodes are in memory, so skip scan */
176 return ERR_PTR(-ENOSPC
);
177 data
.min_space
= min_space
;
178 data
.pick_free
= pick_free
;
180 data
.exclude_index
= exclude_index
;
181 err
= ubifs_lpt_scan_nolock(c
, -1, c
->lscan_lnum
,
182 (ubifs_lpt_scan_callback
)scan_for_dirty_cb
,
186 ubifs_assert(data
.lnum
>= c
->main_first
&& data
.lnum
< c
->leb_cnt
);
187 c
->lscan_lnum
= data
.lnum
;
188 lprops
= ubifs_lpt_lookup_dirty(c
, data
.lnum
);
191 ubifs_assert(lprops
->lnum
== data
.lnum
);
192 ubifs_assert(lprops
->free
+ lprops
->dirty
>= min_space
);
193 ubifs_assert(lprops
->dirty
>= c
->dead_wm
||
195 lprops
->free
+ lprops
->dirty
== c
->leb_size
));
196 ubifs_assert(!(lprops
->flags
& LPROPS_TAKEN
));
197 ubifs_assert(!exclude_index
|| !(lprops
->flags
& LPROPS_INDEX
));
202 * ubifs_find_dirty_leb - find a dirty LEB for the Garbage Collector.
203 * @c: the UBIFS file-system description object
204 * @ret_lp: LEB properties are returned here on exit
205 * @min_space: minimum amount free plus dirty space the returned LEB has to
207 * @pick_free: controls whether it is OK to pick empty or index LEBs
209 * This function tries to find a dirty logical eraseblock which has at least
210 * @min_space free and dirty space. It prefers to take an LEB from the dirty or
211 * dirty index heap, and it falls-back to LPT scanning if the heaps are empty
212 * or do not have an LEB which satisfies the @min_space criteria.
215 * o LEBs which have less than dead watermark of dirty space are never picked
218 * Returns zero and the LEB properties of
219 * found dirty LEB in case of success, %-ENOSPC if no dirty LEB was found and a
220 * negative error code in case of other failures. The returned LEB is marked as
223 * The additional @pick_free argument controls if this function has to return a
224 * free or freeable LEB if one is present. For example, GC must to set it to %1,
225 * when called from the journal space reservation function, because the
226 * appearance of free space may coincide with the loss of enough dirty space
227 * for GC to succeed anyway.
229 * In contrast, if the Garbage Collector is called from budgeting, it should
230 * just make free space, not return LEBs which are already free or freeable.
232 * In addition @pick_free is set to %2 by the recovery process in order to
233 * recover gc_lnum in which case an index LEB must not be returned.
235 int ubifs_find_dirty_leb(struct ubifs_info
*c
, struct ubifs_lprops
*ret_lp
,
236 int min_space
, int pick_free
)
238 int err
= 0, sum
, exclude_index
= pick_free
== 2 ? 1 : 0;
239 const struct ubifs_lprops
*lp
= NULL
, *idx_lp
= NULL
;
240 struct ubifs_lpt_heap
*heap
, *idx_heap
;
245 int lebs
, rsvd_idx_lebs
= 0;
247 spin_lock(&c
->space_lock
);
248 lebs
= c
->lst
.empty_lebs
;
249 lebs
+= c
->freeable_cnt
- c
->lst
.taken_empty_lebs
;
252 * Note, the index may consume more LEBs than have been reserved
253 * for it. It is OK because it might be consolidated by GC.
254 * But if the index takes fewer LEBs than it is reserved for it,
255 * this function must avoid picking those reserved LEBs.
257 if (c
->min_idx_lebs
>= c
->lst
.idx_lebs
) {
258 rsvd_idx_lebs
= c
->min_idx_lebs
- c
->lst
.idx_lebs
;
261 spin_unlock(&c
->space_lock
);
263 /* Check if there are enough free LEBs for the index */
264 if (rsvd_idx_lebs
< lebs
) {
265 /* OK, try to find an empty LEB */
266 lp
= ubifs_fast_find_empty(c
);
270 /* Or a freeable LEB */
271 lp
= ubifs_fast_find_freeable(c
);
276 * We cannot pick free/freeable LEBs in the below code.
280 spin_lock(&c
->space_lock
);
281 exclude_index
= (c
->min_idx_lebs
>= c
->lst
.idx_lebs
);
282 spin_unlock(&c
->space_lock
);
285 /* Look on the dirty and dirty index heaps */
286 heap
= &c
->lpt_heap
[LPROPS_DIRTY
- 1];
287 idx_heap
= &c
->lpt_heap
[LPROPS_DIRTY_IDX
- 1];
289 if (idx_heap
->cnt
&& !exclude_index
) {
290 idx_lp
= idx_heap
->arr
[0];
291 sum
= idx_lp
->free
+ idx_lp
->dirty
;
293 * Since we reserve thrice as much space for the index than it
294 * actually takes, it does not make sense to pick indexing LEBs
295 * with less than, say, half LEB of dirty space. May be half is
296 * not the optimal boundary - this should be tested and
297 * checked. This boundary should determine how much we use
298 * in-the-gaps to consolidate the index comparing to how much
299 * we use garbage collector to consolidate it. The "half"
300 * criteria just feels to be fine.
302 if (sum
< min_space
|| sum
< c
->half_leb_size
)
308 if (lp
->dirty
+ lp
->free
< min_space
)
312 /* Pick the LEB with most space */
314 if (idx_lp
->free
+ idx_lp
->dirty
>= lp
->free
+ lp
->dirty
)
316 } else if (idx_lp
&& !lp
)
320 ubifs_assert(lp
->dirty
>= c
->dead_wm
);
324 /* Did not find a dirty LEB on the dirty heaps, have to scan */
325 dbg_find("scanning LPT for a dirty LEB");
326 lp
= scan_for_dirty(c
, min_space
, pick_free
, exclude_index
);
331 ubifs_assert(lp
->dirty
>= c
->dead_wm
||
332 (pick_free
&& lp
->free
+ lp
->dirty
== c
->leb_size
));
335 dbg_find("found LEB %d, free %d, dirty %d, flags %#x",
336 lp
->lnum
, lp
->free
, lp
->dirty
, lp
->flags
);
338 lp
= ubifs_change_lp(c
, lp
, LPROPS_NC
, LPROPS_NC
,
339 lp
->flags
| LPROPS_TAKEN
, 0);
345 memcpy(ret_lp
, lp
, sizeof(struct ubifs_lprops
));
348 ubifs_release_lprops(c
);
353 * scan_for_free_cb - free space scan callback.
354 * @c: the UBIFS file-system description object
355 * @lprops: LEB properties to scan
356 * @in_tree: whether the LEB properties are in main memory
357 * @data: information passed to and from the caller of the scan
359 * This function returns a code that indicates whether the scan should continue
360 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
361 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
364 static int scan_for_free_cb(struct ubifs_info
*c
,
365 const struct ubifs_lprops
*lprops
, int in_tree
,
366 struct scan_data
*data
)
368 int ret
= LPT_SCAN_CONTINUE
;
370 /* Exclude LEBs that are currently in use */
371 if (lprops
->flags
& LPROPS_TAKEN
)
372 return LPT_SCAN_CONTINUE
;
373 /* Determine whether to add these LEB properties to the tree */
374 if (!in_tree
&& valuable(c
, lprops
))
376 /* Exclude index LEBs */
377 if (lprops
->flags
& LPROPS_INDEX
)
379 /* Exclude LEBs with too little space */
380 if (lprops
->free
< data
->min_space
)
382 /* If specified, exclude empty LEBs */
383 if (!data
->pick_free
&& lprops
->free
== c
->leb_size
)
386 * LEBs that have only free and dirty space must not be allocated
387 * because they may have been unmapped already or they may have data
388 * that is obsolete only because of nodes that are still sitting in a
391 if (lprops
->free
+ lprops
->dirty
== c
->leb_size
&& lprops
->dirty
> 0)
393 /* Finally we found space */
394 data
->lnum
= lprops
->lnum
;
395 return LPT_SCAN_ADD
| LPT_SCAN_STOP
;
399 * do_find_free_space - find a data LEB with free space.
400 * @c: the UBIFS file-system description object
401 * @min_space: minimum amount of free space required
402 * @pick_free: whether it is OK to scan for empty LEBs
403 * @squeeze: whether to try to find space in a non-empty LEB first
405 * This function returns a pointer to the LEB properties found or a negative
409 const struct ubifs_lprops
*do_find_free_space(struct ubifs_info
*c
,
410 int min_space
, int pick_free
,
413 const struct ubifs_lprops
*lprops
;
414 struct ubifs_lpt_heap
*heap
;
415 struct scan_data data
;
419 lprops
= ubifs_fast_find_free(c
);
420 if (lprops
&& lprops
->free
>= min_space
)
424 lprops
= ubifs_fast_find_empty(c
);
429 lprops
= ubifs_fast_find_free(c
);
430 if (lprops
&& lprops
->free
>= min_space
)
433 /* There may be an LEB with enough free space on the dirty heap */
434 heap
= &c
->lpt_heap
[LPROPS_DIRTY
- 1];
435 for (i
= 0; i
< heap
->cnt
; i
++) {
436 lprops
= heap
->arr
[i
];
437 if (lprops
->free
>= min_space
)
441 * A LEB may have fallen off of the bottom of the free heap, and ended
442 * up as uncategorized even though it has enough free space for us now,
443 * so check the uncategorized list. N.B. neither empty nor freeable LEBs
444 * can end up as uncategorized because they are kept on lists not
445 * finite-sized heaps.
447 list_for_each_entry(lprops
, &c
->uncat_list
, list
) {
448 if (lprops
->flags
& LPROPS_TAKEN
)
450 if (lprops
->flags
& LPROPS_INDEX
)
452 if (lprops
->free
>= min_space
)
455 /* We have looked everywhere in main memory, now scan the flash */
456 if (c
->pnodes_have
>= c
->pnode_cnt
)
457 /* All pnodes are in memory, so skip scan */
458 return ERR_PTR(-ENOSPC
);
459 data
.min_space
= min_space
;
460 data
.pick_free
= pick_free
;
462 err
= ubifs_lpt_scan_nolock(c
, -1, c
->lscan_lnum
,
463 (ubifs_lpt_scan_callback
)scan_for_free_cb
,
467 ubifs_assert(data
.lnum
>= c
->main_first
&& data
.lnum
< c
->leb_cnt
);
468 c
->lscan_lnum
= data
.lnum
;
469 lprops
= ubifs_lpt_lookup_dirty(c
, data
.lnum
);
472 ubifs_assert(lprops
->lnum
== data
.lnum
);
473 ubifs_assert(lprops
->free
>= min_space
);
474 ubifs_assert(!(lprops
->flags
& LPROPS_TAKEN
));
475 ubifs_assert(!(lprops
->flags
& LPROPS_INDEX
));
480 * ubifs_find_free_space - find a data LEB with free space.
481 * @c: the UBIFS file-system description object
482 * @min_space: minimum amount of required free space
483 * @free: contains amount of free space in the LEB on exit
484 * @squeeze: whether to try to find space in a non-empty LEB first
486 * This function looks for an LEB with at least @min_space bytes of free space.
487 * It tries to find an empty LEB if possible. If no empty LEBs are available,
488 * this function searches for a non-empty data LEB. The returned LEB is marked
491 * This function returns found LEB number in case of success, %-ENOSPC if it
492 * failed to find a LEB with @min_space bytes of free space and other a negative
493 * error codes in case of failure.
495 int ubifs_find_free_space(struct ubifs_info
*c
, int min_space
, int *free
,
498 const struct ubifs_lprops
*lprops
;
499 int lebs
, rsvd_idx_lebs
, pick_free
= 0, err
, lnum
, flags
;
501 dbg_find("min_space %d", min_space
);
504 /* Check if there are enough empty LEBs for commit */
505 spin_lock(&c
->space_lock
);
506 if (c
->min_idx_lebs
> c
->lst
.idx_lebs
)
507 rsvd_idx_lebs
= c
->min_idx_lebs
- c
->lst
.idx_lebs
;
510 lebs
= c
->lst
.empty_lebs
+ c
->freeable_cnt
+ c
->idx_gc_cnt
-
511 c
->lst
.taken_empty_lebs
;
512 ubifs_assert(lebs
+ c
->lst
.idx_lebs
>= c
->min_idx_lebs
);
513 if (rsvd_idx_lebs
< lebs
)
515 * OK to allocate an empty LEB, but we still don't want to go
516 * looking for one if there aren't any.
518 if (c
->lst
.empty_lebs
- c
->lst
.taken_empty_lebs
> 0) {
521 * Because we release the space lock, we must account
522 * for this allocation here. After the LEB properties
523 * flags have been updated, we subtract one. Note, the
524 * result of this is that lprops also decreases
525 * @taken_empty_lebs in 'ubifs_change_lp()', so it is
526 * off by one for a short period of time which may
527 * introduce a small disturbance to budgeting
528 * calculations, but this is harmless because at the
529 * worst case this would make the budgeting subsystem
530 * be more pessimistic than needed.
532 * Fundamentally, this is about serialization of the
533 * budgeting and lprops subsystems. We could make the
534 * @space_lock a mutex and avoid dropping it before
535 * calling 'ubifs_change_lp()', but mutex is more
536 * heavy-weight, and we want budgeting to be as fast as
539 c
->lst
.taken_empty_lebs
+= 1;
541 spin_unlock(&c
->space_lock
);
543 lprops
= do_find_free_space(c
, min_space
, pick_free
, squeeze
);
544 if (IS_ERR(lprops
)) {
545 err
= PTR_ERR(lprops
);
550 flags
= lprops
->flags
| LPROPS_TAKEN
;
552 lprops
= ubifs_change_lp(c
, lprops
, LPROPS_NC
, LPROPS_NC
, flags
, 0);
553 if (IS_ERR(lprops
)) {
554 err
= PTR_ERR(lprops
);
559 spin_lock(&c
->space_lock
);
560 c
->lst
.taken_empty_lebs
-= 1;
561 spin_unlock(&c
->space_lock
);
564 *free
= lprops
->free
;
565 ubifs_release_lprops(c
);
567 if (*free
== c
->leb_size
) {
569 * Ensure that empty LEBs have been unmapped. They may not have
570 * been, for example, because of an unclean unmount. Also
571 * LEBs that were freeable LEBs (free + dirty == leb_size) will
572 * not have been unmapped.
574 err
= ubifs_leb_unmap(c
, lnum
);
579 dbg_find("found LEB %d, free %d", lnum
, *free
);
580 ubifs_assert(*free
>= min_space
);
585 spin_lock(&c
->space_lock
);
586 c
->lst
.taken_empty_lebs
-= 1;
587 spin_unlock(&c
->space_lock
);
589 ubifs_release_lprops(c
);
594 * scan_for_idx_cb - callback used by the scan for a free LEB for the index.
595 * @c: the UBIFS file-system description object
596 * @lprops: LEB properties to scan
597 * @in_tree: whether the LEB properties are in main memory
598 * @data: information passed to and from the caller of the scan
600 * This function returns a code that indicates whether the scan should continue
601 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
602 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
605 static int scan_for_idx_cb(struct ubifs_info
*c
,
606 const struct ubifs_lprops
*lprops
, int in_tree
,
607 struct scan_data
*data
)
609 int ret
= LPT_SCAN_CONTINUE
;
611 /* Exclude LEBs that are currently in use */
612 if (lprops
->flags
& LPROPS_TAKEN
)
613 return LPT_SCAN_CONTINUE
;
614 /* Determine whether to add these LEB properties to the tree */
615 if (!in_tree
&& valuable(c
, lprops
))
617 /* Exclude index LEBS */
618 if (lprops
->flags
& LPROPS_INDEX
)
620 /* Exclude LEBs that cannot be made empty */
621 if (lprops
->free
+ lprops
->dirty
!= c
->leb_size
)
624 * We are allocating for the index so it is safe to allocate LEBs with
625 * only free and dirty space, because write buffers are sync'd at commit
628 data
->lnum
= lprops
->lnum
;
629 return LPT_SCAN_ADD
| LPT_SCAN_STOP
;
633 * scan_for_leb_for_idx - scan for a free LEB for the index.
634 * @c: the UBIFS file-system description object
636 static const struct ubifs_lprops
*scan_for_leb_for_idx(struct ubifs_info
*c
)
638 struct ubifs_lprops
*lprops
;
639 struct scan_data data
;
643 err
= ubifs_lpt_scan_nolock(c
, -1, c
->lscan_lnum
,
644 (ubifs_lpt_scan_callback
)scan_for_idx_cb
,
648 ubifs_assert(data
.lnum
>= c
->main_first
&& data
.lnum
< c
->leb_cnt
);
649 c
->lscan_lnum
= data
.lnum
;
650 lprops
= ubifs_lpt_lookup_dirty(c
, data
.lnum
);
653 ubifs_assert(lprops
->lnum
== data
.lnum
);
654 ubifs_assert(lprops
->free
+ lprops
->dirty
== c
->leb_size
);
655 ubifs_assert(!(lprops
->flags
& LPROPS_TAKEN
));
656 ubifs_assert(!(lprops
->flags
& LPROPS_INDEX
));
661 * ubifs_find_free_leb_for_idx - find a free LEB for the index.
662 * @c: the UBIFS file-system description object
664 * This function looks for a free LEB and returns that LEB number. The returned
665 * LEB is marked as "taken", "index".
667 * Only empty LEBs are allocated. This is for two reasons. First, the commit
668 * calculates the number of LEBs to allocate based on the assumption that they
669 * will be empty. Secondly, free space at the end of an index LEB is not
670 * guaranteed to be empty because it may have been used by the in-the-gaps
671 * method prior to an unclean unmount.
673 * If no LEB is found %-ENOSPC is returned. For other failures another negative
674 * error code is returned.
676 int ubifs_find_free_leb_for_idx(struct ubifs_info
*c
)
678 const struct ubifs_lprops
*lprops
;
679 int lnum
= -1, err
, flags
;
683 lprops
= ubifs_fast_find_empty(c
);
685 lprops
= ubifs_fast_find_freeable(c
);
687 ubifs_assert(c
->freeable_cnt
== 0);
688 if (c
->lst
.empty_lebs
- c
->lst
.taken_empty_lebs
> 0) {
689 lprops
= scan_for_leb_for_idx(c
);
690 if (IS_ERR(lprops
)) {
691 err
= PTR_ERR(lprops
);
705 dbg_find("found LEB %d, free %d, dirty %d, flags %#x",
706 lnum
, lprops
->free
, lprops
->dirty
, lprops
->flags
);
708 flags
= lprops
->flags
| LPROPS_TAKEN
| LPROPS_INDEX
;
709 lprops
= ubifs_change_lp(c
, lprops
, c
->leb_size
, 0, flags
, 0);
710 if (IS_ERR(lprops
)) {
711 err
= PTR_ERR(lprops
);
715 ubifs_release_lprops(c
);
718 * Ensure that empty LEBs have been unmapped. They may not have been,
719 * for example, because of an unclean unmount. Also LEBs that were
720 * freeable LEBs (free + dirty == leb_size) will not have been unmapped.
722 err
= ubifs_leb_unmap(c
, lnum
);
724 ubifs_change_one_lp(c
, lnum
, LPROPS_NC
, LPROPS_NC
, 0,
725 LPROPS_TAKEN
| LPROPS_INDEX
, 0);
732 ubifs_release_lprops(c
);
736 static int cmp_dirty_idx(const struct ubifs_lprops
**a
,
737 const struct ubifs_lprops
**b
)
739 const struct ubifs_lprops
*lpa
= *a
;
740 const struct ubifs_lprops
*lpb
= *b
;
742 return lpa
->dirty
+ lpa
->free
- lpb
->dirty
- lpb
->free
;
745 static void swap_dirty_idx(struct ubifs_lprops
**a
, struct ubifs_lprops
**b
,
748 struct ubifs_lprops
*t
= *a
;
755 * ubifs_save_dirty_idx_lnums - save an array of the most dirty index LEB nos.
756 * @c: the UBIFS file-system description object
758 * This function is called each commit to create an array of LEB numbers of
759 * dirty index LEBs sorted in order of dirty and free space. This is used by
760 * the in-the-gaps method of TNC commit.
762 int ubifs_save_dirty_idx_lnums(struct ubifs_info
*c
)
767 /* Copy the LPROPS_DIRTY_IDX heap */
768 c
->dirty_idx
.cnt
= c
->lpt_heap
[LPROPS_DIRTY_IDX
- 1].cnt
;
769 memcpy(c
->dirty_idx
.arr
, c
->lpt_heap
[LPROPS_DIRTY_IDX
- 1].arr
,
770 sizeof(void *) * c
->dirty_idx
.cnt
);
771 /* Sort it so that the dirtiest is now at the end */
772 sort(c
->dirty_idx
.arr
, c
->dirty_idx
.cnt
, sizeof(void *),
773 (int (*)(const void *, const void *))cmp_dirty_idx
,
774 (void (*)(void *, void *, int))swap_dirty_idx
);
775 dbg_find("found %d dirty index LEBs", c
->dirty_idx
.cnt
);
776 if (c
->dirty_idx
.cnt
)
777 dbg_find("dirtiest index LEB is %d with dirty %d and free %d",
778 c
->dirty_idx
.arr
[c
->dirty_idx
.cnt
- 1]->lnum
,
779 c
->dirty_idx
.arr
[c
->dirty_idx
.cnt
- 1]->dirty
,
780 c
->dirty_idx
.arr
[c
->dirty_idx
.cnt
- 1]->free
);
781 /* Replace the lprops pointers with LEB numbers */
782 for (i
= 0; i
< c
->dirty_idx
.cnt
; i
++)
783 c
->dirty_idx
.arr
[i
] = (void *)(size_t)c
->dirty_idx
.arr
[i
]->lnum
;
784 ubifs_release_lprops(c
);
789 * scan_dirty_idx_cb - callback used by the scan for a dirty index LEB.
790 * @c: the UBIFS file-system description object
791 * @lprops: LEB properties to scan
792 * @in_tree: whether the LEB properties are in main memory
793 * @data: information passed to and from the caller of the scan
795 * This function returns a code that indicates whether the scan should continue
796 * (%LPT_SCAN_CONTINUE), whether the LEB properties should be added to the tree
797 * in main memory (%LPT_SCAN_ADD), or whether the scan should stop
800 static int scan_dirty_idx_cb(struct ubifs_info
*c
,
801 const struct ubifs_lprops
*lprops
, int in_tree
,
802 struct scan_data
*data
)
804 int ret
= LPT_SCAN_CONTINUE
;
806 /* Exclude LEBs that are currently in use */
807 if (lprops
->flags
& LPROPS_TAKEN
)
808 return LPT_SCAN_CONTINUE
;
809 /* Determine whether to add these LEB properties to the tree */
810 if (!in_tree
&& valuable(c
, lprops
))
812 /* Exclude non-index LEBs */
813 if (!(lprops
->flags
& LPROPS_INDEX
))
815 /* Exclude LEBs with too little space */
816 if (lprops
->free
+ lprops
->dirty
< c
->min_idx_node_sz
)
818 /* Finally we found space */
819 data
->lnum
= lprops
->lnum
;
820 return LPT_SCAN_ADD
| LPT_SCAN_STOP
;
824 * find_dirty_idx_leb - find a dirty index LEB.
825 * @c: the UBIFS file-system description object
827 * This function returns LEB number upon success and a negative error code upon
828 * failure. In particular, -ENOSPC is returned if a dirty index LEB is not
831 * Note that this function scans the entire LPT but it is called very rarely.
833 static int find_dirty_idx_leb(struct ubifs_info
*c
)
835 const struct ubifs_lprops
*lprops
;
836 struct ubifs_lpt_heap
*heap
;
837 struct scan_data data
;
840 /* Check all structures in memory first */
842 heap
= &c
->lpt_heap
[LPROPS_DIRTY_IDX
- 1];
843 for (i
= 0; i
< heap
->cnt
; i
++) {
844 lprops
= heap
->arr
[i
];
845 ret
= scan_dirty_idx_cb(c
, lprops
, 1, &data
);
846 if (ret
& LPT_SCAN_STOP
)
849 list_for_each_entry(lprops
, &c
->frdi_idx_list
, list
) {
850 ret
= scan_dirty_idx_cb(c
, lprops
, 1, &data
);
851 if (ret
& LPT_SCAN_STOP
)
854 list_for_each_entry(lprops
, &c
->uncat_list
, list
) {
855 ret
= scan_dirty_idx_cb(c
, lprops
, 1, &data
);
856 if (ret
& LPT_SCAN_STOP
)
859 if (c
->pnodes_have
>= c
->pnode_cnt
)
860 /* All pnodes are in memory, so skip scan */
862 err
= ubifs_lpt_scan_nolock(c
, -1, c
->lscan_lnum
,
863 (ubifs_lpt_scan_callback
)scan_dirty_idx_cb
,
868 ubifs_assert(data
.lnum
>= c
->main_first
&& data
.lnum
< c
->leb_cnt
);
869 c
->lscan_lnum
= data
.lnum
;
870 lprops
= ubifs_lpt_lookup_dirty(c
, data
.lnum
);
872 return PTR_ERR(lprops
);
873 ubifs_assert(lprops
->lnum
== data
.lnum
);
874 ubifs_assert(lprops
->free
+ lprops
->dirty
>= c
->min_idx_node_sz
);
875 ubifs_assert(!(lprops
->flags
& LPROPS_TAKEN
));
876 ubifs_assert((lprops
->flags
& LPROPS_INDEX
));
878 dbg_find("found dirty LEB %d, free %d, dirty %d, flags %#x",
879 lprops
->lnum
, lprops
->free
, lprops
->dirty
, lprops
->flags
);
881 lprops
= ubifs_change_lp(c
, lprops
, LPROPS_NC
, LPROPS_NC
,
882 lprops
->flags
| LPROPS_TAKEN
, 0);
884 return PTR_ERR(lprops
);
890 * get_idx_gc_leb - try to get a LEB number from trivial GC.
891 * @c: the UBIFS file-system description object
893 static int get_idx_gc_leb(struct ubifs_info
*c
)
895 const struct ubifs_lprops
*lp
;
898 err
= ubifs_get_idx_gc_leb(c
);
903 * The LEB was due to be unmapped after the commit but
904 * it is needed now for this commit.
906 lp
= ubifs_lpt_lookup_dirty(c
, lnum
);
907 if (unlikely(IS_ERR(lp
)))
909 lp
= ubifs_change_lp(c
, lp
, LPROPS_NC
, LPROPS_NC
,
910 lp
->flags
| LPROPS_INDEX
, -1);
911 if (unlikely(IS_ERR(lp
)))
913 dbg_find("LEB %d, dirty %d and free %d flags %#x",
914 lp
->lnum
, lp
->dirty
, lp
->free
, lp
->flags
);
919 * find_dirtiest_idx_leb - find dirtiest index LEB from dirtiest array.
920 * @c: the UBIFS file-system description object
922 static int find_dirtiest_idx_leb(struct ubifs_info
*c
)
924 const struct ubifs_lprops
*lp
;
928 if (!c
->dirty_idx
.cnt
)
930 /* The lprops pointers were replaced by LEB numbers */
931 lnum
= (size_t)c
->dirty_idx
.arr
[--c
->dirty_idx
.cnt
];
932 lp
= ubifs_lpt_lookup(c
, lnum
);
935 if ((lp
->flags
& LPROPS_TAKEN
) || !(lp
->flags
& LPROPS_INDEX
))
937 lp
= ubifs_change_lp(c
, lp
, LPROPS_NC
, LPROPS_NC
,
938 lp
->flags
| LPROPS_TAKEN
, 0);
943 dbg_find("LEB %d, dirty %d and free %d flags %#x", lp
->lnum
, lp
->dirty
,
944 lp
->free
, lp
->flags
);
945 ubifs_assert(lp
->flags
| LPROPS_TAKEN
);
946 ubifs_assert(lp
->flags
| LPROPS_INDEX
);
951 * ubifs_find_dirty_idx_leb - try to find dirtiest index LEB as at last commit.
952 * @c: the UBIFS file-system description object
954 * This function attempts to find an untaken index LEB with the most free and
955 * dirty space that can be used without overwriting index nodes that were in the
956 * last index committed.
958 int ubifs_find_dirty_idx_leb(struct ubifs_info
*c
)
965 * We made an array of the dirtiest index LEB numbers as at the start of
966 * last commit. Try that array first.
968 err
= find_dirtiest_idx_leb(c
);
970 /* Next try scanning the entire LPT */
972 err
= find_dirty_idx_leb(c
);
974 /* Finally take any index LEBs awaiting trivial GC */
976 err
= get_idx_gc_leb(c
);
978 ubifs_release_lprops(c
);