sched: Fix TASK_WAKING vs fork deadlock
[linux-2.6/linux-acpi-2.6/ibm-acpi-2.6.git] / kernel / sched.c
blobdcd17736dae1dd4e4f082a5462c7a60ee6eb91e7
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
118 * single value that denotes runtime == period, ie unlimited time.
120 #define RUNTIME_INF ((u64)~0ULL)
122 static inline int rt_policy(int policy)
124 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
125 return 1;
126 return 0;
129 static inline int task_has_rt_policy(struct task_struct *p)
131 return rt_policy(p->policy);
135 * This is the priority-queue data structure of the RT scheduling class:
137 struct rt_prio_array {
138 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
139 struct list_head queue[MAX_RT_PRIO];
142 struct rt_bandwidth {
143 /* nests inside the rq lock: */
144 raw_spinlock_t rt_runtime_lock;
145 ktime_t rt_period;
146 u64 rt_runtime;
147 struct hrtimer rt_period_timer;
150 static struct rt_bandwidth def_rt_bandwidth;
152 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
154 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
156 struct rt_bandwidth *rt_b =
157 container_of(timer, struct rt_bandwidth, rt_period_timer);
158 ktime_t now;
159 int overrun;
160 int idle = 0;
162 for (;;) {
163 now = hrtimer_cb_get_time(timer);
164 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
166 if (!overrun)
167 break;
169 idle = do_sched_rt_period_timer(rt_b, overrun);
172 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
175 static
176 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
178 rt_b->rt_period = ns_to_ktime(period);
179 rt_b->rt_runtime = runtime;
181 raw_spin_lock_init(&rt_b->rt_runtime_lock);
183 hrtimer_init(&rt_b->rt_period_timer,
184 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
185 rt_b->rt_period_timer.function = sched_rt_period_timer;
188 static inline int rt_bandwidth_enabled(void)
190 return sysctl_sched_rt_runtime >= 0;
193 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
195 ktime_t now;
197 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
198 return;
200 if (hrtimer_active(&rt_b->rt_period_timer))
201 return;
203 raw_spin_lock(&rt_b->rt_runtime_lock);
204 for (;;) {
205 unsigned long delta;
206 ktime_t soft, hard;
208 if (hrtimer_active(&rt_b->rt_period_timer))
209 break;
211 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
212 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
214 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
215 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
216 delta = ktime_to_ns(ktime_sub(hard, soft));
217 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
218 HRTIMER_MODE_ABS_PINNED, 0);
220 raw_spin_unlock(&rt_b->rt_runtime_lock);
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
226 hrtimer_cancel(&rt_b->rt_period_timer);
228 #endif
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
234 static DEFINE_MUTEX(sched_domains_mutex);
236 #ifdef CONFIG_CGROUP_SCHED
238 #include <linux/cgroup.h>
240 struct cfs_rq;
242 static LIST_HEAD(task_groups);
244 /* task group related information */
245 struct task_group {
246 struct cgroup_subsys_state css;
248 #ifdef CONFIG_FAIR_GROUP_SCHED
249 /* schedulable entities of this group on each cpu */
250 struct sched_entity **se;
251 /* runqueue "owned" by this group on each cpu */
252 struct cfs_rq **cfs_rq;
253 unsigned long shares;
254 #endif
256 #ifdef CONFIG_RT_GROUP_SCHED
257 struct sched_rt_entity **rt_se;
258 struct rt_rq **rt_rq;
260 struct rt_bandwidth rt_bandwidth;
261 #endif
263 struct rcu_head rcu;
264 struct list_head list;
266 struct task_group *parent;
267 struct list_head siblings;
268 struct list_head children;
271 #define root_task_group init_task_group
273 /* task_group_lock serializes add/remove of task groups and also changes to
274 * a task group's cpu shares.
276 static DEFINE_SPINLOCK(task_group_lock);
278 #ifdef CONFIG_FAIR_GROUP_SCHED
280 #ifdef CONFIG_SMP
281 static int root_task_group_empty(void)
283 return list_empty(&root_task_group.children);
285 #endif
287 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
290 * A weight of 0 or 1 can cause arithmetics problems.
291 * A weight of a cfs_rq is the sum of weights of which entities
292 * are queued on this cfs_rq, so a weight of a entity should not be
293 * too large, so as the shares value of a task group.
294 * (The default weight is 1024 - so there's no practical
295 * limitation from this.)
297 #define MIN_SHARES 2
298 #define MAX_SHARES (1UL << 18)
300 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
301 #endif
303 /* Default task group.
304 * Every task in system belong to this group at bootup.
306 struct task_group init_task_group;
308 /* return group to which a task belongs */
309 static inline struct task_group *task_group(struct task_struct *p)
311 struct task_group *tg;
313 #ifdef CONFIG_CGROUP_SCHED
314 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
315 struct task_group, css);
316 #else
317 tg = &init_task_group;
318 #endif
319 return tg;
322 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
323 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
327 p->se.parent = task_group(p)->se[cpu];
328 #endif
330 #ifdef CONFIG_RT_GROUP_SCHED
331 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
332 p->rt.parent = task_group(p)->rt_se[cpu];
333 #endif
336 #else
338 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
339 static inline struct task_group *task_group(struct task_struct *p)
341 return NULL;
344 #endif /* CONFIG_CGROUP_SCHED */
346 /* CFS-related fields in a runqueue */
347 struct cfs_rq {
348 struct load_weight load;
349 unsigned long nr_running;
351 u64 exec_clock;
352 u64 min_vruntime;
354 struct rb_root tasks_timeline;
355 struct rb_node *rb_leftmost;
357 struct list_head tasks;
358 struct list_head *balance_iterator;
361 * 'curr' points to currently running entity on this cfs_rq.
362 * It is set to NULL otherwise (i.e when none are currently running).
364 struct sched_entity *curr, *next, *last;
366 unsigned int nr_spread_over;
368 #ifdef CONFIG_FAIR_GROUP_SCHED
369 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
372 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
373 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
374 * (like users, containers etc.)
376 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
377 * list is used during load balance.
379 struct list_head leaf_cfs_rq_list;
380 struct task_group *tg; /* group that "owns" this runqueue */
382 #ifdef CONFIG_SMP
384 * the part of load.weight contributed by tasks
386 unsigned long task_weight;
389 * h_load = weight * f(tg)
391 * Where f(tg) is the recursive weight fraction assigned to
392 * this group.
394 unsigned long h_load;
397 * this cpu's part of tg->shares
399 unsigned long shares;
402 * load.weight at the time we set shares
404 unsigned long rq_weight;
405 #endif
406 #endif
409 /* Real-Time classes' related field in a runqueue: */
410 struct rt_rq {
411 struct rt_prio_array active;
412 unsigned long rt_nr_running;
413 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
414 struct {
415 int curr; /* highest queued rt task prio */
416 #ifdef CONFIG_SMP
417 int next; /* next highest */
418 #endif
419 } highest_prio;
420 #endif
421 #ifdef CONFIG_SMP
422 unsigned long rt_nr_migratory;
423 unsigned long rt_nr_total;
424 int overloaded;
425 struct plist_head pushable_tasks;
426 #endif
427 int rt_throttled;
428 u64 rt_time;
429 u64 rt_runtime;
430 /* Nests inside the rq lock: */
431 raw_spinlock_t rt_runtime_lock;
433 #ifdef CONFIG_RT_GROUP_SCHED
434 unsigned long rt_nr_boosted;
436 struct rq *rq;
437 struct list_head leaf_rt_rq_list;
438 struct task_group *tg;
439 #endif
442 #ifdef CONFIG_SMP
445 * We add the notion of a root-domain which will be used to define per-domain
446 * variables. Each exclusive cpuset essentially defines an island domain by
447 * fully partitioning the member cpus from any other cpuset. Whenever a new
448 * exclusive cpuset is created, we also create and attach a new root-domain
449 * object.
452 struct root_domain {
453 atomic_t refcount;
454 cpumask_var_t span;
455 cpumask_var_t online;
458 * The "RT overload" flag: it gets set if a CPU has more than
459 * one runnable RT task.
461 cpumask_var_t rto_mask;
462 atomic_t rto_count;
463 #ifdef CONFIG_SMP
464 struct cpupri cpupri;
465 #endif
469 * By default the system creates a single root-domain with all cpus as
470 * members (mimicking the global state we have today).
472 static struct root_domain def_root_domain;
474 #endif
477 * This is the main, per-CPU runqueue data structure.
479 * Locking rule: those places that want to lock multiple runqueues
480 * (such as the load balancing or the thread migration code), lock
481 * acquire operations must be ordered by ascending &runqueue.
483 struct rq {
484 /* runqueue lock: */
485 raw_spinlock_t lock;
488 * nr_running and cpu_load should be in the same cacheline because
489 * remote CPUs use both these fields when doing load calculation.
491 unsigned long nr_running;
492 #define CPU_LOAD_IDX_MAX 5
493 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
494 #ifdef CONFIG_NO_HZ
495 u64 nohz_stamp;
496 unsigned char in_nohz_recently;
497 #endif
498 unsigned int skip_clock_update;
500 /* capture load from *all* tasks on this cpu: */
501 struct load_weight load;
502 unsigned long nr_load_updates;
503 u64 nr_switches;
505 struct cfs_rq cfs;
506 struct rt_rq rt;
508 #ifdef CONFIG_FAIR_GROUP_SCHED
509 /* list of leaf cfs_rq on this cpu: */
510 struct list_head leaf_cfs_rq_list;
511 #endif
512 #ifdef CONFIG_RT_GROUP_SCHED
513 struct list_head leaf_rt_rq_list;
514 #endif
517 * This is part of a global counter where only the total sum
518 * over all CPUs matters. A task can increase this counter on
519 * one CPU and if it got migrated afterwards it may decrease
520 * it on another CPU. Always updated under the runqueue lock:
522 unsigned long nr_uninterruptible;
524 struct task_struct *curr, *idle;
525 unsigned long next_balance;
526 struct mm_struct *prev_mm;
528 u64 clock;
530 atomic_t nr_iowait;
532 #ifdef CONFIG_SMP
533 struct root_domain *rd;
534 struct sched_domain *sd;
536 unsigned char idle_at_tick;
537 /* For active balancing */
538 int post_schedule;
539 int active_balance;
540 int push_cpu;
541 /* cpu of this runqueue: */
542 int cpu;
543 int online;
545 unsigned long avg_load_per_task;
547 struct task_struct *migration_thread;
548 struct list_head migration_queue;
550 u64 rt_avg;
551 u64 age_stamp;
552 u64 idle_stamp;
553 u64 avg_idle;
554 #endif
556 /* calc_load related fields */
557 unsigned long calc_load_update;
558 long calc_load_active;
560 #ifdef CONFIG_SCHED_HRTICK
561 #ifdef CONFIG_SMP
562 int hrtick_csd_pending;
563 struct call_single_data hrtick_csd;
564 #endif
565 struct hrtimer hrtick_timer;
566 #endif
568 #ifdef CONFIG_SCHEDSTATS
569 /* latency stats */
570 struct sched_info rq_sched_info;
571 unsigned long long rq_cpu_time;
572 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
574 /* sys_sched_yield() stats */
575 unsigned int yld_count;
577 /* schedule() stats */
578 unsigned int sched_switch;
579 unsigned int sched_count;
580 unsigned int sched_goidle;
582 /* try_to_wake_up() stats */
583 unsigned int ttwu_count;
584 unsigned int ttwu_local;
586 /* BKL stats */
587 unsigned int bkl_count;
588 #endif
591 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
593 static inline
594 void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
596 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
599 * A queue event has occurred, and we're going to schedule. In
600 * this case, we can save a useless back to back clock update.
602 if (test_tsk_need_resched(p))
603 rq->skip_clock_update = 1;
606 static inline int cpu_of(struct rq *rq)
608 #ifdef CONFIG_SMP
609 return rq->cpu;
610 #else
611 return 0;
612 #endif
615 #define rcu_dereference_check_sched_domain(p) \
616 rcu_dereference_check((p), \
617 rcu_read_lock_sched_held() || \
618 lockdep_is_held(&sched_domains_mutex))
621 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
622 * See detach_destroy_domains: synchronize_sched for details.
624 * The domain tree of any CPU may only be accessed from within
625 * preempt-disabled sections.
627 #define for_each_domain(cpu, __sd) \
628 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
630 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
631 #define this_rq() (&__get_cpu_var(runqueues))
632 #define task_rq(p) cpu_rq(task_cpu(p))
633 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
634 #define raw_rq() (&__raw_get_cpu_var(runqueues))
636 inline void update_rq_clock(struct rq *rq)
638 if (!rq->skip_clock_update)
639 rq->clock = sched_clock_cpu(cpu_of(rq));
643 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
645 #ifdef CONFIG_SCHED_DEBUG
646 # define const_debug __read_mostly
647 #else
648 # define const_debug static const
649 #endif
652 * runqueue_is_locked
653 * @cpu: the processor in question.
655 * Returns true if the current cpu runqueue is locked.
656 * This interface allows printk to be called with the runqueue lock
657 * held and know whether or not it is OK to wake up the klogd.
659 int runqueue_is_locked(int cpu)
661 return raw_spin_is_locked(&cpu_rq(cpu)->lock);
665 * Debugging: various feature bits
668 #define SCHED_FEAT(name, enabled) \
669 __SCHED_FEAT_##name ,
671 enum {
672 #include "sched_features.h"
675 #undef SCHED_FEAT
677 #define SCHED_FEAT(name, enabled) \
678 (1UL << __SCHED_FEAT_##name) * enabled |
680 const_debug unsigned int sysctl_sched_features =
681 #include "sched_features.h"
684 #undef SCHED_FEAT
686 #ifdef CONFIG_SCHED_DEBUG
687 #define SCHED_FEAT(name, enabled) \
688 #name ,
690 static __read_mostly char *sched_feat_names[] = {
691 #include "sched_features.h"
692 NULL
695 #undef SCHED_FEAT
697 static int sched_feat_show(struct seq_file *m, void *v)
699 int i;
701 for (i = 0; sched_feat_names[i]; i++) {
702 if (!(sysctl_sched_features & (1UL << i)))
703 seq_puts(m, "NO_");
704 seq_printf(m, "%s ", sched_feat_names[i]);
706 seq_puts(m, "\n");
708 return 0;
711 static ssize_t
712 sched_feat_write(struct file *filp, const char __user *ubuf,
713 size_t cnt, loff_t *ppos)
715 char buf[64];
716 char *cmp = buf;
717 int neg = 0;
718 int i;
720 if (cnt > 63)
721 cnt = 63;
723 if (copy_from_user(&buf, ubuf, cnt))
724 return -EFAULT;
726 buf[cnt] = 0;
728 if (strncmp(buf, "NO_", 3) == 0) {
729 neg = 1;
730 cmp += 3;
733 for (i = 0; sched_feat_names[i]; i++) {
734 int len = strlen(sched_feat_names[i]);
736 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
737 if (neg)
738 sysctl_sched_features &= ~(1UL << i);
739 else
740 sysctl_sched_features |= (1UL << i);
741 break;
745 if (!sched_feat_names[i])
746 return -EINVAL;
748 *ppos += cnt;
750 return cnt;
753 static int sched_feat_open(struct inode *inode, struct file *filp)
755 return single_open(filp, sched_feat_show, NULL);
758 static const struct file_operations sched_feat_fops = {
759 .open = sched_feat_open,
760 .write = sched_feat_write,
761 .read = seq_read,
762 .llseek = seq_lseek,
763 .release = single_release,
766 static __init int sched_init_debug(void)
768 debugfs_create_file("sched_features", 0644, NULL, NULL,
769 &sched_feat_fops);
771 return 0;
773 late_initcall(sched_init_debug);
775 #endif
777 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
780 * Number of tasks to iterate in a single balance run.
781 * Limited because this is done with IRQs disabled.
783 const_debug unsigned int sysctl_sched_nr_migrate = 32;
786 * ratelimit for updating the group shares.
787 * default: 0.25ms
789 unsigned int sysctl_sched_shares_ratelimit = 250000;
790 unsigned int normalized_sysctl_sched_shares_ratelimit = 250000;
793 * Inject some fuzzyness into changing the per-cpu group shares
794 * this avoids remote rq-locks at the expense of fairness.
795 * default: 4
797 unsigned int sysctl_sched_shares_thresh = 4;
800 * period over which we average the RT time consumption, measured
801 * in ms.
803 * default: 1s
805 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
808 * period over which we measure -rt task cpu usage in us.
809 * default: 1s
811 unsigned int sysctl_sched_rt_period = 1000000;
813 static __read_mostly int scheduler_running;
816 * part of the period that we allow rt tasks to run in us.
817 * default: 0.95s
819 int sysctl_sched_rt_runtime = 950000;
821 static inline u64 global_rt_period(void)
823 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
826 static inline u64 global_rt_runtime(void)
828 if (sysctl_sched_rt_runtime < 0)
829 return RUNTIME_INF;
831 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
834 #ifndef prepare_arch_switch
835 # define prepare_arch_switch(next) do { } while (0)
836 #endif
837 #ifndef finish_arch_switch
838 # define finish_arch_switch(prev) do { } while (0)
839 #endif
841 static inline int task_current(struct rq *rq, struct task_struct *p)
843 return rq->curr == p;
846 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
847 static inline int task_running(struct rq *rq, struct task_struct *p)
849 return task_current(rq, p);
852 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
856 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
858 #ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq->lock.owner = current;
861 #endif
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
865 * prev into current:
867 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
869 raw_spin_unlock_irq(&rq->lock);
872 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
873 static inline int task_running(struct rq *rq, struct task_struct *p)
875 #ifdef CONFIG_SMP
876 return p->oncpu;
877 #else
878 return task_current(rq, p);
879 #endif
882 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
884 #ifdef CONFIG_SMP
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
888 * here.
890 next->oncpu = 1;
891 #endif
892 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
893 raw_spin_unlock_irq(&rq->lock);
894 #else
895 raw_spin_unlock(&rq->lock);
896 #endif
899 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
901 #ifdef CONFIG_SMP
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
905 * finished.
907 smp_wmb();
908 prev->oncpu = 0;
909 #endif
910 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
911 local_irq_enable();
912 #endif
914 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
917 * Check whether the task is waking, we use this to synchronize against
918 * ttwu() so that task_cpu() reports a stable number.
920 static inline int task_is_waking(struct task_struct *p)
922 return unlikely(p->state == TASK_WAKING);
926 * __task_rq_lock - lock the runqueue a given task resides on.
927 * Must be called interrupts disabled.
929 static inline struct rq *__task_rq_lock(struct task_struct *p)
930 __acquires(rq->lock)
932 struct rq *rq;
934 for (;;) {
935 while (task_is_waking(p))
936 cpu_relax();
937 rq = task_rq(p);
938 raw_spin_lock(&rq->lock);
939 if (likely(rq == task_rq(p) && !task_is_waking(p)))
940 return rq;
941 raw_spin_unlock(&rq->lock);
946 * task_rq_lock - lock the runqueue a given task resides on and disable
947 * interrupts. Note the ordering: we can safely lookup the task_rq without
948 * explicitly disabling preemption.
950 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
951 __acquires(rq->lock)
953 struct rq *rq;
955 for (;;) {
956 while (task_is_waking(p))
957 cpu_relax();
958 local_irq_save(*flags);
959 rq = task_rq(p);
960 raw_spin_lock(&rq->lock);
961 if (likely(rq == task_rq(p) && !task_is_waking(p)))
962 return rq;
963 raw_spin_unlock_irqrestore(&rq->lock, *flags);
967 void task_rq_unlock_wait(struct task_struct *p)
969 struct rq *rq = task_rq(p);
971 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
972 raw_spin_unlock_wait(&rq->lock);
975 static void __task_rq_unlock(struct rq *rq)
976 __releases(rq->lock)
978 raw_spin_unlock(&rq->lock);
981 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
982 __releases(rq->lock)
984 raw_spin_unlock_irqrestore(&rq->lock, *flags);
988 * this_rq_lock - lock this runqueue and disable interrupts.
990 static struct rq *this_rq_lock(void)
991 __acquires(rq->lock)
993 struct rq *rq;
995 local_irq_disable();
996 rq = this_rq();
997 raw_spin_lock(&rq->lock);
999 return rq;
1002 #ifdef CONFIG_SCHED_HRTICK
1004 * Use HR-timers to deliver accurate preemption points.
1006 * Its all a bit involved since we cannot program an hrt while holding the
1007 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1008 * reschedule event.
1010 * When we get rescheduled we reprogram the hrtick_timer outside of the
1011 * rq->lock.
1015 * Use hrtick when:
1016 * - enabled by features
1017 * - hrtimer is actually high res
1019 static inline int hrtick_enabled(struct rq *rq)
1021 if (!sched_feat(HRTICK))
1022 return 0;
1023 if (!cpu_active(cpu_of(rq)))
1024 return 0;
1025 return hrtimer_is_hres_active(&rq->hrtick_timer);
1028 static void hrtick_clear(struct rq *rq)
1030 if (hrtimer_active(&rq->hrtick_timer))
1031 hrtimer_cancel(&rq->hrtick_timer);
1035 * High-resolution timer tick.
1036 * Runs from hardirq context with interrupts disabled.
1038 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1040 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1042 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1044 raw_spin_lock(&rq->lock);
1045 update_rq_clock(rq);
1046 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1047 raw_spin_unlock(&rq->lock);
1049 return HRTIMER_NORESTART;
1052 #ifdef CONFIG_SMP
1054 * called from hardirq (IPI) context
1056 static void __hrtick_start(void *arg)
1058 struct rq *rq = arg;
1060 raw_spin_lock(&rq->lock);
1061 hrtimer_restart(&rq->hrtick_timer);
1062 rq->hrtick_csd_pending = 0;
1063 raw_spin_unlock(&rq->lock);
1067 * Called to set the hrtick timer state.
1069 * called with rq->lock held and irqs disabled
1071 static void hrtick_start(struct rq *rq, u64 delay)
1073 struct hrtimer *timer = &rq->hrtick_timer;
1074 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1076 hrtimer_set_expires(timer, time);
1078 if (rq == this_rq()) {
1079 hrtimer_restart(timer);
1080 } else if (!rq->hrtick_csd_pending) {
1081 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1082 rq->hrtick_csd_pending = 1;
1086 static int
1087 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1089 int cpu = (int)(long)hcpu;
1091 switch (action) {
1092 case CPU_UP_CANCELED:
1093 case CPU_UP_CANCELED_FROZEN:
1094 case CPU_DOWN_PREPARE:
1095 case CPU_DOWN_PREPARE_FROZEN:
1096 case CPU_DEAD:
1097 case CPU_DEAD_FROZEN:
1098 hrtick_clear(cpu_rq(cpu));
1099 return NOTIFY_OK;
1102 return NOTIFY_DONE;
1105 static __init void init_hrtick(void)
1107 hotcpu_notifier(hotplug_hrtick, 0);
1109 #else
1111 * Called to set the hrtick timer state.
1113 * called with rq->lock held and irqs disabled
1115 static void hrtick_start(struct rq *rq, u64 delay)
1117 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1118 HRTIMER_MODE_REL_PINNED, 0);
1121 static inline void init_hrtick(void)
1124 #endif /* CONFIG_SMP */
1126 static void init_rq_hrtick(struct rq *rq)
1128 #ifdef CONFIG_SMP
1129 rq->hrtick_csd_pending = 0;
1131 rq->hrtick_csd.flags = 0;
1132 rq->hrtick_csd.func = __hrtick_start;
1133 rq->hrtick_csd.info = rq;
1134 #endif
1136 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1137 rq->hrtick_timer.function = hrtick;
1139 #else /* CONFIG_SCHED_HRTICK */
1140 static inline void hrtick_clear(struct rq *rq)
1144 static inline void init_rq_hrtick(struct rq *rq)
1148 static inline void init_hrtick(void)
1151 #endif /* CONFIG_SCHED_HRTICK */
1154 * resched_task - mark a task 'to be rescheduled now'.
1156 * On UP this means the setting of the need_resched flag, on SMP it
1157 * might also involve a cross-CPU call to trigger the scheduler on
1158 * the target CPU.
1160 #ifdef CONFIG_SMP
1162 #ifndef tsk_is_polling
1163 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1164 #endif
1166 static void resched_task(struct task_struct *p)
1168 int cpu;
1170 assert_raw_spin_locked(&task_rq(p)->lock);
1172 if (test_tsk_need_resched(p))
1173 return;
1175 set_tsk_need_resched(p);
1177 cpu = task_cpu(p);
1178 if (cpu == smp_processor_id())
1179 return;
1181 /* NEED_RESCHED must be visible before we test polling */
1182 smp_mb();
1183 if (!tsk_is_polling(p))
1184 smp_send_reschedule(cpu);
1187 static void resched_cpu(int cpu)
1189 struct rq *rq = cpu_rq(cpu);
1190 unsigned long flags;
1192 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
1193 return;
1194 resched_task(cpu_curr(cpu));
1195 raw_spin_unlock_irqrestore(&rq->lock, flags);
1198 #ifdef CONFIG_NO_HZ
1200 * When add_timer_on() enqueues a timer into the timer wheel of an
1201 * idle CPU then this timer might expire before the next timer event
1202 * which is scheduled to wake up that CPU. In case of a completely
1203 * idle system the next event might even be infinite time into the
1204 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1205 * leaves the inner idle loop so the newly added timer is taken into
1206 * account when the CPU goes back to idle and evaluates the timer
1207 * wheel for the next timer event.
1209 void wake_up_idle_cpu(int cpu)
1211 struct rq *rq = cpu_rq(cpu);
1213 if (cpu == smp_processor_id())
1214 return;
1217 * This is safe, as this function is called with the timer
1218 * wheel base lock of (cpu) held. When the CPU is on the way
1219 * to idle and has not yet set rq->curr to idle then it will
1220 * be serialized on the timer wheel base lock and take the new
1221 * timer into account automatically.
1223 if (rq->curr != rq->idle)
1224 return;
1227 * We can set TIF_RESCHED on the idle task of the other CPU
1228 * lockless. The worst case is that the other CPU runs the
1229 * idle task through an additional NOOP schedule()
1231 set_tsk_need_resched(rq->idle);
1233 /* NEED_RESCHED must be visible before we test polling */
1234 smp_mb();
1235 if (!tsk_is_polling(rq->idle))
1236 smp_send_reschedule(cpu);
1239 int nohz_ratelimit(int cpu)
1241 struct rq *rq = cpu_rq(cpu);
1242 u64 diff = rq->clock - rq->nohz_stamp;
1244 rq->nohz_stamp = rq->clock;
1246 return diff < (NSEC_PER_SEC / HZ) >> 1;
1249 #endif /* CONFIG_NO_HZ */
1251 static u64 sched_avg_period(void)
1253 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1256 static void sched_avg_update(struct rq *rq)
1258 s64 period = sched_avg_period();
1260 while ((s64)(rq->clock - rq->age_stamp) > period) {
1261 rq->age_stamp += period;
1262 rq->rt_avg /= 2;
1266 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1268 rq->rt_avg += rt_delta;
1269 sched_avg_update(rq);
1272 #else /* !CONFIG_SMP */
1273 static void resched_task(struct task_struct *p)
1275 assert_raw_spin_locked(&task_rq(p)->lock);
1276 set_tsk_need_resched(p);
1279 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1282 #endif /* CONFIG_SMP */
1284 #if BITS_PER_LONG == 32
1285 # define WMULT_CONST (~0UL)
1286 #else
1287 # define WMULT_CONST (1UL << 32)
1288 #endif
1290 #define WMULT_SHIFT 32
1293 * Shift right and round:
1295 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1298 * delta *= weight / lw
1300 static unsigned long
1301 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1302 struct load_weight *lw)
1304 u64 tmp;
1306 if (!lw->inv_weight) {
1307 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1308 lw->inv_weight = 1;
1309 else
1310 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1311 / (lw->weight+1);
1314 tmp = (u64)delta_exec * weight;
1316 * Check whether we'd overflow the 64-bit multiplication:
1318 if (unlikely(tmp > WMULT_CONST))
1319 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1320 WMULT_SHIFT/2);
1321 else
1322 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1324 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1327 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1329 lw->weight += inc;
1330 lw->inv_weight = 0;
1333 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1335 lw->weight -= dec;
1336 lw->inv_weight = 0;
1340 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1341 * of tasks with abnormal "nice" values across CPUs the contribution that
1342 * each task makes to its run queue's load is weighted according to its
1343 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1344 * scaled version of the new time slice allocation that they receive on time
1345 * slice expiry etc.
1348 #define WEIGHT_IDLEPRIO 3
1349 #define WMULT_IDLEPRIO 1431655765
1352 * Nice levels are multiplicative, with a gentle 10% change for every
1353 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1354 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1355 * that remained on nice 0.
1357 * The "10% effect" is relative and cumulative: from _any_ nice level,
1358 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1359 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1360 * If a task goes up by ~10% and another task goes down by ~10% then
1361 * the relative distance between them is ~25%.)
1363 static const int prio_to_weight[40] = {
1364 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1365 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1366 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1367 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1368 /* 0 */ 1024, 820, 655, 526, 423,
1369 /* 5 */ 335, 272, 215, 172, 137,
1370 /* 10 */ 110, 87, 70, 56, 45,
1371 /* 15 */ 36, 29, 23, 18, 15,
1375 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1377 * In cases where the weight does not change often, we can use the
1378 * precalculated inverse to speed up arithmetics by turning divisions
1379 * into multiplications:
1381 static const u32 prio_to_wmult[40] = {
1382 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1383 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1384 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1385 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1386 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1387 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1388 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1389 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1392 /* Time spent by the tasks of the cpu accounting group executing in ... */
1393 enum cpuacct_stat_index {
1394 CPUACCT_STAT_USER, /* ... user mode */
1395 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1397 CPUACCT_STAT_NSTATS,
1400 #ifdef CONFIG_CGROUP_CPUACCT
1401 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1402 static void cpuacct_update_stats(struct task_struct *tsk,
1403 enum cpuacct_stat_index idx, cputime_t val);
1404 #else
1405 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1406 static inline void cpuacct_update_stats(struct task_struct *tsk,
1407 enum cpuacct_stat_index idx, cputime_t val) {}
1408 #endif
1410 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1412 update_load_add(&rq->load, load);
1415 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1417 update_load_sub(&rq->load, load);
1420 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1421 typedef int (*tg_visitor)(struct task_group *, void *);
1424 * Iterate the full tree, calling @down when first entering a node and @up when
1425 * leaving it for the final time.
1427 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1429 struct task_group *parent, *child;
1430 int ret;
1432 rcu_read_lock();
1433 parent = &root_task_group;
1434 down:
1435 ret = (*down)(parent, data);
1436 if (ret)
1437 goto out_unlock;
1438 list_for_each_entry_rcu(child, &parent->children, siblings) {
1439 parent = child;
1440 goto down;
1443 continue;
1445 ret = (*up)(parent, data);
1446 if (ret)
1447 goto out_unlock;
1449 child = parent;
1450 parent = parent->parent;
1451 if (parent)
1452 goto up;
1453 out_unlock:
1454 rcu_read_unlock();
1456 return ret;
1459 static int tg_nop(struct task_group *tg, void *data)
1461 return 0;
1463 #endif
1465 #ifdef CONFIG_SMP
1466 /* Used instead of source_load when we know the type == 0 */
1467 static unsigned long weighted_cpuload(const int cpu)
1469 return cpu_rq(cpu)->load.weight;
1473 * Return a low guess at the load of a migration-source cpu weighted
1474 * according to the scheduling class and "nice" value.
1476 * We want to under-estimate the load of migration sources, to
1477 * balance conservatively.
1479 static unsigned long source_load(int cpu, int type)
1481 struct rq *rq = cpu_rq(cpu);
1482 unsigned long total = weighted_cpuload(cpu);
1484 if (type == 0 || !sched_feat(LB_BIAS))
1485 return total;
1487 return min(rq->cpu_load[type-1], total);
1491 * Return a high guess at the load of a migration-target cpu weighted
1492 * according to the scheduling class and "nice" value.
1494 static unsigned long target_load(int cpu, int type)
1496 struct rq *rq = cpu_rq(cpu);
1497 unsigned long total = weighted_cpuload(cpu);
1499 if (type == 0 || !sched_feat(LB_BIAS))
1500 return total;
1502 return max(rq->cpu_load[type-1], total);
1505 static struct sched_group *group_of(int cpu)
1507 struct sched_domain *sd = rcu_dereference_sched(cpu_rq(cpu)->sd);
1509 if (!sd)
1510 return NULL;
1512 return sd->groups;
1515 static unsigned long power_of(int cpu)
1517 struct sched_group *group = group_of(cpu);
1519 if (!group)
1520 return SCHED_LOAD_SCALE;
1522 return group->cpu_power;
1525 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1527 static unsigned long cpu_avg_load_per_task(int cpu)
1529 struct rq *rq = cpu_rq(cpu);
1530 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1532 if (nr_running)
1533 rq->avg_load_per_task = rq->load.weight / nr_running;
1534 else
1535 rq->avg_load_per_task = 0;
1537 return rq->avg_load_per_task;
1540 #ifdef CONFIG_FAIR_GROUP_SCHED
1542 static __read_mostly unsigned long __percpu *update_shares_data;
1544 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1547 * Calculate and set the cpu's group shares.
1549 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1550 unsigned long sd_shares,
1551 unsigned long sd_rq_weight,
1552 unsigned long *usd_rq_weight)
1554 unsigned long shares, rq_weight;
1555 int boost = 0;
1557 rq_weight = usd_rq_weight[cpu];
1558 if (!rq_weight) {
1559 boost = 1;
1560 rq_weight = NICE_0_LOAD;
1564 * \Sum_j shares_j * rq_weight_i
1565 * shares_i = -----------------------------
1566 * \Sum_j rq_weight_j
1568 shares = (sd_shares * rq_weight) / sd_rq_weight;
1569 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1571 if (abs(shares - tg->se[cpu]->load.weight) >
1572 sysctl_sched_shares_thresh) {
1573 struct rq *rq = cpu_rq(cpu);
1574 unsigned long flags;
1576 raw_spin_lock_irqsave(&rq->lock, flags);
1577 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1578 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1579 __set_se_shares(tg->se[cpu], shares);
1580 raw_spin_unlock_irqrestore(&rq->lock, flags);
1585 * Re-compute the task group their per cpu shares over the given domain.
1586 * This needs to be done in a bottom-up fashion because the rq weight of a
1587 * parent group depends on the shares of its child groups.
1589 static int tg_shares_up(struct task_group *tg, void *data)
1591 unsigned long weight, rq_weight = 0, sum_weight = 0, shares = 0;
1592 unsigned long *usd_rq_weight;
1593 struct sched_domain *sd = data;
1594 unsigned long flags;
1595 int i;
1597 if (!tg->se[0])
1598 return 0;
1600 local_irq_save(flags);
1601 usd_rq_weight = per_cpu_ptr(update_shares_data, smp_processor_id());
1603 for_each_cpu(i, sched_domain_span(sd)) {
1604 weight = tg->cfs_rq[i]->load.weight;
1605 usd_rq_weight[i] = weight;
1607 rq_weight += weight;
1609 * If there are currently no tasks on the cpu pretend there
1610 * is one of average load so that when a new task gets to
1611 * run here it will not get delayed by group starvation.
1613 if (!weight)
1614 weight = NICE_0_LOAD;
1616 sum_weight += weight;
1617 shares += tg->cfs_rq[i]->shares;
1620 if (!rq_weight)
1621 rq_weight = sum_weight;
1623 if ((!shares && rq_weight) || shares > tg->shares)
1624 shares = tg->shares;
1626 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1627 shares = tg->shares;
1629 for_each_cpu(i, sched_domain_span(sd))
1630 update_group_shares_cpu(tg, i, shares, rq_weight, usd_rq_weight);
1632 local_irq_restore(flags);
1634 return 0;
1638 * Compute the cpu's hierarchical load factor for each task group.
1639 * This needs to be done in a top-down fashion because the load of a child
1640 * group is a fraction of its parents load.
1642 static int tg_load_down(struct task_group *tg, void *data)
1644 unsigned long load;
1645 long cpu = (long)data;
1647 if (!tg->parent) {
1648 load = cpu_rq(cpu)->load.weight;
1649 } else {
1650 load = tg->parent->cfs_rq[cpu]->h_load;
1651 load *= tg->cfs_rq[cpu]->shares;
1652 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1655 tg->cfs_rq[cpu]->h_load = load;
1657 return 0;
1660 static void update_shares(struct sched_domain *sd)
1662 s64 elapsed;
1663 u64 now;
1665 if (root_task_group_empty())
1666 return;
1668 now = cpu_clock(raw_smp_processor_id());
1669 elapsed = now - sd->last_update;
1671 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1672 sd->last_update = now;
1673 walk_tg_tree(tg_nop, tg_shares_up, sd);
1677 static void update_h_load(long cpu)
1679 if (root_task_group_empty())
1680 return;
1682 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1685 #else
1687 static inline void update_shares(struct sched_domain *sd)
1691 #endif
1693 #ifdef CONFIG_PREEMPT
1695 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
1698 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1699 * way at the expense of forcing extra atomic operations in all
1700 * invocations. This assures that the double_lock is acquired using the
1701 * same underlying policy as the spinlock_t on this architecture, which
1702 * reduces latency compared to the unfair variant below. However, it
1703 * also adds more overhead and therefore may reduce throughput.
1705 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1706 __releases(this_rq->lock)
1707 __acquires(busiest->lock)
1708 __acquires(this_rq->lock)
1710 raw_spin_unlock(&this_rq->lock);
1711 double_rq_lock(this_rq, busiest);
1713 return 1;
1716 #else
1718 * Unfair double_lock_balance: Optimizes throughput at the expense of
1719 * latency by eliminating extra atomic operations when the locks are
1720 * already in proper order on entry. This favors lower cpu-ids and will
1721 * grant the double lock to lower cpus over higher ids under contention,
1722 * regardless of entry order into the function.
1724 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1725 __releases(this_rq->lock)
1726 __acquires(busiest->lock)
1727 __acquires(this_rq->lock)
1729 int ret = 0;
1731 if (unlikely(!raw_spin_trylock(&busiest->lock))) {
1732 if (busiest < this_rq) {
1733 raw_spin_unlock(&this_rq->lock);
1734 raw_spin_lock(&busiest->lock);
1735 raw_spin_lock_nested(&this_rq->lock,
1736 SINGLE_DEPTH_NESTING);
1737 ret = 1;
1738 } else
1739 raw_spin_lock_nested(&busiest->lock,
1740 SINGLE_DEPTH_NESTING);
1742 return ret;
1745 #endif /* CONFIG_PREEMPT */
1748 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1750 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1752 if (unlikely(!irqs_disabled())) {
1753 /* printk() doesn't work good under rq->lock */
1754 raw_spin_unlock(&this_rq->lock);
1755 BUG_ON(1);
1758 return _double_lock_balance(this_rq, busiest);
1761 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1762 __releases(busiest->lock)
1764 raw_spin_unlock(&busiest->lock);
1765 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1769 * double_rq_lock - safely lock two runqueues
1771 * Note this does not disable interrupts like task_rq_lock,
1772 * you need to do so manually before calling.
1774 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1775 __acquires(rq1->lock)
1776 __acquires(rq2->lock)
1778 BUG_ON(!irqs_disabled());
1779 if (rq1 == rq2) {
1780 raw_spin_lock(&rq1->lock);
1781 __acquire(rq2->lock); /* Fake it out ;) */
1782 } else {
1783 if (rq1 < rq2) {
1784 raw_spin_lock(&rq1->lock);
1785 raw_spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
1786 } else {
1787 raw_spin_lock(&rq2->lock);
1788 raw_spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
1794 * double_rq_unlock - safely unlock two runqueues
1796 * Note this does not restore interrupts like task_rq_unlock,
1797 * you need to do so manually after calling.
1799 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1800 __releases(rq1->lock)
1801 __releases(rq2->lock)
1803 raw_spin_unlock(&rq1->lock);
1804 if (rq1 != rq2)
1805 raw_spin_unlock(&rq2->lock);
1806 else
1807 __release(rq2->lock);
1810 #endif
1812 #ifdef CONFIG_FAIR_GROUP_SCHED
1813 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1815 #ifdef CONFIG_SMP
1816 cfs_rq->shares = shares;
1817 #endif
1819 #endif
1821 static void calc_load_account_active(struct rq *this_rq);
1822 static void update_sysctl(void);
1823 static int get_update_sysctl_factor(void);
1825 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1827 set_task_rq(p, cpu);
1828 #ifdef CONFIG_SMP
1830 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1831 * successfuly executed on another CPU. We must ensure that updates of
1832 * per-task data have been completed by this moment.
1834 smp_wmb();
1835 task_thread_info(p)->cpu = cpu;
1836 #endif
1839 static const struct sched_class rt_sched_class;
1841 #define sched_class_highest (&rt_sched_class)
1842 #define for_each_class(class) \
1843 for (class = sched_class_highest; class; class = class->next)
1845 #include "sched_stats.h"
1847 static void inc_nr_running(struct rq *rq)
1849 rq->nr_running++;
1852 static void dec_nr_running(struct rq *rq)
1854 rq->nr_running--;
1857 static void set_load_weight(struct task_struct *p)
1859 if (task_has_rt_policy(p)) {
1860 p->se.load.weight = prio_to_weight[0] * 2;
1861 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1862 return;
1866 * SCHED_IDLE tasks get minimal weight:
1868 if (p->policy == SCHED_IDLE) {
1869 p->se.load.weight = WEIGHT_IDLEPRIO;
1870 p->se.load.inv_weight = WMULT_IDLEPRIO;
1871 return;
1874 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1875 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1878 static void update_avg(u64 *avg, u64 sample)
1880 s64 diff = sample - *avg;
1881 *avg += diff >> 3;
1884 static void
1885 enqueue_task(struct rq *rq, struct task_struct *p, int wakeup, bool head)
1887 update_rq_clock(rq);
1888 sched_info_queued(p);
1889 p->sched_class->enqueue_task(rq, p, wakeup, head);
1890 p->se.on_rq = 1;
1893 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1895 update_rq_clock(rq);
1896 sched_info_dequeued(p);
1897 p->sched_class->dequeue_task(rq, p, sleep);
1898 p->se.on_rq = 0;
1902 * activate_task - move a task to the runqueue.
1904 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1906 if (task_contributes_to_load(p))
1907 rq->nr_uninterruptible--;
1909 enqueue_task(rq, p, wakeup, false);
1910 inc_nr_running(rq);
1914 * deactivate_task - remove a task from the runqueue.
1916 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1918 if (task_contributes_to_load(p))
1919 rq->nr_uninterruptible++;
1921 dequeue_task(rq, p, sleep);
1922 dec_nr_running(rq);
1925 #include "sched_idletask.c"
1926 #include "sched_fair.c"
1927 #include "sched_rt.c"
1928 #ifdef CONFIG_SCHED_DEBUG
1929 # include "sched_debug.c"
1930 #endif
1933 * __normal_prio - return the priority that is based on the static prio
1935 static inline int __normal_prio(struct task_struct *p)
1937 return p->static_prio;
1941 * Calculate the expected normal priority: i.e. priority
1942 * without taking RT-inheritance into account. Might be
1943 * boosted by interactivity modifiers. Changes upon fork,
1944 * setprio syscalls, and whenever the interactivity
1945 * estimator recalculates.
1947 static inline int normal_prio(struct task_struct *p)
1949 int prio;
1951 if (task_has_rt_policy(p))
1952 prio = MAX_RT_PRIO-1 - p->rt_priority;
1953 else
1954 prio = __normal_prio(p);
1955 return prio;
1959 * Calculate the current priority, i.e. the priority
1960 * taken into account by the scheduler. This value might
1961 * be boosted by RT tasks, or might be boosted by
1962 * interactivity modifiers. Will be RT if the task got
1963 * RT-boosted. If not then it returns p->normal_prio.
1965 static int effective_prio(struct task_struct *p)
1967 p->normal_prio = normal_prio(p);
1969 * If we are RT tasks or we were boosted to RT priority,
1970 * keep the priority unchanged. Otherwise, update priority
1971 * to the normal priority:
1973 if (!rt_prio(p->prio))
1974 return p->normal_prio;
1975 return p->prio;
1979 * task_curr - is this task currently executing on a CPU?
1980 * @p: the task in question.
1982 inline int task_curr(const struct task_struct *p)
1984 return cpu_curr(task_cpu(p)) == p;
1987 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1988 const struct sched_class *prev_class,
1989 int oldprio, int running)
1991 if (prev_class != p->sched_class) {
1992 if (prev_class->switched_from)
1993 prev_class->switched_from(rq, p, running);
1994 p->sched_class->switched_to(rq, p, running);
1995 } else
1996 p->sched_class->prio_changed(rq, p, oldprio, running);
1999 #ifdef CONFIG_SMP
2001 * Is this task likely cache-hot:
2003 static int
2004 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
2006 s64 delta;
2008 if (p->sched_class != &fair_sched_class)
2009 return 0;
2012 * Buddy candidates are cache hot:
2014 if (sched_feat(CACHE_HOT_BUDDY) && this_rq()->nr_running &&
2015 (&p->se == cfs_rq_of(&p->se)->next ||
2016 &p->se == cfs_rq_of(&p->se)->last))
2017 return 1;
2019 if (sysctl_sched_migration_cost == -1)
2020 return 1;
2021 if (sysctl_sched_migration_cost == 0)
2022 return 0;
2024 delta = now - p->se.exec_start;
2026 return delta < (s64)sysctl_sched_migration_cost;
2029 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2031 #ifdef CONFIG_SCHED_DEBUG
2033 * We should never call set_task_cpu() on a blocked task,
2034 * ttwu() will sort out the placement.
2036 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
2037 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
2038 #endif
2040 trace_sched_migrate_task(p, new_cpu);
2042 if (task_cpu(p) != new_cpu) {
2043 p->se.nr_migrations++;
2044 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 1, NULL, 0);
2047 __set_task_cpu(p, new_cpu);
2050 struct migration_req {
2051 struct list_head list;
2053 struct task_struct *task;
2054 int dest_cpu;
2056 struct completion done;
2060 * The task's runqueue lock must be held.
2061 * Returns true if you have to wait for migration thread.
2063 static int
2064 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2066 struct rq *rq = task_rq(p);
2069 * If the task is not on a runqueue (and not running), then
2070 * the next wake-up will properly place the task.
2072 if (!p->se.on_rq && !task_running(rq, p))
2073 return 0;
2075 init_completion(&req->done);
2076 req->task = p;
2077 req->dest_cpu = dest_cpu;
2078 list_add(&req->list, &rq->migration_queue);
2080 return 1;
2084 * wait_task_context_switch - wait for a thread to complete at least one
2085 * context switch.
2087 * @p must not be current.
2089 void wait_task_context_switch(struct task_struct *p)
2091 unsigned long nvcsw, nivcsw, flags;
2092 int running;
2093 struct rq *rq;
2095 nvcsw = p->nvcsw;
2096 nivcsw = p->nivcsw;
2097 for (;;) {
2099 * The runqueue is assigned before the actual context
2100 * switch. We need to take the runqueue lock.
2102 * We could check initially without the lock but it is
2103 * very likely that we need to take the lock in every
2104 * iteration.
2106 rq = task_rq_lock(p, &flags);
2107 running = task_running(rq, p);
2108 task_rq_unlock(rq, &flags);
2110 if (likely(!running))
2111 break;
2113 * The switch count is incremented before the actual
2114 * context switch. We thus wait for two switches to be
2115 * sure at least one completed.
2117 if ((p->nvcsw - nvcsw) > 1)
2118 break;
2119 if ((p->nivcsw - nivcsw) > 1)
2120 break;
2122 cpu_relax();
2127 * wait_task_inactive - wait for a thread to unschedule.
2129 * If @match_state is nonzero, it's the @p->state value just checked and
2130 * not expected to change. If it changes, i.e. @p might have woken up,
2131 * then return zero. When we succeed in waiting for @p to be off its CPU,
2132 * we return a positive number (its total switch count). If a second call
2133 * a short while later returns the same number, the caller can be sure that
2134 * @p has remained unscheduled the whole time.
2136 * The caller must ensure that the task *will* unschedule sometime soon,
2137 * else this function might spin for a *long* time. This function can't
2138 * be called with interrupts off, or it may introduce deadlock with
2139 * smp_call_function() if an IPI is sent by the same process we are
2140 * waiting to become inactive.
2142 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2144 unsigned long flags;
2145 int running, on_rq;
2146 unsigned long ncsw;
2147 struct rq *rq;
2149 for (;;) {
2151 * We do the initial early heuristics without holding
2152 * any task-queue locks at all. We'll only try to get
2153 * the runqueue lock when things look like they will
2154 * work out!
2156 rq = task_rq(p);
2159 * If the task is actively running on another CPU
2160 * still, just relax and busy-wait without holding
2161 * any locks.
2163 * NOTE! Since we don't hold any locks, it's not
2164 * even sure that "rq" stays as the right runqueue!
2165 * But we don't care, since "task_running()" will
2166 * return false if the runqueue has changed and p
2167 * is actually now running somewhere else!
2169 while (task_running(rq, p)) {
2170 if (match_state && unlikely(p->state != match_state))
2171 return 0;
2172 cpu_relax();
2176 * Ok, time to look more closely! We need the rq
2177 * lock now, to be *sure*. If we're wrong, we'll
2178 * just go back and repeat.
2180 rq = task_rq_lock(p, &flags);
2181 trace_sched_wait_task(rq, p);
2182 running = task_running(rq, p);
2183 on_rq = p->se.on_rq;
2184 ncsw = 0;
2185 if (!match_state || p->state == match_state)
2186 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2187 task_rq_unlock(rq, &flags);
2190 * If it changed from the expected state, bail out now.
2192 if (unlikely(!ncsw))
2193 break;
2196 * Was it really running after all now that we
2197 * checked with the proper locks actually held?
2199 * Oops. Go back and try again..
2201 if (unlikely(running)) {
2202 cpu_relax();
2203 continue;
2207 * It's not enough that it's not actively running,
2208 * it must be off the runqueue _entirely_, and not
2209 * preempted!
2211 * So if it was still runnable (but just not actively
2212 * running right now), it's preempted, and we should
2213 * yield - it could be a while.
2215 if (unlikely(on_rq)) {
2216 schedule_timeout_uninterruptible(1);
2217 continue;
2221 * Ahh, all good. It wasn't running, and it wasn't
2222 * runnable, which means that it will never become
2223 * running in the future either. We're all done!
2225 break;
2228 return ncsw;
2231 /***
2232 * kick_process - kick a running thread to enter/exit the kernel
2233 * @p: the to-be-kicked thread
2235 * Cause a process which is running on another CPU to enter
2236 * kernel-mode, without any delay. (to get signals handled.)
2238 * NOTE: this function doesnt have to take the runqueue lock,
2239 * because all it wants to ensure is that the remote task enters
2240 * the kernel. If the IPI races and the task has been migrated
2241 * to another CPU then no harm is done and the purpose has been
2242 * achieved as well.
2244 void kick_process(struct task_struct *p)
2246 int cpu;
2248 preempt_disable();
2249 cpu = task_cpu(p);
2250 if ((cpu != smp_processor_id()) && task_curr(p))
2251 smp_send_reschedule(cpu);
2252 preempt_enable();
2254 EXPORT_SYMBOL_GPL(kick_process);
2255 #endif /* CONFIG_SMP */
2258 * task_oncpu_function_call - call a function on the cpu on which a task runs
2259 * @p: the task to evaluate
2260 * @func: the function to be called
2261 * @info: the function call argument
2263 * Calls the function @func when the task is currently running. This might
2264 * be on the current CPU, which just calls the function directly
2266 void task_oncpu_function_call(struct task_struct *p,
2267 void (*func) (void *info), void *info)
2269 int cpu;
2271 preempt_disable();
2272 cpu = task_cpu(p);
2273 if (task_curr(p))
2274 smp_call_function_single(cpu, func, info, 1);
2275 preempt_enable();
2278 #ifdef CONFIG_SMP
2280 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2282 static int select_fallback_rq(int cpu, struct task_struct *p)
2284 int dest_cpu;
2285 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2287 /* Look for allowed, online CPU in same node. */
2288 for_each_cpu_and(dest_cpu, nodemask, cpu_active_mask)
2289 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
2290 return dest_cpu;
2292 /* Any allowed, online CPU? */
2293 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_active_mask);
2294 if (dest_cpu < nr_cpu_ids)
2295 return dest_cpu;
2297 /* No more Mr. Nice Guy. */
2298 if (unlikely(dest_cpu >= nr_cpu_ids)) {
2299 dest_cpu = cpuset_cpus_allowed_fallback(p);
2301 * Don't tell them about moving exiting tasks or
2302 * kernel threads (both mm NULL), since they never
2303 * leave kernel.
2305 if (p->mm && printk_ratelimit()) {
2306 printk(KERN_INFO "process %d (%s) no "
2307 "longer affine to cpu%d\n",
2308 task_pid_nr(p), p->comm, cpu);
2312 return dest_cpu;
2316 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2318 static inline
2319 int select_task_rq(struct rq *rq, struct task_struct *p, int sd_flags, int wake_flags)
2321 int cpu = p->sched_class->select_task_rq(rq, p, sd_flags, wake_flags);
2324 * In order not to call set_task_cpu() on a blocking task we need
2325 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2326 * cpu.
2328 * Since this is common to all placement strategies, this lives here.
2330 * [ this allows ->select_task() to simply return task_cpu(p) and
2331 * not worry about this generic constraint ]
2333 if (unlikely(!cpumask_test_cpu(cpu, &p->cpus_allowed) ||
2334 !cpu_online(cpu)))
2335 cpu = select_fallback_rq(task_cpu(p), p);
2337 return cpu;
2339 #endif
2341 /***
2342 * try_to_wake_up - wake up a thread
2343 * @p: the to-be-woken-up thread
2344 * @state: the mask of task states that can be woken
2345 * @sync: do a synchronous wakeup?
2347 * Put it on the run-queue if it's not already there. The "current"
2348 * thread is always on the run-queue (except when the actual
2349 * re-schedule is in progress), and as such you're allowed to do
2350 * the simpler "current->state = TASK_RUNNING" to mark yourself
2351 * runnable without the overhead of this.
2353 * returns failure only if the task is already active.
2355 static int try_to_wake_up(struct task_struct *p, unsigned int state,
2356 int wake_flags)
2358 int cpu, orig_cpu, this_cpu, success = 0;
2359 unsigned long flags;
2360 struct rq *rq;
2362 this_cpu = get_cpu();
2364 smp_wmb();
2365 rq = task_rq_lock(p, &flags);
2366 if (!(p->state & state))
2367 goto out;
2369 if (p->se.on_rq)
2370 goto out_running;
2372 cpu = task_cpu(p);
2373 orig_cpu = cpu;
2375 #ifdef CONFIG_SMP
2376 if (unlikely(task_running(rq, p)))
2377 goto out_activate;
2380 * In order to handle concurrent wakeups and release the rq->lock
2381 * we put the task in TASK_WAKING state.
2383 * First fix up the nr_uninterruptible count:
2385 if (task_contributes_to_load(p))
2386 rq->nr_uninterruptible--;
2387 p->state = TASK_WAKING;
2389 if (p->sched_class->task_waking)
2390 p->sched_class->task_waking(rq, p);
2392 cpu = select_task_rq(rq, p, SD_BALANCE_WAKE, wake_flags);
2393 if (cpu != orig_cpu)
2394 set_task_cpu(p, cpu);
2395 __task_rq_unlock(rq);
2397 rq = cpu_rq(cpu);
2398 raw_spin_lock(&rq->lock);
2401 * We migrated the task without holding either rq->lock, however
2402 * since the task is not on the task list itself, nobody else
2403 * will try and migrate the task, hence the rq should match the
2404 * cpu we just moved it to.
2406 WARN_ON(task_cpu(p) != cpu);
2407 WARN_ON(p->state != TASK_WAKING);
2409 #ifdef CONFIG_SCHEDSTATS
2410 schedstat_inc(rq, ttwu_count);
2411 if (cpu == this_cpu)
2412 schedstat_inc(rq, ttwu_local);
2413 else {
2414 struct sched_domain *sd;
2415 for_each_domain(this_cpu, sd) {
2416 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2417 schedstat_inc(sd, ttwu_wake_remote);
2418 break;
2422 #endif /* CONFIG_SCHEDSTATS */
2424 out_activate:
2425 #endif /* CONFIG_SMP */
2426 schedstat_inc(p, se.statistics.nr_wakeups);
2427 if (wake_flags & WF_SYNC)
2428 schedstat_inc(p, se.statistics.nr_wakeups_sync);
2429 if (orig_cpu != cpu)
2430 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
2431 if (cpu == this_cpu)
2432 schedstat_inc(p, se.statistics.nr_wakeups_local);
2433 else
2434 schedstat_inc(p, se.statistics.nr_wakeups_remote);
2435 activate_task(rq, p, 1);
2436 success = 1;
2438 out_running:
2439 trace_sched_wakeup(rq, p, success);
2440 check_preempt_curr(rq, p, wake_flags);
2442 p->state = TASK_RUNNING;
2443 #ifdef CONFIG_SMP
2444 if (p->sched_class->task_woken)
2445 p->sched_class->task_woken(rq, p);
2447 if (unlikely(rq->idle_stamp)) {
2448 u64 delta = rq->clock - rq->idle_stamp;
2449 u64 max = 2*sysctl_sched_migration_cost;
2451 if (delta > max)
2452 rq->avg_idle = max;
2453 else
2454 update_avg(&rq->avg_idle, delta);
2455 rq->idle_stamp = 0;
2457 #endif
2458 out:
2459 task_rq_unlock(rq, &flags);
2460 put_cpu();
2462 return success;
2466 * wake_up_process - Wake up a specific process
2467 * @p: The process to be woken up.
2469 * Attempt to wake up the nominated process and move it to the set of runnable
2470 * processes. Returns 1 if the process was woken up, 0 if it was already
2471 * running.
2473 * It may be assumed that this function implies a write memory barrier before
2474 * changing the task state if and only if any tasks are woken up.
2476 int wake_up_process(struct task_struct *p)
2478 return try_to_wake_up(p, TASK_ALL, 0);
2480 EXPORT_SYMBOL(wake_up_process);
2482 int wake_up_state(struct task_struct *p, unsigned int state)
2484 return try_to_wake_up(p, state, 0);
2488 * Perform scheduler related setup for a newly forked process p.
2489 * p is forked by current.
2491 * __sched_fork() is basic setup used by init_idle() too:
2493 static void __sched_fork(struct task_struct *p)
2495 p->se.exec_start = 0;
2496 p->se.sum_exec_runtime = 0;
2497 p->se.prev_sum_exec_runtime = 0;
2498 p->se.nr_migrations = 0;
2500 #ifdef CONFIG_SCHEDSTATS
2501 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
2502 #endif
2504 INIT_LIST_HEAD(&p->rt.run_list);
2505 p->se.on_rq = 0;
2506 INIT_LIST_HEAD(&p->se.group_node);
2508 #ifdef CONFIG_PREEMPT_NOTIFIERS
2509 INIT_HLIST_HEAD(&p->preempt_notifiers);
2510 #endif
2514 * fork()/clone()-time setup:
2516 void sched_fork(struct task_struct *p, int clone_flags)
2518 int cpu = get_cpu();
2520 __sched_fork(p);
2522 * We mark the process as running here. This guarantees that
2523 * nobody will actually run it, and a signal or other external
2524 * event cannot wake it up and insert it on the runqueue either.
2526 p->state = TASK_RUNNING;
2529 * Revert to default priority/policy on fork if requested.
2531 if (unlikely(p->sched_reset_on_fork)) {
2532 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR) {
2533 p->policy = SCHED_NORMAL;
2534 p->normal_prio = p->static_prio;
2537 if (PRIO_TO_NICE(p->static_prio) < 0) {
2538 p->static_prio = NICE_TO_PRIO(0);
2539 p->normal_prio = p->static_prio;
2540 set_load_weight(p);
2544 * We don't need the reset flag anymore after the fork. It has
2545 * fulfilled its duty:
2547 p->sched_reset_on_fork = 0;
2551 * Make sure we do not leak PI boosting priority to the child.
2553 p->prio = current->normal_prio;
2555 if (!rt_prio(p->prio))
2556 p->sched_class = &fair_sched_class;
2558 if (p->sched_class->task_fork)
2559 p->sched_class->task_fork(p);
2561 set_task_cpu(p, cpu);
2563 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2564 if (likely(sched_info_on()))
2565 memset(&p->sched_info, 0, sizeof(p->sched_info));
2566 #endif
2567 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2568 p->oncpu = 0;
2569 #endif
2570 #ifdef CONFIG_PREEMPT
2571 /* Want to start with kernel preemption disabled. */
2572 task_thread_info(p)->preempt_count = 1;
2573 #endif
2574 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2576 put_cpu();
2580 * wake_up_new_task - wake up a newly created task for the first time.
2582 * This function will do some initial scheduler statistics housekeeping
2583 * that must be done for every newly created context, then puts the task
2584 * on the runqueue and wakes it.
2586 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2588 unsigned long flags;
2589 struct rq *rq;
2590 int cpu __maybe_unused = get_cpu();
2592 #ifdef CONFIG_SMP
2593 rq = task_rq_lock(p, &flags);
2594 p->state = TASK_WAKING;
2597 * Fork balancing, do it here and not earlier because:
2598 * - cpus_allowed can change in the fork path
2599 * - any previously selected cpu might disappear through hotplug
2601 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2602 * without people poking at ->cpus_allowed.
2604 cpu = select_task_rq(rq, p, SD_BALANCE_FORK, 0);
2605 set_task_cpu(p, cpu);
2607 p->state = TASK_RUNNING;
2608 task_rq_unlock(rq, &flags);
2609 #endif
2611 rq = task_rq_lock(p, &flags);
2612 activate_task(rq, p, 0);
2613 trace_sched_wakeup_new(rq, p, 1);
2614 check_preempt_curr(rq, p, WF_FORK);
2615 #ifdef CONFIG_SMP
2616 if (p->sched_class->task_woken)
2617 p->sched_class->task_woken(rq, p);
2618 #endif
2619 task_rq_unlock(rq, &flags);
2620 put_cpu();
2623 #ifdef CONFIG_PREEMPT_NOTIFIERS
2626 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2627 * @notifier: notifier struct to register
2629 void preempt_notifier_register(struct preempt_notifier *notifier)
2631 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2633 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2636 * preempt_notifier_unregister - no longer interested in preemption notifications
2637 * @notifier: notifier struct to unregister
2639 * This is safe to call from within a preemption notifier.
2641 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2643 hlist_del(&notifier->link);
2645 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2647 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2649 struct preempt_notifier *notifier;
2650 struct hlist_node *node;
2652 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2653 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2656 static void
2657 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2658 struct task_struct *next)
2660 struct preempt_notifier *notifier;
2661 struct hlist_node *node;
2663 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2664 notifier->ops->sched_out(notifier, next);
2667 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2669 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2673 static void
2674 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2675 struct task_struct *next)
2679 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2682 * prepare_task_switch - prepare to switch tasks
2683 * @rq: the runqueue preparing to switch
2684 * @prev: the current task that is being switched out
2685 * @next: the task we are going to switch to.
2687 * This is called with the rq lock held and interrupts off. It must
2688 * be paired with a subsequent finish_task_switch after the context
2689 * switch.
2691 * prepare_task_switch sets up locking and calls architecture specific
2692 * hooks.
2694 static inline void
2695 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2696 struct task_struct *next)
2698 fire_sched_out_preempt_notifiers(prev, next);
2699 prepare_lock_switch(rq, next);
2700 prepare_arch_switch(next);
2704 * finish_task_switch - clean up after a task-switch
2705 * @rq: runqueue associated with task-switch
2706 * @prev: the thread we just switched away from.
2708 * finish_task_switch must be called after the context switch, paired
2709 * with a prepare_task_switch call before the context switch.
2710 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2711 * and do any other architecture-specific cleanup actions.
2713 * Note that we may have delayed dropping an mm in context_switch(). If
2714 * so, we finish that here outside of the runqueue lock. (Doing it
2715 * with the lock held can cause deadlocks; see schedule() for
2716 * details.)
2718 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2719 __releases(rq->lock)
2721 struct mm_struct *mm = rq->prev_mm;
2722 long prev_state;
2724 rq->prev_mm = NULL;
2727 * A task struct has one reference for the use as "current".
2728 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2729 * schedule one last time. The schedule call will never return, and
2730 * the scheduled task must drop that reference.
2731 * The test for TASK_DEAD must occur while the runqueue locks are
2732 * still held, otherwise prev could be scheduled on another cpu, die
2733 * there before we look at prev->state, and then the reference would
2734 * be dropped twice.
2735 * Manfred Spraul <manfred@colorfullife.com>
2737 prev_state = prev->state;
2738 finish_arch_switch(prev);
2739 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2740 local_irq_disable();
2741 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2742 perf_event_task_sched_in(current);
2743 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2744 local_irq_enable();
2745 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2746 finish_lock_switch(rq, prev);
2748 fire_sched_in_preempt_notifiers(current);
2749 if (mm)
2750 mmdrop(mm);
2751 if (unlikely(prev_state == TASK_DEAD)) {
2753 * Remove function-return probe instances associated with this
2754 * task and put them back on the free list.
2756 kprobe_flush_task(prev);
2757 put_task_struct(prev);
2761 #ifdef CONFIG_SMP
2763 /* assumes rq->lock is held */
2764 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2766 if (prev->sched_class->pre_schedule)
2767 prev->sched_class->pre_schedule(rq, prev);
2770 /* rq->lock is NOT held, but preemption is disabled */
2771 static inline void post_schedule(struct rq *rq)
2773 if (rq->post_schedule) {
2774 unsigned long flags;
2776 raw_spin_lock_irqsave(&rq->lock, flags);
2777 if (rq->curr->sched_class->post_schedule)
2778 rq->curr->sched_class->post_schedule(rq);
2779 raw_spin_unlock_irqrestore(&rq->lock, flags);
2781 rq->post_schedule = 0;
2785 #else
2787 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2791 static inline void post_schedule(struct rq *rq)
2795 #endif
2798 * schedule_tail - first thing a freshly forked thread must call.
2799 * @prev: the thread we just switched away from.
2801 asmlinkage void schedule_tail(struct task_struct *prev)
2802 __releases(rq->lock)
2804 struct rq *rq = this_rq();
2806 finish_task_switch(rq, prev);
2809 * FIXME: do we need to worry about rq being invalidated by the
2810 * task_switch?
2812 post_schedule(rq);
2814 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2815 /* In this case, finish_task_switch does not reenable preemption */
2816 preempt_enable();
2817 #endif
2818 if (current->set_child_tid)
2819 put_user(task_pid_vnr(current), current->set_child_tid);
2823 * context_switch - switch to the new MM and the new
2824 * thread's register state.
2826 static inline void
2827 context_switch(struct rq *rq, struct task_struct *prev,
2828 struct task_struct *next)
2830 struct mm_struct *mm, *oldmm;
2832 prepare_task_switch(rq, prev, next);
2833 trace_sched_switch(rq, prev, next);
2834 mm = next->mm;
2835 oldmm = prev->active_mm;
2837 * For paravirt, this is coupled with an exit in switch_to to
2838 * combine the page table reload and the switch backend into
2839 * one hypercall.
2841 arch_start_context_switch(prev);
2843 if (likely(!mm)) {
2844 next->active_mm = oldmm;
2845 atomic_inc(&oldmm->mm_count);
2846 enter_lazy_tlb(oldmm, next);
2847 } else
2848 switch_mm(oldmm, mm, next);
2850 if (likely(!prev->mm)) {
2851 prev->active_mm = NULL;
2852 rq->prev_mm = oldmm;
2855 * Since the runqueue lock will be released by the next
2856 * task (which is an invalid locking op but in the case
2857 * of the scheduler it's an obvious special-case), so we
2858 * do an early lockdep release here:
2860 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2861 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2862 #endif
2864 /* Here we just switch the register state and the stack. */
2865 switch_to(prev, next, prev);
2867 barrier();
2869 * this_rq must be evaluated again because prev may have moved
2870 * CPUs since it called schedule(), thus the 'rq' on its stack
2871 * frame will be invalid.
2873 finish_task_switch(this_rq(), prev);
2877 * nr_running, nr_uninterruptible and nr_context_switches:
2879 * externally visible scheduler statistics: current number of runnable
2880 * threads, current number of uninterruptible-sleeping threads, total
2881 * number of context switches performed since bootup.
2883 unsigned long nr_running(void)
2885 unsigned long i, sum = 0;
2887 for_each_online_cpu(i)
2888 sum += cpu_rq(i)->nr_running;
2890 return sum;
2893 unsigned long nr_uninterruptible(void)
2895 unsigned long i, sum = 0;
2897 for_each_possible_cpu(i)
2898 sum += cpu_rq(i)->nr_uninterruptible;
2901 * Since we read the counters lockless, it might be slightly
2902 * inaccurate. Do not allow it to go below zero though:
2904 if (unlikely((long)sum < 0))
2905 sum = 0;
2907 return sum;
2910 unsigned long long nr_context_switches(void)
2912 int i;
2913 unsigned long long sum = 0;
2915 for_each_possible_cpu(i)
2916 sum += cpu_rq(i)->nr_switches;
2918 return sum;
2921 unsigned long nr_iowait(void)
2923 unsigned long i, sum = 0;
2925 for_each_possible_cpu(i)
2926 sum += atomic_read(&cpu_rq(i)->nr_iowait);
2928 return sum;
2931 unsigned long nr_iowait_cpu(void)
2933 struct rq *this = this_rq();
2934 return atomic_read(&this->nr_iowait);
2937 unsigned long this_cpu_load(void)
2939 struct rq *this = this_rq();
2940 return this->cpu_load[0];
2944 /* Variables and functions for calc_load */
2945 static atomic_long_t calc_load_tasks;
2946 static unsigned long calc_load_update;
2947 unsigned long avenrun[3];
2948 EXPORT_SYMBOL(avenrun);
2951 * get_avenrun - get the load average array
2952 * @loads: pointer to dest load array
2953 * @offset: offset to add
2954 * @shift: shift count to shift the result left
2956 * These values are estimates at best, so no need for locking.
2958 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2960 loads[0] = (avenrun[0] + offset) << shift;
2961 loads[1] = (avenrun[1] + offset) << shift;
2962 loads[2] = (avenrun[2] + offset) << shift;
2965 static unsigned long
2966 calc_load(unsigned long load, unsigned long exp, unsigned long active)
2968 load *= exp;
2969 load += active * (FIXED_1 - exp);
2970 return load >> FSHIFT;
2974 * calc_load - update the avenrun load estimates 10 ticks after the
2975 * CPUs have updated calc_load_tasks.
2977 void calc_global_load(void)
2979 unsigned long upd = calc_load_update + 10;
2980 long active;
2982 if (time_before(jiffies, upd))
2983 return;
2985 active = atomic_long_read(&calc_load_tasks);
2986 active = active > 0 ? active * FIXED_1 : 0;
2988 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2989 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2990 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
2992 calc_load_update += LOAD_FREQ;
2996 * Either called from update_cpu_load() or from a cpu going idle
2998 static void calc_load_account_active(struct rq *this_rq)
3000 long nr_active, delta;
3002 nr_active = this_rq->nr_running;
3003 nr_active += (long) this_rq->nr_uninterruptible;
3005 if (nr_active != this_rq->calc_load_active) {
3006 delta = nr_active - this_rq->calc_load_active;
3007 this_rq->calc_load_active = nr_active;
3008 atomic_long_add(delta, &calc_load_tasks);
3013 * Update rq->cpu_load[] statistics. This function is usually called every
3014 * scheduler tick (TICK_NSEC).
3016 static void update_cpu_load(struct rq *this_rq)
3018 unsigned long this_load = this_rq->load.weight;
3019 int i, scale;
3021 this_rq->nr_load_updates++;
3023 /* Update our load: */
3024 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3025 unsigned long old_load, new_load;
3027 /* scale is effectively 1 << i now, and >> i divides by scale */
3029 old_load = this_rq->cpu_load[i];
3030 new_load = this_load;
3032 * Round up the averaging division if load is increasing. This
3033 * prevents us from getting stuck on 9 if the load is 10, for
3034 * example.
3036 if (new_load > old_load)
3037 new_load += scale-1;
3038 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3041 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3042 this_rq->calc_load_update += LOAD_FREQ;
3043 calc_load_account_active(this_rq);
3047 #ifdef CONFIG_SMP
3050 * sched_exec - execve() is a valuable balancing opportunity, because at
3051 * this point the task has the smallest effective memory and cache footprint.
3053 void sched_exec(void)
3055 struct task_struct *p = current;
3056 struct migration_req req;
3057 unsigned long flags;
3058 struct rq *rq;
3059 int dest_cpu;
3061 rq = task_rq_lock(p, &flags);
3062 dest_cpu = p->sched_class->select_task_rq(rq, p, SD_BALANCE_EXEC, 0);
3063 if (dest_cpu == smp_processor_id())
3064 goto unlock;
3067 * select_task_rq() can race against ->cpus_allowed
3069 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed) &&
3070 likely(cpu_active(dest_cpu)) &&
3071 migrate_task(p, dest_cpu, &req)) {
3072 /* Need to wait for migration thread (might exit: take ref). */
3073 struct task_struct *mt = rq->migration_thread;
3075 get_task_struct(mt);
3076 task_rq_unlock(rq, &flags);
3077 wake_up_process(mt);
3078 put_task_struct(mt);
3079 wait_for_completion(&req.done);
3081 return;
3083 unlock:
3084 task_rq_unlock(rq, &flags);
3087 #endif
3089 DEFINE_PER_CPU(struct kernel_stat, kstat);
3091 EXPORT_PER_CPU_SYMBOL(kstat);
3094 * Return any ns on the sched_clock that have not yet been accounted in
3095 * @p in case that task is currently running.
3097 * Called with task_rq_lock() held on @rq.
3099 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
3101 u64 ns = 0;
3103 if (task_current(rq, p)) {
3104 update_rq_clock(rq);
3105 ns = rq->clock - p->se.exec_start;
3106 if ((s64)ns < 0)
3107 ns = 0;
3110 return ns;
3113 unsigned long long task_delta_exec(struct task_struct *p)
3115 unsigned long flags;
3116 struct rq *rq;
3117 u64 ns = 0;
3119 rq = task_rq_lock(p, &flags);
3120 ns = do_task_delta_exec(p, rq);
3121 task_rq_unlock(rq, &flags);
3123 return ns;
3127 * Return accounted runtime for the task.
3128 * In case the task is currently running, return the runtime plus current's
3129 * pending runtime that have not been accounted yet.
3131 unsigned long long task_sched_runtime(struct task_struct *p)
3133 unsigned long flags;
3134 struct rq *rq;
3135 u64 ns = 0;
3137 rq = task_rq_lock(p, &flags);
3138 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
3139 task_rq_unlock(rq, &flags);
3141 return ns;
3145 * Return sum_exec_runtime for the thread group.
3146 * In case the task is currently running, return the sum plus current's
3147 * pending runtime that have not been accounted yet.
3149 * Note that the thread group might have other running tasks as well,
3150 * so the return value not includes other pending runtime that other
3151 * running tasks might have.
3153 unsigned long long thread_group_sched_runtime(struct task_struct *p)
3155 struct task_cputime totals;
3156 unsigned long flags;
3157 struct rq *rq;
3158 u64 ns;
3160 rq = task_rq_lock(p, &flags);
3161 thread_group_cputime(p, &totals);
3162 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
3163 task_rq_unlock(rq, &flags);
3165 return ns;
3169 * Account user cpu time to a process.
3170 * @p: the process that the cpu time gets accounted to
3171 * @cputime: the cpu time spent in user space since the last update
3172 * @cputime_scaled: cputime scaled by cpu frequency
3174 void account_user_time(struct task_struct *p, cputime_t cputime,
3175 cputime_t cputime_scaled)
3177 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3178 cputime64_t tmp;
3180 /* Add user time to process. */
3181 p->utime = cputime_add(p->utime, cputime);
3182 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3183 account_group_user_time(p, cputime);
3185 /* Add user time to cpustat. */
3186 tmp = cputime_to_cputime64(cputime);
3187 if (TASK_NICE(p) > 0)
3188 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3189 else
3190 cpustat->user = cputime64_add(cpustat->user, tmp);
3192 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
3193 /* Account for user time used */
3194 acct_update_integrals(p);
3198 * Account guest cpu time to a process.
3199 * @p: the process that the cpu time gets accounted to
3200 * @cputime: the cpu time spent in virtual machine since the last update
3201 * @cputime_scaled: cputime scaled by cpu frequency
3203 static void account_guest_time(struct task_struct *p, cputime_t cputime,
3204 cputime_t cputime_scaled)
3206 cputime64_t tmp;
3207 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3209 tmp = cputime_to_cputime64(cputime);
3211 /* Add guest time to process. */
3212 p->utime = cputime_add(p->utime, cputime);
3213 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
3214 account_group_user_time(p, cputime);
3215 p->gtime = cputime_add(p->gtime, cputime);
3217 /* Add guest time to cpustat. */
3218 if (TASK_NICE(p) > 0) {
3219 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3220 cpustat->guest_nice = cputime64_add(cpustat->guest_nice, tmp);
3221 } else {
3222 cpustat->user = cputime64_add(cpustat->user, tmp);
3223 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3228 * Account system cpu time to a process.
3229 * @p: the process that the cpu time gets accounted to
3230 * @hardirq_offset: the offset to subtract from hardirq_count()
3231 * @cputime: the cpu time spent in kernel space since the last update
3232 * @cputime_scaled: cputime scaled by cpu frequency
3234 void account_system_time(struct task_struct *p, int hardirq_offset,
3235 cputime_t cputime, cputime_t cputime_scaled)
3237 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3238 cputime64_t tmp;
3240 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
3241 account_guest_time(p, cputime, cputime_scaled);
3242 return;
3245 /* Add system time to process. */
3246 p->stime = cputime_add(p->stime, cputime);
3247 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
3248 account_group_system_time(p, cputime);
3250 /* Add system time to cpustat. */
3251 tmp = cputime_to_cputime64(cputime);
3252 if (hardirq_count() - hardirq_offset)
3253 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3254 else if (softirq_count())
3255 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
3256 else
3257 cpustat->system = cputime64_add(cpustat->system, tmp);
3259 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
3261 /* Account for system time used */
3262 acct_update_integrals(p);
3266 * Account for involuntary wait time.
3267 * @steal: the cpu time spent in involuntary wait
3269 void account_steal_time(cputime_t cputime)
3271 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3272 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3274 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
3278 * Account for idle time.
3279 * @cputime: the cpu time spent in idle wait
3281 void account_idle_time(cputime_t cputime)
3283 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3284 cputime64_t cputime64 = cputime_to_cputime64(cputime);
3285 struct rq *rq = this_rq();
3287 if (atomic_read(&rq->nr_iowait) > 0)
3288 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
3289 else
3290 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
3293 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3296 * Account a single tick of cpu time.
3297 * @p: the process that the cpu time gets accounted to
3298 * @user_tick: indicates if the tick is a user or a system tick
3300 void account_process_tick(struct task_struct *p, int user_tick)
3302 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3303 struct rq *rq = this_rq();
3305 if (user_tick)
3306 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
3307 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
3308 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
3309 one_jiffy_scaled);
3310 else
3311 account_idle_time(cputime_one_jiffy);
3315 * Account multiple ticks of steal time.
3316 * @p: the process from which the cpu time has been stolen
3317 * @ticks: number of stolen ticks
3319 void account_steal_ticks(unsigned long ticks)
3321 account_steal_time(jiffies_to_cputime(ticks));
3325 * Account multiple ticks of idle time.
3326 * @ticks: number of stolen ticks
3328 void account_idle_ticks(unsigned long ticks)
3330 account_idle_time(jiffies_to_cputime(ticks));
3333 #endif
3336 * Use precise platform statistics if available:
3338 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3339 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3341 *ut = p->utime;
3342 *st = p->stime;
3345 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3347 struct task_cputime cputime;
3349 thread_group_cputime(p, &cputime);
3351 *ut = cputime.utime;
3352 *st = cputime.stime;
3354 #else
3356 #ifndef nsecs_to_cputime
3357 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3358 #endif
3360 void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3362 cputime_t rtime, utime = p->utime, total = cputime_add(utime, p->stime);
3365 * Use CFS's precise accounting:
3367 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
3369 if (total) {
3370 u64 temp;
3372 temp = (u64)(rtime * utime);
3373 do_div(temp, total);
3374 utime = (cputime_t)temp;
3375 } else
3376 utime = rtime;
3379 * Compare with previous values, to keep monotonicity:
3381 p->prev_utime = max(p->prev_utime, utime);
3382 p->prev_stime = max(p->prev_stime, cputime_sub(rtime, p->prev_utime));
3384 *ut = p->prev_utime;
3385 *st = p->prev_stime;
3389 * Must be called with siglock held.
3391 void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
3393 struct signal_struct *sig = p->signal;
3394 struct task_cputime cputime;
3395 cputime_t rtime, utime, total;
3397 thread_group_cputime(p, &cputime);
3399 total = cputime_add(cputime.utime, cputime.stime);
3400 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
3402 if (total) {
3403 u64 temp;
3405 temp = (u64)(rtime * cputime.utime);
3406 do_div(temp, total);
3407 utime = (cputime_t)temp;
3408 } else
3409 utime = rtime;
3411 sig->prev_utime = max(sig->prev_utime, utime);
3412 sig->prev_stime = max(sig->prev_stime,
3413 cputime_sub(rtime, sig->prev_utime));
3415 *ut = sig->prev_utime;
3416 *st = sig->prev_stime;
3418 #endif
3421 * This function gets called by the timer code, with HZ frequency.
3422 * We call it with interrupts disabled.
3424 * It also gets called by the fork code, when changing the parent's
3425 * timeslices.
3427 void scheduler_tick(void)
3429 int cpu = smp_processor_id();
3430 struct rq *rq = cpu_rq(cpu);
3431 struct task_struct *curr = rq->curr;
3433 sched_clock_tick();
3435 raw_spin_lock(&rq->lock);
3436 update_rq_clock(rq);
3437 update_cpu_load(rq);
3438 curr->sched_class->task_tick(rq, curr, 0);
3439 raw_spin_unlock(&rq->lock);
3441 perf_event_task_tick(curr);
3443 #ifdef CONFIG_SMP
3444 rq->idle_at_tick = idle_cpu(cpu);
3445 trigger_load_balance(rq, cpu);
3446 #endif
3449 notrace unsigned long get_parent_ip(unsigned long addr)
3451 if (in_lock_functions(addr)) {
3452 addr = CALLER_ADDR2;
3453 if (in_lock_functions(addr))
3454 addr = CALLER_ADDR3;
3456 return addr;
3459 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3460 defined(CONFIG_PREEMPT_TRACER))
3462 void __kprobes add_preempt_count(int val)
3464 #ifdef CONFIG_DEBUG_PREEMPT
3466 * Underflow?
3468 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3469 return;
3470 #endif
3471 preempt_count() += val;
3472 #ifdef CONFIG_DEBUG_PREEMPT
3474 * Spinlock count overflowing soon?
3476 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3477 PREEMPT_MASK - 10);
3478 #endif
3479 if (preempt_count() == val)
3480 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3482 EXPORT_SYMBOL(add_preempt_count);
3484 void __kprobes sub_preempt_count(int val)
3486 #ifdef CONFIG_DEBUG_PREEMPT
3488 * Underflow?
3490 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3491 return;
3493 * Is the spinlock portion underflowing?
3495 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3496 !(preempt_count() & PREEMPT_MASK)))
3497 return;
3498 #endif
3500 if (preempt_count() == val)
3501 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
3502 preempt_count() -= val;
3504 EXPORT_SYMBOL(sub_preempt_count);
3506 #endif
3509 * Print scheduling while atomic bug:
3511 static noinline void __schedule_bug(struct task_struct *prev)
3513 struct pt_regs *regs = get_irq_regs();
3515 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3516 prev->comm, prev->pid, preempt_count());
3518 debug_show_held_locks(prev);
3519 print_modules();
3520 if (irqs_disabled())
3521 print_irqtrace_events(prev);
3523 if (regs)
3524 show_regs(regs);
3525 else
3526 dump_stack();
3530 * Various schedule()-time debugging checks and statistics:
3532 static inline void schedule_debug(struct task_struct *prev)
3535 * Test if we are atomic. Since do_exit() needs to call into
3536 * schedule() atomically, we ignore that path for now.
3537 * Otherwise, whine if we are scheduling when we should not be.
3539 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
3540 __schedule_bug(prev);
3542 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3544 schedstat_inc(this_rq(), sched_count);
3545 #ifdef CONFIG_SCHEDSTATS
3546 if (unlikely(prev->lock_depth >= 0)) {
3547 schedstat_inc(this_rq(), bkl_count);
3548 schedstat_inc(prev, sched_info.bkl_count);
3550 #endif
3553 static void put_prev_task(struct rq *rq, struct task_struct *prev)
3555 if (prev->se.on_rq)
3556 update_rq_clock(rq);
3557 rq->skip_clock_update = 0;
3558 prev->sched_class->put_prev_task(rq, prev);
3562 * Pick up the highest-prio task:
3564 static inline struct task_struct *
3565 pick_next_task(struct rq *rq)
3567 const struct sched_class *class;
3568 struct task_struct *p;
3571 * Optimization: we know that if all tasks are in
3572 * the fair class we can call that function directly:
3574 if (likely(rq->nr_running == rq->cfs.nr_running)) {
3575 p = fair_sched_class.pick_next_task(rq);
3576 if (likely(p))
3577 return p;
3580 class = sched_class_highest;
3581 for ( ; ; ) {
3582 p = class->pick_next_task(rq);
3583 if (p)
3584 return p;
3586 * Will never be NULL as the idle class always
3587 * returns a non-NULL p:
3589 class = class->next;
3594 * schedule() is the main scheduler function.
3596 asmlinkage void __sched schedule(void)
3598 struct task_struct *prev, *next;
3599 unsigned long *switch_count;
3600 struct rq *rq;
3601 int cpu;
3603 need_resched:
3604 preempt_disable();
3605 cpu = smp_processor_id();
3606 rq = cpu_rq(cpu);
3607 rcu_sched_qs(cpu);
3608 prev = rq->curr;
3609 switch_count = &prev->nivcsw;
3611 release_kernel_lock(prev);
3612 need_resched_nonpreemptible:
3614 schedule_debug(prev);
3616 if (sched_feat(HRTICK))
3617 hrtick_clear(rq);
3619 raw_spin_lock_irq(&rq->lock);
3620 clear_tsk_need_resched(prev);
3622 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
3623 if (unlikely(signal_pending_state(prev->state, prev)))
3624 prev->state = TASK_RUNNING;
3625 else
3626 deactivate_task(rq, prev, 1);
3627 switch_count = &prev->nvcsw;
3630 pre_schedule(rq, prev);
3632 if (unlikely(!rq->nr_running))
3633 idle_balance(cpu, rq);
3635 put_prev_task(rq, prev);
3636 next = pick_next_task(rq);
3638 if (likely(prev != next)) {
3639 sched_info_switch(prev, next);
3640 perf_event_task_sched_out(prev, next);
3642 rq->nr_switches++;
3643 rq->curr = next;
3644 ++*switch_count;
3646 context_switch(rq, prev, next); /* unlocks the rq */
3648 * the context switch might have flipped the stack from under
3649 * us, hence refresh the local variables.
3651 cpu = smp_processor_id();
3652 rq = cpu_rq(cpu);
3653 } else
3654 raw_spin_unlock_irq(&rq->lock);
3656 post_schedule(rq);
3658 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3659 prev = rq->curr;
3660 switch_count = &prev->nivcsw;
3661 goto need_resched_nonpreemptible;
3664 preempt_enable_no_resched();
3665 if (need_resched())
3666 goto need_resched;
3668 EXPORT_SYMBOL(schedule);
3670 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3672 * Look out! "owner" is an entirely speculative pointer
3673 * access and not reliable.
3675 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
3677 unsigned int cpu;
3678 struct rq *rq;
3680 if (!sched_feat(OWNER_SPIN))
3681 return 0;
3683 #ifdef CONFIG_DEBUG_PAGEALLOC
3685 * Need to access the cpu field knowing that
3686 * DEBUG_PAGEALLOC could have unmapped it if
3687 * the mutex owner just released it and exited.
3689 if (probe_kernel_address(&owner->cpu, cpu))
3690 goto out;
3691 #else
3692 cpu = owner->cpu;
3693 #endif
3696 * Even if the access succeeded (likely case),
3697 * the cpu field may no longer be valid.
3699 if (cpu >= nr_cpumask_bits)
3700 goto out;
3703 * We need to validate that we can do a
3704 * get_cpu() and that we have the percpu area.
3706 if (!cpu_online(cpu))
3707 goto out;
3709 rq = cpu_rq(cpu);
3711 for (;;) {
3713 * Owner changed, break to re-assess state.
3715 if (lock->owner != owner)
3716 break;
3719 * Is that owner really running on that cpu?
3721 if (task_thread_info(rq->curr) != owner || need_resched())
3722 return 0;
3724 cpu_relax();
3726 out:
3727 return 1;
3729 #endif
3731 #ifdef CONFIG_PREEMPT
3733 * this is the entry point to schedule() from in-kernel preemption
3734 * off of preempt_enable. Kernel preemptions off return from interrupt
3735 * occur there and call schedule directly.
3737 asmlinkage void __sched preempt_schedule(void)
3739 struct thread_info *ti = current_thread_info();
3742 * If there is a non-zero preempt_count or interrupts are disabled,
3743 * we do not want to preempt the current task. Just return..
3745 if (likely(ti->preempt_count || irqs_disabled()))
3746 return;
3748 do {
3749 add_preempt_count(PREEMPT_ACTIVE);
3750 schedule();
3751 sub_preempt_count(PREEMPT_ACTIVE);
3754 * Check again in case we missed a preemption opportunity
3755 * between schedule and now.
3757 barrier();
3758 } while (need_resched());
3760 EXPORT_SYMBOL(preempt_schedule);
3763 * this is the entry point to schedule() from kernel preemption
3764 * off of irq context.
3765 * Note, that this is called and return with irqs disabled. This will
3766 * protect us against recursive calling from irq.
3768 asmlinkage void __sched preempt_schedule_irq(void)
3770 struct thread_info *ti = current_thread_info();
3772 /* Catch callers which need to be fixed */
3773 BUG_ON(ti->preempt_count || !irqs_disabled());
3775 do {
3776 add_preempt_count(PREEMPT_ACTIVE);
3777 local_irq_enable();
3778 schedule();
3779 local_irq_disable();
3780 sub_preempt_count(PREEMPT_ACTIVE);
3783 * Check again in case we missed a preemption opportunity
3784 * between schedule and now.
3786 barrier();
3787 } while (need_resched());
3790 #endif /* CONFIG_PREEMPT */
3792 int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
3793 void *key)
3795 return try_to_wake_up(curr->private, mode, wake_flags);
3797 EXPORT_SYMBOL(default_wake_function);
3800 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3801 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3802 * number) then we wake all the non-exclusive tasks and one exclusive task.
3804 * There are circumstances in which we can try to wake a task which has already
3805 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3806 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3808 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3809 int nr_exclusive, int wake_flags, void *key)
3811 wait_queue_t *curr, *next;
3813 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
3814 unsigned flags = curr->flags;
3816 if (curr->func(curr, mode, wake_flags, key) &&
3817 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
3818 break;
3823 * __wake_up - wake up threads blocked on a waitqueue.
3824 * @q: the waitqueue
3825 * @mode: which threads
3826 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3827 * @key: is directly passed to the wakeup function
3829 * It may be assumed that this function implies a write memory barrier before
3830 * changing the task state if and only if any tasks are woken up.
3832 void __wake_up(wait_queue_head_t *q, unsigned int mode,
3833 int nr_exclusive, void *key)
3835 unsigned long flags;
3837 spin_lock_irqsave(&q->lock, flags);
3838 __wake_up_common(q, mode, nr_exclusive, 0, key);
3839 spin_unlock_irqrestore(&q->lock, flags);
3841 EXPORT_SYMBOL(__wake_up);
3844 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3846 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3848 __wake_up_common(q, mode, 1, 0, NULL);
3851 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3853 __wake_up_common(q, mode, 1, 0, key);
3857 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3858 * @q: the waitqueue
3859 * @mode: which threads
3860 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3861 * @key: opaque value to be passed to wakeup targets
3863 * The sync wakeup differs that the waker knows that it will schedule
3864 * away soon, so while the target thread will be woken up, it will not
3865 * be migrated to another CPU - ie. the two threads are 'synchronized'
3866 * with each other. This can prevent needless bouncing between CPUs.
3868 * On UP it can prevent extra preemption.
3870 * It may be assumed that this function implies a write memory barrier before
3871 * changing the task state if and only if any tasks are woken up.
3873 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3874 int nr_exclusive, void *key)
3876 unsigned long flags;
3877 int wake_flags = WF_SYNC;
3879 if (unlikely(!q))
3880 return;
3882 if (unlikely(!nr_exclusive))
3883 wake_flags = 0;
3885 spin_lock_irqsave(&q->lock, flags);
3886 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
3887 spin_unlock_irqrestore(&q->lock, flags);
3889 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3892 * __wake_up_sync - see __wake_up_sync_key()
3894 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3896 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3898 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3901 * complete: - signals a single thread waiting on this completion
3902 * @x: holds the state of this particular completion
3904 * This will wake up a single thread waiting on this completion. Threads will be
3905 * awakened in the same order in which they were queued.
3907 * See also complete_all(), wait_for_completion() and related routines.
3909 * It may be assumed that this function implies a write memory barrier before
3910 * changing the task state if and only if any tasks are woken up.
3912 void complete(struct completion *x)
3914 unsigned long flags;
3916 spin_lock_irqsave(&x->wait.lock, flags);
3917 x->done++;
3918 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
3919 spin_unlock_irqrestore(&x->wait.lock, flags);
3921 EXPORT_SYMBOL(complete);
3924 * complete_all: - signals all threads waiting on this completion
3925 * @x: holds the state of this particular completion
3927 * This will wake up all threads waiting on this particular completion event.
3929 * It may be assumed that this function implies a write memory barrier before
3930 * changing the task state if and only if any tasks are woken up.
3932 void complete_all(struct completion *x)
3934 unsigned long flags;
3936 spin_lock_irqsave(&x->wait.lock, flags);
3937 x->done += UINT_MAX/2;
3938 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
3939 spin_unlock_irqrestore(&x->wait.lock, flags);
3941 EXPORT_SYMBOL(complete_all);
3943 static inline long __sched
3944 do_wait_for_common(struct completion *x, long timeout, int state)
3946 if (!x->done) {
3947 DECLARE_WAITQUEUE(wait, current);
3949 wait.flags |= WQ_FLAG_EXCLUSIVE;
3950 __add_wait_queue_tail(&x->wait, &wait);
3951 do {
3952 if (signal_pending_state(state, current)) {
3953 timeout = -ERESTARTSYS;
3954 break;
3956 __set_current_state(state);
3957 spin_unlock_irq(&x->wait.lock);
3958 timeout = schedule_timeout(timeout);
3959 spin_lock_irq(&x->wait.lock);
3960 } while (!x->done && timeout);
3961 __remove_wait_queue(&x->wait, &wait);
3962 if (!x->done)
3963 return timeout;
3965 x->done--;
3966 return timeout ?: 1;
3969 static long __sched
3970 wait_for_common(struct completion *x, long timeout, int state)
3972 might_sleep();
3974 spin_lock_irq(&x->wait.lock);
3975 timeout = do_wait_for_common(x, timeout, state);
3976 spin_unlock_irq(&x->wait.lock);
3977 return timeout;
3981 * wait_for_completion: - waits for completion of a task
3982 * @x: holds the state of this particular completion
3984 * This waits to be signaled for completion of a specific task. It is NOT
3985 * interruptible and there is no timeout.
3987 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3988 * and interrupt capability. Also see complete().
3990 void __sched wait_for_completion(struct completion *x)
3992 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
3994 EXPORT_SYMBOL(wait_for_completion);
3997 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3998 * @x: holds the state of this particular completion
3999 * @timeout: timeout value in jiffies
4001 * This waits for either a completion of a specific task to be signaled or for a
4002 * specified timeout to expire. The timeout is in jiffies. It is not
4003 * interruptible.
4005 unsigned long __sched
4006 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
4008 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
4010 EXPORT_SYMBOL(wait_for_completion_timeout);
4013 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4014 * @x: holds the state of this particular completion
4016 * This waits for completion of a specific task to be signaled. It is
4017 * interruptible.
4019 int __sched wait_for_completion_interruptible(struct completion *x)
4021 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
4022 if (t == -ERESTARTSYS)
4023 return t;
4024 return 0;
4026 EXPORT_SYMBOL(wait_for_completion_interruptible);
4029 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4030 * @x: holds the state of this particular completion
4031 * @timeout: timeout value in jiffies
4033 * This waits for either a completion of a specific task to be signaled or for a
4034 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4036 unsigned long __sched
4037 wait_for_completion_interruptible_timeout(struct completion *x,
4038 unsigned long timeout)
4040 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
4042 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
4045 * wait_for_completion_killable: - waits for completion of a task (killable)
4046 * @x: holds the state of this particular completion
4048 * This waits to be signaled for completion of a specific task. It can be
4049 * interrupted by a kill signal.
4051 int __sched wait_for_completion_killable(struct completion *x)
4053 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
4054 if (t == -ERESTARTSYS)
4055 return t;
4056 return 0;
4058 EXPORT_SYMBOL(wait_for_completion_killable);
4061 * try_wait_for_completion - try to decrement a completion without blocking
4062 * @x: completion structure
4064 * Returns: 0 if a decrement cannot be done without blocking
4065 * 1 if a decrement succeeded.
4067 * If a completion is being used as a counting completion,
4068 * attempt to decrement the counter without blocking. This
4069 * enables us to avoid waiting if the resource the completion
4070 * is protecting is not available.
4072 bool try_wait_for_completion(struct completion *x)
4074 unsigned long flags;
4075 int ret = 1;
4077 spin_lock_irqsave(&x->wait.lock, flags);
4078 if (!x->done)
4079 ret = 0;
4080 else
4081 x->done--;
4082 spin_unlock_irqrestore(&x->wait.lock, flags);
4083 return ret;
4085 EXPORT_SYMBOL(try_wait_for_completion);
4088 * completion_done - Test to see if a completion has any waiters
4089 * @x: completion structure
4091 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4092 * 1 if there are no waiters.
4095 bool completion_done(struct completion *x)
4097 unsigned long flags;
4098 int ret = 1;
4100 spin_lock_irqsave(&x->wait.lock, flags);
4101 if (!x->done)
4102 ret = 0;
4103 spin_unlock_irqrestore(&x->wait.lock, flags);
4104 return ret;
4106 EXPORT_SYMBOL(completion_done);
4108 static long __sched
4109 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
4111 unsigned long flags;
4112 wait_queue_t wait;
4114 init_waitqueue_entry(&wait, current);
4116 __set_current_state(state);
4118 spin_lock_irqsave(&q->lock, flags);
4119 __add_wait_queue(q, &wait);
4120 spin_unlock(&q->lock);
4121 timeout = schedule_timeout(timeout);
4122 spin_lock_irq(&q->lock);
4123 __remove_wait_queue(q, &wait);
4124 spin_unlock_irqrestore(&q->lock, flags);
4126 return timeout;
4129 void __sched interruptible_sleep_on(wait_queue_head_t *q)
4131 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4133 EXPORT_SYMBOL(interruptible_sleep_on);
4135 long __sched
4136 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
4138 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
4140 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
4142 void __sched sleep_on(wait_queue_head_t *q)
4144 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
4146 EXPORT_SYMBOL(sleep_on);
4148 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
4150 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
4152 EXPORT_SYMBOL(sleep_on_timeout);
4154 #ifdef CONFIG_RT_MUTEXES
4157 * rt_mutex_setprio - set the current priority of a task
4158 * @p: task
4159 * @prio: prio value (kernel-internal form)
4161 * This function changes the 'effective' priority of a task. It does
4162 * not touch ->normal_prio like __setscheduler().
4164 * Used by the rt_mutex code to implement priority inheritance logic.
4166 void rt_mutex_setprio(struct task_struct *p, int prio)
4168 unsigned long flags;
4169 int oldprio, on_rq, running;
4170 struct rq *rq;
4171 const struct sched_class *prev_class;
4173 BUG_ON(prio < 0 || prio > MAX_PRIO);
4175 rq = task_rq_lock(p, &flags);
4177 oldprio = p->prio;
4178 prev_class = p->sched_class;
4179 on_rq = p->se.on_rq;
4180 running = task_current(rq, p);
4181 if (on_rq)
4182 dequeue_task(rq, p, 0);
4183 if (running)
4184 p->sched_class->put_prev_task(rq, p);
4186 if (rt_prio(prio))
4187 p->sched_class = &rt_sched_class;
4188 else
4189 p->sched_class = &fair_sched_class;
4191 p->prio = prio;
4193 if (running)
4194 p->sched_class->set_curr_task(rq);
4195 if (on_rq) {
4196 enqueue_task(rq, p, 0, oldprio < prio);
4198 check_class_changed(rq, p, prev_class, oldprio, running);
4200 task_rq_unlock(rq, &flags);
4203 #endif
4205 void set_user_nice(struct task_struct *p, long nice)
4207 int old_prio, delta, on_rq;
4208 unsigned long flags;
4209 struct rq *rq;
4211 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4212 return;
4214 * We have to be careful, if called from sys_setpriority(),
4215 * the task might be in the middle of scheduling on another CPU.
4217 rq = task_rq_lock(p, &flags);
4219 * The RT priorities are set via sched_setscheduler(), but we still
4220 * allow the 'normal' nice value to be set - but as expected
4221 * it wont have any effect on scheduling until the task is
4222 * SCHED_FIFO/SCHED_RR:
4224 if (task_has_rt_policy(p)) {
4225 p->static_prio = NICE_TO_PRIO(nice);
4226 goto out_unlock;
4228 on_rq = p->se.on_rq;
4229 if (on_rq)
4230 dequeue_task(rq, p, 0);
4232 p->static_prio = NICE_TO_PRIO(nice);
4233 set_load_weight(p);
4234 old_prio = p->prio;
4235 p->prio = effective_prio(p);
4236 delta = p->prio - old_prio;
4238 if (on_rq) {
4239 enqueue_task(rq, p, 0, false);
4241 * If the task increased its priority or is running and
4242 * lowered its priority, then reschedule its CPU:
4244 if (delta < 0 || (delta > 0 && task_running(rq, p)))
4245 resched_task(rq->curr);
4247 out_unlock:
4248 task_rq_unlock(rq, &flags);
4250 EXPORT_SYMBOL(set_user_nice);
4253 * can_nice - check if a task can reduce its nice value
4254 * @p: task
4255 * @nice: nice value
4257 int can_nice(const struct task_struct *p, const int nice)
4259 /* convert nice value [19,-20] to rlimit style value [1,40] */
4260 int nice_rlim = 20 - nice;
4262 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
4263 capable(CAP_SYS_NICE));
4266 #ifdef __ARCH_WANT_SYS_NICE
4269 * sys_nice - change the priority of the current process.
4270 * @increment: priority increment
4272 * sys_setpriority is a more generic, but much slower function that
4273 * does similar things.
4275 SYSCALL_DEFINE1(nice, int, increment)
4277 long nice, retval;
4280 * Setpriority might change our priority at the same moment.
4281 * We don't have to worry. Conceptually one call occurs first
4282 * and we have a single winner.
4284 if (increment < -40)
4285 increment = -40;
4286 if (increment > 40)
4287 increment = 40;
4289 nice = TASK_NICE(current) + increment;
4290 if (nice < -20)
4291 nice = -20;
4292 if (nice > 19)
4293 nice = 19;
4295 if (increment < 0 && !can_nice(current, nice))
4296 return -EPERM;
4298 retval = security_task_setnice(current, nice);
4299 if (retval)
4300 return retval;
4302 set_user_nice(current, nice);
4303 return 0;
4306 #endif
4309 * task_prio - return the priority value of a given task.
4310 * @p: the task in question.
4312 * This is the priority value as seen by users in /proc.
4313 * RT tasks are offset by -200. Normal tasks are centered
4314 * around 0, value goes from -16 to +15.
4316 int task_prio(const struct task_struct *p)
4318 return p->prio - MAX_RT_PRIO;
4322 * task_nice - return the nice value of a given task.
4323 * @p: the task in question.
4325 int task_nice(const struct task_struct *p)
4327 return TASK_NICE(p);
4329 EXPORT_SYMBOL(task_nice);
4332 * idle_cpu - is a given cpu idle currently?
4333 * @cpu: the processor in question.
4335 int idle_cpu(int cpu)
4337 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4341 * idle_task - return the idle task for a given cpu.
4342 * @cpu: the processor in question.
4344 struct task_struct *idle_task(int cpu)
4346 return cpu_rq(cpu)->idle;
4350 * find_process_by_pid - find a process with a matching PID value.
4351 * @pid: the pid in question.
4353 static struct task_struct *find_process_by_pid(pid_t pid)
4355 return pid ? find_task_by_vpid(pid) : current;
4358 /* Actually do priority change: must hold rq lock. */
4359 static void
4360 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
4362 BUG_ON(p->se.on_rq);
4364 p->policy = policy;
4365 p->rt_priority = prio;
4366 p->normal_prio = normal_prio(p);
4367 /* we are holding p->pi_lock already */
4368 p->prio = rt_mutex_getprio(p);
4369 if (rt_prio(p->prio))
4370 p->sched_class = &rt_sched_class;
4371 else
4372 p->sched_class = &fair_sched_class;
4373 set_load_weight(p);
4377 * check the target process has a UID that matches the current process's
4379 static bool check_same_owner(struct task_struct *p)
4381 const struct cred *cred = current_cred(), *pcred;
4382 bool match;
4384 rcu_read_lock();
4385 pcred = __task_cred(p);
4386 match = (cred->euid == pcred->euid ||
4387 cred->euid == pcred->uid);
4388 rcu_read_unlock();
4389 return match;
4392 static int __sched_setscheduler(struct task_struct *p, int policy,
4393 struct sched_param *param, bool user)
4395 int retval, oldprio, oldpolicy = -1, on_rq, running;
4396 unsigned long flags;
4397 const struct sched_class *prev_class;
4398 struct rq *rq;
4399 int reset_on_fork;
4401 /* may grab non-irq protected spin_locks */
4402 BUG_ON(in_interrupt());
4403 recheck:
4404 /* double check policy once rq lock held */
4405 if (policy < 0) {
4406 reset_on_fork = p->sched_reset_on_fork;
4407 policy = oldpolicy = p->policy;
4408 } else {
4409 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4410 policy &= ~SCHED_RESET_ON_FORK;
4412 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4413 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4414 policy != SCHED_IDLE)
4415 return -EINVAL;
4419 * Valid priorities for SCHED_FIFO and SCHED_RR are
4420 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4421 * SCHED_BATCH and SCHED_IDLE is 0.
4423 if (param->sched_priority < 0 ||
4424 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
4425 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
4426 return -EINVAL;
4427 if (rt_policy(policy) != (param->sched_priority != 0))
4428 return -EINVAL;
4431 * Allow unprivileged RT tasks to decrease priority:
4433 if (user && !capable(CAP_SYS_NICE)) {
4434 if (rt_policy(policy)) {
4435 unsigned long rlim_rtprio;
4437 if (!lock_task_sighand(p, &flags))
4438 return -ESRCH;
4439 rlim_rtprio = task_rlimit(p, RLIMIT_RTPRIO);
4440 unlock_task_sighand(p, &flags);
4442 /* can't set/change the rt policy */
4443 if (policy != p->policy && !rlim_rtprio)
4444 return -EPERM;
4446 /* can't increase priority */
4447 if (param->sched_priority > p->rt_priority &&
4448 param->sched_priority > rlim_rtprio)
4449 return -EPERM;
4452 * Like positive nice levels, dont allow tasks to
4453 * move out of SCHED_IDLE either:
4455 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4456 return -EPERM;
4458 /* can't change other user's priorities */
4459 if (!check_same_owner(p))
4460 return -EPERM;
4462 /* Normal users shall not reset the sched_reset_on_fork flag */
4463 if (p->sched_reset_on_fork && !reset_on_fork)
4464 return -EPERM;
4467 if (user) {
4468 #ifdef CONFIG_RT_GROUP_SCHED
4470 * Do not allow realtime tasks into groups that have no runtime
4471 * assigned.
4473 if (rt_bandwidth_enabled() && rt_policy(policy) &&
4474 task_group(p)->rt_bandwidth.rt_runtime == 0)
4475 return -EPERM;
4476 #endif
4478 retval = security_task_setscheduler(p, policy, param);
4479 if (retval)
4480 return retval;
4484 * make sure no PI-waiters arrive (or leave) while we are
4485 * changing the priority of the task:
4487 raw_spin_lock_irqsave(&p->pi_lock, flags);
4489 * To be able to change p->policy safely, the apropriate
4490 * runqueue lock must be held.
4492 rq = __task_rq_lock(p);
4493 /* recheck policy now with rq lock held */
4494 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4495 policy = oldpolicy = -1;
4496 __task_rq_unlock(rq);
4497 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4498 goto recheck;
4500 on_rq = p->se.on_rq;
4501 running = task_current(rq, p);
4502 if (on_rq)
4503 deactivate_task(rq, p, 0);
4504 if (running)
4505 p->sched_class->put_prev_task(rq, p);
4507 p->sched_reset_on_fork = reset_on_fork;
4509 oldprio = p->prio;
4510 prev_class = p->sched_class;
4511 __setscheduler(rq, p, policy, param->sched_priority);
4513 if (running)
4514 p->sched_class->set_curr_task(rq);
4515 if (on_rq) {
4516 activate_task(rq, p, 0);
4518 check_class_changed(rq, p, prev_class, oldprio, running);
4520 __task_rq_unlock(rq);
4521 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4523 rt_mutex_adjust_pi(p);
4525 return 0;
4529 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4530 * @p: the task in question.
4531 * @policy: new policy.
4532 * @param: structure containing the new RT priority.
4534 * NOTE that the task may be already dead.
4536 int sched_setscheduler(struct task_struct *p, int policy,
4537 struct sched_param *param)
4539 return __sched_setscheduler(p, policy, param, true);
4541 EXPORT_SYMBOL_GPL(sched_setscheduler);
4544 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4545 * @p: the task in question.
4546 * @policy: new policy.
4547 * @param: structure containing the new RT priority.
4549 * Just like sched_setscheduler, only don't bother checking if the
4550 * current context has permission. For example, this is needed in
4551 * stop_machine(): we create temporary high priority worker threads,
4552 * but our caller might not have that capability.
4554 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
4555 struct sched_param *param)
4557 return __sched_setscheduler(p, policy, param, false);
4560 static int
4561 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
4563 struct sched_param lparam;
4564 struct task_struct *p;
4565 int retval;
4567 if (!param || pid < 0)
4568 return -EINVAL;
4569 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4570 return -EFAULT;
4572 rcu_read_lock();
4573 retval = -ESRCH;
4574 p = find_process_by_pid(pid);
4575 if (p != NULL)
4576 retval = sched_setscheduler(p, policy, &lparam);
4577 rcu_read_unlock();
4579 return retval;
4583 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4584 * @pid: the pid in question.
4585 * @policy: new policy.
4586 * @param: structure containing the new RT priority.
4588 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4589 struct sched_param __user *, param)
4591 /* negative values for policy are not valid */
4592 if (policy < 0)
4593 return -EINVAL;
4595 return do_sched_setscheduler(pid, policy, param);
4599 * sys_sched_setparam - set/change the RT priority of a thread
4600 * @pid: the pid in question.
4601 * @param: structure containing the new RT priority.
4603 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
4605 return do_sched_setscheduler(pid, -1, param);
4609 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4610 * @pid: the pid in question.
4612 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
4614 struct task_struct *p;
4615 int retval;
4617 if (pid < 0)
4618 return -EINVAL;
4620 retval = -ESRCH;
4621 rcu_read_lock();
4622 p = find_process_by_pid(pid);
4623 if (p) {
4624 retval = security_task_getscheduler(p);
4625 if (!retval)
4626 retval = p->policy
4627 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
4629 rcu_read_unlock();
4630 return retval;
4634 * sys_sched_getparam - get the RT priority of a thread
4635 * @pid: the pid in question.
4636 * @param: structure containing the RT priority.
4638 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
4640 struct sched_param lp;
4641 struct task_struct *p;
4642 int retval;
4644 if (!param || pid < 0)
4645 return -EINVAL;
4647 rcu_read_lock();
4648 p = find_process_by_pid(pid);
4649 retval = -ESRCH;
4650 if (!p)
4651 goto out_unlock;
4653 retval = security_task_getscheduler(p);
4654 if (retval)
4655 goto out_unlock;
4657 lp.sched_priority = p->rt_priority;
4658 rcu_read_unlock();
4661 * This one might sleep, we cannot do it with a spinlock held ...
4663 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4665 return retval;
4667 out_unlock:
4668 rcu_read_unlock();
4669 return retval;
4672 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
4674 cpumask_var_t cpus_allowed, new_mask;
4675 struct task_struct *p;
4676 int retval;
4678 get_online_cpus();
4679 rcu_read_lock();
4681 p = find_process_by_pid(pid);
4682 if (!p) {
4683 rcu_read_unlock();
4684 put_online_cpus();
4685 return -ESRCH;
4688 /* Prevent p going away */
4689 get_task_struct(p);
4690 rcu_read_unlock();
4692 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4693 retval = -ENOMEM;
4694 goto out_put_task;
4696 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4697 retval = -ENOMEM;
4698 goto out_free_cpus_allowed;
4700 retval = -EPERM;
4701 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
4702 goto out_unlock;
4704 retval = security_task_setscheduler(p, 0, NULL);
4705 if (retval)
4706 goto out_unlock;
4708 cpuset_cpus_allowed(p, cpus_allowed);
4709 cpumask_and(new_mask, in_mask, cpus_allowed);
4710 again:
4711 retval = set_cpus_allowed_ptr(p, new_mask);
4713 if (!retval) {
4714 cpuset_cpus_allowed(p, cpus_allowed);
4715 if (!cpumask_subset(new_mask, cpus_allowed)) {
4717 * We must have raced with a concurrent cpuset
4718 * update. Just reset the cpus_allowed to the
4719 * cpuset's cpus_allowed
4721 cpumask_copy(new_mask, cpus_allowed);
4722 goto again;
4725 out_unlock:
4726 free_cpumask_var(new_mask);
4727 out_free_cpus_allowed:
4728 free_cpumask_var(cpus_allowed);
4729 out_put_task:
4730 put_task_struct(p);
4731 put_online_cpus();
4732 return retval;
4735 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4736 struct cpumask *new_mask)
4738 if (len < cpumask_size())
4739 cpumask_clear(new_mask);
4740 else if (len > cpumask_size())
4741 len = cpumask_size();
4743 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4747 * sys_sched_setaffinity - set the cpu affinity of a process
4748 * @pid: pid of the process
4749 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4750 * @user_mask_ptr: user-space pointer to the new cpu mask
4752 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4753 unsigned long __user *, user_mask_ptr)
4755 cpumask_var_t new_mask;
4756 int retval;
4758 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4759 return -ENOMEM;
4761 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4762 if (retval == 0)
4763 retval = sched_setaffinity(pid, new_mask);
4764 free_cpumask_var(new_mask);
4765 return retval;
4768 long sched_getaffinity(pid_t pid, struct cpumask *mask)
4770 struct task_struct *p;
4771 unsigned long flags;
4772 struct rq *rq;
4773 int retval;
4775 get_online_cpus();
4776 rcu_read_lock();
4778 retval = -ESRCH;
4779 p = find_process_by_pid(pid);
4780 if (!p)
4781 goto out_unlock;
4783 retval = security_task_getscheduler(p);
4784 if (retval)
4785 goto out_unlock;
4787 rq = task_rq_lock(p, &flags);
4788 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
4789 task_rq_unlock(rq, &flags);
4791 out_unlock:
4792 rcu_read_unlock();
4793 put_online_cpus();
4795 return retval;
4799 * sys_sched_getaffinity - get the cpu affinity of a process
4800 * @pid: pid of the process
4801 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4802 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4804 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4805 unsigned long __user *, user_mask_ptr)
4807 int ret;
4808 cpumask_var_t mask;
4810 if (len < nr_cpu_ids)
4811 return -EINVAL;
4812 if (len & (sizeof(unsigned long)-1))
4813 return -EINVAL;
4815 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4816 return -ENOMEM;
4818 ret = sched_getaffinity(pid, mask);
4819 if (ret == 0) {
4820 size_t retlen = min_t(size_t, len, cpumask_size());
4822 if (copy_to_user(user_mask_ptr, mask, retlen))
4823 ret = -EFAULT;
4824 else
4825 ret = retlen;
4827 free_cpumask_var(mask);
4829 return ret;
4833 * sys_sched_yield - yield the current processor to other threads.
4835 * This function yields the current CPU to other tasks. If there are no
4836 * other threads running on this CPU then this function will return.
4838 SYSCALL_DEFINE0(sched_yield)
4840 struct rq *rq = this_rq_lock();
4842 schedstat_inc(rq, yld_count);
4843 current->sched_class->yield_task(rq);
4846 * Since we are going to call schedule() anyway, there's
4847 * no need to preempt or enable interrupts:
4849 __release(rq->lock);
4850 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
4851 do_raw_spin_unlock(&rq->lock);
4852 preempt_enable_no_resched();
4854 schedule();
4856 return 0;
4859 static inline int should_resched(void)
4861 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4864 static void __cond_resched(void)
4866 add_preempt_count(PREEMPT_ACTIVE);
4867 schedule();
4868 sub_preempt_count(PREEMPT_ACTIVE);
4871 int __sched _cond_resched(void)
4873 if (should_resched()) {
4874 __cond_resched();
4875 return 1;
4877 return 0;
4879 EXPORT_SYMBOL(_cond_resched);
4882 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4883 * call schedule, and on return reacquire the lock.
4885 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4886 * operations here to prevent schedule() from being called twice (once via
4887 * spin_unlock(), once by hand).
4889 int __cond_resched_lock(spinlock_t *lock)
4891 int resched = should_resched();
4892 int ret = 0;
4894 lockdep_assert_held(lock);
4896 if (spin_needbreak(lock) || resched) {
4897 spin_unlock(lock);
4898 if (resched)
4899 __cond_resched();
4900 else
4901 cpu_relax();
4902 ret = 1;
4903 spin_lock(lock);
4905 return ret;
4907 EXPORT_SYMBOL(__cond_resched_lock);
4909 int __sched __cond_resched_softirq(void)
4911 BUG_ON(!in_softirq());
4913 if (should_resched()) {
4914 local_bh_enable();
4915 __cond_resched();
4916 local_bh_disable();
4917 return 1;
4919 return 0;
4921 EXPORT_SYMBOL(__cond_resched_softirq);
4924 * yield - yield the current processor to other threads.
4926 * This is a shortcut for kernel-space yielding - it marks the
4927 * thread runnable and calls sys_sched_yield().
4929 void __sched yield(void)
4931 set_current_state(TASK_RUNNING);
4932 sys_sched_yield();
4934 EXPORT_SYMBOL(yield);
4937 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4938 * that process accounting knows that this is a task in IO wait state.
4940 void __sched io_schedule(void)
4942 struct rq *rq = raw_rq();
4944 delayacct_blkio_start();
4945 atomic_inc(&rq->nr_iowait);
4946 current->in_iowait = 1;
4947 schedule();
4948 current->in_iowait = 0;
4949 atomic_dec(&rq->nr_iowait);
4950 delayacct_blkio_end();
4952 EXPORT_SYMBOL(io_schedule);
4954 long __sched io_schedule_timeout(long timeout)
4956 struct rq *rq = raw_rq();
4957 long ret;
4959 delayacct_blkio_start();
4960 atomic_inc(&rq->nr_iowait);
4961 current->in_iowait = 1;
4962 ret = schedule_timeout(timeout);
4963 current->in_iowait = 0;
4964 atomic_dec(&rq->nr_iowait);
4965 delayacct_blkio_end();
4966 return ret;
4970 * sys_sched_get_priority_max - return maximum RT priority.
4971 * @policy: scheduling class.
4973 * this syscall returns the maximum rt_priority that can be used
4974 * by a given scheduling class.
4976 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
4978 int ret = -EINVAL;
4980 switch (policy) {
4981 case SCHED_FIFO:
4982 case SCHED_RR:
4983 ret = MAX_USER_RT_PRIO-1;
4984 break;
4985 case SCHED_NORMAL:
4986 case SCHED_BATCH:
4987 case SCHED_IDLE:
4988 ret = 0;
4989 break;
4991 return ret;
4995 * sys_sched_get_priority_min - return minimum RT priority.
4996 * @policy: scheduling class.
4998 * this syscall returns the minimum rt_priority that can be used
4999 * by a given scheduling class.
5001 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
5003 int ret = -EINVAL;
5005 switch (policy) {
5006 case SCHED_FIFO:
5007 case SCHED_RR:
5008 ret = 1;
5009 break;
5010 case SCHED_NORMAL:
5011 case SCHED_BATCH:
5012 case SCHED_IDLE:
5013 ret = 0;
5015 return ret;
5019 * sys_sched_rr_get_interval - return the default timeslice of a process.
5020 * @pid: pid of the process.
5021 * @interval: userspace pointer to the timeslice value.
5023 * this syscall writes the default timeslice value of a given process
5024 * into the user-space timespec buffer. A value of '0' means infinity.
5026 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
5027 struct timespec __user *, interval)
5029 struct task_struct *p;
5030 unsigned int time_slice;
5031 unsigned long flags;
5032 struct rq *rq;
5033 int retval;
5034 struct timespec t;
5036 if (pid < 0)
5037 return -EINVAL;
5039 retval = -ESRCH;
5040 rcu_read_lock();
5041 p = find_process_by_pid(pid);
5042 if (!p)
5043 goto out_unlock;
5045 retval = security_task_getscheduler(p);
5046 if (retval)
5047 goto out_unlock;
5049 rq = task_rq_lock(p, &flags);
5050 time_slice = p->sched_class->get_rr_interval(rq, p);
5051 task_rq_unlock(rq, &flags);
5053 rcu_read_unlock();
5054 jiffies_to_timespec(time_slice, &t);
5055 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
5056 return retval;
5058 out_unlock:
5059 rcu_read_unlock();
5060 return retval;
5063 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
5065 void sched_show_task(struct task_struct *p)
5067 unsigned long free = 0;
5068 unsigned state;
5070 state = p->state ? __ffs(p->state) + 1 : 0;
5071 printk(KERN_INFO "%-13.13s %c", p->comm,
5072 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
5073 #if BITS_PER_LONG == 32
5074 if (state == TASK_RUNNING)
5075 printk(KERN_CONT " running ");
5076 else
5077 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
5078 #else
5079 if (state == TASK_RUNNING)
5080 printk(KERN_CONT " running task ");
5081 else
5082 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
5083 #endif
5084 #ifdef CONFIG_DEBUG_STACK_USAGE
5085 free = stack_not_used(p);
5086 #endif
5087 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
5088 task_pid_nr(p), task_pid_nr(p->real_parent),
5089 (unsigned long)task_thread_info(p)->flags);
5091 show_stack(p, NULL);
5094 void show_state_filter(unsigned long state_filter)
5096 struct task_struct *g, *p;
5098 #if BITS_PER_LONG == 32
5099 printk(KERN_INFO
5100 " task PC stack pid father\n");
5101 #else
5102 printk(KERN_INFO
5103 " task PC stack pid father\n");
5104 #endif
5105 read_lock(&tasklist_lock);
5106 do_each_thread(g, p) {
5108 * reset the NMI-timeout, listing all files on a slow
5109 * console might take alot of time:
5111 touch_nmi_watchdog();
5112 if (!state_filter || (p->state & state_filter))
5113 sched_show_task(p);
5114 } while_each_thread(g, p);
5116 touch_all_softlockup_watchdogs();
5118 #ifdef CONFIG_SCHED_DEBUG
5119 sysrq_sched_debug_show();
5120 #endif
5121 read_unlock(&tasklist_lock);
5123 * Only show locks if all tasks are dumped:
5125 if (!state_filter)
5126 debug_show_all_locks();
5129 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
5131 idle->sched_class = &idle_sched_class;
5135 * init_idle - set up an idle thread for a given CPU
5136 * @idle: task in question
5137 * @cpu: cpu the idle task belongs to
5139 * NOTE: this function does not set the idle thread's NEED_RESCHED
5140 * flag, to make booting more robust.
5142 void __cpuinit init_idle(struct task_struct *idle, int cpu)
5144 struct rq *rq = cpu_rq(cpu);
5145 unsigned long flags;
5147 raw_spin_lock_irqsave(&rq->lock, flags);
5149 __sched_fork(idle);
5150 idle->state = TASK_RUNNING;
5151 idle->se.exec_start = sched_clock();
5153 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
5154 __set_task_cpu(idle, cpu);
5156 rq->curr = rq->idle = idle;
5157 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5158 idle->oncpu = 1;
5159 #endif
5160 raw_spin_unlock_irqrestore(&rq->lock, flags);
5162 /* Set the preempt count _outside_ the spinlocks! */
5163 #if defined(CONFIG_PREEMPT)
5164 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
5165 #else
5166 task_thread_info(idle)->preempt_count = 0;
5167 #endif
5169 * The idle tasks have their own, simple scheduling class:
5171 idle->sched_class = &idle_sched_class;
5172 ftrace_graph_init_task(idle);
5176 * In a system that switches off the HZ timer nohz_cpu_mask
5177 * indicates which cpus entered this state. This is used
5178 * in the rcu update to wait only for active cpus. For system
5179 * which do not switch off the HZ timer nohz_cpu_mask should
5180 * always be CPU_BITS_NONE.
5182 cpumask_var_t nohz_cpu_mask;
5185 * Increase the granularity value when there are more CPUs,
5186 * because with more CPUs the 'effective latency' as visible
5187 * to users decreases. But the relationship is not linear,
5188 * so pick a second-best guess by going with the log2 of the
5189 * number of CPUs.
5191 * This idea comes from the SD scheduler of Con Kolivas:
5193 static int get_update_sysctl_factor(void)
5195 unsigned int cpus = min_t(int, num_online_cpus(), 8);
5196 unsigned int factor;
5198 switch (sysctl_sched_tunable_scaling) {
5199 case SCHED_TUNABLESCALING_NONE:
5200 factor = 1;
5201 break;
5202 case SCHED_TUNABLESCALING_LINEAR:
5203 factor = cpus;
5204 break;
5205 case SCHED_TUNABLESCALING_LOG:
5206 default:
5207 factor = 1 + ilog2(cpus);
5208 break;
5211 return factor;
5214 static void update_sysctl(void)
5216 unsigned int factor = get_update_sysctl_factor();
5218 #define SET_SYSCTL(name) \
5219 (sysctl_##name = (factor) * normalized_sysctl_##name)
5220 SET_SYSCTL(sched_min_granularity);
5221 SET_SYSCTL(sched_latency);
5222 SET_SYSCTL(sched_wakeup_granularity);
5223 SET_SYSCTL(sched_shares_ratelimit);
5224 #undef SET_SYSCTL
5227 static inline void sched_init_granularity(void)
5229 update_sysctl();
5232 #ifdef CONFIG_SMP
5234 * This is how migration works:
5236 * 1) we queue a struct migration_req structure in the source CPU's
5237 * runqueue and wake up that CPU's migration thread.
5238 * 2) we down() the locked semaphore => thread blocks.
5239 * 3) migration thread wakes up (implicitly it forces the migrated
5240 * thread off the CPU)
5241 * 4) it gets the migration request and checks whether the migrated
5242 * task is still in the wrong runqueue.
5243 * 5) if it's in the wrong runqueue then the migration thread removes
5244 * it and puts it into the right queue.
5245 * 6) migration thread up()s the semaphore.
5246 * 7) we wake up and the migration is done.
5250 * Change a given task's CPU affinity. Migrate the thread to a
5251 * proper CPU and schedule it away if the CPU it's executing on
5252 * is removed from the allowed bitmask.
5254 * NOTE: the caller must have a valid reference to the task, the
5255 * task must not exit() & deallocate itself prematurely. The
5256 * call is not atomic; no spinlocks may be held.
5258 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
5260 struct migration_req req;
5261 unsigned long flags;
5262 struct rq *rq;
5263 int ret = 0;
5265 rq = task_rq_lock(p, &flags);
5267 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
5268 ret = -EINVAL;
5269 goto out;
5272 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
5273 !cpumask_equal(&p->cpus_allowed, new_mask))) {
5274 ret = -EINVAL;
5275 goto out;
5278 if (p->sched_class->set_cpus_allowed)
5279 p->sched_class->set_cpus_allowed(p, new_mask);
5280 else {
5281 cpumask_copy(&p->cpus_allowed, new_mask);
5282 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
5285 /* Can the task run on the task's current CPU? If so, we're done */
5286 if (cpumask_test_cpu(task_cpu(p), new_mask))
5287 goto out;
5289 if (migrate_task(p, cpumask_any_and(cpu_active_mask, new_mask), &req)) {
5290 /* Need help from migration thread: drop lock and wait. */
5291 struct task_struct *mt = rq->migration_thread;
5293 get_task_struct(mt);
5294 task_rq_unlock(rq, &flags);
5295 wake_up_process(rq->migration_thread);
5296 put_task_struct(mt);
5297 wait_for_completion(&req.done);
5298 tlb_migrate_finish(p->mm);
5299 return 0;
5301 out:
5302 task_rq_unlock(rq, &flags);
5304 return ret;
5306 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
5309 * Move (not current) task off this cpu, onto dest cpu. We're doing
5310 * this because either it can't run here any more (set_cpus_allowed()
5311 * away from this CPU, or CPU going down), or because we're
5312 * attempting to rebalance this task on exec (sched_exec).
5314 * So we race with normal scheduler movements, but that's OK, as long
5315 * as the task is no longer on this CPU.
5317 * Returns non-zero if task was successfully migrated.
5319 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
5321 struct rq *rq_dest, *rq_src;
5322 int ret = 0;
5324 if (unlikely(!cpu_active(dest_cpu)))
5325 return ret;
5327 rq_src = cpu_rq(src_cpu);
5328 rq_dest = cpu_rq(dest_cpu);
5330 double_rq_lock(rq_src, rq_dest);
5331 /* Already moved. */
5332 if (task_cpu(p) != src_cpu)
5333 goto done;
5334 /* Affinity changed (again). */
5335 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
5336 goto fail;
5339 * If we're not on a rq, the next wake-up will ensure we're
5340 * placed properly.
5342 if (p->se.on_rq) {
5343 deactivate_task(rq_src, p, 0);
5344 set_task_cpu(p, dest_cpu);
5345 activate_task(rq_dest, p, 0);
5346 check_preempt_curr(rq_dest, p, 0);
5348 done:
5349 ret = 1;
5350 fail:
5351 double_rq_unlock(rq_src, rq_dest);
5352 return ret;
5355 #define RCU_MIGRATION_IDLE 0
5356 #define RCU_MIGRATION_NEED_QS 1
5357 #define RCU_MIGRATION_GOT_QS 2
5358 #define RCU_MIGRATION_MUST_SYNC 3
5361 * migration_thread - this is a highprio system thread that performs
5362 * thread migration by bumping thread off CPU then 'pushing' onto
5363 * another runqueue.
5365 static int migration_thread(void *data)
5367 int badcpu;
5368 int cpu = (long)data;
5369 struct rq *rq;
5371 rq = cpu_rq(cpu);
5372 BUG_ON(rq->migration_thread != current);
5374 set_current_state(TASK_INTERRUPTIBLE);
5375 while (!kthread_should_stop()) {
5376 struct migration_req *req;
5377 struct list_head *head;
5379 raw_spin_lock_irq(&rq->lock);
5381 if (cpu_is_offline(cpu)) {
5382 raw_spin_unlock_irq(&rq->lock);
5383 break;
5386 if (rq->active_balance) {
5387 active_load_balance(rq, cpu);
5388 rq->active_balance = 0;
5391 head = &rq->migration_queue;
5393 if (list_empty(head)) {
5394 raw_spin_unlock_irq(&rq->lock);
5395 schedule();
5396 set_current_state(TASK_INTERRUPTIBLE);
5397 continue;
5399 req = list_entry(head->next, struct migration_req, list);
5400 list_del_init(head->next);
5402 if (req->task != NULL) {
5403 raw_spin_unlock(&rq->lock);
5404 __migrate_task(req->task, cpu, req->dest_cpu);
5405 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
5406 req->dest_cpu = RCU_MIGRATION_GOT_QS;
5407 raw_spin_unlock(&rq->lock);
5408 } else {
5409 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
5410 raw_spin_unlock(&rq->lock);
5411 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
5413 local_irq_enable();
5415 complete(&req->done);
5417 __set_current_state(TASK_RUNNING);
5419 return 0;
5422 #ifdef CONFIG_HOTPLUG_CPU
5424 * Figure out where task on dead CPU should go, use force if necessary.
5426 void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
5428 struct rq *rq = cpu_rq(dead_cpu);
5429 int needs_cpu, uninitialized_var(dest_cpu);
5430 unsigned long flags;
5432 local_irq_save(flags);
5434 raw_spin_lock(&rq->lock);
5435 needs_cpu = (task_cpu(p) == dead_cpu) && (p->state != TASK_WAKING);
5436 if (needs_cpu)
5437 dest_cpu = select_fallback_rq(dead_cpu, p);
5438 raw_spin_unlock(&rq->lock);
5440 * It can only fail if we race with set_cpus_allowed(),
5441 * in the racer should migrate the task anyway.
5443 if (needs_cpu)
5444 __migrate_task(p, dead_cpu, dest_cpu);
5445 local_irq_restore(flags);
5449 * While a dead CPU has no uninterruptible tasks queued at this point,
5450 * it might still have a nonzero ->nr_uninterruptible counter, because
5451 * for performance reasons the counter is not stricly tracking tasks to
5452 * their home CPUs. So we just add the counter to another CPU's counter,
5453 * to keep the global sum constant after CPU-down:
5455 static void migrate_nr_uninterruptible(struct rq *rq_src)
5457 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
5458 unsigned long flags;
5460 local_irq_save(flags);
5461 double_rq_lock(rq_src, rq_dest);
5462 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5463 rq_src->nr_uninterruptible = 0;
5464 double_rq_unlock(rq_src, rq_dest);
5465 local_irq_restore(flags);
5468 /* Run through task list and migrate tasks from the dead cpu. */
5469 static void migrate_live_tasks(int src_cpu)
5471 struct task_struct *p, *t;
5473 read_lock(&tasklist_lock);
5475 do_each_thread(t, p) {
5476 if (p == current)
5477 continue;
5479 if (task_cpu(p) == src_cpu)
5480 move_task_off_dead_cpu(src_cpu, p);
5481 } while_each_thread(t, p);
5483 read_unlock(&tasklist_lock);
5487 * Schedules idle task to be the next runnable task on current CPU.
5488 * It does so by boosting its priority to highest possible.
5489 * Used by CPU offline code.
5491 void sched_idle_next(void)
5493 int this_cpu = smp_processor_id();
5494 struct rq *rq = cpu_rq(this_cpu);
5495 struct task_struct *p = rq->idle;
5496 unsigned long flags;
5498 /* cpu has to be offline */
5499 BUG_ON(cpu_online(this_cpu));
5502 * Strictly not necessary since rest of the CPUs are stopped by now
5503 * and interrupts disabled on the current cpu.
5505 raw_spin_lock_irqsave(&rq->lock, flags);
5507 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5509 activate_task(rq, p, 0);
5511 raw_spin_unlock_irqrestore(&rq->lock, flags);
5515 * Ensures that the idle task is using init_mm right before its cpu goes
5516 * offline.
5518 void idle_task_exit(void)
5520 struct mm_struct *mm = current->active_mm;
5522 BUG_ON(cpu_online(smp_processor_id()));
5524 if (mm != &init_mm)
5525 switch_mm(mm, &init_mm, current);
5526 mmdrop(mm);
5529 /* called under rq->lock with disabled interrupts */
5530 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
5532 struct rq *rq = cpu_rq(dead_cpu);
5534 /* Must be exiting, otherwise would be on tasklist. */
5535 BUG_ON(!p->exit_state);
5537 /* Cannot have done final schedule yet: would have vanished. */
5538 BUG_ON(p->state == TASK_DEAD);
5540 get_task_struct(p);
5543 * Drop lock around migration; if someone else moves it,
5544 * that's OK. No task can be added to this CPU, so iteration is
5545 * fine.
5547 raw_spin_unlock_irq(&rq->lock);
5548 move_task_off_dead_cpu(dead_cpu, p);
5549 raw_spin_lock_irq(&rq->lock);
5551 put_task_struct(p);
5554 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5555 static void migrate_dead_tasks(unsigned int dead_cpu)
5557 struct rq *rq = cpu_rq(dead_cpu);
5558 struct task_struct *next;
5560 for ( ; ; ) {
5561 if (!rq->nr_running)
5562 break;
5563 next = pick_next_task(rq);
5564 if (!next)
5565 break;
5566 next->sched_class->put_prev_task(rq, next);
5567 migrate_dead(dead_cpu, next);
5573 * remove the tasks which were accounted by rq from calc_load_tasks.
5575 static void calc_global_load_remove(struct rq *rq)
5577 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5578 rq->calc_load_active = 0;
5580 #endif /* CONFIG_HOTPLUG_CPU */
5582 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5584 static struct ctl_table sd_ctl_dir[] = {
5586 .procname = "sched_domain",
5587 .mode = 0555,
5592 static struct ctl_table sd_ctl_root[] = {
5594 .procname = "kernel",
5595 .mode = 0555,
5596 .child = sd_ctl_dir,
5601 static struct ctl_table *sd_alloc_ctl_entry(int n)
5603 struct ctl_table *entry =
5604 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
5606 return entry;
5609 static void sd_free_ctl_entry(struct ctl_table **tablep)
5611 struct ctl_table *entry;
5614 * In the intermediate directories, both the child directory and
5615 * procname are dynamically allocated and could fail but the mode
5616 * will always be set. In the lowest directory the names are
5617 * static strings and all have proc handlers.
5619 for (entry = *tablep; entry->mode; entry++) {
5620 if (entry->child)
5621 sd_free_ctl_entry(&entry->child);
5622 if (entry->proc_handler == NULL)
5623 kfree(entry->procname);
5626 kfree(*tablep);
5627 *tablep = NULL;
5630 static void
5631 set_table_entry(struct ctl_table *entry,
5632 const char *procname, void *data, int maxlen,
5633 mode_t mode, proc_handler *proc_handler)
5635 entry->procname = procname;
5636 entry->data = data;
5637 entry->maxlen = maxlen;
5638 entry->mode = mode;
5639 entry->proc_handler = proc_handler;
5642 static struct ctl_table *
5643 sd_alloc_ctl_domain_table(struct sched_domain *sd)
5645 struct ctl_table *table = sd_alloc_ctl_entry(13);
5647 if (table == NULL)
5648 return NULL;
5650 set_table_entry(&table[0], "min_interval", &sd->min_interval,
5651 sizeof(long), 0644, proc_doulongvec_minmax);
5652 set_table_entry(&table[1], "max_interval", &sd->max_interval,
5653 sizeof(long), 0644, proc_doulongvec_minmax);
5654 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
5655 sizeof(int), 0644, proc_dointvec_minmax);
5656 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
5657 sizeof(int), 0644, proc_dointvec_minmax);
5658 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
5659 sizeof(int), 0644, proc_dointvec_minmax);
5660 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
5661 sizeof(int), 0644, proc_dointvec_minmax);
5662 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
5663 sizeof(int), 0644, proc_dointvec_minmax);
5664 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
5665 sizeof(int), 0644, proc_dointvec_minmax);
5666 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
5667 sizeof(int), 0644, proc_dointvec_minmax);
5668 set_table_entry(&table[9], "cache_nice_tries",
5669 &sd->cache_nice_tries,
5670 sizeof(int), 0644, proc_dointvec_minmax);
5671 set_table_entry(&table[10], "flags", &sd->flags,
5672 sizeof(int), 0644, proc_dointvec_minmax);
5673 set_table_entry(&table[11], "name", sd->name,
5674 CORENAME_MAX_SIZE, 0444, proc_dostring);
5675 /* &table[12] is terminator */
5677 return table;
5680 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
5682 struct ctl_table *entry, *table;
5683 struct sched_domain *sd;
5684 int domain_num = 0, i;
5685 char buf[32];
5687 for_each_domain(cpu, sd)
5688 domain_num++;
5689 entry = table = sd_alloc_ctl_entry(domain_num + 1);
5690 if (table == NULL)
5691 return NULL;
5693 i = 0;
5694 for_each_domain(cpu, sd) {
5695 snprintf(buf, 32, "domain%d", i);
5696 entry->procname = kstrdup(buf, GFP_KERNEL);
5697 entry->mode = 0555;
5698 entry->child = sd_alloc_ctl_domain_table(sd);
5699 entry++;
5700 i++;
5702 return table;
5705 static struct ctl_table_header *sd_sysctl_header;
5706 static void register_sched_domain_sysctl(void)
5708 int i, cpu_num = num_possible_cpus();
5709 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5710 char buf[32];
5712 WARN_ON(sd_ctl_dir[0].child);
5713 sd_ctl_dir[0].child = entry;
5715 if (entry == NULL)
5716 return;
5718 for_each_possible_cpu(i) {
5719 snprintf(buf, 32, "cpu%d", i);
5720 entry->procname = kstrdup(buf, GFP_KERNEL);
5721 entry->mode = 0555;
5722 entry->child = sd_alloc_ctl_cpu_table(i);
5723 entry++;
5726 WARN_ON(sd_sysctl_header);
5727 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5730 /* may be called multiple times per register */
5731 static void unregister_sched_domain_sysctl(void)
5733 if (sd_sysctl_header)
5734 unregister_sysctl_table(sd_sysctl_header);
5735 sd_sysctl_header = NULL;
5736 if (sd_ctl_dir[0].child)
5737 sd_free_ctl_entry(&sd_ctl_dir[0].child);
5739 #else
5740 static void register_sched_domain_sysctl(void)
5743 static void unregister_sched_domain_sysctl(void)
5746 #endif
5748 static void set_rq_online(struct rq *rq)
5750 if (!rq->online) {
5751 const struct sched_class *class;
5753 cpumask_set_cpu(rq->cpu, rq->rd->online);
5754 rq->online = 1;
5756 for_each_class(class) {
5757 if (class->rq_online)
5758 class->rq_online(rq);
5763 static void set_rq_offline(struct rq *rq)
5765 if (rq->online) {
5766 const struct sched_class *class;
5768 for_each_class(class) {
5769 if (class->rq_offline)
5770 class->rq_offline(rq);
5773 cpumask_clear_cpu(rq->cpu, rq->rd->online);
5774 rq->online = 0;
5779 * migration_call - callback that gets triggered when a CPU is added.
5780 * Here we can start up the necessary migration thread for the new CPU.
5782 static int __cpuinit
5783 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
5785 struct task_struct *p;
5786 int cpu = (long)hcpu;
5787 unsigned long flags;
5788 struct rq *rq;
5790 switch (action) {
5792 case CPU_UP_PREPARE:
5793 case CPU_UP_PREPARE_FROZEN:
5794 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
5795 if (IS_ERR(p))
5796 return NOTIFY_BAD;
5797 kthread_bind(p, cpu);
5798 /* Must be high prio: stop_machine expects to yield to it. */
5799 rq = task_rq_lock(p, &flags);
5800 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
5801 task_rq_unlock(rq, &flags);
5802 get_task_struct(p);
5803 cpu_rq(cpu)->migration_thread = p;
5804 rq->calc_load_update = calc_load_update;
5805 break;
5807 case CPU_ONLINE:
5808 case CPU_ONLINE_FROZEN:
5809 /* Strictly unnecessary, as first user will wake it. */
5810 wake_up_process(cpu_rq(cpu)->migration_thread);
5812 /* Update our root-domain */
5813 rq = cpu_rq(cpu);
5814 raw_spin_lock_irqsave(&rq->lock, flags);
5815 if (rq->rd) {
5816 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5818 set_rq_online(rq);
5820 raw_spin_unlock_irqrestore(&rq->lock, flags);
5821 break;
5823 #ifdef CONFIG_HOTPLUG_CPU
5824 case CPU_UP_CANCELED:
5825 case CPU_UP_CANCELED_FROZEN:
5826 if (!cpu_rq(cpu)->migration_thread)
5827 break;
5828 /* Unbind it from offline cpu so it can run. Fall thru. */
5829 kthread_bind(cpu_rq(cpu)->migration_thread,
5830 cpumask_any(cpu_online_mask));
5831 kthread_stop(cpu_rq(cpu)->migration_thread);
5832 put_task_struct(cpu_rq(cpu)->migration_thread);
5833 cpu_rq(cpu)->migration_thread = NULL;
5834 break;
5836 case CPU_DEAD:
5837 case CPU_DEAD_FROZEN:
5838 migrate_live_tasks(cpu);
5839 rq = cpu_rq(cpu);
5840 kthread_stop(rq->migration_thread);
5841 put_task_struct(rq->migration_thread);
5842 rq->migration_thread = NULL;
5843 /* Idle task back to normal (off runqueue, low prio) */
5844 raw_spin_lock_irq(&rq->lock);
5845 deactivate_task(rq, rq->idle, 0);
5846 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5847 rq->idle->sched_class = &idle_sched_class;
5848 migrate_dead_tasks(cpu);
5849 raw_spin_unlock_irq(&rq->lock);
5850 migrate_nr_uninterruptible(rq);
5851 BUG_ON(rq->nr_running != 0);
5852 calc_global_load_remove(rq);
5854 * No need to migrate the tasks: it was best-effort if
5855 * they didn't take sched_hotcpu_mutex. Just wake up
5856 * the requestors.
5858 raw_spin_lock_irq(&rq->lock);
5859 while (!list_empty(&rq->migration_queue)) {
5860 struct migration_req *req;
5862 req = list_entry(rq->migration_queue.next,
5863 struct migration_req, list);
5864 list_del_init(&req->list);
5865 raw_spin_unlock_irq(&rq->lock);
5866 complete(&req->done);
5867 raw_spin_lock_irq(&rq->lock);
5869 raw_spin_unlock_irq(&rq->lock);
5870 break;
5872 case CPU_DYING:
5873 case CPU_DYING_FROZEN:
5874 /* Update our root-domain */
5875 rq = cpu_rq(cpu);
5876 raw_spin_lock_irqsave(&rq->lock, flags);
5877 if (rq->rd) {
5878 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
5879 set_rq_offline(rq);
5881 raw_spin_unlock_irqrestore(&rq->lock, flags);
5882 break;
5883 #endif
5885 return NOTIFY_OK;
5889 * Register at high priority so that task migration (migrate_all_tasks)
5890 * happens before everything else. This has to be lower priority than
5891 * the notifier in the perf_event subsystem, though.
5893 static struct notifier_block __cpuinitdata migration_notifier = {
5894 .notifier_call = migration_call,
5895 .priority = 10
5898 static int __init migration_init(void)
5900 void *cpu = (void *)(long)smp_processor_id();
5901 int err;
5903 /* Start one for the boot CPU: */
5904 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5905 BUG_ON(err == NOTIFY_BAD);
5906 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5907 register_cpu_notifier(&migration_notifier);
5909 return 0;
5911 early_initcall(migration_init);
5912 #endif
5914 #ifdef CONFIG_SMP
5916 #ifdef CONFIG_SCHED_DEBUG
5918 static __read_mostly int sched_domain_debug_enabled;
5920 static int __init sched_domain_debug_setup(char *str)
5922 sched_domain_debug_enabled = 1;
5924 return 0;
5926 early_param("sched_debug", sched_domain_debug_setup);
5928 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
5929 struct cpumask *groupmask)
5931 struct sched_group *group = sd->groups;
5932 char str[256];
5934 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
5935 cpumask_clear(groupmask);
5937 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5939 if (!(sd->flags & SD_LOAD_BALANCE)) {
5940 printk("does not load-balance\n");
5941 if (sd->parent)
5942 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5943 " has parent");
5944 return -1;
5947 printk(KERN_CONT "span %s level %s\n", str, sd->name);
5949 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
5950 printk(KERN_ERR "ERROR: domain->span does not contain "
5951 "CPU%d\n", cpu);
5953 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
5954 printk(KERN_ERR "ERROR: domain->groups does not contain"
5955 " CPU%d\n", cpu);
5958 printk(KERN_DEBUG "%*s groups:", level + 1, "");
5959 do {
5960 if (!group) {
5961 printk("\n");
5962 printk(KERN_ERR "ERROR: group is NULL\n");
5963 break;
5966 if (!group->cpu_power) {
5967 printk(KERN_CONT "\n");
5968 printk(KERN_ERR "ERROR: domain->cpu_power not "
5969 "set\n");
5970 break;
5973 if (!cpumask_weight(sched_group_cpus(group))) {
5974 printk(KERN_CONT "\n");
5975 printk(KERN_ERR "ERROR: empty group\n");
5976 break;
5979 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
5980 printk(KERN_CONT "\n");
5981 printk(KERN_ERR "ERROR: repeated CPUs\n");
5982 break;
5985 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
5987 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
5989 printk(KERN_CONT " %s", str);
5990 if (group->cpu_power != SCHED_LOAD_SCALE) {
5991 printk(KERN_CONT " (cpu_power = %d)",
5992 group->cpu_power);
5995 group = group->next;
5996 } while (group != sd->groups);
5997 printk(KERN_CONT "\n");
5999 if (!cpumask_equal(sched_domain_span(sd), groupmask))
6000 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
6002 if (sd->parent &&
6003 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
6004 printk(KERN_ERR "ERROR: parent span is not a superset "
6005 "of domain->span\n");
6006 return 0;
6009 static void sched_domain_debug(struct sched_domain *sd, int cpu)
6011 cpumask_var_t groupmask;
6012 int level = 0;
6014 if (!sched_domain_debug_enabled)
6015 return;
6017 if (!sd) {
6018 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
6019 return;
6022 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
6024 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
6025 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
6026 return;
6029 for (;;) {
6030 if (sched_domain_debug_one(sd, cpu, level, groupmask))
6031 break;
6032 level++;
6033 sd = sd->parent;
6034 if (!sd)
6035 break;
6037 free_cpumask_var(groupmask);
6039 #else /* !CONFIG_SCHED_DEBUG */
6040 # define sched_domain_debug(sd, cpu) do { } while (0)
6041 #endif /* CONFIG_SCHED_DEBUG */
6043 static int sd_degenerate(struct sched_domain *sd)
6045 if (cpumask_weight(sched_domain_span(sd)) == 1)
6046 return 1;
6048 /* Following flags need at least 2 groups */
6049 if (sd->flags & (SD_LOAD_BALANCE |
6050 SD_BALANCE_NEWIDLE |
6051 SD_BALANCE_FORK |
6052 SD_BALANCE_EXEC |
6053 SD_SHARE_CPUPOWER |
6054 SD_SHARE_PKG_RESOURCES)) {
6055 if (sd->groups != sd->groups->next)
6056 return 0;
6059 /* Following flags don't use groups */
6060 if (sd->flags & (SD_WAKE_AFFINE))
6061 return 0;
6063 return 1;
6066 static int
6067 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
6069 unsigned long cflags = sd->flags, pflags = parent->flags;
6071 if (sd_degenerate(parent))
6072 return 1;
6074 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
6075 return 0;
6077 /* Flags needing groups don't count if only 1 group in parent */
6078 if (parent->groups == parent->groups->next) {
6079 pflags &= ~(SD_LOAD_BALANCE |
6080 SD_BALANCE_NEWIDLE |
6081 SD_BALANCE_FORK |
6082 SD_BALANCE_EXEC |
6083 SD_SHARE_CPUPOWER |
6084 SD_SHARE_PKG_RESOURCES);
6085 if (nr_node_ids == 1)
6086 pflags &= ~SD_SERIALIZE;
6088 if (~cflags & pflags)
6089 return 0;
6091 return 1;
6094 static void free_rootdomain(struct root_domain *rd)
6096 synchronize_sched();
6098 cpupri_cleanup(&rd->cpupri);
6100 free_cpumask_var(rd->rto_mask);
6101 free_cpumask_var(rd->online);
6102 free_cpumask_var(rd->span);
6103 kfree(rd);
6106 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
6108 struct root_domain *old_rd = NULL;
6109 unsigned long flags;
6111 raw_spin_lock_irqsave(&rq->lock, flags);
6113 if (rq->rd) {
6114 old_rd = rq->rd;
6116 if (cpumask_test_cpu(rq->cpu, old_rd->online))
6117 set_rq_offline(rq);
6119 cpumask_clear_cpu(rq->cpu, old_rd->span);
6122 * If we dont want to free the old_rt yet then
6123 * set old_rd to NULL to skip the freeing later
6124 * in this function:
6126 if (!atomic_dec_and_test(&old_rd->refcount))
6127 old_rd = NULL;
6130 atomic_inc(&rd->refcount);
6131 rq->rd = rd;
6133 cpumask_set_cpu(rq->cpu, rd->span);
6134 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
6135 set_rq_online(rq);
6137 raw_spin_unlock_irqrestore(&rq->lock, flags);
6139 if (old_rd)
6140 free_rootdomain(old_rd);
6143 static int init_rootdomain(struct root_domain *rd, bool bootmem)
6145 gfp_t gfp = GFP_KERNEL;
6147 memset(rd, 0, sizeof(*rd));
6149 if (bootmem)
6150 gfp = GFP_NOWAIT;
6152 if (!alloc_cpumask_var(&rd->span, gfp))
6153 goto out;
6154 if (!alloc_cpumask_var(&rd->online, gfp))
6155 goto free_span;
6156 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
6157 goto free_online;
6159 if (cpupri_init(&rd->cpupri, bootmem) != 0)
6160 goto free_rto_mask;
6161 return 0;
6163 free_rto_mask:
6164 free_cpumask_var(rd->rto_mask);
6165 free_online:
6166 free_cpumask_var(rd->online);
6167 free_span:
6168 free_cpumask_var(rd->span);
6169 out:
6170 return -ENOMEM;
6173 static void init_defrootdomain(void)
6175 init_rootdomain(&def_root_domain, true);
6177 atomic_set(&def_root_domain.refcount, 1);
6180 static struct root_domain *alloc_rootdomain(void)
6182 struct root_domain *rd;
6184 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
6185 if (!rd)
6186 return NULL;
6188 if (init_rootdomain(rd, false) != 0) {
6189 kfree(rd);
6190 return NULL;
6193 return rd;
6197 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6198 * hold the hotplug lock.
6200 static void
6201 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
6203 struct rq *rq = cpu_rq(cpu);
6204 struct sched_domain *tmp;
6206 /* Remove the sched domains which do not contribute to scheduling. */
6207 for (tmp = sd; tmp; ) {
6208 struct sched_domain *parent = tmp->parent;
6209 if (!parent)
6210 break;
6212 if (sd_parent_degenerate(tmp, parent)) {
6213 tmp->parent = parent->parent;
6214 if (parent->parent)
6215 parent->parent->child = tmp;
6216 } else
6217 tmp = tmp->parent;
6220 if (sd && sd_degenerate(sd)) {
6221 sd = sd->parent;
6222 if (sd)
6223 sd->child = NULL;
6226 sched_domain_debug(sd, cpu);
6228 rq_attach_root(rq, rd);
6229 rcu_assign_pointer(rq->sd, sd);
6232 /* cpus with isolated domains */
6233 static cpumask_var_t cpu_isolated_map;
6235 /* Setup the mask of cpus configured for isolated domains */
6236 static int __init isolated_cpu_setup(char *str)
6238 alloc_bootmem_cpumask_var(&cpu_isolated_map);
6239 cpulist_parse(str, cpu_isolated_map);
6240 return 1;
6243 __setup("isolcpus=", isolated_cpu_setup);
6246 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6247 * to a function which identifies what group(along with sched group) a CPU
6248 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6249 * (due to the fact that we keep track of groups covered with a struct cpumask).
6251 * init_sched_build_groups will build a circular linked list of the groups
6252 * covered by the given span, and will set each group's ->cpumask correctly,
6253 * and ->cpu_power to 0.
6255 static void
6256 init_sched_build_groups(const struct cpumask *span,
6257 const struct cpumask *cpu_map,
6258 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
6259 struct sched_group **sg,
6260 struct cpumask *tmpmask),
6261 struct cpumask *covered, struct cpumask *tmpmask)
6263 struct sched_group *first = NULL, *last = NULL;
6264 int i;
6266 cpumask_clear(covered);
6268 for_each_cpu(i, span) {
6269 struct sched_group *sg;
6270 int group = group_fn(i, cpu_map, &sg, tmpmask);
6271 int j;
6273 if (cpumask_test_cpu(i, covered))
6274 continue;
6276 cpumask_clear(sched_group_cpus(sg));
6277 sg->cpu_power = 0;
6279 for_each_cpu(j, span) {
6280 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
6281 continue;
6283 cpumask_set_cpu(j, covered);
6284 cpumask_set_cpu(j, sched_group_cpus(sg));
6286 if (!first)
6287 first = sg;
6288 if (last)
6289 last->next = sg;
6290 last = sg;
6292 last->next = first;
6295 #define SD_NODES_PER_DOMAIN 16
6297 #ifdef CONFIG_NUMA
6300 * find_next_best_node - find the next node to include in a sched_domain
6301 * @node: node whose sched_domain we're building
6302 * @used_nodes: nodes already in the sched_domain
6304 * Find the next node to include in a given scheduling domain. Simply
6305 * finds the closest node not already in the @used_nodes map.
6307 * Should use nodemask_t.
6309 static int find_next_best_node(int node, nodemask_t *used_nodes)
6311 int i, n, val, min_val, best_node = 0;
6313 min_val = INT_MAX;
6315 for (i = 0; i < nr_node_ids; i++) {
6316 /* Start at @node */
6317 n = (node + i) % nr_node_ids;
6319 if (!nr_cpus_node(n))
6320 continue;
6322 /* Skip already used nodes */
6323 if (node_isset(n, *used_nodes))
6324 continue;
6326 /* Simple min distance search */
6327 val = node_distance(node, n);
6329 if (val < min_val) {
6330 min_val = val;
6331 best_node = n;
6335 node_set(best_node, *used_nodes);
6336 return best_node;
6340 * sched_domain_node_span - get a cpumask for a node's sched_domain
6341 * @node: node whose cpumask we're constructing
6342 * @span: resulting cpumask
6344 * Given a node, construct a good cpumask for its sched_domain to span. It
6345 * should be one that prevents unnecessary balancing, but also spreads tasks
6346 * out optimally.
6348 static void sched_domain_node_span(int node, struct cpumask *span)
6350 nodemask_t used_nodes;
6351 int i;
6353 cpumask_clear(span);
6354 nodes_clear(used_nodes);
6356 cpumask_or(span, span, cpumask_of_node(node));
6357 node_set(node, used_nodes);
6359 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
6360 int next_node = find_next_best_node(node, &used_nodes);
6362 cpumask_or(span, span, cpumask_of_node(next_node));
6365 #endif /* CONFIG_NUMA */
6367 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
6370 * The cpus mask in sched_group and sched_domain hangs off the end.
6372 * ( See the the comments in include/linux/sched.h:struct sched_group
6373 * and struct sched_domain. )
6375 struct static_sched_group {
6376 struct sched_group sg;
6377 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
6380 struct static_sched_domain {
6381 struct sched_domain sd;
6382 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
6385 struct s_data {
6386 #ifdef CONFIG_NUMA
6387 int sd_allnodes;
6388 cpumask_var_t domainspan;
6389 cpumask_var_t covered;
6390 cpumask_var_t notcovered;
6391 #endif
6392 cpumask_var_t nodemask;
6393 cpumask_var_t this_sibling_map;
6394 cpumask_var_t this_core_map;
6395 cpumask_var_t send_covered;
6396 cpumask_var_t tmpmask;
6397 struct sched_group **sched_group_nodes;
6398 struct root_domain *rd;
6401 enum s_alloc {
6402 sa_sched_groups = 0,
6403 sa_rootdomain,
6404 sa_tmpmask,
6405 sa_send_covered,
6406 sa_this_core_map,
6407 sa_this_sibling_map,
6408 sa_nodemask,
6409 sa_sched_group_nodes,
6410 #ifdef CONFIG_NUMA
6411 sa_notcovered,
6412 sa_covered,
6413 sa_domainspan,
6414 #endif
6415 sa_none,
6419 * SMT sched-domains:
6421 #ifdef CONFIG_SCHED_SMT
6422 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
6423 static DEFINE_PER_CPU(struct static_sched_group, sched_groups);
6425 static int
6426 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
6427 struct sched_group **sg, struct cpumask *unused)
6429 if (sg)
6430 *sg = &per_cpu(sched_groups, cpu).sg;
6431 return cpu;
6433 #endif /* CONFIG_SCHED_SMT */
6436 * multi-core sched-domains:
6438 #ifdef CONFIG_SCHED_MC
6439 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
6440 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
6441 #endif /* CONFIG_SCHED_MC */
6443 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6444 static int
6445 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6446 struct sched_group **sg, struct cpumask *mask)
6448 int group;
6450 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6451 group = cpumask_first(mask);
6452 if (sg)
6453 *sg = &per_cpu(sched_group_core, group).sg;
6454 return group;
6456 #elif defined(CONFIG_SCHED_MC)
6457 static int
6458 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
6459 struct sched_group **sg, struct cpumask *unused)
6461 if (sg)
6462 *sg = &per_cpu(sched_group_core, cpu).sg;
6463 return cpu;
6465 #endif
6467 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
6468 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
6470 static int
6471 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
6472 struct sched_group **sg, struct cpumask *mask)
6474 int group;
6475 #ifdef CONFIG_SCHED_MC
6476 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
6477 group = cpumask_first(mask);
6478 #elif defined(CONFIG_SCHED_SMT)
6479 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
6480 group = cpumask_first(mask);
6481 #else
6482 group = cpu;
6483 #endif
6484 if (sg)
6485 *sg = &per_cpu(sched_group_phys, group).sg;
6486 return group;
6489 #ifdef CONFIG_NUMA
6491 * The init_sched_build_groups can't handle what we want to do with node
6492 * groups, so roll our own. Now each node has its own list of groups which
6493 * gets dynamically allocated.
6495 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
6496 static struct sched_group ***sched_group_nodes_bycpu;
6498 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
6499 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
6501 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
6502 struct sched_group **sg,
6503 struct cpumask *nodemask)
6505 int group;
6507 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
6508 group = cpumask_first(nodemask);
6510 if (sg)
6511 *sg = &per_cpu(sched_group_allnodes, group).sg;
6512 return group;
6515 static void init_numa_sched_groups_power(struct sched_group *group_head)
6517 struct sched_group *sg = group_head;
6518 int j;
6520 if (!sg)
6521 return;
6522 do {
6523 for_each_cpu(j, sched_group_cpus(sg)) {
6524 struct sched_domain *sd;
6526 sd = &per_cpu(phys_domains, j).sd;
6527 if (j != group_first_cpu(sd->groups)) {
6529 * Only add "power" once for each
6530 * physical package.
6532 continue;
6535 sg->cpu_power += sd->groups->cpu_power;
6537 sg = sg->next;
6538 } while (sg != group_head);
6541 static int build_numa_sched_groups(struct s_data *d,
6542 const struct cpumask *cpu_map, int num)
6544 struct sched_domain *sd;
6545 struct sched_group *sg, *prev;
6546 int n, j;
6548 cpumask_clear(d->covered);
6549 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
6550 if (cpumask_empty(d->nodemask)) {
6551 d->sched_group_nodes[num] = NULL;
6552 goto out;
6555 sched_domain_node_span(num, d->domainspan);
6556 cpumask_and(d->domainspan, d->domainspan, cpu_map);
6558 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6559 GFP_KERNEL, num);
6560 if (!sg) {
6561 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
6562 num);
6563 return -ENOMEM;
6565 d->sched_group_nodes[num] = sg;
6567 for_each_cpu(j, d->nodemask) {
6568 sd = &per_cpu(node_domains, j).sd;
6569 sd->groups = sg;
6572 sg->cpu_power = 0;
6573 cpumask_copy(sched_group_cpus(sg), d->nodemask);
6574 sg->next = sg;
6575 cpumask_or(d->covered, d->covered, d->nodemask);
6577 prev = sg;
6578 for (j = 0; j < nr_node_ids; j++) {
6579 n = (num + j) % nr_node_ids;
6580 cpumask_complement(d->notcovered, d->covered);
6581 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
6582 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
6583 if (cpumask_empty(d->tmpmask))
6584 break;
6585 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
6586 if (cpumask_empty(d->tmpmask))
6587 continue;
6588 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
6589 GFP_KERNEL, num);
6590 if (!sg) {
6591 printk(KERN_WARNING
6592 "Can not alloc domain group for node %d\n", j);
6593 return -ENOMEM;
6595 sg->cpu_power = 0;
6596 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
6597 sg->next = prev->next;
6598 cpumask_or(d->covered, d->covered, d->tmpmask);
6599 prev->next = sg;
6600 prev = sg;
6602 out:
6603 return 0;
6605 #endif /* CONFIG_NUMA */
6607 #ifdef CONFIG_NUMA
6608 /* Free memory allocated for various sched_group structures */
6609 static void free_sched_groups(const struct cpumask *cpu_map,
6610 struct cpumask *nodemask)
6612 int cpu, i;
6614 for_each_cpu(cpu, cpu_map) {
6615 struct sched_group **sched_group_nodes
6616 = sched_group_nodes_bycpu[cpu];
6618 if (!sched_group_nodes)
6619 continue;
6621 for (i = 0; i < nr_node_ids; i++) {
6622 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6624 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
6625 if (cpumask_empty(nodemask))
6626 continue;
6628 if (sg == NULL)
6629 continue;
6630 sg = sg->next;
6631 next_sg:
6632 oldsg = sg;
6633 sg = sg->next;
6634 kfree(oldsg);
6635 if (oldsg != sched_group_nodes[i])
6636 goto next_sg;
6638 kfree(sched_group_nodes);
6639 sched_group_nodes_bycpu[cpu] = NULL;
6642 #else /* !CONFIG_NUMA */
6643 static void free_sched_groups(const struct cpumask *cpu_map,
6644 struct cpumask *nodemask)
6647 #endif /* CONFIG_NUMA */
6650 * Initialize sched groups cpu_power.
6652 * cpu_power indicates the capacity of sched group, which is used while
6653 * distributing the load between different sched groups in a sched domain.
6654 * Typically cpu_power for all the groups in a sched domain will be same unless
6655 * there are asymmetries in the topology. If there are asymmetries, group
6656 * having more cpu_power will pickup more load compared to the group having
6657 * less cpu_power.
6659 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6661 struct sched_domain *child;
6662 struct sched_group *group;
6663 long power;
6664 int weight;
6666 WARN_ON(!sd || !sd->groups);
6668 if (cpu != group_first_cpu(sd->groups))
6669 return;
6671 child = sd->child;
6673 sd->groups->cpu_power = 0;
6675 if (!child) {
6676 power = SCHED_LOAD_SCALE;
6677 weight = cpumask_weight(sched_domain_span(sd));
6679 * SMT siblings share the power of a single core.
6680 * Usually multiple threads get a better yield out of
6681 * that one core than a single thread would have,
6682 * reflect that in sd->smt_gain.
6684 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
6685 power *= sd->smt_gain;
6686 power /= weight;
6687 power >>= SCHED_LOAD_SHIFT;
6689 sd->groups->cpu_power += power;
6690 return;
6694 * Add cpu_power of each child group to this groups cpu_power.
6696 group = child->groups;
6697 do {
6698 sd->groups->cpu_power += group->cpu_power;
6699 group = group->next;
6700 } while (group != child->groups);
6704 * Initializers for schedule domains
6705 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6708 #ifdef CONFIG_SCHED_DEBUG
6709 # define SD_INIT_NAME(sd, type) sd->name = #type
6710 #else
6711 # define SD_INIT_NAME(sd, type) do { } while (0)
6712 #endif
6714 #define SD_INIT(sd, type) sd_init_##type(sd)
6716 #define SD_INIT_FUNC(type) \
6717 static noinline void sd_init_##type(struct sched_domain *sd) \
6719 memset(sd, 0, sizeof(*sd)); \
6720 *sd = SD_##type##_INIT; \
6721 sd->level = SD_LV_##type; \
6722 SD_INIT_NAME(sd, type); \
6725 SD_INIT_FUNC(CPU)
6726 #ifdef CONFIG_NUMA
6727 SD_INIT_FUNC(ALLNODES)
6728 SD_INIT_FUNC(NODE)
6729 #endif
6730 #ifdef CONFIG_SCHED_SMT
6731 SD_INIT_FUNC(SIBLING)
6732 #endif
6733 #ifdef CONFIG_SCHED_MC
6734 SD_INIT_FUNC(MC)
6735 #endif
6737 static int default_relax_domain_level = -1;
6739 static int __init setup_relax_domain_level(char *str)
6741 unsigned long val;
6743 val = simple_strtoul(str, NULL, 0);
6744 if (val < SD_LV_MAX)
6745 default_relax_domain_level = val;
6747 return 1;
6749 __setup("relax_domain_level=", setup_relax_domain_level);
6751 static void set_domain_attribute(struct sched_domain *sd,
6752 struct sched_domain_attr *attr)
6754 int request;
6756 if (!attr || attr->relax_domain_level < 0) {
6757 if (default_relax_domain_level < 0)
6758 return;
6759 else
6760 request = default_relax_domain_level;
6761 } else
6762 request = attr->relax_domain_level;
6763 if (request < sd->level) {
6764 /* turn off idle balance on this domain */
6765 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6766 } else {
6767 /* turn on idle balance on this domain */
6768 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
6772 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6773 const struct cpumask *cpu_map)
6775 switch (what) {
6776 case sa_sched_groups:
6777 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
6778 d->sched_group_nodes = NULL;
6779 case sa_rootdomain:
6780 free_rootdomain(d->rd); /* fall through */
6781 case sa_tmpmask:
6782 free_cpumask_var(d->tmpmask); /* fall through */
6783 case sa_send_covered:
6784 free_cpumask_var(d->send_covered); /* fall through */
6785 case sa_this_core_map:
6786 free_cpumask_var(d->this_core_map); /* fall through */
6787 case sa_this_sibling_map:
6788 free_cpumask_var(d->this_sibling_map); /* fall through */
6789 case sa_nodemask:
6790 free_cpumask_var(d->nodemask); /* fall through */
6791 case sa_sched_group_nodes:
6792 #ifdef CONFIG_NUMA
6793 kfree(d->sched_group_nodes); /* fall through */
6794 case sa_notcovered:
6795 free_cpumask_var(d->notcovered); /* fall through */
6796 case sa_covered:
6797 free_cpumask_var(d->covered); /* fall through */
6798 case sa_domainspan:
6799 free_cpumask_var(d->domainspan); /* fall through */
6800 #endif
6801 case sa_none:
6802 break;
6806 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6807 const struct cpumask *cpu_map)
6809 #ifdef CONFIG_NUMA
6810 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
6811 return sa_none;
6812 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
6813 return sa_domainspan;
6814 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
6815 return sa_covered;
6816 /* Allocate the per-node list of sched groups */
6817 d->sched_group_nodes = kcalloc(nr_node_ids,
6818 sizeof(struct sched_group *), GFP_KERNEL);
6819 if (!d->sched_group_nodes) {
6820 printk(KERN_WARNING "Can not alloc sched group node list\n");
6821 return sa_notcovered;
6823 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
6824 #endif
6825 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
6826 return sa_sched_group_nodes;
6827 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
6828 return sa_nodemask;
6829 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
6830 return sa_this_sibling_map;
6831 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
6832 return sa_this_core_map;
6833 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
6834 return sa_send_covered;
6835 d->rd = alloc_rootdomain();
6836 if (!d->rd) {
6837 printk(KERN_WARNING "Cannot alloc root domain\n");
6838 return sa_tmpmask;
6840 return sa_rootdomain;
6843 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
6844 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
6846 struct sched_domain *sd = NULL;
6847 #ifdef CONFIG_NUMA
6848 struct sched_domain *parent;
6850 d->sd_allnodes = 0;
6851 if (cpumask_weight(cpu_map) >
6852 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
6853 sd = &per_cpu(allnodes_domains, i).sd;
6854 SD_INIT(sd, ALLNODES);
6855 set_domain_attribute(sd, attr);
6856 cpumask_copy(sched_domain_span(sd), cpu_map);
6857 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
6858 d->sd_allnodes = 1;
6860 parent = sd;
6862 sd = &per_cpu(node_domains, i).sd;
6863 SD_INIT(sd, NODE);
6864 set_domain_attribute(sd, attr);
6865 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
6866 sd->parent = parent;
6867 if (parent)
6868 parent->child = sd;
6869 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
6870 #endif
6871 return sd;
6874 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
6875 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6876 struct sched_domain *parent, int i)
6878 struct sched_domain *sd;
6879 sd = &per_cpu(phys_domains, i).sd;
6880 SD_INIT(sd, CPU);
6881 set_domain_attribute(sd, attr);
6882 cpumask_copy(sched_domain_span(sd), d->nodemask);
6883 sd->parent = parent;
6884 if (parent)
6885 parent->child = sd;
6886 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
6887 return sd;
6890 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
6891 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6892 struct sched_domain *parent, int i)
6894 struct sched_domain *sd = parent;
6895 #ifdef CONFIG_SCHED_MC
6896 sd = &per_cpu(core_domains, i).sd;
6897 SD_INIT(sd, MC);
6898 set_domain_attribute(sd, attr);
6899 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
6900 sd->parent = parent;
6901 parent->child = sd;
6902 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
6903 #endif
6904 return sd;
6907 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
6908 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6909 struct sched_domain *parent, int i)
6911 struct sched_domain *sd = parent;
6912 #ifdef CONFIG_SCHED_SMT
6913 sd = &per_cpu(cpu_domains, i).sd;
6914 SD_INIT(sd, SIBLING);
6915 set_domain_attribute(sd, attr);
6916 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
6917 sd->parent = parent;
6918 parent->child = sd;
6919 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
6920 #endif
6921 return sd;
6924 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
6925 const struct cpumask *cpu_map, int cpu)
6927 switch (l) {
6928 #ifdef CONFIG_SCHED_SMT
6929 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
6930 cpumask_and(d->this_sibling_map, cpu_map,
6931 topology_thread_cpumask(cpu));
6932 if (cpu == cpumask_first(d->this_sibling_map))
6933 init_sched_build_groups(d->this_sibling_map, cpu_map,
6934 &cpu_to_cpu_group,
6935 d->send_covered, d->tmpmask);
6936 break;
6937 #endif
6938 #ifdef CONFIG_SCHED_MC
6939 case SD_LV_MC: /* set up multi-core groups */
6940 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
6941 if (cpu == cpumask_first(d->this_core_map))
6942 init_sched_build_groups(d->this_core_map, cpu_map,
6943 &cpu_to_core_group,
6944 d->send_covered, d->tmpmask);
6945 break;
6946 #endif
6947 case SD_LV_CPU: /* set up physical groups */
6948 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
6949 if (!cpumask_empty(d->nodemask))
6950 init_sched_build_groups(d->nodemask, cpu_map,
6951 &cpu_to_phys_group,
6952 d->send_covered, d->tmpmask);
6953 break;
6954 #ifdef CONFIG_NUMA
6955 case SD_LV_ALLNODES:
6956 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
6957 d->send_covered, d->tmpmask);
6958 break;
6959 #endif
6960 default:
6961 break;
6966 * Build sched domains for a given set of cpus and attach the sched domains
6967 * to the individual cpus
6969 static int __build_sched_domains(const struct cpumask *cpu_map,
6970 struct sched_domain_attr *attr)
6972 enum s_alloc alloc_state = sa_none;
6973 struct s_data d;
6974 struct sched_domain *sd;
6975 int i;
6976 #ifdef CONFIG_NUMA
6977 d.sd_allnodes = 0;
6978 #endif
6980 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6981 if (alloc_state != sa_rootdomain)
6982 goto error;
6983 alloc_state = sa_sched_groups;
6986 * Set up domains for cpus specified by the cpu_map.
6988 for_each_cpu(i, cpu_map) {
6989 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
6990 cpu_map);
6992 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
6993 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
6994 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
6995 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
6998 for_each_cpu(i, cpu_map) {
6999 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
7000 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
7003 /* Set up physical groups */
7004 for (i = 0; i < nr_node_ids; i++)
7005 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
7007 #ifdef CONFIG_NUMA
7008 /* Set up node groups */
7009 if (d.sd_allnodes)
7010 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
7012 for (i = 0; i < nr_node_ids; i++)
7013 if (build_numa_sched_groups(&d, cpu_map, i))
7014 goto error;
7015 #endif
7017 /* Calculate CPU power for physical packages and nodes */
7018 #ifdef CONFIG_SCHED_SMT
7019 for_each_cpu(i, cpu_map) {
7020 sd = &per_cpu(cpu_domains, i).sd;
7021 init_sched_groups_power(i, sd);
7023 #endif
7024 #ifdef CONFIG_SCHED_MC
7025 for_each_cpu(i, cpu_map) {
7026 sd = &per_cpu(core_domains, i).sd;
7027 init_sched_groups_power(i, sd);
7029 #endif
7031 for_each_cpu(i, cpu_map) {
7032 sd = &per_cpu(phys_domains, i).sd;
7033 init_sched_groups_power(i, sd);
7036 #ifdef CONFIG_NUMA
7037 for (i = 0; i < nr_node_ids; i++)
7038 init_numa_sched_groups_power(d.sched_group_nodes[i]);
7040 if (d.sd_allnodes) {
7041 struct sched_group *sg;
7043 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
7044 d.tmpmask);
7045 init_numa_sched_groups_power(sg);
7047 #endif
7049 /* Attach the domains */
7050 for_each_cpu(i, cpu_map) {
7051 #ifdef CONFIG_SCHED_SMT
7052 sd = &per_cpu(cpu_domains, i).sd;
7053 #elif defined(CONFIG_SCHED_MC)
7054 sd = &per_cpu(core_domains, i).sd;
7055 #else
7056 sd = &per_cpu(phys_domains, i).sd;
7057 #endif
7058 cpu_attach_domain(sd, d.rd, i);
7061 d.sched_group_nodes = NULL; /* don't free this we still need it */
7062 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
7063 return 0;
7065 error:
7066 __free_domain_allocs(&d, alloc_state, cpu_map);
7067 return -ENOMEM;
7070 static int build_sched_domains(const struct cpumask *cpu_map)
7072 return __build_sched_domains(cpu_map, NULL);
7075 static cpumask_var_t *doms_cur; /* current sched domains */
7076 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
7077 static struct sched_domain_attr *dattr_cur;
7078 /* attribues of custom domains in 'doms_cur' */
7081 * Special case: If a kmalloc of a doms_cur partition (array of
7082 * cpumask) fails, then fallback to a single sched domain,
7083 * as determined by the single cpumask fallback_doms.
7085 static cpumask_var_t fallback_doms;
7088 * arch_update_cpu_topology lets virtualized architectures update the
7089 * cpu core maps. It is supposed to return 1 if the topology changed
7090 * or 0 if it stayed the same.
7092 int __attribute__((weak)) arch_update_cpu_topology(void)
7094 return 0;
7097 cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
7099 int i;
7100 cpumask_var_t *doms;
7102 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
7103 if (!doms)
7104 return NULL;
7105 for (i = 0; i < ndoms; i++) {
7106 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
7107 free_sched_domains(doms, i);
7108 return NULL;
7111 return doms;
7114 void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
7116 unsigned int i;
7117 for (i = 0; i < ndoms; i++)
7118 free_cpumask_var(doms[i]);
7119 kfree(doms);
7123 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7124 * For now this just excludes isolated cpus, but could be used to
7125 * exclude other special cases in the future.
7127 static int arch_init_sched_domains(const struct cpumask *cpu_map)
7129 int err;
7131 arch_update_cpu_topology();
7132 ndoms_cur = 1;
7133 doms_cur = alloc_sched_domains(ndoms_cur);
7134 if (!doms_cur)
7135 doms_cur = &fallback_doms;
7136 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
7137 dattr_cur = NULL;
7138 err = build_sched_domains(doms_cur[0]);
7139 register_sched_domain_sysctl();
7141 return err;
7144 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
7145 struct cpumask *tmpmask)
7147 free_sched_groups(cpu_map, tmpmask);
7151 * Detach sched domains from a group of cpus specified in cpu_map
7152 * These cpus will now be attached to the NULL domain
7154 static void detach_destroy_domains(const struct cpumask *cpu_map)
7156 /* Save because hotplug lock held. */
7157 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
7158 int i;
7160 for_each_cpu(i, cpu_map)
7161 cpu_attach_domain(NULL, &def_root_domain, i);
7162 synchronize_sched();
7163 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
7166 /* handle null as "default" */
7167 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
7168 struct sched_domain_attr *new, int idx_new)
7170 struct sched_domain_attr tmp;
7172 /* fast path */
7173 if (!new && !cur)
7174 return 1;
7176 tmp = SD_ATTR_INIT;
7177 return !memcmp(cur ? (cur + idx_cur) : &tmp,
7178 new ? (new + idx_new) : &tmp,
7179 sizeof(struct sched_domain_attr));
7183 * Partition sched domains as specified by the 'ndoms_new'
7184 * cpumasks in the array doms_new[] of cpumasks. This compares
7185 * doms_new[] to the current sched domain partitioning, doms_cur[].
7186 * It destroys each deleted domain and builds each new domain.
7188 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7189 * The masks don't intersect (don't overlap.) We should setup one
7190 * sched domain for each mask. CPUs not in any of the cpumasks will
7191 * not be load balanced. If the same cpumask appears both in the
7192 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7193 * it as it is.
7195 * The passed in 'doms_new' should be allocated using
7196 * alloc_sched_domains. This routine takes ownership of it and will
7197 * free_sched_domains it when done with it. If the caller failed the
7198 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7199 * and partition_sched_domains() will fallback to the single partition
7200 * 'fallback_doms', it also forces the domains to be rebuilt.
7202 * If doms_new == NULL it will be replaced with cpu_online_mask.
7203 * ndoms_new == 0 is a special case for destroying existing domains,
7204 * and it will not create the default domain.
7206 * Call with hotplug lock held
7208 void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
7209 struct sched_domain_attr *dattr_new)
7211 int i, j, n;
7212 int new_topology;
7214 mutex_lock(&sched_domains_mutex);
7216 /* always unregister in case we don't destroy any domains */
7217 unregister_sched_domain_sysctl();
7219 /* Let architecture update cpu core mappings. */
7220 new_topology = arch_update_cpu_topology();
7222 n = doms_new ? ndoms_new : 0;
7224 /* Destroy deleted domains */
7225 for (i = 0; i < ndoms_cur; i++) {
7226 for (j = 0; j < n && !new_topology; j++) {
7227 if (cpumask_equal(doms_cur[i], doms_new[j])
7228 && dattrs_equal(dattr_cur, i, dattr_new, j))
7229 goto match1;
7231 /* no match - a current sched domain not in new doms_new[] */
7232 detach_destroy_domains(doms_cur[i]);
7233 match1:
7237 if (doms_new == NULL) {
7238 ndoms_cur = 0;
7239 doms_new = &fallback_doms;
7240 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
7241 WARN_ON_ONCE(dattr_new);
7244 /* Build new domains */
7245 for (i = 0; i < ndoms_new; i++) {
7246 for (j = 0; j < ndoms_cur && !new_topology; j++) {
7247 if (cpumask_equal(doms_new[i], doms_cur[j])
7248 && dattrs_equal(dattr_new, i, dattr_cur, j))
7249 goto match2;
7251 /* no match - add a new doms_new */
7252 __build_sched_domains(doms_new[i],
7253 dattr_new ? dattr_new + i : NULL);
7254 match2:
7258 /* Remember the new sched domains */
7259 if (doms_cur != &fallback_doms)
7260 free_sched_domains(doms_cur, ndoms_cur);
7261 kfree(dattr_cur); /* kfree(NULL) is safe */
7262 doms_cur = doms_new;
7263 dattr_cur = dattr_new;
7264 ndoms_cur = ndoms_new;
7266 register_sched_domain_sysctl();
7268 mutex_unlock(&sched_domains_mutex);
7271 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7272 static void arch_reinit_sched_domains(void)
7274 get_online_cpus();
7276 /* Destroy domains first to force the rebuild */
7277 partition_sched_domains(0, NULL, NULL);
7279 rebuild_sched_domains();
7280 put_online_cpus();
7283 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
7285 unsigned int level = 0;
7287 if (sscanf(buf, "%u", &level) != 1)
7288 return -EINVAL;
7291 * level is always be positive so don't check for
7292 * level < POWERSAVINGS_BALANCE_NONE which is 0
7293 * What happens on 0 or 1 byte write,
7294 * need to check for count as well?
7297 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
7298 return -EINVAL;
7300 if (smt)
7301 sched_smt_power_savings = level;
7302 else
7303 sched_mc_power_savings = level;
7305 arch_reinit_sched_domains();
7307 return count;
7310 #ifdef CONFIG_SCHED_MC
7311 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
7312 struct sysdev_class_attribute *attr,
7313 char *page)
7315 return sprintf(page, "%u\n", sched_mc_power_savings);
7317 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
7318 struct sysdev_class_attribute *attr,
7319 const char *buf, size_t count)
7321 return sched_power_savings_store(buf, count, 0);
7323 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
7324 sched_mc_power_savings_show,
7325 sched_mc_power_savings_store);
7326 #endif
7328 #ifdef CONFIG_SCHED_SMT
7329 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
7330 struct sysdev_class_attribute *attr,
7331 char *page)
7333 return sprintf(page, "%u\n", sched_smt_power_savings);
7335 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
7336 struct sysdev_class_attribute *attr,
7337 const char *buf, size_t count)
7339 return sched_power_savings_store(buf, count, 1);
7341 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
7342 sched_smt_power_savings_show,
7343 sched_smt_power_savings_store);
7344 #endif
7346 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
7348 int err = 0;
7350 #ifdef CONFIG_SCHED_SMT
7351 if (smt_capable())
7352 err = sysfs_create_file(&cls->kset.kobj,
7353 &attr_sched_smt_power_savings.attr);
7354 #endif
7355 #ifdef CONFIG_SCHED_MC
7356 if (!err && mc_capable())
7357 err = sysfs_create_file(&cls->kset.kobj,
7358 &attr_sched_mc_power_savings.attr);
7359 #endif
7360 return err;
7362 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7364 #ifndef CONFIG_CPUSETS
7366 * Add online and remove offline CPUs from the scheduler domains.
7367 * When cpusets are enabled they take over this function.
7369 static int update_sched_domains(struct notifier_block *nfb,
7370 unsigned long action, void *hcpu)
7372 switch (action) {
7373 case CPU_ONLINE:
7374 case CPU_ONLINE_FROZEN:
7375 case CPU_DOWN_PREPARE:
7376 case CPU_DOWN_PREPARE_FROZEN:
7377 case CPU_DOWN_FAILED:
7378 case CPU_DOWN_FAILED_FROZEN:
7379 partition_sched_domains(1, NULL, NULL);
7380 return NOTIFY_OK;
7382 default:
7383 return NOTIFY_DONE;
7386 #endif
7388 static int update_runtime(struct notifier_block *nfb,
7389 unsigned long action, void *hcpu)
7391 int cpu = (int)(long)hcpu;
7393 switch (action) {
7394 case CPU_DOWN_PREPARE:
7395 case CPU_DOWN_PREPARE_FROZEN:
7396 disable_runtime(cpu_rq(cpu));
7397 return NOTIFY_OK;
7399 case CPU_DOWN_FAILED:
7400 case CPU_DOWN_FAILED_FROZEN:
7401 case CPU_ONLINE:
7402 case CPU_ONLINE_FROZEN:
7403 enable_runtime(cpu_rq(cpu));
7404 return NOTIFY_OK;
7406 default:
7407 return NOTIFY_DONE;
7411 void __init sched_init_smp(void)
7413 cpumask_var_t non_isolated_cpus;
7415 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
7416 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
7418 #if defined(CONFIG_NUMA)
7419 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
7420 GFP_KERNEL);
7421 BUG_ON(sched_group_nodes_bycpu == NULL);
7422 #endif
7423 get_online_cpus();
7424 mutex_lock(&sched_domains_mutex);
7425 arch_init_sched_domains(cpu_active_mask);
7426 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7427 if (cpumask_empty(non_isolated_cpus))
7428 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
7429 mutex_unlock(&sched_domains_mutex);
7430 put_online_cpus();
7432 #ifndef CONFIG_CPUSETS
7433 /* XXX: Theoretical race here - CPU may be hotplugged now */
7434 hotcpu_notifier(update_sched_domains, 0);
7435 #endif
7437 /* RT runtime code needs to handle some hotplug events */
7438 hotcpu_notifier(update_runtime, 0);
7440 init_hrtick();
7442 /* Move init over to a non-isolated CPU */
7443 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
7444 BUG();
7445 sched_init_granularity();
7446 free_cpumask_var(non_isolated_cpus);
7448 init_sched_rt_class();
7450 #else
7451 void __init sched_init_smp(void)
7453 sched_init_granularity();
7455 #endif /* CONFIG_SMP */
7457 const_debug unsigned int sysctl_timer_migration = 1;
7459 int in_sched_functions(unsigned long addr)
7461 return in_lock_functions(addr) ||
7462 (addr >= (unsigned long)__sched_text_start
7463 && addr < (unsigned long)__sched_text_end);
7466 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
7468 cfs_rq->tasks_timeline = RB_ROOT;
7469 INIT_LIST_HEAD(&cfs_rq->tasks);
7470 #ifdef CONFIG_FAIR_GROUP_SCHED
7471 cfs_rq->rq = rq;
7472 #endif
7473 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
7476 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
7478 struct rt_prio_array *array;
7479 int i;
7481 array = &rt_rq->active;
7482 for (i = 0; i < MAX_RT_PRIO; i++) {
7483 INIT_LIST_HEAD(array->queue + i);
7484 __clear_bit(i, array->bitmap);
7486 /* delimiter for bitsearch: */
7487 __set_bit(MAX_RT_PRIO, array->bitmap);
7489 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7490 rt_rq->highest_prio.curr = MAX_RT_PRIO;
7491 #ifdef CONFIG_SMP
7492 rt_rq->highest_prio.next = MAX_RT_PRIO;
7493 #endif
7494 #endif
7495 #ifdef CONFIG_SMP
7496 rt_rq->rt_nr_migratory = 0;
7497 rt_rq->overloaded = 0;
7498 plist_head_init_raw(&rt_rq->pushable_tasks, &rq->lock);
7499 #endif
7501 rt_rq->rt_time = 0;
7502 rt_rq->rt_throttled = 0;
7503 rt_rq->rt_runtime = 0;
7504 raw_spin_lock_init(&rt_rq->rt_runtime_lock);
7506 #ifdef CONFIG_RT_GROUP_SCHED
7507 rt_rq->rt_nr_boosted = 0;
7508 rt_rq->rq = rq;
7509 #endif
7512 #ifdef CONFIG_FAIR_GROUP_SCHED
7513 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
7514 struct sched_entity *se, int cpu, int add,
7515 struct sched_entity *parent)
7517 struct rq *rq = cpu_rq(cpu);
7518 tg->cfs_rq[cpu] = cfs_rq;
7519 init_cfs_rq(cfs_rq, rq);
7520 cfs_rq->tg = tg;
7521 if (add)
7522 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
7524 tg->se[cpu] = se;
7525 /* se could be NULL for init_task_group */
7526 if (!se)
7527 return;
7529 if (!parent)
7530 se->cfs_rq = &rq->cfs;
7531 else
7532 se->cfs_rq = parent->my_q;
7534 se->my_q = cfs_rq;
7535 se->load.weight = tg->shares;
7536 se->load.inv_weight = 0;
7537 se->parent = parent;
7539 #endif
7541 #ifdef CONFIG_RT_GROUP_SCHED
7542 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
7543 struct sched_rt_entity *rt_se, int cpu, int add,
7544 struct sched_rt_entity *parent)
7546 struct rq *rq = cpu_rq(cpu);
7548 tg->rt_rq[cpu] = rt_rq;
7549 init_rt_rq(rt_rq, rq);
7550 rt_rq->tg = tg;
7551 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
7552 if (add)
7553 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
7555 tg->rt_se[cpu] = rt_se;
7556 if (!rt_se)
7557 return;
7559 if (!parent)
7560 rt_se->rt_rq = &rq->rt;
7561 else
7562 rt_se->rt_rq = parent->my_q;
7564 rt_se->my_q = rt_rq;
7565 rt_se->parent = parent;
7566 INIT_LIST_HEAD(&rt_se->run_list);
7568 #endif
7570 void __init sched_init(void)
7572 int i, j;
7573 unsigned long alloc_size = 0, ptr;
7575 #ifdef CONFIG_FAIR_GROUP_SCHED
7576 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7577 #endif
7578 #ifdef CONFIG_RT_GROUP_SCHED
7579 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7580 #endif
7581 #ifdef CONFIG_CPUMASK_OFFSTACK
7582 alloc_size += num_possible_cpus() * cpumask_size();
7583 #endif
7584 if (alloc_size) {
7585 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
7587 #ifdef CONFIG_FAIR_GROUP_SCHED
7588 init_task_group.se = (struct sched_entity **)ptr;
7589 ptr += nr_cpu_ids * sizeof(void **);
7591 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
7592 ptr += nr_cpu_ids * sizeof(void **);
7594 #endif /* CONFIG_FAIR_GROUP_SCHED */
7595 #ifdef CONFIG_RT_GROUP_SCHED
7596 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
7597 ptr += nr_cpu_ids * sizeof(void **);
7599 init_task_group.rt_rq = (struct rt_rq **)ptr;
7600 ptr += nr_cpu_ids * sizeof(void **);
7602 #endif /* CONFIG_RT_GROUP_SCHED */
7603 #ifdef CONFIG_CPUMASK_OFFSTACK
7604 for_each_possible_cpu(i) {
7605 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7606 ptr += cpumask_size();
7608 #endif /* CONFIG_CPUMASK_OFFSTACK */
7611 #ifdef CONFIG_SMP
7612 init_defrootdomain();
7613 #endif
7615 init_rt_bandwidth(&def_rt_bandwidth,
7616 global_rt_period(), global_rt_runtime());
7618 #ifdef CONFIG_RT_GROUP_SCHED
7619 init_rt_bandwidth(&init_task_group.rt_bandwidth,
7620 global_rt_period(), global_rt_runtime());
7621 #endif /* CONFIG_RT_GROUP_SCHED */
7623 #ifdef CONFIG_CGROUP_SCHED
7624 list_add(&init_task_group.list, &task_groups);
7625 INIT_LIST_HEAD(&init_task_group.children);
7627 #endif /* CONFIG_CGROUP_SCHED */
7629 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7630 update_shares_data = __alloc_percpu(nr_cpu_ids * sizeof(unsigned long),
7631 __alignof__(unsigned long));
7632 #endif
7633 for_each_possible_cpu(i) {
7634 struct rq *rq;
7636 rq = cpu_rq(i);
7637 raw_spin_lock_init(&rq->lock);
7638 rq->nr_running = 0;
7639 rq->calc_load_active = 0;
7640 rq->calc_load_update = jiffies + LOAD_FREQ;
7641 init_cfs_rq(&rq->cfs, rq);
7642 init_rt_rq(&rq->rt, rq);
7643 #ifdef CONFIG_FAIR_GROUP_SCHED
7644 init_task_group.shares = init_task_group_load;
7645 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
7646 #ifdef CONFIG_CGROUP_SCHED
7648 * How much cpu bandwidth does init_task_group get?
7650 * In case of task-groups formed thr' the cgroup filesystem, it
7651 * gets 100% of the cpu resources in the system. This overall
7652 * system cpu resource is divided among the tasks of
7653 * init_task_group and its child task-groups in a fair manner,
7654 * based on each entity's (task or task-group's) weight
7655 * (se->load.weight).
7657 * In other words, if init_task_group has 10 tasks of weight
7658 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7659 * then A0's share of the cpu resource is:
7661 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7663 * We achieve this by letting init_task_group's tasks sit
7664 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7666 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
7667 #endif
7668 #endif /* CONFIG_FAIR_GROUP_SCHED */
7670 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
7671 #ifdef CONFIG_RT_GROUP_SCHED
7672 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
7673 #ifdef CONFIG_CGROUP_SCHED
7674 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
7675 #endif
7676 #endif
7678 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7679 rq->cpu_load[j] = 0;
7680 #ifdef CONFIG_SMP
7681 rq->sd = NULL;
7682 rq->rd = NULL;
7683 rq->post_schedule = 0;
7684 rq->active_balance = 0;
7685 rq->next_balance = jiffies;
7686 rq->push_cpu = 0;
7687 rq->cpu = i;
7688 rq->online = 0;
7689 rq->migration_thread = NULL;
7690 rq->idle_stamp = 0;
7691 rq->avg_idle = 2*sysctl_sched_migration_cost;
7692 INIT_LIST_HEAD(&rq->migration_queue);
7693 rq_attach_root(rq, &def_root_domain);
7694 #endif
7695 init_rq_hrtick(rq);
7696 atomic_set(&rq->nr_iowait, 0);
7699 set_load_weight(&init_task);
7701 #ifdef CONFIG_PREEMPT_NOTIFIERS
7702 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7703 #endif
7705 #ifdef CONFIG_SMP
7706 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
7707 #endif
7709 #ifdef CONFIG_RT_MUTEXES
7710 plist_head_init_raw(&init_task.pi_waiters, &init_task.pi_lock);
7711 #endif
7714 * The boot idle thread does lazy MMU switching as well:
7716 atomic_inc(&init_mm.mm_count);
7717 enter_lazy_tlb(&init_mm, current);
7720 * Make us the idle thread. Technically, schedule() should not be
7721 * called from this thread, however somewhere below it might be,
7722 * but because we are the idle thread, we just pick up running again
7723 * when this runqueue becomes "idle".
7725 init_idle(current, smp_processor_id());
7727 calc_load_update = jiffies + LOAD_FREQ;
7730 * During early bootup we pretend to be a normal task:
7732 current->sched_class = &fair_sched_class;
7734 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7735 zalloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
7736 #ifdef CONFIG_SMP
7737 #ifdef CONFIG_NO_HZ
7738 zalloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
7739 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
7740 #endif
7741 /* May be allocated at isolcpus cmdline parse time */
7742 if (cpu_isolated_map == NULL)
7743 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
7744 #endif /* SMP */
7746 perf_event_init();
7748 scheduler_running = 1;
7751 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7752 static inline int preempt_count_equals(int preempt_offset)
7754 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
7756 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
7759 void __might_sleep(const char *file, int line, int preempt_offset)
7761 #ifdef in_atomic
7762 static unsigned long prev_jiffy; /* ratelimiting */
7764 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7765 system_state != SYSTEM_RUNNING || oops_in_progress)
7766 return;
7767 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7768 return;
7769 prev_jiffy = jiffies;
7771 printk(KERN_ERR
7772 "BUG: sleeping function called from invalid context at %s:%d\n",
7773 file, line);
7774 printk(KERN_ERR
7775 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7776 in_atomic(), irqs_disabled(),
7777 current->pid, current->comm);
7779 debug_show_held_locks(current);
7780 if (irqs_disabled())
7781 print_irqtrace_events(current);
7782 dump_stack();
7783 #endif
7785 EXPORT_SYMBOL(__might_sleep);
7786 #endif
7788 #ifdef CONFIG_MAGIC_SYSRQ
7789 static void normalize_task(struct rq *rq, struct task_struct *p)
7791 int on_rq;
7793 on_rq = p->se.on_rq;
7794 if (on_rq)
7795 deactivate_task(rq, p, 0);
7796 __setscheduler(rq, p, SCHED_NORMAL, 0);
7797 if (on_rq) {
7798 activate_task(rq, p, 0);
7799 resched_task(rq->curr);
7803 void normalize_rt_tasks(void)
7805 struct task_struct *g, *p;
7806 unsigned long flags;
7807 struct rq *rq;
7809 read_lock_irqsave(&tasklist_lock, flags);
7810 do_each_thread(g, p) {
7812 * Only normalize user tasks:
7814 if (!p->mm)
7815 continue;
7817 p->se.exec_start = 0;
7818 #ifdef CONFIG_SCHEDSTATS
7819 p->se.statistics.wait_start = 0;
7820 p->se.statistics.sleep_start = 0;
7821 p->se.statistics.block_start = 0;
7822 #endif
7824 if (!rt_task(p)) {
7826 * Renice negative nice level userspace
7827 * tasks back to 0:
7829 if (TASK_NICE(p) < 0 && p->mm)
7830 set_user_nice(p, 0);
7831 continue;
7834 raw_spin_lock(&p->pi_lock);
7835 rq = __task_rq_lock(p);
7837 normalize_task(rq, p);
7839 __task_rq_unlock(rq);
7840 raw_spin_unlock(&p->pi_lock);
7841 } while_each_thread(g, p);
7843 read_unlock_irqrestore(&tasklist_lock, flags);
7846 #endif /* CONFIG_MAGIC_SYSRQ */
7848 #ifdef CONFIG_IA64
7850 * These functions are only useful for the IA64 MCA handling.
7852 * They can only be called when the whole system has been
7853 * stopped - every CPU needs to be quiescent, and no scheduling
7854 * activity can take place. Using them for anything else would
7855 * be a serious bug, and as a result, they aren't even visible
7856 * under any other configuration.
7860 * curr_task - return the current task for a given cpu.
7861 * @cpu: the processor in question.
7863 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7865 struct task_struct *curr_task(int cpu)
7867 return cpu_curr(cpu);
7871 * set_curr_task - set the current task for a given cpu.
7872 * @cpu: the processor in question.
7873 * @p: the task pointer to set.
7875 * Description: This function must only be used when non-maskable interrupts
7876 * are serviced on a separate stack. It allows the architecture to switch the
7877 * notion of the current task on a cpu in a non-blocking manner. This function
7878 * must be called with all CPU's synchronized, and interrupts disabled, the
7879 * and caller must save the original value of the current task (see
7880 * curr_task() above) and restore that value before reenabling interrupts and
7881 * re-starting the system.
7883 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7885 void set_curr_task(int cpu, struct task_struct *p)
7887 cpu_curr(cpu) = p;
7890 #endif
7892 #ifdef CONFIG_FAIR_GROUP_SCHED
7893 static void free_fair_sched_group(struct task_group *tg)
7895 int i;
7897 for_each_possible_cpu(i) {
7898 if (tg->cfs_rq)
7899 kfree(tg->cfs_rq[i]);
7900 if (tg->se)
7901 kfree(tg->se[i]);
7904 kfree(tg->cfs_rq);
7905 kfree(tg->se);
7908 static
7909 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7911 struct cfs_rq *cfs_rq;
7912 struct sched_entity *se;
7913 struct rq *rq;
7914 int i;
7916 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
7917 if (!tg->cfs_rq)
7918 goto err;
7919 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
7920 if (!tg->se)
7921 goto err;
7923 tg->shares = NICE_0_LOAD;
7925 for_each_possible_cpu(i) {
7926 rq = cpu_rq(i);
7928 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
7929 GFP_KERNEL, cpu_to_node(i));
7930 if (!cfs_rq)
7931 goto err;
7933 se = kzalloc_node(sizeof(struct sched_entity),
7934 GFP_KERNEL, cpu_to_node(i));
7935 if (!se)
7936 goto err_free_rq;
7938 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
7941 return 1;
7943 err_free_rq:
7944 kfree(cfs_rq);
7945 err:
7946 return 0;
7949 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7951 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
7952 &cpu_rq(cpu)->leaf_cfs_rq_list);
7955 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7957 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
7959 #else /* !CONFG_FAIR_GROUP_SCHED */
7960 static inline void free_fair_sched_group(struct task_group *tg)
7964 static inline
7965 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
7967 return 1;
7970 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
7974 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
7977 #endif /* CONFIG_FAIR_GROUP_SCHED */
7979 #ifdef CONFIG_RT_GROUP_SCHED
7980 static void free_rt_sched_group(struct task_group *tg)
7982 int i;
7984 destroy_rt_bandwidth(&tg->rt_bandwidth);
7986 for_each_possible_cpu(i) {
7987 if (tg->rt_rq)
7988 kfree(tg->rt_rq[i]);
7989 if (tg->rt_se)
7990 kfree(tg->rt_se[i]);
7993 kfree(tg->rt_rq);
7994 kfree(tg->rt_se);
7997 static
7998 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8000 struct rt_rq *rt_rq;
8001 struct sched_rt_entity *rt_se;
8002 struct rq *rq;
8003 int i;
8005 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
8006 if (!tg->rt_rq)
8007 goto err;
8008 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
8009 if (!tg->rt_se)
8010 goto err;
8012 init_rt_bandwidth(&tg->rt_bandwidth,
8013 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
8015 for_each_possible_cpu(i) {
8016 rq = cpu_rq(i);
8018 rt_rq = kzalloc_node(sizeof(struct rt_rq),
8019 GFP_KERNEL, cpu_to_node(i));
8020 if (!rt_rq)
8021 goto err;
8023 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
8024 GFP_KERNEL, cpu_to_node(i));
8025 if (!rt_se)
8026 goto err_free_rq;
8028 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
8031 return 1;
8033 err_free_rq:
8034 kfree(rt_rq);
8035 err:
8036 return 0;
8039 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8041 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
8042 &cpu_rq(cpu)->leaf_rt_rq_list);
8045 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8047 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
8049 #else /* !CONFIG_RT_GROUP_SCHED */
8050 static inline void free_rt_sched_group(struct task_group *tg)
8054 static inline
8055 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
8057 return 1;
8060 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
8064 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
8067 #endif /* CONFIG_RT_GROUP_SCHED */
8069 #ifdef CONFIG_CGROUP_SCHED
8070 static void free_sched_group(struct task_group *tg)
8072 free_fair_sched_group(tg);
8073 free_rt_sched_group(tg);
8074 kfree(tg);
8077 /* allocate runqueue etc for a new task group */
8078 struct task_group *sched_create_group(struct task_group *parent)
8080 struct task_group *tg;
8081 unsigned long flags;
8082 int i;
8084 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
8085 if (!tg)
8086 return ERR_PTR(-ENOMEM);
8088 if (!alloc_fair_sched_group(tg, parent))
8089 goto err;
8091 if (!alloc_rt_sched_group(tg, parent))
8092 goto err;
8094 spin_lock_irqsave(&task_group_lock, flags);
8095 for_each_possible_cpu(i) {
8096 register_fair_sched_group(tg, i);
8097 register_rt_sched_group(tg, i);
8099 list_add_rcu(&tg->list, &task_groups);
8101 WARN_ON(!parent); /* root should already exist */
8103 tg->parent = parent;
8104 INIT_LIST_HEAD(&tg->children);
8105 list_add_rcu(&tg->siblings, &parent->children);
8106 spin_unlock_irqrestore(&task_group_lock, flags);
8108 return tg;
8110 err:
8111 free_sched_group(tg);
8112 return ERR_PTR(-ENOMEM);
8115 /* rcu callback to free various structures associated with a task group */
8116 static void free_sched_group_rcu(struct rcu_head *rhp)
8118 /* now it should be safe to free those cfs_rqs */
8119 free_sched_group(container_of(rhp, struct task_group, rcu));
8122 /* Destroy runqueue etc associated with a task group */
8123 void sched_destroy_group(struct task_group *tg)
8125 unsigned long flags;
8126 int i;
8128 spin_lock_irqsave(&task_group_lock, flags);
8129 for_each_possible_cpu(i) {
8130 unregister_fair_sched_group(tg, i);
8131 unregister_rt_sched_group(tg, i);
8133 list_del_rcu(&tg->list);
8134 list_del_rcu(&tg->siblings);
8135 spin_unlock_irqrestore(&task_group_lock, flags);
8137 /* wait for possible concurrent references to cfs_rqs complete */
8138 call_rcu(&tg->rcu, free_sched_group_rcu);
8141 /* change task's runqueue when it moves between groups.
8142 * The caller of this function should have put the task in its new group
8143 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8144 * reflect its new group.
8146 void sched_move_task(struct task_struct *tsk)
8148 int on_rq, running;
8149 unsigned long flags;
8150 struct rq *rq;
8152 rq = task_rq_lock(tsk, &flags);
8154 running = task_current(rq, tsk);
8155 on_rq = tsk->se.on_rq;
8157 if (on_rq)
8158 dequeue_task(rq, tsk, 0);
8159 if (unlikely(running))
8160 tsk->sched_class->put_prev_task(rq, tsk);
8162 set_task_rq(tsk, task_cpu(tsk));
8164 #ifdef CONFIG_FAIR_GROUP_SCHED
8165 if (tsk->sched_class->moved_group)
8166 tsk->sched_class->moved_group(tsk, on_rq);
8167 #endif
8169 if (unlikely(running))
8170 tsk->sched_class->set_curr_task(rq);
8171 if (on_rq)
8172 enqueue_task(rq, tsk, 0, false);
8174 task_rq_unlock(rq, &flags);
8176 #endif /* CONFIG_CGROUP_SCHED */
8178 #ifdef CONFIG_FAIR_GROUP_SCHED
8179 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
8181 struct cfs_rq *cfs_rq = se->cfs_rq;
8182 int on_rq;
8184 on_rq = se->on_rq;
8185 if (on_rq)
8186 dequeue_entity(cfs_rq, se, 0);
8188 se->load.weight = shares;
8189 se->load.inv_weight = 0;
8191 if (on_rq)
8192 enqueue_entity(cfs_rq, se, 0);
8195 static void set_se_shares(struct sched_entity *se, unsigned long shares)
8197 struct cfs_rq *cfs_rq = se->cfs_rq;
8198 struct rq *rq = cfs_rq->rq;
8199 unsigned long flags;
8201 raw_spin_lock_irqsave(&rq->lock, flags);
8202 __set_se_shares(se, shares);
8203 raw_spin_unlock_irqrestore(&rq->lock, flags);
8206 static DEFINE_MUTEX(shares_mutex);
8208 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8210 int i;
8211 unsigned long flags;
8214 * We can't change the weight of the root cgroup.
8216 if (!tg->se[0])
8217 return -EINVAL;
8219 if (shares < MIN_SHARES)
8220 shares = MIN_SHARES;
8221 else if (shares > MAX_SHARES)
8222 shares = MAX_SHARES;
8224 mutex_lock(&shares_mutex);
8225 if (tg->shares == shares)
8226 goto done;
8228 spin_lock_irqsave(&task_group_lock, flags);
8229 for_each_possible_cpu(i)
8230 unregister_fair_sched_group(tg, i);
8231 list_del_rcu(&tg->siblings);
8232 spin_unlock_irqrestore(&task_group_lock, flags);
8234 /* wait for any ongoing reference to this group to finish */
8235 synchronize_sched();
8238 * Now we are free to modify the group's share on each cpu
8239 * w/o tripping rebalance_share or load_balance_fair.
8241 tg->shares = shares;
8242 for_each_possible_cpu(i) {
8244 * force a rebalance
8246 cfs_rq_set_shares(tg->cfs_rq[i], 0);
8247 set_se_shares(tg->se[i], shares);
8251 * Enable load balance activity on this group, by inserting it back on
8252 * each cpu's rq->leaf_cfs_rq_list.
8254 spin_lock_irqsave(&task_group_lock, flags);
8255 for_each_possible_cpu(i)
8256 register_fair_sched_group(tg, i);
8257 list_add_rcu(&tg->siblings, &tg->parent->children);
8258 spin_unlock_irqrestore(&task_group_lock, flags);
8259 done:
8260 mutex_unlock(&shares_mutex);
8261 return 0;
8264 unsigned long sched_group_shares(struct task_group *tg)
8266 return tg->shares;
8268 #endif
8270 #ifdef CONFIG_RT_GROUP_SCHED
8272 * Ensure that the real time constraints are schedulable.
8274 static DEFINE_MUTEX(rt_constraints_mutex);
8276 static unsigned long to_ratio(u64 period, u64 runtime)
8278 if (runtime == RUNTIME_INF)
8279 return 1ULL << 20;
8281 return div64_u64(runtime << 20, period);
8284 /* Must be called with tasklist_lock held */
8285 static inline int tg_has_rt_tasks(struct task_group *tg)
8287 struct task_struct *g, *p;
8289 do_each_thread(g, p) {
8290 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
8291 return 1;
8292 } while_each_thread(g, p);
8294 return 0;
8297 struct rt_schedulable_data {
8298 struct task_group *tg;
8299 u64 rt_period;
8300 u64 rt_runtime;
8303 static int tg_schedulable(struct task_group *tg, void *data)
8305 struct rt_schedulable_data *d = data;
8306 struct task_group *child;
8307 unsigned long total, sum = 0;
8308 u64 period, runtime;
8310 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8311 runtime = tg->rt_bandwidth.rt_runtime;
8313 if (tg == d->tg) {
8314 period = d->rt_period;
8315 runtime = d->rt_runtime;
8319 * Cannot have more runtime than the period.
8321 if (runtime > period && runtime != RUNTIME_INF)
8322 return -EINVAL;
8325 * Ensure we don't starve existing RT tasks.
8327 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
8328 return -EBUSY;
8330 total = to_ratio(period, runtime);
8333 * Nobody can have more than the global setting allows.
8335 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
8336 return -EINVAL;
8339 * The sum of our children's runtime should not exceed our own.
8341 list_for_each_entry_rcu(child, &tg->children, siblings) {
8342 period = ktime_to_ns(child->rt_bandwidth.rt_period);
8343 runtime = child->rt_bandwidth.rt_runtime;
8345 if (child == d->tg) {
8346 period = d->rt_period;
8347 runtime = d->rt_runtime;
8350 sum += to_ratio(period, runtime);
8353 if (sum > total)
8354 return -EINVAL;
8356 return 0;
8359 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
8361 struct rt_schedulable_data data = {
8362 .tg = tg,
8363 .rt_period = period,
8364 .rt_runtime = runtime,
8367 return walk_tg_tree(tg_schedulable, tg_nop, &data);
8370 static int tg_set_bandwidth(struct task_group *tg,
8371 u64 rt_period, u64 rt_runtime)
8373 int i, err = 0;
8375 mutex_lock(&rt_constraints_mutex);
8376 read_lock(&tasklist_lock);
8377 err = __rt_schedulable(tg, rt_period, rt_runtime);
8378 if (err)
8379 goto unlock;
8381 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8382 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
8383 tg->rt_bandwidth.rt_runtime = rt_runtime;
8385 for_each_possible_cpu(i) {
8386 struct rt_rq *rt_rq = tg->rt_rq[i];
8388 raw_spin_lock(&rt_rq->rt_runtime_lock);
8389 rt_rq->rt_runtime = rt_runtime;
8390 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8392 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
8393 unlock:
8394 read_unlock(&tasklist_lock);
8395 mutex_unlock(&rt_constraints_mutex);
8397 return err;
8400 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
8402 u64 rt_runtime, rt_period;
8404 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
8405 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
8406 if (rt_runtime_us < 0)
8407 rt_runtime = RUNTIME_INF;
8409 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8412 long sched_group_rt_runtime(struct task_group *tg)
8414 u64 rt_runtime_us;
8416 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
8417 return -1;
8419 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
8420 do_div(rt_runtime_us, NSEC_PER_USEC);
8421 return rt_runtime_us;
8424 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
8426 u64 rt_runtime, rt_period;
8428 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
8429 rt_runtime = tg->rt_bandwidth.rt_runtime;
8431 if (rt_period == 0)
8432 return -EINVAL;
8434 return tg_set_bandwidth(tg, rt_period, rt_runtime);
8437 long sched_group_rt_period(struct task_group *tg)
8439 u64 rt_period_us;
8441 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
8442 do_div(rt_period_us, NSEC_PER_USEC);
8443 return rt_period_us;
8446 static int sched_rt_global_constraints(void)
8448 u64 runtime, period;
8449 int ret = 0;
8451 if (sysctl_sched_rt_period <= 0)
8452 return -EINVAL;
8454 runtime = global_rt_runtime();
8455 period = global_rt_period();
8458 * Sanity check on the sysctl variables.
8460 if (runtime > period && runtime != RUNTIME_INF)
8461 return -EINVAL;
8463 mutex_lock(&rt_constraints_mutex);
8464 read_lock(&tasklist_lock);
8465 ret = __rt_schedulable(NULL, 0, 0);
8466 read_unlock(&tasklist_lock);
8467 mutex_unlock(&rt_constraints_mutex);
8469 return ret;
8472 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
8474 /* Don't accept realtime tasks when there is no way for them to run */
8475 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
8476 return 0;
8478 return 1;
8481 #else /* !CONFIG_RT_GROUP_SCHED */
8482 static int sched_rt_global_constraints(void)
8484 unsigned long flags;
8485 int i;
8487 if (sysctl_sched_rt_period <= 0)
8488 return -EINVAL;
8491 * There's always some RT tasks in the root group
8492 * -- migration, kstopmachine etc..
8494 if (sysctl_sched_rt_runtime == 0)
8495 return -EBUSY;
8497 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
8498 for_each_possible_cpu(i) {
8499 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
8501 raw_spin_lock(&rt_rq->rt_runtime_lock);
8502 rt_rq->rt_runtime = global_rt_runtime();
8503 raw_spin_unlock(&rt_rq->rt_runtime_lock);
8505 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
8507 return 0;
8509 #endif /* CONFIG_RT_GROUP_SCHED */
8511 int sched_rt_handler(struct ctl_table *table, int write,
8512 void __user *buffer, size_t *lenp,
8513 loff_t *ppos)
8515 int ret;
8516 int old_period, old_runtime;
8517 static DEFINE_MUTEX(mutex);
8519 mutex_lock(&mutex);
8520 old_period = sysctl_sched_rt_period;
8521 old_runtime = sysctl_sched_rt_runtime;
8523 ret = proc_dointvec(table, write, buffer, lenp, ppos);
8525 if (!ret && write) {
8526 ret = sched_rt_global_constraints();
8527 if (ret) {
8528 sysctl_sched_rt_period = old_period;
8529 sysctl_sched_rt_runtime = old_runtime;
8530 } else {
8531 def_rt_bandwidth.rt_runtime = global_rt_runtime();
8532 def_rt_bandwidth.rt_period =
8533 ns_to_ktime(global_rt_period());
8536 mutex_unlock(&mutex);
8538 return ret;
8541 #ifdef CONFIG_CGROUP_SCHED
8543 /* return corresponding task_group object of a cgroup */
8544 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
8546 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
8547 struct task_group, css);
8550 static struct cgroup_subsys_state *
8551 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
8553 struct task_group *tg, *parent;
8555 if (!cgrp->parent) {
8556 /* This is early initialization for the top cgroup */
8557 return &init_task_group.css;
8560 parent = cgroup_tg(cgrp->parent);
8561 tg = sched_create_group(parent);
8562 if (IS_ERR(tg))
8563 return ERR_PTR(-ENOMEM);
8565 return &tg->css;
8568 static void
8569 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8571 struct task_group *tg = cgroup_tg(cgrp);
8573 sched_destroy_group(tg);
8576 static int
8577 cpu_cgroup_can_attach_task(struct cgroup *cgrp, struct task_struct *tsk)
8579 #ifdef CONFIG_RT_GROUP_SCHED
8580 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
8581 return -EINVAL;
8582 #else
8583 /* We don't support RT-tasks being in separate groups */
8584 if (tsk->sched_class != &fair_sched_class)
8585 return -EINVAL;
8586 #endif
8587 return 0;
8590 static int
8591 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8592 struct task_struct *tsk, bool threadgroup)
8594 int retval = cpu_cgroup_can_attach_task(cgrp, tsk);
8595 if (retval)
8596 return retval;
8597 if (threadgroup) {
8598 struct task_struct *c;
8599 rcu_read_lock();
8600 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8601 retval = cpu_cgroup_can_attach_task(cgrp, c);
8602 if (retval) {
8603 rcu_read_unlock();
8604 return retval;
8607 rcu_read_unlock();
8609 return 0;
8612 static void
8613 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
8614 struct cgroup *old_cont, struct task_struct *tsk,
8615 bool threadgroup)
8617 sched_move_task(tsk);
8618 if (threadgroup) {
8619 struct task_struct *c;
8620 rcu_read_lock();
8621 list_for_each_entry_rcu(c, &tsk->thread_group, thread_group) {
8622 sched_move_task(c);
8624 rcu_read_unlock();
8628 #ifdef CONFIG_FAIR_GROUP_SCHED
8629 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
8630 u64 shareval)
8632 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
8635 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
8637 struct task_group *tg = cgroup_tg(cgrp);
8639 return (u64) tg->shares;
8641 #endif /* CONFIG_FAIR_GROUP_SCHED */
8643 #ifdef CONFIG_RT_GROUP_SCHED
8644 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
8645 s64 val)
8647 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
8650 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
8652 return sched_group_rt_runtime(cgroup_tg(cgrp));
8655 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8656 u64 rt_period_us)
8658 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8661 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8663 return sched_group_rt_period(cgroup_tg(cgrp));
8665 #endif /* CONFIG_RT_GROUP_SCHED */
8667 static struct cftype cpu_files[] = {
8668 #ifdef CONFIG_FAIR_GROUP_SCHED
8670 .name = "shares",
8671 .read_u64 = cpu_shares_read_u64,
8672 .write_u64 = cpu_shares_write_u64,
8674 #endif
8675 #ifdef CONFIG_RT_GROUP_SCHED
8677 .name = "rt_runtime_us",
8678 .read_s64 = cpu_rt_runtime_read,
8679 .write_s64 = cpu_rt_runtime_write,
8682 .name = "rt_period_us",
8683 .read_u64 = cpu_rt_period_read_uint,
8684 .write_u64 = cpu_rt_period_write_uint,
8686 #endif
8689 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
8691 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
8694 struct cgroup_subsys cpu_cgroup_subsys = {
8695 .name = "cpu",
8696 .create = cpu_cgroup_create,
8697 .destroy = cpu_cgroup_destroy,
8698 .can_attach = cpu_cgroup_can_attach,
8699 .attach = cpu_cgroup_attach,
8700 .populate = cpu_cgroup_populate,
8701 .subsys_id = cpu_cgroup_subsys_id,
8702 .early_init = 1,
8705 #endif /* CONFIG_CGROUP_SCHED */
8707 #ifdef CONFIG_CGROUP_CPUACCT
8710 * CPU accounting code for task groups.
8712 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8713 * (balbir@in.ibm.com).
8716 /* track cpu usage of a group of tasks and its child groups */
8717 struct cpuacct {
8718 struct cgroup_subsys_state css;
8719 /* cpuusage holds pointer to a u64-type object on every cpu */
8720 u64 __percpu *cpuusage;
8721 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
8722 struct cpuacct *parent;
8725 struct cgroup_subsys cpuacct_subsys;
8727 /* return cpu accounting group corresponding to this container */
8728 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
8730 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
8731 struct cpuacct, css);
8734 /* return cpu accounting group to which this task belongs */
8735 static inline struct cpuacct *task_ca(struct task_struct *tsk)
8737 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
8738 struct cpuacct, css);
8741 /* create a new cpu accounting group */
8742 static struct cgroup_subsys_state *cpuacct_create(
8743 struct cgroup_subsys *ss, struct cgroup *cgrp)
8745 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
8746 int i;
8748 if (!ca)
8749 goto out;
8751 ca->cpuusage = alloc_percpu(u64);
8752 if (!ca->cpuusage)
8753 goto out_free_ca;
8755 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8756 if (percpu_counter_init(&ca->cpustat[i], 0))
8757 goto out_free_counters;
8759 if (cgrp->parent)
8760 ca->parent = cgroup_ca(cgrp->parent);
8762 return &ca->css;
8764 out_free_counters:
8765 while (--i >= 0)
8766 percpu_counter_destroy(&ca->cpustat[i]);
8767 free_percpu(ca->cpuusage);
8768 out_free_ca:
8769 kfree(ca);
8770 out:
8771 return ERR_PTR(-ENOMEM);
8774 /* destroy an existing cpu accounting group */
8775 static void
8776 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
8778 struct cpuacct *ca = cgroup_ca(cgrp);
8779 int i;
8781 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
8782 percpu_counter_destroy(&ca->cpustat[i]);
8783 free_percpu(ca->cpuusage);
8784 kfree(ca);
8787 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8789 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8790 u64 data;
8792 #ifndef CONFIG_64BIT
8794 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8796 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8797 data = *cpuusage;
8798 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8799 #else
8800 data = *cpuusage;
8801 #endif
8803 return data;
8806 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8808 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8810 #ifndef CONFIG_64BIT
8812 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8814 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
8815 *cpuusage = val;
8816 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
8817 #else
8818 *cpuusage = val;
8819 #endif
8822 /* return total cpu usage (in nanoseconds) of a group */
8823 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
8825 struct cpuacct *ca = cgroup_ca(cgrp);
8826 u64 totalcpuusage = 0;
8827 int i;
8829 for_each_present_cpu(i)
8830 totalcpuusage += cpuacct_cpuusage_read(ca, i);
8832 return totalcpuusage;
8835 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8836 u64 reset)
8838 struct cpuacct *ca = cgroup_ca(cgrp);
8839 int err = 0;
8840 int i;
8842 if (reset) {
8843 err = -EINVAL;
8844 goto out;
8847 for_each_present_cpu(i)
8848 cpuacct_cpuusage_write(ca, i, 0);
8850 out:
8851 return err;
8854 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8855 struct seq_file *m)
8857 struct cpuacct *ca = cgroup_ca(cgroup);
8858 u64 percpu;
8859 int i;
8861 for_each_present_cpu(i) {
8862 percpu = cpuacct_cpuusage_read(ca, i);
8863 seq_printf(m, "%llu ", (unsigned long long) percpu);
8865 seq_printf(m, "\n");
8866 return 0;
8869 static const char *cpuacct_stat_desc[] = {
8870 [CPUACCT_STAT_USER] = "user",
8871 [CPUACCT_STAT_SYSTEM] = "system",
8874 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
8875 struct cgroup_map_cb *cb)
8877 struct cpuacct *ca = cgroup_ca(cgrp);
8878 int i;
8880 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
8881 s64 val = percpu_counter_read(&ca->cpustat[i]);
8882 val = cputime64_to_clock_t(val);
8883 cb->fill(cb, cpuacct_stat_desc[i], val);
8885 return 0;
8888 static struct cftype files[] = {
8890 .name = "usage",
8891 .read_u64 = cpuusage_read,
8892 .write_u64 = cpuusage_write,
8895 .name = "usage_percpu",
8896 .read_seq_string = cpuacct_percpu_seq_read,
8899 .name = "stat",
8900 .read_map = cpuacct_stats_show,
8904 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
8906 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
8910 * charge this task's execution time to its accounting group.
8912 * called with rq->lock held.
8914 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
8916 struct cpuacct *ca;
8917 int cpu;
8919 if (unlikely(!cpuacct_subsys.active))
8920 return;
8922 cpu = task_cpu(tsk);
8924 rcu_read_lock();
8926 ca = task_ca(tsk);
8928 for (; ca; ca = ca->parent) {
8929 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
8930 *cpuusage += cputime;
8933 rcu_read_unlock();
8937 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8938 * in cputime_t units. As a result, cpuacct_update_stats calls
8939 * percpu_counter_add with values large enough to always overflow the
8940 * per cpu batch limit causing bad SMP scalability.
8942 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8943 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8944 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8946 #ifdef CONFIG_SMP
8947 #define CPUACCT_BATCH \
8948 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8949 #else
8950 #define CPUACCT_BATCH 0
8951 #endif
8954 * Charge the system/user time to the task's accounting group.
8956 static void cpuacct_update_stats(struct task_struct *tsk,
8957 enum cpuacct_stat_index idx, cputime_t val)
8959 struct cpuacct *ca;
8960 int batch = CPUACCT_BATCH;
8962 if (unlikely(!cpuacct_subsys.active))
8963 return;
8965 rcu_read_lock();
8966 ca = task_ca(tsk);
8968 do {
8969 __percpu_counter_add(&ca->cpustat[idx], val, batch);
8970 ca = ca->parent;
8971 } while (ca);
8972 rcu_read_unlock();
8975 struct cgroup_subsys cpuacct_subsys = {
8976 .name = "cpuacct",
8977 .create = cpuacct_create,
8978 .destroy = cpuacct_destroy,
8979 .populate = cpuacct_populate,
8980 .subsys_id = cpuacct_subsys_id,
8982 #endif /* CONFIG_CGROUP_CPUACCT */
8984 #ifndef CONFIG_SMP
8986 int rcu_expedited_torture_stats(char *page)
8988 return 0;
8990 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
8992 void synchronize_sched_expedited(void)
8995 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
8997 #else /* #ifndef CONFIG_SMP */
8999 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
9000 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
9002 #define RCU_EXPEDITED_STATE_POST -2
9003 #define RCU_EXPEDITED_STATE_IDLE -1
9005 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9007 int rcu_expedited_torture_stats(char *page)
9009 int cnt = 0;
9010 int cpu;
9012 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
9013 for_each_online_cpu(cpu) {
9014 cnt += sprintf(&page[cnt], " %d:%d",
9015 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
9017 cnt += sprintf(&page[cnt], "\n");
9018 return cnt;
9020 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
9022 static long synchronize_sched_expedited_count;
9025 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9026 * approach to force grace period to end quickly. This consumes
9027 * significant time on all CPUs, and is thus not recommended for
9028 * any sort of common-case code.
9030 * Note that it is illegal to call this function while holding any
9031 * lock that is acquired by a CPU-hotplug notifier. Failing to
9032 * observe this restriction will result in deadlock.
9034 void synchronize_sched_expedited(void)
9036 int cpu;
9037 unsigned long flags;
9038 bool need_full_sync = 0;
9039 struct rq *rq;
9040 struct migration_req *req;
9041 long snap;
9042 int trycount = 0;
9044 smp_mb(); /* ensure prior mod happens before capturing snap. */
9045 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
9046 get_online_cpus();
9047 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
9048 put_online_cpus();
9049 if (trycount++ < 10)
9050 udelay(trycount * num_online_cpus());
9051 else {
9052 synchronize_sched();
9053 return;
9055 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
9056 smp_mb(); /* ensure test happens before caller kfree */
9057 return;
9059 get_online_cpus();
9061 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
9062 for_each_online_cpu(cpu) {
9063 rq = cpu_rq(cpu);
9064 req = &per_cpu(rcu_migration_req, cpu);
9065 init_completion(&req->done);
9066 req->task = NULL;
9067 req->dest_cpu = RCU_MIGRATION_NEED_QS;
9068 raw_spin_lock_irqsave(&rq->lock, flags);
9069 list_add(&req->list, &rq->migration_queue);
9070 raw_spin_unlock_irqrestore(&rq->lock, flags);
9071 wake_up_process(rq->migration_thread);
9073 for_each_online_cpu(cpu) {
9074 rcu_expedited_state = cpu;
9075 req = &per_cpu(rcu_migration_req, cpu);
9076 rq = cpu_rq(cpu);
9077 wait_for_completion(&req->done);
9078 raw_spin_lock_irqsave(&rq->lock, flags);
9079 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
9080 need_full_sync = 1;
9081 req->dest_cpu = RCU_MIGRATION_IDLE;
9082 raw_spin_unlock_irqrestore(&rq->lock, flags);
9084 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
9085 synchronize_sched_expedited_count++;
9086 mutex_unlock(&rcu_sched_expedited_mutex);
9087 put_online_cpus();
9088 if (need_full_sync)
9089 synchronize_sched();
9091 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
9093 #endif /* #else #ifndef CONFIG_SMP */