4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_event.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
118 * single value that denotes runtime == period, ie unlimited time.
120 #define RUNTIME_INF ((u64)~0ULL)
122 static inline int rt_policy(int policy
)
124 if (unlikely(policy
== SCHED_FIFO
|| policy
== SCHED_RR
))
129 static inline int task_has_rt_policy(struct task_struct
*p
)
131 return rt_policy(p
->policy
);
135 * This is the priority-queue data structure of the RT scheduling class:
137 struct rt_prio_array
{
138 DECLARE_BITMAP(bitmap
, MAX_RT_PRIO
+1); /* include 1 bit for delimiter */
139 struct list_head queue
[MAX_RT_PRIO
];
142 struct rt_bandwidth
{
143 /* nests inside the rq lock: */
144 raw_spinlock_t rt_runtime_lock
;
147 struct hrtimer rt_period_timer
;
150 static struct rt_bandwidth def_rt_bandwidth
;
152 static int do_sched_rt_period_timer(struct rt_bandwidth
*rt_b
, int overrun
);
154 static enum hrtimer_restart
sched_rt_period_timer(struct hrtimer
*timer
)
156 struct rt_bandwidth
*rt_b
=
157 container_of(timer
, struct rt_bandwidth
, rt_period_timer
);
163 now
= hrtimer_cb_get_time(timer
);
164 overrun
= hrtimer_forward(timer
, now
, rt_b
->rt_period
);
169 idle
= do_sched_rt_period_timer(rt_b
, overrun
);
172 return idle
? HRTIMER_NORESTART
: HRTIMER_RESTART
;
176 void init_rt_bandwidth(struct rt_bandwidth
*rt_b
, u64 period
, u64 runtime
)
178 rt_b
->rt_period
= ns_to_ktime(period
);
179 rt_b
->rt_runtime
= runtime
;
181 raw_spin_lock_init(&rt_b
->rt_runtime_lock
);
183 hrtimer_init(&rt_b
->rt_period_timer
,
184 CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
185 rt_b
->rt_period_timer
.function
= sched_rt_period_timer
;
188 static inline int rt_bandwidth_enabled(void)
190 return sysctl_sched_rt_runtime
>= 0;
193 static void start_rt_bandwidth(struct rt_bandwidth
*rt_b
)
197 if (!rt_bandwidth_enabled() || rt_b
->rt_runtime
== RUNTIME_INF
)
200 if (hrtimer_active(&rt_b
->rt_period_timer
))
203 raw_spin_lock(&rt_b
->rt_runtime_lock
);
208 if (hrtimer_active(&rt_b
->rt_period_timer
))
211 now
= hrtimer_cb_get_time(&rt_b
->rt_period_timer
);
212 hrtimer_forward(&rt_b
->rt_period_timer
, now
, rt_b
->rt_period
);
214 soft
= hrtimer_get_softexpires(&rt_b
->rt_period_timer
);
215 hard
= hrtimer_get_expires(&rt_b
->rt_period_timer
);
216 delta
= ktime_to_ns(ktime_sub(hard
, soft
));
217 __hrtimer_start_range_ns(&rt_b
->rt_period_timer
, soft
, delta
,
218 HRTIMER_MODE_ABS_PINNED
, 0);
220 raw_spin_unlock(&rt_b
->rt_runtime_lock
);
223 #ifdef CONFIG_RT_GROUP_SCHED
224 static void destroy_rt_bandwidth(struct rt_bandwidth
*rt_b
)
226 hrtimer_cancel(&rt_b
->rt_period_timer
);
231 * sched_domains_mutex serializes calls to arch_init_sched_domains,
232 * detach_destroy_domains and partition_sched_domains.
234 static DEFINE_MUTEX(sched_domains_mutex
);
236 #ifdef CONFIG_CGROUP_SCHED
238 #include <linux/cgroup.h>
242 static LIST_HEAD(task_groups
);
244 /* task group related information */
246 struct cgroup_subsys_state css
;
248 #ifdef CONFIG_FAIR_GROUP_SCHED
249 /* schedulable entities of this group on each cpu */
250 struct sched_entity
**se
;
251 /* runqueue "owned" by this group on each cpu */
252 struct cfs_rq
**cfs_rq
;
253 unsigned long shares
;
256 #ifdef CONFIG_RT_GROUP_SCHED
257 struct sched_rt_entity
**rt_se
;
258 struct rt_rq
**rt_rq
;
260 struct rt_bandwidth rt_bandwidth
;
264 struct list_head list
;
266 struct task_group
*parent
;
267 struct list_head siblings
;
268 struct list_head children
;
271 #define root_task_group init_task_group
273 /* task_group_lock serializes add/remove of task groups and also changes to
274 * a task group's cpu shares.
276 static DEFINE_SPINLOCK(task_group_lock
);
278 #ifdef CONFIG_FAIR_GROUP_SCHED
281 static int root_task_group_empty(void)
283 return list_empty(&root_task_group
.children
);
287 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
290 * A weight of 0 or 1 can cause arithmetics problems.
291 * A weight of a cfs_rq is the sum of weights of which entities
292 * are queued on this cfs_rq, so a weight of a entity should not be
293 * too large, so as the shares value of a task group.
294 * (The default weight is 1024 - so there's no practical
295 * limitation from this.)
298 #define MAX_SHARES (1UL << 18)
300 static int init_task_group_load
= INIT_TASK_GROUP_LOAD
;
303 /* Default task group.
304 * Every task in system belong to this group at bootup.
306 struct task_group init_task_group
;
308 /* return group to which a task belongs */
309 static inline struct task_group
*task_group(struct task_struct
*p
)
311 struct task_group
*tg
;
313 #ifdef CONFIG_CGROUP_SCHED
314 tg
= container_of(task_subsys_state(p
, cpu_cgroup_subsys_id
),
315 struct task_group
, css
);
317 tg
= &init_task_group
;
322 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
323 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
)
325 #ifdef CONFIG_FAIR_GROUP_SCHED
326 p
->se
.cfs_rq
= task_group(p
)->cfs_rq
[cpu
];
327 p
->se
.parent
= task_group(p
)->se
[cpu
];
330 #ifdef CONFIG_RT_GROUP_SCHED
331 p
->rt
.rt_rq
= task_group(p
)->rt_rq
[cpu
];
332 p
->rt
.parent
= task_group(p
)->rt_se
[cpu
];
338 static inline void set_task_rq(struct task_struct
*p
, unsigned int cpu
) { }
339 static inline struct task_group
*task_group(struct task_struct
*p
)
344 #endif /* CONFIG_CGROUP_SCHED */
346 /* CFS-related fields in a runqueue */
348 struct load_weight load
;
349 unsigned long nr_running
;
354 struct rb_root tasks_timeline
;
355 struct rb_node
*rb_leftmost
;
357 struct list_head tasks
;
358 struct list_head
*balance_iterator
;
361 * 'curr' points to currently running entity on this cfs_rq.
362 * It is set to NULL otherwise (i.e when none are currently running).
364 struct sched_entity
*curr
, *next
, *last
;
366 unsigned int nr_spread_over
;
368 #ifdef CONFIG_FAIR_GROUP_SCHED
369 struct rq
*rq
; /* cpu runqueue to which this cfs_rq is attached */
372 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
373 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
374 * (like users, containers etc.)
376 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
377 * list is used during load balance.
379 struct list_head leaf_cfs_rq_list
;
380 struct task_group
*tg
; /* group that "owns" this runqueue */
384 * the part of load.weight contributed by tasks
386 unsigned long task_weight
;
389 * h_load = weight * f(tg)
391 * Where f(tg) is the recursive weight fraction assigned to
394 unsigned long h_load
;
397 * this cpu's part of tg->shares
399 unsigned long shares
;
402 * load.weight at the time we set shares
404 unsigned long rq_weight
;
409 /* Real-Time classes' related field in a runqueue: */
411 struct rt_prio_array active
;
412 unsigned long rt_nr_running
;
413 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
415 int curr
; /* highest queued rt task prio */
417 int next
; /* next highest */
422 unsigned long rt_nr_migratory
;
423 unsigned long rt_nr_total
;
425 struct plist_head pushable_tasks
;
430 /* Nests inside the rq lock: */
431 raw_spinlock_t rt_runtime_lock
;
433 #ifdef CONFIG_RT_GROUP_SCHED
434 unsigned long rt_nr_boosted
;
437 struct list_head leaf_rt_rq_list
;
438 struct task_group
*tg
;
445 * We add the notion of a root-domain which will be used to define per-domain
446 * variables. Each exclusive cpuset essentially defines an island domain by
447 * fully partitioning the member cpus from any other cpuset. Whenever a new
448 * exclusive cpuset is created, we also create and attach a new root-domain
455 cpumask_var_t online
;
458 * The "RT overload" flag: it gets set if a CPU has more than
459 * one runnable RT task.
461 cpumask_var_t rto_mask
;
464 struct cpupri cpupri
;
469 * By default the system creates a single root-domain with all cpus as
470 * members (mimicking the global state we have today).
472 static struct root_domain def_root_domain
;
477 * This is the main, per-CPU runqueue data structure.
479 * Locking rule: those places that want to lock multiple runqueues
480 * (such as the load balancing or the thread migration code), lock
481 * acquire operations must be ordered by ascending &runqueue.
488 * nr_running and cpu_load should be in the same cacheline because
489 * remote CPUs use both these fields when doing load calculation.
491 unsigned long nr_running
;
492 #define CPU_LOAD_IDX_MAX 5
493 unsigned long cpu_load
[CPU_LOAD_IDX_MAX
];
496 unsigned char in_nohz_recently
;
498 unsigned int skip_clock_update
;
500 /* capture load from *all* tasks on this cpu: */
501 struct load_weight load
;
502 unsigned long nr_load_updates
;
508 #ifdef CONFIG_FAIR_GROUP_SCHED
509 /* list of leaf cfs_rq on this cpu: */
510 struct list_head leaf_cfs_rq_list
;
512 #ifdef CONFIG_RT_GROUP_SCHED
513 struct list_head leaf_rt_rq_list
;
517 * This is part of a global counter where only the total sum
518 * over all CPUs matters. A task can increase this counter on
519 * one CPU and if it got migrated afterwards it may decrease
520 * it on another CPU. Always updated under the runqueue lock:
522 unsigned long nr_uninterruptible
;
524 struct task_struct
*curr
, *idle
;
525 unsigned long next_balance
;
526 struct mm_struct
*prev_mm
;
533 struct root_domain
*rd
;
534 struct sched_domain
*sd
;
536 unsigned char idle_at_tick
;
537 /* For active balancing */
541 /* cpu of this runqueue: */
545 unsigned long avg_load_per_task
;
547 struct task_struct
*migration_thread
;
548 struct list_head migration_queue
;
556 /* calc_load related fields */
557 unsigned long calc_load_update
;
558 long calc_load_active
;
560 #ifdef CONFIG_SCHED_HRTICK
562 int hrtick_csd_pending
;
563 struct call_single_data hrtick_csd
;
565 struct hrtimer hrtick_timer
;
568 #ifdef CONFIG_SCHEDSTATS
570 struct sched_info rq_sched_info
;
571 unsigned long long rq_cpu_time
;
572 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
574 /* sys_sched_yield() stats */
575 unsigned int yld_count
;
577 /* schedule() stats */
578 unsigned int sched_switch
;
579 unsigned int sched_count
;
580 unsigned int sched_goidle
;
582 /* try_to_wake_up() stats */
583 unsigned int ttwu_count
;
584 unsigned int ttwu_local
;
587 unsigned int bkl_count
;
591 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq
, runqueues
);
594 void check_preempt_curr(struct rq
*rq
, struct task_struct
*p
, int flags
)
596 rq
->curr
->sched_class
->check_preempt_curr(rq
, p
, flags
);
599 * A queue event has occurred, and we're going to schedule. In
600 * this case, we can save a useless back to back clock update.
602 if (test_tsk_need_resched(p
))
603 rq
->skip_clock_update
= 1;
606 static inline int cpu_of(struct rq
*rq
)
615 #define rcu_dereference_check_sched_domain(p) \
616 rcu_dereference_check((p), \
617 rcu_read_lock_sched_held() || \
618 lockdep_is_held(&sched_domains_mutex))
621 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
622 * See detach_destroy_domains: synchronize_sched for details.
624 * The domain tree of any CPU may only be accessed from within
625 * preempt-disabled sections.
627 #define for_each_domain(cpu, __sd) \
628 for (__sd = rcu_dereference_check_sched_domain(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
630 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
631 #define this_rq() (&__get_cpu_var(runqueues))
632 #define task_rq(p) cpu_rq(task_cpu(p))
633 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
634 #define raw_rq() (&__raw_get_cpu_var(runqueues))
636 inline void update_rq_clock(struct rq
*rq
)
638 if (!rq
->skip_clock_update
)
639 rq
->clock
= sched_clock_cpu(cpu_of(rq
));
643 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
645 #ifdef CONFIG_SCHED_DEBUG
646 # define const_debug __read_mostly
648 # define const_debug static const
653 * @cpu: the processor in question.
655 * Returns true if the current cpu runqueue is locked.
656 * This interface allows printk to be called with the runqueue lock
657 * held and know whether or not it is OK to wake up the klogd.
659 int runqueue_is_locked(int cpu
)
661 return raw_spin_is_locked(&cpu_rq(cpu
)->lock
);
665 * Debugging: various feature bits
668 #define SCHED_FEAT(name, enabled) \
669 __SCHED_FEAT_##name ,
672 #include "sched_features.h"
677 #define SCHED_FEAT(name, enabled) \
678 (1UL << __SCHED_FEAT_##name) * enabled |
680 const_debug
unsigned int sysctl_sched_features
=
681 #include "sched_features.h"
686 #ifdef CONFIG_SCHED_DEBUG
687 #define SCHED_FEAT(name, enabled) \
690 static __read_mostly
char *sched_feat_names
[] = {
691 #include "sched_features.h"
697 static int sched_feat_show(struct seq_file
*m
, void *v
)
701 for (i
= 0; sched_feat_names
[i
]; i
++) {
702 if (!(sysctl_sched_features
& (1UL << i
)))
704 seq_printf(m
, "%s ", sched_feat_names
[i
]);
712 sched_feat_write(struct file
*filp
, const char __user
*ubuf
,
713 size_t cnt
, loff_t
*ppos
)
723 if (copy_from_user(&buf
, ubuf
, cnt
))
728 if (strncmp(buf
, "NO_", 3) == 0) {
733 for (i
= 0; sched_feat_names
[i
]; i
++) {
734 int len
= strlen(sched_feat_names
[i
]);
736 if (strncmp(cmp
, sched_feat_names
[i
], len
) == 0) {
738 sysctl_sched_features
&= ~(1UL << i
);
740 sysctl_sched_features
|= (1UL << i
);
745 if (!sched_feat_names
[i
])
753 static int sched_feat_open(struct inode
*inode
, struct file
*filp
)
755 return single_open(filp
, sched_feat_show
, NULL
);
758 static const struct file_operations sched_feat_fops
= {
759 .open
= sched_feat_open
,
760 .write
= sched_feat_write
,
763 .release
= single_release
,
766 static __init
int sched_init_debug(void)
768 debugfs_create_file("sched_features", 0644, NULL
, NULL
,
773 late_initcall(sched_init_debug
);
777 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
780 * Number of tasks to iterate in a single balance run.
781 * Limited because this is done with IRQs disabled.
783 const_debug
unsigned int sysctl_sched_nr_migrate
= 32;
786 * ratelimit for updating the group shares.
789 unsigned int sysctl_sched_shares_ratelimit
= 250000;
790 unsigned int normalized_sysctl_sched_shares_ratelimit
= 250000;
793 * Inject some fuzzyness into changing the per-cpu group shares
794 * this avoids remote rq-locks at the expense of fairness.
797 unsigned int sysctl_sched_shares_thresh
= 4;
800 * period over which we average the RT time consumption, measured
805 const_debug
unsigned int sysctl_sched_time_avg
= MSEC_PER_SEC
;
808 * period over which we measure -rt task cpu usage in us.
811 unsigned int sysctl_sched_rt_period
= 1000000;
813 static __read_mostly
int scheduler_running
;
816 * part of the period that we allow rt tasks to run in us.
819 int sysctl_sched_rt_runtime
= 950000;
821 static inline u64
global_rt_period(void)
823 return (u64
)sysctl_sched_rt_period
* NSEC_PER_USEC
;
826 static inline u64
global_rt_runtime(void)
828 if (sysctl_sched_rt_runtime
< 0)
831 return (u64
)sysctl_sched_rt_runtime
* NSEC_PER_USEC
;
834 #ifndef prepare_arch_switch
835 # define prepare_arch_switch(next) do { } while (0)
837 #ifndef finish_arch_switch
838 # define finish_arch_switch(prev) do { } while (0)
841 static inline int task_current(struct rq
*rq
, struct task_struct
*p
)
843 return rq
->curr
== p
;
846 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
847 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
849 return task_current(rq
, p
);
852 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
856 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
858 #ifdef CONFIG_DEBUG_SPINLOCK
859 /* this is a valid case when another task releases the spinlock */
860 rq
->lock
.owner
= current
;
863 * If we are tracking spinlock dependencies then we have to
864 * fix up the runqueue lock - which gets 'carried over' from
867 spin_acquire(&rq
->lock
.dep_map
, 0, 0, _THIS_IP_
);
869 raw_spin_unlock_irq(&rq
->lock
);
872 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
873 static inline int task_running(struct rq
*rq
, struct task_struct
*p
)
878 return task_current(rq
, p
);
882 static inline void prepare_lock_switch(struct rq
*rq
, struct task_struct
*next
)
886 * We can optimise this out completely for !SMP, because the
887 * SMP rebalancing from interrupt is the only thing that cares
892 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
893 raw_spin_unlock_irq(&rq
->lock
);
895 raw_spin_unlock(&rq
->lock
);
899 static inline void finish_lock_switch(struct rq
*rq
, struct task_struct
*prev
)
903 * After ->oncpu is cleared, the task can be moved to a different CPU.
904 * We must ensure this doesn't happen until the switch is completely
910 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
914 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
917 * Check whether the task is waking, we use this to synchronize against
918 * ttwu() so that task_cpu() reports a stable number.
920 static inline int task_is_waking(struct task_struct
*p
)
922 return unlikely(p
->state
== TASK_WAKING
);
926 * __task_rq_lock - lock the runqueue a given task resides on.
927 * Must be called interrupts disabled.
929 static inline struct rq
*__task_rq_lock(struct task_struct
*p
)
935 while (task_is_waking(p
))
938 raw_spin_lock(&rq
->lock
);
939 if (likely(rq
== task_rq(p
) && !task_is_waking(p
)))
941 raw_spin_unlock(&rq
->lock
);
946 * task_rq_lock - lock the runqueue a given task resides on and disable
947 * interrupts. Note the ordering: we can safely lookup the task_rq without
948 * explicitly disabling preemption.
950 static struct rq
*task_rq_lock(struct task_struct
*p
, unsigned long *flags
)
956 while (task_is_waking(p
))
958 local_irq_save(*flags
);
960 raw_spin_lock(&rq
->lock
);
961 if (likely(rq
== task_rq(p
) && !task_is_waking(p
)))
963 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
967 void task_rq_unlock_wait(struct task_struct
*p
)
969 struct rq
*rq
= task_rq(p
);
971 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
972 raw_spin_unlock_wait(&rq
->lock
);
975 static void __task_rq_unlock(struct rq
*rq
)
978 raw_spin_unlock(&rq
->lock
);
981 static inline void task_rq_unlock(struct rq
*rq
, unsigned long *flags
)
984 raw_spin_unlock_irqrestore(&rq
->lock
, *flags
);
988 * this_rq_lock - lock this runqueue and disable interrupts.
990 static struct rq
*this_rq_lock(void)
997 raw_spin_lock(&rq
->lock
);
1002 #ifdef CONFIG_SCHED_HRTICK
1004 * Use HR-timers to deliver accurate preemption points.
1006 * Its all a bit involved since we cannot program an hrt while holding the
1007 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1010 * When we get rescheduled we reprogram the hrtick_timer outside of the
1016 * - enabled by features
1017 * - hrtimer is actually high res
1019 static inline int hrtick_enabled(struct rq
*rq
)
1021 if (!sched_feat(HRTICK
))
1023 if (!cpu_active(cpu_of(rq
)))
1025 return hrtimer_is_hres_active(&rq
->hrtick_timer
);
1028 static void hrtick_clear(struct rq
*rq
)
1030 if (hrtimer_active(&rq
->hrtick_timer
))
1031 hrtimer_cancel(&rq
->hrtick_timer
);
1035 * High-resolution timer tick.
1036 * Runs from hardirq context with interrupts disabled.
1038 static enum hrtimer_restart
hrtick(struct hrtimer
*timer
)
1040 struct rq
*rq
= container_of(timer
, struct rq
, hrtick_timer
);
1042 WARN_ON_ONCE(cpu_of(rq
) != smp_processor_id());
1044 raw_spin_lock(&rq
->lock
);
1045 update_rq_clock(rq
);
1046 rq
->curr
->sched_class
->task_tick(rq
, rq
->curr
, 1);
1047 raw_spin_unlock(&rq
->lock
);
1049 return HRTIMER_NORESTART
;
1054 * called from hardirq (IPI) context
1056 static void __hrtick_start(void *arg
)
1058 struct rq
*rq
= arg
;
1060 raw_spin_lock(&rq
->lock
);
1061 hrtimer_restart(&rq
->hrtick_timer
);
1062 rq
->hrtick_csd_pending
= 0;
1063 raw_spin_unlock(&rq
->lock
);
1067 * Called to set the hrtick timer state.
1069 * called with rq->lock held and irqs disabled
1071 static void hrtick_start(struct rq
*rq
, u64 delay
)
1073 struct hrtimer
*timer
= &rq
->hrtick_timer
;
1074 ktime_t time
= ktime_add_ns(timer
->base
->get_time(), delay
);
1076 hrtimer_set_expires(timer
, time
);
1078 if (rq
== this_rq()) {
1079 hrtimer_restart(timer
);
1080 } else if (!rq
->hrtick_csd_pending
) {
1081 __smp_call_function_single(cpu_of(rq
), &rq
->hrtick_csd
, 0);
1082 rq
->hrtick_csd_pending
= 1;
1087 hotplug_hrtick(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
1089 int cpu
= (int)(long)hcpu
;
1092 case CPU_UP_CANCELED
:
1093 case CPU_UP_CANCELED_FROZEN
:
1094 case CPU_DOWN_PREPARE
:
1095 case CPU_DOWN_PREPARE_FROZEN
:
1097 case CPU_DEAD_FROZEN
:
1098 hrtick_clear(cpu_rq(cpu
));
1105 static __init
void init_hrtick(void)
1107 hotcpu_notifier(hotplug_hrtick
, 0);
1111 * Called to set the hrtick timer state.
1113 * called with rq->lock held and irqs disabled
1115 static void hrtick_start(struct rq
*rq
, u64 delay
)
1117 __hrtimer_start_range_ns(&rq
->hrtick_timer
, ns_to_ktime(delay
), 0,
1118 HRTIMER_MODE_REL_PINNED
, 0);
1121 static inline void init_hrtick(void)
1124 #endif /* CONFIG_SMP */
1126 static void init_rq_hrtick(struct rq
*rq
)
1129 rq
->hrtick_csd_pending
= 0;
1131 rq
->hrtick_csd
.flags
= 0;
1132 rq
->hrtick_csd
.func
= __hrtick_start
;
1133 rq
->hrtick_csd
.info
= rq
;
1136 hrtimer_init(&rq
->hrtick_timer
, CLOCK_MONOTONIC
, HRTIMER_MODE_REL
);
1137 rq
->hrtick_timer
.function
= hrtick
;
1139 #else /* CONFIG_SCHED_HRTICK */
1140 static inline void hrtick_clear(struct rq
*rq
)
1144 static inline void init_rq_hrtick(struct rq
*rq
)
1148 static inline void init_hrtick(void)
1151 #endif /* CONFIG_SCHED_HRTICK */
1154 * resched_task - mark a task 'to be rescheduled now'.
1156 * On UP this means the setting of the need_resched flag, on SMP it
1157 * might also involve a cross-CPU call to trigger the scheduler on
1162 #ifndef tsk_is_polling
1163 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1166 static void resched_task(struct task_struct
*p
)
1170 assert_raw_spin_locked(&task_rq(p
)->lock
);
1172 if (test_tsk_need_resched(p
))
1175 set_tsk_need_resched(p
);
1178 if (cpu
== smp_processor_id())
1181 /* NEED_RESCHED must be visible before we test polling */
1183 if (!tsk_is_polling(p
))
1184 smp_send_reschedule(cpu
);
1187 static void resched_cpu(int cpu
)
1189 struct rq
*rq
= cpu_rq(cpu
);
1190 unsigned long flags
;
1192 if (!raw_spin_trylock_irqsave(&rq
->lock
, flags
))
1194 resched_task(cpu_curr(cpu
));
1195 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1200 * When add_timer_on() enqueues a timer into the timer wheel of an
1201 * idle CPU then this timer might expire before the next timer event
1202 * which is scheduled to wake up that CPU. In case of a completely
1203 * idle system the next event might even be infinite time into the
1204 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1205 * leaves the inner idle loop so the newly added timer is taken into
1206 * account when the CPU goes back to idle and evaluates the timer
1207 * wheel for the next timer event.
1209 void wake_up_idle_cpu(int cpu
)
1211 struct rq
*rq
= cpu_rq(cpu
);
1213 if (cpu
== smp_processor_id())
1217 * This is safe, as this function is called with the timer
1218 * wheel base lock of (cpu) held. When the CPU is on the way
1219 * to idle and has not yet set rq->curr to idle then it will
1220 * be serialized on the timer wheel base lock and take the new
1221 * timer into account automatically.
1223 if (rq
->curr
!= rq
->idle
)
1227 * We can set TIF_RESCHED on the idle task of the other CPU
1228 * lockless. The worst case is that the other CPU runs the
1229 * idle task through an additional NOOP schedule()
1231 set_tsk_need_resched(rq
->idle
);
1233 /* NEED_RESCHED must be visible before we test polling */
1235 if (!tsk_is_polling(rq
->idle
))
1236 smp_send_reschedule(cpu
);
1239 int nohz_ratelimit(int cpu
)
1241 struct rq
*rq
= cpu_rq(cpu
);
1242 u64 diff
= rq
->clock
- rq
->nohz_stamp
;
1244 rq
->nohz_stamp
= rq
->clock
;
1246 return diff
< (NSEC_PER_SEC
/ HZ
) >> 1;
1249 #endif /* CONFIG_NO_HZ */
1251 static u64
sched_avg_period(void)
1253 return (u64
)sysctl_sched_time_avg
* NSEC_PER_MSEC
/ 2;
1256 static void sched_avg_update(struct rq
*rq
)
1258 s64 period
= sched_avg_period();
1260 while ((s64
)(rq
->clock
- rq
->age_stamp
) > period
) {
1261 rq
->age_stamp
+= period
;
1266 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1268 rq
->rt_avg
+= rt_delta
;
1269 sched_avg_update(rq
);
1272 #else /* !CONFIG_SMP */
1273 static void resched_task(struct task_struct
*p
)
1275 assert_raw_spin_locked(&task_rq(p
)->lock
);
1276 set_tsk_need_resched(p
);
1279 static void sched_rt_avg_update(struct rq
*rq
, u64 rt_delta
)
1282 #endif /* CONFIG_SMP */
1284 #if BITS_PER_LONG == 32
1285 # define WMULT_CONST (~0UL)
1287 # define WMULT_CONST (1UL << 32)
1290 #define WMULT_SHIFT 32
1293 * Shift right and round:
1295 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1298 * delta *= weight / lw
1300 static unsigned long
1301 calc_delta_mine(unsigned long delta_exec
, unsigned long weight
,
1302 struct load_weight
*lw
)
1306 if (!lw
->inv_weight
) {
1307 if (BITS_PER_LONG
> 32 && unlikely(lw
->weight
>= WMULT_CONST
))
1310 lw
->inv_weight
= 1 + (WMULT_CONST
-lw
->weight
/2)
1314 tmp
= (u64
)delta_exec
* weight
;
1316 * Check whether we'd overflow the 64-bit multiplication:
1318 if (unlikely(tmp
> WMULT_CONST
))
1319 tmp
= SRR(SRR(tmp
, WMULT_SHIFT
/2) * lw
->inv_weight
,
1322 tmp
= SRR(tmp
* lw
->inv_weight
, WMULT_SHIFT
);
1324 return (unsigned long)min(tmp
, (u64
)(unsigned long)LONG_MAX
);
1327 static inline void update_load_add(struct load_weight
*lw
, unsigned long inc
)
1333 static inline void update_load_sub(struct load_weight
*lw
, unsigned long dec
)
1340 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1341 * of tasks with abnormal "nice" values across CPUs the contribution that
1342 * each task makes to its run queue's load is weighted according to its
1343 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1344 * scaled version of the new time slice allocation that they receive on time
1348 #define WEIGHT_IDLEPRIO 3
1349 #define WMULT_IDLEPRIO 1431655765
1352 * Nice levels are multiplicative, with a gentle 10% change for every
1353 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1354 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1355 * that remained on nice 0.
1357 * The "10% effect" is relative and cumulative: from _any_ nice level,
1358 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1359 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1360 * If a task goes up by ~10% and another task goes down by ~10% then
1361 * the relative distance between them is ~25%.)
1363 static const int prio_to_weight
[40] = {
1364 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1365 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1366 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1367 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1368 /* 0 */ 1024, 820, 655, 526, 423,
1369 /* 5 */ 335, 272, 215, 172, 137,
1370 /* 10 */ 110, 87, 70, 56, 45,
1371 /* 15 */ 36, 29, 23, 18, 15,
1375 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1377 * In cases where the weight does not change often, we can use the
1378 * precalculated inverse to speed up arithmetics by turning divisions
1379 * into multiplications:
1381 static const u32 prio_to_wmult
[40] = {
1382 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1383 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1384 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1385 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1386 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1387 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1388 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1389 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1392 /* Time spent by the tasks of the cpu accounting group executing in ... */
1393 enum cpuacct_stat_index
{
1394 CPUACCT_STAT_USER
, /* ... user mode */
1395 CPUACCT_STAT_SYSTEM
, /* ... kernel mode */
1397 CPUACCT_STAT_NSTATS
,
1400 #ifdef CONFIG_CGROUP_CPUACCT
1401 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
);
1402 static void cpuacct_update_stats(struct task_struct
*tsk
,
1403 enum cpuacct_stat_index idx
, cputime_t val
);
1405 static inline void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
) {}
1406 static inline void cpuacct_update_stats(struct task_struct
*tsk
,
1407 enum cpuacct_stat_index idx
, cputime_t val
) {}
1410 static inline void inc_cpu_load(struct rq
*rq
, unsigned long load
)
1412 update_load_add(&rq
->load
, load
);
1415 static inline void dec_cpu_load(struct rq
*rq
, unsigned long load
)
1417 update_load_sub(&rq
->load
, load
);
1420 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1421 typedef int (*tg_visitor
)(struct task_group
*, void *);
1424 * Iterate the full tree, calling @down when first entering a node and @up when
1425 * leaving it for the final time.
1427 static int walk_tg_tree(tg_visitor down
, tg_visitor up
, void *data
)
1429 struct task_group
*parent
, *child
;
1433 parent
= &root_task_group
;
1435 ret
= (*down
)(parent
, data
);
1438 list_for_each_entry_rcu(child
, &parent
->children
, siblings
) {
1445 ret
= (*up
)(parent
, data
);
1450 parent
= parent
->parent
;
1459 static int tg_nop(struct task_group
*tg
, void *data
)
1466 /* Used instead of source_load when we know the type == 0 */
1467 static unsigned long weighted_cpuload(const int cpu
)
1469 return cpu_rq(cpu
)->load
.weight
;
1473 * Return a low guess at the load of a migration-source cpu weighted
1474 * according to the scheduling class and "nice" value.
1476 * We want to under-estimate the load of migration sources, to
1477 * balance conservatively.
1479 static unsigned long source_load(int cpu
, int type
)
1481 struct rq
*rq
= cpu_rq(cpu
);
1482 unsigned long total
= weighted_cpuload(cpu
);
1484 if (type
== 0 || !sched_feat(LB_BIAS
))
1487 return min(rq
->cpu_load
[type
-1], total
);
1491 * Return a high guess at the load of a migration-target cpu weighted
1492 * according to the scheduling class and "nice" value.
1494 static unsigned long target_load(int cpu
, int type
)
1496 struct rq
*rq
= cpu_rq(cpu
);
1497 unsigned long total
= weighted_cpuload(cpu
);
1499 if (type
== 0 || !sched_feat(LB_BIAS
))
1502 return max(rq
->cpu_load
[type
-1], total
);
1505 static struct sched_group
*group_of(int cpu
)
1507 struct sched_domain
*sd
= rcu_dereference_sched(cpu_rq(cpu
)->sd
);
1515 static unsigned long power_of(int cpu
)
1517 struct sched_group
*group
= group_of(cpu
);
1520 return SCHED_LOAD_SCALE
;
1522 return group
->cpu_power
;
1525 static int task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
);
1527 static unsigned long cpu_avg_load_per_task(int cpu
)
1529 struct rq
*rq
= cpu_rq(cpu
);
1530 unsigned long nr_running
= ACCESS_ONCE(rq
->nr_running
);
1533 rq
->avg_load_per_task
= rq
->load
.weight
/ nr_running
;
1535 rq
->avg_load_per_task
= 0;
1537 return rq
->avg_load_per_task
;
1540 #ifdef CONFIG_FAIR_GROUP_SCHED
1542 static __read_mostly
unsigned long __percpu
*update_shares_data
;
1544 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
);
1547 * Calculate and set the cpu's group shares.
1549 static void update_group_shares_cpu(struct task_group
*tg
, int cpu
,
1550 unsigned long sd_shares
,
1551 unsigned long sd_rq_weight
,
1552 unsigned long *usd_rq_weight
)
1554 unsigned long shares
, rq_weight
;
1557 rq_weight
= usd_rq_weight
[cpu
];
1560 rq_weight
= NICE_0_LOAD
;
1564 * \Sum_j shares_j * rq_weight_i
1565 * shares_i = -----------------------------
1566 * \Sum_j rq_weight_j
1568 shares
= (sd_shares
* rq_weight
) / sd_rq_weight
;
1569 shares
= clamp_t(unsigned long, shares
, MIN_SHARES
, MAX_SHARES
);
1571 if (abs(shares
- tg
->se
[cpu
]->load
.weight
) >
1572 sysctl_sched_shares_thresh
) {
1573 struct rq
*rq
= cpu_rq(cpu
);
1574 unsigned long flags
;
1576 raw_spin_lock_irqsave(&rq
->lock
, flags
);
1577 tg
->cfs_rq
[cpu
]->rq_weight
= boost
? 0 : rq_weight
;
1578 tg
->cfs_rq
[cpu
]->shares
= boost
? 0 : shares
;
1579 __set_se_shares(tg
->se
[cpu
], shares
);
1580 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
1585 * Re-compute the task group their per cpu shares over the given domain.
1586 * This needs to be done in a bottom-up fashion because the rq weight of a
1587 * parent group depends on the shares of its child groups.
1589 static int tg_shares_up(struct task_group
*tg
, void *data
)
1591 unsigned long weight
, rq_weight
= 0, sum_weight
= 0, shares
= 0;
1592 unsigned long *usd_rq_weight
;
1593 struct sched_domain
*sd
= data
;
1594 unsigned long flags
;
1600 local_irq_save(flags
);
1601 usd_rq_weight
= per_cpu_ptr(update_shares_data
, smp_processor_id());
1603 for_each_cpu(i
, sched_domain_span(sd
)) {
1604 weight
= tg
->cfs_rq
[i
]->load
.weight
;
1605 usd_rq_weight
[i
] = weight
;
1607 rq_weight
+= weight
;
1609 * If there are currently no tasks on the cpu pretend there
1610 * is one of average load so that when a new task gets to
1611 * run here it will not get delayed by group starvation.
1614 weight
= NICE_0_LOAD
;
1616 sum_weight
+= weight
;
1617 shares
+= tg
->cfs_rq
[i
]->shares
;
1621 rq_weight
= sum_weight
;
1623 if ((!shares
&& rq_weight
) || shares
> tg
->shares
)
1624 shares
= tg
->shares
;
1626 if (!sd
->parent
|| !(sd
->parent
->flags
& SD_LOAD_BALANCE
))
1627 shares
= tg
->shares
;
1629 for_each_cpu(i
, sched_domain_span(sd
))
1630 update_group_shares_cpu(tg
, i
, shares
, rq_weight
, usd_rq_weight
);
1632 local_irq_restore(flags
);
1638 * Compute the cpu's hierarchical load factor for each task group.
1639 * This needs to be done in a top-down fashion because the load of a child
1640 * group is a fraction of its parents load.
1642 static int tg_load_down(struct task_group
*tg
, void *data
)
1645 long cpu
= (long)data
;
1648 load
= cpu_rq(cpu
)->load
.weight
;
1650 load
= tg
->parent
->cfs_rq
[cpu
]->h_load
;
1651 load
*= tg
->cfs_rq
[cpu
]->shares
;
1652 load
/= tg
->parent
->cfs_rq
[cpu
]->load
.weight
+ 1;
1655 tg
->cfs_rq
[cpu
]->h_load
= load
;
1660 static void update_shares(struct sched_domain
*sd
)
1665 if (root_task_group_empty())
1668 now
= cpu_clock(raw_smp_processor_id());
1669 elapsed
= now
- sd
->last_update
;
1671 if (elapsed
>= (s64
)(u64
)sysctl_sched_shares_ratelimit
) {
1672 sd
->last_update
= now
;
1673 walk_tg_tree(tg_nop
, tg_shares_up
, sd
);
1677 static void update_h_load(long cpu
)
1679 if (root_task_group_empty())
1682 walk_tg_tree(tg_load_down
, tg_nop
, (void *)cpu
);
1687 static inline void update_shares(struct sched_domain
*sd
)
1693 #ifdef CONFIG_PREEMPT
1695 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
);
1698 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1699 * way at the expense of forcing extra atomic operations in all
1700 * invocations. This assures that the double_lock is acquired using the
1701 * same underlying policy as the spinlock_t on this architecture, which
1702 * reduces latency compared to the unfair variant below. However, it
1703 * also adds more overhead and therefore may reduce throughput.
1705 static inline int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1706 __releases(this_rq
->lock
)
1707 __acquires(busiest
->lock
)
1708 __acquires(this_rq
->lock
)
1710 raw_spin_unlock(&this_rq
->lock
);
1711 double_rq_lock(this_rq
, busiest
);
1718 * Unfair double_lock_balance: Optimizes throughput at the expense of
1719 * latency by eliminating extra atomic operations when the locks are
1720 * already in proper order on entry. This favors lower cpu-ids and will
1721 * grant the double lock to lower cpus over higher ids under contention,
1722 * regardless of entry order into the function.
1724 static int _double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1725 __releases(this_rq
->lock
)
1726 __acquires(busiest
->lock
)
1727 __acquires(this_rq
->lock
)
1731 if (unlikely(!raw_spin_trylock(&busiest
->lock
))) {
1732 if (busiest
< this_rq
) {
1733 raw_spin_unlock(&this_rq
->lock
);
1734 raw_spin_lock(&busiest
->lock
);
1735 raw_spin_lock_nested(&this_rq
->lock
,
1736 SINGLE_DEPTH_NESTING
);
1739 raw_spin_lock_nested(&busiest
->lock
,
1740 SINGLE_DEPTH_NESTING
);
1745 #endif /* CONFIG_PREEMPT */
1748 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1750 static int double_lock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1752 if (unlikely(!irqs_disabled())) {
1753 /* printk() doesn't work good under rq->lock */
1754 raw_spin_unlock(&this_rq
->lock
);
1758 return _double_lock_balance(this_rq
, busiest
);
1761 static inline void double_unlock_balance(struct rq
*this_rq
, struct rq
*busiest
)
1762 __releases(busiest
->lock
)
1764 raw_spin_unlock(&busiest
->lock
);
1765 lock_set_subclass(&this_rq
->lock
.dep_map
, 0, _RET_IP_
);
1769 * double_rq_lock - safely lock two runqueues
1771 * Note this does not disable interrupts like task_rq_lock,
1772 * you need to do so manually before calling.
1774 static void double_rq_lock(struct rq
*rq1
, struct rq
*rq2
)
1775 __acquires(rq1
->lock
)
1776 __acquires(rq2
->lock
)
1778 BUG_ON(!irqs_disabled());
1780 raw_spin_lock(&rq1
->lock
);
1781 __acquire(rq2
->lock
); /* Fake it out ;) */
1784 raw_spin_lock(&rq1
->lock
);
1785 raw_spin_lock_nested(&rq2
->lock
, SINGLE_DEPTH_NESTING
);
1787 raw_spin_lock(&rq2
->lock
);
1788 raw_spin_lock_nested(&rq1
->lock
, SINGLE_DEPTH_NESTING
);
1794 * double_rq_unlock - safely unlock two runqueues
1796 * Note this does not restore interrupts like task_rq_unlock,
1797 * you need to do so manually after calling.
1799 static void double_rq_unlock(struct rq
*rq1
, struct rq
*rq2
)
1800 __releases(rq1
->lock
)
1801 __releases(rq2
->lock
)
1803 raw_spin_unlock(&rq1
->lock
);
1805 raw_spin_unlock(&rq2
->lock
);
1807 __release(rq2
->lock
);
1812 #ifdef CONFIG_FAIR_GROUP_SCHED
1813 static void cfs_rq_set_shares(struct cfs_rq
*cfs_rq
, unsigned long shares
)
1816 cfs_rq
->shares
= shares
;
1821 static void calc_load_account_active(struct rq
*this_rq
);
1822 static void update_sysctl(void);
1823 static int get_update_sysctl_factor(void);
1825 static inline void __set_task_cpu(struct task_struct
*p
, unsigned int cpu
)
1827 set_task_rq(p
, cpu
);
1830 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1831 * successfuly executed on another CPU. We must ensure that updates of
1832 * per-task data have been completed by this moment.
1835 task_thread_info(p
)->cpu
= cpu
;
1839 static const struct sched_class rt_sched_class
;
1841 #define sched_class_highest (&rt_sched_class)
1842 #define for_each_class(class) \
1843 for (class = sched_class_highest; class; class = class->next)
1845 #include "sched_stats.h"
1847 static void inc_nr_running(struct rq
*rq
)
1852 static void dec_nr_running(struct rq
*rq
)
1857 static void set_load_weight(struct task_struct
*p
)
1859 if (task_has_rt_policy(p
)) {
1860 p
->se
.load
.weight
= prio_to_weight
[0] * 2;
1861 p
->se
.load
.inv_weight
= prio_to_wmult
[0] >> 1;
1866 * SCHED_IDLE tasks get minimal weight:
1868 if (p
->policy
== SCHED_IDLE
) {
1869 p
->se
.load
.weight
= WEIGHT_IDLEPRIO
;
1870 p
->se
.load
.inv_weight
= WMULT_IDLEPRIO
;
1874 p
->se
.load
.weight
= prio_to_weight
[p
->static_prio
- MAX_RT_PRIO
];
1875 p
->se
.load
.inv_weight
= prio_to_wmult
[p
->static_prio
- MAX_RT_PRIO
];
1878 static void update_avg(u64
*avg
, u64 sample
)
1880 s64 diff
= sample
- *avg
;
1885 enqueue_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
, bool head
)
1887 update_rq_clock(rq
);
1888 sched_info_queued(p
);
1889 p
->sched_class
->enqueue_task(rq
, p
, wakeup
, head
);
1893 static void dequeue_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1895 update_rq_clock(rq
);
1896 sched_info_dequeued(p
);
1897 p
->sched_class
->dequeue_task(rq
, p
, sleep
);
1902 * activate_task - move a task to the runqueue.
1904 static void activate_task(struct rq
*rq
, struct task_struct
*p
, int wakeup
)
1906 if (task_contributes_to_load(p
))
1907 rq
->nr_uninterruptible
--;
1909 enqueue_task(rq
, p
, wakeup
, false);
1914 * deactivate_task - remove a task from the runqueue.
1916 static void deactivate_task(struct rq
*rq
, struct task_struct
*p
, int sleep
)
1918 if (task_contributes_to_load(p
))
1919 rq
->nr_uninterruptible
++;
1921 dequeue_task(rq
, p
, sleep
);
1925 #include "sched_idletask.c"
1926 #include "sched_fair.c"
1927 #include "sched_rt.c"
1928 #ifdef CONFIG_SCHED_DEBUG
1929 # include "sched_debug.c"
1933 * __normal_prio - return the priority that is based on the static prio
1935 static inline int __normal_prio(struct task_struct
*p
)
1937 return p
->static_prio
;
1941 * Calculate the expected normal priority: i.e. priority
1942 * without taking RT-inheritance into account. Might be
1943 * boosted by interactivity modifiers. Changes upon fork,
1944 * setprio syscalls, and whenever the interactivity
1945 * estimator recalculates.
1947 static inline int normal_prio(struct task_struct
*p
)
1951 if (task_has_rt_policy(p
))
1952 prio
= MAX_RT_PRIO
-1 - p
->rt_priority
;
1954 prio
= __normal_prio(p
);
1959 * Calculate the current priority, i.e. the priority
1960 * taken into account by the scheduler. This value might
1961 * be boosted by RT tasks, or might be boosted by
1962 * interactivity modifiers. Will be RT if the task got
1963 * RT-boosted. If not then it returns p->normal_prio.
1965 static int effective_prio(struct task_struct
*p
)
1967 p
->normal_prio
= normal_prio(p
);
1969 * If we are RT tasks or we were boosted to RT priority,
1970 * keep the priority unchanged. Otherwise, update priority
1971 * to the normal priority:
1973 if (!rt_prio(p
->prio
))
1974 return p
->normal_prio
;
1979 * task_curr - is this task currently executing on a CPU?
1980 * @p: the task in question.
1982 inline int task_curr(const struct task_struct
*p
)
1984 return cpu_curr(task_cpu(p
)) == p
;
1987 static inline void check_class_changed(struct rq
*rq
, struct task_struct
*p
,
1988 const struct sched_class
*prev_class
,
1989 int oldprio
, int running
)
1991 if (prev_class
!= p
->sched_class
) {
1992 if (prev_class
->switched_from
)
1993 prev_class
->switched_from(rq
, p
, running
);
1994 p
->sched_class
->switched_to(rq
, p
, running
);
1996 p
->sched_class
->prio_changed(rq
, p
, oldprio
, running
);
2001 * Is this task likely cache-hot:
2004 task_hot(struct task_struct
*p
, u64 now
, struct sched_domain
*sd
)
2008 if (p
->sched_class
!= &fair_sched_class
)
2012 * Buddy candidates are cache hot:
2014 if (sched_feat(CACHE_HOT_BUDDY
) && this_rq()->nr_running
&&
2015 (&p
->se
== cfs_rq_of(&p
->se
)->next
||
2016 &p
->se
== cfs_rq_of(&p
->se
)->last
))
2019 if (sysctl_sched_migration_cost
== -1)
2021 if (sysctl_sched_migration_cost
== 0)
2024 delta
= now
- p
->se
.exec_start
;
2026 return delta
< (s64
)sysctl_sched_migration_cost
;
2029 void set_task_cpu(struct task_struct
*p
, unsigned int new_cpu
)
2031 #ifdef CONFIG_SCHED_DEBUG
2033 * We should never call set_task_cpu() on a blocked task,
2034 * ttwu() will sort out the placement.
2036 WARN_ON_ONCE(p
->state
!= TASK_RUNNING
&& p
->state
!= TASK_WAKING
&&
2037 !(task_thread_info(p
)->preempt_count
& PREEMPT_ACTIVE
));
2040 trace_sched_migrate_task(p
, new_cpu
);
2042 if (task_cpu(p
) != new_cpu
) {
2043 p
->se
.nr_migrations
++;
2044 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS
, 1, 1, NULL
, 0);
2047 __set_task_cpu(p
, new_cpu
);
2050 struct migration_req
{
2051 struct list_head list
;
2053 struct task_struct
*task
;
2056 struct completion done
;
2060 * The task's runqueue lock must be held.
2061 * Returns true if you have to wait for migration thread.
2064 migrate_task(struct task_struct
*p
, int dest_cpu
, struct migration_req
*req
)
2066 struct rq
*rq
= task_rq(p
);
2069 * If the task is not on a runqueue (and not running), then
2070 * the next wake-up will properly place the task.
2072 if (!p
->se
.on_rq
&& !task_running(rq
, p
))
2075 init_completion(&req
->done
);
2077 req
->dest_cpu
= dest_cpu
;
2078 list_add(&req
->list
, &rq
->migration_queue
);
2084 * wait_task_context_switch - wait for a thread to complete at least one
2087 * @p must not be current.
2089 void wait_task_context_switch(struct task_struct
*p
)
2091 unsigned long nvcsw
, nivcsw
, flags
;
2099 * The runqueue is assigned before the actual context
2100 * switch. We need to take the runqueue lock.
2102 * We could check initially without the lock but it is
2103 * very likely that we need to take the lock in every
2106 rq
= task_rq_lock(p
, &flags
);
2107 running
= task_running(rq
, p
);
2108 task_rq_unlock(rq
, &flags
);
2110 if (likely(!running
))
2113 * The switch count is incremented before the actual
2114 * context switch. We thus wait for two switches to be
2115 * sure at least one completed.
2117 if ((p
->nvcsw
- nvcsw
) > 1)
2119 if ((p
->nivcsw
- nivcsw
) > 1)
2127 * wait_task_inactive - wait for a thread to unschedule.
2129 * If @match_state is nonzero, it's the @p->state value just checked and
2130 * not expected to change. If it changes, i.e. @p might have woken up,
2131 * then return zero. When we succeed in waiting for @p to be off its CPU,
2132 * we return a positive number (its total switch count). If a second call
2133 * a short while later returns the same number, the caller can be sure that
2134 * @p has remained unscheduled the whole time.
2136 * The caller must ensure that the task *will* unschedule sometime soon,
2137 * else this function might spin for a *long* time. This function can't
2138 * be called with interrupts off, or it may introduce deadlock with
2139 * smp_call_function() if an IPI is sent by the same process we are
2140 * waiting to become inactive.
2142 unsigned long wait_task_inactive(struct task_struct
*p
, long match_state
)
2144 unsigned long flags
;
2151 * We do the initial early heuristics without holding
2152 * any task-queue locks at all. We'll only try to get
2153 * the runqueue lock when things look like they will
2159 * If the task is actively running on another CPU
2160 * still, just relax and busy-wait without holding
2163 * NOTE! Since we don't hold any locks, it's not
2164 * even sure that "rq" stays as the right runqueue!
2165 * But we don't care, since "task_running()" will
2166 * return false if the runqueue has changed and p
2167 * is actually now running somewhere else!
2169 while (task_running(rq
, p
)) {
2170 if (match_state
&& unlikely(p
->state
!= match_state
))
2176 * Ok, time to look more closely! We need the rq
2177 * lock now, to be *sure*. If we're wrong, we'll
2178 * just go back and repeat.
2180 rq
= task_rq_lock(p
, &flags
);
2181 trace_sched_wait_task(rq
, p
);
2182 running
= task_running(rq
, p
);
2183 on_rq
= p
->se
.on_rq
;
2185 if (!match_state
|| p
->state
== match_state
)
2186 ncsw
= p
->nvcsw
| LONG_MIN
; /* sets MSB */
2187 task_rq_unlock(rq
, &flags
);
2190 * If it changed from the expected state, bail out now.
2192 if (unlikely(!ncsw
))
2196 * Was it really running after all now that we
2197 * checked with the proper locks actually held?
2199 * Oops. Go back and try again..
2201 if (unlikely(running
)) {
2207 * It's not enough that it's not actively running,
2208 * it must be off the runqueue _entirely_, and not
2211 * So if it was still runnable (but just not actively
2212 * running right now), it's preempted, and we should
2213 * yield - it could be a while.
2215 if (unlikely(on_rq
)) {
2216 schedule_timeout_uninterruptible(1);
2221 * Ahh, all good. It wasn't running, and it wasn't
2222 * runnable, which means that it will never become
2223 * running in the future either. We're all done!
2232 * kick_process - kick a running thread to enter/exit the kernel
2233 * @p: the to-be-kicked thread
2235 * Cause a process which is running on another CPU to enter
2236 * kernel-mode, without any delay. (to get signals handled.)
2238 * NOTE: this function doesnt have to take the runqueue lock,
2239 * because all it wants to ensure is that the remote task enters
2240 * the kernel. If the IPI races and the task has been migrated
2241 * to another CPU then no harm is done and the purpose has been
2244 void kick_process(struct task_struct
*p
)
2250 if ((cpu
!= smp_processor_id()) && task_curr(p
))
2251 smp_send_reschedule(cpu
);
2254 EXPORT_SYMBOL_GPL(kick_process
);
2255 #endif /* CONFIG_SMP */
2258 * task_oncpu_function_call - call a function on the cpu on which a task runs
2259 * @p: the task to evaluate
2260 * @func: the function to be called
2261 * @info: the function call argument
2263 * Calls the function @func when the task is currently running. This might
2264 * be on the current CPU, which just calls the function directly
2266 void task_oncpu_function_call(struct task_struct
*p
,
2267 void (*func
) (void *info
), void *info
)
2274 smp_call_function_single(cpu
, func
, info
, 1);
2280 * ->cpus_allowed is protected by either TASK_WAKING or rq->lock held.
2282 static int select_fallback_rq(int cpu
, struct task_struct
*p
)
2285 const struct cpumask
*nodemask
= cpumask_of_node(cpu_to_node(cpu
));
2287 /* Look for allowed, online CPU in same node. */
2288 for_each_cpu_and(dest_cpu
, nodemask
, cpu_active_mask
)
2289 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
2292 /* Any allowed, online CPU? */
2293 dest_cpu
= cpumask_any_and(&p
->cpus_allowed
, cpu_active_mask
);
2294 if (dest_cpu
< nr_cpu_ids
)
2297 /* No more Mr. Nice Guy. */
2298 if (unlikely(dest_cpu
>= nr_cpu_ids
)) {
2299 dest_cpu
= cpuset_cpus_allowed_fallback(p
);
2301 * Don't tell them about moving exiting tasks or
2302 * kernel threads (both mm NULL), since they never
2305 if (p
->mm
&& printk_ratelimit()) {
2306 printk(KERN_INFO
"process %d (%s) no "
2307 "longer affine to cpu%d\n",
2308 task_pid_nr(p
), p
->comm
, cpu
);
2316 * The caller (fork, wakeup) owns TASK_WAKING, ->cpus_allowed is stable.
2319 int select_task_rq(struct rq
*rq
, struct task_struct
*p
, int sd_flags
, int wake_flags
)
2321 int cpu
= p
->sched_class
->select_task_rq(rq
, p
, sd_flags
, wake_flags
);
2324 * In order not to call set_task_cpu() on a blocking task we need
2325 * to rely on ttwu() to place the task on a valid ->cpus_allowed
2328 * Since this is common to all placement strategies, this lives here.
2330 * [ this allows ->select_task() to simply return task_cpu(p) and
2331 * not worry about this generic constraint ]
2333 if (unlikely(!cpumask_test_cpu(cpu
, &p
->cpus_allowed
) ||
2335 cpu
= select_fallback_rq(task_cpu(p
), p
);
2342 * try_to_wake_up - wake up a thread
2343 * @p: the to-be-woken-up thread
2344 * @state: the mask of task states that can be woken
2345 * @sync: do a synchronous wakeup?
2347 * Put it on the run-queue if it's not already there. The "current"
2348 * thread is always on the run-queue (except when the actual
2349 * re-schedule is in progress), and as such you're allowed to do
2350 * the simpler "current->state = TASK_RUNNING" to mark yourself
2351 * runnable without the overhead of this.
2353 * returns failure only if the task is already active.
2355 static int try_to_wake_up(struct task_struct
*p
, unsigned int state
,
2358 int cpu
, orig_cpu
, this_cpu
, success
= 0;
2359 unsigned long flags
;
2362 this_cpu
= get_cpu();
2365 rq
= task_rq_lock(p
, &flags
);
2366 if (!(p
->state
& state
))
2376 if (unlikely(task_running(rq
, p
)))
2380 * In order to handle concurrent wakeups and release the rq->lock
2381 * we put the task in TASK_WAKING state.
2383 * First fix up the nr_uninterruptible count:
2385 if (task_contributes_to_load(p
))
2386 rq
->nr_uninterruptible
--;
2387 p
->state
= TASK_WAKING
;
2389 if (p
->sched_class
->task_waking
)
2390 p
->sched_class
->task_waking(rq
, p
);
2392 cpu
= select_task_rq(rq
, p
, SD_BALANCE_WAKE
, wake_flags
);
2393 if (cpu
!= orig_cpu
)
2394 set_task_cpu(p
, cpu
);
2395 __task_rq_unlock(rq
);
2398 raw_spin_lock(&rq
->lock
);
2401 * We migrated the task without holding either rq->lock, however
2402 * since the task is not on the task list itself, nobody else
2403 * will try and migrate the task, hence the rq should match the
2404 * cpu we just moved it to.
2406 WARN_ON(task_cpu(p
) != cpu
);
2407 WARN_ON(p
->state
!= TASK_WAKING
);
2409 #ifdef CONFIG_SCHEDSTATS
2410 schedstat_inc(rq
, ttwu_count
);
2411 if (cpu
== this_cpu
)
2412 schedstat_inc(rq
, ttwu_local
);
2414 struct sched_domain
*sd
;
2415 for_each_domain(this_cpu
, sd
) {
2416 if (cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
2417 schedstat_inc(sd
, ttwu_wake_remote
);
2422 #endif /* CONFIG_SCHEDSTATS */
2425 #endif /* CONFIG_SMP */
2426 schedstat_inc(p
, se
.statistics
.nr_wakeups
);
2427 if (wake_flags
& WF_SYNC
)
2428 schedstat_inc(p
, se
.statistics
.nr_wakeups_sync
);
2429 if (orig_cpu
!= cpu
)
2430 schedstat_inc(p
, se
.statistics
.nr_wakeups_migrate
);
2431 if (cpu
== this_cpu
)
2432 schedstat_inc(p
, se
.statistics
.nr_wakeups_local
);
2434 schedstat_inc(p
, se
.statistics
.nr_wakeups_remote
);
2435 activate_task(rq
, p
, 1);
2439 trace_sched_wakeup(rq
, p
, success
);
2440 check_preempt_curr(rq
, p
, wake_flags
);
2442 p
->state
= TASK_RUNNING
;
2444 if (p
->sched_class
->task_woken
)
2445 p
->sched_class
->task_woken(rq
, p
);
2447 if (unlikely(rq
->idle_stamp
)) {
2448 u64 delta
= rq
->clock
- rq
->idle_stamp
;
2449 u64 max
= 2*sysctl_sched_migration_cost
;
2454 update_avg(&rq
->avg_idle
, delta
);
2459 task_rq_unlock(rq
, &flags
);
2466 * wake_up_process - Wake up a specific process
2467 * @p: The process to be woken up.
2469 * Attempt to wake up the nominated process and move it to the set of runnable
2470 * processes. Returns 1 if the process was woken up, 0 if it was already
2473 * It may be assumed that this function implies a write memory barrier before
2474 * changing the task state if and only if any tasks are woken up.
2476 int wake_up_process(struct task_struct
*p
)
2478 return try_to_wake_up(p
, TASK_ALL
, 0);
2480 EXPORT_SYMBOL(wake_up_process
);
2482 int wake_up_state(struct task_struct
*p
, unsigned int state
)
2484 return try_to_wake_up(p
, state
, 0);
2488 * Perform scheduler related setup for a newly forked process p.
2489 * p is forked by current.
2491 * __sched_fork() is basic setup used by init_idle() too:
2493 static void __sched_fork(struct task_struct
*p
)
2495 p
->se
.exec_start
= 0;
2496 p
->se
.sum_exec_runtime
= 0;
2497 p
->se
.prev_sum_exec_runtime
= 0;
2498 p
->se
.nr_migrations
= 0;
2500 #ifdef CONFIG_SCHEDSTATS
2501 memset(&p
->se
.statistics
, 0, sizeof(p
->se
.statistics
));
2504 INIT_LIST_HEAD(&p
->rt
.run_list
);
2506 INIT_LIST_HEAD(&p
->se
.group_node
);
2508 #ifdef CONFIG_PREEMPT_NOTIFIERS
2509 INIT_HLIST_HEAD(&p
->preempt_notifiers
);
2514 * fork()/clone()-time setup:
2516 void sched_fork(struct task_struct
*p
, int clone_flags
)
2518 int cpu
= get_cpu();
2522 * We mark the process as running here. This guarantees that
2523 * nobody will actually run it, and a signal or other external
2524 * event cannot wake it up and insert it on the runqueue either.
2526 p
->state
= TASK_RUNNING
;
2529 * Revert to default priority/policy on fork if requested.
2531 if (unlikely(p
->sched_reset_on_fork
)) {
2532 if (p
->policy
== SCHED_FIFO
|| p
->policy
== SCHED_RR
) {
2533 p
->policy
= SCHED_NORMAL
;
2534 p
->normal_prio
= p
->static_prio
;
2537 if (PRIO_TO_NICE(p
->static_prio
) < 0) {
2538 p
->static_prio
= NICE_TO_PRIO(0);
2539 p
->normal_prio
= p
->static_prio
;
2544 * We don't need the reset flag anymore after the fork. It has
2545 * fulfilled its duty:
2547 p
->sched_reset_on_fork
= 0;
2551 * Make sure we do not leak PI boosting priority to the child.
2553 p
->prio
= current
->normal_prio
;
2555 if (!rt_prio(p
->prio
))
2556 p
->sched_class
= &fair_sched_class
;
2558 if (p
->sched_class
->task_fork
)
2559 p
->sched_class
->task_fork(p
);
2561 set_task_cpu(p
, cpu
);
2563 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2564 if (likely(sched_info_on()))
2565 memset(&p
->sched_info
, 0, sizeof(p
->sched_info
));
2567 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2570 #ifdef CONFIG_PREEMPT
2571 /* Want to start with kernel preemption disabled. */
2572 task_thread_info(p
)->preempt_count
= 1;
2574 plist_node_init(&p
->pushable_tasks
, MAX_PRIO
);
2580 * wake_up_new_task - wake up a newly created task for the first time.
2582 * This function will do some initial scheduler statistics housekeeping
2583 * that must be done for every newly created context, then puts the task
2584 * on the runqueue and wakes it.
2586 void wake_up_new_task(struct task_struct
*p
, unsigned long clone_flags
)
2588 unsigned long flags
;
2590 int cpu __maybe_unused
= get_cpu();
2593 rq
= task_rq_lock(p
, &flags
);
2594 p
->state
= TASK_WAKING
;
2597 * Fork balancing, do it here and not earlier because:
2598 * - cpus_allowed can change in the fork path
2599 * - any previously selected cpu might disappear through hotplug
2601 * We set TASK_WAKING so that select_task_rq() can drop rq->lock
2602 * without people poking at ->cpus_allowed.
2604 cpu
= select_task_rq(rq
, p
, SD_BALANCE_FORK
, 0);
2605 set_task_cpu(p
, cpu
);
2607 p
->state
= TASK_RUNNING
;
2608 task_rq_unlock(rq
, &flags
);
2611 rq
= task_rq_lock(p
, &flags
);
2612 activate_task(rq
, p
, 0);
2613 trace_sched_wakeup_new(rq
, p
, 1);
2614 check_preempt_curr(rq
, p
, WF_FORK
);
2616 if (p
->sched_class
->task_woken
)
2617 p
->sched_class
->task_woken(rq
, p
);
2619 task_rq_unlock(rq
, &flags
);
2623 #ifdef CONFIG_PREEMPT_NOTIFIERS
2626 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2627 * @notifier: notifier struct to register
2629 void preempt_notifier_register(struct preempt_notifier
*notifier
)
2631 hlist_add_head(¬ifier
->link
, ¤t
->preempt_notifiers
);
2633 EXPORT_SYMBOL_GPL(preempt_notifier_register
);
2636 * preempt_notifier_unregister - no longer interested in preemption notifications
2637 * @notifier: notifier struct to unregister
2639 * This is safe to call from within a preemption notifier.
2641 void preempt_notifier_unregister(struct preempt_notifier
*notifier
)
2643 hlist_del(¬ifier
->link
);
2645 EXPORT_SYMBOL_GPL(preempt_notifier_unregister
);
2647 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2649 struct preempt_notifier
*notifier
;
2650 struct hlist_node
*node
;
2652 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2653 notifier
->ops
->sched_in(notifier
, raw_smp_processor_id());
2657 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2658 struct task_struct
*next
)
2660 struct preempt_notifier
*notifier
;
2661 struct hlist_node
*node
;
2663 hlist_for_each_entry(notifier
, node
, &curr
->preempt_notifiers
, link
)
2664 notifier
->ops
->sched_out(notifier
, next
);
2667 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2669 static void fire_sched_in_preempt_notifiers(struct task_struct
*curr
)
2674 fire_sched_out_preempt_notifiers(struct task_struct
*curr
,
2675 struct task_struct
*next
)
2679 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2682 * prepare_task_switch - prepare to switch tasks
2683 * @rq: the runqueue preparing to switch
2684 * @prev: the current task that is being switched out
2685 * @next: the task we are going to switch to.
2687 * This is called with the rq lock held and interrupts off. It must
2688 * be paired with a subsequent finish_task_switch after the context
2691 * prepare_task_switch sets up locking and calls architecture specific
2695 prepare_task_switch(struct rq
*rq
, struct task_struct
*prev
,
2696 struct task_struct
*next
)
2698 fire_sched_out_preempt_notifiers(prev
, next
);
2699 prepare_lock_switch(rq
, next
);
2700 prepare_arch_switch(next
);
2704 * finish_task_switch - clean up after a task-switch
2705 * @rq: runqueue associated with task-switch
2706 * @prev: the thread we just switched away from.
2708 * finish_task_switch must be called after the context switch, paired
2709 * with a prepare_task_switch call before the context switch.
2710 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2711 * and do any other architecture-specific cleanup actions.
2713 * Note that we may have delayed dropping an mm in context_switch(). If
2714 * so, we finish that here outside of the runqueue lock. (Doing it
2715 * with the lock held can cause deadlocks; see schedule() for
2718 static void finish_task_switch(struct rq
*rq
, struct task_struct
*prev
)
2719 __releases(rq
->lock
)
2721 struct mm_struct
*mm
= rq
->prev_mm
;
2727 * A task struct has one reference for the use as "current".
2728 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2729 * schedule one last time. The schedule call will never return, and
2730 * the scheduled task must drop that reference.
2731 * The test for TASK_DEAD must occur while the runqueue locks are
2732 * still held, otherwise prev could be scheduled on another cpu, die
2733 * there before we look at prev->state, and then the reference would
2735 * Manfred Spraul <manfred@colorfullife.com>
2737 prev_state
= prev
->state
;
2738 finish_arch_switch(prev
);
2739 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2740 local_irq_disable();
2741 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2742 perf_event_task_sched_in(current
);
2743 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
2745 #endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
2746 finish_lock_switch(rq
, prev
);
2748 fire_sched_in_preempt_notifiers(current
);
2751 if (unlikely(prev_state
== TASK_DEAD
)) {
2753 * Remove function-return probe instances associated with this
2754 * task and put them back on the free list.
2756 kprobe_flush_task(prev
);
2757 put_task_struct(prev
);
2763 /* assumes rq->lock is held */
2764 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*prev
)
2766 if (prev
->sched_class
->pre_schedule
)
2767 prev
->sched_class
->pre_schedule(rq
, prev
);
2770 /* rq->lock is NOT held, but preemption is disabled */
2771 static inline void post_schedule(struct rq
*rq
)
2773 if (rq
->post_schedule
) {
2774 unsigned long flags
;
2776 raw_spin_lock_irqsave(&rq
->lock
, flags
);
2777 if (rq
->curr
->sched_class
->post_schedule
)
2778 rq
->curr
->sched_class
->post_schedule(rq
);
2779 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
2781 rq
->post_schedule
= 0;
2787 static inline void pre_schedule(struct rq
*rq
, struct task_struct
*p
)
2791 static inline void post_schedule(struct rq
*rq
)
2798 * schedule_tail - first thing a freshly forked thread must call.
2799 * @prev: the thread we just switched away from.
2801 asmlinkage
void schedule_tail(struct task_struct
*prev
)
2802 __releases(rq
->lock
)
2804 struct rq
*rq
= this_rq();
2806 finish_task_switch(rq
, prev
);
2809 * FIXME: do we need to worry about rq being invalidated by the
2814 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2815 /* In this case, finish_task_switch does not reenable preemption */
2818 if (current
->set_child_tid
)
2819 put_user(task_pid_vnr(current
), current
->set_child_tid
);
2823 * context_switch - switch to the new MM and the new
2824 * thread's register state.
2827 context_switch(struct rq
*rq
, struct task_struct
*prev
,
2828 struct task_struct
*next
)
2830 struct mm_struct
*mm
, *oldmm
;
2832 prepare_task_switch(rq
, prev
, next
);
2833 trace_sched_switch(rq
, prev
, next
);
2835 oldmm
= prev
->active_mm
;
2837 * For paravirt, this is coupled with an exit in switch_to to
2838 * combine the page table reload and the switch backend into
2841 arch_start_context_switch(prev
);
2844 next
->active_mm
= oldmm
;
2845 atomic_inc(&oldmm
->mm_count
);
2846 enter_lazy_tlb(oldmm
, next
);
2848 switch_mm(oldmm
, mm
, next
);
2850 if (likely(!prev
->mm
)) {
2851 prev
->active_mm
= NULL
;
2852 rq
->prev_mm
= oldmm
;
2855 * Since the runqueue lock will be released by the next
2856 * task (which is an invalid locking op but in the case
2857 * of the scheduler it's an obvious special-case), so we
2858 * do an early lockdep release here:
2860 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2861 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
2864 /* Here we just switch the register state and the stack. */
2865 switch_to(prev
, next
, prev
);
2869 * this_rq must be evaluated again because prev may have moved
2870 * CPUs since it called schedule(), thus the 'rq' on its stack
2871 * frame will be invalid.
2873 finish_task_switch(this_rq(), prev
);
2877 * nr_running, nr_uninterruptible and nr_context_switches:
2879 * externally visible scheduler statistics: current number of runnable
2880 * threads, current number of uninterruptible-sleeping threads, total
2881 * number of context switches performed since bootup.
2883 unsigned long nr_running(void)
2885 unsigned long i
, sum
= 0;
2887 for_each_online_cpu(i
)
2888 sum
+= cpu_rq(i
)->nr_running
;
2893 unsigned long nr_uninterruptible(void)
2895 unsigned long i
, sum
= 0;
2897 for_each_possible_cpu(i
)
2898 sum
+= cpu_rq(i
)->nr_uninterruptible
;
2901 * Since we read the counters lockless, it might be slightly
2902 * inaccurate. Do not allow it to go below zero though:
2904 if (unlikely((long)sum
< 0))
2910 unsigned long long nr_context_switches(void)
2913 unsigned long long sum
= 0;
2915 for_each_possible_cpu(i
)
2916 sum
+= cpu_rq(i
)->nr_switches
;
2921 unsigned long nr_iowait(void)
2923 unsigned long i
, sum
= 0;
2925 for_each_possible_cpu(i
)
2926 sum
+= atomic_read(&cpu_rq(i
)->nr_iowait
);
2931 unsigned long nr_iowait_cpu(void)
2933 struct rq
*this = this_rq();
2934 return atomic_read(&this->nr_iowait
);
2937 unsigned long this_cpu_load(void)
2939 struct rq
*this = this_rq();
2940 return this->cpu_load
[0];
2944 /* Variables and functions for calc_load */
2945 static atomic_long_t calc_load_tasks
;
2946 static unsigned long calc_load_update
;
2947 unsigned long avenrun
[3];
2948 EXPORT_SYMBOL(avenrun
);
2951 * get_avenrun - get the load average array
2952 * @loads: pointer to dest load array
2953 * @offset: offset to add
2954 * @shift: shift count to shift the result left
2956 * These values are estimates at best, so no need for locking.
2958 void get_avenrun(unsigned long *loads
, unsigned long offset
, int shift
)
2960 loads
[0] = (avenrun
[0] + offset
) << shift
;
2961 loads
[1] = (avenrun
[1] + offset
) << shift
;
2962 loads
[2] = (avenrun
[2] + offset
) << shift
;
2965 static unsigned long
2966 calc_load(unsigned long load
, unsigned long exp
, unsigned long active
)
2969 load
+= active
* (FIXED_1
- exp
);
2970 return load
>> FSHIFT
;
2974 * calc_load - update the avenrun load estimates 10 ticks after the
2975 * CPUs have updated calc_load_tasks.
2977 void calc_global_load(void)
2979 unsigned long upd
= calc_load_update
+ 10;
2982 if (time_before(jiffies
, upd
))
2985 active
= atomic_long_read(&calc_load_tasks
);
2986 active
= active
> 0 ? active
* FIXED_1
: 0;
2988 avenrun
[0] = calc_load(avenrun
[0], EXP_1
, active
);
2989 avenrun
[1] = calc_load(avenrun
[1], EXP_5
, active
);
2990 avenrun
[2] = calc_load(avenrun
[2], EXP_15
, active
);
2992 calc_load_update
+= LOAD_FREQ
;
2996 * Either called from update_cpu_load() or from a cpu going idle
2998 static void calc_load_account_active(struct rq
*this_rq
)
3000 long nr_active
, delta
;
3002 nr_active
= this_rq
->nr_running
;
3003 nr_active
+= (long) this_rq
->nr_uninterruptible
;
3005 if (nr_active
!= this_rq
->calc_load_active
) {
3006 delta
= nr_active
- this_rq
->calc_load_active
;
3007 this_rq
->calc_load_active
= nr_active
;
3008 atomic_long_add(delta
, &calc_load_tasks
);
3013 * Update rq->cpu_load[] statistics. This function is usually called every
3014 * scheduler tick (TICK_NSEC).
3016 static void update_cpu_load(struct rq
*this_rq
)
3018 unsigned long this_load
= this_rq
->load
.weight
;
3021 this_rq
->nr_load_updates
++;
3023 /* Update our load: */
3024 for (i
= 0, scale
= 1; i
< CPU_LOAD_IDX_MAX
; i
++, scale
+= scale
) {
3025 unsigned long old_load
, new_load
;
3027 /* scale is effectively 1 << i now, and >> i divides by scale */
3029 old_load
= this_rq
->cpu_load
[i
];
3030 new_load
= this_load
;
3032 * Round up the averaging division if load is increasing. This
3033 * prevents us from getting stuck on 9 if the load is 10, for
3036 if (new_load
> old_load
)
3037 new_load
+= scale
-1;
3038 this_rq
->cpu_load
[i
] = (old_load
*(scale
-1) + new_load
) >> i
;
3041 if (time_after_eq(jiffies
, this_rq
->calc_load_update
)) {
3042 this_rq
->calc_load_update
+= LOAD_FREQ
;
3043 calc_load_account_active(this_rq
);
3050 * sched_exec - execve() is a valuable balancing opportunity, because at
3051 * this point the task has the smallest effective memory and cache footprint.
3053 void sched_exec(void)
3055 struct task_struct
*p
= current
;
3056 struct migration_req req
;
3057 unsigned long flags
;
3061 rq
= task_rq_lock(p
, &flags
);
3062 dest_cpu
= p
->sched_class
->select_task_rq(rq
, p
, SD_BALANCE_EXEC
, 0);
3063 if (dest_cpu
== smp_processor_id())
3067 * select_task_rq() can race against ->cpus_allowed
3069 if (cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
) &&
3070 likely(cpu_active(dest_cpu
)) &&
3071 migrate_task(p
, dest_cpu
, &req
)) {
3072 /* Need to wait for migration thread (might exit: take ref). */
3073 struct task_struct
*mt
= rq
->migration_thread
;
3075 get_task_struct(mt
);
3076 task_rq_unlock(rq
, &flags
);
3077 wake_up_process(mt
);
3078 put_task_struct(mt
);
3079 wait_for_completion(&req
.done
);
3084 task_rq_unlock(rq
, &flags
);
3089 DEFINE_PER_CPU(struct kernel_stat
, kstat
);
3091 EXPORT_PER_CPU_SYMBOL(kstat
);
3094 * Return any ns on the sched_clock that have not yet been accounted in
3095 * @p in case that task is currently running.
3097 * Called with task_rq_lock() held on @rq.
3099 static u64
do_task_delta_exec(struct task_struct
*p
, struct rq
*rq
)
3103 if (task_current(rq
, p
)) {
3104 update_rq_clock(rq
);
3105 ns
= rq
->clock
- p
->se
.exec_start
;
3113 unsigned long long task_delta_exec(struct task_struct
*p
)
3115 unsigned long flags
;
3119 rq
= task_rq_lock(p
, &flags
);
3120 ns
= do_task_delta_exec(p
, rq
);
3121 task_rq_unlock(rq
, &flags
);
3127 * Return accounted runtime for the task.
3128 * In case the task is currently running, return the runtime plus current's
3129 * pending runtime that have not been accounted yet.
3131 unsigned long long task_sched_runtime(struct task_struct
*p
)
3133 unsigned long flags
;
3137 rq
= task_rq_lock(p
, &flags
);
3138 ns
= p
->se
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3139 task_rq_unlock(rq
, &flags
);
3145 * Return sum_exec_runtime for the thread group.
3146 * In case the task is currently running, return the sum plus current's
3147 * pending runtime that have not been accounted yet.
3149 * Note that the thread group might have other running tasks as well,
3150 * so the return value not includes other pending runtime that other
3151 * running tasks might have.
3153 unsigned long long thread_group_sched_runtime(struct task_struct
*p
)
3155 struct task_cputime totals
;
3156 unsigned long flags
;
3160 rq
= task_rq_lock(p
, &flags
);
3161 thread_group_cputime(p
, &totals
);
3162 ns
= totals
.sum_exec_runtime
+ do_task_delta_exec(p
, rq
);
3163 task_rq_unlock(rq
, &flags
);
3169 * Account user cpu time to a process.
3170 * @p: the process that the cpu time gets accounted to
3171 * @cputime: the cpu time spent in user space since the last update
3172 * @cputime_scaled: cputime scaled by cpu frequency
3174 void account_user_time(struct task_struct
*p
, cputime_t cputime
,
3175 cputime_t cputime_scaled
)
3177 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3180 /* Add user time to process. */
3181 p
->utime
= cputime_add(p
->utime
, cputime
);
3182 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3183 account_group_user_time(p
, cputime
);
3185 /* Add user time to cpustat. */
3186 tmp
= cputime_to_cputime64(cputime
);
3187 if (TASK_NICE(p
) > 0)
3188 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3190 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3192 cpuacct_update_stats(p
, CPUACCT_STAT_USER
, cputime
);
3193 /* Account for user time used */
3194 acct_update_integrals(p
);
3198 * Account guest cpu time to a process.
3199 * @p: the process that the cpu time gets accounted to
3200 * @cputime: the cpu time spent in virtual machine since the last update
3201 * @cputime_scaled: cputime scaled by cpu frequency
3203 static void account_guest_time(struct task_struct
*p
, cputime_t cputime
,
3204 cputime_t cputime_scaled
)
3207 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3209 tmp
= cputime_to_cputime64(cputime
);
3211 /* Add guest time to process. */
3212 p
->utime
= cputime_add(p
->utime
, cputime
);
3213 p
->utimescaled
= cputime_add(p
->utimescaled
, cputime_scaled
);
3214 account_group_user_time(p
, cputime
);
3215 p
->gtime
= cputime_add(p
->gtime
, cputime
);
3217 /* Add guest time to cpustat. */
3218 if (TASK_NICE(p
) > 0) {
3219 cpustat
->nice
= cputime64_add(cpustat
->nice
, tmp
);
3220 cpustat
->guest_nice
= cputime64_add(cpustat
->guest_nice
, tmp
);
3222 cpustat
->user
= cputime64_add(cpustat
->user
, tmp
);
3223 cpustat
->guest
= cputime64_add(cpustat
->guest
, tmp
);
3228 * Account system cpu time to a process.
3229 * @p: the process that the cpu time gets accounted to
3230 * @hardirq_offset: the offset to subtract from hardirq_count()
3231 * @cputime: the cpu time spent in kernel space since the last update
3232 * @cputime_scaled: cputime scaled by cpu frequency
3234 void account_system_time(struct task_struct
*p
, int hardirq_offset
,
3235 cputime_t cputime
, cputime_t cputime_scaled
)
3237 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3240 if ((p
->flags
& PF_VCPU
) && (irq_count() - hardirq_offset
== 0)) {
3241 account_guest_time(p
, cputime
, cputime_scaled
);
3245 /* Add system time to process. */
3246 p
->stime
= cputime_add(p
->stime
, cputime
);
3247 p
->stimescaled
= cputime_add(p
->stimescaled
, cputime_scaled
);
3248 account_group_system_time(p
, cputime
);
3250 /* Add system time to cpustat. */
3251 tmp
= cputime_to_cputime64(cputime
);
3252 if (hardirq_count() - hardirq_offset
)
3253 cpustat
->irq
= cputime64_add(cpustat
->irq
, tmp
);
3254 else if (softirq_count())
3255 cpustat
->softirq
= cputime64_add(cpustat
->softirq
, tmp
);
3257 cpustat
->system
= cputime64_add(cpustat
->system
, tmp
);
3259 cpuacct_update_stats(p
, CPUACCT_STAT_SYSTEM
, cputime
);
3261 /* Account for system time used */
3262 acct_update_integrals(p
);
3266 * Account for involuntary wait time.
3267 * @steal: the cpu time spent in involuntary wait
3269 void account_steal_time(cputime_t cputime
)
3271 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3272 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3274 cpustat
->steal
= cputime64_add(cpustat
->steal
, cputime64
);
3278 * Account for idle time.
3279 * @cputime: the cpu time spent in idle wait
3281 void account_idle_time(cputime_t cputime
)
3283 struct cpu_usage_stat
*cpustat
= &kstat_this_cpu
.cpustat
;
3284 cputime64_t cputime64
= cputime_to_cputime64(cputime
);
3285 struct rq
*rq
= this_rq();
3287 if (atomic_read(&rq
->nr_iowait
) > 0)
3288 cpustat
->iowait
= cputime64_add(cpustat
->iowait
, cputime64
);
3290 cpustat
->idle
= cputime64_add(cpustat
->idle
, cputime64
);
3293 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
3296 * Account a single tick of cpu time.
3297 * @p: the process that the cpu time gets accounted to
3298 * @user_tick: indicates if the tick is a user or a system tick
3300 void account_process_tick(struct task_struct
*p
, int user_tick
)
3302 cputime_t one_jiffy_scaled
= cputime_to_scaled(cputime_one_jiffy
);
3303 struct rq
*rq
= this_rq();
3306 account_user_time(p
, cputime_one_jiffy
, one_jiffy_scaled
);
3307 else if ((p
!= rq
->idle
) || (irq_count() != HARDIRQ_OFFSET
))
3308 account_system_time(p
, HARDIRQ_OFFSET
, cputime_one_jiffy
,
3311 account_idle_time(cputime_one_jiffy
);
3315 * Account multiple ticks of steal time.
3316 * @p: the process from which the cpu time has been stolen
3317 * @ticks: number of stolen ticks
3319 void account_steal_ticks(unsigned long ticks
)
3321 account_steal_time(jiffies_to_cputime(ticks
));
3325 * Account multiple ticks of idle time.
3326 * @ticks: number of stolen ticks
3328 void account_idle_ticks(unsigned long ticks
)
3330 account_idle_time(jiffies_to_cputime(ticks
));
3336 * Use precise platform statistics if available:
3338 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
3339 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3345 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3347 struct task_cputime cputime
;
3349 thread_group_cputime(p
, &cputime
);
3351 *ut
= cputime
.utime
;
3352 *st
= cputime
.stime
;
3356 #ifndef nsecs_to_cputime
3357 # define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
3360 void task_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3362 cputime_t rtime
, utime
= p
->utime
, total
= cputime_add(utime
, p
->stime
);
3365 * Use CFS's precise accounting:
3367 rtime
= nsecs_to_cputime(p
->se
.sum_exec_runtime
);
3372 temp
= (u64
)(rtime
* utime
);
3373 do_div(temp
, total
);
3374 utime
= (cputime_t
)temp
;
3379 * Compare with previous values, to keep monotonicity:
3381 p
->prev_utime
= max(p
->prev_utime
, utime
);
3382 p
->prev_stime
= max(p
->prev_stime
, cputime_sub(rtime
, p
->prev_utime
));
3384 *ut
= p
->prev_utime
;
3385 *st
= p
->prev_stime
;
3389 * Must be called with siglock held.
3391 void thread_group_times(struct task_struct
*p
, cputime_t
*ut
, cputime_t
*st
)
3393 struct signal_struct
*sig
= p
->signal
;
3394 struct task_cputime cputime
;
3395 cputime_t rtime
, utime
, total
;
3397 thread_group_cputime(p
, &cputime
);
3399 total
= cputime_add(cputime
.utime
, cputime
.stime
);
3400 rtime
= nsecs_to_cputime(cputime
.sum_exec_runtime
);
3405 temp
= (u64
)(rtime
* cputime
.utime
);
3406 do_div(temp
, total
);
3407 utime
= (cputime_t
)temp
;
3411 sig
->prev_utime
= max(sig
->prev_utime
, utime
);
3412 sig
->prev_stime
= max(sig
->prev_stime
,
3413 cputime_sub(rtime
, sig
->prev_utime
));
3415 *ut
= sig
->prev_utime
;
3416 *st
= sig
->prev_stime
;
3421 * This function gets called by the timer code, with HZ frequency.
3422 * We call it with interrupts disabled.
3424 * It also gets called by the fork code, when changing the parent's
3427 void scheduler_tick(void)
3429 int cpu
= smp_processor_id();
3430 struct rq
*rq
= cpu_rq(cpu
);
3431 struct task_struct
*curr
= rq
->curr
;
3435 raw_spin_lock(&rq
->lock
);
3436 update_rq_clock(rq
);
3437 update_cpu_load(rq
);
3438 curr
->sched_class
->task_tick(rq
, curr
, 0);
3439 raw_spin_unlock(&rq
->lock
);
3441 perf_event_task_tick(curr
);
3444 rq
->idle_at_tick
= idle_cpu(cpu
);
3445 trigger_load_balance(rq
, cpu
);
3449 notrace
unsigned long get_parent_ip(unsigned long addr
)
3451 if (in_lock_functions(addr
)) {
3452 addr
= CALLER_ADDR2
;
3453 if (in_lock_functions(addr
))
3454 addr
= CALLER_ADDR3
;
3459 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3460 defined(CONFIG_PREEMPT_TRACER))
3462 void __kprobes
add_preempt_count(int val
)
3464 #ifdef CONFIG_DEBUG_PREEMPT
3468 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3471 preempt_count() += val
;
3472 #ifdef CONFIG_DEBUG_PREEMPT
3474 * Spinlock count overflowing soon?
3476 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK
) >=
3479 if (preempt_count() == val
)
3480 trace_preempt_off(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3482 EXPORT_SYMBOL(add_preempt_count
);
3484 void __kprobes
sub_preempt_count(int val
)
3486 #ifdef CONFIG_DEBUG_PREEMPT
3490 if (DEBUG_LOCKS_WARN_ON(val
> preempt_count()))
3493 * Is the spinlock portion underflowing?
3495 if (DEBUG_LOCKS_WARN_ON((val
< PREEMPT_MASK
) &&
3496 !(preempt_count() & PREEMPT_MASK
)))
3500 if (preempt_count() == val
)
3501 trace_preempt_on(CALLER_ADDR0
, get_parent_ip(CALLER_ADDR1
));
3502 preempt_count() -= val
;
3504 EXPORT_SYMBOL(sub_preempt_count
);
3509 * Print scheduling while atomic bug:
3511 static noinline
void __schedule_bug(struct task_struct
*prev
)
3513 struct pt_regs
*regs
= get_irq_regs();
3515 printk(KERN_ERR
"BUG: scheduling while atomic: %s/%d/0x%08x\n",
3516 prev
->comm
, prev
->pid
, preempt_count());
3518 debug_show_held_locks(prev
);
3520 if (irqs_disabled())
3521 print_irqtrace_events(prev
);
3530 * Various schedule()-time debugging checks and statistics:
3532 static inline void schedule_debug(struct task_struct
*prev
)
3535 * Test if we are atomic. Since do_exit() needs to call into
3536 * schedule() atomically, we ignore that path for now.
3537 * Otherwise, whine if we are scheduling when we should not be.
3539 if (unlikely(in_atomic_preempt_off() && !prev
->exit_state
))
3540 __schedule_bug(prev
);
3542 profile_hit(SCHED_PROFILING
, __builtin_return_address(0));
3544 schedstat_inc(this_rq(), sched_count
);
3545 #ifdef CONFIG_SCHEDSTATS
3546 if (unlikely(prev
->lock_depth
>= 0)) {
3547 schedstat_inc(this_rq(), bkl_count
);
3548 schedstat_inc(prev
, sched_info
.bkl_count
);
3553 static void put_prev_task(struct rq
*rq
, struct task_struct
*prev
)
3556 update_rq_clock(rq
);
3557 rq
->skip_clock_update
= 0;
3558 prev
->sched_class
->put_prev_task(rq
, prev
);
3562 * Pick up the highest-prio task:
3564 static inline struct task_struct
*
3565 pick_next_task(struct rq
*rq
)
3567 const struct sched_class
*class;
3568 struct task_struct
*p
;
3571 * Optimization: we know that if all tasks are in
3572 * the fair class we can call that function directly:
3574 if (likely(rq
->nr_running
== rq
->cfs
.nr_running
)) {
3575 p
= fair_sched_class
.pick_next_task(rq
);
3580 class = sched_class_highest
;
3582 p
= class->pick_next_task(rq
);
3586 * Will never be NULL as the idle class always
3587 * returns a non-NULL p:
3589 class = class->next
;
3594 * schedule() is the main scheduler function.
3596 asmlinkage
void __sched
schedule(void)
3598 struct task_struct
*prev
, *next
;
3599 unsigned long *switch_count
;
3605 cpu
= smp_processor_id();
3609 switch_count
= &prev
->nivcsw
;
3611 release_kernel_lock(prev
);
3612 need_resched_nonpreemptible
:
3614 schedule_debug(prev
);
3616 if (sched_feat(HRTICK
))
3619 raw_spin_lock_irq(&rq
->lock
);
3620 clear_tsk_need_resched(prev
);
3622 if (prev
->state
&& !(preempt_count() & PREEMPT_ACTIVE
)) {
3623 if (unlikely(signal_pending_state(prev
->state
, prev
)))
3624 prev
->state
= TASK_RUNNING
;
3626 deactivate_task(rq
, prev
, 1);
3627 switch_count
= &prev
->nvcsw
;
3630 pre_schedule(rq
, prev
);
3632 if (unlikely(!rq
->nr_running
))
3633 idle_balance(cpu
, rq
);
3635 put_prev_task(rq
, prev
);
3636 next
= pick_next_task(rq
);
3638 if (likely(prev
!= next
)) {
3639 sched_info_switch(prev
, next
);
3640 perf_event_task_sched_out(prev
, next
);
3646 context_switch(rq
, prev
, next
); /* unlocks the rq */
3648 * the context switch might have flipped the stack from under
3649 * us, hence refresh the local variables.
3651 cpu
= smp_processor_id();
3654 raw_spin_unlock_irq(&rq
->lock
);
3658 if (unlikely(reacquire_kernel_lock(current
) < 0)) {
3660 switch_count
= &prev
->nivcsw
;
3661 goto need_resched_nonpreemptible
;
3664 preempt_enable_no_resched();
3668 EXPORT_SYMBOL(schedule
);
3670 #ifdef CONFIG_MUTEX_SPIN_ON_OWNER
3672 * Look out! "owner" is an entirely speculative pointer
3673 * access and not reliable.
3675 int mutex_spin_on_owner(struct mutex
*lock
, struct thread_info
*owner
)
3680 if (!sched_feat(OWNER_SPIN
))
3683 #ifdef CONFIG_DEBUG_PAGEALLOC
3685 * Need to access the cpu field knowing that
3686 * DEBUG_PAGEALLOC could have unmapped it if
3687 * the mutex owner just released it and exited.
3689 if (probe_kernel_address(&owner
->cpu
, cpu
))
3696 * Even if the access succeeded (likely case),
3697 * the cpu field may no longer be valid.
3699 if (cpu
>= nr_cpumask_bits
)
3703 * We need to validate that we can do a
3704 * get_cpu() and that we have the percpu area.
3706 if (!cpu_online(cpu
))
3713 * Owner changed, break to re-assess state.
3715 if (lock
->owner
!= owner
)
3719 * Is that owner really running on that cpu?
3721 if (task_thread_info(rq
->curr
) != owner
|| need_resched())
3731 #ifdef CONFIG_PREEMPT
3733 * this is the entry point to schedule() from in-kernel preemption
3734 * off of preempt_enable. Kernel preemptions off return from interrupt
3735 * occur there and call schedule directly.
3737 asmlinkage
void __sched
preempt_schedule(void)
3739 struct thread_info
*ti
= current_thread_info();
3742 * If there is a non-zero preempt_count or interrupts are disabled,
3743 * we do not want to preempt the current task. Just return..
3745 if (likely(ti
->preempt_count
|| irqs_disabled()))
3749 add_preempt_count(PREEMPT_ACTIVE
);
3751 sub_preempt_count(PREEMPT_ACTIVE
);
3754 * Check again in case we missed a preemption opportunity
3755 * between schedule and now.
3758 } while (need_resched());
3760 EXPORT_SYMBOL(preempt_schedule
);
3763 * this is the entry point to schedule() from kernel preemption
3764 * off of irq context.
3765 * Note, that this is called and return with irqs disabled. This will
3766 * protect us against recursive calling from irq.
3768 asmlinkage
void __sched
preempt_schedule_irq(void)
3770 struct thread_info
*ti
= current_thread_info();
3772 /* Catch callers which need to be fixed */
3773 BUG_ON(ti
->preempt_count
|| !irqs_disabled());
3776 add_preempt_count(PREEMPT_ACTIVE
);
3779 local_irq_disable();
3780 sub_preempt_count(PREEMPT_ACTIVE
);
3783 * Check again in case we missed a preemption opportunity
3784 * between schedule and now.
3787 } while (need_resched());
3790 #endif /* CONFIG_PREEMPT */
3792 int default_wake_function(wait_queue_t
*curr
, unsigned mode
, int wake_flags
,
3795 return try_to_wake_up(curr
->private, mode
, wake_flags
);
3797 EXPORT_SYMBOL(default_wake_function
);
3800 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3801 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3802 * number) then we wake all the non-exclusive tasks and one exclusive task.
3804 * There are circumstances in which we can try to wake a task which has already
3805 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3806 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3808 static void __wake_up_common(wait_queue_head_t
*q
, unsigned int mode
,
3809 int nr_exclusive
, int wake_flags
, void *key
)
3811 wait_queue_t
*curr
, *next
;
3813 list_for_each_entry_safe(curr
, next
, &q
->task_list
, task_list
) {
3814 unsigned flags
= curr
->flags
;
3816 if (curr
->func(curr
, mode
, wake_flags
, key
) &&
3817 (flags
& WQ_FLAG_EXCLUSIVE
) && !--nr_exclusive
)
3823 * __wake_up - wake up threads blocked on a waitqueue.
3825 * @mode: which threads
3826 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3827 * @key: is directly passed to the wakeup function
3829 * It may be assumed that this function implies a write memory barrier before
3830 * changing the task state if and only if any tasks are woken up.
3832 void __wake_up(wait_queue_head_t
*q
, unsigned int mode
,
3833 int nr_exclusive
, void *key
)
3835 unsigned long flags
;
3837 spin_lock_irqsave(&q
->lock
, flags
);
3838 __wake_up_common(q
, mode
, nr_exclusive
, 0, key
);
3839 spin_unlock_irqrestore(&q
->lock
, flags
);
3841 EXPORT_SYMBOL(__wake_up
);
3844 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3846 void __wake_up_locked(wait_queue_head_t
*q
, unsigned int mode
)
3848 __wake_up_common(q
, mode
, 1, 0, NULL
);
3851 void __wake_up_locked_key(wait_queue_head_t
*q
, unsigned int mode
, void *key
)
3853 __wake_up_common(q
, mode
, 1, 0, key
);
3857 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
3859 * @mode: which threads
3860 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3861 * @key: opaque value to be passed to wakeup targets
3863 * The sync wakeup differs that the waker knows that it will schedule
3864 * away soon, so while the target thread will be woken up, it will not
3865 * be migrated to another CPU - ie. the two threads are 'synchronized'
3866 * with each other. This can prevent needless bouncing between CPUs.
3868 * On UP it can prevent extra preemption.
3870 * It may be assumed that this function implies a write memory barrier before
3871 * changing the task state if and only if any tasks are woken up.
3873 void __wake_up_sync_key(wait_queue_head_t
*q
, unsigned int mode
,
3874 int nr_exclusive
, void *key
)
3876 unsigned long flags
;
3877 int wake_flags
= WF_SYNC
;
3882 if (unlikely(!nr_exclusive
))
3885 spin_lock_irqsave(&q
->lock
, flags
);
3886 __wake_up_common(q
, mode
, nr_exclusive
, wake_flags
, key
);
3887 spin_unlock_irqrestore(&q
->lock
, flags
);
3889 EXPORT_SYMBOL_GPL(__wake_up_sync_key
);
3892 * __wake_up_sync - see __wake_up_sync_key()
3894 void __wake_up_sync(wait_queue_head_t
*q
, unsigned int mode
, int nr_exclusive
)
3896 __wake_up_sync_key(q
, mode
, nr_exclusive
, NULL
);
3898 EXPORT_SYMBOL_GPL(__wake_up_sync
); /* For internal use only */
3901 * complete: - signals a single thread waiting on this completion
3902 * @x: holds the state of this particular completion
3904 * This will wake up a single thread waiting on this completion. Threads will be
3905 * awakened in the same order in which they were queued.
3907 * See also complete_all(), wait_for_completion() and related routines.
3909 * It may be assumed that this function implies a write memory barrier before
3910 * changing the task state if and only if any tasks are woken up.
3912 void complete(struct completion
*x
)
3914 unsigned long flags
;
3916 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3918 __wake_up_common(&x
->wait
, TASK_NORMAL
, 1, 0, NULL
);
3919 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3921 EXPORT_SYMBOL(complete
);
3924 * complete_all: - signals all threads waiting on this completion
3925 * @x: holds the state of this particular completion
3927 * This will wake up all threads waiting on this particular completion event.
3929 * It may be assumed that this function implies a write memory barrier before
3930 * changing the task state if and only if any tasks are woken up.
3932 void complete_all(struct completion
*x
)
3934 unsigned long flags
;
3936 spin_lock_irqsave(&x
->wait
.lock
, flags
);
3937 x
->done
+= UINT_MAX
/2;
3938 __wake_up_common(&x
->wait
, TASK_NORMAL
, 0, 0, NULL
);
3939 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
3941 EXPORT_SYMBOL(complete_all
);
3943 static inline long __sched
3944 do_wait_for_common(struct completion
*x
, long timeout
, int state
)
3947 DECLARE_WAITQUEUE(wait
, current
);
3949 wait
.flags
|= WQ_FLAG_EXCLUSIVE
;
3950 __add_wait_queue_tail(&x
->wait
, &wait
);
3952 if (signal_pending_state(state
, current
)) {
3953 timeout
= -ERESTARTSYS
;
3956 __set_current_state(state
);
3957 spin_unlock_irq(&x
->wait
.lock
);
3958 timeout
= schedule_timeout(timeout
);
3959 spin_lock_irq(&x
->wait
.lock
);
3960 } while (!x
->done
&& timeout
);
3961 __remove_wait_queue(&x
->wait
, &wait
);
3966 return timeout
?: 1;
3970 wait_for_common(struct completion
*x
, long timeout
, int state
)
3974 spin_lock_irq(&x
->wait
.lock
);
3975 timeout
= do_wait_for_common(x
, timeout
, state
);
3976 spin_unlock_irq(&x
->wait
.lock
);
3981 * wait_for_completion: - waits for completion of a task
3982 * @x: holds the state of this particular completion
3984 * This waits to be signaled for completion of a specific task. It is NOT
3985 * interruptible and there is no timeout.
3987 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3988 * and interrupt capability. Also see complete().
3990 void __sched
wait_for_completion(struct completion
*x
)
3992 wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_UNINTERRUPTIBLE
);
3994 EXPORT_SYMBOL(wait_for_completion
);
3997 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3998 * @x: holds the state of this particular completion
3999 * @timeout: timeout value in jiffies
4001 * This waits for either a completion of a specific task to be signaled or for a
4002 * specified timeout to expire. The timeout is in jiffies. It is not
4005 unsigned long __sched
4006 wait_for_completion_timeout(struct completion
*x
, unsigned long timeout
)
4008 return wait_for_common(x
, timeout
, TASK_UNINTERRUPTIBLE
);
4010 EXPORT_SYMBOL(wait_for_completion_timeout
);
4013 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
4014 * @x: holds the state of this particular completion
4016 * This waits for completion of a specific task to be signaled. It is
4019 int __sched
wait_for_completion_interruptible(struct completion
*x
)
4021 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_INTERRUPTIBLE
);
4022 if (t
== -ERESTARTSYS
)
4026 EXPORT_SYMBOL(wait_for_completion_interruptible
);
4029 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
4030 * @x: holds the state of this particular completion
4031 * @timeout: timeout value in jiffies
4033 * This waits for either a completion of a specific task to be signaled or for a
4034 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
4036 unsigned long __sched
4037 wait_for_completion_interruptible_timeout(struct completion
*x
,
4038 unsigned long timeout
)
4040 return wait_for_common(x
, timeout
, TASK_INTERRUPTIBLE
);
4042 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout
);
4045 * wait_for_completion_killable: - waits for completion of a task (killable)
4046 * @x: holds the state of this particular completion
4048 * This waits to be signaled for completion of a specific task. It can be
4049 * interrupted by a kill signal.
4051 int __sched
wait_for_completion_killable(struct completion
*x
)
4053 long t
= wait_for_common(x
, MAX_SCHEDULE_TIMEOUT
, TASK_KILLABLE
);
4054 if (t
== -ERESTARTSYS
)
4058 EXPORT_SYMBOL(wait_for_completion_killable
);
4061 * try_wait_for_completion - try to decrement a completion without blocking
4062 * @x: completion structure
4064 * Returns: 0 if a decrement cannot be done without blocking
4065 * 1 if a decrement succeeded.
4067 * If a completion is being used as a counting completion,
4068 * attempt to decrement the counter without blocking. This
4069 * enables us to avoid waiting if the resource the completion
4070 * is protecting is not available.
4072 bool try_wait_for_completion(struct completion
*x
)
4074 unsigned long flags
;
4077 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4082 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4085 EXPORT_SYMBOL(try_wait_for_completion
);
4088 * completion_done - Test to see if a completion has any waiters
4089 * @x: completion structure
4091 * Returns: 0 if there are waiters (wait_for_completion() in progress)
4092 * 1 if there are no waiters.
4095 bool completion_done(struct completion
*x
)
4097 unsigned long flags
;
4100 spin_lock_irqsave(&x
->wait
.lock
, flags
);
4103 spin_unlock_irqrestore(&x
->wait
.lock
, flags
);
4106 EXPORT_SYMBOL(completion_done
);
4109 sleep_on_common(wait_queue_head_t
*q
, int state
, long timeout
)
4111 unsigned long flags
;
4114 init_waitqueue_entry(&wait
, current
);
4116 __set_current_state(state
);
4118 spin_lock_irqsave(&q
->lock
, flags
);
4119 __add_wait_queue(q
, &wait
);
4120 spin_unlock(&q
->lock
);
4121 timeout
= schedule_timeout(timeout
);
4122 spin_lock_irq(&q
->lock
);
4123 __remove_wait_queue(q
, &wait
);
4124 spin_unlock_irqrestore(&q
->lock
, flags
);
4129 void __sched
interruptible_sleep_on(wait_queue_head_t
*q
)
4131 sleep_on_common(q
, TASK_INTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4133 EXPORT_SYMBOL(interruptible_sleep_on
);
4136 interruptible_sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4138 return sleep_on_common(q
, TASK_INTERRUPTIBLE
, timeout
);
4140 EXPORT_SYMBOL(interruptible_sleep_on_timeout
);
4142 void __sched
sleep_on(wait_queue_head_t
*q
)
4144 sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, MAX_SCHEDULE_TIMEOUT
);
4146 EXPORT_SYMBOL(sleep_on
);
4148 long __sched
sleep_on_timeout(wait_queue_head_t
*q
, long timeout
)
4150 return sleep_on_common(q
, TASK_UNINTERRUPTIBLE
, timeout
);
4152 EXPORT_SYMBOL(sleep_on_timeout
);
4154 #ifdef CONFIG_RT_MUTEXES
4157 * rt_mutex_setprio - set the current priority of a task
4159 * @prio: prio value (kernel-internal form)
4161 * This function changes the 'effective' priority of a task. It does
4162 * not touch ->normal_prio like __setscheduler().
4164 * Used by the rt_mutex code to implement priority inheritance logic.
4166 void rt_mutex_setprio(struct task_struct
*p
, int prio
)
4168 unsigned long flags
;
4169 int oldprio
, on_rq
, running
;
4171 const struct sched_class
*prev_class
;
4173 BUG_ON(prio
< 0 || prio
> MAX_PRIO
);
4175 rq
= task_rq_lock(p
, &flags
);
4178 prev_class
= p
->sched_class
;
4179 on_rq
= p
->se
.on_rq
;
4180 running
= task_current(rq
, p
);
4182 dequeue_task(rq
, p
, 0);
4184 p
->sched_class
->put_prev_task(rq
, p
);
4187 p
->sched_class
= &rt_sched_class
;
4189 p
->sched_class
= &fair_sched_class
;
4194 p
->sched_class
->set_curr_task(rq
);
4196 enqueue_task(rq
, p
, 0, oldprio
< prio
);
4198 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4200 task_rq_unlock(rq
, &flags
);
4205 void set_user_nice(struct task_struct
*p
, long nice
)
4207 int old_prio
, delta
, on_rq
;
4208 unsigned long flags
;
4211 if (TASK_NICE(p
) == nice
|| nice
< -20 || nice
> 19)
4214 * We have to be careful, if called from sys_setpriority(),
4215 * the task might be in the middle of scheduling on another CPU.
4217 rq
= task_rq_lock(p
, &flags
);
4219 * The RT priorities are set via sched_setscheduler(), but we still
4220 * allow the 'normal' nice value to be set - but as expected
4221 * it wont have any effect on scheduling until the task is
4222 * SCHED_FIFO/SCHED_RR:
4224 if (task_has_rt_policy(p
)) {
4225 p
->static_prio
= NICE_TO_PRIO(nice
);
4228 on_rq
= p
->se
.on_rq
;
4230 dequeue_task(rq
, p
, 0);
4232 p
->static_prio
= NICE_TO_PRIO(nice
);
4235 p
->prio
= effective_prio(p
);
4236 delta
= p
->prio
- old_prio
;
4239 enqueue_task(rq
, p
, 0, false);
4241 * If the task increased its priority or is running and
4242 * lowered its priority, then reschedule its CPU:
4244 if (delta
< 0 || (delta
> 0 && task_running(rq
, p
)))
4245 resched_task(rq
->curr
);
4248 task_rq_unlock(rq
, &flags
);
4250 EXPORT_SYMBOL(set_user_nice
);
4253 * can_nice - check if a task can reduce its nice value
4257 int can_nice(const struct task_struct
*p
, const int nice
)
4259 /* convert nice value [19,-20] to rlimit style value [1,40] */
4260 int nice_rlim
= 20 - nice
;
4262 return (nice_rlim
<= task_rlimit(p
, RLIMIT_NICE
) ||
4263 capable(CAP_SYS_NICE
));
4266 #ifdef __ARCH_WANT_SYS_NICE
4269 * sys_nice - change the priority of the current process.
4270 * @increment: priority increment
4272 * sys_setpriority is a more generic, but much slower function that
4273 * does similar things.
4275 SYSCALL_DEFINE1(nice
, int, increment
)
4280 * Setpriority might change our priority at the same moment.
4281 * We don't have to worry. Conceptually one call occurs first
4282 * and we have a single winner.
4284 if (increment
< -40)
4289 nice
= TASK_NICE(current
) + increment
;
4295 if (increment
< 0 && !can_nice(current
, nice
))
4298 retval
= security_task_setnice(current
, nice
);
4302 set_user_nice(current
, nice
);
4309 * task_prio - return the priority value of a given task.
4310 * @p: the task in question.
4312 * This is the priority value as seen by users in /proc.
4313 * RT tasks are offset by -200. Normal tasks are centered
4314 * around 0, value goes from -16 to +15.
4316 int task_prio(const struct task_struct
*p
)
4318 return p
->prio
- MAX_RT_PRIO
;
4322 * task_nice - return the nice value of a given task.
4323 * @p: the task in question.
4325 int task_nice(const struct task_struct
*p
)
4327 return TASK_NICE(p
);
4329 EXPORT_SYMBOL(task_nice
);
4332 * idle_cpu - is a given cpu idle currently?
4333 * @cpu: the processor in question.
4335 int idle_cpu(int cpu
)
4337 return cpu_curr(cpu
) == cpu_rq(cpu
)->idle
;
4341 * idle_task - return the idle task for a given cpu.
4342 * @cpu: the processor in question.
4344 struct task_struct
*idle_task(int cpu
)
4346 return cpu_rq(cpu
)->idle
;
4350 * find_process_by_pid - find a process with a matching PID value.
4351 * @pid: the pid in question.
4353 static struct task_struct
*find_process_by_pid(pid_t pid
)
4355 return pid
? find_task_by_vpid(pid
) : current
;
4358 /* Actually do priority change: must hold rq lock. */
4360 __setscheduler(struct rq
*rq
, struct task_struct
*p
, int policy
, int prio
)
4362 BUG_ON(p
->se
.on_rq
);
4365 p
->rt_priority
= prio
;
4366 p
->normal_prio
= normal_prio(p
);
4367 /* we are holding p->pi_lock already */
4368 p
->prio
= rt_mutex_getprio(p
);
4369 if (rt_prio(p
->prio
))
4370 p
->sched_class
= &rt_sched_class
;
4372 p
->sched_class
= &fair_sched_class
;
4377 * check the target process has a UID that matches the current process's
4379 static bool check_same_owner(struct task_struct
*p
)
4381 const struct cred
*cred
= current_cred(), *pcred
;
4385 pcred
= __task_cred(p
);
4386 match
= (cred
->euid
== pcred
->euid
||
4387 cred
->euid
== pcred
->uid
);
4392 static int __sched_setscheduler(struct task_struct
*p
, int policy
,
4393 struct sched_param
*param
, bool user
)
4395 int retval
, oldprio
, oldpolicy
= -1, on_rq
, running
;
4396 unsigned long flags
;
4397 const struct sched_class
*prev_class
;
4401 /* may grab non-irq protected spin_locks */
4402 BUG_ON(in_interrupt());
4404 /* double check policy once rq lock held */
4406 reset_on_fork
= p
->sched_reset_on_fork
;
4407 policy
= oldpolicy
= p
->policy
;
4409 reset_on_fork
= !!(policy
& SCHED_RESET_ON_FORK
);
4410 policy
&= ~SCHED_RESET_ON_FORK
;
4412 if (policy
!= SCHED_FIFO
&& policy
!= SCHED_RR
&&
4413 policy
!= SCHED_NORMAL
&& policy
!= SCHED_BATCH
&&
4414 policy
!= SCHED_IDLE
)
4419 * Valid priorities for SCHED_FIFO and SCHED_RR are
4420 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4421 * SCHED_BATCH and SCHED_IDLE is 0.
4423 if (param
->sched_priority
< 0 ||
4424 (p
->mm
&& param
->sched_priority
> MAX_USER_RT_PRIO
-1) ||
4425 (!p
->mm
&& param
->sched_priority
> MAX_RT_PRIO
-1))
4427 if (rt_policy(policy
) != (param
->sched_priority
!= 0))
4431 * Allow unprivileged RT tasks to decrease priority:
4433 if (user
&& !capable(CAP_SYS_NICE
)) {
4434 if (rt_policy(policy
)) {
4435 unsigned long rlim_rtprio
;
4437 if (!lock_task_sighand(p
, &flags
))
4439 rlim_rtprio
= task_rlimit(p
, RLIMIT_RTPRIO
);
4440 unlock_task_sighand(p
, &flags
);
4442 /* can't set/change the rt policy */
4443 if (policy
!= p
->policy
&& !rlim_rtprio
)
4446 /* can't increase priority */
4447 if (param
->sched_priority
> p
->rt_priority
&&
4448 param
->sched_priority
> rlim_rtprio
)
4452 * Like positive nice levels, dont allow tasks to
4453 * move out of SCHED_IDLE either:
4455 if (p
->policy
== SCHED_IDLE
&& policy
!= SCHED_IDLE
)
4458 /* can't change other user's priorities */
4459 if (!check_same_owner(p
))
4462 /* Normal users shall not reset the sched_reset_on_fork flag */
4463 if (p
->sched_reset_on_fork
&& !reset_on_fork
)
4468 #ifdef CONFIG_RT_GROUP_SCHED
4470 * Do not allow realtime tasks into groups that have no runtime
4473 if (rt_bandwidth_enabled() && rt_policy(policy
) &&
4474 task_group(p
)->rt_bandwidth
.rt_runtime
== 0)
4478 retval
= security_task_setscheduler(p
, policy
, param
);
4484 * make sure no PI-waiters arrive (or leave) while we are
4485 * changing the priority of the task:
4487 raw_spin_lock_irqsave(&p
->pi_lock
, flags
);
4489 * To be able to change p->policy safely, the apropriate
4490 * runqueue lock must be held.
4492 rq
= __task_rq_lock(p
);
4493 /* recheck policy now with rq lock held */
4494 if (unlikely(oldpolicy
!= -1 && oldpolicy
!= p
->policy
)) {
4495 policy
= oldpolicy
= -1;
4496 __task_rq_unlock(rq
);
4497 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4500 on_rq
= p
->se
.on_rq
;
4501 running
= task_current(rq
, p
);
4503 deactivate_task(rq
, p
, 0);
4505 p
->sched_class
->put_prev_task(rq
, p
);
4507 p
->sched_reset_on_fork
= reset_on_fork
;
4510 prev_class
= p
->sched_class
;
4511 __setscheduler(rq
, p
, policy
, param
->sched_priority
);
4514 p
->sched_class
->set_curr_task(rq
);
4516 activate_task(rq
, p
, 0);
4518 check_class_changed(rq
, p
, prev_class
, oldprio
, running
);
4520 __task_rq_unlock(rq
);
4521 raw_spin_unlock_irqrestore(&p
->pi_lock
, flags
);
4523 rt_mutex_adjust_pi(p
);
4529 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4530 * @p: the task in question.
4531 * @policy: new policy.
4532 * @param: structure containing the new RT priority.
4534 * NOTE that the task may be already dead.
4536 int sched_setscheduler(struct task_struct
*p
, int policy
,
4537 struct sched_param
*param
)
4539 return __sched_setscheduler(p
, policy
, param
, true);
4541 EXPORT_SYMBOL_GPL(sched_setscheduler
);
4544 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4545 * @p: the task in question.
4546 * @policy: new policy.
4547 * @param: structure containing the new RT priority.
4549 * Just like sched_setscheduler, only don't bother checking if the
4550 * current context has permission. For example, this is needed in
4551 * stop_machine(): we create temporary high priority worker threads,
4552 * but our caller might not have that capability.
4554 int sched_setscheduler_nocheck(struct task_struct
*p
, int policy
,
4555 struct sched_param
*param
)
4557 return __sched_setscheduler(p
, policy
, param
, false);
4561 do_sched_setscheduler(pid_t pid
, int policy
, struct sched_param __user
*param
)
4563 struct sched_param lparam
;
4564 struct task_struct
*p
;
4567 if (!param
|| pid
< 0)
4569 if (copy_from_user(&lparam
, param
, sizeof(struct sched_param
)))
4574 p
= find_process_by_pid(pid
);
4576 retval
= sched_setscheduler(p
, policy
, &lparam
);
4583 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4584 * @pid: the pid in question.
4585 * @policy: new policy.
4586 * @param: structure containing the new RT priority.
4588 SYSCALL_DEFINE3(sched_setscheduler
, pid_t
, pid
, int, policy
,
4589 struct sched_param __user
*, param
)
4591 /* negative values for policy are not valid */
4595 return do_sched_setscheduler(pid
, policy
, param
);
4599 * sys_sched_setparam - set/change the RT priority of a thread
4600 * @pid: the pid in question.
4601 * @param: structure containing the new RT priority.
4603 SYSCALL_DEFINE2(sched_setparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4605 return do_sched_setscheduler(pid
, -1, param
);
4609 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4610 * @pid: the pid in question.
4612 SYSCALL_DEFINE1(sched_getscheduler
, pid_t
, pid
)
4614 struct task_struct
*p
;
4622 p
= find_process_by_pid(pid
);
4624 retval
= security_task_getscheduler(p
);
4627 | (p
->sched_reset_on_fork
? SCHED_RESET_ON_FORK
: 0);
4634 * sys_sched_getparam - get the RT priority of a thread
4635 * @pid: the pid in question.
4636 * @param: structure containing the RT priority.
4638 SYSCALL_DEFINE2(sched_getparam
, pid_t
, pid
, struct sched_param __user
*, param
)
4640 struct sched_param lp
;
4641 struct task_struct
*p
;
4644 if (!param
|| pid
< 0)
4648 p
= find_process_by_pid(pid
);
4653 retval
= security_task_getscheduler(p
);
4657 lp
.sched_priority
= p
->rt_priority
;
4661 * This one might sleep, we cannot do it with a spinlock held ...
4663 retval
= copy_to_user(param
, &lp
, sizeof(*param
)) ? -EFAULT
: 0;
4672 long sched_setaffinity(pid_t pid
, const struct cpumask
*in_mask
)
4674 cpumask_var_t cpus_allowed
, new_mask
;
4675 struct task_struct
*p
;
4681 p
= find_process_by_pid(pid
);
4688 /* Prevent p going away */
4692 if (!alloc_cpumask_var(&cpus_allowed
, GFP_KERNEL
)) {
4696 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
)) {
4698 goto out_free_cpus_allowed
;
4701 if (!check_same_owner(p
) && !capable(CAP_SYS_NICE
))
4704 retval
= security_task_setscheduler(p
, 0, NULL
);
4708 cpuset_cpus_allowed(p
, cpus_allowed
);
4709 cpumask_and(new_mask
, in_mask
, cpus_allowed
);
4711 retval
= set_cpus_allowed_ptr(p
, new_mask
);
4714 cpuset_cpus_allowed(p
, cpus_allowed
);
4715 if (!cpumask_subset(new_mask
, cpus_allowed
)) {
4717 * We must have raced with a concurrent cpuset
4718 * update. Just reset the cpus_allowed to the
4719 * cpuset's cpus_allowed
4721 cpumask_copy(new_mask
, cpus_allowed
);
4726 free_cpumask_var(new_mask
);
4727 out_free_cpus_allowed
:
4728 free_cpumask_var(cpus_allowed
);
4735 static int get_user_cpu_mask(unsigned long __user
*user_mask_ptr
, unsigned len
,
4736 struct cpumask
*new_mask
)
4738 if (len
< cpumask_size())
4739 cpumask_clear(new_mask
);
4740 else if (len
> cpumask_size())
4741 len
= cpumask_size();
4743 return copy_from_user(new_mask
, user_mask_ptr
, len
) ? -EFAULT
: 0;
4747 * sys_sched_setaffinity - set the cpu affinity of a process
4748 * @pid: pid of the process
4749 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4750 * @user_mask_ptr: user-space pointer to the new cpu mask
4752 SYSCALL_DEFINE3(sched_setaffinity
, pid_t
, pid
, unsigned int, len
,
4753 unsigned long __user
*, user_mask_ptr
)
4755 cpumask_var_t new_mask
;
4758 if (!alloc_cpumask_var(&new_mask
, GFP_KERNEL
))
4761 retval
= get_user_cpu_mask(user_mask_ptr
, len
, new_mask
);
4763 retval
= sched_setaffinity(pid
, new_mask
);
4764 free_cpumask_var(new_mask
);
4768 long sched_getaffinity(pid_t pid
, struct cpumask
*mask
)
4770 struct task_struct
*p
;
4771 unsigned long flags
;
4779 p
= find_process_by_pid(pid
);
4783 retval
= security_task_getscheduler(p
);
4787 rq
= task_rq_lock(p
, &flags
);
4788 cpumask_and(mask
, &p
->cpus_allowed
, cpu_online_mask
);
4789 task_rq_unlock(rq
, &flags
);
4799 * sys_sched_getaffinity - get the cpu affinity of a process
4800 * @pid: pid of the process
4801 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4802 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4804 SYSCALL_DEFINE3(sched_getaffinity
, pid_t
, pid
, unsigned int, len
,
4805 unsigned long __user
*, user_mask_ptr
)
4810 if (len
< nr_cpu_ids
)
4812 if (len
& (sizeof(unsigned long)-1))
4815 if (!alloc_cpumask_var(&mask
, GFP_KERNEL
))
4818 ret
= sched_getaffinity(pid
, mask
);
4820 size_t retlen
= min_t(size_t, len
, cpumask_size());
4822 if (copy_to_user(user_mask_ptr
, mask
, retlen
))
4827 free_cpumask_var(mask
);
4833 * sys_sched_yield - yield the current processor to other threads.
4835 * This function yields the current CPU to other tasks. If there are no
4836 * other threads running on this CPU then this function will return.
4838 SYSCALL_DEFINE0(sched_yield
)
4840 struct rq
*rq
= this_rq_lock();
4842 schedstat_inc(rq
, yld_count
);
4843 current
->sched_class
->yield_task(rq
);
4846 * Since we are going to call schedule() anyway, there's
4847 * no need to preempt or enable interrupts:
4849 __release(rq
->lock
);
4850 spin_release(&rq
->lock
.dep_map
, 1, _THIS_IP_
);
4851 do_raw_spin_unlock(&rq
->lock
);
4852 preempt_enable_no_resched();
4859 static inline int should_resched(void)
4861 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE
);
4864 static void __cond_resched(void)
4866 add_preempt_count(PREEMPT_ACTIVE
);
4868 sub_preempt_count(PREEMPT_ACTIVE
);
4871 int __sched
_cond_resched(void)
4873 if (should_resched()) {
4879 EXPORT_SYMBOL(_cond_resched
);
4882 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
4883 * call schedule, and on return reacquire the lock.
4885 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4886 * operations here to prevent schedule() from being called twice (once via
4887 * spin_unlock(), once by hand).
4889 int __cond_resched_lock(spinlock_t
*lock
)
4891 int resched
= should_resched();
4894 lockdep_assert_held(lock
);
4896 if (spin_needbreak(lock
) || resched
) {
4907 EXPORT_SYMBOL(__cond_resched_lock
);
4909 int __sched
__cond_resched_softirq(void)
4911 BUG_ON(!in_softirq());
4913 if (should_resched()) {
4921 EXPORT_SYMBOL(__cond_resched_softirq
);
4924 * yield - yield the current processor to other threads.
4926 * This is a shortcut for kernel-space yielding - it marks the
4927 * thread runnable and calls sys_sched_yield().
4929 void __sched
yield(void)
4931 set_current_state(TASK_RUNNING
);
4934 EXPORT_SYMBOL(yield
);
4937 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4938 * that process accounting knows that this is a task in IO wait state.
4940 void __sched
io_schedule(void)
4942 struct rq
*rq
= raw_rq();
4944 delayacct_blkio_start();
4945 atomic_inc(&rq
->nr_iowait
);
4946 current
->in_iowait
= 1;
4948 current
->in_iowait
= 0;
4949 atomic_dec(&rq
->nr_iowait
);
4950 delayacct_blkio_end();
4952 EXPORT_SYMBOL(io_schedule
);
4954 long __sched
io_schedule_timeout(long timeout
)
4956 struct rq
*rq
= raw_rq();
4959 delayacct_blkio_start();
4960 atomic_inc(&rq
->nr_iowait
);
4961 current
->in_iowait
= 1;
4962 ret
= schedule_timeout(timeout
);
4963 current
->in_iowait
= 0;
4964 atomic_dec(&rq
->nr_iowait
);
4965 delayacct_blkio_end();
4970 * sys_sched_get_priority_max - return maximum RT priority.
4971 * @policy: scheduling class.
4973 * this syscall returns the maximum rt_priority that can be used
4974 * by a given scheduling class.
4976 SYSCALL_DEFINE1(sched_get_priority_max
, int, policy
)
4983 ret
= MAX_USER_RT_PRIO
-1;
4995 * sys_sched_get_priority_min - return minimum RT priority.
4996 * @policy: scheduling class.
4998 * this syscall returns the minimum rt_priority that can be used
4999 * by a given scheduling class.
5001 SYSCALL_DEFINE1(sched_get_priority_min
, int, policy
)
5019 * sys_sched_rr_get_interval - return the default timeslice of a process.
5020 * @pid: pid of the process.
5021 * @interval: userspace pointer to the timeslice value.
5023 * this syscall writes the default timeslice value of a given process
5024 * into the user-space timespec buffer. A value of '0' means infinity.
5026 SYSCALL_DEFINE2(sched_rr_get_interval
, pid_t
, pid
,
5027 struct timespec __user
*, interval
)
5029 struct task_struct
*p
;
5030 unsigned int time_slice
;
5031 unsigned long flags
;
5041 p
= find_process_by_pid(pid
);
5045 retval
= security_task_getscheduler(p
);
5049 rq
= task_rq_lock(p
, &flags
);
5050 time_slice
= p
->sched_class
->get_rr_interval(rq
, p
);
5051 task_rq_unlock(rq
, &flags
);
5054 jiffies_to_timespec(time_slice
, &t
);
5055 retval
= copy_to_user(interval
, &t
, sizeof(t
)) ? -EFAULT
: 0;
5063 static const char stat_nam
[] = TASK_STATE_TO_CHAR_STR
;
5065 void sched_show_task(struct task_struct
*p
)
5067 unsigned long free
= 0;
5070 state
= p
->state
? __ffs(p
->state
) + 1 : 0;
5071 printk(KERN_INFO
"%-13.13s %c", p
->comm
,
5072 state
< sizeof(stat_nam
) - 1 ? stat_nam
[state
] : '?');
5073 #if BITS_PER_LONG == 32
5074 if (state
== TASK_RUNNING
)
5075 printk(KERN_CONT
" running ");
5077 printk(KERN_CONT
" %08lx ", thread_saved_pc(p
));
5079 if (state
== TASK_RUNNING
)
5080 printk(KERN_CONT
" running task ");
5082 printk(KERN_CONT
" %016lx ", thread_saved_pc(p
));
5084 #ifdef CONFIG_DEBUG_STACK_USAGE
5085 free
= stack_not_used(p
);
5087 printk(KERN_CONT
"%5lu %5d %6d 0x%08lx\n", free
,
5088 task_pid_nr(p
), task_pid_nr(p
->real_parent
),
5089 (unsigned long)task_thread_info(p
)->flags
);
5091 show_stack(p
, NULL
);
5094 void show_state_filter(unsigned long state_filter
)
5096 struct task_struct
*g
, *p
;
5098 #if BITS_PER_LONG == 32
5100 " task PC stack pid father\n");
5103 " task PC stack pid father\n");
5105 read_lock(&tasklist_lock
);
5106 do_each_thread(g
, p
) {
5108 * reset the NMI-timeout, listing all files on a slow
5109 * console might take alot of time:
5111 touch_nmi_watchdog();
5112 if (!state_filter
|| (p
->state
& state_filter
))
5114 } while_each_thread(g
, p
);
5116 touch_all_softlockup_watchdogs();
5118 #ifdef CONFIG_SCHED_DEBUG
5119 sysrq_sched_debug_show();
5121 read_unlock(&tasklist_lock
);
5123 * Only show locks if all tasks are dumped:
5126 debug_show_all_locks();
5129 void __cpuinit
init_idle_bootup_task(struct task_struct
*idle
)
5131 idle
->sched_class
= &idle_sched_class
;
5135 * init_idle - set up an idle thread for a given CPU
5136 * @idle: task in question
5137 * @cpu: cpu the idle task belongs to
5139 * NOTE: this function does not set the idle thread's NEED_RESCHED
5140 * flag, to make booting more robust.
5142 void __cpuinit
init_idle(struct task_struct
*idle
, int cpu
)
5144 struct rq
*rq
= cpu_rq(cpu
);
5145 unsigned long flags
;
5147 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5150 idle
->state
= TASK_RUNNING
;
5151 idle
->se
.exec_start
= sched_clock();
5153 cpumask_copy(&idle
->cpus_allowed
, cpumask_of(cpu
));
5154 __set_task_cpu(idle
, cpu
);
5156 rq
->curr
= rq
->idle
= idle
;
5157 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
5160 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5162 /* Set the preempt count _outside_ the spinlocks! */
5163 #if defined(CONFIG_PREEMPT)
5164 task_thread_info(idle
)->preempt_count
= (idle
->lock_depth
>= 0);
5166 task_thread_info(idle
)->preempt_count
= 0;
5169 * The idle tasks have their own, simple scheduling class:
5171 idle
->sched_class
= &idle_sched_class
;
5172 ftrace_graph_init_task(idle
);
5176 * In a system that switches off the HZ timer nohz_cpu_mask
5177 * indicates which cpus entered this state. This is used
5178 * in the rcu update to wait only for active cpus. For system
5179 * which do not switch off the HZ timer nohz_cpu_mask should
5180 * always be CPU_BITS_NONE.
5182 cpumask_var_t nohz_cpu_mask
;
5185 * Increase the granularity value when there are more CPUs,
5186 * because with more CPUs the 'effective latency' as visible
5187 * to users decreases. But the relationship is not linear,
5188 * so pick a second-best guess by going with the log2 of the
5191 * This idea comes from the SD scheduler of Con Kolivas:
5193 static int get_update_sysctl_factor(void)
5195 unsigned int cpus
= min_t(int, num_online_cpus(), 8);
5196 unsigned int factor
;
5198 switch (sysctl_sched_tunable_scaling
) {
5199 case SCHED_TUNABLESCALING_NONE
:
5202 case SCHED_TUNABLESCALING_LINEAR
:
5205 case SCHED_TUNABLESCALING_LOG
:
5207 factor
= 1 + ilog2(cpus
);
5214 static void update_sysctl(void)
5216 unsigned int factor
= get_update_sysctl_factor();
5218 #define SET_SYSCTL(name) \
5219 (sysctl_##name = (factor) * normalized_sysctl_##name)
5220 SET_SYSCTL(sched_min_granularity
);
5221 SET_SYSCTL(sched_latency
);
5222 SET_SYSCTL(sched_wakeup_granularity
);
5223 SET_SYSCTL(sched_shares_ratelimit
);
5227 static inline void sched_init_granularity(void)
5234 * This is how migration works:
5236 * 1) we queue a struct migration_req structure in the source CPU's
5237 * runqueue and wake up that CPU's migration thread.
5238 * 2) we down() the locked semaphore => thread blocks.
5239 * 3) migration thread wakes up (implicitly it forces the migrated
5240 * thread off the CPU)
5241 * 4) it gets the migration request and checks whether the migrated
5242 * task is still in the wrong runqueue.
5243 * 5) if it's in the wrong runqueue then the migration thread removes
5244 * it and puts it into the right queue.
5245 * 6) migration thread up()s the semaphore.
5246 * 7) we wake up and the migration is done.
5250 * Change a given task's CPU affinity. Migrate the thread to a
5251 * proper CPU and schedule it away if the CPU it's executing on
5252 * is removed from the allowed bitmask.
5254 * NOTE: the caller must have a valid reference to the task, the
5255 * task must not exit() & deallocate itself prematurely. The
5256 * call is not atomic; no spinlocks may be held.
5258 int set_cpus_allowed_ptr(struct task_struct
*p
, const struct cpumask
*new_mask
)
5260 struct migration_req req
;
5261 unsigned long flags
;
5265 rq
= task_rq_lock(p
, &flags
);
5267 if (!cpumask_intersects(new_mask
, cpu_active_mask
)) {
5272 if (unlikely((p
->flags
& PF_THREAD_BOUND
) && p
!= current
&&
5273 !cpumask_equal(&p
->cpus_allowed
, new_mask
))) {
5278 if (p
->sched_class
->set_cpus_allowed
)
5279 p
->sched_class
->set_cpus_allowed(p
, new_mask
);
5281 cpumask_copy(&p
->cpus_allowed
, new_mask
);
5282 p
->rt
.nr_cpus_allowed
= cpumask_weight(new_mask
);
5285 /* Can the task run on the task's current CPU? If so, we're done */
5286 if (cpumask_test_cpu(task_cpu(p
), new_mask
))
5289 if (migrate_task(p
, cpumask_any_and(cpu_active_mask
, new_mask
), &req
)) {
5290 /* Need help from migration thread: drop lock and wait. */
5291 struct task_struct
*mt
= rq
->migration_thread
;
5293 get_task_struct(mt
);
5294 task_rq_unlock(rq
, &flags
);
5295 wake_up_process(rq
->migration_thread
);
5296 put_task_struct(mt
);
5297 wait_for_completion(&req
.done
);
5298 tlb_migrate_finish(p
->mm
);
5302 task_rq_unlock(rq
, &flags
);
5306 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr
);
5309 * Move (not current) task off this cpu, onto dest cpu. We're doing
5310 * this because either it can't run here any more (set_cpus_allowed()
5311 * away from this CPU, or CPU going down), or because we're
5312 * attempting to rebalance this task on exec (sched_exec).
5314 * So we race with normal scheduler movements, but that's OK, as long
5315 * as the task is no longer on this CPU.
5317 * Returns non-zero if task was successfully migrated.
5319 static int __migrate_task(struct task_struct
*p
, int src_cpu
, int dest_cpu
)
5321 struct rq
*rq_dest
, *rq_src
;
5324 if (unlikely(!cpu_active(dest_cpu
)))
5327 rq_src
= cpu_rq(src_cpu
);
5328 rq_dest
= cpu_rq(dest_cpu
);
5330 double_rq_lock(rq_src
, rq_dest
);
5331 /* Already moved. */
5332 if (task_cpu(p
) != src_cpu
)
5334 /* Affinity changed (again). */
5335 if (!cpumask_test_cpu(dest_cpu
, &p
->cpus_allowed
))
5339 * If we're not on a rq, the next wake-up will ensure we're
5343 deactivate_task(rq_src
, p
, 0);
5344 set_task_cpu(p
, dest_cpu
);
5345 activate_task(rq_dest
, p
, 0);
5346 check_preempt_curr(rq_dest
, p
, 0);
5351 double_rq_unlock(rq_src
, rq_dest
);
5355 #define RCU_MIGRATION_IDLE 0
5356 #define RCU_MIGRATION_NEED_QS 1
5357 #define RCU_MIGRATION_GOT_QS 2
5358 #define RCU_MIGRATION_MUST_SYNC 3
5361 * migration_thread - this is a highprio system thread that performs
5362 * thread migration by bumping thread off CPU then 'pushing' onto
5365 static int migration_thread(void *data
)
5368 int cpu
= (long)data
;
5372 BUG_ON(rq
->migration_thread
!= current
);
5374 set_current_state(TASK_INTERRUPTIBLE
);
5375 while (!kthread_should_stop()) {
5376 struct migration_req
*req
;
5377 struct list_head
*head
;
5379 raw_spin_lock_irq(&rq
->lock
);
5381 if (cpu_is_offline(cpu
)) {
5382 raw_spin_unlock_irq(&rq
->lock
);
5386 if (rq
->active_balance
) {
5387 active_load_balance(rq
, cpu
);
5388 rq
->active_balance
= 0;
5391 head
= &rq
->migration_queue
;
5393 if (list_empty(head
)) {
5394 raw_spin_unlock_irq(&rq
->lock
);
5396 set_current_state(TASK_INTERRUPTIBLE
);
5399 req
= list_entry(head
->next
, struct migration_req
, list
);
5400 list_del_init(head
->next
);
5402 if (req
->task
!= NULL
) {
5403 raw_spin_unlock(&rq
->lock
);
5404 __migrate_task(req
->task
, cpu
, req
->dest_cpu
);
5405 } else if (likely(cpu
== (badcpu
= smp_processor_id()))) {
5406 req
->dest_cpu
= RCU_MIGRATION_GOT_QS
;
5407 raw_spin_unlock(&rq
->lock
);
5409 req
->dest_cpu
= RCU_MIGRATION_MUST_SYNC
;
5410 raw_spin_unlock(&rq
->lock
);
5411 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu
, cpu
);
5415 complete(&req
->done
);
5417 __set_current_state(TASK_RUNNING
);
5422 #ifdef CONFIG_HOTPLUG_CPU
5424 * Figure out where task on dead CPU should go, use force if necessary.
5426 void move_task_off_dead_cpu(int dead_cpu
, struct task_struct
*p
)
5428 struct rq
*rq
= cpu_rq(dead_cpu
);
5429 int needs_cpu
, uninitialized_var(dest_cpu
);
5430 unsigned long flags
;
5432 local_irq_save(flags
);
5434 raw_spin_lock(&rq
->lock
);
5435 needs_cpu
= (task_cpu(p
) == dead_cpu
) && (p
->state
!= TASK_WAKING
);
5437 dest_cpu
= select_fallback_rq(dead_cpu
, p
);
5438 raw_spin_unlock(&rq
->lock
);
5440 * It can only fail if we race with set_cpus_allowed(),
5441 * in the racer should migrate the task anyway.
5444 __migrate_task(p
, dead_cpu
, dest_cpu
);
5445 local_irq_restore(flags
);
5449 * While a dead CPU has no uninterruptible tasks queued at this point,
5450 * it might still have a nonzero ->nr_uninterruptible counter, because
5451 * for performance reasons the counter is not stricly tracking tasks to
5452 * their home CPUs. So we just add the counter to another CPU's counter,
5453 * to keep the global sum constant after CPU-down:
5455 static void migrate_nr_uninterruptible(struct rq
*rq_src
)
5457 struct rq
*rq_dest
= cpu_rq(cpumask_any(cpu_active_mask
));
5458 unsigned long flags
;
5460 local_irq_save(flags
);
5461 double_rq_lock(rq_src
, rq_dest
);
5462 rq_dest
->nr_uninterruptible
+= rq_src
->nr_uninterruptible
;
5463 rq_src
->nr_uninterruptible
= 0;
5464 double_rq_unlock(rq_src
, rq_dest
);
5465 local_irq_restore(flags
);
5468 /* Run through task list and migrate tasks from the dead cpu. */
5469 static void migrate_live_tasks(int src_cpu
)
5471 struct task_struct
*p
, *t
;
5473 read_lock(&tasklist_lock
);
5475 do_each_thread(t
, p
) {
5479 if (task_cpu(p
) == src_cpu
)
5480 move_task_off_dead_cpu(src_cpu
, p
);
5481 } while_each_thread(t
, p
);
5483 read_unlock(&tasklist_lock
);
5487 * Schedules idle task to be the next runnable task on current CPU.
5488 * It does so by boosting its priority to highest possible.
5489 * Used by CPU offline code.
5491 void sched_idle_next(void)
5493 int this_cpu
= smp_processor_id();
5494 struct rq
*rq
= cpu_rq(this_cpu
);
5495 struct task_struct
*p
= rq
->idle
;
5496 unsigned long flags
;
5498 /* cpu has to be offline */
5499 BUG_ON(cpu_online(this_cpu
));
5502 * Strictly not necessary since rest of the CPUs are stopped by now
5503 * and interrupts disabled on the current cpu.
5505 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5507 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5509 activate_task(rq
, p
, 0);
5511 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5515 * Ensures that the idle task is using init_mm right before its cpu goes
5518 void idle_task_exit(void)
5520 struct mm_struct
*mm
= current
->active_mm
;
5522 BUG_ON(cpu_online(smp_processor_id()));
5525 switch_mm(mm
, &init_mm
, current
);
5529 /* called under rq->lock with disabled interrupts */
5530 static void migrate_dead(unsigned int dead_cpu
, struct task_struct
*p
)
5532 struct rq
*rq
= cpu_rq(dead_cpu
);
5534 /* Must be exiting, otherwise would be on tasklist. */
5535 BUG_ON(!p
->exit_state
);
5537 /* Cannot have done final schedule yet: would have vanished. */
5538 BUG_ON(p
->state
== TASK_DEAD
);
5543 * Drop lock around migration; if someone else moves it,
5544 * that's OK. No task can be added to this CPU, so iteration is
5547 raw_spin_unlock_irq(&rq
->lock
);
5548 move_task_off_dead_cpu(dead_cpu
, p
);
5549 raw_spin_lock_irq(&rq
->lock
);
5554 /* release_task() removes task from tasklist, so we won't find dead tasks. */
5555 static void migrate_dead_tasks(unsigned int dead_cpu
)
5557 struct rq
*rq
= cpu_rq(dead_cpu
);
5558 struct task_struct
*next
;
5561 if (!rq
->nr_running
)
5563 next
= pick_next_task(rq
);
5566 next
->sched_class
->put_prev_task(rq
, next
);
5567 migrate_dead(dead_cpu
, next
);
5573 * remove the tasks which were accounted by rq from calc_load_tasks.
5575 static void calc_global_load_remove(struct rq
*rq
)
5577 atomic_long_sub(rq
->calc_load_active
, &calc_load_tasks
);
5578 rq
->calc_load_active
= 0;
5580 #endif /* CONFIG_HOTPLUG_CPU */
5582 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5584 static struct ctl_table sd_ctl_dir
[] = {
5586 .procname
= "sched_domain",
5592 static struct ctl_table sd_ctl_root
[] = {
5594 .procname
= "kernel",
5596 .child
= sd_ctl_dir
,
5601 static struct ctl_table
*sd_alloc_ctl_entry(int n
)
5603 struct ctl_table
*entry
=
5604 kcalloc(n
, sizeof(struct ctl_table
), GFP_KERNEL
);
5609 static void sd_free_ctl_entry(struct ctl_table
**tablep
)
5611 struct ctl_table
*entry
;
5614 * In the intermediate directories, both the child directory and
5615 * procname are dynamically allocated and could fail but the mode
5616 * will always be set. In the lowest directory the names are
5617 * static strings and all have proc handlers.
5619 for (entry
= *tablep
; entry
->mode
; entry
++) {
5621 sd_free_ctl_entry(&entry
->child
);
5622 if (entry
->proc_handler
== NULL
)
5623 kfree(entry
->procname
);
5631 set_table_entry(struct ctl_table
*entry
,
5632 const char *procname
, void *data
, int maxlen
,
5633 mode_t mode
, proc_handler
*proc_handler
)
5635 entry
->procname
= procname
;
5637 entry
->maxlen
= maxlen
;
5639 entry
->proc_handler
= proc_handler
;
5642 static struct ctl_table
*
5643 sd_alloc_ctl_domain_table(struct sched_domain
*sd
)
5645 struct ctl_table
*table
= sd_alloc_ctl_entry(13);
5650 set_table_entry(&table
[0], "min_interval", &sd
->min_interval
,
5651 sizeof(long), 0644, proc_doulongvec_minmax
);
5652 set_table_entry(&table
[1], "max_interval", &sd
->max_interval
,
5653 sizeof(long), 0644, proc_doulongvec_minmax
);
5654 set_table_entry(&table
[2], "busy_idx", &sd
->busy_idx
,
5655 sizeof(int), 0644, proc_dointvec_minmax
);
5656 set_table_entry(&table
[3], "idle_idx", &sd
->idle_idx
,
5657 sizeof(int), 0644, proc_dointvec_minmax
);
5658 set_table_entry(&table
[4], "newidle_idx", &sd
->newidle_idx
,
5659 sizeof(int), 0644, proc_dointvec_minmax
);
5660 set_table_entry(&table
[5], "wake_idx", &sd
->wake_idx
,
5661 sizeof(int), 0644, proc_dointvec_minmax
);
5662 set_table_entry(&table
[6], "forkexec_idx", &sd
->forkexec_idx
,
5663 sizeof(int), 0644, proc_dointvec_minmax
);
5664 set_table_entry(&table
[7], "busy_factor", &sd
->busy_factor
,
5665 sizeof(int), 0644, proc_dointvec_minmax
);
5666 set_table_entry(&table
[8], "imbalance_pct", &sd
->imbalance_pct
,
5667 sizeof(int), 0644, proc_dointvec_minmax
);
5668 set_table_entry(&table
[9], "cache_nice_tries",
5669 &sd
->cache_nice_tries
,
5670 sizeof(int), 0644, proc_dointvec_minmax
);
5671 set_table_entry(&table
[10], "flags", &sd
->flags
,
5672 sizeof(int), 0644, proc_dointvec_minmax
);
5673 set_table_entry(&table
[11], "name", sd
->name
,
5674 CORENAME_MAX_SIZE
, 0444, proc_dostring
);
5675 /* &table[12] is terminator */
5680 static ctl_table
*sd_alloc_ctl_cpu_table(int cpu
)
5682 struct ctl_table
*entry
, *table
;
5683 struct sched_domain
*sd
;
5684 int domain_num
= 0, i
;
5687 for_each_domain(cpu
, sd
)
5689 entry
= table
= sd_alloc_ctl_entry(domain_num
+ 1);
5694 for_each_domain(cpu
, sd
) {
5695 snprintf(buf
, 32, "domain%d", i
);
5696 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5698 entry
->child
= sd_alloc_ctl_domain_table(sd
);
5705 static struct ctl_table_header
*sd_sysctl_header
;
5706 static void register_sched_domain_sysctl(void)
5708 int i
, cpu_num
= num_possible_cpus();
5709 struct ctl_table
*entry
= sd_alloc_ctl_entry(cpu_num
+ 1);
5712 WARN_ON(sd_ctl_dir
[0].child
);
5713 sd_ctl_dir
[0].child
= entry
;
5718 for_each_possible_cpu(i
) {
5719 snprintf(buf
, 32, "cpu%d", i
);
5720 entry
->procname
= kstrdup(buf
, GFP_KERNEL
);
5722 entry
->child
= sd_alloc_ctl_cpu_table(i
);
5726 WARN_ON(sd_sysctl_header
);
5727 sd_sysctl_header
= register_sysctl_table(sd_ctl_root
);
5730 /* may be called multiple times per register */
5731 static void unregister_sched_domain_sysctl(void)
5733 if (sd_sysctl_header
)
5734 unregister_sysctl_table(sd_sysctl_header
);
5735 sd_sysctl_header
= NULL
;
5736 if (sd_ctl_dir
[0].child
)
5737 sd_free_ctl_entry(&sd_ctl_dir
[0].child
);
5740 static void register_sched_domain_sysctl(void)
5743 static void unregister_sched_domain_sysctl(void)
5748 static void set_rq_online(struct rq
*rq
)
5751 const struct sched_class
*class;
5753 cpumask_set_cpu(rq
->cpu
, rq
->rd
->online
);
5756 for_each_class(class) {
5757 if (class->rq_online
)
5758 class->rq_online(rq
);
5763 static void set_rq_offline(struct rq
*rq
)
5766 const struct sched_class
*class;
5768 for_each_class(class) {
5769 if (class->rq_offline
)
5770 class->rq_offline(rq
);
5773 cpumask_clear_cpu(rq
->cpu
, rq
->rd
->online
);
5779 * migration_call - callback that gets triggered when a CPU is added.
5780 * Here we can start up the necessary migration thread for the new CPU.
5782 static int __cpuinit
5783 migration_call(struct notifier_block
*nfb
, unsigned long action
, void *hcpu
)
5785 struct task_struct
*p
;
5786 int cpu
= (long)hcpu
;
5787 unsigned long flags
;
5792 case CPU_UP_PREPARE
:
5793 case CPU_UP_PREPARE_FROZEN
:
5794 p
= kthread_create(migration_thread
, hcpu
, "migration/%d", cpu
);
5797 kthread_bind(p
, cpu
);
5798 /* Must be high prio: stop_machine expects to yield to it. */
5799 rq
= task_rq_lock(p
, &flags
);
5800 __setscheduler(rq
, p
, SCHED_FIFO
, MAX_RT_PRIO
-1);
5801 task_rq_unlock(rq
, &flags
);
5803 cpu_rq(cpu
)->migration_thread
= p
;
5804 rq
->calc_load_update
= calc_load_update
;
5808 case CPU_ONLINE_FROZEN
:
5809 /* Strictly unnecessary, as first user will wake it. */
5810 wake_up_process(cpu_rq(cpu
)->migration_thread
);
5812 /* Update our root-domain */
5814 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5816 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5820 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5823 #ifdef CONFIG_HOTPLUG_CPU
5824 case CPU_UP_CANCELED
:
5825 case CPU_UP_CANCELED_FROZEN
:
5826 if (!cpu_rq(cpu
)->migration_thread
)
5828 /* Unbind it from offline cpu so it can run. Fall thru. */
5829 kthread_bind(cpu_rq(cpu
)->migration_thread
,
5830 cpumask_any(cpu_online_mask
));
5831 kthread_stop(cpu_rq(cpu
)->migration_thread
);
5832 put_task_struct(cpu_rq(cpu
)->migration_thread
);
5833 cpu_rq(cpu
)->migration_thread
= NULL
;
5837 case CPU_DEAD_FROZEN
:
5838 migrate_live_tasks(cpu
);
5840 kthread_stop(rq
->migration_thread
);
5841 put_task_struct(rq
->migration_thread
);
5842 rq
->migration_thread
= NULL
;
5843 /* Idle task back to normal (off runqueue, low prio) */
5844 raw_spin_lock_irq(&rq
->lock
);
5845 deactivate_task(rq
, rq
->idle
, 0);
5846 __setscheduler(rq
, rq
->idle
, SCHED_NORMAL
, 0);
5847 rq
->idle
->sched_class
= &idle_sched_class
;
5848 migrate_dead_tasks(cpu
);
5849 raw_spin_unlock_irq(&rq
->lock
);
5850 migrate_nr_uninterruptible(rq
);
5851 BUG_ON(rq
->nr_running
!= 0);
5852 calc_global_load_remove(rq
);
5854 * No need to migrate the tasks: it was best-effort if
5855 * they didn't take sched_hotcpu_mutex. Just wake up
5858 raw_spin_lock_irq(&rq
->lock
);
5859 while (!list_empty(&rq
->migration_queue
)) {
5860 struct migration_req
*req
;
5862 req
= list_entry(rq
->migration_queue
.next
,
5863 struct migration_req
, list
);
5864 list_del_init(&req
->list
);
5865 raw_spin_unlock_irq(&rq
->lock
);
5866 complete(&req
->done
);
5867 raw_spin_lock_irq(&rq
->lock
);
5869 raw_spin_unlock_irq(&rq
->lock
);
5873 case CPU_DYING_FROZEN
:
5874 /* Update our root-domain */
5876 raw_spin_lock_irqsave(&rq
->lock
, flags
);
5878 BUG_ON(!cpumask_test_cpu(cpu
, rq
->rd
->span
));
5881 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
5889 * Register at high priority so that task migration (migrate_all_tasks)
5890 * happens before everything else. This has to be lower priority than
5891 * the notifier in the perf_event subsystem, though.
5893 static struct notifier_block __cpuinitdata migration_notifier
= {
5894 .notifier_call
= migration_call
,
5898 static int __init
migration_init(void)
5900 void *cpu
= (void *)(long)smp_processor_id();
5903 /* Start one for the boot CPU: */
5904 err
= migration_call(&migration_notifier
, CPU_UP_PREPARE
, cpu
);
5905 BUG_ON(err
== NOTIFY_BAD
);
5906 migration_call(&migration_notifier
, CPU_ONLINE
, cpu
);
5907 register_cpu_notifier(&migration_notifier
);
5911 early_initcall(migration_init
);
5916 #ifdef CONFIG_SCHED_DEBUG
5918 static __read_mostly
int sched_domain_debug_enabled
;
5920 static int __init
sched_domain_debug_setup(char *str
)
5922 sched_domain_debug_enabled
= 1;
5926 early_param("sched_debug", sched_domain_debug_setup
);
5928 static int sched_domain_debug_one(struct sched_domain
*sd
, int cpu
, int level
,
5929 struct cpumask
*groupmask
)
5931 struct sched_group
*group
= sd
->groups
;
5934 cpulist_scnprintf(str
, sizeof(str
), sched_domain_span(sd
));
5935 cpumask_clear(groupmask
);
5937 printk(KERN_DEBUG
"%*s domain %d: ", level
, "", level
);
5939 if (!(sd
->flags
& SD_LOAD_BALANCE
)) {
5940 printk("does not load-balance\n");
5942 printk(KERN_ERR
"ERROR: !SD_LOAD_BALANCE domain"
5947 printk(KERN_CONT
"span %s level %s\n", str
, sd
->name
);
5949 if (!cpumask_test_cpu(cpu
, sched_domain_span(sd
))) {
5950 printk(KERN_ERR
"ERROR: domain->span does not contain "
5953 if (!cpumask_test_cpu(cpu
, sched_group_cpus(group
))) {
5954 printk(KERN_ERR
"ERROR: domain->groups does not contain"
5958 printk(KERN_DEBUG
"%*s groups:", level
+ 1, "");
5962 printk(KERN_ERR
"ERROR: group is NULL\n");
5966 if (!group
->cpu_power
) {
5967 printk(KERN_CONT
"\n");
5968 printk(KERN_ERR
"ERROR: domain->cpu_power not "
5973 if (!cpumask_weight(sched_group_cpus(group
))) {
5974 printk(KERN_CONT
"\n");
5975 printk(KERN_ERR
"ERROR: empty group\n");
5979 if (cpumask_intersects(groupmask
, sched_group_cpus(group
))) {
5980 printk(KERN_CONT
"\n");
5981 printk(KERN_ERR
"ERROR: repeated CPUs\n");
5985 cpumask_or(groupmask
, groupmask
, sched_group_cpus(group
));
5987 cpulist_scnprintf(str
, sizeof(str
), sched_group_cpus(group
));
5989 printk(KERN_CONT
" %s", str
);
5990 if (group
->cpu_power
!= SCHED_LOAD_SCALE
) {
5991 printk(KERN_CONT
" (cpu_power = %d)",
5995 group
= group
->next
;
5996 } while (group
!= sd
->groups
);
5997 printk(KERN_CONT
"\n");
5999 if (!cpumask_equal(sched_domain_span(sd
), groupmask
))
6000 printk(KERN_ERR
"ERROR: groups don't span domain->span\n");
6003 !cpumask_subset(groupmask
, sched_domain_span(sd
->parent
)))
6004 printk(KERN_ERR
"ERROR: parent span is not a superset "
6005 "of domain->span\n");
6009 static void sched_domain_debug(struct sched_domain
*sd
, int cpu
)
6011 cpumask_var_t groupmask
;
6014 if (!sched_domain_debug_enabled
)
6018 printk(KERN_DEBUG
"CPU%d attaching NULL sched-domain.\n", cpu
);
6022 printk(KERN_DEBUG
"CPU%d attaching sched-domain:\n", cpu
);
6024 if (!alloc_cpumask_var(&groupmask
, GFP_KERNEL
)) {
6025 printk(KERN_DEBUG
"Cannot load-balance (out of memory)\n");
6030 if (sched_domain_debug_one(sd
, cpu
, level
, groupmask
))
6037 free_cpumask_var(groupmask
);
6039 #else /* !CONFIG_SCHED_DEBUG */
6040 # define sched_domain_debug(sd, cpu) do { } while (0)
6041 #endif /* CONFIG_SCHED_DEBUG */
6043 static int sd_degenerate(struct sched_domain
*sd
)
6045 if (cpumask_weight(sched_domain_span(sd
)) == 1)
6048 /* Following flags need at least 2 groups */
6049 if (sd
->flags
& (SD_LOAD_BALANCE
|
6050 SD_BALANCE_NEWIDLE
|
6054 SD_SHARE_PKG_RESOURCES
)) {
6055 if (sd
->groups
!= sd
->groups
->next
)
6059 /* Following flags don't use groups */
6060 if (sd
->flags
& (SD_WAKE_AFFINE
))
6067 sd_parent_degenerate(struct sched_domain
*sd
, struct sched_domain
*parent
)
6069 unsigned long cflags
= sd
->flags
, pflags
= parent
->flags
;
6071 if (sd_degenerate(parent
))
6074 if (!cpumask_equal(sched_domain_span(sd
), sched_domain_span(parent
)))
6077 /* Flags needing groups don't count if only 1 group in parent */
6078 if (parent
->groups
== parent
->groups
->next
) {
6079 pflags
&= ~(SD_LOAD_BALANCE
|
6080 SD_BALANCE_NEWIDLE
|
6084 SD_SHARE_PKG_RESOURCES
);
6085 if (nr_node_ids
== 1)
6086 pflags
&= ~SD_SERIALIZE
;
6088 if (~cflags
& pflags
)
6094 static void free_rootdomain(struct root_domain
*rd
)
6096 synchronize_sched();
6098 cpupri_cleanup(&rd
->cpupri
);
6100 free_cpumask_var(rd
->rto_mask
);
6101 free_cpumask_var(rd
->online
);
6102 free_cpumask_var(rd
->span
);
6106 static void rq_attach_root(struct rq
*rq
, struct root_domain
*rd
)
6108 struct root_domain
*old_rd
= NULL
;
6109 unsigned long flags
;
6111 raw_spin_lock_irqsave(&rq
->lock
, flags
);
6116 if (cpumask_test_cpu(rq
->cpu
, old_rd
->online
))
6119 cpumask_clear_cpu(rq
->cpu
, old_rd
->span
);
6122 * If we dont want to free the old_rt yet then
6123 * set old_rd to NULL to skip the freeing later
6126 if (!atomic_dec_and_test(&old_rd
->refcount
))
6130 atomic_inc(&rd
->refcount
);
6133 cpumask_set_cpu(rq
->cpu
, rd
->span
);
6134 if (cpumask_test_cpu(rq
->cpu
, cpu_active_mask
))
6137 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
6140 free_rootdomain(old_rd
);
6143 static int init_rootdomain(struct root_domain
*rd
, bool bootmem
)
6145 gfp_t gfp
= GFP_KERNEL
;
6147 memset(rd
, 0, sizeof(*rd
));
6152 if (!alloc_cpumask_var(&rd
->span
, gfp
))
6154 if (!alloc_cpumask_var(&rd
->online
, gfp
))
6156 if (!alloc_cpumask_var(&rd
->rto_mask
, gfp
))
6159 if (cpupri_init(&rd
->cpupri
, bootmem
) != 0)
6164 free_cpumask_var(rd
->rto_mask
);
6166 free_cpumask_var(rd
->online
);
6168 free_cpumask_var(rd
->span
);
6173 static void init_defrootdomain(void)
6175 init_rootdomain(&def_root_domain
, true);
6177 atomic_set(&def_root_domain
.refcount
, 1);
6180 static struct root_domain
*alloc_rootdomain(void)
6182 struct root_domain
*rd
;
6184 rd
= kmalloc(sizeof(*rd
), GFP_KERNEL
);
6188 if (init_rootdomain(rd
, false) != 0) {
6197 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
6198 * hold the hotplug lock.
6201 cpu_attach_domain(struct sched_domain
*sd
, struct root_domain
*rd
, int cpu
)
6203 struct rq
*rq
= cpu_rq(cpu
);
6204 struct sched_domain
*tmp
;
6206 /* Remove the sched domains which do not contribute to scheduling. */
6207 for (tmp
= sd
; tmp
; ) {
6208 struct sched_domain
*parent
= tmp
->parent
;
6212 if (sd_parent_degenerate(tmp
, parent
)) {
6213 tmp
->parent
= parent
->parent
;
6215 parent
->parent
->child
= tmp
;
6220 if (sd
&& sd_degenerate(sd
)) {
6226 sched_domain_debug(sd
, cpu
);
6228 rq_attach_root(rq
, rd
);
6229 rcu_assign_pointer(rq
->sd
, sd
);
6232 /* cpus with isolated domains */
6233 static cpumask_var_t cpu_isolated_map
;
6235 /* Setup the mask of cpus configured for isolated domains */
6236 static int __init
isolated_cpu_setup(char *str
)
6238 alloc_bootmem_cpumask_var(&cpu_isolated_map
);
6239 cpulist_parse(str
, cpu_isolated_map
);
6243 __setup("isolcpus=", isolated_cpu_setup
);
6246 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
6247 * to a function which identifies what group(along with sched group) a CPU
6248 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
6249 * (due to the fact that we keep track of groups covered with a struct cpumask).
6251 * init_sched_build_groups will build a circular linked list of the groups
6252 * covered by the given span, and will set each group's ->cpumask correctly,
6253 * and ->cpu_power to 0.
6256 init_sched_build_groups(const struct cpumask
*span
,
6257 const struct cpumask
*cpu_map
,
6258 int (*group_fn
)(int cpu
, const struct cpumask
*cpu_map
,
6259 struct sched_group
**sg
,
6260 struct cpumask
*tmpmask
),
6261 struct cpumask
*covered
, struct cpumask
*tmpmask
)
6263 struct sched_group
*first
= NULL
, *last
= NULL
;
6266 cpumask_clear(covered
);
6268 for_each_cpu(i
, span
) {
6269 struct sched_group
*sg
;
6270 int group
= group_fn(i
, cpu_map
, &sg
, tmpmask
);
6273 if (cpumask_test_cpu(i
, covered
))
6276 cpumask_clear(sched_group_cpus(sg
));
6279 for_each_cpu(j
, span
) {
6280 if (group_fn(j
, cpu_map
, NULL
, tmpmask
) != group
)
6283 cpumask_set_cpu(j
, covered
);
6284 cpumask_set_cpu(j
, sched_group_cpus(sg
));
6295 #define SD_NODES_PER_DOMAIN 16
6300 * find_next_best_node - find the next node to include in a sched_domain
6301 * @node: node whose sched_domain we're building
6302 * @used_nodes: nodes already in the sched_domain
6304 * Find the next node to include in a given scheduling domain. Simply
6305 * finds the closest node not already in the @used_nodes map.
6307 * Should use nodemask_t.
6309 static int find_next_best_node(int node
, nodemask_t
*used_nodes
)
6311 int i
, n
, val
, min_val
, best_node
= 0;
6315 for (i
= 0; i
< nr_node_ids
; i
++) {
6316 /* Start at @node */
6317 n
= (node
+ i
) % nr_node_ids
;
6319 if (!nr_cpus_node(n
))
6322 /* Skip already used nodes */
6323 if (node_isset(n
, *used_nodes
))
6326 /* Simple min distance search */
6327 val
= node_distance(node
, n
);
6329 if (val
< min_val
) {
6335 node_set(best_node
, *used_nodes
);
6340 * sched_domain_node_span - get a cpumask for a node's sched_domain
6341 * @node: node whose cpumask we're constructing
6342 * @span: resulting cpumask
6344 * Given a node, construct a good cpumask for its sched_domain to span. It
6345 * should be one that prevents unnecessary balancing, but also spreads tasks
6348 static void sched_domain_node_span(int node
, struct cpumask
*span
)
6350 nodemask_t used_nodes
;
6353 cpumask_clear(span
);
6354 nodes_clear(used_nodes
);
6356 cpumask_or(span
, span
, cpumask_of_node(node
));
6357 node_set(node
, used_nodes
);
6359 for (i
= 1; i
< SD_NODES_PER_DOMAIN
; i
++) {
6360 int next_node
= find_next_best_node(node
, &used_nodes
);
6362 cpumask_or(span
, span
, cpumask_of_node(next_node
));
6365 #endif /* CONFIG_NUMA */
6367 int sched_smt_power_savings
= 0, sched_mc_power_savings
= 0;
6370 * The cpus mask in sched_group and sched_domain hangs off the end.
6372 * ( See the the comments in include/linux/sched.h:struct sched_group
6373 * and struct sched_domain. )
6375 struct static_sched_group
{
6376 struct sched_group sg
;
6377 DECLARE_BITMAP(cpus
, CONFIG_NR_CPUS
);
6380 struct static_sched_domain
{
6381 struct sched_domain sd
;
6382 DECLARE_BITMAP(span
, CONFIG_NR_CPUS
);
6388 cpumask_var_t domainspan
;
6389 cpumask_var_t covered
;
6390 cpumask_var_t notcovered
;
6392 cpumask_var_t nodemask
;
6393 cpumask_var_t this_sibling_map
;
6394 cpumask_var_t this_core_map
;
6395 cpumask_var_t send_covered
;
6396 cpumask_var_t tmpmask
;
6397 struct sched_group
**sched_group_nodes
;
6398 struct root_domain
*rd
;
6402 sa_sched_groups
= 0,
6407 sa_this_sibling_map
,
6409 sa_sched_group_nodes
,
6419 * SMT sched-domains:
6421 #ifdef CONFIG_SCHED_SMT
6422 static DEFINE_PER_CPU(struct static_sched_domain
, cpu_domains
);
6423 static DEFINE_PER_CPU(struct static_sched_group
, sched_groups
);
6426 cpu_to_cpu_group(int cpu
, const struct cpumask
*cpu_map
,
6427 struct sched_group
**sg
, struct cpumask
*unused
)
6430 *sg
= &per_cpu(sched_groups
, cpu
).sg
;
6433 #endif /* CONFIG_SCHED_SMT */
6436 * multi-core sched-domains:
6438 #ifdef CONFIG_SCHED_MC
6439 static DEFINE_PER_CPU(struct static_sched_domain
, core_domains
);
6440 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_core
);
6441 #endif /* CONFIG_SCHED_MC */
6443 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6445 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
6446 struct sched_group
**sg
, struct cpumask
*mask
)
6450 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6451 group
= cpumask_first(mask
);
6453 *sg
= &per_cpu(sched_group_core
, group
).sg
;
6456 #elif defined(CONFIG_SCHED_MC)
6458 cpu_to_core_group(int cpu
, const struct cpumask
*cpu_map
,
6459 struct sched_group
**sg
, struct cpumask
*unused
)
6462 *sg
= &per_cpu(sched_group_core
, cpu
).sg
;
6467 static DEFINE_PER_CPU(struct static_sched_domain
, phys_domains
);
6468 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_phys
);
6471 cpu_to_phys_group(int cpu
, const struct cpumask
*cpu_map
,
6472 struct sched_group
**sg
, struct cpumask
*mask
)
6475 #ifdef CONFIG_SCHED_MC
6476 cpumask_and(mask
, cpu_coregroup_mask(cpu
), cpu_map
);
6477 group
= cpumask_first(mask
);
6478 #elif defined(CONFIG_SCHED_SMT)
6479 cpumask_and(mask
, topology_thread_cpumask(cpu
), cpu_map
);
6480 group
= cpumask_first(mask
);
6485 *sg
= &per_cpu(sched_group_phys
, group
).sg
;
6491 * The init_sched_build_groups can't handle what we want to do with node
6492 * groups, so roll our own. Now each node has its own list of groups which
6493 * gets dynamically allocated.
6495 static DEFINE_PER_CPU(struct static_sched_domain
, node_domains
);
6496 static struct sched_group
***sched_group_nodes_bycpu
;
6498 static DEFINE_PER_CPU(struct static_sched_domain
, allnodes_domains
);
6499 static DEFINE_PER_CPU(struct static_sched_group
, sched_group_allnodes
);
6501 static int cpu_to_allnodes_group(int cpu
, const struct cpumask
*cpu_map
,
6502 struct sched_group
**sg
,
6503 struct cpumask
*nodemask
)
6507 cpumask_and(nodemask
, cpumask_of_node(cpu_to_node(cpu
)), cpu_map
);
6508 group
= cpumask_first(nodemask
);
6511 *sg
= &per_cpu(sched_group_allnodes
, group
).sg
;
6515 static void init_numa_sched_groups_power(struct sched_group
*group_head
)
6517 struct sched_group
*sg
= group_head
;
6523 for_each_cpu(j
, sched_group_cpus(sg
)) {
6524 struct sched_domain
*sd
;
6526 sd
= &per_cpu(phys_domains
, j
).sd
;
6527 if (j
!= group_first_cpu(sd
->groups
)) {
6529 * Only add "power" once for each
6535 sg
->cpu_power
+= sd
->groups
->cpu_power
;
6538 } while (sg
!= group_head
);
6541 static int build_numa_sched_groups(struct s_data
*d
,
6542 const struct cpumask
*cpu_map
, int num
)
6544 struct sched_domain
*sd
;
6545 struct sched_group
*sg
, *prev
;
6548 cpumask_clear(d
->covered
);
6549 cpumask_and(d
->nodemask
, cpumask_of_node(num
), cpu_map
);
6550 if (cpumask_empty(d
->nodemask
)) {
6551 d
->sched_group_nodes
[num
] = NULL
;
6555 sched_domain_node_span(num
, d
->domainspan
);
6556 cpumask_and(d
->domainspan
, d
->domainspan
, cpu_map
);
6558 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6561 printk(KERN_WARNING
"Can not alloc domain group for node %d\n",
6565 d
->sched_group_nodes
[num
] = sg
;
6567 for_each_cpu(j
, d
->nodemask
) {
6568 sd
= &per_cpu(node_domains
, j
).sd
;
6573 cpumask_copy(sched_group_cpus(sg
), d
->nodemask
);
6575 cpumask_or(d
->covered
, d
->covered
, d
->nodemask
);
6578 for (j
= 0; j
< nr_node_ids
; j
++) {
6579 n
= (num
+ j
) % nr_node_ids
;
6580 cpumask_complement(d
->notcovered
, d
->covered
);
6581 cpumask_and(d
->tmpmask
, d
->notcovered
, cpu_map
);
6582 cpumask_and(d
->tmpmask
, d
->tmpmask
, d
->domainspan
);
6583 if (cpumask_empty(d
->tmpmask
))
6585 cpumask_and(d
->tmpmask
, d
->tmpmask
, cpumask_of_node(n
));
6586 if (cpumask_empty(d
->tmpmask
))
6588 sg
= kmalloc_node(sizeof(struct sched_group
) + cpumask_size(),
6592 "Can not alloc domain group for node %d\n", j
);
6596 cpumask_copy(sched_group_cpus(sg
), d
->tmpmask
);
6597 sg
->next
= prev
->next
;
6598 cpumask_or(d
->covered
, d
->covered
, d
->tmpmask
);
6605 #endif /* CONFIG_NUMA */
6608 /* Free memory allocated for various sched_group structures */
6609 static void free_sched_groups(const struct cpumask
*cpu_map
,
6610 struct cpumask
*nodemask
)
6614 for_each_cpu(cpu
, cpu_map
) {
6615 struct sched_group
**sched_group_nodes
6616 = sched_group_nodes_bycpu
[cpu
];
6618 if (!sched_group_nodes
)
6621 for (i
= 0; i
< nr_node_ids
; i
++) {
6622 struct sched_group
*oldsg
, *sg
= sched_group_nodes
[i
];
6624 cpumask_and(nodemask
, cpumask_of_node(i
), cpu_map
);
6625 if (cpumask_empty(nodemask
))
6635 if (oldsg
!= sched_group_nodes
[i
])
6638 kfree(sched_group_nodes
);
6639 sched_group_nodes_bycpu
[cpu
] = NULL
;
6642 #else /* !CONFIG_NUMA */
6643 static void free_sched_groups(const struct cpumask
*cpu_map
,
6644 struct cpumask
*nodemask
)
6647 #endif /* CONFIG_NUMA */
6650 * Initialize sched groups cpu_power.
6652 * cpu_power indicates the capacity of sched group, which is used while
6653 * distributing the load between different sched groups in a sched domain.
6654 * Typically cpu_power for all the groups in a sched domain will be same unless
6655 * there are asymmetries in the topology. If there are asymmetries, group
6656 * having more cpu_power will pickup more load compared to the group having
6659 static void init_sched_groups_power(int cpu
, struct sched_domain
*sd
)
6661 struct sched_domain
*child
;
6662 struct sched_group
*group
;
6666 WARN_ON(!sd
|| !sd
->groups
);
6668 if (cpu
!= group_first_cpu(sd
->groups
))
6673 sd
->groups
->cpu_power
= 0;
6676 power
= SCHED_LOAD_SCALE
;
6677 weight
= cpumask_weight(sched_domain_span(sd
));
6679 * SMT siblings share the power of a single core.
6680 * Usually multiple threads get a better yield out of
6681 * that one core than a single thread would have,
6682 * reflect that in sd->smt_gain.
6684 if ((sd
->flags
& SD_SHARE_CPUPOWER
) && weight
> 1) {
6685 power
*= sd
->smt_gain
;
6687 power
>>= SCHED_LOAD_SHIFT
;
6689 sd
->groups
->cpu_power
+= power
;
6694 * Add cpu_power of each child group to this groups cpu_power.
6696 group
= child
->groups
;
6698 sd
->groups
->cpu_power
+= group
->cpu_power
;
6699 group
= group
->next
;
6700 } while (group
!= child
->groups
);
6704 * Initializers for schedule domains
6705 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6708 #ifdef CONFIG_SCHED_DEBUG
6709 # define SD_INIT_NAME(sd, type) sd->name = #type
6711 # define SD_INIT_NAME(sd, type) do { } while (0)
6714 #define SD_INIT(sd, type) sd_init_##type(sd)
6716 #define SD_INIT_FUNC(type) \
6717 static noinline void sd_init_##type(struct sched_domain *sd) \
6719 memset(sd, 0, sizeof(*sd)); \
6720 *sd = SD_##type##_INIT; \
6721 sd->level = SD_LV_##type; \
6722 SD_INIT_NAME(sd, type); \
6727 SD_INIT_FUNC(ALLNODES
)
6730 #ifdef CONFIG_SCHED_SMT
6731 SD_INIT_FUNC(SIBLING
)
6733 #ifdef CONFIG_SCHED_MC
6737 static int default_relax_domain_level
= -1;
6739 static int __init
setup_relax_domain_level(char *str
)
6743 val
= simple_strtoul(str
, NULL
, 0);
6744 if (val
< SD_LV_MAX
)
6745 default_relax_domain_level
= val
;
6749 __setup("relax_domain_level=", setup_relax_domain_level
);
6751 static void set_domain_attribute(struct sched_domain
*sd
,
6752 struct sched_domain_attr
*attr
)
6756 if (!attr
|| attr
->relax_domain_level
< 0) {
6757 if (default_relax_domain_level
< 0)
6760 request
= default_relax_domain_level
;
6762 request
= attr
->relax_domain_level
;
6763 if (request
< sd
->level
) {
6764 /* turn off idle balance on this domain */
6765 sd
->flags
&= ~(SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
6767 /* turn on idle balance on this domain */
6768 sd
->flags
|= (SD_BALANCE_WAKE
|SD_BALANCE_NEWIDLE
);
6772 static void __free_domain_allocs(struct s_data
*d
, enum s_alloc what
,
6773 const struct cpumask
*cpu_map
)
6776 case sa_sched_groups
:
6777 free_sched_groups(cpu_map
, d
->tmpmask
); /* fall through */
6778 d
->sched_group_nodes
= NULL
;
6780 free_rootdomain(d
->rd
); /* fall through */
6782 free_cpumask_var(d
->tmpmask
); /* fall through */
6783 case sa_send_covered
:
6784 free_cpumask_var(d
->send_covered
); /* fall through */
6785 case sa_this_core_map
:
6786 free_cpumask_var(d
->this_core_map
); /* fall through */
6787 case sa_this_sibling_map
:
6788 free_cpumask_var(d
->this_sibling_map
); /* fall through */
6790 free_cpumask_var(d
->nodemask
); /* fall through */
6791 case sa_sched_group_nodes
:
6793 kfree(d
->sched_group_nodes
); /* fall through */
6795 free_cpumask_var(d
->notcovered
); /* fall through */
6797 free_cpumask_var(d
->covered
); /* fall through */
6799 free_cpumask_var(d
->domainspan
); /* fall through */
6806 static enum s_alloc
__visit_domain_allocation_hell(struct s_data
*d
,
6807 const struct cpumask
*cpu_map
)
6810 if (!alloc_cpumask_var(&d
->domainspan
, GFP_KERNEL
))
6812 if (!alloc_cpumask_var(&d
->covered
, GFP_KERNEL
))
6813 return sa_domainspan
;
6814 if (!alloc_cpumask_var(&d
->notcovered
, GFP_KERNEL
))
6816 /* Allocate the per-node list of sched groups */
6817 d
->sched_group_nodes
= kcalloc(nr_node_ids
,
6818 sizeof(struct sched_group
*), GFP_KERNEL
);
6819 if (!d
->sched_group_nodes
) {
6820 printk(KERN_WARNING
"Can not alloc sched group node list\n");
6821 return sa_notcovered
;
6823 sched_group_nodes_bycpu
[cpumask_first(cpu_map
)] = d
->sched_group_nodes
;
6825 if (!alloc_cpumask_var(&d
->nodemask
, GFP_KERNEL
))
6826 return sa_sched_group_nodes
;
6827 if (!alloc_cpumask_var(&d
->this_sibling_map
, GFP_KERNEL
))
6829 if (!alloc_cpumask_var(&d
->this_core_map
, GFP_KERNEL
))
6830 return sa_this_sibling_map
;
6831 if (!alloc_cpumask_var(&d
->send_covered
, GFP_KERNEL
))
6832 return sa_this_core_map
;
6833 if (!alloc_cpumask_var(&d
->tmpmask
, GFP_KERNEL
))
6834 return sa_send_covered
;
6835 d
->rd
= alloc_rootdomain();
6837 printk(KERN_WARNING
"Cannot alloc root domain\n");
6840 return sa_rootdomain
;
6843 static struct sched_domain
*__build_numa_sched_domains(struct s_data
*d
,
6844 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
, int i
)
6846 struct sched_domain
*sd
= NULL
;
6848 struct sched_domain
*parent
;
6851 if (cpumask_weight(cpu_map
) >
6852 SD_NODES_PER_DOMAIN
* cpumask_weight(d
->nodemask
)) {
6853 sd
= &per_cpu(allnodes_domains
, i
).sd
;
6854 SD_INIT(sd
, ALLNODES
);
6855 set_domain_attribute(sd
, attr
);
6856 cpumask_copy(sched_domain_span(sd
), cpu_map
);
6857 cpu_to_allnodes_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
6862 sd
= &per_cpu(node_domains
, i
).sd
;
6864 set_domain_attribute(sd
, attr
);
6865 sched_domain_node_span(cpu_to_node(i
), sched_domain_span(sd
));
6866 sd
->parent
= parent
;
6869 cpumask_and(sched_domain_span(sd
), sched_domain_span(sd
), cpu_map
);
6874 static struct sched_domain
*__build_cpu_sched_domain(struct s_data
*d
,
6875 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
6876 struct sched_domain
*parent
, int i
)
6878 struct sched_domain
*sd
;
6879 sd
= &per_cpu(phys_domains
, i
).sd
;
6881 set_domain_attribute(sd
, attr
);
6882 cpumask_copy(sched_domain_span(sd
), d
->nodemask
);
6883 sd
->parent
= parent
;
6886 cpu_to_phys_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
6890 static struct sched_domain
*__build_mc_sched_domain(struct s_data
*d
,
6891 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
6892 struct sched_domain
*parent
, int i
)
6894 struct sched_domain
*sd
= parent
;
6895 #ifdef CONFIG_SCHED_MC
6896 sd
= &per_cpu(core_domains
, i
).sd
;
6898 set_domain_attribute(sd
, attr
);
6899 cpumask_and(sched_domain_span(sd
), cpu_map
, cpu_coregroup_mask(i
));
6900 sd
->parent
= parent
;
6902 cpu_to_core_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
6907 static struct sched_domain
*__build_smt_sched_domain(struct s_data
*d
,
6908 const struct cpumask
*cpu_map
, struct sched_domain_attr
*attr
,
6909 struct sched_domain
*parent
, int i
)
6911 struct sched_domain
*sd
= parent
;
6912 #ifdef CONFIG_SCHED_SMT
6913 sd
= &per_cpu(cpu_domains
, i
).sd
;
6914 SD_INIT(sd
, SIBLING
);
6915 set_domain_attribute(sd
, attr
);
6916 cpumask_and(sched_domain_span(sd
), cpu_map
, topology_thread_cpumask(i
));
6917 sd
->parent
= parent
;
6919 cpu_to_cpu_group(i
, cpu_map
, &sd
->groups
, d
->tmpmask
);
6924 static void build_sched_groups(struct s_data
*d
, enum sched_domain_level l
,
6925 const struct cpumask
*cpu_map
, int cpu
)
6928 #ifdef CONFIG_SCHED_SMT
6929 case SD_LV_SIBLING
: /* set up CPU (sibling) groups */
6930 cpumask_and(d
->this_sibling_map
, cpu_map
,
6931 topology_thread_cpumask(cpu
));
6932 if (cpu
== cpumask_first(d
->this_sibling_map
))
6933 init_sched_build_groups(d
->this_sibling_map
, cpu_map
,
6935 d
->send_covered
, d
->tmpmask
);
6938 #ifdef CONFIG_SCHED_MC
6939 case SD_LV_MC
: /* set up multi-core groups */
6940 cpumask_and(d
->this_core_map
, cpu_map
, cpu_coregroup_mask(cpu
));
6941 if (cpu
== cpumask_first(d
->this_core_map
))
6942 init_sched_build_groups(d
->this_core_map
, cpu_map
,
6944 d
->send_covered
, d
->tmpmask
);
6947 case SD_LV_CPU
: /* set up physical groups */
6948 cpumask_and(d
->nodemask
, cpumask_of_node(cpu
), cpu_map
);
6949 if (!cpumask_empty(d
->nodemask
))
6950 init_sched_build_groups(d
->nodemask
, cpu_map
,
6952 d
->send_covered
, d
->tmpmask
);
6955 case SD_LV_ALLNODES
:
6956 init_sched_build_groups(cpu_map
, cpu_map
, &cpu_to_allnodes_group
,
6957 d
->send_covered
, d
->tmpmask
);
6966 * Build sched domains for a given set of cpus and attach the sched domains
6967 * to the individual cpus
6969 static int __build_sched_domains(const struct cpumask
*cpu_map
,
6970 struct sched_domain_attr
*attr
)
6972 enum s_alloc alloc_state
= sa_none
;
6974 struct sched_domain
*sd
;
6980 alloc_state
= __visit_domain_allocation_hell(&d
, cpu_map
);
6981 if (alloc_state
!= sa_rootdomain
)
6983 alloc_state
= sa_sched_groups
;
6986 * Set up domains for cpus specified by the cpu_map.
6988 for_each_cpu(i
, cpu_map
) {
6989 cpumask_and(d
.nodemask
, cpumask_of_node(cpu_to_node(i
)),
6992 sd
= __build_numa_sched_domains(&d
, cpu_map
, attr
, i
);
6993 sd
= __build_cpu_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
6994 sd
= __build_mc_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
6995 sd
= __build_smt_sched_domain(&d
, cpu_map
, attr
, sd
, i
);
6998 for_each_cpu(i
, cpu_map
) {
6999 build_sched_groups(&d
, SD_LV_SIBLING
, cpu_map
, i
);
7000 build_sched_groups(&d
, SD_LV_MC
, cpu_map
, i
);
7003 /* Set up physical groups */
7004 for (i
= 0; i
< nr_node_ids
; i
++)
7005 build_sched_groups(&d
, SD_LV_CPU
, cpu_map
, i
);
7008 /* Set up node groups */
7010 build_sched_groups(&d
, SD_LV_ALLNODES
, cpu_map
, 0);
7012 for (i
= 0; i
< nr_node_ids
; i
++)
7013 if (build_numa_sched_groups(&d
, cpu_map
, i
))
7017 /* Calculate CPU power for physical packages and nodes */
7018 #ifdef CONFIG_SCHED_SMT
7019 for_each_cpu(i
, cpu_map
) {
7020 sd
= &per_cpu(cpu_domains
, i
).sd
;
7021 init_sched_groups_power(i
, sd
);
7024 #ifdef CONFIG_SCHED_MC
7025 for_each_cpu(i
, cpu_map
) {
7026 sd
= &per_cpu(core_domains
, i
).sd
;
7027 init_sched_groups_power(i
, sd
);
7031 for_each_cpu(i
, cpu_map
) {
7032 sd
= &per_cpu(phys_domains
, i
).sd
;
7033 init_sched_groups_power(i
, sd
);
7037 for (i
= 0; i
< nr_node_ids
; i
++)
7038 init_numa_sched_groups_power(d
.sched_group_nodes
[i
]);
7040 if (d
.sd_allnodes
) {
7041 struct sched_group
*sg
;
7043 cpu_to_allnodes_group(cpumask_first(cpu_map
), cpu_map
, &sg
,
7045 init_numa_sched_groups_power(sg
);
7049 /* Attach the domains */
7050 for_each_cpu(i
, cpu_map
) {
7051 #ifdef CONFIG_SCHED_SMT
7052 sd
= &per_cpu(cpu_domains
, i
).sd
;
7053 #elif defined(CONFIG_SCHED_MC)
7054 sd
= &per_cpu(core_domains
, i
).sd
;
7056 sd
= &per_cpu(phys_domains
, i
).sd
;
7058 cpu_attach_domain(sd
, d
.rd
, i
);
7061 d
.sched_group_nodes
= NULL
; /* don't free this we still need it */
7062 __free_domain_allocs(&d
, sa_tmpmask
, cpu_map
);
7066 __free_domain_allocs(&d
, alloc_state
, cpu_map
);
7070 static int build_sched_domains(const struct cpumask
*cpu_map
)
7072 return __build_sched_domains(cpu_map
, NULL
);
7075 static cpumask_var_t
*doms_cur
; /* current sched domains */
7076 static int ndoms_cur
; /* number of sched domains in 'doms_cur' */
7077 static struct sched_domain_attr
*dattr_cur
;
7078 /* attribues of custom domains in 'doms_cur' */
7081 * Special case: If a kmalloc of a doms_cur partition (array of
7082 * cpumask) fails, then fallback to a single sched domain,
7083 * as determined by the single cpumask fallback_doms.
7085 static cpumask_var_t fallback_doms
;
7088 * arch_update_cpu_topology lets virtualized architectures update the
7089 * cpu core maps. It is supposed to return 1 if the topology changed
7090 * or 0 if it stayed the same.
7092 int __attribute__((weak
)) arch_update_cpu_topology(void)
7097 cpumask_var_t
*alloc_sched_domains(unsigned int ndoms
)
7100 cpumask_var_t
*doms
;
7102 doms
= kmalloc(sizeof(*doms
) * ndoms
, GFP_KERNEL
);
7105 for (i
= 0; i
< ndoms
; i
++) {
7106 if (!alloc_cpumask_var(&doms
[i
], GFP_KERNEL
)) {
7107 free_sched_domains(doms
, i
);
7114 void free_sched_domains(cpumask_var_t doms
[], unsigned int ndoms
)
7117 for (i
= 0; i
< ndoms
; i
++)
7118 free_cpumask_var(doms
[i
]);
7123 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
7124 * For now this just excludes isolated cpus, but could be used to
7125 * exclude other special cases in the future.
7127 static int arch_init_sched_domains(const struct cpumask
*cpu_map
)
7131 arch_update_cpu_topology();
7133 doms_cur
= alloc_sched_domains(ndoms_cur
);
7135 doms_cur
= &fallback_doms
;
7136 cpumask_andnot(doms_cur
[0], cpu_map
, cpu_isolated_map
);
7138 err
= build_sched_domains(doms_cur
[0]);
7139 register_sched_domain_sysctl();
7144 static void arch_destroy_sched_domains(const struct cpumask
*cpu_map
,
7145 struct cpumask
*tmpmask
)
7147 free_sched_groups(cpu_map
, tmpmask
);
7151 * Detach sched domains from a group of cpus specified in cpu_map
7152 * These cpus will now be attached to the NULL domain
7154 static void detach_destroy_domains(const struct cpumask
*cpu_map
)
7156 /* Save because hotplug lock held. */
7157 static DECLARE_BITMAP(tmpmask
, CONFIG_NR_CPUS
);
7160 for_each_cpu(i
, cpu_map
)
7161 cpu_attach_domain(NULL
, &def_root_domain
, i
);
7162 synchronize_sched();
7163 arch_destroy_sched_domains(cpu_map
, to_cpumask(tmpmask
));
7166 /* handle null as "default" */
7167 static int dattrs_equal(struct sched_domain_attr
*cur
, int idx_cur
,
7168 struct sched_domain_attr
*new, int idx_new
)
7170 struct sched_domain_attr tmp
;
7177 return !memcmp(cur
? (cur
+ idx_cur
) : &tmp
,
7178 new ? (new + idx_new
) : &tmp
,
7179 sizeof(struct sched_domain_attr
));
7183 * Partition sched domains as specified by the 'ndoms_new'
7184 * cpumasks in the array doms_new[] of cpumasks. This compares
7185 * doms_new[] to the current sched domain partitioning, doms_cur[].
7186 * It destroys each deleted domain and builds each new domain.
7188 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
7189 * The masks don't intersect (don't overlap.) We should setup one
7190 * sched domain for each mask. CPUs not in any of the cpumasks will
7191 * not be load balanced. If the same cpumask appears both in the
7192 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7195 * The passed in 'doms_new' should be allocated using
7196 * alloc_sched_domains. This routine takes ownership of it and will
7197 * free_sched_domains it when done with it. If the caller failed the
7198 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7199 * and partition_sched_domains() will fallback to the single partition
7200 * 'fallback_doms', it also forces the domains to be rebuilt.
7202 * If doms_new == NULL it will be replaced with cpu_online_mask.
7203 * ndoms_new == 0 is a special case for destroying existing domains,
7204 * and it will not create the default domain.
7206 * Call with hotplug lock held
7208 void partition_sched_domains(int ndoms_new
, cpumask_var_t doms_new
[],
7209 struct sched_domain_attr
*dattr_new
)
7214 mutex_lock(&sched_domains_mutex
);
7216 /* always unregister in case we don't destroy any domains */
7217 unregister_sched_domain_sysctl();
7219 /* Let architecture update cpu core mappings. */
7220 new_topology
= arch_update_cpu_topology();
7222 n
= doms_new
? ndoms_new
: 0;
7224 /* Destroy deleted domains */
7225 for (i
= 0; i
< ndoms_cur
; i
++) {
7226 for (j
= 0; j
< n
&& !new_topology
; j
++) {
7227 if (cpumask_equal(doms_cur
[i
], doms_new
[j
])
7228 && dattrs_equal(dattr_cur
, i
, dattr_new
, j
))
7231 /* no match - a current sched domain not in new doms_new[] */
7232 detach_destroy_domains(doms_cur
[i
]);
7237 if (doms_new
== NULL
) {
7239 doms_new
= &fallback_doms
;
7240 cpumask_andnot(doms_new
[0], cpu_active_mask
, cpu_isolated_map
);
7241 WARN_ON_ONCE(dattr_new
);
7244 /* Build new domains */
7245 for (i
= 0; i
< ndoms_new
; i
++) {
7246 for (j
= 0; j
< ndoms_cur
&& !new_topology
; j
++) {
7247 if (cpumask_equal(doms_new
[i
], doms_cur
[j
])
7248 && dattrs_equal(dattr_new
, i
, dattr_cur
, j
))
7251 /* no match - add a new doms_new */
7252 __build_sched_domains(doms_new
[i
],
7253 dattr_new
? dattr_new
+ i
: NULL
);
7258 /* Remember the new sched domains */
7259 if (doms_cur
!= &fallback_doms
)
7260 free_sched_domains(doms_cur
, ndoms_cur
);
7261 kfree(dattr_cur
); /* kfree(NULL) is safe */
7262 doms_cur
= doms_new
;
7263 dattr_cur
= dattr_new
;
7264 ndoms_cur
= ndoms_new
;
7266 register_sched_domain_sysctl();
7268 mutex_unlock(&sched_domains_mutex
);
7271 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
7272 static void arch_reinit_sched_domains(void)
7276 /* Destroy domains first to force the rebuild */
7277 partition_sched_domains(0, NULL
, NULL
);
7279 rebuild_sched_domains();
7283 static ssize_t
sched_power_savings_store(const char *buf
, size_t count
, int smt
)
7285 unsigned int level
= 0;
7287 if (sscanf(buf
, "%u", &level
) != 1)
7291 * level is always be positive so don't check for
7292 * level < POWERSAVINGS_BALANCE_NONE which is 0
7293 * What happens on 0 or 1 byte write,
7294 * need to check for count as well?
7297 if (level
>= MAX_POWERSAVINGS_BALANCE_LEVELS
)
7301 sched_smt_power_savings
= level
;
7303 sched_mc_power_savings
= level
;
7305 arch_reinit_sched_domains();
7310 #ifdef CONFIG_SCHED_MC
7311 static ssize_t
sched_mc_power_savings_show(struct sysdev_class
*class,
7312 struct sysdev_class_attribute
*attr
,
7315 return sprintf(page
, "%u\n", sched_mc_power_savings
);
7317 static ssize_t
sched_mc_power_savings_store(struct sysdev_class
*class,
7318 struct sysdev_class_attribute
*attr
,
7319 const char *buf
, size_t count
)
7321 return sched_power_savings_store(buf
, count
, 0);
7323 static SYSDEV_CLASS_ATTR(sched_mc_power_savings
, 0644,
7324 sched_mc_power_savings_show
,
7325 sched_mc_power_savings_store
);
7328 #ifdef CONFIG_SCHED_SMT
7329 static ssize_t
sched_smt_power_savings_show(struct sysdev_class
*dev
,
7330 struct sysdev_class_attribute
*attr
,
7333 return sprintf(page
, "%u\n", sched_smt_power_savings
);
7335 static ssize_t
sched_smt_power_savings_store(struct sysdev_class
*dev
,
7336 struct sysdev_class_attribute
*attr
,
7337 const char *buf
, size_t count
)
7339 return sched_power_savings_store(buf
, count
, 1);
7341 static SYSDEV_CLASS_ATTR(sched_smt_power_savings
, 0644,
7342 sched_smt_power_savings_show
,
7343 sched_smt_power_savings_store
);
7346 int __init
sched_create_sysfs_power_savings_entries(struct sysdev_class
*cls
)
7350 #ifdef CONFIG_SCHED_SMT
7352 err
= sysfs_create_file(&cls
->kset
.kobj
,
7353 &attr_sched_smt_power_savings
.attr
);
7355 #ifdef CONFIG_SCHED_MC
7356 if (!err
&& mc_capable())
7357 err
= sysfs_create_file(&cls
->kset
.kobj
,
7358 &attr_sched_mc_power_savings
.attr
);
7362 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
7364 #ifndef CONFIG_CPUSETS
7366 * Add online and remove offline CPUs from the scheduler domains.
7367 * When cpusets are enabled they take over this function.
7369 static int update_sched_domains(struct notifier_block
*nfb
,
7370 unsigned long action
, void *hcpu
)
7374 case CPU_ONLINE_FROZEN
:
7375 case CPU_DOWN_PREPARE
:
7376 case CPU_DOWN_PREPARE_FROZEN
:
7377 case CPU_DOWN_FAILED
:
7378 case CPU_DOWN_FAILED_FROZEN
:
7379 partition_sched_domains(1, NULL
, NULL
);
7388 static int update_runtime(struct notifier_block
*nfb
,
7389 unsigned long action
, void *hcpu
)
7391 int cpu
= (int)(long)hcpu
;
7394 case CPU_DOWN_PREPARE
:
7395 case CPU_DOWN_PREPARE_FROZEN
:
7396 disable_runtime(cpu_rq(cpu
));
7399 case CPU_DOWN_FAILED
:
7400 case CPU_DOWN_FAILED_FROZEN
:
7402 case CPU_ONLINE_FROZEN
:
7403 enable_runtime(cpu_rq(cpu
));
7411 void __init
sched_init_smp(void)
7413 cpumask_var_t non_isolated_cpus
;
7415 alloc_cpumask_var(&non_isolated_cpus
, GFP_KERNEL
);
7416 alloc_cpumask_var(&fallback_doms
, GFP_KERNEL
);
7418 #if defined(CONFIG_NUMA)
7419 sched_group_nodes_bycpu
= kzalloc(nr_cpu_ids
* sizeof(void **),
7421 BUG_ON(sched_group_nodes_bycpu
== NULL
);
7424 mutex_lock(&sched_domains_mutex
);
7425 arch_init_sched_domains(cpu_active_mask
);
7426 cpumask_andnot(non_isolated_cpus
, cpu_possible_mask
, cpu_isolated_map
);
7427 if (cpumask_empty(non_isolated_cpus
))
7428 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus
);
7429 mutex_unlock(&sched_domains_mutex
);
7432 #ifndef CONFIG_CPUSETS
7433 /* XXX: Theoretical race here - CPU may be hotplugged now */
7434 hotcpu_notifier(update_sched_domains
, 0);
7437 /* RT runtime code needs to handle some hotplug events */
7438 hotcpu_notifier(update_runtime
, 0);
7442 /* Move init over to a non-isolated CPU */
7443 if (set_cpus_allowed_ptr(current
, non_isolated_cpus
) < 0)
7445 sched_init_granularity();
7446 free_cpumask_var(non_isolated_cpus
);
7448 init_sched_rt_class();
7451 void __init
sched_init_smp(void)
7453 sched_init_granularity();
7455 #endif /* CONFIG_SMP */
7457 const_debug
unsigned int sysctl_timer_migration
= 1;
7459 int in_sched_functions(unsigned long addr
)
7461 return in_lock_functions(addr
) ||
7462 (addr
>= (unsigned long)__sched_text_start
7463 && addr
< (unsigned long)__sched_text_end
);
7466 static void init_cfs_rq(struct cfs_rq
*cfs_rq
, struct rq
*rq
)
7468 cfs_rq
->tasks_timeline
= RB_ROOT
;
7469 INIT_LIST_HEAD(&cfs_rq
->tasks
);
7470 #ifdef CONFIG_FAIR_GROUP_SCHED
7473 cfs_rq
->min_vruntime
= (u64
)(-(1LL << 20));
7476 static void init_rt_rq(struct rt_rq
*rt_rq
, struct rq
*rq
)
7478 struct rt_prio_array
*array
;
7481 array
= &rt_rq
->active
;
7482 for (i
= 0; i
< MAX_RT_PRIO
; i
++) {
7483 INIT_LIST_HEAD(array
->queue
+ i
);
7484 __clear_bit(i
, array
->bitmap
);
7486 /* delimiter for bitsearch: */
7487 __set_bit(MAX_RT_PRIO
, array
->bitmap
);
7489 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
7490 rt_rq
->highest_prio
.curr
= MAX_RT_PRIO
;
7492 rt_rq
->highest_prio
.next
= MAX_RT_PRIO
;
7496 rt_rq
->rt_nr_migratory
= 0;
7497 rt_rq
->overloaded
= 0;
7498 plist_head_init_raw(&rt_rq
->pushable_tasks
, &rq
->lock
);
7502 rt_rq
->rt_throttled
= 0;
7503 rt_rq
->rt_runtime
= 0;
7504 raw_spin_lock_init(&rt_rq
->rt_runtime_lock
);
7506 #ifdef CONFIG_RT_GROUP_SCHED
7507 rt_rq
->rt_nr_boosted
= 0;
7512 #ifdef CONFIG_FAIR_GROUP_SCHED
7513 static void init_tg_cfs_entry(struct task_group
*tg
, struct cfs_rq
*cfs_rq
,
7514 struct sched_entity
*se
, int cpu
, int add
,
7515 struct sched_entity
*parent
)
7517 struct rq
*rq
= cpu_rq(cpu
);
7518 tg
->cfs_rq
[cpu
] = cfs_rq
;
7519 init_cfs_rq(cfs_rq
, rq
);
7522 list_add(&cfs_rq
->leaf_cfs_rq_list
, &rq
->leaf_cfs_rq_list
);
7525 /* se could be NULL for init_task_group */
7530 se
->cfs_rq
= &rq
->cfs
;
7532 se
->cfs_rq
= parent
->my_q
;
7535 se
->load
.weight
= tg
->shares
;
7536 se
->load
.inv_weight
= 0;
7537 se
->parent
= parent
;
7541 #ifdef CONFIG_RT_GROUP_SCHED
7542 static void init_tg_rt_entry(struct task_group
*tg
, struct rt_rq
*rt_rq
,
7543 struct sched_rt_entity
*rt_se
, int cpu
, int add
,
7544 struct sched_rt_entity
*parent
)
7546 struct rq
*rq
= cpu_rq(cpu
);
7548 tg
->rt_rq
[cpu
] = rt_rq
;
7549 init_rt_rq(rt_rq
, rq
);
7551 rt_rq
->rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
7553 list_add(&rt_rq
->leaf_rt_rq_list
, &rq
->leaf_rt_rq_list
);
7555 tg
->rt_se
[cpu
] = rt_se
;
7560 rt_se
->rt_rq
= &rq
->rt
;
7562 rt_se
->rt_rq
= parent
->my_q
;
7564 rt_se
->my_q
= rt_rq
;
7565 rt_se
->parent
= parent
;
7566 INIT_LIST_HEAD(&rt_se
->run_list
);
7570 void __init
sched_init(void)
7573 unsigned long alloc_size
= 0, ptr
;
7575 #ifdef CONFIG_FAIR_GROUP_SCHED
7576 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7578 #ifdef CONFIG_RT_GROUP_SCHED
7579 alloc_size
+= 2 * nr_cpu_ids
* sizeof(void **);
7581 #ifdef CONFIG_CPUMASK_OFFSTACK
7582 alloc_size
+= num_possible_cpus() * cpumask_size();
7585 ptr
= (unsigned long)kzalloc(alloc_size
, GFP_NOWAIT
);
7587 #ifdef CONFIG_FAIR_GROUP_SCHED
7588 init_task_group
.se
= (struct sched_entity
**)ptr
;
7589 ptr
+= nr_cpu_ids
* sizeof(void **);
7591 init_task_group
.cfs_rq
= (struct cfs_rq
**)ptr
;
7592 ptr
+= nr_cpu_ids
* sizeof(void **);
7594 #endif /* CONFIG_FAIR_GROUP_SCHED */
7595 #ifdef CONFIG_RT_GROUP_SCHED
7596 init_task_group
.rt_se
= (struct sched_rt_entity
**)ptr
;
7597 ptr
+= nr_cpu_ids
* sizeof(void **);
7599 init_task_group
.rt_rq
= (struct rt_rq
**)ptr
;
7600 ptr
+= nr_cpu_ids
* sizeof(void **);
7602 #endif /* CONFIG_RT_GROUP_SCHED */
7603 #ifdef CONFIG_CPUMASK_OFFSTACK
7604 for_each_possible_cpu(i
) {
7605 per_cpu(load_balance_tmpmask
, i
) = (void *)ptr
;
7606 ptr
+= cpumask_size();
7608 #endif /* CONFIG_CPUMASK_OFFSTACK */
7612 init_defrootdomain();
7615 init_rt_bandwidth(&def_rt_bandwidth
,
7616 global_rt_period(), global_rt_runtime());
7618 #ifdef CONFIG_RT_GROUP_SCHED
7619 init_rt_bandwidth(&init_task_group
.rt_bandwidth
,
7620 global_rt_period(), global_rt_runtime());
7621 #endif /* CONFIG_RT_GROUP_SCHED */
7623 #ifdef CONFIG_CGROUP_SCHED
7624 list_add(&init_task_group
.list
, &task_groups
);
7625 INIT_LIST_HEAD(&init_task_group
.children
);
7627 #endif /* CONFIG_CGROUP_SCHED */
7629 #if defined CONFIG_FAIR_GROUP_SCHED && defined CONFIG_SMP
7630 update_shares_data
= __alloc_percpu(nr_cpu_ids
* sizeof(unsigned long),
7631 __alignof__(unsigned long));
7633 for_each_possible_cpu(i
) {
7637 raw_spin_lock_init(&rq
->lock
);
7639 rq
->calc_load_active
= 0;
7640 rq
->calc_load_update
= jiffies
+ LOAD_FREQ
;
7641 init_cfs_rq(&rq
->cfs
, rq
);
7642 init_rt_rq(&rq
->rt
, rq
);
7643 #ifdef CONFIG_FAIR_GROUP_SCHED
7644 init_task_group
.shares
= init_task_group_load
;
7645 INIT_LIST_HEAD(&rq
->leaf_cfs_rq_list
);
7646 #ifdef CONFIG_CGROUP_SCHED
7648 * How much cpu bandwidth does init_task_group get?
7650 * In case of task-groups formed thr' the cgroup filesystem, it
7651 * gets 100% of the cpu resources in the system. This overall
7652 * system cpu resource is divided among the tasks of
7653 * init_task_group and its child task-groups in a fair manner,
7654 * based on each entity's (task or task-group's) weight
7655 * (se->load.weight).
7657 * In other words, if init_task_group has 10 tasks of weight
7658 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7659 * then A0's share of the cpu resource is:
7661 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
7663 * We achieve this by letting init_task_group's tasks sit
7664 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
7666 init_tg_cfs_entry(&init_task_group
, &rq
->cfs
, NULL
, i
, 1, NULL
);
7668 #endif /* CONFIG_FAIR_GROUP_SCHED */
7670 rq
->rt
.rt_runtime
= def_rt_bandwidth
.rt_runtime
;
7671 #ifdef CONFIG_RT_GROUP_SCHED
7672 INIT_LIST_HEAD(&rq
->leaf_rt_rq_list
);
7673 #ifdef CONFIG_CGROUP_SCHED
7674 init_tg_rt_entry(&init_task_group
, &rq
->rt
, NULL
, i
, 1, NULL
);
7678 for (j
= 0; j
< CPU_LOAD_IDX_MAX
; j
++)
7679 rq
->cpu_load
[j
] = 0;
7683 rq
->post_schedule
= 0;
7684 rq
->active_balance
= 0;
7685 rq
->next_balance
= jiffies
;
7689 rq
->migration_thread
= NULL
;
7691 rq
->avg_idle
= 2*sysctl_sched_migration_cost
;
7692 INIT_LIST_HEAD(&rq
->migration_queue
);
7693 rq_attach_root(rq
, &def_root_domain
);
7696 atomic_set(&rq
->nr_iowait
, 0);
7699 set_load_weight(&init_task
);
7701 #ifdef CONFIG_PREEMPT_NOTIFIERS
7702 INIT_HLIST_HEAD(&init_task
.preempt_notifiers
);
7706 open_softirq(SCHED_SOFTIRQ
, run_rebalance_domains
);
7709 #ifdef CONFIG_RT_MUTEXES
7710 plist_head_init_raw(&init_task
.pi_waiters
, &init_task
.pi_lock
);
7714 * The boot idle thread does lazy MMU switching as well:
7716 atomic_inc(&init_mm
.mm_count
);
7717 enter_lazy_tlb(&init_mm
, current
);
7720 * Make us the idle thread. Technically, schedule() should not be
7721 * called from this thread, however somewhere below it might be,
7722 * but because we are the idle thread, we just pick up running again
7723 * when this runqueue becomes "idle".
7725 init_idle(current
, smp_processor_id());
7727 calc_load_update
= jiffies
+ LOAD_FREQ
;
7730 * During early bootup we pretend to be a normal task:
7732 current
->sched_class
= &fair_sched_class
;
7734 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
7735 zalloc_cpumask_var(&nohz_cpu_mask
, GFP_NOWAIT
);
7738 zalloc_cpumask_var(&nohz
.cpu_mask
, GFP_NOWAIT
);
7739 alloc_cpumask_var(&nohz
.ilb_grp_nohz_mask
, GFP_NOWAIT
);
7741 /* May be allocated at isolcpus cmdline parse time */
7742 if (cpu_isolated_map
== NULL
)
7743 zalloc_cpumask_var(&cpu_isolated_map
, GFP_NOWAIT
);
7748 scheduler_running
= 1;
7751 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
7752 static inline int preempt_count_equals(int preempt_offset
)
7754 int nested
= (preempt_count() & ~PREEMPT_ACTIVE
) + rcu_preempt_depth();
7756 return (nested
== PREEMPT_INATOMIC_BASE
+ preempt_offset
);
7759 void __might_sleep(const char *file
, int line
, int preempt_offset
)
7762 static unsigned long prev_jiffy
; /* ratelimiting */
7764 if ((preempt_count_equals(preempt_offset
) && !irqs_disabled()) ||
7765 system_state
!= SYSTEM_RUNNING
|| oops_in_progress
)
7767 if (time_before(jiffies
, prev_jiffy
+ HZ
) && prev_jiffy
)
7769 prev_jiffy
= jiffies
;
7772 "BUG: sleeping function called from invalid context at %s:%d\n",
7775 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7776 in_atomic(), irqs_disabled(),
7777 current
->pid
, current
->comm
);
7779 debug_show_held_locks(current
);
7780 if (irqs_disabled())
7781 print_irqtrace_events(current
);
7785 EXPORT_SYMBOL(__might_sleep
);
7788 #ifdef CONFIG_MAGIC_SYSRQ
7789 static void normalize_task(struct rq
*rq
, struct task_struct
*p
)
7793 on_rq
= p
->se
.on_rq
;
7795 deactivate_task(rq
, p
, 0);
7796 __setscheduler(rq
, p
, SCHED_NORMAL
, 0);
7798 activate_task(rq
, p
, 0);
7799 resched_task(rq
->curr
);
7803 void normalize_rt_tasks(void)
7805 struct task_struct
*g
, *p
;
7806 unsigned long flags
;
7809 read_lock_irqsave(&tasklist_lock
, flags
);
7810 do_each_thread(g
, p
) {
7812 * Only normalize user tasks:
7817 p
->se
.exec_start
= 0;
7818 #ifdef CONFIG_SCHEDSTATS
7819 p
->se
.statistics
.wait_start
= 0;
7820 p
->se
.statistics
.sleep_start
= 0;
7821 p
->se
.statistics
.block_start
= 0;
7826 * Renice negative nice level userspace
7829 if (TASK_NICE(p
) < 0 && p
->mm
)
7830 set_user_nice(p
, 0);
7834 raw_spin_lock(&p
->pi_lock
);
7835 rq
= __task_rq_lock(p
);
7837 normalize_task(rq
, p
);
7839 __task_rq_unlock(rq
);
7840 raw_spin_unlock(&p
->pi_lock
);
7841 } while_each_thread(g
, p
);
7843 read_unlock_irqrestore(&tasklist_lock
, flags
);
7846 #endif /* CONFIG_MAGIC_SYSRQ */
7850 * These functions are only useful for the IA64 MCA handling.
7852 * They can only be called when the whole system has been
7853 * stopped - every CPU needs to be quiescent, and no scheduling
7854 * activity can take place. Using them for anything else would
7855 * be a serious bug, and as a result, they aren't even visible
7856 * under any other configuration.
7860 * curr_task - return the current task for a given cpu.
7861 * @cpu: the processor in question.
7863 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7865 struct task_struct
*curr_task(int cpu
)
7867 return cpu_curr(cpu
);
7871 * set_curr_task - set the current task for a given cpu.
7872 * @cpu: the processor in question.
7873 * @p: the task pointer to set.
7875 * Description: This function must only be used when non-maskable interrupts
7876 * are serviced on a separate stack. It allows the architecture to switch the
7877 * notion of the current task on a cpu in a non-blocking manner. This function
7878 * must be called with all CPU's synchronized, and interrupts disabled, the
7879 * and caller must save the original value of the current task (see
7880 * curr_task() above) and restore that value before reenabling interrupts and
7881 * re-starting the system.
7883 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7885 void set_curr_task(int cpu
, struct task_struct
*p
)
7892 #ifdef CONFIG_FAIR_GROUP_SCHED
7893 static void free_fair_sched_group(struct task_group
*tg
)
7897 for_each_possible_cpu(i
) {
7899 kfree(tg
->cfs_rq
[i
]);
7909 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
7911 struct cfs_rq
*cfs_rq
;
7912 struct sched_entity
*se
;
7916 tg
->cfs_rq
= kzalloc(sizeof(cfs_rq
) * nr_cpu_ids
, GFP_KERNEL
);
7919 tg
->se
= kzalloc(sizeof(se
) * nr_cpu_ids
, GFP_KERNEL
);
7923 tg
->shares
= NICE_0_LOAD
;
7925 for_each_possible_cpu(i
) {
7928 cfs_rq
= kzalloc_node(sizeof(struct cfs_rq
),
7929 GFP_KERNEL
, cpu_to_node(i
));
7933 se
= kzalloc_node(sizeof(struct sched_entity
),
7934 GFP_KERNEL
, cpu_to_node(i
));
7938 init_tg_cfs_entry(tg
, cfs_rq
, se
, i
, 0, parent
->se
[i
]);
7949 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
7951 list_add_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
,
7952 &cpu_rq(cpu
)->leaf_cfs_rq_list
);
7955 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
7957 list_del_rcu(&tg
->cfs_rq
[cpu
]->leaf_cfs_rq_list
);
7959 #else /* !CONFG_FAIR_GROUP_SCHED */
7960 static inline void free_fair_sched_group(struct task_group
*tg
)
7965 int alloc_fair_sched_group(struct task_group
*tg
, struct task_group
*parent
)
7970 static inline void register_fair_sched_group(struct task_group
*tg
, int cpu
)
7974 static inline void unregister_fair_sched_group(struct task_group
*tg
, int cpu
)
7977 #endif /* CONFIG_FAIR_GROUP_SCHED */
7979 #ifdef CONFIG_RT_GROUP_SCHED
7980 static void free_rt_sched_group(struct task_group
*tg
)
7984 destroy_rt_bandwidth(&tg
->rt_bandwidth
);
7986 for_each_possible_cpu(i
) {
7988 kfree(tg
->rt_rq
[i
]);
7990 kfree(tg
->rt_se
[i
]);
7998 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8000 struct rt_rq
*rt_rq
;
8001 struct sched_rt_entity
*rt_se
;
8005 tg
->rt_rq
= kzalloc(sizeof(rt_rq
) * nr_cpu_ids
, GFP_KERNEL
);
8008 tg
->rt_se
= kzalloc(sizeof(rt_se
) * nr_cpu_ids
, GFP_KERNEL
);
8012 init_rt_bandwidth(&tg
->rt_bandwidth
,
8013 ktime_to_ns(def_rt_bandwidth
.rt_period
), 0);
8015 for_each_possible_cpu(i
) {
8018 rt_rq
= kzalloc_node(sizeof(struct rt_rq
),
8019 GFP_KERNEL
, cpu_to_node(i
));
8023 rt_se
= kzalloc_node(sizeof(struct sched_rt_entity
),
8024 GFP_KERNEL
, cpu_to_node(i
));
8028 init_tg_rt_entry(tg
, rt_rq
, rt_se
, i
, 0, parent
->rt_se
[i
]);
8039 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8041 list_add_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
,
8042 &cpu_rq(cpu
)->leaf_rt_rq_list
);
8045 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8047 list_del_rcu(&tg
->rt_rq
[cpu
]->leaf_rt_rq_list
);
8049 #else /* !CONFIG_RT_GROUP_SCHED */
8050 static inline void free_rt_sched_group(struct task_group
*tg
)
8055 int alloc_rt_sched_group(struct task_group
*tg
, struct task_group
*parent
)
8060 static inline void register_rt_sched_group(struct task_group
*tg
, int cpu
)
8064 static inline void unregister_rt_sched_group(struct task_group
*tg
, int cpu
)
8067 #endif /* CONFIG_RT_GROUP_SCHED */
8069 #ifdef CONFIG_CGROUP_SCHED
8070 static void free_sched_group(struct task_group
*tg
)
8072 free_fair_sched_group(tg
);
8073 free_rt_sched_group(tg
);
8077 /* allocate runqueue etc for a new task group */
8078 struct task_group
*sched_create_group(struct task_group
*parent
)
8080 struct task_group
*tg
;
8081 unsigned long flags
;
8084 tg
= kzalloc(sizeof(*tg
), GFP_KERNEL
);
8086 return ERR_PTR(-ENOMEM
);
8088 if (!alloc_fair_sched_group(tg
, parent
))
8091 if (!alloc_rt_sched_group(tg
, parent
))
8094 spin_lock_irqsave(&task_group_lock
, flags
);
8095 for_each_possible_cpu(i
) {
8096 register_fair_sched_group(tg
, i
);
8097 register_rt_sched_group(tg
, i
);
8099 list_add_rcu(&tg
->list
, &task_groups
);
8101 WARN_ON(!parent
); /* root should already exist */
8103 tg
->parent
= parent
;
8104 INIT_LIST_HEAD(&tg
->children
);
8105 list_add_rcu(&tg
->siblings
, &parent
->children
);
8106 spin_unlock_irqrestore(&task_group_lock
, flags
);
8111 free_sched_group(tg
);
8112 return ERR_PTR(-ENOMEM
);
8115 /* rcu callback to free various structures associated with a task group */
8116 static void free_sched_group_rcu(struct rcu_head
*rhp
)
8118 /* now it should be safe to free those cfs_rqs */
8119 free_sched_group(container_of(rhp
, struct task_group
, rcu
));
8122 /* Destroy runqueue etc associated with a task group */
8123 void sched_destroy_group(struct task_group
*tg
)
8125 unsigned long flags
;
8128 spin_lock_irqsave(&task_group_lock
, flags
);
8129 for_each_possible_cpu(i
) {
8130 unregister_fair_sched_group(tg
, i
);
8131 unregister_rt_sched_group(tg
, i
);
8133 list_del_rcu(&tg
->list
);
8134 list_del_rcu(&tg
->siblings
);
8135 spin_unlock_irqrestore(&task_group_lock
, flags
);
8137 /* wait for possible concurrent references to cfs_rqs complete */
8138 call_rcu(&tg
->rcu
, free_sched_group_rcu
);
8141 /* change task's runqueue when it moves between groups.
8142 * The caller of this function should have put the task in its new group
8143 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
8144 * reflect its new group.
8146 void sched_move_task(struct task_struct
*tsk
)
8149 unsigned long flags
;
8152 rq
= task_rq_lock(tsk
, &flags
);
8154 running
= task_current(rq
, tsk
);
8155 on_rq
= tsk
->se
.on_rq
;
8158 dequeue_task(rq
, tsk
, 0);
8159 if (unlikely(running
))
8160 tsk
->sched_class
->put_prev_task(rq
, tsk
);
8162 set_task_rq(tsk
, task_cpu(tsk
));
8164 #ifdef CONFIG_FAIR_GROUP_SCHED
8165 if (tsk
->sched_class
->moved_group
)
8166 tsk
->sched_class
->moved_group(tsk
, on_rq
);
8169 if (unlikely(running
))
8170 tsk
->sched_class
->set_curr_task(rq
);
8172 enqueue_task(rq
, tsk
, 0, false);
8174 task_rq_unlock(rq
, &flags
);
8176 #endif /* CONFIG_CGROUP_SCHED */
8178 #ifdef CONFIG_FAIR_GROUP_SCHED
8179 static void __set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8181 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8186 dequeue_entity(cfs_rq
, se
, 0);
8188 se
->load
.weight
= shares
;
8189 se
->load
.inv_weight
= 0;
8192 enqueue_entity(cfs_rq
, se
, 0);
8195 static void set_se_shares(struct sched_entity
*se
, unsigned long shares
)
8197 struct cfs_rq
*cfs_rq
= se
->cfs_rq
;
8198 struct rq
*rq
= cfs_rq
->rq
;
8199 unsigned long flags
;
8201 raw_spin_lock_irqsave(&rq
->lock
, flags
);
8202 __set_se_shares(se
, shares
);
8203 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
8206 static DEFINE_MUTEX(shares_mutex
);
8208 int sched_group_set_shares(struct task_group
*tg
, unsigned long shares
)
8211 unsigned long flags
;
8214 * We can't change the weight of the root cgroup.
8219 if (shares
< MIN_SHARES
)
8220 shares
= MIN_SHARES
;
8221 else if (shares
> MAX_SHARES
)
8222 shares
= MAX_SHARES
;
8224 mutex_lock(&shares_mutex
);
8225 if (tg
->shares
== shares
)
8228 spin_lock_irqsave(&task_group_lock
, flags
);
8229 for_each_possible_cpu(i
)
8230 unregister_fair_sched_group(tg
, i
);
8231 list_del_rcu(&tg
->siblings
);
8232 spin_unlock_irqrestore(&task_group_lock
, flags
);
8234 /* wait for any ongoing reference to this group to finish */
8235 synchronize_sched();
8238 * Now we are free to modify the group's share on each cpu
8239 * w/o tripping rebalance_share or load_balance_fair.
8241 tg
->shares
= shares
;
8242 for_each_possible_cpu(i
) {
8246 cfs_rq_set_shares(tg
->cfs_rq
[i
], 0);
8247 set_se_shares(tg
->se
[i
], shares
);
8251 * Enable load balance activity on this group, by inserting it back on
8252 * each cpu's rq->leaf_cfs_rq_list.
8254 spin_lock_irqsave(&task_group_lock
, flags
);
8255 for_each_possible_cpu(i
)
8256 register_fair_sched_group(tg
, i
);
8257 list_add_rcu(&tg
->siblings
, &tg
->parent
->children
);
8258 spin_unlock_irqrestore(&task_group_lock
, flags
);
8260 mutex_unlock(&shares_mutex
);
8264 unsigned long sched_group_shares(struct task_group
*tg
)
8270 #ifdef CONFIG_RT_GROUP_SCHED
8272 * Ensure that the real time constraints are schedulable.
8274 static DEFINE_MUTEX(rt_constraints_mutex
);
8276 static unsigned long to_ratio(u64 period
, u64 runtime
)
8278 if (runtime
== RUNTIME_INF
)
8281 return div64_u64(runtime
<< 20, period
);
8284 /* Must be called with tasklist_lock held */
8285 static inline int tg_has_rt_tasks(struct task_group
*tg
)
8287 struct task_struct
*g
, *p
;
8289 do_each_thread(g
, p
) {
8290 if (rt_task(p
) && rt_rq_of_se(&p
->rt
)->tg
== tg
)
8292 } while_each_thread(g
, p
);
8297 struct rt_schedulable_data
{
8298 struct task_group
*tg
;
8303 static int tg_schedulable(struct task_group
*tg
, void *data
)
8305 struct rt_schedulable_data
*d
= data
;
8306 struct task_group
*child
;
8307 unsigned long total
, sum
= 0;
8308 u64 period
, runtime
;
8310 period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8311 runtime
= tg
->rt_bandwidth
.rt_runtime
;
8314 period
= d
->rt_period
;
8315 runtime
= d
->rt_runtime
;
8319 * Cannot have more runtime than the period.
8321 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8325 * Ensure we don't starve existing RT tasks.
8327 if (rt_bandwidth_enabled() && !runtime
&& tg_has_rt_tasks(tg
))
8330 total
= to_ratio(period
, runtime
);
8333 * Nobody can have more than the global setting allows.
8335 if (total
> to_ratio(global_rt_period(), global_rt_runtime()))
8339 * The sum of our children's runtime should not exceed our own.
8341 list_for_each_entry_rcu(child
, &tg
->children
, siblings
) {
8342 period
= ktime_to_ns(child
->rt_bandwidth
.rt_period
);
8343 runtime
= child
->rt_bandwidth
.rt_runtime
;
8345 if (child
== d
->tg
) {
8346 period
= d
->rt_period
;
8347 runtime
= d
->rt_runtime
;
8350 sum
+= to_ratio(period
, runtime
);
8359 static int __rt_schedulable(struct task_group
*tg
, u64 period
, u64 runtime
)
8361 struct rt_schedulable_data data
= {
8363 .rt_period
= period
,
8364 .rt_runtime
= runtime
,
8367 return walk_tg_tree(tg_schedulable
, tg_nop
, &data
);
8370 static int tg_set_bandwidth(struct task_group
*tg
,
8371 u64 rt_period
, u64 rt_runtime
)
8375 mutex_lock(&rt_constraints_mutex
);
8376 read_lock(&tasklist_lock
);
8377 err
= __rt_schedulable(tg
, rt_period
, rt_runtime
);
8381 raw_spin_lock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8382 tg
->rt_bandwidth
.rt_period
= ns_to_ktime(rt_period
);
8383 tg
->rt_bandwidth
.rt_runtime
= rt_runtime
;
8385 for_each_possible_cpu(i
) {
8386 struct rt_rq
*rt_rq
= tg
->rt_rq
[i
];
8388 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8389 rt_rq
->rt_runtime
= rt_runtime
;
8390 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8392 raw_spin_unlock_irq(&tg
->rt_bandwidth
.rt_runtime_lock
);
8394 read_unlock(&tasklist_lock
);
8395 mutex_unlock(&rt_constraints_mutex
);
8400 int sched_group_set_rt_runtime(struct task_group
*tg
, long rt_runtime_us
)
8402 u64 rt_runtime
, rt_period
;
8404 rt_period
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8405 rt_runtime
= (u64
)rt_runtime_us
* NSEC_PER_USEC
;
8406 if (rt_runtime_us
< 0)
8407 rt_runtime
= RUNTIME_INF
;
8409 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8412 long sched_group_rt_runtime(struct task_group
*tg
)
8416 if (tg
->rt_bandwidth
.rt_runtime
== RUNTIME_INF
)
8419 rt_runtime_us
= tg
->rt_bandwidth
.rt_runtime
;
8420 do_div(rt_runtime_us
, NSEC_PER_USEC
);
8421 return rt_runtime_us
;
8424 int sched_group_set_rt_period(struct task_group
*tg
, long rt_period_us
)
8426 u64 rt_runtime
, rt_period
;
8428 rt_period
= (u64
)rt_period_us
* NSEC_PER_USEC
;
8429 rt_runtime
= tg
->rt_bandwidth
.rt_runtime
;
8434 return tg_set_bandwidth(tg
, rt_period
, rt_runtime
);
8437 long sched_group_rt_period(struct task_group
*tg
)
8441 rt_period_us
= ktime_to_ns(tg
->rt_bandwidth
.rt_period
);
8442 do_div(rt_period_us
, NSEC_PER_USEC
);
8443 return rt_period_us
;
8446 static int sched_rt_global_constraints(void)
8448 u64 runtime
, period
;
8451 if (sysctl_sched_rt_period
<= 0)
8454 runtime
= global_rt_runtime();
8455 period
= global_rt_period();
8458 * Sanity check on the sysctl variables.
8460 if (runtime
> period
&& runtime
!= RUNTIME_INF
)
8463 mutex_lock(&rt_constraints_mutex
);
8464 read_lock(&tasklist_lock
);
8465 ret
= __rt_schedulable(NULL
, 0, 0);
8466 read_unlock(&tasklist_lock
);
8467 mutex_unlock(&rt_constraints_mutex
);
8472 int sched_rt_can_attach(struct task_group
*tg
, struct task_struct
*tsk
)
8474 /* Don't accept realtime tasks when there is no way for them to run */
8475 if (rt_task(tsk
) && tg
->rt_bandwidth
.rt_runtime
== 0)
8481 #else /* !CONFIG_RT_GROUP_SCHED */
8482 static int sched_rt_global_constraints(void)
8484 unsigned long flags
;
8487 if (sysctl_sched_rt_period
<= 0)
8491 * There's always some RT tasks in the root group
8492 * -- migration, kstopmachine etc..
8494 if (sysctl_sched_rt_runtime
== 0)
8497 raw_spin_lock_irqsave(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8498 for_each_possible_cpu(i
) {
8499 struct rt_rq
*rt_rq
= &cpu_rq(i
)->rt
;
8501 raw_spin_lock(&rt_rq
->rt_runtime_lock
);
8502 rt_rq
->rt_runtime
= global_rt_runtime();
8503 raw_spin_unlock(&rt_rq
->rt_runtime_lock
);
8505 raw_spin_unlock_irqrestore(&def_rt_bandwidth
.rt_runtime_lock
, flags
);
8509 #endif /* CONFIG_RT_GROUP_SCHED */
8511 int sched_rt_handler(struct ctl_table
*table
, int write
,
8512 void __user
*buffer
, size_t *lenp
,
8516 int old_period
, old_runtime
;
8517 static DEFINE_MUTEX(mutex
);
8520 old_period
= sysctl_sched_rt_period
;
8521 old_runtime
= sysctl_sched_rt_runtime
;
8523 ret
= proc_dointvec(table
, write
, buffer
, lenp
, ppos
);
8525 if (!ret
&& write
) {
8526 ret
= sched_rt_global_constraints();
8528 sysctl_sched_rt_period
= old_period
;
8529 sysctl_sched_rt_runtime
= old_runtime
;
8531 def_rt_bandwidth
.rt_runtime
= global_rt_runtime();
8532 def_rt_bandwidth
.rt_period
=
8533 ns_to_ktime(global_rt_period());
8536 mutex_unlock(&mutex
);
8541 #ifdef CONFIG_CGROUP_SCHED
8543 /* return corresponding task_group object of a cgroup */
8544 static inline struct task_group
*cgroup_tg(struct cgroup
*cgrp
)
8546 return container_of(cgroup_subsys_state(cgrp
, cpu_cgroup_subsys_id
),
8547 struct task_group
, css
);
8550 static struct cgroup_subsys_state
*
8551 cpu_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8553 struct task_group
*tg
, *parent
;
8555 if (!cgrp
->parent
) {
8556 /* This is early initialization for the top cgroup */
8557 return &init_task_group
.css
;
8560 parent
= cgroup_tg(cgrp
->parent
);
8561 tg
= sched_create_group(parent
);
8563 return ERR_PTR(-ENOMEM
);
8569 cpu_cgroup_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8571 struct task_group
*tg
= cgroup_tg(cgrp
);
8573 sched_destroy_group(tg
);
8577 cpu_cgroup_can_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
8579 #ifdef CONFIG_RT_GROUP_SCHED
8580 if (!sched_rt_can_attach(cgroup_tg(cgrp
), tsk
))
8583 /* We don't support RT-tasks being in separate groups */
8584 if (tsk
->sched_class
!= &fair_sched_class
)
8591 cpu_cgroup_can_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8592 struct task_struct
*tsk
, bool threadgroup
)
8594 int retval
= cpu_cgroup_can_attach_task(cgrp
, tsk
);
8598 struct task_struct
*c
;
8600 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
8601 retval
= cpu_cgroup_can_attach_task(cgrp
, c
);
8613 cpu_cgroup_attach(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
,
8614 struct cgroup
*old_cont
, struct task_struct
*tsk
,
8617 sched_move_task(tsk
);
8619 struct task_struct
*c
;
8621 list_for_each_entry_rcu(c
, &tsk
->thread_group
, thread_group
) {
8628 #ifdef CONFIG_FAIR_GROUP_SCHED
8629 static int cpu_shares_write_u64(struct cgroup
*cgrp
, struct cftype
*cftype
,
8632 return sched_group_set_shares(cgroup_tg(cgrp
), shareval
);
8635 static u64
cpu_shares_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
)
8637 struct task_group
*tg
= cgroup_tg(cgrp
);
8639 return (u64
) tg
->shares
;
8641 #endif /* CONFIG_FAIR_GROUP_SCHED */
8643 #ifdef CONFIG_RT_GROUP_SCHED
8644 static int cpu_rt_runtime_write(struct cgroup
*cgrp
, struct cftype
*cft
,
8647 return sched_group_set_rt_runtime(cgroup_tg(cgrp
), val
);
8650 static s64
cpu_rt_runtime_read(struct cgroup
*cgrp
, struct cftype
*cft
)
8652 return sched_group_rt_runtime(cgroup_tg(cgrp
));
8655 static int cpu_rt_period_write_uint(struct cgroup
*cgrp
, struct cftype
*cftype
,
8658 return sched_group_set_rt_period(cgroup_tg(cgrp
), rt_period_us
);
8661 static u64
cpu_rt_period_read_uint(struct cgroup
*cgrp
, struct cftype
*cft
)
8663 return sched_group_rt_period(cgroup_tg(cgrp
));
8665 #endif /* CONFIG_RT_GROUP_SCHED */
8667 static struct cftype cpu_files
[] = {
8668 #ifdef CONFIG_FAIR_GROUP_SCHED
8671 .read_u64
= cpu_shares_read_u64
,
8672 .write_u64
= cpu_shares_write_u64
,
8675 #ifdef CONFIG_RT_GROUP_SCHED
8677 .name
= "rt_runtime_us",
8678 .read_s64
= cpu_rt_runtime_read
,
8679 .write_s64
= cpu_rt_runtime_write
,
8682 .name
= "rt_period_us",
8683 .read_u64
= cpu_rt_period_read_uint
,
8684 .write_u64
= cpu_rt_period_write_uint
,
8689 static int cpu_cgroup_populate(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
8691 return cgroup_add_files(cont
, ss
, cpu_files
, ARRAY_SIZE(cpu_files
));
8694 struct cgroup_subsys cpu_cgroup_subsys
= {
8696 .create
= cpu_cgroup_create
,
8697 .destroy
= cpu_cgroup_destroy
,
8698 .can_attach
= cpu_cgroup_can_attach
,
8699 .attach
= cpu_cgroup_attach
,
8700 .populate
= cpu_cgroup_populate
,
8701 .subsys_id
= cpu_cgroup_subsys_id
,
8705 #endif /* CONFIG_CGROUP_SCHED */
8707 #ifdef CONFIG_CGROUP_CPUACCT
8710 * CPU accounting code for task groups.
8712 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8713 * (balbir@in.ibm.com).
8716 /* track cpu usage of a group of tasks and its child groups */
8718 struct cgroup_subsys_state css
;
8719 /* cpuusage holds pointer to a u64-type object on every cpu */
8720 u64 __percpu
*cpuusage
;
8721 struct percpu_counter cpustat
[CPUACCT_STAT_NSTATS
];
8722 struct cpuacct
*parent
;
8725 struct cgroup_subsys cpuacct_subsys
;
8727 /* return cpu accounting group corresponding to this container */
8728 static inline struct cpuacct
*cgroup_ca(struct cgroup
*cgrp
)
8730 return container_of(cgroup_subsys_state(cgrp
, cpuacct_subsys_id
),
8731 struct cpuacct
, css
);
8734 /* return cpu accounting group to which this task belongs */
8735 static inline struct cpuacct
*task_ca(struct task_struct
*tsk
)
8737 return container_of(task_subsys_state(tsk
, cpuacct_subsys_id
),
8738 struct cpuacct
, css
);
8741 /* create a new cpu accounting group */
8742 static struct cgroup_subsys_state
*cpuacct_create(
8743 struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8745 struct cpuacct
*ca
= kzalloc(sizeof(*ca
), GFP_KERNEL
);
8751 ca
->cpuusage
= alloc_percpu(u64
);
8755 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
8756 if (percpu_counter_init(&ca
->cpustat
[i
], 0))
8757 goto out_free_counters
;
8760 ca
->parent
= cgroup_ca(cgrp
->parent
);
8766 percpu_counter_destroy(&ca
->cpustat
[i
]);
8767 free_percpu(ca
->cpuusage
);
8771 return ERR_PTR(-ENOMEM
);
8774 /* destroy an existing cpu accounting group */
8776 cpuacct_destroy(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8778 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8781 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++)
8782 percpu_counter_destroy(&ca
->cpustat
[i
]);
8783 free_percpu(ca
->cpuusage
);
8787 static u64
cpuacct_cpuusage_read(struct cpuacct
*ca
, int cpu
)
8789 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8792 #ifndef CONFIG_64BIT
8794 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8796 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
8798 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
8806 static void cpuacct_cpuusage_write(struct cpuacct
*ca
, int cpu
, u64 val
)
8808 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8810 #ifndef CONFIG_64BIT
8812 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8814 raw_spin_lock_irq(&cpu_rq(cpu
)->lock
);
8816 raw_spin_unlock_irq(&cpu_rq(cpu
)->lock
);
8822 /* return total cpu usage (in nanoseconds) of a group */
8823 static u64
cpuusage_read(struct cgroup
*cgrp
, struct cftype
*cft
)
8825 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8826 u64 totalcpuusage
= 0;
8829 for_each_present_cpu(i
)
8830 totalcpuusage
+= cpuacct_cpuusage_read(ca
, i
);
8832 return totalcpuusage
;
8835 static int cpuusage_write(struct cgroup
*cgrp
, struct cftype
*cftype
,
8838 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8847 for_each_present_cpu(i
)
8848 cpuacct_cpuusage_write(ca
, i
, 0);
8854 static int cpuacct_percpu_seq_read(struct cgroup
*cgroup
, struct cftype
*cft
,
8857 struct cpuacct
*ca
= cgroup_ca(cgroup
);
8861 for_each_present_cpu(i
) {
8862 percpu
= cpuacct_cpuusage_read(ca
, i
);
8863 seq_printf(m
, "%llu ", (unsigned long long) percpu
);
8865 seq_printf(m
, "\n");
8869 static const char *cpuacct_stat_desc
[] = {
8870 [CPUACCT_STAT_USER
] = "user",
8871 [CPUACCT_STAT_SYSTEM
] = "system",
8874 static int cpuacct_stats_show(struct cgroup
*cgrp
, struct cftype
*cft
,
8875 struct cgroup_map_cb
*cb
)
8877 struct cpuacct
*ca
= cgroup_ca(cgrp
);
8880 for (i
= 0; i
< CPUACCT_STAT_NSTATS
; i
++) {
8881 s64 val
= percpu_counter_read(&ca
->cpustat
[i
]);
8882 val
= cputime64_to_clock_t(val
);
8883 cb
->fill(cb
, cpuacct_stat_desc
[i
], val
);
8888 static struct cftype files
[] = {
8891 .read_u64
= cpuusage_read
,
8892 .write_u64
= cpuusage_write
,
8895 .name
= "usage_percpu",
8896 .read_seq_string
= cpuacct_percpu_seq_read
,
8900 .read_map
= cpuacct_stats_show
,
8904 static int cpuacct_populate(struct cgroup_subsys
*ss
, struct cgroup
*cgrp
)
8906 return cgroup_add_files(cgrp
, ss
, files
, ARRAY_SIZE(files
));
8910 * charge this task's execution time to its accounting group.
8912 * called with rq->lock held.
8914 static void cpuacct_charge(struct task_struct
*tsk
, u64 cputime
)
8919 if (unlikely(!cpuacct_subsys
.active
))
8922 cpu
= task_cpu(tsk
);
8928 for (; ca
; ca
= ca
->parent
) {
8929 u64
*cpuusage
= per_cpu_ptr(ca
->cpuusage
, cpu
);
8930 *cpuusage
+= cputime
;
8937 * When CONFIG_VIRT_CPU_ACCOUNTING is enabled one jiffy can be very large
8938 * in cputime_t units. As a result, cpuacct_update_stats calls
8939 * percpu_counter_add with values large enough to always overflow the
8940 * per cpu batch limit causing bad SMP scalability.
8942 * To fix this we scale percpu_counter_batch by cputime_one_jiffy so we
8943 * batch the same amount of time with CONFIG_VIRT_CPU_ACCOUNTING disabled
8944 * and enabled. We cap it at INT_MAX which is the largest allowed batch value.
8947 #define CPUACCT_BATCH \
8948 min_t(long, percpu_counter_batch * cputime_one_jiffy, INT_MAX)
8950 #define CPUACCT_BATCH 0
8954 * Charge the system/user time to the task's accounting group.
8956 static void cpuacct_update_stats(struct task_struct
*tsk
,
8957 enum cpuacct_stat_index idx
, cputime_t val
)
8960 int batch
= CPUACCT_BATCH
;
8962 if (unlikely(!cpuacct_subsys
.active
))
8969 __percpu_counter_add(&ca
->cpustat
[idx
], val
, batch
);
8975 struct cgroup_subsys cpuacct_subsys
= {
8977 .create
= cpuacct_create
,
8978 .destroy
= cpuacct_destroy
,
8979 .populate
= cpuacct_populate
,
8980 .subsys_id
= cpuacct_subsys_id
,
8982 #endif /* CONFIG_CGROUP_CPUACCT */
8986 int rcu_expedited_torture_stats(char *page
)
8990 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats
);
8992 void synchronize_sched_expedited(void)
8995 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
8997 #else /* #ifndef CONFIG_SMP */
8999 static DEFINE_PER_CPU(struct migration_req
, rcu_migration_req
);
9000 static DEFINE_MUTEX(rcu_sched_expedited_mutex
);
9002 #define RCU_EXPEDITED_STATE_POST -2
9003 #define RCU_EXPEDITED_STATE_IDLE -1
9005 static int rcu_expedited_state
= RCU_EXPEDITED_STATE_IDLE
;
9007 int rcu_expedited_torture_stats(char *page
)
9012 cnt
+= sprintf(&page
[cnt
], "state: %d /", rcu_expedited_state
);
9013 for_each_online_cpu(cpu
) {
9014 cnt
+= sprintf(&page
[cnt
], " %d:%d",
9015 cpu
, per_cpu(rcu_migration_req
, cpu
).dest_cpu
);
9017 cnt
+= sprintf(&page
[cnt
], "\n");
9020 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats
);
9022 static long synchronize_sched_expedited_count
;
9025 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
9026 * approach to force grace period to end quickly. This consumes
9027 * significant time on all CPUs, and is thus not recommended for
9028 * any sort of common-case code.
9030 * Note that it is illegal to call this function while holding any
9031 * lock that is acquired by a CPU-hotplug notifier. Failing to
9032 * observe this restriction will result in deadlock.
9034 void synchronize_sched_expedited(void)
9037 unsigned long flags
;
9038 bool need_full_sync
= 0;
9040 struct migration_req
*req
;
9044 smp_mb(); /* ensure prior mod happens before capturing snap. */
9045 snap
= ACCESS_ONCE(synchronize_sched_expedited_count
) + 1;
9047 while (!mutex_trylock(&rcu_sched_expedited_mutex
)) {
9049 if (trycount
++ < 10)
9050 udelay(trycount
* num_online_cpus());
9052 synchronize_sched();
9055 if (ACCESS_ONCE(synchronize_sched_expedited_count
) - snap
> 0) {
9056 smp_mb(); /* ensure test happens before caller kfree */
9061 rcu_expedited_state
= RCU_EXPEDITED_STATE_POST
;
9062 for_each_online_cpu(cpu
) {
9064 req
= &per_cpu(rcu_migration_req
, cpu
);
9065 init_completion(&req
->done
);
9067 req
->dest_cpu
= RCU_MIGRATION_NEED_QS
;
9068 raw_spin_lock_irqsave(&rq
->lock
, flags
);
9069 list_add(&req
->list
, &rq
->migration_queue
);
9070 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
9071 wake_up_process(rq
->migration_thread
);
9073 for_each_online_cpu(cpu
) {
9074 rcu_expedited_state
= cpu
;
9075 req
= &per_cpu(rcu_migration_req
, cpu
);
9077 wait_for_completion(&req
->done
);
9078 raw_spin_lock_irqsave(&rq
->lock
, flags
);
9079 if (unlikely(req
->dest_cpu
== RCU_MIGRATION_MUST_SYNC
))
9081 req
->dest_cpu
= RCU_MIGRATION_IDLE
;
9082 raw_spin_unlock_irqrestore(&rq
->lock
, flags
);
9084 rcu_expedited_state
= RCU_EXPEDITED_STATE_IDLE
;
9085 synchronize_sched_expedited_count
++;
9086 mutex_unlock(&rcu_sched_expedited_mutex
);
9089 synchronize_sched();
9091 EXPORT_SYMBOL_GPL(synchronize_sched_expedited
);
9093 #endif /* #else #ifndef CONFIG_SMP */