2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
5 * Right now, I am very wasteful with the buffers. I allocate memory
6 * pages and then divide them into 2K frame buffers. This way I know I
7 * have buffers large enough to hold one frame within one buffer descriptor.
8 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
9 * will be much more memory efficient and will easily handle lots of
12 * Much better multiple PHY support by Magnus Damm.
13 * Copyright (c) 2000 Ericsson Radio Systems AB.
15 * Support for FEC controller of ColdFire processors.
16 * Copyright (c) 2001-2005 Greg Ungerer (gerg@snapgear.com)
18 * Bug fixes and cleanup by Philippe De Muyter (phdm@macqel.be)
19 * Copyright (c) 2004-2006 Macq Electronique SA.
21 * Copyright (C) 2010 Freescale Semiconductor, Inc.
24 #include <linux/module.h>
25 #include <linux/kernel.h>
26 #include <linux/string.h>
27 #include <linux/ptrace.h>
28 #include <linux/errno.h>
29 #include <linux/ioport.h>
30 #include <linux/slab.h>
31 #include <linux/interrupt.h>
32 #include <linux/pci.h>
33 #include <linux/init.h>
34 #include <linux/delay.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/skbuff.h>
38 #include <linux/spinlock.h>
39 #include <linux/workqueue.h>
40 #include <linux/bitops.h>
42 #include <linux/irq.h>
43 #include <linux/clk.h>
44 #include <linux/platform_device.h>
45 #include <linux/phy.h>
46 #include <linux/fec.h>
48 #include <asm/cacheflush.h>
51 #include <asm/coldfire.h>
52 #include <asm/mcfsim.h>
57 #if defined(CONFIG_ARM)
58 #define FEC_ALIGNMENT 0xf
60 #define FEC_ALIGNMENT 0x3
63 #define DRIVER_NAME "fec"
65 /* Controller is ENET-MAC */
66 #define FEC_QUIRK_ENET_MAC (1 << 0)
67 /* Controller needs driver to swap frame */
68 #define FEC_QUIRK_SWAP_FRAME (1 << 1)
70 static struct platform_device_id fec_devtype
[] = {
76 .driver_data
= FEC_QUIRK_ENET_MAC
| FEC_QUIRK_SWAP_FRAME
,
81 static unsigned char macaddr
[ETH_ALEN
];
82 module_param_array(macaddr
, byte
, NULL
, 0);
83 MODULE_PARM_DESC(macaddr
, "FEC Ethernet MAC address");
85 #if defined(CONFIG_M5272)
87 * Some hardware gets it MAC address out of local flash memory.
88 * if this is non-zero then assume it is the address to get MAC from.
90 #if defined(CONFIG_NETtel)
91 #define FEC_FLASHMAC 0xf0006006
92 #elif defined(CONFIG_GILBARCONAP) || defined(CONFIG_SCALES)
93 #define FEC_FLASHMAC 0xf0006000
94 #elif defined(CONFIG_CANCam)
95 #define FEC_FLASHMAC 0xf0020000
96 #elif defined (CONFIG_M5272C3)
97 #define FEC_FLASHMAC (0xffe04000 + 4)
98 #elif defined(CONFIG_MOD5272)
99 #define FEC_FLASHMAC 0xffc0406b
101 #define FEC_FLASHMAC 0
103 #endif /* CONFIG_M5272 */
105 /* The number of Tx and Rx buffers. These are allocated from the page
106 * pool. The code may assume these are power of two, so it it best
107 * to keep them that size.
108 * We don't need to allocate pages for the transmitter. We just use
109 * the skbuffer directly.
111 #define FEC_ENET_RX_PAGES 8
112 #define FEC_ENET_RX_FRSIZE 2048
113 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
114 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
115 #define FEC_ENET_TX_FRSIZE 2048
116 #define FEC_ENET_TX_FRPPG (PAGE_SIZE / FEC_ENET_TX_FRSIZE)
117 #define TX_RING_SIZE 16 /* Must be power of two */
118 #define TX_RING_MOD_MASK 15 /* for this to work */
120 #if (((RX_RING_SIZE + TX_RING_SIZE) * 8) > PAGE_SIZE)
121 #error "FEC: descriptor ring size constants too large"
124 /* Interrupt events/masks. */
125 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
126 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
127 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
128 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
129 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
130 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
131 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
132 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
133 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
134 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
136 #define FEC_DEFAULT_IMASK (FEC_ENET_TXF | FEC_ENET_RXF | FEC_ENET_MII)
138 /* The FEC stores dest/src/type, data, and checksum for receive packets.
140 #define PKT_MAXBUF_SIZE 1518
141 #define PKT_MINBUF_SIZE 64
142 #define PKT_MAXBLR_SIZE 1520
146 * The 5270/5271/5280/5282/532x RX control register also contains maximum frame
147 * size bits. Other FEC hardware does not, so we need to take that into
148 * account when setting it.
150 #if defined(CONFIG_M523x) || defined(CONFIG_M527x) || defined(CONFIG_M528x) || \
151 defined(CONFIG_M520x) || defined(CONFIG_M532x) || defined(CONFIG_ARM)
152 #define OPT_FRAME_SIZE (PKT_MAXBUF_SIZE << 16)
154 #define OPT_FRAME_SIZE 0
157 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
158 * tx_bd_base always point to the base of the buffer descriptors. The
159 * cur_rx and cur_tx point to the currently available buffer.
160 * The dirty_tx tracks the current buffer that is being sent by the
161 * controller. The cur_tx and dirty_tx are equal under both completely
162 * empty and completely full conditions. The empty/ready indicator in
163 * the buffer descriptor determines the actual condition.
165 struct fec_enet_private
{
166 /* Hardware registers of the FEC device */
169 struct net_device
*netdev
;
173 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
174 unsigned char *tx_bounce
[TX_RING_SIZE
];
175 struct sk_buff
* tx_skbuff
[TX_RING_SIZE
];
176 struct sk_buff
* rx_skbuff
[RX_RING_SIZE
];
180 /* CPM dual port RAM relative addresses */
182 /* Address of Rx and Tx buffers */
183 struct bufdesc
*rx_bd_base
;
184 struct bufdesc
*tx_bd_base
;
185 /* The next free ring entry */
186 struct bufdesc
*cur_rx
, *cur_tx
;
187 /* The ring entries to be free()ed */
188 struct bufdesc
*dirty_tx
;
191 /* hold while accessing the HW like ringbuffer for tx/rx but not MAC */
194 struct platform_device
*pdev
;
198 /* Phylib and MDIO interface */
199 struct mii_bus
*mii_bus
;
200 struct phy_device
*phy_dev
;
203 phy_interface_t phy_interface
;
206 struct completion mdio_done
;
209 /* FEC MII MMFR bits definition */
210 #define FEC_MMFR_ST (1 << 30)
211 #define FEC_MMFR_OP_READ (2 << 28)
212 #define FEC_MMFR_OP_WRITE (1 << 28)
213 #define FEC_MMFR_PA(v) ((v & 0x1f) << 23)
214 #define FEC_MMFR_RA(v) ((v & 0x1f) << 18)
215 #define FEC_MMFR_TA (2 << 16)
216 #define FEC_MMFR_DATA(v) (v & 0xffff)
218 #define FEC_MII_TIMEOUT 1000 /* us */
220 /* Transmitter timeout */
221 #define TX_TIMEOUT (2 * HZ)
223 static void *swap_buffer(void *bufaddr
, int len
)
226 unsigned int *buf
= bufaddr
;
228 for (i
= 0; i
< (len
+ 3) / 4; i
++, buf
++)
229 *buf
= cpu_to_be32(*buf
);
235 fec_enet_start_xmit(struct sk_buff
*skb
, struct net_device
*ndev
)
237 struct fec_enet_private
*fep
= netdev_priv(ndev
);
238 const struct platform_device_id
*id_entry
=
239 platform_get_device_id(fep
->pdev
);
242 unsigned short status
;
246 /* Link is down or autonegotiation is in progress. */
247 return NETDEV_TX_BUSY
;
250 spin_lock_irqsave(&fep
->hw_lock
, flags
);
251 /* Fill in a Tx ring entry */
254 status
= bdp
->cbd_sc
;
256 if (status
& BD_ENET_TX_READY
) {
257 /* Ooops. All transmit buffers are full. Bail out.
258 * This should not happen, since ndev->tbusy should be set.
260 printk("%s: tx queue full!.\n", ndev
->name
);
261 spin_unlock_irqrestore(&fep
->hw_lock
, flags
);
262 return NETDEV_TX_BUSY
;
265 /* Clear all of the status flags */
266 status
&= ~BD_ENET_TX_STATS
;
268 /* Set buffer length and buffer pointer */
270 bdp
->cbd_datlen
= skb
->len
;
273 * On some FEC implementations data must be aligned on
274 * 4-byte boundaries. Use bounce buffers to copy data
275 * and get it aligned. Ugh.
277 if (((unsigned long) bufaddr
) & FEC_ALIGNMENT
) {
279 index
= bdp
- fep
->tx_bd_base
;
280 memcpy(fep
->tx_bounce
[index
], skb
->data
, skb
->len
);
281 bufaddr
= fep
->tx_bounce
[index
];
285 * Some design made an incorrect assumption on endian mode of
286 * the system that it's running on. As the result, driver has to
287 * swap every frame going to and coming from the controller.
289 if (id_entry
->driver_data
& FEC_QUIRK_SWAP_FRAME
)
290 swap_buffer(bufaddr
, skb
->len
);
292 /* Save skb pointer */
293 fep
->tx_skbuff
[fep
->skb_cur
] = skb
;
295 ndev
->stats
.tx_bytes
+= skb
->len
;
296 fep
->skb_cur
= (fep
->skb_cur
+1) & TX_RING_MOD_MASK
;
298 /* Push the data cache so the CPM does not get stale memory
301 bdp
->cbd_bufaddr
= dma_map_single(&fep
->pdev
->dev
, bufaddr
,
302 FEC_ENET_TX_FRSIZE
, DMA_TO_DEVICE
);
304 /* Send it on its way. Tell FEC it's ready, interrupt when done,
305 * it's the last BD of the frame, and to put the CRC on the end.
307 status
|= (BD_ENET_TX_READY
| BD_ENET_TX_INTR
308 | BD_ENET_TX_LAST
| BD_ENET_TX_TC
);
309 bdp
->cbd_sc
= status
;
311 /* Trigger transmission start */
312 writel(0, fep
->hwp
+ FEC_X_DES_ACTIVE
);
314 /* If this was the last BD in the ring, start at the beginning again. */
315 if (status
& BD_ENET_TX_WRAP
)
316 bdp
= fep
->tx_bd_base
;
320 if (bdp
== fep
->dirty_tx
) {
322 netif_stop_queue(ndev
);
327 spin_unlock_irqrestore(&fep
->hw_lock
, flags
);
332 /* This function is called to start or restart the FEC during a link
333 * change. This only happens when switching between half and full
337 fec_restart(struct net_device
*ndev
, int duplex
)
339 struct fec_enet_private
*fep
= netdev_priv(ndev
);
340 const struct platform_device_id
*id_entry
=
341 platform_get_device_id(fep
->pdev
);
344 u32 rcntl
= OPT_FRAME_SIZE
| 0x04;
346 /* Whack a reset. We should wait for this. */
347 writel(1, fep
->hwp
+ FEC_ECNTRL
);
351 * enet-mac reset will reset mac address registers too,
352 * so need to reconfigure it.
354 if (id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
) {
355 memcpy(&temp_mac
, ndev
->dev_addr
, ETH_ALEN
);
356 writel(cpu_to_be32(temp_mac
[0]), fep
->hwp
+ FEC_ADDR_LOW
);
357 writel(cpu_to_be32(temp_mac
[1]), fep
->hwp
+ FEC_ADDR_HIGH
);
360 /* Clear any outstanding interrupt. */
361 writel(0xffc00000, fep
->hwp
+ FEC_IEVENT
);
363 /* Reset all multicast. */
364 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
365 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
367 writel(0, fep
->hwp
+ FEC_HASH_TABLE_HIGH
);
368 writel(0, fep
->hwp
+ FEC_HASH_TABLE_LOW
);
371 /* Set maximum receive buffer size. */
372 writel(PKT_MAXBLR_SIZE
, fep
->hwp
+ FEC_R_BUFF_SIZE
);
374 /* Set receive and transmit descriptor base. */
375 writel(fep
->bd_dma
, fep
->hwp
+ FEC_R_DES_START
);
376 writel((unsigned long)fep
->bd_dma
+ sizeof(struct bufdesc
) * RX_RING_SIZE
,
377 fep
->hwp
+ FEC_X_DES_START
);
379 fep
->dirty_tx
= fep
->cur_tx
= fep
->tx_bd_base
;
380 fep
->cur_rx
= fep
->rx_bd_base
;
382 /* Reset SKB transmit buffers. */
383 fep
->skb_cur
= fep
->skb_dirty
= 0;
384 for (i
= 0; i
<= TX_RING_MOD_MASK
; i
++) {
385 if (fep
->tx_skbuff
[i
]) {
386 dev_kfree_skb_any(fep
->tx_skbuff
[i
]);
387 fep
->tx_skbuff
[i
] = NULL
;
391 /* Enable MII mode */
394 writel(0x04, fep
->hwp
+ FEC_X_CNTRL
);
398 writel(0x0, fep
->hwp
+ FEC_X_CNTRL
);
401 fep
->full_duplex
= duplex
;
404 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
407 * The phy interface and speed need to get configured
408 * differently on enet-mac.
410 if (id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
) {
411 /* Enable flow control and length check */
412 rcntl
|= 0x40000000 | 0x00000020;
415 if (fep
->phy_interface
== PHY_INTERFACE_MODE_RMII
)
421 if (fep
->phy_dev
&& fep
->phy_dev
->speed
== SPEED_100
)
427 #ifdef FEC_MIIGSK_ENR
428 if (fep
->phy_interface
== PHY_INTERFACE_MODE_RMII
) {
429 /* disable the gasket and wait */
430 writel(0, fep
->hwp
+ FEC_MIIGSK_ENR
);
431 while (readl(fep
->hwp
+ FEC_MIIGSK_ENR
) & 4)
435 * configure the gasket:
436 * RMII, 50 MHz, no loopback, no echo
438 writel(1, fep
->hwp
+ FEC_MIIGSK_CFGR
);
440 /* re-enable the gasket */
441 writel(2, fep
->hwp
+ FEC_MIIGSK_ENR
);
445 writel(rcntl
, fep
->hwp
+ FEC_R_CNTRL
);
447 /* And last, enable the transmit and receive processing */
448 writel(2, fep
->hwp
+ FEC_ECNTRL
);
449 writel(0, fep
->hwp
+ FEC_R_DES_ACTIVE
);
451 /* Enable interrupts we wish to service */
452 writel(FEC_DEFAULT_IMASK
, fep
->hwp
+ FEC_IMASK
);
456 fec_stop(struct net_device
*ndev
)
458 struct fec_enet_private
*fep
= netdev_priv(ndev
);
460 /* We cannot expect a graceful transmit stop without link !!! */
462 writel(1, fep
->hwp
+ FEC_X_CNTRL
); /* Graceful transmit stop */
464 if (!(readl(fep
->hwp
+ FEC_IEVENT
) & FEC_ENET_GRA
))
465 printk("fec_stop : Graceful transmit stop did not complete !\n");
468 /* Whack a reset. We should wait for this. */
469 writel(1, fep
->hwp
+ FEC_ECNTRL
);
471 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
472 writel(FEC_DEFAULT_IMASK
, fep
->hwp
+ FEC_IMASK
);
477 fec_timeout(struct net_device
*ndev
)
479 struct fec_enet_private
*fep
= netdev_priv(ndev
);
481 ndev
->stats
.tx_errors
++;
483 fec_restart(ndev
, fep
->full_duplex
);
484 netif_wake_queue(ndev
);
488 fec_enet_tx(struct net_device
*ndev
)
490 struct fec_enet_private
*fep
;
492 unsigned short status
;
495 fep
= netdev_priv(ndev
);
496 spin_lock(&fep
->hw_lock
);
499 while (((status
= bdp
->cbd_sc
) & BD_ENET_TX_READY
) == 0) {
500 if (bdp
== fep
->cur_tx
&& fep
->tx_full
== 0)
503 dma_unmap_single(&fep
->pdev
->dev
, bdp
->cbd_bufaddr
,
504 FEC_ENET_TX_FRSIZE
, DMA_TO_DEVICE
);
505 bdp
->cbd_bufaddr
= 0;
507 skb
= fep
->tx_skbuff
[fep
->skb_dirty
];
508 /* Check for errors. */
509 if (status
& (BD_ENET_TX_HB
| BD_ENET_TX_LC
|
510 BD_ENET_TX_RL
| BD_ENET_TX_UN
|
512 ndev
->stats
.tx_errors
++;
513 if (status
& BD_ENET_TX_HB
) /* No heartbeat */
514 ndev
->stats
.tx_heartbeat_errors
++;
515 if (status
& BD_ENET_TX_LC
) /* Late collision */
516 ndev
->stats
.tx_window_errors
++;
517 if (status
& BD_ENET_TX_RL
) /* Retrans limit */
518 ndev
->stats
.tx_aborted_errors
++;
519 if (status
& BD_ENET_TX_UN
) /* Underrun */
520 ndev
->stats
.tx_fifo_errors
++;
521 if (status
& BD_ENET_TX_CSL
) /* Carrier lost */
522 ndev
->stats
.tx_carrier_errors
++;
524 ndev
->stats
.tx_packets
++;
527 if (status
& BD_ENET_TX_READY
)
528 printk("HEY! Enet xmit interrupt and TX_READY.\n");
530 /* Deferred means some collisions occurred during transmit,
531 * but we eventually sent the packet OK.
533 if (status
& BD_ENET_TX_DEF
)
534 ndev
->stats
.collisions
++;
536 /* Free the sk buffer associated with this last transmit */
537 dev_kfree_skb_any(skb
);
538 fep
->tx_skbuff
[fep
->skb_dirty
] = NULL
;
539 fep
->skb_dirty
= (fep
->skb_dirty
+ 1) & TX_RING_MOD_MASK
;
541 /* Update pointer to next buffer descriptor to be transmitted */
542 if (status
& BD_ENET_TX_WRAP
)
543 bdp
= fep
->tx_bd_base
;
547 /* Since we have freed up a buffer, the ring is no longer full
551 if (netif_queue_stopped(ndev
))
552 netif_wake_queue(ndev
);
556 spin_unlock(&fep
->hw_lock
);
560 /* During a receive, the cur_rx points to the current incoming buffer.
561 * When we update through the ring, if the next incoming buffer has
562 * not been given to the system, we just set the empty indicator,
563 * effectively tossing the packet.
566 fec_enet_rx(struct net_device
*ndev
)
568 struct fec_enet_private
*fep
= netdev_priv(ndev
);
569 const struct platform_device_id
*id_entry
=
570 platform_get_device_id(fep
->pdev
);
572 unsigned short status
;
581 spin_lock(&fep
->hw_lock
);
583 /* First, grab all of the stats for the incoming packet.
584 * These get messed up if we get called due to a busy condition.
588 while (!((status
= bdp
->cbd_sc
) & BD_ENET_RX_EMPTY
)) {
590 /* Since we have allocated space to hold a complete frame,
591 * the last indicator should be set.
593 if ((status
& BD_ENET_RX_LAST
) == 0)
594 printk("FEC ENET: rcv is not +last\n");
597 goto rx_processing_done
;
599 /* Check for errors. */
600 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
| BD_ENET_RX_NO
|
601 BD_ENET_RX_CR
| BD_ENET_RX_OV
)) {
602 ndev
->stats
.rx_errors
++;
603 if (status
& (BD_ENET_RX_LG
| BD_ENET_RX_SH
)) {
604 /* Frame too long or too short. */
605 ndev
->stats
.rx_length_errors
++;
607 if (status
& BD_ENET_RX_NO
) /* Frame alignment */
608 ndev
->stats
.rx_frame_errors
++;
609 if (status
& BD_ENET_RX_CR
) /* CRC Error */
610 ndev
->stats
.rx_crc_errors
++;
611 if (status
& BD_ENET_RX_OV
) /* FIFO overrun */
612 ndev
->stats
.rx_fifo_errors
++;
615 /* Report late collisions as a frame error.
616 * On this error, the BD is closed, but we don't know what we
617 * have in the buffer. So, just drop this frame on the floor.
619 if (status
& BD_ENET_RX_CL
) {
620 ndev
->stats
.rx_errors
++;
621 ndev
->stats
.rx_frame_errors
++;
622 goto rx_processing_done
;
625 /* Process the incoming frame. */
626 ndev
->stats
.rx_packets
++;
627 pkt_len
= bdp
->cbd_datlen
;
628 ndev
->stats
.rx_bytes
+= pkt_len
;
629 data
= (__u8
*)__va(bdp
->cbd_bufaddr
);
631 dma_unmap_single(&fep
->pdev
->dev
, bdp
->cbd_bufaddr
,
632 FEC_ENET_TX_FRSIZE
, DMA_FROM_DEVICE
);
634 if (id_entry
->driver_data
& FEC_QUIRK_SWAP_FRAME
)
635 swap_buffer(data
, pkt_len
);
637 /* This does 16 byte alignment, exactly what we need.
638 * The packet length includes FCS, but we don't want to
639 * include that when passing upstream as it messes up
640 * bridging applications.
642 skb
= dev_alloc_skb(pkt_len
- 4 + NET_IP_ALIGN
);
644 if (unlikely(!skb
)) {
645 printk("%s: Memory squeeze, dropping packet.\n",
647 ndev
->stats
.rx_dropped
++;
649 skb_reserve(skb
, NET_IP_ALIGN
);
650 skb_put(skb
, pkt_len
- 4); /* Make room */
651 skb_copy_to_linear_data(skb
, data
, pkt_len
- 4);
652 skb
->protocol
= eth_type_trans(skb
, ndev
);
656 bdp
->cbd_bufaddr
= dma_map_single(&fep
->pdev
->dev
, data
,
657 FEC_ENET_TX_FRSIZE
, DMA_FROM_DEVICE
);
659 /* Clear the status flags for this buffer */
660 status
&= ~BD_ENET_RX_STATS
;
662 /* Mark the buffer empty */
663 status
|= BD_ENET_RX_EMPTY
;
664 bdp
->cbd_sc
= status
;
666 /* Update BD pointer to next entry */
667 if (status
& BD_ENET_RX_WRAP
)
668 bdp
= fep
->rx_bd_base
;
671 /* Doing this here will keep the FEC running while we process
672 * incoming frames. On a heavily loaded network, we should be
673 * able to keep up at the expense of system resources.
675 writel(0, fep
->hwp
+ FEC_R_DES_ACTIVE
);
679 spin_unlock(&fep
->hw_lock
);
683 fec_enet_interrupt(int irq
, void *dev_id
)
685 struct net_device
*ndev
= dev_id
;
686 struct fec_enet_private
*fep
= netdev_priv(ndev
);
688 irqreturn_t ret
= IRQ_NONE
;
691 int_events
= readl(fep
->hwp
+ FEC_IEVENT
);
692 writel(int_events
, fep
->hwp
+ FEC_IEVENT
);
694 if (int_events
& FEC_ENET_RXF
) {
699 /* Transmit OK, or non-fatal error. Update the buffer
700 * descriptors. FEC handles all errors, we just discover
701 * them as part of the transmit process.
703 if (int_events
& FEC_ENET_TXF
) {
708 if (int_events
& FEC_ENET_MII
) {
710 complete(&fep
->mdio_done
);
712 } while (int_events
);
719 /* ------------------------------------------------------------------------- */
720 static void __inline__
fec_get_mac(struct net_device
*ndev
)
722 struct fec_enet_private
*fep
= netdev_priv(ndev
);
723 struct fec_platform_data
*pdata
= fep
->pdev
->dev
.platform_data
;
724 unsigned char *iap
, tmpaddr
[ETH_ALEN
];
727 * try to get mac address in following order:
729 * 1) module parameter via kernel command line in form
730 * fec.macaddr=0x00,0x04,0x9f,0x01,0x30,0xe0
735 * 2) from flash or fuse (via platform data)
737 if (!is_valid_ether_addr(iap
)) {
740 iap
= (unsigned char *)FEC_FLASHMAC
;
743 memcpy(iap
, pdata
->mac
, ETH_ALEN
);
748 * 3) FEC mac registers set by bootloader
750 if (!is_valid_ether_addr(iap
)) {
751 *((unsigned long *) &tmpaddr
[0]) =
752 be32_to_cpu(readl(fep
->hwp
+ FEC_ADDR_LOW
));
753 *((unsigned short *) &tmpaddr
[4]) =
754 be16_to_cpu(readl(fep
->hwp
+ FEC_ADDR_HIGH
) >> 16);
758 memcpy(ndev
->dev_addr
, iap
, ETH_ALEN
);
760 /* Adjust MAC if using macaddr */
762 ndev
->dev_addr
[ETH_ALEN
-1] = macaddr
[ETH_ALEN
-1] + fep
->pdev
->id
;
765 /* ------------------------------------------------------------------------- */
770 static void fec_enet_adjust_link(struct net_device
*ndev
)
772 struct fec_enet_private
*fep
= netdev_priv(ndev
);
773 struct phy_device
*phy_dev
= fep
->phy_dev
;
776 int status_change
= 0;
778 spin_lock_irqsave(&fep
->hw_lock
, flags
);
780 /* Prevent a state halted on mii error */
781 if (fep
->mii_timeout
&& phy_dev
->state
== PHY_HALTED
) {
782 phy_dev
->state
= PHY_RESUMING
;
786 /* Duplex link change */
788 if (fep
->full_duplex
!= phy_dev
->duplex
) {
789 fec_restart(ndev
, phy_dev
->duplex
);
794 /* Link on or off change */
795 if (phy_dev
->link
!= fep
->link
) {
796 fep
->link
= phy_dev
->link
;
798 fec_restart(ndev
, phy_dev
->duplex
);
805 spin_unlock_irqrestore(&fep
->hw_lock
, flags
);
808 phy_print_status(phy_dev
);
811 static int fec_enet_mdio_read(struct mii_bus
*bus
, int mii_id
, int regnum
)
813 struct fec_enet_private
*fep
= bus
->priv
;
814 unsigned long time_left
;
816 fep
->mii_timeout
= 0;
817 init_completion(&fep
->mdio_done
);
819 /* start a read op */
820 writel(FEC_MMFR_ST
| FEC_MMFR_OP_READ
|
821 FEC_MMFR_PA(mii_id
) | FEC_MMFR_RA(regnum
) |
822 FEC_MMFR_TA
, fep
->hwp
+ FEC_MII_DATA
);
824 /* wait for end of transfer */
825 time_left
= wait_for_completion_timeout(&fep
->mdio_done
,
826 usecs_to_jiffies(FEC_MII_TIMEOUT
));
827 if (time_left
== 0) {
828 fep
->mii_timeout
= 1;
829 printk(KERN_ERR
"FEC: MDIO read timeout\n");
834 return FEC_MMFR_DATA(readl(fep
->hwp
+ FEC_MII_DATA
));
837 static int fec_enet_mdio_write(struct mii_bus
*bus
, int mii_id
, int regnum
,
840 struct fec_enet_private
*fep
= bus
->priv
;
841 unsigned long time_left
;
843 fep
->mii_timeout
= 0;
844 init_completion(&fep
->mdio_done
);
846 /* start a write op */
847 writel(FEC_MMFR_ST
| FEC_MMFR_OP_WRITE
|
848 FEC_MMFR_PA(mii_id
) | FEC_MMFR_RA(regnum
) |
849 FEC_MMFR_TA
| FEC_MMFR_DATA(value
),
850 fep
->hwp
+ FEC_MII_DATA
);
852 /* wait for end of transfer */
853 time_left
= wait_for_completion_timeout(&fep
->mdio_done
,
854 usecs_to_jiffies(FEC_MII_TIMEOUT
));
855 if (time_left
== 0) {
856 fep
->mii_timeout
= 1;
857 printk(KERN_ERR
"FEC: MDIO write timeout\n");
864 static int fec_enet_mdio_reset(struct mii_bus
*bus
)
869 static int fec_enet_mii_probe(struct net_device
*ndev
)
871 struct fec_enet_private
*fep
= netdev_priv(ndev
);
872 struct phy_device
*phy_dev
= NULL
;
873 char mdio_bus_id
[MII_BUS_ID_SIZE
];
874 char phy_name
[MII_BUS_ID_SIZE
+ 3];
876 int dev_id
= fep
->pdev
->id
;
880 /* check for attached phy */
881 for (phy_id
= 0; (phy_id
< PHY_MAX_ADDR
); phy_id
++) {
882 if ((fep
->mii_bus
->phy_mask
& (1 << phy_id
)))
884 if (fep
->mii_bus
->phy_map
[phy_id
] == NULL
)
886 if (fep
->mii_bus
->phy_map
[phy_id
]->phy_id
== 0)
890 strncpy(mdio_bus_id
, fep
->mii_bus
->id
, MII_BUS_ID_SIZE
);
894 if (phy_id
>= PHY_MAX_ADDR
) {
895 printk(KERN_INFO
"%s: no PHY, assuming direct connection "
896 "to switch\n", ndev
->name
);
897 strncpy(mdio_bus_id
, "0", MII_BUS_ID_SIZE
);
901 snprintf(phy_name
, MII_BUS_ID_SIZE
, PHY_ID_FMT
, mdio_bus_id
, phy_id
);
902 phy_dev
= phy_connect(ndev
, phy_name
, &fec_enet_adjust_link
, 0,
903 PHY_INTERFACE_MODE_MII
);
904 if (IS_ERR(phy_dev
)) {
905 printk(KERN_ERR
"%s: could not attach to PHY\n", ndev
->name
);
906 return PTR_ERR(phy_dev
);
909 /* mask with MAC supported features */
910 phy_dev
->supported
&= PHY_BASIC_FEATURES
;
911 phy_dev
->advertising
= phy_dev
->supported
;
913 fep
->phy_dev
= phy_dev
;
915 fep
->full_duplex
= 0;
917 printk(KERN_INFO
"%s: Freescale FEC PHY driver [%s] "
918 "(mii_bus:phy_addr=%s, irq=%d)\n", ndev
->name
,
919 fep
->phy_dev
->drv
->name
, dev_name(&fep
->phy_dev
->dev
),
925 static int fec_enet_mii_init(struct platform_device
*pdev
)
927 static struct mii_bus
*fec0_mii_bus
;
928 struct net_device
*ndev
= platform_get_drvdata(pdev
);
929 struct fec_enet_private
*fep
= netdev_priv(ndev
);
930 const struct platform_device_id
*id_entry
=
931 platform_get_device_id(fep
->pdev
);
935 * The dual fec interfaces are not equivalent with enet-mac.
936 * Here are the differences:
938 * - fec0 supports MII & RMII modes while fec1 only supports RMII
939 * - fec0 acts as the 1588 time master while fec1 is slave
940 * - external phys can only be configured by fec0
942 * That is to say fec1 can not work independently. It only works
943 * when fec0 is working. The reason behind this design is that the
944 * second interface is added primarily for Switch mode.
946 * Because of the last point above, both phys are attached on fec0
947 * mdio interface in board design, and need to be configured by
950 if ((id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
) && pdev
->id
) {
951 /* fec1 uses fec0 mii_bus */
952 fep
->mii_bus
= fec0_mii_bus
;
956 fep
->mii_timeout
= 0;
959 * Set MII speed to 2.5 MHz (= clk_get_rate() / 2 * phy_speed)
961 fep
->phy_speed
= DIV_ROUND_UP(clk_get_rate(fep
->clk
), 5000000) << 1;
962 writel(fep
->phy_speed
, fep
->hwp
+ FEC_MII_SPEED
);
964 fep
->mii_bus
= mdiobus_alloc();
965 if (fep
->mii_bus
== NULL
) {
970 fep
->mii_bus
->name
= "fec_enet_mii_bus";
971 fep
->mii_bus
->read
= fec_enet_mdio_read
;
972 fep
->mii_bus
->write
= fec_enet_mdio_write
;
973 fep
->mii_bus
->reset
= fec_enet_mdio_reset
;
974 snprintf(fep
->mii_bus
->id
, MII_BUS_ID_SIZE
, "%x", pdev
->id
+ 1);
975 fep
->mii_bus
->priv
= fep
;
976 fep
->mii_bus
->parent
= &pdev
->dev
;
978 fep
->mii_bus
->irq
= kmalloc(sizeof(int) * PHY_MAX_ADDR
, GFP_KERNEL
);
979 if (!fep
->mii_bus
->irq
) {
981 goto err_out_free_mdiobus
;
984 for (i
= 0; i
< PHY_MAX_ADDR
; i
++)
985 fep
->mii_bus
->irq
[i
] = PHY_POLL
;
987 if (mdiobus_register(fep
->mii_bus
))
988 goto err_out_free_mdio_irq
;
990 /* save fec0 mii_bus */
991 if (id_entry
->driver_data
& FEC_QUIRK_ENET_MAC
)
992 fec0_mii_bus
= fep
->mii_bus
;
996 err_out_free_mdio_irq
:
997 kfree(fep
->mii_bus
->irq
);
998 err_out_free_mdiobus
:
999 mdiobus_free(fep
->mii_bus
);
1004 static void fec_enet_mii_remove(struct fec_enet_private
*fep
)
1007 phy_disconnect(fep
->phy_dev
);
1008 mdiobus_unregister(fep
->mii_bus
);
1009 kfree(fep
->mii_bus
->irq
);
1010 mdiobus_free(fep
->mii_bus
);
1013 static int fec_enet_get_settings(struct net_device
*ndev
,
1014 struct ethtool_cmd
*cmd
)
1016 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1017 struct phy_device
*phydev
= fep
->phy_dev
;
1022 return phy_ethtool_gset(phydev
, cmd
);
1025 static int fec_enet_set_settings(struct net_device
*ndev
,
1026 struct ethtool_cmd
*cmd
)
1028 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1029 struct phy_device
*phydev
= fep
->phy_dev
;
1034 return phy_ethtool_sset(phydev
, cmd
);
1037 static void fec_enet_get_drvinfo(struct net_device
*ndev
,
1038 struct ethtool_drvinfo
*info
)
1040 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1042 strcpy(info
->driver
, fep
->pdev
->dev
.driver
->name
);
1043 strcpy(info
->version
, "Revision: 1.0");
1044 strcpy(info
->bus_info
, dev_name(&ndev
->dev
));
1047 static struct ethtool_ops fec_enet_ethtool_ops
= {
1048 .get_settings
= fec_enet_get_settings
,
1049 .set_settings
= fec_enet_set_settings
,
1050 .get_drvinfo
= fec_enet_get_drvinfo
,
1051 .get_link
= ethtool_op_get_link
,
1054 static int fec_enet_ioctl(struct net_device
*ndev
, struct ifreq
*rq
, int cmd
)
1056 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1057 struct phy_device
*phydev
= fep
->phy_dev
;
1059 if (!netif_running(ndev
))
1065 return phy_mii_ioctl(phydev
, rq
, cmd
);
1068 static void fec_enet_free_buffers(struct net_device
*ndev
)
1070 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1072 struct sk_buff
*skb
;
1073 struct bufdesc
*bdp
;
1075 bdp
= fep
->rx_bd_base
;
1076 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1077 skb
= fep
->rx_skbuff
[i
];
1079 if (bdp
->cbd_bufaddr
)
1080 dma_unmap_single(&fep
->pdev
->dev
, bdp
->cbd_bufaddr
,
1081 FEC_ENET_RX_FRSIZE
, DMA_FROM_DEVICE
);
1087 bdp
= fep
->tx_bd_base
;
1088 for (i
= 0; i
< TX_RING_SIZE
; i
++)
1089 kfree(fep
->tx_bounce
[i
]);
1092 static int fec_enet_alloc_buffers(struct net_device
*ndev
)
1094 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1096 struct sk_buff
*skb
;
1097 struct bufdesc
*bdp
;
1099 bdp
= fep
->rx_bd_base
;
1100 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1101 skb
= dev_alloc_skb(FEC_ENET_RX_FRSIZE
);
1103 fec_enet_free_buffers(ndev
);
1106 fep
->rx_skbuff
[i
] = skb
;
1108 bdp
->cbd_bufaddr
= dma_map_single(&fep
->pdev
->dev
, skb
->data
,
1109 FEC_ENET_RX_FRSIZE
, DMA_FROM_DEVICE
);
1110 bdp
->cbd_sc
= BD_ENET_RX_EMPTY
;
1114 /* Set the last buffer to wrap. */
1116 bdp
->cbd_sc
|= BD_SC_WRAP
;
1118 bdp
= fep
->tx_bd_base
;
1119 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1120 fep
->tx_bounce
[i
] = kmalloc(FEC_ENET_TX_FRSIZE
, GFP_KERNEL
);
1123 bdp
->cbd_bufaddr
= 0;
1127 /* Set the last buffer to wrap. */
1129 bdp
->cbd_sc
|= BD_SC_WRAP
;
1135 fec_enet_open(struct net_device
*ndev
)
1137 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1140 /* I should reset the ring buffers here, but I don't yet know
1141 * a simple way to do that.
1144 ret
= fec_enet_alloc_buffers(ndev
);
1148 /* Probe and connect to PHY when open the interface */
1149 ret
= fec_enet_mii_probe(ndev
);
1151 fec_enet_free_buffers(ndev
);
1154 phy_start(fep
->phy_dev
);
1155 netif_start_queue(ndev
);
1161 fec_enet_close(struct net_device
*ndev
)
1163 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1165 /* Don't know what to do yet. */
1167 netif_stop_queue(ndev
);
1171 phy_stop(fep
->phy_dev
);
1172 phy_disconnect(fep
->phy_dev
);
1175 fec_enet_free_buffers(ndev
);
1180 /* Set or clear the multicast filter for this adaptor.
1181 * Skeleton taken from sunlance driver.
1182 * The CPM Ethernet implementation allows Multicast as well as individual
1183 * MAC address filtering. Some of the drivers check to make sure it is
1184 * a group multicast address, and discard those that are not. I guess I
1185 * will do the same for now, but just remove the test if you want
1186 * individual filtering as well (do the upper net layers want or support
1187 * this kind of feature?).
1190 #define HASH_BITS 6 /* #bits in hash */
1191 #define CRC32_POLY 0xEDB88320
1193 static void set_multicast_list(struct net_device
*ndev
)
1195 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1196 struct netdev_hw_addr
*ha
;
1197 unsigned int i
, bit
, data
, crc
, tmp
;
1200 if (ndev
->flags
& IFF_PROMISC
) {
1201 tmp
= readl(fep
->hwp
+ FEC_R_CNTRL
);
1203 writel(tmp
, fep
->hwp
+ FEC_R_CNTRL
);
1207 tmp
= readl(fep
->hwp
+ FEC_R_CNTRL
);
1209 writel(tmp
, fep
->hwp
+ FEC_R_CNTRL
);
1211 if (ndev
->flags
& IFF_ALLMULTI
) {
1212 /* Catch all multicast addresses, so set the
1215 writel(0xffffffff, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1216 writel(0xffffffff, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1221 /* Clear filter and add the addresses in hash register
1223 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1224 writel(0, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1226 netdev_for_each_mc_addr(ha
, ndev
) {
1227 /* Only support group multicast for now */
1228 if (!(ha
->addr
[0] & 1))
1231 /* calculate crc32 value of mac address */
1234 for (i
= 0; i
< ndev
->addr_len
; i
++) {
1236 for (bit
= 0; bit
< 8; bit
++, data
>>= 1) {
1238 (((crc
^ data
) & 1) ? CRC32_POLY
: 0);
1242 /* only upper 6 bits (HASH_BITS) are used
1243 * which point to specific bit in he hash registers
1245 hash
= (crc
>> (32 - HASH_BITS
)) & 0x3f;
1248 tmp
= readl(fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1249 tmp
|= 1 << (hash
- 32);
1250 writel(tmp
, fep
->hwp
+ FEC_GRP_HASH_TABLE_HIGH
);
1252 tmp
= readl(fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1254 writel(tmp
, fep
->hwp
+ FEC_GRP_HASH_TABLE_LOW
);
1259 /* Set a MAC change in hardware. */
1261 fec_set_mac_address(struct net_device
*ndev
, void *p
)
1263 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1264 struct sockaddr
*addr
= p
;
1266 if (!is_valid_ether_addr(addr
->sa_data
))
1267 return -EADDRNOTAVAIL
;
1269 memcpy(ndev
->dev_addr
, addr
->sa_data
, ndev
->addr_len
);
1271 writel(ndev
->dev_addr
[3] | (ndev
->dev_addr
[2] << 8) |
1272 (ndev
->dev_addr
[1] << 16) | (ndev
->dev_addr
[0] << 24),
1273 fep
->hwp
+ FEC_ADDR_LOW
);
1274 writel((ndev
->dev_addr
[5] << 16) | (ndev
->dev_addr
[4] << 24),
1275 fep
->hwp
+ FEC_ADDR_HIGH
);
1279 static const struct net_device_ops fec_netdev_ops
= {
1280 .ndo_open
= fec_enet_open
,
1281 .ndo_stop
= fec_enet_close
,
1282 .ndo_start_xmit
= fec_enet_start_xmit
,
1283 .ndo_set_multicast_list
= set_multicast_list
,
1284 .ndo_change_mtu
= eth_change_mtu
,
1285 .ndo_validate_addr
= eth_validate_addr
,
1286 .ndo_tx_timeout
= fec_timeout
,
1287 .ndo_set_mac_address
= fec_set_mac_address
,
1288 .ndo_do_ioctl
= fec_enet_ioctl
,
1292 * XXX: We need to clean up on failure exits here.
1295 static int fec_enet_init(struct net_device
*ndev
)
1297 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1298 struct bufdesc
*cbd_base
;
1299 struct bufdesc
*bdp
;
1302 /* Allocate memory for buffer descriptors. */
1303 cbd_base
= dma_alloc_coherent(NULL
, PAGE_SIZE
, &fep
->bd_dma
,
1306 printk("FEC: allocate descriptor memory failed?\n");
1310 spin_lock_init(&fep
->hw_lock
);
1314 /* Get the Ethernet address */
1317 /* Set receive and transmit descriptor base. */
1318 fep
->rx_bd_base
= cbd_base
;
1319 fep
->tx_bd_base
= cbd_base
+ RX_RING_SIZE
;
1321 /* The FEC Ethernet specific entries in the device structure */
1322 ndev
->watchdog_timeo
= TX_TIMEOUT
;
1323 ndev
->netdev_ops
= &fec_netdev_ops
;
1324 ndev
->ethtool_ops
= &fec_enet_ethtool_ops
;
1326 /* Initialize the receive buffer descriptors. */
1327 bdp
= fep
->rx_bd_base
;
1328 for (i
= 0; i
< RX_RING_SIZE
; i
++) {
1330 /* Initialize the BD for every fragment in the page. */
1335 /* Set the last buffer to wrap */
1337 bdp
->cbd_sc
|= BD_SC_WRAP
;
1339 /* ...and the same for transmit */
1340 bdp
= fep
->tx_bd_base
;
1341 for (i
= 0; i
< TX_RING_SIZE
; i
++) {
1343 /* Initialize the BD for every fragment in the page. */
1345 bdp
->cbd_bufaddr
= 0;
1349 /* Set the last buffer to wrap */
1351 bdp
->cbd_sc
|= BD_SC_WRAP
;
1353 fec_restart(ndev
, 0);
1358 static int __devinit
1359 fec_probe(struct platform_device
*pdev
)
1361 struct fec_enet_private
*fep
;
1362 struct fec_platform_data
*pdata
;
1363 struct net_device
*ndev
;
1364 int i
, irq
, ret
= 0;
1367 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1371 r
= request_mem_region(r
->start
, resource_size(r
), pdev
->name
);
1375 /* Init network device */
1376 ndev
= alloc_etherdev(sizeof(struct fec_enet_private
));
1379 goto failed_alloc_etherdev
;
1382 SET_NETDEV_DEV(ndev
, &pdev
->dev
);
1384 /* setup board info structure */
1385 fep
= netdev_priv(ndev
);
1387 fep
->hwp
= ioremap(r
->start
, resource_size(r
));
1392 goto failed_ioremap
;
1395 platform_set_drvdata(pdev
, ndev
);
1397 pdata
= pdev
->dev
.platform_data
;
1399 fep
->phy_interface
= pdata
->phy
;
1401 /* This device has up to three irqs on some platforms */
1402 for (i
= 0; i
< 3; i
++) {
1403 irq
= platform_get_irq(pdev
, i
);
1406 ret
= request_irq(irq
, fec_enet_interrupt
, IRQF_DISABLED
, pdev
->name
, ndev
);
1409 irq
= platform_get_irq(pdev
, i
);
1410 free_irq(irq
, ndev
);
1416 fep
->clk
= clk_get(&pdev
->dev
, "fec_clk");
1417 if (IS_ERR(fep
->clk
)) {
1418 ret
= PTR_ERR(fep
->clk
);
1421 clk_enable(fep
->clk
);
1423 ret
= fec_enet_init(ndev
);
1427 ret
= fec_enet_mii_init(pdev
);
1429 goto failed_mii_init
;
1431 /* Carrier starts down, phylib will bring it up */
1432 netif_carrier_off(ndev
);
1434 ret
= register_netdev(ndev
);
1436 goto failed_register
;
1441 fec_enet_mii_remove(fep
);
1444 clk_disable(fep
->clk
);
1447 for (i
= 0; i
< 3; i
++) {
1448 irq
= platform_get_irq(pdev
, i
);
1450 free_irq(irq
, ndev
);
1456 failed_alloc_etherdev
:
1457 release_mem_region(r
->start
, resource_size(r
));
1462 static int __devexit
1463 fec_drv_remove(struct platform_device
*pdev
)
1465 struct net_device
*ndev
= platform_get_drvdata(pdev
);
1466 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1470 fec_enet_mii_remove(fep
);
1471 clk_disable(fep
->clk
);
1474 unregister_netdev(ndev
);
1477 r
= platform_get_resource(pdev
, IORESOURCE_MEM
, 0);
1479 release_mem_region(r
->start
, resource_size(r
));
1481 platform_set_drvdata(pdev
, NULL
);
1488 fec_suspend(struct device
*dev
)
1490 struct net_device
*ndev
= dev_get_drvdata(dev
);
1491 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1493 if (netif_running(ndev
)) {
1495 netif_device_detach(ndev
);
1497 clk_disable(fep
->clk
);
1503 fec_resume(struct device
*dev
)
1505 struct net_device
*ndev
= dev_get_drvdata(dev
);
1506 struct fec_enet_private
*fep
= netdev_priv(ndev
);
1508 clk_enable(fep
->clk
);
1509 if (netif_running(ndev
)) {
1510 fec_restart(ndev
, fep
->full_duplex
);
1511 netif_device_attach(ndev
);
1517 static const struct dev_pm_ops fec_pm_ops
= {
1518 .suspend
= fec_suspend
,
1519 .resume
= fec_resume
,
1520 .freeze
= fec_suspend
,
1522 .poweroff
= fec_suspend
,
1523 .restore
= fec_resume
,
1527 static struct platform_driver fec_driver
= {
1529 .name
= DRIVER_NAME
,
1530 .owner
= THIS_MODULE
,
1535 .id_table
= fec_devtype
,
1537 .remove
= __devexit_p(fec_drv_remove
),
1541 fec_enet_module_init(void)
1543 printk(KERN_INFO
"FEC Ethernet Driver\n");
1545 return platform_driver_register(&fec_driver
);
1549 fec_enet_cleanup(void)
1551 platform_driver_unregister(&fec_driver
);
1554 module_exit(fec_enet_cleanup
);
1555 module_init(fec_enet_module_init
);
1557 MODULE_LICENSE("GPL");