ACPI/hpet: prevent boot hang when hpet=force used on ICH-4M
[linux-2.6/linux-acpi-2.6.git] / drivers / acpi / processor_idle.c
blobea23c64bd766022277fab15add54c6e9b7901b77
1 /*
2 * processor_idle - idle state submodule to the ACPI processor driver
4 * Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
5 * Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
6 * Copyright (C) 2004, 2005 Dominik Brodowski <linux@brodo.de>
7 * Copyright (C) 2004 Anil S Keshavamurthy <anil.s.keshavamurthy@intel.com>
8 * - Added processor hotplug support
9 * Copyright (C) 2005 Venkatesh Pallipadi <venkatesh.pallipadi@intel.com>
10 * - Added support for C3 on SMP
12 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
14 * This program is free software; you can redistribute it and/or modify
15 * it under the terms of the GNU General Public License as published by
16 * the Free Software Foundation; either version 2 of the License, or (at
17 * your option) any later version.
19 * This program is distributed in the hope that it will be useful, but
20 * WITHOUT ANY WARRANTY; without even the implied warranty of
21 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
22 * General Public License for more details.
24 * You should have received a copy of the GNU General Public License along
25 * with this program; if not, write to the Free Software Foundation, Inc.,
26 * 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA.
28 * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
31 #include <linux/kernel.h>
32 #include <linux/module.h>
33 #include <linux/init.h>
34 #include <linux/cpufreq.h>
35 #include <linux/proc_fs.h>
36 #include <linux/seq_file.h>
37 #include <linux/acpi.h>
38 #include <linux/dmi.h>
39 #include <linux/moduleparam.h>
40 #include <linux/sched.h> /* need_resched() */
41 #include <linux/pm_qos_params.h>
42 #include <linux/clockchips.h>
43 #include <linux/cpuidle.h>
44 #include <linux/irqflags.h>
47 * Include the apic definitions for x86 to have the APIC timer related defines
48 * available also for UP (on SMP it gets magically included via linux/smp.h).
49 * asm/acpi.h is not an option, as it would require more include magic. Also
50 * creating an empty asm-ia64/apic.h would just trade pest vs. cholera.
52 #ifdef CONFIG_X86
53 #include <asm/apic.h>
54 #endif
56 #include <asm/io.h>
57 #include <asm/uaccess.h>
59 #include <acpi/acpi_bus.h>
60 #include <acpi/processor.h>
61 #include <asm/processor.h>
63 #define ACPI_PROCESSOR_CLASS "processor"
64 #define _COMPONENT ACPI_PROCESSOR_COMPONENT
65 ACPI_MODULE_NAME("processor_idle");
66 #define ACPI_PROCESSOR_FILE_POWER "power"
67 #define PM_TIMER_TICK_NS (1000000000ULL/PM_TIMER_FREQUENCY)
68 #define C2_OVERHEAD 1 /* 1us */
69 #define C3_OVERHEAD 1 /* 1us */
70 #define PM_TIMER_TICKS_TO_US(p) (((p) * 1000)/(PM_TIMER_FREQUENCY/1000))
72 static unsigned int max_cstate __read_mostly = ACPI_PROCESSOR_MAX_POWER;
73 module_param(max_cstate, uint, 0000);
74 static unsigned int nocst __read_mostly;
75 module_param(nocst, uint, 0000);
77 static unsigned int latency_factor __read_mostly = 2;
78 module_param(latency_factor, uint, 0644);
80 static s64 us_to_pm_timer_ticks(s64 t)
82 return div64_u64(t * PM_TIMER_FREQUENCY, 1000000);
85 * IBM ThinkPad R40e crashes mysteriously when going into C2 or C3.
86 * For now disable this. Probably a bug somewhere else.
88 * To skip this limit, boot/load with a large max_cstate limit.
90 static int set_max_cstate(const struct dmi_system_id *id)
92 if (max_cstate > ACPI_PROCESSOR_MAX_POWER)
93 return 0;
95 printk(KERN_NOTICE PREFIX "%s detected - limiting to C%ld max_cstate."
96 " Override with \"processor.max_cstate=%d\"\n", id->ident,
97 (long)id->driver_data, ACPI_PROCESSOR_MAX_POWER + 1);
99 max_cstate = (long)id->driver_data;
101 return 0;
104 /* Actually this shouldn't be __cpuinitdata, would be better to fix the
105 callers to only run once -AK */
106 static struct dmi_system_id __cpuinitdata processor_power_dmi_table[] = {
107 { set_max_cstate, "Clevo 5600D", {
108 DMI_MATCH(DMI_BIOS_VENDOR,"Phoenix Technologies LTD"),
109 DMI_MATCH(DMI_BIOS_VERSION,"SHE845M0.86C.0013.D.0302131307")},
110 (void *)2},
116 * Callers should disable interrupts before the call and enable
117 * interrupts after return.
119 static void acpi_safe_halt(void)
121 current_thread_info()->status &= ~TS_POLLING;
123 * TS_POLLING-cleared state must be visible before we
124 * test NEED_RESCHED:
126 smp_mb();
127 if (!need_resched()) {
128 safe_halt();
129 local_irq_disable();
131 current_thread_info()->status |= TS_POLLING;
134 #ifdef ARCH_APICTIMER_STOPS_ON_C3
137 * Some BIOS implementations switch to C3 in the published C2 state.
138 * This seems to be a common problem on AMD boxen, but other vendors
139 * are affected too. We pick the most conservative approach: we assume
140 * that the local APIC stops in both C2 and C3.
142 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
143 struct acpi_processor_cx *cx)
145 struct acpi_processor_power *pwr = &pr->power;
146 u8 type = local_apic_timer_c2_ok ? ACPI_STATE_C3 : ACPI_STATE_C2;
148 if (cpu_has(&cpu_data(pr->id), X86_FEATURE_ARAT))
149 return;
152 * Check, if one of the previous states already marked the lapic
153 * unstable
155 if (pwr->timer_broadcast_on_state < state)
156 return;
158 if (cx->type >= type)
159 pr->power.timer_broadcast_on_state = state;
162 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr)
164 unsigned long reason;
166 reason = pr->power.timer_broadcast_on_state < INT_MAX ?
167 CLOCK_EVT_NOTIFY_BROADCAST_ON : CLOCK_EVT_NOTIFY_BROADCAST_OFF;
169 clockevents_notify(reason, &pr->id);
172 /* Power(C) State timer broadcast control */
173 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
174 struct acpi_processor_cx *cx,
175 int broadcast)
177 int state = cx - pr->power.states;
179 if (state >= pr->power.timer_broadcast_on_state) {
180 unsigned long reason;
182 reason = broadcast ? CLOCK_EVT_NOTIFY_BROADCAST_ENTER :
183 CLOCK_EVT_NOTIFY_BROADCAST_EXIT;
184 clockevents_notify(reason, &pr->id);
188 #else
190 static void acpi_timer_check_state(int state, struct acpi_processor *pr,
191 struct acpi_processor_cx *cstate) { }
192 static void acpi_propagate_timer_broadcast(struct acpi_processor *pr) { }
193 static void acpi_state_timer_broadcast(struct acpi_processor *pr,
194 struct acpi_processor_cx *cx,
195 int broadcast)
199 #endif
202 * Suspend / resume control
204 static int acpi_idle_suspend;
206 int acpi_processor_suspend(struct acpi_device * device, pm_message_t state)
208 acpi_idle_suspend = 1;
209 return 0;
212 int acpi_processor_resume(struct acpi_device * device)
214 acpi_idle_suspend = 0;
215 return 0;
218 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
219 static int tsc_halts_in_c(int state)
221 switch (boot_cpu_data.x86_vendor) {
222 case X86_VENDOR_AMD:
223 case X86_VENDOR_INTEL:
225 * AMD Fam10h TSC will tick in all
226 * C/P/S0/S1 states when this bit is set.
228 if (boot_cpu_has(X86_FEATURE_NONSTOP_TSC))
229 return 0;
231 /*FALL THROUGH*/
232 default:
233 return state > ACPI_STATE_C1;
236 #endif
238 static int acpi_processor_get_power_info_fadt(struct acpi_processor *pr)
241 if (!pr)
242 return -EINVAL;
244 if (!pr->pblk)
245 return -ENODEV;
247 /* if info is obtained from pblk/fadt, type equals state */
248 pr->power.states[ACPI_STATE_C2].type = ACPI_STATE_C2;
249 pr->power.states[ACPI_STATE_C3].type = ACPI_STATE_C3;
251 #ifndef CONFIG_HOTPLUG_CPU
253 * Check for P_LVL2_UP flag before entering C2 and above on
254 * an SMP system.
256 if ((num_online_cpus() > 1) &&
257 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
258 return -ENODEV;
259 #endif
261 /* determine C2 and C3 address from pblk */
262 pr->power.states[ACPI_STATE_C2].address = pr->pblk + 4;
263 pr->power.states[ACPI_STATE_C3].address = pr->pblk + 5;
265 /* determine latencies from FADT */
266 pr->power.states[ACPI_STATE_C2].latency = acpi_gbl_FADT.C2latency;
267 pr->power.states[ACPI_STATE_C3].latency = acpi_gbl_FADT.C3latency;
269 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
270 "lvl2[0x%08x] lvl3[0x%08x]\n",
271 pr->power.states[ACPI_STATE_C2].address,
272 pr->power.states[ACPI_STATE_C3].address));
274 return 0;
277 static int acpi_processor_get_power_info_default(struct acpi_processor *pr)
279 if (!pr->power.states[ACPI_STATE_C1].valid) {
280 /* set the first C-State to C1 */
281 /* all processors need to support C1 */
282 pr->power.states[ACPI_STATE_C1].type = ACPI_STATE_C1;
283 pr->power.states[ACPI_STATE_C1].valid = 1;
284 pr->power.states[ACPI_STATE_C1].entry_method = ACPI_CSTATE_HALT;
286 /* the C0 state only exists as a filler in our array */
287 pr->power.states[ACPI_STATE_C0].valid = 1;
288 return 0;
291 static int acpi_processor_get_power_info_cst(struct acpi_processor *pr)
293 acpi_status status = 0;
294 acpi_integer count;
295 int current_count;
296 int i;
297 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
298 union acpi_object *cst;
301 if (nocst)
302 return -ENODEV;
304 current_count = 0;
306 status = acpi_evaluate_object(pr->handle, "_CST", NULL, &buffer);
307 if (ACPI_FAILURE(status)) {
308 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "No _CST, giving up\n"));
309 return -ENODEV;
312 cst = buffer.pointer;
314 /* There must be at least 2 elements */
315 if (!cst || (cst->type != ACPI_TYPE_PACKAGE) || cst->package.count < 2) {
316 printk(KERN_ERR PREFIX "not enough elements in _CST\n");
317 status = -EFAULT;
318 goto end;
321 count = cst->package.elements[0].integer.value;
323 /* Validate number of power states. */
324 if (count < 1 || count != cst->package.count - 1) {
325 printk(KERN_ERR PREFIX "count given by _CST is not valid\n");
326 status = -EFAULT;
327 goto end;
330 /* Tell driver that at least _CST is supported. */
331 pr->flags.has_cst = 1;
333 for (i = 1; i <= count; i++) {
334 union acpi_object *element;
335 union acpi_object *obj;
336 struct acpi_power_register *reg;
337 struct acpi_processor_cx cx;
339 memset(&cx, 0, sizeof(cx));
341 element = &(cst->package.elements[i]);
342 if (element->type != ACPI_TYPE_PACKAGE)
343 continue;
345 if (element->package.count != 4)
346 continue;
348 obj = &(element->package.elements[0]);
350 if (obj->type != ACPI_TYPE_BUFFER)
351 continue;
353 reg = (struct acpi_power_register *)obj->buffer.pointer;
355 if (reg->space_id != ACPI_ADR_SPACE_SYSTEM_IO &&
356 (reg->space_id != ACPI_ADR_SPACE_FIXED_HARDWARE))
357 continue;
359 /* There should be an easy way to extract an integer... */
360 obj = &(element->package.elements[1]);
361 if (obj->type != ACPI_TYPE_INTEGER)
362 continue;
364 cx.type = obj->integer.value;
366 * Some buggy BIOSes won't list C1 in _CST -
367 * Let acpi_processor_get_power_info_default() handle them later
369 if (i == 1 && cx.type != ACPI_STATE_C1)
370 current_count++;
372 cx.address = reg->address;
373 cx.index = current_count + 1;
375 cx.entry_method = ACPI_CSTATE_SYSTEMIO;
376 if (reg->space_id == ACPI_ADR_SPACE_FIXED_HARDWARE) {
377 if (acpi_processor_ffh_cstate_probe
378 (pr->id, &cx, reg) == 0) {
379 cx.entry_method = ACPI_CSTATE_FFH;
380 } else if (cx.type == ACPI_STATE_C1) {
382 * C1 is a special case where FIXED_HARDWARE
383 * can be handled in non-MWAIT way as well.
384 * In that case, save this _CST entry info.
385 * Otherwise, ignore this info and continue.
387 cx.entry_method = ACPI_CSTATE_HALT;
388 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
389 } else {
390 continue;
392 if (cx.type == ACPI_STATE_C1 &&
393 (idle_halt || idle_nomwait)) {
395 * In most cases the C1 space_id obtained from
396 * _CST object is FIXED_HARDWARE access mode.
397 * But when the option of idle=halt is added,
398 * the entry_method type should be changed from
399 * CSTATE_FFH to CSTATE_HALT.
400 * When the option of idle=nomwait is added,
401 * the C1 entry_method type should be
402 * CSTATE_HALT.
404 cx.entry_method = ACPI_CSTATE_HALT;
405 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI HLT");
407 } else {
408 snprintf(cx.desc, ACPI_CX_DESC_LEN, "ACPI IOPORT 0x%x",
409 cx.address);
412 if (cx.type == ACPI_STATE_C1) {
413 cx.valid = 1;
416 obj = &(element->package.elements[2]);
417 if (obj->type != ACPI_TYPE_INTEGER)
418 continue;
420 cx.latency = obj->integer.value;
422 obj = &(element->package.elements[3]);
423 if (obj->type != ACPI_TYPE_INTEGER)
424 continue;
426 cx.power = obj->integer.value;
428 current_count++;
429 memcpy(&(pr->power.states[current_count]), &cx, sizeof(cx));
432 * We support total ACPI_PROCESSOR_MAX_POWER - 1
433 * (From 1 through ACPI_PROCESSOR_MAX_POWER - 1)
435 if (current_count >= (ACPI_PROCESSOR_MAX_POWER - 1)) {
436 printk(KERN_WARNING
437 "Limiting number of power states to max (%d)\n",
438 ACPI_PROCESSOR_MAX_POWER);
439 printk(KERN_WARNING
440 "Please increase ACPI_PROCESSOR_MAX_POWER if needed.\n");
441 break;
445 ACPI_DEBUG_PRINT((ACPI_DB_INFO, "Found %d power states\n",
446 current_count));
448 /* Validate number of power states discovered */
449 if (current_count < 2)
450 status = -EFAULT;
452 end:
453 kfree(buffer.pointer);
455 return status;
458 static void acpi_processor_power_verify_c2(struct acpi_processor_cx *cx)
461 if (!cx->address)
462 return;
465 * C2 latency must be less than or equal to 100
466 * microseconds.
468 else if (cx->latency > ACPI_PROCESSOR_MAX_C2_LATENCY) {
469 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
470 "latency too large [%d]\n", cx->latency));
471 return;
475 * Otherwise we've met all of our C2 requirements.
476 * Normalize the C2 latency to expidite policy
478 cx->valid = 1;
480 cx->latency_ticks = cx->latency;
482 return;
485 static void acpi_processor_power_verify_c3(struct acpi_processor *pr,
486 struct acpi_processor_cx *cx)
488 static int bm_check_flag;
491 if (!cx->address)
492 return;
495 * C3 latency must be less than or equal to 1000
496 * microseconds.
498 else if (cx->latency > ACPI_PROCESSOR_MAX_C3_LATENCY) {
499 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
500 "latency too large [%d]\n", cx->latency));
501 return;
505 * PIIX4 Erratum #18: We don't support C3 when Type-F (fast)
506 * DMA transfers are used by any ISA device to avoid livelock.
507 * Note that we could disable Type-F DMA (as recommended by
508 * the erratum), but this is known to disrupt certain ISA
509 * devices thus we take the conservative approach.
511 else if (errata.piix4.fdma) {
512 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
513 "C3 not supported on PIIX4 with Type-F DMA\n"));
514 return;
517 /* All the logic here assumes flags.bm_check is same across all CPUs */
518 if (!bm_check_flag) {
519 /* Determine whether bm_check is needed based on CPU */
520 acpi_processor_power_init_bm_check(&(pr->flags), pr->id);
521 bm_check_flag = pr->flags.bm_check;
522 } else {
523 pr->flags.bm_check = bm_check_flag;
526 if (pr->flags.bm_check) {
527 if (!pr->flags.bm_control) {
528 if (pr->flags.has_cst != 1) {
529 /* bus mastering control is necessary */
530 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
531 "C3 support requires BM control\n"));
532 return;
533 } else {
534 /* Here we enter C3 without bus mastering */
535 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
536 "C3 support without BM control\n"));
539 } else {
541 * WBINVD should be set in fadt, for C3 state to be
542 * supported on when bm_check is not required.
544 if (!(acpi_gbl_FADT.flags & ACPI_FADT_WBINVD)) {
545 ACPI_DEBUG_PRINT((ACPI_DB_INFO,
546 "Cache invalidation should work properly"
547 " for C3 to be enabled on SMP systems\n"));
548 return;
553 * Otherwise we've met all of our C3 requirements.
554 * Normalize the C3 latency to expidite policy. Enable
555 * checking of bus mastering status (bm_check) so we can
556 * use this in our C3 policy
558 cx->valid = 1;
560 cx->latency_ticks = cx->latency;
562 * On older chipsets, BM_RLD needs to be set
563 * in order for Bus Master activity to wake the
564 * system from C3. Newer chipsets handle DMA
565 * during C3 automatically and BM_RLD is a NOP.
566 * In either case, the proper way to
567 * handle BM_RLD is to set it and leave it set.
569 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_RLD, 1);
571 return;
574 static int acpi_processor_power_verify(struct acpi_processor *pr)
576 unsigned int i;
577 unsigned int working = 0;
579 pr->power.timer_broadcast_on_state = INT_MAX;
581 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
582 struct acpi_processor_cx *cx = &pr->power.states[i];
584 switch (cx->type) {
585 case ACPI_STATE_C1:
586 cx->valid = 1;
587 break;
589 case ACPI_STATE_C2:
590 acpi_processor_power_verify_c2(cx);
591 if (cx->valid)
592 acpi_timer_check_state(i, pr, cx);
593 break;
595 case ACPI_STATE_C3:
596 acpi_processor_power_verify_c3(pr, cx);
597 if (cx->valid)
598 acpi_timer_check_state(i, pr, cx);
599 break;
602 if (cx->valid)
603 working++;
606 acpi_propagate_timer_broadcast(pr);
608 return (working);
611 static int acpi_processor_get_power_info(struct acpi_processor *pr)
613 unsigned int i;
614 int result;
617 /* NOTE: the idle thread may not be running while calling
618 * this function */
620 /* Zero initialize all the C-states info. */
621 memset(pr->power.states, 0, sizeof(pr->power.states));
623 result = acpi_processor_get_power_info_cst(pr);
624 if (result == -ENODEV)
625 result = acpi_processor_get_power_info_fadt(pr);
627 if (result)
628 return result;
630 acpi_processor_get_power_info_default(pr);
632 pr->power.count = acpi_processor_power_verify(pr);
635 * if one state of type C2 or C3 is available, mark this
636 * CPU as being "idle manageable"
638 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER; i++) {
639 if (pr->power.states[i].valid) {
640 pr->power.count = i;
641 if (pr->power.states[i].type >= ACPI_STATE_C2)
642 pr->flags.power = 1;
646 return 0;
649 static int acpi_processor_power_seq_show(struct seq_file *seq, void *offset)
651 struct acpi_processor *pr = seq->private;
652 unsigned int i;
655 if (!pr)
656 goto end;
658 seq_printf(seq, "active state: C%zd\n"
659 "max_cstate: C%d\n"
660 "bus master activity: %08x\n"
661 "maximum allowed latency: %d usec\n",
662 pr->power.state ? pr->power.state - pr->power.states : 0,
663 max_cstate, (unsigned)pr->power.bm_activity,
664 pm_qos_requirement(PM_QOS_CPU_DMA_LATENCY));
666 seq_puts(seq, "states:\n");
668 for (i = 1; i <= pr->power.count; i++) {
669 seq_printf(seq, " %cC%d: ",
670 (&pr->power.states[i] ==
671 pr->power.state ? '*' : ' '), i);
673 if (!pr->power.states[i].valid) {
674 seq_puts(seq, "<not supported>\n");
675 continue;
678 switch (pr->power.states[i].type) {
679 case ACPI_STATE_C1:
680 seq_printf(seq, "type[C1] ");
681 break;
682 case ACPI_STATE_C2:
683 seq_printf(seq, "type[C2] ");
684 break;
685 case ACPI_STATE_C3:
686 seq_printf(seq, "type[C3] ");
687 break;
688 default:
689 seq_printf(seq, "type[--] ");
690 break;
693 if (pr->power.states[i].promotion.state)
694 seq_printf(seq, "promotion[C%zd] ",
695 (pr->power.states[i].promotion.state -
696 pr->power.states));
697 else
698 seq_puts(seq, "promotion[--] ");
700 if (pr->power.states[i].demotion.state)
701 seq_printf(seq, "demotion[C%zd] ",
702 (pr->power.states[i].demotion.state -
703 pr->power.states));
704 else
705 seq_puts(seq, "demotion[--] ");
707 seq_printf(seq, "latency[%03d] usage[%08d] duration[%020llu]\n",
708 pr->power.states[i].latency,
709 pr->power.states[i].usage,
710 (unsigned long long)pr->power.states[i].time);
713 end:
714 return 0;
717 static int acpi_processor_power_open_fs(struct inode *inode, struct file *file)
719 return single_open(file, acpi_processor_power_seq_show,
720 PDE(inode)->data);
723 static const struct file_operations acpi_processor_power_fops = {
724 .owner = THIS_MODULE,
725 .open = acpi_processor_power_open_fs,
726 .read = seq_read,
727 .llseek = seq_lseek,
728 .release = single_release,
733 * acpi_idle_bm_check - checks if bus master activity was detected
735 static int acpi_idle_bm_check(void)
737 u32 bm_status = 0;
739 acpi_read_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, &bm_status);
740 if (bm_status)
741 acpi_write_bit_register(ACPI_BITREG_BUS_MASTER_STATUS, 1);
743 * PIIX4 Erratum #18: Note that BM_STS doesn't always reflect
744 * the true state of bus mastering activity; forcing us to
745 * manually check the BMIDEA bit of each IDE channel.
747 else if (errata.piix4.bmisx) {
748 if ((inb_p(errata.piix4.bmisx + 0x02) & 0x01)
749 || (inb_p(errata.piix4.bmisx + 0x0A) & 0x01))
750 bm_status = 1;
752 return bm_status;
756 * acpi_idle_do_entry - a helper function that does C2 and C3 type entry
757 * @cx: cstate data
759 * Caller disables interrupt before call and enables interrupt after return.
761 static inline void acpi_idle_do_entry(struct acpi_processor_cx *cx)
763 /* Don't trace irqs off for idle */
764 stop_critical_timings();
765 if (cx->entry_method == ACPI_CSTATE_FFH) {
766 /* Call into architectural FFH based C-state */
767 acpi_processor_ffh_cstate_enter(cx);
768 } else if (cx->entry_method == ACPI_CSTATE_HALT) {
769 acpi_safe_halt();
770 } else {
771 int unused;
772 /* IO port based C-state */
773 inb(cx->address);
774 /* Dummy wait op - must do something useless after P_LVL2 read
775 because chipsets cannot guarantee that STPCLK# signal
776 gets asserted in time to freeze execution properly. */
777 unused = inl(acpi_gbl_FADT.xpm_timer_block.address);
779 start_critical_timings();
783 * acpi_idle_enter_c1 - enters an ACPI C1 state-type
784 * @dev: the target CPU
785 * @state: the state data
787 * This is equivalent to the HALT instruction.
789 static int acpi_idle_enter_c1(struct cpuidle_device *dev,
790 struct cpuidle_state *state)
792 ktime_t kt1, kt2;
793 s64 idle_time;
794 struct acpi_processor *pr;
795 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
797 pr = __get_cpu_var(processors);
799 if (unlikely(!pr))
800 return 0;
802 local_irq_disable();
804 /* Do not access any ACPI IO ports in suspend path */
805 if (acpi_idle_suspend) {
806 acpi_safe_halt();
807 local_irq_enable();
808 return 0;
811 kt1 = ktime_get_real();
812 acpi_idle_do_entry(cx);
813 kt2 = ktime_get_real();
814 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
816 local_irq_enable();
817 cx->usage++;
819 return idle_time;
823 * acpi_idle_enter_simple - enters an ACPI state without BM handling
824 * @dev: the target CPU
825 * @state: the state data
827 static int acpi_idle_enter_simple(struct cpuidle_device *dev,
828 struct cpuidle_state *state)
830 struct acpi_processor *pr;
831 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
832 ktime_t kt1, kt2;
833 s64 idle_time;
834 s64 sleep_ticks = 0;
836 pr = __get_cpu_var(processors);
838 if (unlikely(!pr))
839 return 0;
841 if (acpi_idle_suspend)
842 return(acpi_idle_enter_c1(dev, state));
844 local_irq_disable();
845 current_thread_info()->status &= ~TS_POLLING;
847 * TS_POLLING-cleared state must be visible before we test
848 * NEED_RESCHED:
850 smp_mb();
852 if (unlikely(need_resched())) {
853 current_thread_info()->status |= TS_POLLING;
854 local_irq_enable();
855 return 0;
859 * Must be done before busmaster disable as we might need to
860 * access HPET !
862 acpi_state_timer_broadcast(pr, cx, 1);
864 if (cx->type == ACPI_STATE_C3)
865 ACPI_FLUSH_CPU_CACHE();
867 kt1 = ktime_get_real();
868 /* Tell the scheduler that we are going deep-idle: */
869 sched_clock_idle_sleep_event();
870 acpi_idle_do_entry(cx);
871 kt2 = ktime_get_real();
872 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
874 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
875 /* TSC could halt in idle, so notify users */
876 if (tsc_halts_in_c(cx->type))
877 mark_tsc_unstable("TSC halts in idle");;
878 #endif
879 sleep_ticks = us_to_pm_timer_ticks(idle_time);
881 /* Tell the scheduler how much we idled: */
882 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
884 local_irq_enable();
885 current_thread_info()->status |= TS_POLLING;
887 cx->usage++;
889 acpi_state_timer_broadcast(pr, cx, 0);
890 cx->time += sleep_ticks;
891 return idle_time;
894 static int c3_cpu_count;
895 static DEFINE_SPINLOCK(c3_lock);
898 * acpi_idle_enter_bm - enters C3 with proper BM handling
899 * @dev: the target CPU
900 * @state: the state data
902 * If BM is detected, the deepest non-C3 idle state is entered instead.
904 static int acpi_idle_enter_bm(struct cpuidle_device *dev,
905 struct cpuidle_state *state)
907 struct acpi_processor *pr;
908 struct acpi_processor_cx *cx = cpuidle_get_statedata(state);
909 ktime_t kt1, kt2;
910 s64 idle_time;
911 s64 sleep_ticks = 0;
914 pr = __get_cpu_var(processors);
916 if (unlikely(!pr))
917 return 0;
919 if (acpi_idle_suspend)
920 return(acpi_idle_enter_c1(dev, state));
922 if (acpi_idle_bm_check()) {
923 if (dev->safe_state) {
924 dev->last_state = dev->safe_state;
925 return dev->safe_state->enter(dev, dev->safe_state);
926 } else {
927 local_irq_disable();
928 acpi_safe_halt();
929 local_irq_enable();
930 return 0;
934 local_irq_disable();
935 current_thread_info()->status &= ~TS_POLLING;
937 * TS_POLLING-cleared state must be visible before we test
938 * NEED_RESCHED:
940 smp_mb();
942 if (unlikely(need_resched())) {
943 current_thread_info()->status |= TS_POLLING;
944 local_irq_enable();
945 return 0;
948 acpi_unlazy_tlb(smp_processor_id());
950 /* Tell the scheduler that we are going deep-idle: */
951 sched_clock_idle_sleep_event();
953 * Must be done before busmaster disable as we might need to
954 * access HPET !
956 acpi_state_timer_broadcast(pr, cx, 1);
958 kt1 = ktime_get_real();
960 * disable bus master
961 * bm_check implies we need ARB_DIS
962 * !bm_check implies we need cache flush
963 * bm_control implies whether we can do ARB_DIS
965 * That leaves a case where bm_check is set and bm_control is
966 * not set. In that case we cannot do much, we enter C3
967 * without doing anything.
969 if (pr->flags.bm_check && pr->flags.bm_control) {
970 spin_lock(&c3_lock);
971 c3_cpu_count++;
972 /* Disable bus master arbitration when all CPUs are in C3 */
973 if (c3_cpu_count == num_online_cpus())
974 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 1);
975 spin_unlock(&c3_lock);
976 } else if (!pr->flags.bm_check) {
977 ACPI_FLUSH_CPU_CACHE();
980 acpi_idle_do_entry(cx);
982 /* Re-enable bus master arbitration */
983 if (pr->flags.bm_check && pr->flags.bm_control) {
984 spin_lock(&c3_lock);
985 acpi_write_bit_register(ACPI_BITREG_ARB_DISABLE, 0);
986 c3_cpu_count--;
987 spin_unlock(&c3_lock);
989 kt2 = ktime_get_real();
990 idle_time = ktime_to_us(ktime_sub(kt2, kt1));
992 #if defined (CONFIG_GENERIC_TIME) && defined (CONFIG_X86)
993 /* TSC could halt in idle, so notify users */
994 if (tsc_halts_in_c(ACPI_STATE_C3))
995 mark_tsc_unstable("TSC halts in idle");
996 #endif
997 sleep_ticks = us_to_pm_timer_ticks(idle_time);
998 /* Tell the scheduler how much we idled: */
999 sched_clock_idle_wakeup_event(sleep_ticks*PM_TIMER_TICK_NS);
1001 local_irq_enable();
1002 current_thread_info()->status |= TS_POLLING;
1004 cx->usage++;
1006 acpi_state_timer_broadcast(pr, cx, 0);
1007 cx->time += sleep_ticks;
1008 return idle_time;
1011 struct cpuidle_driver acpi_idle_driver = {
1012 .name = "acpi_idle",
1013 .owner = THIS_MODULE,
1017 * acpi_processor_setup_cpuidle - prepares and configures CPUIDLE
1018 * @pr: the ACPI processor
1020 static int acpi_processor_setup_cpuidle(struct acpi_processor *pr)
1022 int i, count = CPUIDLE_DRIVER_STATE_START;
1023 struct acpi_processor_cx *cx;
1024 struct cpuidle_state *state;
1025 struct cpuidle_device *dev = &pr->power.dev;
1027 if (!pr->flags.power_setup_done)
1028 return -EINVAL;
1030 if (pr->flags.power == 0) {
1031 return -EINVAL;
1034 dev->cpu = pr->id;
1035 for (i = 0; i < CPUIDLE_STATE_MAX; i++) {
1036 dev->states[i].name[0] = '\0';
1037 dev->states[i].desc[0] = '\0';
1040 for (i = 1; i < ACPI_PROCESSOR_MAX_POWER && i <= max_cstate; i++) {
1041 cx = &pr->power.states[i];
1042 state = &dev->states[count];
1044 if (!cx->valid)
1045 continue;
1047 #ifdef CONFIG_HOTPLUG_CPU
1048 if ((cx->type != ACPI_STATE_C1) && (num_online_cpus() > 1) &&
1049 !pr->flags.has_cst &&
1050 !(acpi_gbl_FADT.flags & ACPI_FADT_C2_MP_SUPPORTED))
1051 continue;
1052 #endif
1053 cpuidle_set_statedata(state, cx);
1055 snprintf(state->name, CPUIDLE_NAME_LEN, "C%d", i);
1056 strncpy(state->desc, cx->desc, CPUIDLE_DESC_LEN);
1057 state->exit_latency = cx->latency;
1058 state->target_residency = cx->latency * latency_factor;
1059 state->power_usage = cx->power;
1061 state->flags = 0;
1062 switch (cx->type) {
1063 case ACPI_STATE_C1:
1064 state->flags |= CPUIDLE_FLAG_SHALLOW;
1065 if (cx->entry_method == ACPI_CSTATE_FFH)
1066 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1068 state->enter = acpi_idle_enter_c1;
1069 dev->safe_state = state;
1070 break;
1072 case ACPI_STATE_C2:
1073 state->flags |= CPUIDLE_FLAG_BALANCED;
1074 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1075 state->enter = acpi_idle_enter_simple;
1076 dev->safe_state = state;
1077 break;
1079 case ACPI_STATE_C3:
1080 state->flags |= CPUIDLE_FLAG_DEEP;
1081 state->flags |= CPUIDLE_FLAG_TIME_VALID;
1082 state->flags |= CPUIDLE_FLAG_CHECK_BM;
1083 state->enter = pr->flags.bm_check ?
1084 acpi_idle_enter_bm :
1085 acpi_idle_enter_simple;
1086 break;
1089 count++;
1090 if (count == CPUIDLE_STATE_MAX)
1091 break;
1094 dev->state_count = count;
1096 if (!count)
1097 return -EINVAL;
1099 return 0;
1102 int acpi_processor_cst_has_changed(struct acpi_processor *pr)
1104 int ret = 0;
1106 if (boot_option_idle_override)
1107 return 0;
1109 if (!pr)
1110 return -EINVAL;
1112 if (nocst) {
1113 return -ENODEV;
1116 if (!pr->flags.power_setup_done)
1117 return -ENODEV;
1119 cpuidle_pause_and_lock();
1120 cpuidle_disable_device(&pr->power.dev);
1121 acpi_processor_get_power_info(pr);
1122 if (pr->flags.power) {
1123 acpi_processor_setup_cpuidle(pr);
1124 ret = cpuidle_enable_device(&pr->power.dev);
1126 cpuidle_resume_and_unlock();
1128 return ret;
1131 int __cpuinit acpi_processor_power_init(struct acpi_processor *pr,
1132 struct acpi_device *device)
1134 acpi_status status = 0;
1135 static int first_run;
1136 struct proc_dir_entry *entry = NULL;
1137 unsigned int i;
1139 if (boot_option_idle_override)
1140 return 0;
1142 if (!first_run) {
1143 if (idle_halt) {
1145 * When the boot option of "idle=halt" is added, halt
1146 * is used for CPU IDLE.
1147 * In such case C2/C3 is meaningless. So the max_cstate
1148 * is set to one.
1150 max_cstate = 1;
1152 dmi_check_system(processor_power_dmi_table);
1153 max_cstate = acpi_processor_cstate_check(max_cstate);
1154 if (max_cstate < ACPI_C_STATES_MAX)
1155 printk(KERN_NOTICE
1156 "ACPI: processor limited to max C-state %d\n",
1157 max_cstate);
1158 first_run++;
1161 if (!pr)
1162 return -EINVAL;
1164 if (acpi_gbl_FADT.cst_control && !nocst) {
1165 status =
1166 acpi_os_write_port(acpi_gbl_FADT.smi_command, acpi_gbl_FADT.cst_control, 8);
1167 if (ACPI_FAILURE(status)) {
1168 ACPI_EXCEPTION((AE_INFO, status,
1169 "Notifying BIOS of _CST ability failed"));
1173 acpi_processor_get_power_info(pr);
1174 pr->flags.power_setup_done = 1;
1177 * Install the idle handler if processor power management is supported.
1178 * Note that we use previously set idle handler will be used on
1179 * platforms that only support C1.
1181 if (pr->flags.power) {
1182 acpi_processor_setup_cpuidle(pr);
1183 if (cpuidle_register_device(&pr->power.dev))
1184 return -EIO;
1186 printk(KERN_INFO PREFIX "CPU%d (power states:", pr->id);
1187 for (i = 1; i <= pr->power.count; i++)
1188 if (pr->power.states[i].valid)
1189 printk(" C%d[C%d]", i,
1190 pr->power.states[i].type);
1191 printk(")\n");
1194 /* 'power' [R] */
1195 entry = proc_create_data(ACPI_PROCESSOR_FILE_POWER,
1196 S_IRUGO, acpi_device_dir(device),
1197 &acpi_processor_power_fops,
1198 acpi_driver_data(device));
1199 if (!entry)
1200 return -EIO;
1201 return 0;
1204 int acpi_processor_power_exit(struct acpi_processor *pr,
1205 struct acpi_device *device)
1207 if (boot_option_idle_override)
1208 return 0;
1210 cpuidle_unregister_device(&pr->power.dev);
1211 pr->flags.power_setup_done = 0;
1213 if (acpi_device_dir(device))
1214 remove_proc_entry(ACPI_PROCESSOR_FILE_POWER,
1215 acpi_device_dir(device));
1217 return 0;