1 /*******************************************************************************
3 Intel PRO/100 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
15 You should have received a copy of the GNU General Public License along with
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
23 Linux NICS <linux.nics@intel.com>
24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
27 *******************************************************************************/
30 * e100.c: Intel(R) PRO/100 ethernet driver
32 * (Re)written 2003 by scott.feldman@intel.com. Based loosely on
33 * original e100 driver, but better described as a munging of
34 * e100, e1000, eepro100, tg3, 8139cp, and other drivers.
37 * Intel 8255x 10/100 Mbps Ethernet Controller Family,
38 * Open Source Software Developers Manual,
39 * http://sourceforge.net/projects/e1000
46 * The driver supports Intel(R) 10/100 Mbps PCI Fast Ethernet
47 * controller family, which includes the 82557, 82558, 82559, 82550,
48 * 82551, and 82562 devices. 82558 and greater controllers
49 * integrate the Intel 82555 PHY. The controllers are used in
50 * server and client network interface cards, as well as in
51 * LAN-On-Motherboard (LOM), CardBus, MiniPCI, and ICHx
52 * configurations. 8255x supports a 32-bit linear addressing
53 * mode and operates at 33Mhz PCI clock rate.
55 * II. Driver Operation
57 * Memory-mapped mode is used exclusively to access the device's
58 * shared-memory structure, the Control/Status Registers (CSR). All
59 * setup, configuration, and control of the device, including queuing
60 * of Tx, Rx, and configuration commands is through the CSR.
61 * cmd_lock serializes accesses to the CSR command register. cb_lock
62 * protects the shared Command Block List (CBL).
64 * 8255x is highly MII-compliant and all access to the PHY go
65 * through the Management Data Interface (MDI). Consequently, the
66 * driver leverages the mii.c library shared with other MII-compliant
69 * Big- and Little-Endian byte order as well as 32- and 64-bit
70 * archs are supported. Weak-ordered memory and non-cache-coherent
71 * archs are supported.
75 * A Tx skb is mapped and hangs off of a TCB. TCBs are linked
76 * together in a fixed-size ring (CBL) thus forming the flexible mode
77 * memory structure. A TCB marked with the suspend-bit indicates
78 * the end of the ring. The last TCB processed suspends the
79 * controller, and the controller can be restarted by issue a CU
80 * resume command to continue from the suspend point, or a CU start
81 * command to start at a given position in the ring.
83 * Non-Tx commands (config, multicast setup, etc) are linked
84 * into the CBL ring along with Tx commands. The common structure
85 * used for both Tx and non-Tx commands is the Command Block (CB).
87 * cb_to_use is the next CB to use for queuing a command; cb_to_clean
88 * is the next CB to check for completion; cb_to_send is the first
89 * CB to start on in case of a previous failure to resume. CB clean
90 * up happens in interrupt context in response to a CU interrupt.
91 * cbs_avail keeps track of number of free CB resources available.
93 * Hardware padding of short packets to minimum packet size is
94 * enabled. 82557 pads with 7Eh, while the later controllers pad
99 * The Receive Frame Area (RFA) comprises a ring of Receive Frame
100 * Descriptors (RFD) + data buffer, thus forming the simplified mode
101 * memory structure. Rx skbs are allocated to contain both the RFD
102 * and the data buffer, but the RFD is pulled off before the skb is
103 * indicated. The data buffer is aligned such that encapsulated
104 * protocol headers are u32-aligned. Since the RFD is part of the
105 * mapped shared memory, and completion status is contained within
106 * the RFD, the RFD must be dma_sync'ed to maintain a consistent
107 * view from software and hardware.
109 * In order to keep updates to the RFD link field from colliding with
110 * hardware writes to mark packets complete, we use the feature that
111 * hardware will not write to a size 0 descriptor and mark the previous
112 * packet as end-of-list (EL). After updating the link, we remove EL
113 * and only then restore the size such that hardware may use the
114 * previous-to-end RFD.
116 * Under typical operation, the receive unit (RU) is start once,
117 * and the controller happily fills RFDs as frames arrive. If
118 * replacement RFDs cannot be allocated, or the RU goes non-active,
119 * the RU must be restarted. Frame arrival generates an interrupt,
120 * and Rx indication and re-allocation happen in the same context,
121 * therefore no locking is required. A software-generated interrupt
122 * is generated from the watchdog to recover from a failed allocation
123 * scenario where all Rx resources have been indicated and none re-
128 * VLAN offloading of tagging, stripping and filtering is not
129 * supported, but driver will accommodate the extra 4-byte VLAN tag
130 * for processing by upper layers. Tx/Rx Checksum offloading is not
131 * supported. Tx Scatter/Gather is not supported. Jumbo Frames is
132 * not supported (hardware limitation).
134 * MagicPacket(tm) WoL support is enabled/disabled via ethtool.
136 * Thanks to JC (jchapman@katalix.com) for helping with
137 * testing/troubleshooting the development driver.
140 * o several entry points race with dev->close
141 * o check for tx-no-resources/stop Q races with tx clean/wake Q
144 * 2005/12/02 - Michael O'Donnell <Michael.ODonnell at stratus dot com>
145 * - Stratus87247: protect MDI control register manipulations
148 #include <linux/module.h>
149 #include <linux/moduleparam.h>
150 #include <linux/kernel.h>
151 #include <linux/types.h>
152 #include <linux/slab.h>
153 #include <linux/delay.h>
154 #include <linux/init.h>
155 #include <linux/pci.h>
156 #include <linux/dma-mapping.h>
157 #include <linux/netdevice.h>
158 #include <linux/etherdevice.h>
159 #include <linux/mii.h>
160 #include <linux/if_vlan.h>
161 #include <linux/skbuff.h>
162 #include <linux/ethtool.h>
163 #include <linux/string.h>
164 #include <linux/firmware.h>
165 #include <asm/unaligned.h>
168 #define DRV_NAME "e100"
169 #define DRV_EXT "-NAPI"
170 #define DRV_VERSION "3.5.23-k6"DRV_EXT
171 #define DRV_DESCRIPTION "Intel(R) PRO/100 Network Driver"
172 #define DRV_COPYRIGHT "Copyright(c) 1999-2006 Intel Corporation"
173 #define PFX DRV_NAME ": "
175 #define E100_WATCHDOG_PERIOD (2 * HZ)
176 #define E100_NAPI_WEIGHT 16
178 #define FIRMWARE_D101M "e100/d101m_ucode.bin"
179 #define FIRMWARE_D101S "e100/d101s_ucode.bin"
180 #define FIRMWARE_D102E "e100/d102e_ucode.bin"
182 MODULE_DESCRIPTION(DRV_DESCRIPTION
);
183 MODULE_AUTHOR(DRV_COPYRIGHT
);
184 MODULE_LICENSE("GPL");
185 MODULE_VERSION(DRV_VERSION
);
186 MODULE_FIRMWARE(FIRMWARE_D101M
);
187 MODULE_FIRMWARE(FIRMWARE_D101S
);
188 MODULE_FIRMWARE(FIRMWARE_D102E
);
190 static int debug
= 3;
191 static int eeprom_bad_csum_allow
= 0;
192 static int use_io
= 0;
193 module_param(debug
, int, 0);
194 module_param(eeprom_bad_csum_allow
, int, 0);
195 module_param(use_io
, int, 0);
196 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
197 MODULE_PARM_DESC(eeprom_bad_csum_allow
, "Allow bad eeprom checksums");
198 MODULE_PARM_DESC(use_io
, "Force use of i/o access mode");
199 #define DPRINTK(nlevel, klevel, fmt, args...) \
200 (void)((NETIF_MSG_##nlevel & nic->msg_enable) && \
201 printk(KERN_##klevel PFX "%s: %s: " fmt, nic->netdev->name, \
204 #define INTEL_8255X_ETHERNET_DEVICE(device_id, ich) {\
205 PCI_VENDOR_ID_INTEL, device_id, PCI_ANY_ID, PCI_ANY_ID, \
206 PCI_CLASS_NETWORK_ETHERNET << 8, 0xFFFF00, ich }
207 static struct pci_device_id e100_id_table
[] = {
208 INTEL_8255X_ETHERNET_DEVICE(0x1029, 0),
209 INTEL_8255X_ETHERNET_DEVICE(0x1030, 0),
210 INTEL_8255X_ETHERNET_DEVICE(0x1031, 3),
211 INTEL_8255X_ETHERNET_DEVICE(0x1032, 3),
212 INTEL_8255X_ETHERNET_DEVICE(0x1033, 3),
213 INTEL_8255X_ETHERNET_DEVICE(0x1034, 3),
214 INTEL_8255X_ETHERNET_DEVICE(0x1038, 3),
215 INTEL_8255X_ETHERNET_DEVICE(0x1039, 4),
216 INTEL_8255X_ETHERNET_DEVICE(0x103A, 4),
217 INTEL_8255X_ETHERNET_DEVICE(0x103B, 4),
218 INTEL_8255X_ETHERNET_DEVICE(0x103C, 4),
219 INTEL_8255X_ETHERNET_DEVICE(0x103D, 4),
220 INTEL_8255X_ETHERNET_DEVICE(0x103E, 4),
221 INTEL_8255X_ETHERNET_DEVICE(0x1050, 5),
222 INTEL_8255X_ETHERNET_DEVICE(0x1051, 5),
223 INTEL_8255X_ETHERNET_DEVICE(0x1052, 5),
224 INTEL_8255X_ETHERNET_DEVICE(0x1053, 5),
225 INTEL_8255X_ETHERNET_DEVICE(0x1054, 5),
226 INTEL_8255X_ETHERNET_DEVICE(0x1055, 5),
227 INTEL_8255X_ETHERNET_DEVICE(0x1056, 5),
228 INTEL_8255X_ETHERNET_DEVICE(0x1057, 5),
229 INTEL_8255X_ETHERNET_DEVICE(0x1059, 0),
230 INTEL_8255X_ETHERNET_DEVICE(0x1064, 6),
231 INTEL_8255X_ETHERNET_DEVICE(0x1065, 6),
232 INTEL_8255X_ETHERNET_DEVICE(0x1066, 6),
233 INTEL_8255X_ETHERNET_DEVICE(0x1067, 6),
234 INTEL_8255X_ETHERNET_DEVICE(0x1068, 6),
235 INTEL_8255X_ETHERNET_DEVICE(0x1069, 6),
236 INTEL_8255X_ETHERNET_DEVICE(0x106A, 6),
237 INTEL_8255X_ETHERNET_DEVICE(0x106B, 6),
238 INTEL_8255X_ETHERNET_DEVICE(0x1091, 7),
239 INTEL_8255X_ETHERNET_DEVICE(0x1092, 7),
240 INTEL_8255X_ETHERNET_DEVICE(0x1093, 7),
241 INTEL_8255X_ETHERNET_DEVICE(0x1094, 7),
242 INTEL_8255X_ETHERNET_DEVICE(0x1095, 7),
243 INTEL_8255X_ETHERNET_DEVICE(0x1209, 0),
244 INTEL_8255X_ETHERNET_DEVICE(0x1229, 0),
245 INTEL_8255X_ETHERNET_DEVICE(0x2449, 2),
246 INTEL_8255X_ETHERNET_DEVICE(0x2459, 2),
247 INTEL_8255X_ETHERNET_DEVICE(0x245D, 2),
248 INTEL_8255X_ETHERNET_DEVICE(0x27DC, 7),
251 MODULE_DEVICE_TABLE(pci
, e100_id_table
);
254 mac_82557_D100_A
= 0,
255 mac_82557_D100_B
= 1,
256 mac_82557_D100_C
= 2,
257 mac_82558_D101_A4
= 4,
258 mac_82558_D101_B0
= 5,
262 mac_82550_D102_C
= 13,
270 phy_100a
= 0x000003E0,
271 phy_100c
= 0x035002A8,
272 phy_82555_tx
= 0x015002A8,
273 phy_nsc_tx
= 0x5C002000,
274 phy_82562_et
= 0x033002A8,
275 phy_82562_em
= 0x032002A8,
276 phy_82562_ek
= 0x031002A8,
277 phy_82562_eh
= 0x017002A8,
278 phy_unknown
= 0xFFFFFFFF,
281 /* CSR (Control/Status Registers) */
307 RU_UNINITIALIZED
= -1,
311 stat_ack_not_ours
= 0x00,
312 stat_ack_sw_gen
= 0x04,
314 stat_ack_cu_idle
= 0x20,
315 stat_ack_frame_rx
= 0x40,
316 stat_ack_cu_cmd_done
= 0x80,
317 stat_ack_not_present
= 0xFF,
318 stat_ack_rx
= (stat_ack_sw_gen
| stat_ack_rnr
| stat_ack_frame_rx
),
319 stat_ack_tx
= (stat_ack_cu_idle
| stat_ack_cu_cmd_done
),
323 irq_mask_none
= 0x00,
331 ruc_load_base
= 0x06,
334 cuc_dump_addr
= 0x40,
335 cuc_dump_stats
= 0x50,
336 cuc_load_base
= 0x60,
337 cuc_dump_reset
= 0x70,
341 cuc_dump_complete
= 0x0000A005,
342 cuc_dump_reset_complete
= 0x0000A007,
346 software_reset
= 0x0000,
348 selective_reset
= 0x0002,
351 enum eeprom_ctrl_lo
{
359 mdi_write
= 0x04000000,
360 mdi_read
= 0x08000000,
361 mdi_ready
= 0x10000000,
371 enum eeprom_offsets
{
372 eeprom_cnfg_mdix
= 0x03,
374 eeprom_config_asf
= 0x0D,
375 eeprom_smbus_addr
= 0x90,
378 enum eeprom_cnfg_mdix
{
379 eeprom_mdix_enabled
= 0x0080,
383 eeprom_id_wol
= 0x0020,
386 enum eeprom_config_asf
{
392 cb_complete
= 0x8000,
421 struct rx
*next
, *prev
;
426 #if defined(__BIG_ENDIAN_BITFIELD)
432 /*0*/ u8
X(byte_count
:6, pad0
:2);
433 /*1*/ u8
X(X(rx_fifo_limit
:4, tx_fifo_limit
:3), pad1
:1);
434 /*2*/ u8 adaptive_ifs
;
435 /*3*/ u8
X(X(X(X(mwi_enable
:1, type_enable
:1), read_align_enable
:1),
436 term_write_cache_line
:1), pad3
:4);
437 /*4*/ u8
X(rx_dma_max_count
:7, pad4
:1);
438 /*5*/ u8
X(tx_dma_max_count
:7, dma_max_count_enable
:1);
439 /*6*/ u8
X(X(X(X(X(X(X(late_scb_update
:1, direct_rx_dma
:1),
440 tno_intr
:1), cna_intr
:1), standard_tcb
:1), standard_stat_counter
:1),
441 rx_discard_overruns
:1), rx_save_bad_frames
:1);
442 /*7*/ u8
X(X(X(X(X(rx_discard_short_frames
:1, tx_underrun_retry
:2),
443 pad7
:2), rx_extended_rfd
:1), tx_two_frames_in_fifo
:1),
445 /*8*/ u8
X(X(mii_mode
:1, pad8
:6), csma_disabled
:1);
446 /*9*/ u8
X(X(X(X(X(rx_tcpudp_checksum
:1, pad9
:3), vlan_arp_tco
:1),
447 link_status_wake
:1), arp_wake
:1), mcmatch_wake
:1);
448 /*10*/ u8
X(X(X(pad10
:3, no_source_addr_insertion
:1), preamble_length
:2),
450 /*11*/ u8
X(linear_priority
:3, pad11
:5);
451 /*12*/ u8
X(X(linear_priority_mode
:1, pad12
:3), ifs
:4);
452 /*13*/ u8 ip_addr_lo
;
453 /*14*/ u8 ip_addr_hi
;
454 /*15*/ u8
X(X(X(X(X(X(X(promiscuous_mode
:1, broadcast_disabled
:1),
455 wait_after_win
:1), pad15_1
:1), ignore_ul_bit
:1), crc_16_bit
:1),
456 pad15_2
:1), crs_or_cdt
:1);
457 /*16*/ u8 fc_delay_lo
;
458 /*17*/ u8 fc_delay_hi
;
459 /*18*/ u8
X(X(X(X(X(rx_stripping
:1, tx_padding
:1), rx_crc_transfer
:1),
460 rx_long_ok
:1), fc_priority_threshold
:3), pad18
:1);
461 /*19*/ u8
X(X(X(X(X(X(X(addr_wake
:1, magic_packet_disable
:1),
462 fc_disable
:1), fc_restop
:1), fc_restart
:1), fc_reject
:1),
463 full_duplex_force
:1), full_duplex_pin
:1);
464 /*20*/ u8
X(X(X(pad20_1
:5, fc_priority_location
:1), multi_ia
:1), pad20_2
:1);
465 /*21*/ u8
X(X(pad21_1
:3, multicast_all
:1), pad21_2
:4);
466 /*22*/ u8
X(X(rx_d102_mode
:1, rx_vlan_drop
:1), pad22
:6);
470 #define E100_MAX_MULTICAST_ADDRS 64
473 u8 addr
[E100_MAX_MULTICAST_ADDRS
* ETH_ALEN
+ 2/*pad*/];
476 /* Important: keep total struct u32-aligned */
477 #define UCODE_SIZE 134
484 __le32 ucode
[UCODE_SIZE
];
485 struct config config
;
498 __le32 dump_buffer_addr
;
500 struct cb
*next
, *prev
;
506 lb_none
= 0, lb_mac
= 1, lb_phy
= 3,
510 __le32 tx_good_frames
, tx_max_collisions
, tx_late_collisions
,
511 tx_underruns
, tx_lost_crs
, tx_deferred
, tx_single_collisions
,
512 tx_multiple_collisions
, tx_total_collisions
;
513 __le32 rx_good_frames
, rx_crc_errors
, rx_alignment_errors
,
514 rx_resource_errors
, rx_overrun_errors
, rx_cdt_errors
,
515 rx_short_frame_errors
;
516 __le32 fc_xmt_pause
, fc_rcv_pause
, fc_rcv_unsupported
;
517 __le16 xmt_tco_frames
, rcv_tco_frames
;
537 struct param_range rfds
;
538 struct param_range cbs
;
542 /* Begin: frequently used values: keep adjacent for cache effect */
543 u32 msg_enable ____cacheline_aligned
;
544 struct net_device
*netdev
;
545 struct pci_dev
*pdev
;
547 struct rx
*rxs ____cacheline_aligned
;
548 struct rx
*rx_to_use
;
549 struct rx
*rx_to_clean
;
550 struct rfd blank_rfd
;
551 enum ru_state ru_running
;
553 spinlock_t cb_lock ____cacheline_aligned
;
555 struct csr __iomem
*csr
;
556 enum scb_cmd_lo cuc_cmd
;
557 unsigned int cbs_avail
;
558 struct napi_struct napi
;
560 struct cb
*cb_to_use
;
561 struct cb
*cb_to_send
;
562 struct cb
*cb_to_clean
;
564 /* End: frequently used values: keep adjacent for cache effect */
568 promiscuous
= (1 << 1),
569 multicast_all
= (1 << 2),
570 wol_magic
= (1 << 3),
571 ich_10h_workaround
= (1 << 4),
572 } flags ____cacheline_aligned
;
576 struct params params
;
577 struct timer_list watchdog
;
578 struct timer_list blink_timer
;
579 struct mii_if_info mii
;
580 struct work_struct tx_timeout_task
;
581 enum loopback loopback
;
586 dma_addr_t cbs_dma_addr
;
592 u32 tx_single_collisions
;
593 u32 tx_multiple_collisions
;
598 u32 rx_fc_unsupported
;
600 u32 rx_over_length_errors
;
605 spinlock_t mdio_lock
;
608 static inline void e100_write_flush(struct nic
*nic
)
610 /* Flush previous PCI writes through intermediate bridges
611 * by doing a benign read */
612 (void)ioread8(&nic
->csr
->scb
.status
);
615 static void e100_enable_irq(struct nic
*nic
)
619 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
620 iowrite8(irq_mask_none
, &nic
->csr
->scb
.cmd_hi
);
621 e100_write_flush(nic
);
622 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
625 static void e100_disable_irq(struct nic
*nic
)
629 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
630 iowrite8(irq_mask_all
, &nic
->csr
->scb
.cmd_hi
);
631 e100_write_flush(nic
);
632 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
635 static void e100_hw_reset(struct nic
*nic
)
637 /* Put CU and RU into idle with a selective reset to get
638 * device off of PCI bus */
639 iowrite32(selective_reset
, &nic
->csr
->port
);
640 e100_write_flush(nic
); udelay(20);
642 /* Now fully reset device */
643 iowrite32(software_reset
, &nic
->csr
->port
);
644 e100_write_flush(nic
); udelay(20);
646 /* Mask off our interrupt line - it's unmasked after reset */
647 e100_disable_irq(nic
);
650 static int e100_self_test(struct nic
*nic
)
652 u32 dma_addr
= nic
->dma_addr
+ offsetof(struct mem
, selftest
);
654 /* Passing the self-test is a pretty good indication
655 * that the device can DMA to/from host memory */
657 nic
->mem
->selftest
.signature
= 0;
658 nic
->mem
->selftest
.result
= 0xFFFFFFFF;
660 iowrite32(selftest
| dma_addr
, &nic
->csr
->port
);
661 e100_write_flush(nic
);
662 /* Wait 10 msec for self-test to complete */
665 /* Interrupts are enabled after self-test */
666 e100_disable_irq(nic
);
668 /* Check results of self-test */
669 if (nic
->mem
->selftest
.result
!= 0) {
670 DPRINTK(HW
, ERR
, "Self-test failed: result=0x%08X\n",
671 nic
->mem
->selftest
.result
);
674 if (nic
->mem
->selftest
.signature
== 0) {
675 DPRINTK(HW
, ERR
, "Self-test failed: timed out\n");
682 static void e100_eeprom_write(struct nic
*nic
, u16 addr_len
, u16 addr
, __le16 data
)
684 u32 cmd_addr_data
[3];
688 /* Three cmds: write/erase enable, write data, write/erase disable */
689 cmd_addr_data
[0] = op_ewen
<< (addr_len
- 2);
690 cmd_addr_data
[1] = (((op_write
<< addr_len
) | addr
) << 16) |
692 cmd_addr_data
[2] = op_ewds
<< (addr_len
- 2);
694 /* Bit-bang cmds to write word to eeprom */
695 for (j
= 0; j
< 3; j
++) {
698 iowrite8(eecs
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
699 e100_write_flush(nic
); udelay(4);
701 for (i
= 31; i
>= 0; i
--) {
702 ctrl
= (cmd_addr_data
[j
] & (1 << i
)) ?
704 iowrite8(ctrl
, &nic
->csr
->eeprom_ctrl_lo
);
705 e100_write_flush(nic
); udelay(4);
707 iowrite8(ctrl
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
708 e100_write_flush(nic
); udelay(4);
710 /* Wait 10 msec for cmd to complete */
714 iowrite8(0, &nic
->csr
->eeprom_ctrl_lo
);
715 e100_write_flush(nic
); udelay(4);
719 /* General technique stolen from the eepro100 driver - very clever */
720 static __le16
e100_eeprom_read(struct nic
*nic
, u16
*addr_len
, u16 addr
)
727 cmd_addr_data
= ((op_read
<< *addr_len
) | addr
) << 16;
730 iowrite8(eecs
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
731 e100_write_flush(nic
); udelay(4);
733 /* Bit-bang to read word from eeprom */
734 for (i
= 31; i
>= 0; i
--) {
735 ctrl
= (cmd_addr_data
& (1 << i
)) ? eecs
| eedi
: eecs
;
736 iowrite8(ctrl
, &nic
->csr
->eeprom_ctrl_lo
);
737 e100_write_flush(nic
); udelay(4);
739 iowrite8(ctrl
| eesk
, &nic
->csr
->eeprom_ctrl_lo
);
740 e100_write_flush(nic
); udelay(4);
742 /* Eeprom drives a dummy zero to EEDO after receiving
743 * complete address. Use this to adjust addr_len. */
744 ctrl
= ioread8(&nic
->csr
->eeprom_ctrl_lo
);
745 if (!(ctrl
& eedo
) && i
> 16) {
746 *addr_len
-= (i
- 16);
750 data
= (data
<< 1) | (ctrl
& eedo
? 1 : 0);
754 iowrite8(0, &nic
->csr
->eeprom_ctrl_lo
);
755 e100_write_flush(nic
); udelay(4);
757 return cpu_to_le16(data
);
760 /* Load entire EEPROM image into driver cache and validate checksum */
761 static int e100_eeprom_load(struct nic
*nic
)
763 u16 addr
, addr_len
= 8, checksum
= 0;
765 /* Try reading with an 8-bit addr len to discover actual addr len */
766 e100_eeprom_read(nic
, &addr_len
, 0);
767 nic
->eeprom_wc
= 1 << addr_len
;
769 for (addr
= 0; addr
< nic
->eeprom_wc
; addr
++) {
770 nic
->eeprom
[addr
] = e100_eeprom_read(nic
, &addr_len
, addr
);
771 if (addr
< nic
->eeprom_wc
- 1)
772 checksum
+= le16_to_cpu(nic
->eeprom
[addr
]);
775 /* The checksum, stored in the last word, is calculated such that
776 * the sum of words should be 0xBABA */
777 if (cpu_to_le16(0xBABA - checksum
) != nic
->eeprom
[nic
->eeprom_wc
- 1]) {
778 DPRINTK(PROBE
, ERR
, "EEPROM corrupted\n");
779 if (!eeprom_bad_csum_allow
)
786 /* Save (portion of) driver EEPROM cache to device and update checksum */
787 static int e100_eeprom_save(struct nic
*nic
, u16 start
, u16 count
)
789 u16 addr
, addr_len
= 8, checksum
= 0;
791 /* Try reading with an 8-bit addr len to discover actual addr len */
792 e100_eeprom_read(nic
, &addr_len
, 0);
793 nic
->eeprom_wc
= 1 << addr_len
;
795 if (start
+ count
>= nic
->eeprom_wc
)
798 for (addr
= start
; addr
< start
+ count
; addr
++)
799 e100_eeprom_write(nic
, addr_len
, addr
, nic
->eeprom
[addr
]);
801 /* The checksum, stored in the last word, is calculated such that
802 * the sum of words should be 0xBABA */
803 for (addr
= 0; addr
< nic
->eeprom_wc
- 1; addr
++)
804 checksum
+= le16_to_cpu(nic
->eeprom
[addr
]);
805 nic
->eeprom
[nic
->eeprom_wc
- 1] = cpu_to_le16(0xBABA - checksum
);
806 e100_eeprom_write(nic
, addr_len
, nic
->eeprom_wc
- 1,
807 nic
->eeprom
[nic
->eeprom_wc
- 1]);
812 #define E100_WAIT_SCB_TIMEOUT 20000 /* we might have to wait 100ms!!! */
813 #define E100_WAIT_SCB_FAST 20 /* delay like the old code */
814 static int e100_exec_cmd(struct nic
*nic
, u8 cmd
, dma_addr_t dma_addr
)
820 spin_lock_irqsave(&nic
->cmd_lock
, flags
);
822 /* Previous command is accepted when SCB clears */
823 for (i
= 0; i
< E100_WAIT_SCB_TIMEOUT
; i
++) {
824 if (likely(!ioread8(&nic
->csr
->scb
.cmd_lo
)))
827 if (unlikely(i
> E100_WAIT_SCB_FAST
))
830 if (unlikely(i
== E100_WAIT_SCB_TIMEOUT
)) {
835 if (unlikely(cmd
!= cuc_resume
))
836 iowrite32(dma_addr
, &nic
->csr
->scb
.gen_ptr
);
837 iowrite8(cmd
, &nic
->csr
->scb
.cmd_lo
);
840 spin_unlock_irqrestore(&nic
->cmd_lock
, flags
);
845 static int e100_exec_cb(struct nic
*nic
, struct sk_buff
*skb
,
846 void (*cb_prepare
)(struct nic
*, struct cb
*, struct sk_buff
*))
852 spin_lock_irqsave(&nic
->cb_lock
, flags
);
854 if (unlikely(!nic
->cbs_avail
)) {
860 nic
->cb_to_use
= cb
->next
;
864 if (unlikely(!nic
->cbs_avail
))
867 cb_prepare(nic
, cb
, skb
);
869 /* Order is important otherwise we'll be in a race with h/w:
870 * set S-bit in current first, then clear S-bit in previous. */
871 cb
->command
|= cpu_to_le16(cb_s
);
873 cb
->prev
->command
&= cpu_to_le16(~cb_s
);
875 while (nic
->cb_to_send
!= nic
->cb_to_use
) {
876 if (unlikely(e100_exec_cmd(nic
, nic
->cuc_cmd
,
877 nic
->cb_to_send
->dma_addr
))) {
878 /* Ok, here's where things get sticky. It's
879 * possible that we can't schedule the command
880 * because the controller is too busy, so
881 * let's just queue the command and try again
882 * when another command is scheduled. */
883 if (err
== -ENOSPC
) {
885 schedule_work(&nic
->tx_timeout_task
);
889 nic
->cuc_cmd
= cuc_resume
;
890 nic
->cb_to_send
= nic
->cb_to_send
->next
;
895 spin_unlock_irqrestore(&nic
->cb_lock
, flags
);
900 static u16
mdio_ctrl(struct nic
*nic
, u32 addr
, u32 dir
, u32 reg
, u16 data
)
908 * Stratus87247: we shouldn't be writing the MDI control
909 * register until the Ready bit shows True. Also, since
910 * manipulation of the MDI control registers is a multi-step
911 * procedure it should be done under lock.
913 spin_lock_irqsave(&nic
->mdio_lock
, flags
);
914 for (i
= 100; i
; --i
) {
915 if (ioread32(&nic
->csr
->mdi_ctrl
) & mdi_ready
)
920 printk("e100.mdio_ctrl(%s) won't go Ready\n",
922 spin_unlock_irqrestore(&nic
->mdio_lock
, flags
);
923 return 0; /* No way to indicate timeout error */
925 iowrite32((reg
<< 16) | (addr
<< 21) | dir
| data
, &nic
->csr
->mdi_ctrl
);
927 for (i
= 0; i
< 100; i
++) {
929 if ((data_out
= ioread32(&nic
->csr
->mdi_ctrl
)) & mdi_ready
)
932 spin_unlock_irqrestore(&nic
->mdio_lock
, flags
);
934 "%s:addr=%d, reg=%d, data_in=0x%04X, data_out=0x%04X\n",
935 dir
== mdi_read
? "READ" : "WRITE", addr
, reg
, data
, data_out
);
936 return (u16
)data_out
;
939 static int mdio_read(struct net_device
*netdev
, int addr
, int reg
)
941 return mdio_ctrl(netdev_priv(netdev
), addr
, mdi_read
, reg
, 0);
944 static void mdio_write(struct net_device
*netdev
, int addr
, int reg
, int data
)
946 mdio_ctrl(netdev_priv(netdev
), addr
, mdi_write
, reg
, data
);
949 static void e100_get_defaults(struct nic
*nic
)
951 struct param_range rfds
= { .min
= 16, .max
= 256, .count
= 256 };
952 struct param_range cbs
= { .min
= 64, .max
= 256, .count
= 128 };
954 /* MAC type is encoded as rev ID; exception: ICH is treated as 82559 */
955 nic
->mac
= (nic
->flags
& ich
) ? mac_82559_D101M
: nic
->pdev
->revision
;
956 if (nic
->mac
== mac_unknown
)
957 nic
->mac
= mac_82557_D100_A
;
959 nic
->params
.rfds
= rfds
;
960 nic
->params
.cbs
= cbs
;
962 /* Quadwords to DMA into FIFO before starting frame transmit */
963 nic
->tx_threshold
= 0xE0;
965 /* no interrupt for every tx completion, delay = 256us if not 557 */
966 nic
->tx_command
= cpu_to_le16(cb_tx
| cb_tx_sf
|
967 ((nic
->mac
>= mac_82558_D101_A4
) ? cb_cid
: cb_i
));
969 /* Template for a freshly allocated RFD */
970 nic
->blank_rfd
.command
= 0;
971 nic
->blank_rfd
.rbd
= cpu_to_le32(0xFFFFFFFF);
972 nic
->blank_rfd
.size
= cpu_to_le16(VLAN_ETH_FRAME_LEN
);
975 nic
->mii
.phy_id_mask
= 0x1F;
976 nic
->mii
.reg_num_mask
= 0x1F;
977 nic
->mii
.dev
= nic
->netdev
;
978 nic
->mii
.mdio_read
= mdio_read
;
979 nic
->mii
.mdio_write
= mdio_write
;
982 static void e100_configure(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
984 struct config
*config
= &cb
->u
.config
;
985 u8
*c
= (u8
*)config
;
987 cb
->command
= cpu_to_le16(cb_config
);
989 memset(config
, 0, sizeof(struct config
));
991 config
->byte_count
= 0x16; /* bytes in this struct */
992 config
->rx_fifo_limit
= 0x8; /* bytes in FIFO before DMA */
993 config
->direct_rx_dma
= 0x1; /* reserved */
994 config
->standard_tcb
= 0x1; /* 1=standard, 0=extended */
995 config
->standard_stat_counter
= 0x1; /* 1=standard, 0=extended */
996 config
->rx_discard_short_frames
= 0x1; /* 1=discard, 0=pass */
997 config
->tx_underrun_retry
= 0x3; /* # of underrun retries */
998 config
->mii_mode
= 0x1; /* 1=MII mode, 0=503 mode */
1000 config
->no_source_addr_insertion
= 0x1; /* 1=no, 0=yes */
1001 config
->preamble_length
= 0x2; /* 0=1, 1=3, 2=7, 3=15 bytes */
1002 config
->ifs
= 0x6; /* x16 = inter frame spacing */
1003 config
->ip_addr_hi
= 0xF2; /* ARP IP filter - not used */
1004 config
->pad15_1
= 0x1;
1005 config
->pad15_2
= 0x1;
1006 config
->crs_or_cdt
= 0x0; /* 0=CRS only, 1=CRS or CDT */
1007 config
->fc_delay_hi
= 0x40; /* time delay for fc frame */
1008 config
->tx_padding
= 0x1; /* 1=pad short frames */
1009 config
->fc_priority_threshold
= 0x7; /* 7=priority fc disabled */
1010 config
->pad18
= 0x1;
1011 config
->full_duplex_pin
= 0x1; /* 1=examine FDX# pin */
1012 config
->pad20_1
= 0x1F;
1013 config
->fc_priority_location
= 0x1; /* 1=byte#31, 0=byte#19 */
1014 config
->pad21_1
= 0x5;
1016 config
->adaptive_ifs
= nic
->adaptive_ifs
;
1017 config
->loopback
= nic
->loopback
;
1019 if (nic
->mii
.force_media
&& nic
->mii
.full_duplex
)
1020 config
->full_duplex_force
= 0x1; /* 1=force, 0=auto */
1022 if (nic
->flags
& promiscuous
|| nic
->loopback
) {
1023 config
->rx_save_bad_frames
= 0x1; /* 1=save, 0=discard */
1024 config
->rx_discard_short_frames
= 0x0; /* 1=discard, 0=save */
1025 config
->promiscuous_mode
= 0x1; /* 1=on, 0=off */
1028 if (nic
->flags
& multicast_all
)
1029 config
->multicast_all
= 0x1; /* 1=accept, 0=no */
1031 /* disable WoL when up */
1032 if (netif_running(nic
->netdev
) || !(nic
->flags
& wol_magic
))
1033 config
->magic_packet_disable
= 0x1; /* 1=off, 0=on */
1035 if (nic
->mac
>= mac_82558_D101_A4
) {
1036 config
->fc_disable
= 0x1; /* 1=Tx fc off, 0=Tx fc on */
1037 config
->mwi_enable
= 0x1; /* 1=enable, 0=disable */
1038 config
->standard_tcb
= 0x0; /* 1=standard, 0=extended */
1039 config
->rx_long_ok
= 0x1; /* 1=VLANs ok, 0=standard */
1040 if (nic
->mac
>= mac_82559_D101M
) {
1041 config
->tno_intr
= 0x1; /* TCO stats enable */
1042 /* Enable TCO in extended config */
1043 if (nic
->mac
>= mac_82551_10
) {
1044 config
->byte_count
= 0x20; /* extended bytes */
1045 config
->rx_d102_mode
= 0x1; /* GMRC for TCO */
1048 config
->standard_stat_counter
= 0x0;
1052 DPRINTK(HW
, DEBUG
, "[00-07]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1053 c
[0], c
[1], c
[2], c
[3], c
[4], c
[5], c
[6], c
[7]);
1054 DPRINTK(HW
, DEBUG
, "[08-15]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1055 c
[8], c
[9], c
[10], c
[11], c
[12], c
[13], c
[14], c
[15]);
1056 DPRINTK(HW
, DEBUG
, "[16-23]=%02X:%02X:%02X:%02X:%02X:%02X:%02X:%02X\n",
1057 c
[16], c
[17], c
[18], c
[19], c
[20], c
[21], c
[22], c
[23]);
1060 /*************************************************************************
1061 * CPUSaver parameters
1063 * All CPUSaver parameters are 16-bit literals that are part of a
1064 * "move immediate value" instruction. By changing the value of
1065 * the literal in the instruction before the code is loaded, the
1066 * driver can change the algorithm.
1068 * INTDELAY - This loads the dead-man timer with its initial value.
1069 * When this timer expires the interrupt is asserted, and the
1070 * timer is reset each time a new packet is received. (see
1071 * BUNDLEMAX below to set the limit on number of chained packets)
1072 * The current default is 0x600 or 1536. Experiments show that
1073 * the value should probably stay within the 0x200 - 0x1000.
1076 * This sets the maximum number of frames that will be bundled. In
1077 * some situations, such as the TCP windowing algorithm, it may be
1078 * better to limit the growth of the bundle size than let it go as
1079 * high as it can, because that could cause too much added latency.
1080 * The default is six, because this is the number of packets in the
1081 * default TCP window size. A value of 1 would make CPUSaver indicate
1082 * an interrupt for every frame received. If you do not want to put
1083 * a limit on the bundle size, set this value to xFFFF.
1086 * This contains a bit-mask describing the minimum size frame that
1087 * will be bundled. The default masks the lower 7 bits, which means
1088 * that any frame less than 128 bytes in length will not be bundled,
1089 * but will instead immediately generate an interrupt. This does
1090 * not affect the current bundle in any way. Any frame that is 128
1091 * bytes or large will be bundled normally. This feature is meant
1092 * to provide immediate indication of ACK frames in a TCP environment.
1093 * Customers were seeing poor performance when a machine with CPUSaver
1094 * enabled was sending but not receiving. The delay introduced when
1095 * the ACKs were received was enough to reduce total throughput, because
1096 * the sender would sit idle until the ACK was finally seen.
1098 * The current default is 0xFF80, which masks out the lower 7 bits.
1099 * This means that any frame which is x7F (127) bytes or smaller
1100 * will cause an immediate interrupt. Because this value must be a
1101 * bit mask, there are only a few valid values that can be used. To
1102 * turn this feature off, the driver can write the value xFFFF to the
1103 * lower word of this instruction (in the same way that the other
1104 * parameters are used). Likewise, a value of 0xF800 (2047) would
1105 * cause an interrupt to be generated for every frame, because all
1106 * standard Ethernet frames are <= 2047 bytes in length.
1107 *************************************************************************/
1109 /* if you wish to disable the ucode functionality, while maintaining the
1110 * workarounds it provides, set the following defines to:
1115 #define BUNDLESMALL 1
1116 #define BUNDLEMAX (u16)6
1117 #define INTDELAY (u16)1536 /* 0x600 */
1119 /* Initialize firmware */
1120 static const struct firmware
*e100_request_firmware(struct nic
*nic
)
1122 const char *fw_name
;
1123 const struct firmware
*fw
;
1124 u8 timer
, bundle
, min_size
;
1127 /* do not load u-code for ICH devices */
1128 if (nic
->flags
& ich
)
1131 /* Search for ucode match against h/w revision */
1132 if (nic
->mac
== mac_82559_D101M
)
1133 fw_name
= FIRMWARE_D101M
;
1134 else if (nic
->mac
== mac_82559_D101S
)
1135 fw_name
= FIRMWARE_D101S
;
1136 else if (nic
->mac
== mac_82551_F
|| nic
->mac
== mac_82551_10
)
1137 fw_name
= FIRMWARE_D102E
;
1138 else /* No ucode on other devices */
1141 err
= request_firmware(&fw
, fw_name
, &nic
->pdev
->dev
);
1143 DPRINTK(PROBE
, ERR
, "Failed to load firmware \"%s\": %d\n",
1145 return ERR_PTR(err
);
1147 /* Firmware should be precisely UCODE_SIZE (words) plus three bytes
1148 indicating the offsets for BUNDLESMALL, BUNDLEMAX, INTDELAY */
1149 if (fw
->size
!= UCODE_SIZE
* 4 + 3) {
1150 DPRINTK(PROBE
, ERR
, "Firmware \"%s\" has wrong size %zu\n",
1152 release_firmware(fw
);
1153 return ERR_PTR(-EINVAL
);
1156 /* Read timer, bundle and min_size from end of firmware blob */
1157 timer
= fw
->data
[UCODE_SIZE
* 4];
1158 bundle
= fw
->data
[UCODE_SIZE
* 4 + 1];
1159 min_size
= fw
->data
[UCODE_SIZE
* 4 + 2];
1161 if (timer
>= UCODE_SIZE
|| bundle
>= UCODE_SIZE
||
1162 min_size
>= UCODE_SIZE
) {
1164 "\"%s\" has bogus offset values (0x%x,0x%x,0x%x)\n",
1165 fw_name
, timer
, bundle
, min_size
);
1166 release_firmware(fw
);
1167 return ERR_PTR(-EINVAL
);
1169 /* OK, firmware is validated and ready to use... */
1173 static void e100_setup_ucode(struct nic
*nic
, struct cb
*cb
,
1174 struct sk_buff
*skb
)
1176 const struct firmware
*fw
= (void *)skb
;
1177 u8 timer
, bundle
, min_size
;
1179 /* It's not a real skb; we just abused the fact that e100_exec_cb
1180 will pass it through to here... */
1183 /* firmware is stored as little endian already */
1184 memcpy(cb
->u
.ucode
, fw
->data
, UCODE_SIZE
* 4);
1186 /* Read timer, bundle and min_size from end of firmware blob */
1187 timer
= fw
->data
[UCODE_SIZE
* 4];
1188 bundle
= fw
->data
[UCODE_SIZE
* 4 + 1];
1189 min_size
= fw
->data
[UCODE_SIZE
* 4 + 2];
1191 /* Insert user-tunable settings in cb->u.ucode */
1192 cb
->u
.ucode
[timer
] &= cpu_to_le32(0xFFFF0000);
1193 cb
->u
.ucode
[timer
] |= cpu_to_le32(INTDELAY
);
1194 cb
->u
.ucode
[bundle
] &= cpu_to_le32(0xFFFF0000);
1195 cb
->u
.ucode
[bundle
] |= cpu_to_le32(BUNDLEMAX
);
1196 cb
->u
.ucode
[min_size
] &= cpu_to_le32(0xFFFF0000);
1197 cb
->u
.ucode
[min_size
] |= cpu_to_le32((BUNDLESMALL
) ? 0xFFFF : 0xFF80);
1199 cb
->command
= cpu_to_le16(cb_ucode
| cb_el
);
1202 static inline int e100_load_ucode_wait(struct nic
*nic
)
1204 const struct firmware
*fw
;
1205 int err
= 0, counter
= 50;
1206 struct cb
*cb
= nic
->cb_to_clean
;
1208 fw
= e100_request_firmware(nic
);
1209 /* If it's NULL, then no ucode is required */
1210 if (!fw
|| IS_ERR(fw
))
1213 if ((err
= e100_exec_cb(nic
, (void *)fw
, e100_setup_ucode
)))
1214 DPRINTK(PROBE
,ERR
, "ucode cmd failed with error %d\n", err
);
1216 /* must restart cuc */
1217 nic
->cuc_cmd
= cuc_start
;
1219 /* wait for completion */
1220 e100_write_flush(nic
);
1223 /* wait for possibly (ouch) 500ms */
1224 while (!(cb
->status
& cpu_to_le16(cb_complete
))) {
1226 if (!--counter
) break;
1229 /* ack any interrupts, something could have been set */
1230 iowrite8(~0, &nic
->csr
->scb
.stat_ack
);
1232 /* if the command failed, or is not OK, notify and return */
1233 if (!counter
|| !(cb
->status
& cpu_to_le16(cb_ok
))) {
1234 DPRINTK(PROBE
,ERR
, "ucode load failed\n");
1241 static void e100_setup_iaaddr(struct nic
*nic
, struct cb
*cb
,
1242 struct sk_buff
*skb
)
1244 cb
->command
= cpu_to_le16(cb_iaaddr
);
1245 memcpy(cb
->u
.iaaddr
, nic
->netdev
->dev_addr
, ETH_ALEN
);
1248 static void e100_dump(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1250 cb
->command
= cpu_to_le16(cb_dump
);
1251 cb
->u
.dump_buffer_addr
= cpu_to_le32(nic
->dma_addr
+
1252 offsetof(struct mem
, dump_buf
));
1255 #define NCONFIG_AUTO_SWITCH 0x0080
1256 #define MII_NSC_CONG MII_RESV1
1257 #define NSC_CONG_ENABLE 0x0100
1258 #define NSC_CONG_TXREADY 0x0400
1259 #define ADVERTISE_FC_SUPPORTED 0x0400
1260 static int e100_phy_init(struct nic
*nic
)
1262 struct net_device
*netdev
= nic
->netdev
;
1264 u16 bmcr
, stat
, id_lo
, id_hi
, cong
;
1266 /* Discover phy addr by searching addrs in order {1,0,2,..., 31} */
1267 for (addr
= 0; addr
< 32; addr
++) {
1268 nic
->mii
.phy_id
= (addr
== 0) ? 1 : (addr
== 1) ? 0 : addr
;
1269 bmcr
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMCR
);
1270 stat
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMSR
);
1271 stat
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_BMSR
);
1272 if (!((bmcr
== 0xFFFF) || ((stat
== 0) && (bmcr
== 0))))
1275 DPRINTK(HW
, DEBUG
, "phy_addr = %d\n", nic
->mii
.phy_id
);
1279 /* Selected the phy and isolate the rest */
1280 for (addr
= 0; addr
< 32; addr
++) {
1281 if (addr
!= nic
->mii
.phy_id
) {
1282 mdio_write(netdev
, addr
, MII_BMCR
, BMCR_ISOLATE
);
1284 bmcr
= mdio_read(netdev
, addr
, MII_BMCR
);
1285 mdio_write(netdev
, addr
, MII_BMCR
,
1286 bmcr
& ~BMCR_ISOLATE
);
1291 id_lo
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_PHYSID1
);
1292 id_hi
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_PHYSID2
);
1293 nic
->phy
= (u32
)id_hi
<< 16 | (u32
)id_lo
;
1294 DPRINTK(HW
, DEBUG
, "phy ID = 0x%08X\n", nic
->phy
);
1296 /* Handle National tx phys */
1297 #define NCS_PHY_MODEL_MASK 0xFFF0FFFF
1298 if ((nic
->phy
& NCS_PHY_MODEL_MASK
) == phy_nsc_tx
) {
1299 /* Disable congestion control */
1300 cong
= mdio_read(netdev
, nic
->mii
.phy_id
, MII_NSC_CONG
);
1301 cong
|= NSC_CONG_TXREADY
;
1302 cong
&= ~NSC_CONG_ENABLE
;
1303 mdio_write(netdev
, nic
->mii
.phy_id
, MII_NSC_CONG
, cong
);
1306 if ((nic
->mac
>= mac_82550_D102
) || ((nic
->flags
& ich
) &&
1307 (mdio_read(netdev
, nic
->mii
.phy_id
, MII_TPISTATUS
) & 0x8000) &&
1308 !(nic
->eeprom
[eeprom_cnfg_mdix
] & eeprom_mdix_enabled
))) {
1309 /* enable/disable MDI/MDI-X auto-switching. */
1310 mdio_write(netdev
, nic
->mii
.phy_id
, MII_NCONFIG
,
1311 nic
->mii
.force_media
? 0 : NCONFIG_AUTO_SWITCH
);
1317 static int e100_hw_init(struct nic
*nic
)
1323 DPRINTK(HW
, ERR
, "e100_hw_init\n");
1324 if (!in_interrupt() && (err
= e100_self_test(nic
)))
1327 if ((err
= e100_phy_init(nic
)))
1329 if ((err
= e100_exec_cmd(nic
, cuc_load_base
, 0)))
1331 if ((err
= e100_exec_cmd(nic
, ruc_load_base
, 0)))
1333 if ((err
= e100_load_ucode_wait(nic
)))
1335 if ((err
= e100_exec_cb(nic
, NULL
, e100_configure
)))
1337 if ((err
= e100_exec_cb(nic
, NULL
, e100_setup_iaaddr
)))
1339 if ((err
= e100_exec_cmd(nic
, cuc_dump_addr
,
1340 nic
->dma_addr
+ offsetof(struct mem
, stats
))))
1342 if ((err
= e100_exec_cmd(nic
, cuc_dump_reset
, 0)))
1345 e100_disable_irq(nic
);
1350 static void e100_multi(struct nic
*nic
, struct cb
*cb
, struct sk_buff
*skb
)
1352 struct net_device
*netdev
= nic
->netdev
;
1353 struct dev_mc_list
*list
= netdev
->mc_list
;
1354 u16 i
, count
= min(netdev
->mc_count
, E100_MAX_MULTICAST_ADDRS
);
1356 cb
->command
= cpu_to_le16(cb_multi
);
1357 cb
->u
.multi
.count
= cpu_to_le16(count
* ETH_ALEN
);
1358 for (i
= 0; list
&& i
< count
; i
++, list
= list
->next
)
1359 memcpy(&cb
->u
.multi
.addr
[i
*ETH_ALEN
], &list
->dmi_addr
,
1363 static void e100_set_multicast_list(struct net_device
*netdev
)
1365 struct nic
*nic
= netdev_priv(netdev
);
1367 DPRINTK(HW
, DEBUG
, "mc_count=%d, flags=0x%04X\n",
1368 netdev
->mc_count
, netdev
->flags
);
1370 if (netdev
->flags
& IFF_PROMISC
)
1371 nic
->flags
|= promiscuous
;
1373 nic
->flags
&= ~promiscuous
;
1375 if (netdev
->flags
& IFF_ALLMULTI
||
1376 netdev
->mc_count
> E100_MAX_MULTICAST_ADDRS
)
1377 nic
->flags
|= multicast_all
;
1379 nic
->flags
&= ~multicast_all
;
1381 e100_exec_cb(nic
, NULL
, e100_configure
);
1382 e100_exec_cb(nic
, NULL
, e100_multi
);
1385 static void e100_update_stats(struct nic
*nic
)
1387 struct net_device
*dev
= nic
->netdev
;
1388 struct net_device_stats
*ns
= &dev
->stats
;
1389 struct stats
*s
= &nic
->mem
->stats
;
1390 __le32
*complete
= (nic
->mac
< mac_82558_D101_A4
) ? &s
->fc_xmt_pause
:
1391 (nic
->mac
< mac_82559_D101M
) ? (__le32
*)&s
->xmt_tco_frames
:
1394 /* Device's stats reporting may take several microseconds to
1395 * complete, so we're always waiting for results of the
1396 * previous command. */
1398 if (*complete
== cpu_to_le32(cuc_dump_reset_complete
)) {
1400 nic
->tx_frames
= le32_to_cpu(s
->tx_good_frames
);
1401 nic
->tx_collisions
= le32_to_cpu(s
->tx_total_collisions
);
1402 ns
->tx_aborted_errors
+= le32_to_cpu(s
->tx_max_collisions
);
1403 ns
->tx_window_errors
+= le32_to_cpu(s
->tx_late_collisions
);
1404 ns
->tx_carrier_errors
+= le32_to_cpu(s
->tx_lost_crs
);
1405 ns
->tx_fifo_errors
+= le32_to_cpu(s
->tx_underruns
);
1406 ns
->collisions
+= nic
->tx_collisions
;
1407 ns
->tx_errors
+= le32_to_cpu(s
->tx_max_collisions
) +
1408 le32_to_cpu(s
->tx_lost_crs
);
1409 ns
->rx_length_errors
+= le32_to_cpu(s
->rx_short_frame_errors
) +
1410 nic
->rx_over_length_errors
;
1411 ns
->rx_crc_errors
+= le32_to_cpu(s
->rx_crc_errors
);
1412 ns
->rx_frame_errors
+= le32_to_cpu(s
->rx_alignment_errors
);
1413 ns
->rx_over_errors
+= le32_to_cpu(s
->rx_overrun_errors
);
1414 ns
->rx_fifo_errors
+= le32_to_cpu(s
->rx_overrun_errors
);
1415 ns
->rx_missed_errors
+= le32_to_cpu(s
->rx_resource_errors
);
1416 ns
->rx_errors
+= le32_to_cpu(s
->rx_crc_errors
) +
1417 le32_to_cpu(s
->rx_alignment_errors
) +
1418 le32_to_cpu(s
->rx_short_frame_errors
) +
1419 le32_to_cpu(s
->rx_cdt_errors
);
1420 nic
->tx_deferred
+= le32_to_cpu(s
->tx_deferred
);
1421 nic
->tx_single_collisions
+=
1422 le32_to_cpu(s
->tx_single_collisions
);
1423 nic
->tx_multiple_collisions
+=
1424 le32_to_cpu(s
->tx_multiple_collisions
);
1425 if (nic
->mac
>= mac_82558_D101_A4
) {
1426 nic
->tx_fc_pause
+= le32_to_cpu(s
->fc_xmt_pause
);
1427 nic
->rx_fc_pause
+= le32_to_cpu(s
->fc_rcv_pause
);
1428 nic
->rx_fc_unsupported
+=
1429 le32_to_cpu(s
->fc_rcv_unsupported
);
1430 if (nic
->mac
>= mac_82559_D101M
) {
1431 nic
->tx_tco_frames
+=
1432 le16_to_cpu(s
->xmt_tco_frames
);
1433 nic
->rx_tco_frames
+=
1434 le16_to_cpu(s
->rcv_tco_frames
);
1440 if (e100_exec_cmd(nic
, cuc_dump_reset
, 0))
1441 DPRINTK(TX_ERR
, DEBUG
, "exec cuc_dump_reset failed\n");
1444 static void e100_adjust_adaptive_ifs(struct nic
*nic
, int speed
, int duplex
)
1446 /* Adjust inter-frame-spacing (IFS) between two transmits if
1447 * we're getting collisions on a half-duplex connection. */
1449 if (duplex
== DUPLEX_HALF
) {
1450 u32 prev
= nic
->adaptive_ifs
;
1451 u32 min_frames
= (speed
== SPEED_100
) ? 1000 : 100;
1453 if ((nic
->tx_frames
/ 32 < nic
->tx_collisions
) &&
1454 (nic
->tx_frames
> min_frames
)) {
1455 if (nic
->adaptive_ifs
< 60)
1456 nic
->adaptive_ifs
+= 5;
1457 } else if (nic
->tx_frames
< min_frames
) {
1458 if (nic
->adaptive_ifs
>= 5)
1459 nic
->adaptive_ifs
-= 5;
1461 if (nic
->adaptive_ifs
!= prev
)
1462 e100_exec_cb(nic
, NULL
, e100_configure
);
1466 static void e100_watchdog(unsigned long data
)
1468 struct nic
*nic
= (struct nic
*)data
;
1469 struct ethtool_cmd cmd
;
1471 DPRINTK(TIMER
, DEBUG
, "right now = %ld\n", jiffies
);
1473 /* mii library handles link maintenance tasks */
1475 mii_ethtool_gset(&nic
->mii
, &cmd
);
1477 if (mii_link_ok(&nic
->mii
) && !netif_carrier_ok(nic
->netdev
)) {
1478 printk(KERN_INFO
"e100: %s NIC Link is Up %s Mbps %s Duplex\n",
1480 cmd
.speed
== SPEED_100
? "100" : "10",
1481 cmd
.duplex
== DUPLEX_FULL
? "Full" : "Half");
1482 } else if (!mii_link_ok(&nic
->mii
) && netif_carrier_ok(nic
->netdev
)) {
1483 printk(KERN_INFO
"e100: %s NIC Link is Down\n",
1487 mii_check_link(&nic
->mii
);
1489 /* Software generated interrupt to recover from (rare) Rx
1490 * allocation failure.
1491 * Unfortunately have to use a spinlock to not re-enable interrupts
1492 * accidentally, due to hardware that shares a register between the
1493 * interrupt mask bit and the SW Interrupt generation bit */
1494 spin_lock_irq(&nic
->cmd_lock
);
1495 iowrite8(ioread8(&nic
->csr
->scb
.cmd_hi
) | irq_sw_gen
,&nic
->csr
->scb
.cmd_hi
);
1496 e100_write_flush(nic
);
1497 spin_unlock_irq(&nic
->cmd_lock
);
1499 e100_update_stats(nic
);
1500 e100_adjust_adaptive_ifs(nic
, cmd
.speed
, cmd
.duplex
);
1502 if (nic
->mac
<= mac_82557_D100_C
)
1503 /* Issue a multicast command to workaround a 557 lock up */
1504 e100_set_multicast_list(nic
->netdev
);
1506 if (nic
->flags
& ich
&& cmd
.speed
==SPEED_10
&& cmd
.duplex
==DUPLEX_HALF
)
1507 /* Need SW workaround for ICH[x] 10Mbps/half duplex Tx hang. */
1508 nic
->flags
|= ich_10h_workaround
;
1510 nic
->flags
&= ~ich_10h_workaround
;
1512 mod_timer(&nic
->watchdog
,
1513 round_jiffies(jiffies
+ E100_WATCHDOG_PERIOD
));
1516 static void e100_xmit_prepare(struct nic
*nic
, struct cb
*cb
,
1517 struct sk_buff
*skb
)
1519 cb
->command
= nic
->tx_command
;
1520 /* interrupt every 16 packets regardless of delay */
1521 if ((nic
->cbs_avail
& ~15) == nic
->cbs_avail
)
1522 cb
->command
|= cpu_to_le16(cb_i
);
1523 cb
->u
.tcb
.tbd_array
= cb
->dma_addr
+ offsetof(struct cb
, u
.tcb
.tbd
);
1524 cb
->u
.tcb
.tcb_byte_count
= 0;
1525 cb
->u
.tcb
.threshold
= nic
->tx_threshold
;
1526 cb
->u
.tcb
.tbd_count
= 1;
1527 cb
->u
.tcb
.tbd
.buf_addr
= cpu_to_le32(pci_map_single(nic
->pdev
,
1528 skb
->data
, skb
->len
, PCI_DMA_TODEVICE
));
1529 /* check for mapping failure? */
1530 cb
->u
.tcb
.tbd
.size
= cpu_to_le16(skb
->len
);
1533 static int e100_xmit_frame(struct sk_buff
*skb
, struct net_device
*netdev
)
1535 struct nic
*nic
= netdev_priv(netdev
);
1538 if (nic
->flags
& ich_10h_workaround
) {
1539 /* SW workaround for ICH[x] 10Mbps/half duplex Tx hang.
1540 Issue a NOP command followed by a 1us delay before
1541 issuing the Tx command. */
1542 if (e100_exec_cmd(nic
, cuc_nop
, 0))
1543 DPRINTK(TX_ERR
, DEBUG
, "exec cuc_nop failed\n");
1547 err
= e100_exec_cb(nic
, skb
, e100_xmit_prepare
);
1551 /* We queued the skb, but now we're out of space. */
1552 DPRINTK(TX_ERR
, DEBUG
, "No space for CB\n");
1553 netif_stop_queue(netdev
);
1556 /* This is a hard error - log it. */
1557 DPRINTK(TX_ERR
, DEBUG
, "Out of Tx resources, returning skb\n");
1558 netif_stop_queue(netdev
);
1562 netdev
->trans_start
= jiffies
;
1566 static int e100_tx_clean(struct nic
*nic
)
1568 struct net_device
*dev
= nic
->netdev
;
1572 spin_lock(&nic
->cb_lock
);
1574 /* Clean CBs marked complete */
1575 for (cb
= nic
->cb_to_clean
;
1576 cb
->status
& cpu_to_le16(cb_complete
);
1577 cb
= nic
->cb_to_clean
= cb
->next
) {
1578 DPRINTK(TX_DONE
, DEBUG
, "cb[%d]->status = 0x%04X\n",
1579 (int)(((void*)cb
- (void*)nic
->cbs
)/sizeof(struct cb
)),
1582 if (likely(cb
->skb
!= NULL
)) {
1583 dev
->stats
.tx_packets
++;
1584 dev
->stats
.tx_bytes
+= cb
->skb
->len
;
1586 pci_unmap_single(nic
->pdev
,
1587 le32_to_cpu(cb
->u
.tcb
.tbd
.buf_addr
),
1588 le16_to_cpu(cb
->u
.tcb
.tbd
.size
),
1590 dev_kfree_skb_any(cb
->skb
);
1598 spin_unlock(&nic
->cb_lock
);
1600 /* Recover from running out of Tx resources in xmit_frame */
1601 if (unlikely(tx_cleaned
&& netif_queue_stopped(nic
->netdev
)))
1602 netif_wake_queue(nic
->netdev
);
1607 static void e100_clean_cbs(struct nic
*nic
)
1610 while (nic
->cbs_avail
!= nic
->params
.cbs
.count
) {
1611 struct cb
*cb
= nic
->cb_to_clean
;
1613 pci_unmap_single(nic
->pdev
,
1614 le32_to_cpu(cb
->u
.tcb
.tbd
.buf_addr
),
1615 le16_to_cpu(cb
->u
.tcb
.tbd
.size
),
1617 dev_kfree_skb(cb
->skb
);
1619 nic
->cb_to_clean
= nic
->cb_to_clean
->next
;
1622 pci_free_consistent(nic
->pdev
,
1623 sizeof(struct cb
) * nic
->params
.cbs
.count
,
1624 nic
->cbs
, nic
->cbs_dma_addr
);
1628 nic
->cuc_cmd
= cuc_start
;
1629 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
=
1633 static int e100_alloc_cbs(struct nic
*nic
)
1636 unsigned int i
, count
= nic
->params
.cbs
.count
;
1638 nic
->cuc_cmd
= cuc_start
;
1639 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
= NULL
;
1642 nic
->cbs
= pci_alloc_consistent(nic
->pdev
,
1643 sizeof(struct cb
) * count
, &nic
->cbs_dma_addr
);
1647 for (cb
= nic
->cbs
, i
= 0; i
< count
; cb
++, i
++) {
1648 cb
->next
= (i
+ 1 < count
) ? cb
+ 1 : nic
->cbs
;
1649 cb
->prev
= (i
== 0) ? nic
->cbs
+ count
- 1 : cb
- 1;
1651 cb
->dma_addr
= nic
->cbs_dma_addr
+ i
* sizeof(struct cb
);
1652 cb
->link
= cpu_to_le32(nic
->cbs_dma_addr
+
1653 ((i
+1) % count
) * sizeof(struct cb
));
1657 nic
->cb_to_use
= nic
->cb_to_send
= nic
->cb_to_clean
= nic
->cbs
;
1658 nic
->cbs_avail
= count
;
1663 static inline void e100_start_receiver(struct nic
*nic
, struct rx
*rx
)
1665 if (!nic
->rxs
) return;
1666 if (RU_SUSPENDED
!= nic
->ru_running
) return;
1668 /* handle init time starts */
1669 if (!rx
) rx
= nic
->rxs
;
1671 /* (Re)start RU if suspended or idle and RFA is non-NULL */
1673 e100_exec_cmd(nic
, ruc_start
, rx
->dma_addr
);
1674 nic
->ru_running
= RU_RUNNING
;
1678 #define RFD_BUF_LEN (sizeof(struct rfd) + VLAN_ETH_FRAME_LEN)
1679 static int e100_rx_alloc_skb(struct nic
*nic
, struct rx
*rx
)
1681 if (!(rx
->skb
= netdev_alloc_skb(nic
->netdev
, RFD_BUF_LEN
+ NET_IP_ALIGN
)))
1684 /* Align, init, and map the RFD. */
1685 skb_reserve(rx
->skb
, NET_IP_ALIGN
);
1686 skb_copy_to_linear_data(rx
->skb
, &nic
->blank_rfd
, sizeof(struct rfd
));
1687 rx
->dma_addr
= pci_map_single(nic
->pdev
, rx
->skb
->data
,
1688 RFD_BUF_LEN
, PCI_DMA_BIDIRECTIONAL
);
1690 if (pci_dma_mapping_error(nic
->pdev
, rx
->dma_addr
)) {
1691 dev_kfree_skb_any(rx
->skb
);
1697 /* Link the RFD to end of RFA by linking previous RFD to
1698 * this one. We are safe to touch the previous RFD because
1699 * it is protected by the before last buffer's el bit being set */
1700 if (rx
->prev
->skb
) {
1701 struct rfd
*prev_rfd
= (struct rfd
*)rx
->prev
->skb
->data
;
1702 put_unaligned_le32(rx
->dma_addr
, &prev_rfd
->link
);
1703 pci_dma_sync_single_for_device(nic
->pdev
, rx
->prev
->dma_addr
,
1704 sizeof(struct rfd
), PCI_DMA_BIDIRECTIONAL
);
1710 static int e100_rx_indicate(struct nic
*nic
, struct rx
*rx
,
1711 unsigned int *work_done
, unsigned int work_to_do
)
1713 struct net_device
*dev
= nic
->netdev
;
1714 struct sk_buff
*skb
= rx
->skb
;
1715 struct rfd
*rfd
= (struct rfd
*)skb
->data
;
1716 u16 rfd_status
, actual_size
;
1718 if (unlikely(work_done
&& *work_done
>= work_to_do
))
1721 /* Need to sync before taking a peek at cb_complete bit */
1722 pci_dma_sync_single_for_cpu(nic
->pdev
, rx
->dma_addr
,
1723 sizeof(struct rfd
), PCI_DMA_BIDIRECTIONAL
);
1724 rfd_status
= le16_to_cpu(rfd
->status
);
1726 DPRINTK(RX_STATUS
, DEBUG
, "status=0x%04X\n", rfd_status
);
1728 /* If data isn't ready, nothing to indicate */
1729 if (unlikely(!(rfd_status
& cb_complete
))) {
1730 /* If the next buffer has the el bit, but we think the receiver
1731 * is still running, check to see if it really stopped while
1732 * we had interrupts off.
1733 * This allows for a fast restart without re-enabling
1735 if ((le16_to_cpu(rfd
->command
) & cb_el
) &&
1736 (RU_RUNNING
== nic
->ru_running
))
1738 if (ioread8(&nic
->csr
->scb
.status
) & rus_no_res
)
1739 nic
->ru_running
= RU_SUSPENDED
;
1743 /* Get actual data size */
1744 actual_size
= le16_to_cpu(rfd
->actual_size
) & 0x3FFF;
1745 if (unlikely(actual_size
> RFD_BUF_LEN
- sizeof(struct rfd
)))
1746 actual_size
= RFD_BUF_LEN
- sizeof(struct rfd
);
1749 pci_unmap_single(nic
->pdev
, rx
->dma_addr
,
1750 RFD_BUF_LEN
, PCI_DMA_BIDIRECTIONAL
);
1752 /* If this buffer has the el bit, but we think the receiver
1753 * is still running, check to see if it really stopped while
1754 * we had interrupts off.
1755 * This allows for a fast restart without re-enabling interrupts.
1756 * This can happen when the RU sees the size change but also sees
1757 * the el bit set. */
1758 if ((le16_to_cpu(rfd
->command
) & cb_el
) &&
1759 (RU_RUNNING
== nic
->ru_running
)) {
1761 if (ioread8(&nic
->csr
->scb
.status
) & rus_no_res
)
1762 nic
->ru_running
= RU_SUSPENDED
;
1765 /* Pull off the RFD and put the actual data (minus eth hdr) */
1766 skb_reserve(skb
, sizeof(struct rfd
));
1767 skb_put(skb
, actual_size
);
1768 skb
->protocol
= eth_type_trans(skb
, nic
->netdev
);
1770 if (unlikely(!(rfd_status
& cb_ok
))) {
1771 /* Don't indicate if hardware indicates errors */
1772 dev_kfree_skb_any(skb
);
1773 } else if (actual_size
> ETH_DATA_LEN
+ VLAN_ETH_HLEN
) {
1774 /* Don't indicate oversized frames */
1775 nic
->rx_over_length_errors
++;
1776 dev_kfree_skb_any(skb
);
1778 dev
->stats
.rx_packets
++;
1779 dev
->stats
.rx_bytes
+= actual_size
;
1780 netif_receive_skb(skb
);
1790 static void e100_rx_clean(struct nic
*nic
, unsigned int *work_done
,
1791 unsigned int work_to_do
)
1794 int restart_required
= 0, err
= 0;
1795 struct rx
*old_before_last_rx
, *new_before_last_rx
;
1796 struct rfd
*old_before_last_rfd
, *new_before_last_rfd
;
1798 /* Indicate newly arrived packets */
1799 for (rx
= nic
->rx_to_clean
; rx
->skb
; rx
= nic
->rx_to_clean
= rx
->next
) {
1800 err
= e100_rx_indicate(nic
, rx
, work_done
, work_to_do
);
1801 /* Hit quota or no more to clean */
1802 if (-EAGAIN
== err
|| -ENODATA
== err
)
1807 /* On EAGAIN, hit quota so have more work to do, restart once
1808 * cleanup is complete.
1809 * Else, are we already rnr? then pay attention!!! this ensures that
1810 * the state machine progression never allows a start with a
1811 * partially cleaned list, avoiding a race between hardware
1812 * and rx_to_clean when in NAPI mode */
1813 if (-EAGAIN
!= err
&& RU_SUSPENDED
== nic
->ru_running
)
1814 restart_required
= 1;
1816 old_before_last_rx
= nic
->rx_to_use
->prev
->prev
;
1817 old_before_last_rfd
= (struct rfd
*)old_before_last_rx
->skb
->data
;
1819 /* Alloc new skbs to refill list */
1820 for (rx
= nic
->rx_to_use
; !rx
->skb
; rx
= nic
->rx_to_use
= rx
->next
) {
1821 if (unlikely(e100_rx_alloc_skb(nic
, rx
)))
1822 break; /* Better luck next time (see watchdog) */
1825 new_before_last_rx
= nic
->rx_to_use
->prev
->prev
;
1826 if (new_before_last_rx
!= old_before_last_rx
) {
1827 /* Set the el-bit on the buffer that is before the last buffer.
1828 * This lets us update the next pointer on the last buffer
1829 * without worrying about hardware touching it.
1830 * We set the size to 0 to prevent hardware from touching this
1832 * When the hardware hits the before last buffer with el-bit
1833 * and size of 0, it will RNR interrupt, the RUS will go into
1834 * the No Resources state. It will not complete nor write to
1836 new_before_last_rfd
=
1837 (struct rfd
*)new_before_last_rx
->skb
->data
;
1838 new_before_last_rfd
->size
= 0;
1839 new_before_last_rfd
->command
|= cpu_to_le16(cb_el
);
1840 pci_dma_sync_single_for_device(nic
->pdev
,
1841 new_before_last_rx
->dma_addr
, sizeof(struct rfd
),
1842 PCI_DMA_BIDIRECTIONAL
);
1844 /* Now that we have a new stopping point, we can clear the old
1845 * stopping point. We must sync twice to get the proper
1846 * ordering on the hardware side of things. */
1847 old_before_last_rfd
->command
&= ~cpu_to_le16(cb_el
);
1848 pci_dma_sync_single_for_device(nic
->pdev
,
1849 old_before_last_rx
->dma_addr
, sizeof(struct rfd
),
1850 PCI_DMA_BIDIRECTIONAL
);
1851 old_before_last_rfd
->size
= cpu_to_le16(VLAN_ETH_FRAME_LEN
);
1852 pci_dma_sync_single_for_device(nic
->pdev
,
1853 old_before_last_rx
->dma_addr
, sizeof(struct rfd
),
1854 PCI_DMA_BIDIRECTIONAL
);
1857 if (restart_required
) {
1859 iowrite8(stat_ack_rnr
, &nic
->csr
->scb
.stat_ack
);
1860 e100_start_receiver(nic
, nic
->rx_to_clean
);
1866 static void e100_rx_clean_list(struct nic
*nic
)
1869 unsigned int i
, count
= nic
->params
.rfds
.count
;
1871 nic
->ru_running
= RU_UNINITIALIZED
;
1874 for (rx
= nic
->rxs
, i
= 0; i
< count
; rx
++, i
++) {
1876 pci_unmap_single(nic
->pdev
, rx
->dma_addr
,
1877 RFD_BUF_LEN
, PCI_DMA_BIDIRECTIONAL
);
1878 dev_kfree_skb(rx
->skb
);
1885 nic
->rx_to_use
= nic
->rx_to_clean
= NULL
;
1888 static int e100_rx_alloc_list(struct nic
*nic
)
1891 unsigned int i
, count
= nic
->params
.rfds
.count
;
1892 struct rfd
*before_last
;
1894 nic
->rx_to_use
= nic
->rx_to_clean
= NULL
;
1895 nic
->ru_running
= RU_UNINITIALIZED
;
1897 if (!(nic
->rxs
= kcalloc(count
, sizeof(struct rx
), GFP_ATOMIC
)))
1900 for (rx
= nic
->rxs
, i
= 0; i
< count
; rx
++, i
++) {
1901 rx
->next
= (i
+ 1 < count
) ? rx
+ 1 : nic
->rxs
;
1902 rx
->prev
= (i
== 0) ? nic
->rxs
+ count
- 1 : rx
- 1;
1903 if (e100_rx_alloc_skb(nic
, rx
)) {
1904 e100_rx_clean_list(nic
);
1908 /* Set the el-bit on the buffer that is before the last buffer.
1909 * This lets us update the next pointer on the last buffer without
1910 * worrying about hardware touching it.
1911 * We set the size to 0 to prevent hardware from touching this buffer.
1912 * When the hardware hits the before last buffer with el-bit and size
1913 * of 0, it will RNR interrupt, the RU will go into the No Resources
1914 * state. It will not complete nor write to this buffer. */
1915 rx
= nic
->rxs
->prev
->prev
;
1916 before_last
= (struct rfd
*)rx
->skb
->data
;
1917 before_last
->command
|= cpu_to_le16(cb_el
);
1918 before_last
->size
= 0;
1919 pci_dma_sync_single_for_device(nic
->pdev
, rx
->dma_addr
,
1920 sizeof(struct rfd
), PCI_DMA_BIDIRECTIONAL
);
1922 nic
->rx_to_use
= nic
->rx_to_clean
= nic
->rxs
;
1923 nic
->ru_running
= RU_SUSPENDED
;
1928 static irqreturn_t
e100_intr(int irq
, void *dev_id
)
1930 struct net_device
*netdev
= dev_id
;
1931 struct nic
*nic
= netdev_priv(netdev
);
1932 u8 stat_ack
= ioread8(&nic
->csr
->scb
.stat_ack
);
1934 DPRINTK(INTR
, DEBUG
, "stat_ack = 0x%02X\n", stat_ack
);
1936 if (stat_ack
== stat_ack_not_ours
|| /* Not our interrupt */
1937 stat_ack
== stat_ack_not_present
) /* Hardware is ejected */
1940 /* Ack interrupt(s) */
1941 iowrite8(stat_ack
, &nic
->csr
->scb
.stat_ack
);
1943 /* We hit Receive No Resource (RNR); restart RU after cleaning */
1944 if (stat_ack
& stat_ack_rnr
)
1945 nic
->ru_running
= RU_SUSPENDED
;
1947 if (likely(netif_rx_schedule_prep(&nic
->napi
))) {
1948 e100_disable_irq(nic
);
1949 __netif_rx_schedule(&nic
->napi
);
1955 static int e100_poll(struct napi_struct
*napi
, int budget
)
1957 struct nic
*nic
= container_of(napi
, struct nic
, napi
);
1958 unsigned int work_done
= 0;
1960 e100_rx_clean(nic
, &work_done
, budget
);
1963 /* If budget not fully consumed, exit the polling mode */
1964 if (work_done
< budget
) {
1965 netif_rx_complete(napi
);
1966 e100_enable_irq(nic
);
1972 #ifdef CONFIG_NET_POLL_CONTROLLER
1973 static void e100_netpoll(struct net_device
*netdev
)
1975 struct nic
*nic
= netdev_priv(netdev
);
1977 e100_disable_irq(nic
);
1978 e100_intr(nic
->pdev
->irq
, netdev
);
1980 e100_enable_irq(nic
);
1984 static int e100_set_mac_address(struct net_device
*netdev
, void *p
)
1986 struct nic
*nic
= netdev_priv(netdev
);
1987 struct sockaddr
*addr
= p
;
1989 if (!is_valid_ether_addr(addr
->sa_data
))
1990 return -EADDRNOTAVAIL
;
1992 memcpy(netdev
->dev_addr
, addr
->sa_data
, netdev
->addr_len
);
1993 e100_exec_cb(nic
, NULL
, e100_setup_iaaddr
);
1998 static int e100_change_mtu(struct net_device
*netdev
, int new_mtu
)
2000 if (new_mtu
< ETH_ZLEN
|| new_mtu
> ETH_DATA_LEN
)
2002 netdev
->mtu
= new_mtu
;
2006 static int e100_asf(struct nic
*nic
)
2008 /* ASF can be enabled from eeprom */
2009 return((nic
->pdev
->device
>= 0x1050) && (nic
->pdev
->device
<= 0x1057) &&
2010 (nic
->eeprom
[eeprom_config_asf
] & eeprom_asf
) &&
2011 !(nic
->eeprom
[eeprom_config_asf
] & eeprom_gcl
) &&
2012 ((nic
->eeprom
[eeprom_smbus_addr
] & 0xFF) != 0xFE));
2015 static int e100_up(struct nic
*nic
)
2019 if ((err
= e100_rx_alloc_list(nic
)))
2021 if ((err
= e100_alloc_cbs(nic
)))
2022 goto err_rx_clean_list
;
2023 if ((err
= e100_hw_init(nic
)))
2025 e100_set_multicast_list(nic
->netdev
);
2026 e100_start_receiver(nic
, NULL
);
2027 mod_timer(&nic
->watchdog
, jiffies
);
2028 if ((err
= request_irq(nic
->pdev
->irq
, e100_intr
, IRQF_SHARED
,
2029 nic
->netdev
->name
, nic
->netdev
)))
2031 netif_wake_queue(nic
->netdev
);
2032 napi_enable(&nic
->napi
);
2033 /* enable ints _after_ enabling poll, preventing a race between
2034 * disable ints+schedule */
2035 e100_enable_irq(nic
);
2039 del_timer_sync(&nic
->watchdog
);
2041 e100_clean_cbs(nic
);
2043 e100_rx_clean_list(nic
);
2047 static void e100_down(struct nic
*nic
)
2049 /* wait here for poll to complete */
2050 napi_disable(&nic
->napi
);
2051 netif_stop_queue(nic
->netdev
);
2053 free_irq(nic
->pdev
->irq
, nic
->netdev
);
2054 del_timer_sync(&nic
->watchdog
);
2055 netif_carrier_off(nic
->netdev
);
2056 e100_clean_cbs(nic
);
2057 e100_rx_clean_list(nic
);
2060 static void e100_tx_timeout(struct net_device
*netdev
)
2062 struct nic
*nic
= netdev_priv(netdev
);
2064 /* Reset outside of interrupt context, to avoid request_irq
2065 * in interrupt context */
2066 schedule_work(&nic
->tx_timeout_task
);
2069 static void e100_tx_timeout_task(struct work_struct
*work
)
2071 struct nic
*nic
= container_of(work
, struct nic
, tx_timeout_task
);
2072 struct net_device
*netdev
= nic
->netdev
;
2074 DPRINTK(TX_ERR
, DEBUG
, "scb.status=0x%02X\n",
2075 ioread8(&nic
->csr
->scb
.status
));
2076 e100_down(netdev_priv(netdev
));
2077 e100_up(netdev_priv(netdev
));
2080 static int e100_loopback_test(struct nic
*nic
, enum loopback loopback_mode
)
2083 struct sk_buff
*skb
;
2085 /* Use driver resources to perform internal MAC or PHY
2086 * loopback test. A single packet is prepared and transmitted
2087 * in loopback mode, and the test passes if the received
2088 * packet compares byte-for-byte to the transmitted packet. */
2090 if ((err
= e100_rx_alloc_list(nic
)))
2092 if ((err
= e100_alloc_cbs(nic
)))
2095 /* ICH PHY loopback is broken so do MAC loopback instead */
2096 if (nic
->flags
& ich
&& loopback_mode
== lb_phy
)
2097 loopback_mode
= lb_mac
;
2099 nic
->loopback
= loopback_mode
;
2100 if ((err
= e100_hw_init(nic
)))
2101 goto err_loopback_none
;
2103 if (loopback_mode
== lb_phy
)
2104 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, MII_BMCR
,
2107 e100_start_receiver(nic
, NULL
);
2109 if (!(skb
= netdev_alloc_skb(nic
->netdev
, ETH_DATA_LEN
))) {
2111 goto err_loopback_none
;
2113 skb_put(skb
, ETH_DATA_LEN
);
2114 memset(skb
->data
, 0xFF, ETH_DATA_LEN
);
2115 e100_xmit_frame(skb
, nic
->netdev
);
2119 pci_dma_sync_single_for_cpu(nic
->pdev
, nic
->rx_to_clean
->dma_addr
,
2120 RFD_BUF_LEN
, PCI_DMA_BIDIRECTIONAL
);
2122 if (memcmp(nic
->rx_to_clean
->skb
->data
+ sizeof(struct rfd
),
2123 skb
->data
, ETH_DATA_LEN
))
2127 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, MII_BMCR
, 0);
2128 nic
->loopback
= lb_none
;
2129 e100_clean_cbs(nic
);
2132 e100_rx_clean_list(nic
);
2136 #define MII_LED_CONTROL 0x1B
2137 static void e100_blink_led(unsigned long data
)
2139 struct nic
*nic
= (struct nic
*)data
;
2147 nic
->leds
= (nic
->leds
& led_on
) ? led_off
:
2148 (nic
->mac
< mac_82559_D101M
) ? led_on_557
: led_on_559
;
2149 mdio_write(nic
->netdev
, nic
->mii
.phy_id
, MII_LED_CONTROL
, nic
->leds
);
2150 mod_timer(&nic
->blink_timer
, jiffies
+ HZ
/ 4);
2153 static int e100_get_settings(struct net_device
*netdev
, struct ethtool_cmd
*cmd
)
2155 struct nic
*nic
= netdev_priv(netdev
);
2156 return mii_ethtool_gset(&nic
->mii
, cmd
);
2159 static int e100_set_settings(struct net_device
*netdev
, struct ethtool_cmd
*cmd
)
2161 struct nic
*nic
= netdev_priv(netdev
);
2164 mdio_write(netdev
, nic
->mii
.phy_id
, MII_BMCR
, BMCR_RESET
);
2165 err
= mii_ethtool_sset(&nic
->mii
, cmd
);
2166 e100_exec_cb(nic
, NULL
, e100_configure
);
2171 static void e100_get_drvinfo(struct net_device
*netdev
,
2172 struct ethtool_drvinfo
*info
)
2174 struct nic
*nic
= netdev_priv(netdev
);
2175 strcpy(info
->driver
, DRV_NAME
);
2176 strcpy(info
->version
, DRV_VERSION
);
2177 strcpy(info
->fw_version
, "N/A");
2178 strcpy(info
->bus_info
, pci_name(nic
->pdev
));
2181 #define E100_PHY_REGS 0x1C
2182 static int e100_get_regs_len(struct net_device
*netdev
)
2184 struct nic
*nic
= netdev_priv(netdev
);
2185 return 1 + E100_PHY_REGS
+ sizeof(nic
->mem
->dump_buf
);
2188 static void e100_get_regs(struct net_device
*netdev
,
2189 struct ethtool_regs
*regs
, void *p
)
2191 struct nic
*nic
= netdev_priv(netdev
);
2195 regs
->version
= (1 << 24) | nic
->pdev
->revision
;
2196 buff
[0] = ioread8(&nic
->csr
->scb
.cmd_hi
) << 24 |
2197 ioread8(&nic
->csr
->scb
.cmd_lo
) << 16 |
2198 ioread16(&nic
->csr
->scb
.status
);
2199 for (i
= E100_PHY_REGS
; i
>= 0; i
--)
2200 buff
[1 + E100_PHY_REGS
- i
] =
2201 mdio_read(netdev
, nic
->mii
.phy_id
, i
);
2202 memset(nic
->mem
->dump_buf
, 0, sizeof(nic
->mem
->dump_buf
));
2203 e100_exec_cb(nic
, NULL
, e100_dump
);
2205 memcpy(&buff
[2 + E100_PHY_REGS
], nic
->mem
->dump_buf
,
2206 sizeof(nic
->mem
->dump_buf
));
2209 static void e100_get_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
2211 struct nic
*nic
= netdev_priv(netdev
);
2212 wol
->supported
= (nic
->mac
>= mac_82558_D101_A4
) ? WAKE_MAGIC
: 0;
2213 wol
->wolopts
= (nic
->flags
& wol_magic
) ? WAKE_MAGIC
: 0;
2216 static int e100_set_wol(struct net_device
*netdev
, struct ethtool_wolinfo
*wol
)
2218 struct nic
*nic
= netdev_priv(netdev
);
2220 if ((wol
->wolopts
&& wol
->wolopts
!= WAKE_MAGIC
) ||
2221 !device_can_wakeup(&nic
->pdev
->dev
))
2225 nic
->flags
|= wol_magic
;
2227 nic
->flags
&= ~wol_magic
;
2229 device_set_wakeup_enable(&nic
->pdev
->dev
, wol
->wolopts
);
2231 e100_exec_cb(nic
, NULL
, e100_configure
);
2236 static u32
e100_get_msglevel(struct net_device
*netdev
)
2238 struct nic
*nic
= netdev_priv(netdev
);
2239 return nic
->msg_enable
;
2242 static void e100_set_msglevel(struct net_device
*netdev
, u32 value
)
2244 struct nic
*nic
= netdev_priv(netdev
);
2245 nic
->msg_enable
= value
;
2248 static int e100_nway_reset(struct net_device
*netdev
)
2250 struct nic
*nic
= netdev_priv(netdev
);
2251 return mii_nway_restart(&nic
->mii
);
2254 static u32
e100_get_link(struct net_device
*netdev
)
2256 struct nic
*nic
= netdev_priv(netdev
);
2257 return mii_link_ok(&nic
->mii
);
2260 static int e100_get_eeprom_len(struct net_device
*netdev
)
2262 struct nic
*nic
= netdev_priv(netdev
);
2263 return nic
->eeprom_wc
<< 1;
2266 #define E100_EEPROM_MAGIC 0x1234
2267 static int e100_get_eeprom(struct net_device
*netdev
,
2268 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
2270 struct nic
*nic
= netdev_priv(netdev
);
2272 eeprom
->magic
= E100_EEPROM_MAGIC
;
2273 memcpy(bytes
, &((u8
*)nic
->eeprom
)[eeprom
->offset
], eeprom
->len
);
2278 static int e100_set_eeprom(struct net_device
*netdev
,
2279 struct ethtool_eeprom
*eeprom
, u8
*bytes
)
2281 struct nic
*nic
= netdev_priv(netdev
);
2283 if (eeprom
->magic
!= E100_EEPROM_MAGIC
)
2286 memcpy(&((u8
*)nic
->eeprom
)[eeprom
->offset
], bytes
, eeprom
->len
);
2288 return e100_eeprom_save(nic
, eeprom
->offset
>> 1,
2289 (eeprom
->len
>> 1) + 1);
2292 static void e100_get_ringparam(struct net_device
*netdev
,
2293 struct ethtool_ringparam
*ring
)
2295 struct nic
*nic
= netdev_priv(netdev
);
2296 struct param_range
*rfds
= &nic
->params
.rfds
;
2297 struct param_range
*cbs
= &nic
->params
.cbs
;
2299 ring
->rx_max_pending
= rfds
->max
;
2300 ring
->tx_max_pending
= cbs
->max
;
2301 ring
->rx_mini_max_pending
= 0;
2302 ring
->rx_jumbo_max_pending
= 0;
2303 ring
->rx_pending
= rfds
->count
;
2304 ring
->tx_pending
= cbs
->count
;
2305 ring
->rx_mini_pending
= 0;
2306 ring
->rx_jumbo_pending
= 0;
2309 static int e100_set_ringparam(struct net_device
*netdev
,
2310 struct ethtool_ringparam
*ring
)
2312 struct nic
*nic
= netdev_priv(netdev
);
2313 struct param_range
*rfds
= &nic
->params
.rfds
;
2314 struct param_range
*cbs
= &nic
->params
.cbs
;
2316 if ((ring
->rx_mini_pending
) || (ring
->rx_jumbo_pending
))
2319 if (netif_running(netdev
))
2321 rfds
->count
= max(ring
->rx_pending
, rfds
->min
);
2322 rfds
->count
= min(rfds
->count
, rfds
->max
);
2323 cbs
->count
= max(ring
->tx_pending
, cbs
->min
);
2324 cbs
->count
= min(cbs
->count
, cbs
->max
);
2325 DPRINTK(DRV
, INFO
, "Ring Param settings: rx: %d, tx %d\n",
2326 rfds
->count
, cbs
->count
);
2327 if (netif_running(netdev
))
2333 static const char e100_gstrings_test
[][ETH_GSTRING_LEN
] = {
2334 "Link test (on/offline)",
2335 "Eeprom test (on/offline)",
2336 "Self test (offline)",
2337 "Mac loopback (offline)",
2338 "Phy loopback (offline)",
2340 #define E100_TEST_LEN ARRAY_SIZE(e100_gstrings_test)
2342 static void e100_diag_test(struct net_device
*netdev
,
2343 struct ethtool_test
*test
, u64
*data
)
2345 struct ethtool_cmd cmd
;
2346 struct nic
*nic
= netdev_priv(netdev
);
2349 memset(data
, 0, E100_TEST_LEN
* sizeof(u64
));
2350 data
[0] = !mii_link_ok(&nic
->mii
);
2351 data
[1] = e100_eeprom_load(nic
);
2352 if (test
->flags
& ETH_TEST_FL_OFFLINE
) {
2354 /* save speed, duplex & autoneg settings */
2355 err
= mii_ethtool_gset(&nic
->mii
, &cmd
);
2357 if (netif_running(netdev
))
2359 data
[2] = e100_self_test(nic
);
2360 data
[3] = e100_loopback_test(nic
, lb_mac
);
2361 data
[4] = e100_loopback_test(nic
, lb_phy
);
2363 /* restore speed, duplex & autoneg settings */
2364 err
= mii_ethtool_sset(&nic
->mii
, &cmd
);
2366 if (netif_running(netdev
))
2369 for (i
= 0; i
< E100_TEST_LEN
; i
++)
2370 test
->flags
|= data
[i
] ? ETH_TEST_FL_FAILED
: 0;
2372 msleep_interruptible(4 * 1000);
2375 static int e100_phys_id(struct net_device
*netdev
, u32 data
)
2377 struct nic
*nic
= netdev_priv(netdev
);
2379 if (!data
|| data
> (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
))
2380 data
= (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
);
2381 mod_timer(&nic
->blink_timer
, jiffies
);
2382 msleep_interruptible(data
* 1000);
2383 del_timer_sync(&nic
->blink_timer
);
2384 mdio_write(netdev
, nic
->mii
.phy_id
, MII_LED_CONTROL
, 0);
2389 static const char e100_gstrings_stats
[][ETH_GSTRING_LEN
] = {
2390 "rx_packets", "tx_packets", "rx_bytes", "tx_bytes", "rx_errors",
2391 "tx_errors", "rx_dropped", "tx_dropped", "multicast", "collisions",
2392 "rx_length_errors", "rx_over_errors", "rx_crc_errors",
2393 "rx_frame_errors", "rx_fifo_errors", "rx_missed_errors",
2394 "tx_aborted_errors", "tx_carrier_errors", "tx_fifo_errors",
2395 "tx_heartbeat_errors", "tx_window_errors",
2396 /* device-specific stats */
2397 "tx_deferred", "tx_single_collisions", "tx_multi_collisions",
2398 "tx_flow_control_pause", "rx_flow_control_pause",
2399 "rx_flow_control_unsupported", "tx_tco_packets", "rx_tco_packets",
2401 #define E100_NET_STATS_LEN 21
2402 #define E100_STATS_LEN ARRAY_SIZE(e100_gstrings_stats)
2404 static int e100_get_sset_count(struct net_device
*netdev
, int sset
)
2408 return E100_TEST_LEN
;
2410 return E100_STATS_LEN
;
2416 static void e100_get_ethtool_stats(struct net_device
*netdev
,
2417 struct ethtool_stats
*stats
, u64
*data
)
2419 struct nic
*nic
= netdev_priv(netdev
);
2422 for (i
= 0; i
< E100_NET_STATS_LEN
; i
++)
2423 data
[i
] = ((unsigned long *)&netdev
->stats
)[i
];
2425 data
[i
++] = nic
->tx_deferred
;
2426 data
[i
++] = nic
->tx_single_collisions
;
2427 data
[i
++] = nic
->tx_multiple_collisions
;
2428 data
[i
++] = nic
->tx_fc_pause
;
2429 data
[i
++] = nic
->rx_fc_pause
;
2430 data
[i
++] = nic
->rx_fc_unsupported
;
2431 data
[i
++] = nic
->tx_tco_frames
;
2432 data
[i
++] = nic
->rx_tco_frames
;
2435 static void e100_get_strings(struct net_device
*netdev
, u32 stringset
, u8
*data
)
2437 switch (stringset
) {
2439 memcpy(data
, *e100_gstrings_test
, sizeof(e100_gstrings_test
));
2442 memcpy(data
, *e100_gstrings_stats
, sizeof(e100_gstrings_stats
));
2447 static const struct ethtool_ops e100_ethtool_ops
= {
2448 .get_settings
= e100_get_settings
,
2449 .set_settings
= e100_set_settings
,
2450 .get_drvinfo
= e100_get_drvinfo
,
2451 .get_regs_len
= e100_get_regs_len
,
2452 .get_regs
= e100_get_regs
,
2453 .get_wol
= e100_get_wol
,
2454 .set_wol
= e100_set_wol
,
2455 .get_msglevel
= e100_get_msglevel
,
2456 .set_msglevel
= e100_set_msglevel
,
2457 .nway_reset
= e100_nway_reset
,
2458 .get_link
= e100_get_link
,
2459 .get_eeprom_len
= e100_get_eeprom_len
,
2460 .get_eeprom
= e100_get_eeprom
,
2461 .set_eeprom
= e100_set_eeprom
,
2462 .get_ringparam
= e100_get_ringparam
,
2463 .set_ringparam
= e100_set_ringparam
,
2464 .self_test
= e100_diag_test
,
2465 .get_strings
= e100_get_strings
,
2466 .phys_id
= e100_phys_id
,
2467 .get_ethtool_stats
= e100_get_ethtool_stats
,
2468 .get_sset_count
= e100_get_sset_count
,
2471 static int e100_do_ioctl(struct net_device
*netdev
, struct ifreq
*ifr
, int cmd
)
2473 struct nic
*nic
= netdev_priv(netdev
);
2475 return generic_mii_ioctl(&nic
->mii
, if_mii(ifr
), cmd
, NULL
);
2478 static int e100_alloc(struct nic
*nic
)
2480 nic
->mem
= pci_alloc_consistent(nic
->pdev
, sizeof(struct mem
),
2482 return nic
->mem
? 0 : -ENOMEM
;
2485 static void e100_free(struct nic
*nic
)
2488 pci_free_consistent(nic
->pdev
, sizeof(struct mem
),
2489 nic
->mem
, nic
->dma_addr
);
2494 static int e100_open(struct net_device
*netdev
)
2496 struct nic
*nic
= netdev_priv(netdev
);
2499 netif_carrier_off(netdev
);
2500 if ((err
= e100_up(nic
)))
2501 DPRINTK(IFUP
, ERR
, "Cannot open interface, aborting.\n");
2505 static int e100_close(struct net_device
*netdev
)
2507 e100_down(netdev_priv(netdev
));
2511 static const struct net_device_ops e100_netdev_ops
= {
2512 .ndo_open
= e100_open
,
2513 .ndo_stop
= e100_close
,
2514 .ndo_start_xmit
= e100_xmit_frame
,
2515 .ndo_validate_addr
= eth_validate_addr
,
2516 .ndo_set_multicast_list
= e100_set_multicast_list
,
2517 .ndo_set_mac_address
= e100_set_mac_address
,
2518 .ndo_change_mtu
= e100_change_mtu
,
2519 .ndo_do_ioctl
= e100_do_ioctl
,
2520 .ndo_tx_timeout
= e100_tx_timeout
,
2521 #ifdef CONFIG_NET_POLL_CONTROLLER
2522 .ndo_poll_controller
= e100_netpoll
,
2526 static int __devinit
e100_probe(struct pci_dev
*pdev
,
2527 const struct pci_device_id
*ent
)
2529 struct net_device
*netdev
;
2533 if (!(netdev
= alloc_etherdev(sizeof(struct nic
)))) {
2534 if (((1 << debug
) - 1) & NETIF_MSG_PROBE
)
2535 printk(KERN_ERR PFX
"Etherdev alloc failed, abort.\n");
2539 netdev
->netdev_ops
= &e100_netdev_ops
;
2540 SET_ETHTOOL_OPS(netdev
, &e100_ethtool_ops
);
2541 netdev
->watchdog_timeo
= E100_WATCHDOG_PERIOD
;
2542 strncpy(netdev
->name
, pci_name(pdev
), sizeof(netdev
->name
) - 1);
2544 nic
= netdev_priv(netdev
);
2545 netif_napi_add(netdev
, &nic
->napi
, e100_poll
, E100_NAPI_WEIGHT
);
2546 nic
->netdev
= netdev
;
2548 nic
->msg_enable
= (1 << debug
) - 1;
2549 pci_set_drvdata(pdev
, netdev
);
2551 if ((err
= pci_enable_device(pdev
))) {
2552 DPRINTK(PROBE
, ERR
, "Cannot enable PCI device, aborting.\n");
2553 goto err_out_free_dev
;
2556 if (!(pci_resource_flags(pdev
, 0) & IORESOURCE_MEM
)) {
2557 DPRINTK(PROBE
, ERR
, "Cannot find proper PCI device "
2558 "base address, aborting.\n");
2560 goto err_out_disable_pdev
;
2563 if ((err
= pci_request_regions(pdev
, DRV_NAME
))) {
2564 DPRINTK(PROBE
, ERR
, "Cannot obtain PCI resources, aborting.\n");
2565 goto err_out_disable_pdev
;
2568 if ((err
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
))) {
2569 DPRINTK(PROBE
, ERR
, "No usable DMA configuration, aborting.\n");
2570 goto err_out_free_res
;
2573 SET_NETDEV_DEV(netdev
, &pdev
->dev
);
2576 DPRINTK(PROBE
, INFO
, "using i/o access mode\n");
2578 nic
->csr
= pci_iomap(pdev
, (use_io
? 1 : 0), sizeof(struct csr
));
2580 DPRINTK(PROBE
, ERR
, "Cannot map device registers, aborting.\n");
2582 goto err_out_free_res
;
2585 if (ent
->driver_data
)
2590 e100_get_defaults(nic
);
2592 /* locks must be initialized before calling hw_reset */
2593 spin_lock_init(&nic
->cb_lock
);
2594 spin_lock_init(&nic
->cmd_lock
);
2595 spin_lock_init(&nic
->mdio_lock
);
2597 /* Reset the device before pci_set_master() in case device is in some
2598 * funky state and has an interrupt pending - hint: we don't have the
2599 * interrupt handler registered yet. */
2602 pci_set_master(pdev
);
2604 init_timer(&nic
->watchdog
);
2605 nic
->watchdog
.function
= e100_watchdog
;
2606 nic
->watchdog
.data
= (unsigned long)nic
;
2607 init_timer(&nic
->blink_timer
);
2608 nic
->blink_timer
.function
= e100_blink_led
;
2609 nic
->blink_timer
.data
= (unsigned long)nic
;
2611 INIT_WORK(&nic
->tx_timeout_task
, e100_tx_timeout_task
);
2613 if ((err
= e100_alloc(nic
))) {
2614 DPRINTK(PROBE
, ERR
, "Cannot alloc driver memory, aborting.\n");
2615 goto err_out_iounmap
;
2618 if ((err
= e100_eeprom_load(nic
)))
2623 memcpy(netdev
->dev_addr
, nic
->eeprom
, ETH_ALEN
);
2624 memcpy(netdev
->perm_addr
, nic
->eeprom
, ETH_ALEN
);
2625 if (!is_valid_ether_addr(netdev
->perm_addr
)) {
2626 if (!eeprom_bad_csum_allow
) {
2627 DPRINTK(PROBE
, ERR
, "Invalid MAC address from "
2628 "EEPROM, aborting.\n");
2632 DPRINTK(PROBE
, ERR
, "Invalid MAC address from EEPROM, "
2633 "you MUST configure one.\n");
2637 /* Wol magic packet can be enabled from eeprom */
2638 if ((nic
->mac
>= mac_82558_D101_A4
) &&
2639 (nic
->eeprom
[eeprom_id
] & eeprom_id_wol
)) {
2640 nic
->flags
|= wol_magic
;
2641 device_set_wakeup_enable(&pdev
->dev
, true);
2644 /* ack any pending wake events, disable PME */
2645 pci_pme_active(pdev
, false);
2647 strcpy(netdev
->name
, "eth%d");
2648 if ((err
= register_netdev(netdev
))) {
2649 DPRINTK(PROBE
, ERR
, "Cannot register net device, aborting.\n");
2653 DPRINTK(PROBE
, INFO
, "addr 0x%llx, irq %d, MAC addr %pM\n",
2654 (unsigned long long)pci_resource_start(pdev
, use_io
? 1 : 0),
2655 pdev
->irq
, netdev
->dev_addr
);
2662 pci_iounmap(pdev
, nic
->csr
);
2664 pci_release_regions(pdev
);
2665 err_out_disable_pdev
:
2666 pci_disable_device(pdev
);
2668 pci_set_drvdata(pdev
, NULL
);
2669 free_netdev(netdev
);
2673 static void __devexit
e100_remove(struct pci_dev
*pdev
)
2675 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2678 struct nic
*nic
= netdev_priv(netdev
);
2679 unregister_netdev(netdev
);
2681 pci_iounmap(pdev
, nic
->csr
);
2682 free_netdev(netdev
);
2683 pci_release_regions(pdev
);
2684 pci_disable_device(pdev
);
2685 pci_set_drvdata(pdev
, NULL
);
2689 static int e100_suspend(struct pci_dev
*pdev
, pm_message_t state
)
2691 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2692 struct nic
*nic
= netdev_priv(netdev
);
2694 if (netif_running(netdev
))
2696 netif_device_detach(netdev
);
2698 pci_save_state(pdev
);
2700 if ((nic
->flags
& wol_magic
) | e100_asf(nic
)) {
2701 if (pci_enable_wake(pdev
, PCI_D3cold
, true))
2702 pci_enable_wake(pdev
, PCI_D3hot
, true);
2704 pci_enable_wake(pdev
, PCI_D3hot
, false);
2707 pci_disable_device(pdev
);
2708 pci_set_power_state(pdev
, PCI_D3hot
);
2714 static int e100_resume(struct pci_dev
*pdev
)
2716 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2717 struct nic
*nic
= netdev_priv(netdev
);
2719 pci_set_power_state(pdev
, PCI_D0
);
2720 pci_restore_state(pdev
);
2721 /* ack any pending wake events, disable PME */
2722 pci_enable_wake(pdev
, 0, 0);
2724 netif_device_attach(netdev
);
2725 if (netif_running(netdev
))
2730 #endif /* CONFIG_PM */
2732 static void e100_shutdown(struct pci_dev
*pdev
)
2734 e100_suspend(pdev
, PMSG_SUSPEND
);
2737 /* ------------------ PCI Error Recovery infrastructure -------------- */
2739 * e100_io_error_detected - called when PCI error is detected.
2740 * @pdev: Pointer to PCI device
2741 * @state: The current pci connection state
2743 static pci_ers_result_t
e100_io_error_detected(struct pci_dev
*pdev
, pci_channel_state_t state
)
2745 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2746 struct nic
*nic
= netdev_priv(netdev
);
2748 /* Similar to calling e100_down(), but avoids adapter I/O. */
2751 /* Detach; put netif into a state similar to hotplug unplug. */
2752 napi_enable(&nic
->napi
);
2753 netif_device_detach(netdev
);
2754 pci_disable_device(pdev
);
2756 /* Request a slot reset. */
2757 return PCI_ERS_RESULT_NEED_RESET
;
2761 * e100_io_slot_reset - called after the pci bus has been reset.
2762 * @pdev: Pointer to PCI device
2764 * Restart the card from scratch.
2766 static pci_ers_result_t
e100_io_slot_reset(struct pci_dev
*pdev
)
2768 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2769 struct nic
*nic
= netdev_priv(netdev
);
2771 if (pci_enable_device(pdev
)) {
2772 printk(KERN_ERR
"e100: Cannot re-enable PCI device after reset.\n");
2773 return PCI_ERS_RESULT_DISCONNECT
;
2775 pci_set_master(pdev
);
2777 /* Only one device per card can do a reset */
2778 if (0 != PCI_FUNC(pdev
->devfn
))
2779 return PCI_ERS_RESULT_RECOVERED
;
2783 return PCI_ERS_RESULT_RECOVERED
;
2787 * e100_io_resume - resume normal operations
2788 * @pdev: Pointer to PCI device
2790 * Resume normal operations after an error recovery
2791 * sequence has been completed.
2793 static void e100_io_resume(struct pci_dev
*pdev
)
2795 struct net_device
*netdev
= pci_get_drvdata(pdev
);
2796 struct nic
*nic
= netdev_priv(netdev
);
2798 /* ack any pending wake events, disable PME */
2799 pci_enable_wake(pdev
, 0, 0);
2801 netif_device_attach(netdev
);
2802 if (netif_running(netdev
)) {
2804 mod_timer(&nic
->watchdog
, jiffies
);
2808 static struct pci_error_handlers e100_err_handler
= {
2809 .error_detected
= e100_io_error_detected
,
2810 .slot_reset
= e100_io_slot_reset
,
2811 .resume
= e100_io_resume
,
2814 static struct pci_driver e100_driver
= {
2816 .id_table
= e100_id_table
,
2817 .probe
= e100_probe
,
2818 .remove
= __devexit_p(e100_remove
),
2820 /* Power Management hooks */
2821 .suspend
= e100_suspend
,
2822 .resume
= e100_resume
,
2824 .shutdown
= e100_shutdown
,
2825 .err_handler
= &e100_err_handler
,
2828 static int __init
e100_init_module(void)
2830 if (((1 << debug
) - 1) & NETIF_MSG_DRV
) {
2831 printk(KERN_INFO PFX
"%s, %s\n", DRV_DESCRIPTION
, DRV_VERSION
);
2832 printk(KERN_INFO PFX
"%s\n", DRV_COPYRIGHT
);
2834 return pci_register_driver(&e100_driver
);
2837 static void __exit
e100_cleanup_module(void)
2839 pci_unregister_driver(&e100_driver
);
2842 module_init(e100_init_module
);
2843 module_exit(e100_cleanup_module
);