[PATCH] x86: Cr4 is valid on some 486s
[linux-2.6/linux-2.6-openrd.git] / arch / i386 / kernel / process.c
blob6081a10d34161098706928a6e97a5b604310f280
1 /*
2 * linux/arch/i386/kernel/process.c
4 * Copyright (C) 1995 Linus Torvalds
6 * Pentium III FXSR, SSE support
7 * Gareth Hughes <gareth@valinux.com>, May 2000
8 */
11 * This file handles the architecture-dependent parts of process handling..
14 #include <stdarg.h>
16 #include <linux/cpu.h>
17 #include <linux/errno.h>
18 #include <linux/sched.h>
19 #include <linux/fs.h>
20 #include <linux/kernel.h>
21 #include <linux/mm.h>
22 #include <linux/elfcore.h>
23 #include <linux/smp.h>
24 #include <linux/smp_lock.h>
25 #include <linux/stddef.h>
26 #include <linux/slab.h>
27 #include <linux/vmalloc.h>
28 #include <linux/user.h>
29 #include <linux/a.out.h>
30 #include <linux/interrupt.h>
31 #include <linux/config.h>
32 #include <linux/utsname.h>
33 #include <linux/delay.h>
34 #include <linux/reboot.h>
35 #include <linux/init.h>
36 #include <linux/mc146818rtc.h>
37 #include <linux/module.h>
38 #include <linux/kallsyms.h>
39 #include <linux/ptrace.h>
40 #include <linux/random.h>
41 #include <linux/kprobes.h>
43 #include <asm/uaccess.h>
44 #include <asm/pgtable.h>
45 #include <asm/system.h>
46 #include <asm/io.h>
47 #include <asm/ldt.h>
48 #include <asm/processor.h>
49 #include <asm/i387.h>
50 #include <asm/desc.h>
51 #ifdef CONFIG_MATH_EMULATION
52 #include <asm/math_emu.h>
53 #endif
55 #include <linux/err.h>
57 #include <asm/tlbflush.h>
58 #include <asm/cpu.h>
60 asmlinkage void ret_from_fork(void) __asm__("ret_from_fork");
62 static int hlt_counter;
64 unsigned long boot_option_idle_override = 0;
65 EXPORT_SYMBOL(boot_option_idle_override);
68 * Return saved PC of a blocked thread.
70 unsigned long thread_saved_pc(struct task_struct *tsk)
72 return ((unsigned long *)tsk->thread.esp)[3];
76 * Powermanagement idle function, if any..
78 void (*pm_idle)(void);
79 EXPORT_SYMBOL(pm_idle);
80 static DEFINE_PER_CPU(unsigned int, cpu_idle_state);
82 void disable_hlt(void)
84 hlt_counter++;
87 EXPORT_SYMBOL(disable_hlt);
89 void enable_hlt(void)
91 hlt_counter--;
94 EXPORT_SYMBOL(enable_hlt);
97 * We use this if we don't have any better
98 * idle routine..
100 void default_idle(void)
102 local_irq_enable();
104 if (!hlt_counter && boot_cpu_data.hlt_works_ok) {
105 clear_thread_flag(TIF_POLLING_NRFLAG);
106 smp_mb__after_clear_bit();
107 while (!need_resched()) {
108 local_irq_disable();
109 if (!need_resched())
110 safe_halt();
111 else
112 local_irq_enable();
114 set_thread_flag(TIF_POLLING_NRFLAG);
115 } else {
116 while (!need_resched())
117 cpu_relax();
120 #ifdef CONFIG_APM_MODULE
121 EXPORT_SYMBOL(default_idle);
122 #endif
125 * On SMP it's slightly faster (but much more power-consuming!)
126 * to poll the ->work.need_resched flag instead of waiting for the
127 * cross-CPU IPI to arrive. Use this option with caution.
129 static void poll_idle (void)
131 local_irq_enable();
133 asm volatile(
134 "2:"
135 "testl %0, %1;"
136 "rep; nop;"
137 "je 2b;"
138 : : "i"(_TIF_NEED_RESCHED), "m" (current_thread_info()->flags));
141 #ifdef CONFIG_HOTPLUG_CPU
142 #include <asm/nmi.h>
143 /* We don't actually take CPU down, just spin without interrupts. */
144 static inline void play_dead(void)
146 /* This must be done before dead CPU ack */
147 cpu_exit_clear();
148 wbinvd();
149 mb();
150 /* Ack it */
151 __get_cpu_var(cpu_state) = CPU_DEAD;
154 * With physical CPU hotplug, we should halt the cpu
156 local_irq_disable();
157 while (1)
158 halt();
160 #else
161 static inline void play_dead(void)
163 BUG();
165 #endif /* CONFIG_HOTPLUG_CPU */
168 * The idle thread. There's no useful work to be
169 * done, so just try to conserve power and have a
170 * low exit latency (ie sit in a loop waiting for
171 * somebody to say that they'd like to reschedule)
173 void cpu_idle(void)
175 int cpu = smp_processor_id();
177 set_thread_flag(TIF_POLLING_NRFLAG);
179 /* endless idle loop with no priority at all */
180 while (1) {
181 while (!need_resched()) {
182 void (*idle)(void);
184 if (__get_cpu_var(cpu_idle_state))
185 __get_cpu_var(cpu_idle_state) = 0;
187 rmb();
188 idle = pm_idle;
190 if (!idle)
191 idle = default_idle;
193 if (cpu_is_offline(cpu))
194 play_dead();
196 __get_cpu_var(irq_stat).idle_timestamp = jiffies;
197 idle();
199 preempt_enable_no_resched();
200 schedule();
201 preempt_disable();
205 void cpu_idle_wait(void)
207 unsigned int cpu, this_cpu = get_cpu();
208 cpumask_t map;
210 set_cpus_allowed(current, cpumask_of_cpu(this_cpu));
211 put_cpu();
213 cpus_clear(map);
214 for_each_online_cpu(cpu) {
215 per_cpu(cpu_idle_state, cpu) = 1;
216 cpu_set(cpu, map);
219 __get_cpu_var(cpu_idle_state) = 0;
221 wmb();
222 do {
223 ssleep(1);
224 for_each_online_cpu(cpu) {
225 if (cpu_isset(cpu, map) && !per_cpu(cpu_idle_state, cpu))
226 cpu_clear(cpu, map);
228 cpus_and(map, map, cpu_online_map);
229 } while (!cpus_empty(map));
231 EXPORT_SYMBOL_GPL(cpu_idle_wait);
234 * This uses new MONITOR/MWAIT instructions on P4 processors with PNI,
235 * which can obviate IPI to trigger checking of need_resched.
236 * We execute MONITOR against need_resched and enter optimized wait state
237 * through MWAIT. Whenever someone changes need_resched, we would be woken
238 * up from MWAIT (without an IPI).
240 static void mwait_idle(void)
242 local_irq_enable();
244 while (!need_resched()) {
245 __monitor((void *)&current_thread_info()->flags, 0, 0);
246 smp_mb();
247 if (need_resched())
248 break;
249 __mwait(0, 0);
253 void __devinit select_idle_routine(const struct cpuinfo_x86 *c)
255 if (cpu_has(c, X86_FEATURE_MWAIT)) {
256 printk("monitor/mwait feature present.\n");
258 * Skip, if setup has overridden idle.
259 * One CPU supports mwait => All CPUs supports mwait
261 if (!pm_idle) {
262 printk("using mwait in idle threads.\n");
263 pm_idle = mwait_idle;
268 static int __init idle_setup (char *str)
270 if (!strncmp(str, "poll", 4)) {
271 printk("using polling idle threads.\n");
272 pm_idle = poll_idle;
273 #ifdef CONFIG_X86_SMP
274 if (smp_num_siblings > 1)
275 printk("WARNING: polling idle and HT enabled, performance may degrade.\n");
276 #endif
277 } else if (!strncmp(str, "halt", 4)) {
278 printk("using halt in idle threads.\n");
279 pm_idle = default_idle;
282 boot_option_idle_override = 1;
283 return 1;
286 __setup("idle=", idle_setup);
288 void show_regs(struct pt_regs * regs)
290 unsigned long cr0 = 0L, cr2 = 0L, cr3 = 0L, cr4 = 0L;
292 printk("\n");
293 printk("Pid: %d, comm: %20s\n", current->pid, current->comm);
294 printk("EIP: %04x:[<%08lx>] CPU: %d\n",0xffff & regs->xcs,regs->eip, smp_processor_id());
295 print_symbol("EIP is at %s\n", regs->eip);
297 if (user_mode(regs))
298 printk(" ESP: %04x:%08lx",0xffff & regs->xss,regs->esp);
299 printk(" EFLAGS: %08lx %s (%s)\n",
300 regs->eflags, print_tainted(), system_utsname.release);
301 printk("EAX: %08lx EBX: %08lx ECX: %08lx EDX: %08lx\n",
302 regs->eax,regs->ebx,regs->ecx,regs->edx);
303 printk("ESI: %08lx EDI: %08lx EBP: %08lx",
304 regs->esi, regs->edi, regs->ebp);
305 printk(" DS: %04x ES: %04x\n",
306 0xffff & regs->xds,0xffff & regs->xes);
308 cr0 = read_cr0();
309 cr2 = read_cr2();
310 cr3 = read_cr3();
311 cr4 = read_cr4_safe();
312 printk("CR0: %08lx CR2: %08lx CR3: %08lx CR4: %08lx\n", cr0, cr2, cr3, cr4);
313 show_trace(NULL, &regs->esp);
317 * This gets run with %ebx containing the
318 * function to call, and %edx containing
319 * the "args".
321 extern void kernel_thread_helper(void);
322 __asm__(".section .text\n"
323 ".align 4\n"
324 "kernel_thread_helper:\n\t"
325 "movl %edx,%eax\n\t"
326 "pushl %edx\n\t"
327 "call *%ebx\n\t"
328 "pushl %eax\n\t"
329 "call do_exit\n"
330 ".previous");
333 * Create a kernel thread
335 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
337 struct pt_regs regs;
339 memset(&regs, 0, sizeof(regs));
341 regs.ebx = (unsigned long) fn;
342 regs.edx = (unsigned long) arg;
344 regs.xds = __USER_DS;
345 regs.xes = __USER_DS;
346 regs.orig_eax = -1;
347 regs.eip = (unsigned long) kernel_thread_helper;
348 regs.xcs = __KERNEL_CS;
349 regs.eflags = X86_EFLAGS_IF | X86_EFLAGS_SF | X86_EFLAGS_PF | 0x2;
351 /* Ok, create the new process.. */
352 return do_fork(flags | CLONE_VM | CLONE_UNTRACED, 0, &regs, 0, NULL, NULL);
354 EXPORT_SYMBOL(kernel_thread);
357 * Free current thread data structures etc..
359 void exit_thread(void)
361 struct task_struct *tsk = current;
362 struct thread_struct *t = &tsk->thread;
365 * Remove function-return probe instances associated with this task
366 * and put them back on the free list. Do not insert an exit probe for
367 * this function, it will be disabled by kprobe_flush_task if you do.
369 kprobe_flush_task(tsk);
371 /* The process may have allocated an io port bitmap... nuke it. */
372 if (unlikely(NULL != t->io_bitmap_ptr)) {
373 int cpu = get_cpu();
374 struct tss_struct *tss = &per_cpu(init_tss, cpu);
376 kfree(t->io_bitmap_ptr);
377 t->io_bitmap_ptr = NULL;
379 * Careful, clear this in the TSS too:
381 memset(tss->io_bitmap, 0xff, tss->io_bitmap_max);
382 t->io_bitmap_max = 0;
383 tss->io_bitmap_owner = NULL;
384 tss->io_bitmap_max = 0;
385 tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
386 put_cpu();
390 void flush_thread(void)
392 struct task_struct *tsk = current;
394 memset(tsk->thread.debugreg, 0, sizeof(unsigned long)*8);
395 memset(tsk->thread.tls_array, 0, sizeof(tsk->thread.tls_array));
397 * Forget coprocessor state..
399 clear_fpu(tsk);
400 clear_used_math();
403 void release_thread(struct task_struct *dead_task)
405 if (dead_task->mm) {
406 // temporary debugging check
407 if (dead_task->mm->context.size) {
408 printk("WARNING: dead process %8s still has LDT? <%p/%d>\n",
409 dead_task->comm,
410 dead_task->mm->context.ldt,
411 dead_task->mm->context.size);
412 BUG();
416 release_vm86_irqs(dead_task);
420 * This gets called before we allocate a new thread and copy
421 * the current task into it.
423 void prepare_to_copy(struct task_struct *tsk)
425 unlazy_fpu(tsk);
428 int copy_thread(int nr, unsigned long clone_flags, unsigned long esp,
429 unsigned long unused,
430 struct task_struct * p, struct pt_regs * regs)
432 struct pt_regs * childregs;
433 struct task_struct *tsk;
434 int err;
436 childregs = ((struct pt_regs *) (THREAD_SIZE + (unsigned long) p->thread_info)) - 1;
438 * The below -8 is to reserve 8 bytes on top of the ring0 stack.
439 * This is necessary to guarantee that the entire "struct pt_regs"
440 * is accessable even if the CPU haven't stored the SS/ESP registers
441 * on the stack (interrupt gate does not save these registers
442 * when switching to the same priv ring).
443 * Therefore beware: accessing the xss/esp fields of the
444 * "struct pt_regs" is possible, but they may contain the
445 * completely wrong values.
447 childregs = (struct pt_regs *) ((unsigned long) childregs - 8);
448 *childregs = *regs;
449 childregs->eax = 0;
450 childregs->esp = esp;
452 p->thread.esp = (unsigned long) childregs;
453 p->thread.esp0 = (unsigned long) (childregs+1);
455 p->thread.eip = (unsigned long) ret_from_fork;
457 savesegment(fs,p->thread.fs);
458 savesegment(gs,p->thread.gs);
460 tsk = current;
461 if (unlikely(NULL != tsk->thread.io_bitmap_ptr)) {
462 p->thread.io_bitmap_ptr = kmalloc(IO_BITMAP_BYTES, GFP_KERNEL);
463 if (!p->thread.io_bitmap_ptr) {
464 p->thread.io_bitmap_max = 0;
465 return -ENOMEM;
467 memcpy(p->thread.io_bitmap_ptr, tsk->thread.io_bitmap_ptr,
468 IO_BITMAP_BYTES);
472 * Set a new TLS for the child thread?
474 if (clone_flags & CLONE_SETTLS) {
475 struct desc_struct *desc;
476 struct user_desc info;
477 int idx;
479 err = -EFAULT;
480 if (copy_from_user(&info, (void __user *)childregs->esi, sizeof(info)))
481 goto out;
482 err = -EINVAL;
483 if (LDT_empty(&info))
484 goto out;
486 idx = info.entry_number;
487 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
488 goto out;
490 desc = p->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
491 desc->a = LDT_entry_a(&info);
492 desc->b = LDT_entry_b(&info);
495 err = 0;
496 out:
497 if (err && p->thread.io_bitmap_ptr) {
498 kfree(p->thread.io_bitmap_ptr);
499 p->thread.io_bitmap_max = 0;
501 return err;
505 * fill in the user structure for a core dump..
507 void dump_thread(struct pt_regs * regs, struct user * dump)
509 int i;
511 /* changed the size calculations - should hopefully work better. lbt */
512 dump->magic = CMAGIC;
513 dump->start_code = 0;
514 dump->start_stack = regs->esp & ~(PAGE_SIZE - 1);
515 dump->u_tsize = ((unsigned long) current->mm->end_code) >> PAGE_SHIFT;
516 dump->u_dsize = ((unsigned long) (current->mm->brk + (PAGE_SIZE-1))) >> PAGE_SHIFT;
517 dump->u_dsize -= dump->u_tsize;
518 dump->u_ssize = 0;
519 for (i = 0; i < 8; i++)
520 dump->u_debugreg[i] = current->thread.debugreg[i];
522 if (dump->start_stack < TASK_SIZE)
523 dump->u_ssize = ((unsigned long) (TASK_SIZE - dump->start_stack)) >> PAGE_SHIFT;
525 dump->regs.ebx = regs->ebx;
526 dump->regs.ecx = regs->ecx;
527 dump->regs.edx = regs->edx;
528 dump->regs.esi = regs->esi;
529 dump->regs.edi = regs->edi;
530 dump->regs.ebp = regs->ebp;
531 dump->regs.eax = regs->eax;
532 dump->regs.ds = regs->xds;
533 dump->regs.es = regs->xes;
534 savesegment(fs,dump->regs.fs);
535 savesegment(gs,dump->regs.gs);
536 dump->regs.orig_eax = regs->orig_eax;
537 dump->regs.eip = regs->eip;
538 dump->regs.cs = regs->xcs;
539 dump->regs.eflags = regs->eflags;
540 dump->regs.esp = regs->esp;
541 dump->regs.ss = regs->xss;
543 dump->u_fpvalid = dump_fpu (regs, &dump->i387);
545 EXPORT_SYMBOL(dump_thread);
548 * Capture the user space registers if the task is not running (in user space)
550 int dump_task_regs(struct task_struct *tsk, elf_gregset_t *regs)
552 struct pt_regs ptregs;
554 ptregs = *(struct pt_regs *)
555 ((unsigned long)tsk->thread_info +
556 /* see comments in copy_thread() about -8 */
557 THREAD_SIZE - sizeof(ptregs) - 8);
558 ptregs.xcs &= 0xffff;
559 ptregs.xds &= 0xffff;
560 ptregs.xes &= 0xffff;
561 ptregs.xss &= 0xffff;
563 elf_core_copy_regs(regs, &ptregs);
565 return 1;
568 static inline void
569 handle_io_bitmap(struct thread_struct *next, struct tss_struct *tss)
571 if (!next->io_bitmap_ptr) {
573 * Disable the bitmap via an invalid offset. We still cache
574 * the previous bitmap owner and the IO bitmap contents:
576 tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET;
577 return;
579 if (likely(next == tss->io_bitmap_owner)) {
581 * Previous owner of the bitmap (hence the bitmap content)
582 * matches the next task, we dont have to do anything but
583 * to set a valid offset in the TSS:
585 tss->io_bitmap_base = IO_BITMAP_OFFSET;
586 return;
589 * Lazy TSS's I/O bitmap copy. We set an invalid offset here
590 * and we let the task to get a GPF in case an I/O instruction
591 * is performed. The handler of the GPF will verify that the
592 * faulting task has a valid I/O bitmap and, it true, does the
593 * real copy and restart the instruction. This will save us
594 * redundant copies when the currently switched task does not
595 * perform any I/O during its timeslice.
597 tss->io_bitmap_base = INVALID_IO_BITMAP_OFFSET_LAZY;
601 * This function selects if the context switch from prev to next
602 * has to tweak the TSC disable bit in the cr4.
604 static inline void disable_tsc(struct task_struct *prev_p,
605 struct task_struct *next_p)
607 struct thread_info *prev, *next;
610 * gcc should eliminate the ->thread_info dereference if
611 * has_secure_computing returns 0 at compile time (SECCOMP=n).
613 prev = prev_p->thread_info;
614 next = next_p->thread_info;
616 if (has_secure_computing(prev) || has_secure_computing(next)) {
617 /* slow path here */
618 if (has_secure_computing(prev) &&
619 !has_secure_computing(next)) {
620 write_cr4(read_cr4() & ~X86_CR4_TSD);
621 } else if (!has_secure_computing(prev) &&
622 has_secure_computing(next))
623 write_cr4(read_cr4() | X86_CR4_TSD);
628 * switch_to(x,yn) should switch tasks from x to y.
630 * We fsave/fwait so that an exception goes off at the right time
631 * (as a call from the fsave or fwait in effect) rather than to
632 * the wrong process. Lazy FP saving no longer makes any sense
633 * with modern CPU's, and this simplifies a lot of things (SMP
634 * and UP become the same).
636 * NOTE! We used to use the x86 hardware context switching. The
637 * reason for not using it any more becomes apparent when you
638 * try to recover gracefully from saved state that is no longer
639 * valid (stale segment register values in particular). With the
640 * hardware task-switch, there is no way to fix up bad state in
641 * a reasonable manner.
643 * The fact that Intel documents the hardware task-switching to
644 * be slow is a fairly red herring - this code is not noticeably
645 * faster. However, there _is_ some room for improvement here,
646 * so the performance issues may eventually be a valid point.
647 * More important, however, is the fact that this allows us much
648 * more flexibility.
650 * The return value (in %eax) will be the "prev" task after
651 * the task-switch, and shows up in ret_from_fork in entry.S,
652 * for example.
654 struct task_struct fastcall * __switch_to(struct task_struct *prev_p, struct task_struct *next_p)
656 struct thread_struct *prev = &prev_p->thread,
657 *next = &next_p->thread;
658 int cpu = smp_processor_id();
659 struct tss_struct *tss = &per_cpu(init_tss, cpu);
661 /* never put a printk in __switch_to... printk() calls wake_up*() indirectly */
663 __unlazy_fpu(prev_p);
666 * Reload esp0.
668 load_esp0(tss, next);
671 * Save away %fs and %gs. No need to save %es and %ds, as
672 * those are always kernel segments while inside the kernel.
673 * Doing this before setting the new TLS descriptors avoids
674 * the situation where we temporarily have non-reloadable
675 * segments in %fs and %gs. This could be an issue if the
676 * NMI handler ever used %fs or %gs (it does not today), or
677 * if the kernel is running inside of a hypervisor layer.
679 savesegment(fs, prev->fs);
680 savesegment(gs, prev->gs);
683 * Load the per-thread Thread-Local Storage descriptor.
685 load_TLS(next, cpu);
688 * Restore %fs and %gs if needed.
690 * Glibc normally makes %fs be zero, and %gs is one of
691 * the TLS segments.
693 if (unlikely(prev->fs | next->fs))
694 loadsegment(fs, next->fs);
696 if (prev->gs | next->gs)
697 loadsegment(gs, next->gs);
700 * Restore IOPL if needed.
702 if (unlikely(prev->iopl != next->iopl))
703 set_iopl_mask(next->iopl);
706 * Now maybe reload the debug registers
708 if (unlikely(next->debugreg[7])) {
709 set_debugreg(next->debugreg[0], 0);
710 set_debugreg(next->debugreg[1], 1);
711 set_debugreg(next->debugreg[2], 2);
712 set_debugreg(next->debugreg[3], 3);
713 /* no 4 and 5 */
714 set_debugreg(next->debugreg[6], 6);
715 set_debugreg(next->debugreg[7], 7);
718 if (unlikely(prev->io_bitmap_ptr || next->io_bitmap_ptr))
719 handle_io_bitmap(next, tss);
721 disable_tsc(prev_p, next_p);
723 return prev_p;
726 asmlinkage int sys_fork(struct pt_regs regs)
728 return do_fork(SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
731 asmlinkage int sys_clone(struct pt_regs regs)
733 unsigned long clone_flags;
734 unsigned long newsp;
735 int __user *parent_tidptr, *child_tidptr;
737 clone_flags = regs.ebx;
738 newsp = regs.ecx;
739 parent_tidptr = (int __user *)regs.edx;
740 child_tidptr = (int __user *)regs.edi;
741 if (!newsp)
742 newsp = regs.esp;
743 return do_fork(clone_flags, newsp, &regs, 0, parent_tidptr, child_tidptr);
747 * This is trivial, and on the face of it looks like it
748 * could equally well be done in user mode.
750 * Not so, for quite unobvious reasons - register pressure.
751 * In user mode vfork() cannot have a stack frame, and if
752 * done by calling the "clone()" system call directly, you
753 * do not have enough call-clobbered registers to hold all
754 * the information you need.
756 asmlinkage int sys_vfork(struct pt_regs regs)
758 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD, regs.esp, &regs, 0, NULL, NULL);
762 * sys_execve() executes a new program.
764 asmlinkage int sys_execve(struct pt_regs regs)
766 int error;
767 char * filename;
769 filename = getname((char __user *) regs.ebx);
770 error = PTR_ERR(filename);
771 if (IS_ERR(filename))
772 goto out;
773 error = do_execve(filename,
774 (char __user * __user *) regs.ecx,
775 (char __user * __user *) regs.edx,
776 &regs);
777 if (error == 0) {
778 task_lock(current);
779 current->ptrace &= ~PT_DTRACE;
780 task_unlock(current);
781 /* Make sure we don't return using sysenter.. */
782 set_thread_flag(TIF_IRET);
784 putname(filename);
785 out:
786 return error;
789 #define top_esp (THREAD_SIZE - sizeof(unsigned long))
790 #define top_ebp (THREAD_SIZE - 2*sizeof(unsigned long))
792 unsigned long get_wchan(struct task_struct *p)
794 unsigned long ebp, esp, eip;
795 unsigned long stack_page;
796 int count = 0;
797 if (!p || p == current || p->state == TASK_RUNNING)
798 return 0;
799 stack_page = (unsigned long)p->thread_info;
800 esp = p->thread.esp;
801 if (!stack_page || esp < stack_page || esp > top_esp+stack_page)
802 return 0;
803 /* include/asm-i386/system.h:switch_to() pushes ebp last. */
804 ebp = *(unsigned long *) esp;
805 do {
806 if (ebp < stack_page || ebp > top_ebp+stack_page)
807 return 0;
808 eip = *(unsigned long *) (ebp+4);
809 if (!in_sched_functions(eip))
810 return eip;
811 ebp = *(unsigned long *) ebp;
812 } while (count++ < 16);
813 return 0;
815 EXPORT_SYMBOL(get_wchan);
818 * sys_alloc_thread_area: get a yet unused TLS descriptor index.
820 static int get_free_idx(void)
822 struct thread_struct *t = &current->thread;
823 int idx;
825 for (idx = 0; idx < GDT_ENTRY_TLS_ENTRIES; idx++)
826 if (desc_empty(t->tls_array + idx))
827 return idx + GDT_ENTRY_TLS_MIN;
828 return -ESRCH;
832 * Set a given TLS descriptor:
834 asmlinkage int sys_set_thread_area(struct user_desc __user *u_info)
836 struct thread_struct *t = &current->thread;
837 struct user_desc info;
838 struct desc_struct *desc;
839 int cpu, idx;
841 if (copy_from_user(&info, u_info, sizeof(info)))
842 return -EFAULT;
843 idx = info.entry_number;
846 * index -1 means the kernel should try to find and
847 * allocate an empty descriptor:
849 if (idx == -1) {
850 idx = get_free_idx();
851 if (idx < 0)
852 return idx;
853 if (put_user(idx, &u_info->entry_number))
854 return -EFAULT;
857 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
858 return -EINVAL;
860 desc = t->tls_array + idx - GDT_ENTRY_TLS_MIN;
863 * We must not get preempted while modifying the TLS.
865 cpu = get_cpu();
867 if (LDT_empty(&info)) {
868 desc->a = 0;
869 desc->b = 0;
870 } else {
871 desc->a = LDT_entry_a(&info);
872 desc->b = LDT_entry_b(&info);
874 load_TLS(t, cpu);
876 put_cpu();
878 return 0;
882 * Get the current Thread-Local Storage area:
885 #define GET_BASE(desc) ( \
886 (((desc)->a >> 16) & 0x0000ffff) | \
887 (((desc)->b << 16) & 0x00ff0000) | \
888 ( (desc)->b & 0xff000000) )
890 #define GET_LIMIT(desc) ( \
891 ((desc)->a & 0x0ffff) | \
892 ((desc)->b & 0xf0000) )
894 #define GET_32BIT(desc) (((desc)->b >> 22) & 1)
895 #define GET_CONTENTS(desc) (((desc)->b >> 10) & 3)
896 #define GET_WRITABLE(desc) (((desc)->b >> 9) & 1)
897 #define GET_LIMIT_PAGES(desc) (((desc)->b >> 23) & 1)
898 #define GET_PRESENT(desc) (((desc)->b >> 15) & 1)
899 #define GET_USEABLE(desc) (((desc)->b >> 20) & 1)
901 asmlinkage int sys_get_thread_area(struct user_desc __user *u_info)
903 struct user_desc info;
904 struct desc_struct *desc;
905 int idx;
907 if (get_user(idx, &u_info->entry_number))
908 return -EFAULT;
909 if (idx < GDT_ENTRY_TLS_MIN || idx > GDT_ENTRY_TLS_MAX)
910 return -EINVAL;
912 memset(&info, 0, sizeof(info));
914 desc = current->thread.tls_array + idx - GDT_ENTRY_TLS_MIN;
916 info.entry_number = idx;
917 info.base_addr = GET_BASE(desc);
918 info.limit = GET_LIMIT(desc);
919 info.seg_32bit = GET_32BIT(desc);
920 info.contents = GET_CONTENTS(desc);
921 info.read_exec_only = !GET_WRITABLE(desc);
922 info.limit_in_pages = GET_LIMIT_PAGES(desc);
923 info.seg_not_present = !GET_PRESENT(desc);
924 info.useable = GET_USEABLE(desc);
926 if (copy_to_user(u_info, &info, sizeof(info)))
927 return -EFAULT;
928 return 0;
931 unsigned long arch_align_stack(unsigned long sp)
933 if (randomize_va_space)
934 sp -= get_random_int() % 8192;
935 return sp & ~0xf;