4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/sched.h>
22 #include <linux/writeback.h>
23 #include <linux/blkdev.h>
24 #include <linux/backing-dev.h>
25 #include <linux/buffer_head.h>
30 * writeback_acquire - attempt to get exclusive writeback access to a device
31 * @bdi: the device's backing_dev_info structure
33 * It is a waste of resources to have more than one pdflush thread blocked on
34 * a single request queue. Exclusion at the request_queue level is obtained
35 * via a flag in the request_queue's backing_dev_info.state.
37 * Non-request_queue-backed address_spaces will share default_backing_dev_info,
38 * unless they implement their own. Which is somewhat inefficient, as this
39 * may prevent concurrent writeback against multiple devices.
41 static int writeback_acquire(struct backing_dev_info
*bdi
)
43 return !test_and_set_bit(BDI_pdflush
, &bdi
->state
);
47 * writeback_in_progress - determine whether there is writeback in progress
48 * @bdi: the device's backing_dev_info structure.
50 * Determine whether there is writeback in progress against a backing device.
52 int writeback_in_progress(struct backing_dev_info
*bdi
)
54 return test_bit(BDI_pdflush
, &bdi
->state
);
58 * writeback_release - relinquish exclusive writeback access against a device.
59 * @bdi: the device's backing_dev_info structure
61 static void writeback_release(struct backing_dev_info
*bdi
)
63 BUG_ON(!writeback_in_progress(bdi
));
64 clear_bit(BDI_pdflush
, &bdi
->state
);
67 static noinline
void block_dump___mark_inode_dirty(struct inode
*inode
)
69 if (inode
->i_ino
|| strcmp(inode
->i_sb
->s_id
, "bdev")) {
70 struct dentry
*dentry
;
71 const char *name
= "?";
73 dentry
= d_find_alias(inode
);
75 spin_lock(&dentry
->d_lock
);
76 name
= (const char *) dentry
->d_name
.name
;
79 "%s(%d): dirtied inode %lu (%s) on %s\n",
80 current
->comm
, task_pid_nr(current
), inode
->i_ino
,
81 name
, inode
->i_sb
->s_id
);
83 spin_unlock(&dentry
->d_lock
);
90 * __mark_inode_dirty - internal function
91 * @inode: inode to mark
92 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
93 * Mark an inode as dirty. Callers should use mark_inode_dirty or
94 * mark_inode_dirty_sync.
96 * Put the inode on the super block's dirty list.
98 * CAREFUL! We mark it dirty unconditionally, but move it onto the
99 * dirty list only if it is hashed or if it refers to a blockdev.
100 * If it was not hashed, it will never be added to the dirty list
101 * even if it is later hashed, as it will have been marked dirty already.
103 * In short, make sure you hash any inodes _before_ you start marking
106 * This function *must* be atomic for the I_DIRTY_PAGES case -
107 * set_page_dirty() is called under spinlock in several places.
109 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
110 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
111 * the kernel-internal blockdev inode represents the dirtying time of the
112 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
113 * page->mapping->host, so the page-dirtying time is recorded in the internal
116 void __mark_inode_dirty(struct inode
*inode
, int flags
)
118 struct super_block
*sb
= inode
->i_sb
;
121 * Don't do this for I_DIRTY_PAGES - that doesn't actually
122 * dirty the inode itself
124 if (flags
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) {
125 if (sb
->s_op
->dirty_inode
)
126 sb
->s_op
->dirty_inode(inode
);
130 * make sure that changes are seen by all cpus before we test i_state
135 /* avoid the locking if we can */
136 if ((inode
->i_state
& flags
) == flags
)
139 if (unlikely(block_dump
))
140 block_dump___mark_inode_dirty(inode
);
142 spin_lock(&inode_lock
);
143 if ((inode
->i_state
& flags
) != flags
) {
144 const int was_dirty
= inode
->i_state
& I_DIRTY
;
146 inode
->i_state
|= flags
;
149 * If the inode is being synced, just update its dirty state.
150 * The unlocker will place the inode on the appropriate
151 * superblock list, based upon its state.
153 if (inode
->i_state
& I_SYNC
)
157 * Only add valid (hashed) inodes to the superblock's
158 * dirty list. Add blockdev inodes as well.
160 if (!S_ISBLK(inode
->i_mode
)) {
161 if (hlist_unhashed(&inode
->i_hash
))
164 if (inode
->i_state
& (I_FREEING
|I_CLEAR
))
168 * If the inode was already on s_dirty/s_io/s_more_io, don't
169 * reposition it (that would break s_dirty time-ordering).
172 inode
->dirtied_when
= jiffies
;
173 list_move(&inode
->i_list
, &sb
->s_dirty
);
177 spin_unlock(&inode_lock
);
180 EXPORT_SYMBOL(__mark_inode_dirty
);
182 static int write_inode(struct inode
*inode
, int sync
)
184 if (inode
->i_sb
->s_op
->write_inode
&& !is_bad_inode(inode
))
185 return inode
->i_sb
->s_op
->write_inode(inode
, sync
);
190 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
191 * furthest end of its superblock's dirty-inode list.
193 * Before stamping the inode's ->dirtied_when, we check to see whether it is
194 * already the most-recently-dirtied inode on the s_dirty list. If that is
195 * the case then the inode must have been redirtied while it was being written
196 * out and we don't reset its dirtied_when.
198 static void redirty_tail(struct inode
*inode
)
200 struct super_block
*sb
= inode
->i_sb
;
202 if (!list_empty(&sb
->s_dirty
)) {
203 struct inode
*tail_inode
;
205 tail_inode
= list_entry(sb
->s_dirty
.next
, struct inode
, i_list
);
206 if (time_before(inode
->dirtied_when
,
207 tail_inode
->dirtied_when
))
208 inode
->dirtied_when
= jiffies
;
210 list_move(&inode
->i_list
, &sb
->s_dirty
);
214 * requeue inode for re-scanning after sb->s_io list is exhausted.
216 static void requeue_io(struct inode
*inode
)
218 list_move(&inode
->i_list
, &inode
->i_sb
->s_more_io
);
221 static void inode_sync_complete(struct inode
*inode
)
224 * Prevent speculative execution through spin_unlock(&inode_lock);
227 wake_up_bit(&inode
->i_state
, __I_SYNC
);
230 static bool inode_dirtied_after(struct inode
*inode
, unsigned long t
)
232 bool ret
= time_after(inode
->dirtied_when
, t
);
235 * For inodes being constantly redirtied, dirtied_when can get stuck.
236 * It _appears_ to be in the future, but is actually in distant past.
237 * This test is necessary to prevent such wrapped-around relative times
238 * from permanently stopping the whole pdflush writeback.
240 ret
= ret
&& time_before_eq(inode
->dirtied_when
, jiffies
);
246 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
248 static void move_expired_inodes(struct list_head
*delaying_queue
,
249 struct list_head
*dispatch_queue
,
250 unsigned long *older_than_this
)
252 while (!list_empty(delaying_queue
)) {
253 struct inode
*inode
= list_entry(delaying_queue
->prev
,
254 struct inode
, i_list
);
255 if (older_than_this
&&
256 inode_dirtied_after(inode
, *older_than_this
))
258 list_move(&inode
->i_list
, dispatch_queue
);
263 * Queue all expired dirty inodes for io, eldest first.
265 static void queue_io(struct super_block
*sb
,
266 unsigned long *older_than_this
)
268 list_splice_init(&sb
->s_more_io
, sb
->s_io
.prev
);
269 move_expired_inodes(&sb
->s_dirty
, &sb
->s_io
, older_than_this
);
272 int sb_has_dirty_inodes(struct super_block
*sb
)
274 return !list_empty(&sb
->s_dirty
) ||
275 !list_empty(&sb
->s_io
) ||
276 !list_empty(&sb
->s_more_io
);
278 EXPORT_SYMBOL(sb_has_dirty_inodes
);
281 * Wait for writeback on an inode to complete.
283 static void inode_wait_for_writeback(struct inode
*inode
)
285 DEFINE_WAIT_BIT(wq
, &inode
->i_state
, __I_SYNC
);
286 wait_queue_head_t
*wqh
;
288 wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
290 spin_unlock(&inode_lock
);
291 __wait_on_bit(wqh
, &wq
, inode_wait
, TASK_UNINTERRUPTIBLE
);
292 spin_lock(&inode_lock
);
293 } while (inode
->i_state
& I_SYNC
);
297 * Write out an inode's dirty pages. Called under inode_lock. Either the
298 * caller has ref on the inode (either via __iget or via syscall against an fd)
299 * or the inode has I_WILL_FREE set (via generic_forget_inode)
301 * If `wait' is set, wait on the writeout.
303 * The whole writeout design is quite complex and fragile. We want to avoid
304 * starvation of particular inodes when others are being redirtied, prevent
307 * Called under inode_lock.
310 writeback_single_inode(struct inode
*inode
, struct writeback_control
*wbc
)
312 struct address_space
*mapping
= inode
->i_mapping
;
313 int wait
= wbc
->sync_mode
== WB_SYNC_ALL
;
317 if (!atomic_read(&inode
->i_count
))
318 WARN_ON(!(inode
->i_state
& (I_WILL_FREE
|I_FREEING
)));
320 WARN_ON(inode
->i_state
& I_WILL_FREE
);
322 if (inode
->i_state
& I_SYNC
) {
324 * If this inode is locked for writeback and we are not doing
325 * writeback-for-data-integrity, move it to s_more_io so that
326 * writeback can proceed with the other inodes on s_io.
328 * We'll have another go at writing back this inode when we
329 * completed a full scan of s_io.
337 * It's a data-integrity sync. We must wait.
339 inode_wait_for_writeback(inode
);
342 BUG_ON(inode
->i_state
& I_SYNC
);
344 /* Set I_SYNC, reset I_DIRTY */
345 dirty
= inode
->i_state
& I_DIRTY
;
346 inode
->i_state
|= I_SYNC
;
347 inode
->i_state
&= ~I_DIRTY
;
349 spin_unlock(&inode_lock
);
351 ret
= do_writepages(mapping
, wbc
);
353 /* Don't write the inode if only I_DIRTY_PAGES was set */
354 if (dirty
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) {
355 int err
= write_inode(inode
, wait
);
361 int err
= filemap_fdatawait(mapping
);
366 spin_lock(&inode_lock
);
367 inode
->i_state
&= ~I_SYNC
;
368 if (!(inode
->i_state
& (I_FREEING
| I_CLEAR
))) {
369 if (!(inode
->i_state
& I_DIRTY
) &&
370 mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
372 * We didn't write back all the pages. nfs_writepages()
373 * sometimes bales out without doing anything. Redirty
374 * the inode; Move it from s_io onto s_more_io/s_dirty.
377 * akpm: if the caller was the kupdate function we put
378 * this inode at the head of s_dirty so it gets first
379 * consideration. Otherwise, move it to the tail, for
380 * the reasons described there. I'm not really sure
381 * how much sense this makes. Presumably I had a good
382 * reasons for doing it this way, and I'd rather not
383 * muck with it at present.
385 if (wbc
->for_kupdate
) {
387 * For the kupdate function we move the inode
388 * to s_more_io so it will get more writeout as
389 * soon as the queue becomes uncongested.
391 inode
->i_state
|= I_DIRTY_PAGES
;
392 if (wbc
->nr_to_write
<= 0) {
394 * slice used up: queue for next turn
399 * somehow blocked: retry later
405 * Otherwise fully redirty the inode so that
406 * other inodes on this superblock will get some
407 * writeout. Otherwise heavy writing to one
408 * file would indefinitely suspend writeout of
409 * all the other files.
411 inode
->i_state
|= I_DIRTY_PAGES
;
414 } else if (inode
->i_state
& I_DIRTY
) {
416 * Someone redirtied the inode while were writing back
420 } else if (atomic_read(&inode
->i_count
)) {
422 * The inode is clean, inuse
424 list_move(&inode
->i_list
, &inode_in_use
);
427 * The inode is clean, unused
429 list_move(&inode
->i_list
, &inode_unused
);
432 inode_sync_complete(inode
);
437 * Write out a superblock's list of dirty inodes. A wait will be performed
438 * upon no inodes, all inodes or the final one, depending upon sync_mode.
440 * If older_than_this is non-NULL, then only write out inodes which
441 * had their first dirtying at a time earlier than *older_than_this.
443 * If we're a pdflush thread, then implement pdflush collision avoidance
444 * against the entire list.
446 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
447 * This function assumes that the blockdev superblock's inodes are backed by
448 * a variety of queues, so all inodes are searched. For other superblocks,
449 * assume that all inodes are backed by the same queue.
451 * FIXME: this linear search could get expensive with many fileystems. But
452 * how to fix? We need to go from an address_space to all inodes which share
453 * a queue with that address_space. (Easy: have a global "dirty superblocks"
456 * The inodes to be written are parked on sb->s_io. They are moved back onto
457 * sb->s_dirty as they are selected for writing. This way, none can be missed
458 * on the writer throttling path, and we get decent balancing between many
459 * throttled threads: we don't want them all piling up on inode_sync_wait.
461 void generic_sync_sb_inodes(struct super_block
*sb
,
462 struct writeback_control
*wbc
)
464 const unsigned long start
= jiffies
; /* livelock avoidance */
465 int sync
= wbc
->sync_mode
== WB_SYNC_ALL
;
467 spin_lock(&inode_lock
);
468 if (!wbc
->for_kupdate
|| list_empty(&sb
->s_io
))
469 queue_io(sb
, wbc
->older_than_this
);
471 while (!list_empty(&sb
->s_io
)) {
472 struct inode
*inode
= list_entry(sb
->s_io
.prev
,
473 struct inode
, i_list
);
474 struct address_space
*mapping
= inode
->i_mapping
;
475 struct backing_dev_info
*bdi
= mapping
->backing_dev_info
;
478 if (!bdi_cap_writeback_dirty(bdi
)) {
480 if (sb_is_blkdev_sb(sb
)) {
482 * Dirty memory-backed blockdev: the ramdisk
483 * driver does this. Skip just this inode
488 * Dirty memory-backed inode against a filesystem other
489 * than the kernel-internal bdev filesystem. Skip the
495 if (inode
->i_state
& (I_NEW
| I_WILL_FREE
)) {
500 if (wbc
->nonblocking
&& bdi_write_congested(bdi
)) {
501 wbc
->encountered_congestion
= 1;
502 if (!sb_is_blkdev_sb(sb
))
503 break; /* Skip a congested fs */
505 continue; /* Skip a congested blockdev */
508 if (wbc
->bdi
&& bdi
!= wbc
->bdi
) {
509 if (!sb_is_blkdev_sb(sb
))
510 break; /* fs has the wrong queue */
512 continue; /* blockdev has wrong queue */
516 * Was this inode dirtied after sync_sb_inodes was called?
517 * This keeps sync from extra jobs and livelock.
519 if (inode_dirtied_after(inode
, start
))
522 /* Is another pdflush already flushing this queue? */
523 if (current_is_pdflush() && !writeback_acquire(bdi
))
526 BUG_ON(inode
->i_state
& (I_FREEING
| I_CLEAR
));
528 pages_skipped
= wbc
->pages_skipped
;
529 writeback_single_inode(inode
, wbc
);
530 if (current_is_pdflush())
531 writeback_release(bdi
);
532 if (wbc
->pages_skipped
!= pages_skipped
) {
534 * writeback is not making progress due to locked
535 * buffers. Skip this inode for now.
539 spin_unlock(&inode_lock
);
542 spin_lock(&inode_lock
);
543 if (wbc
->nr_to_write
<= 0) {
547 if (!list_empty(&sb
->s_more_io
))
552 struct inode
*inode
, *old_inode
= NULL
;
555 * Data integrity sync. Must wait for all pages under writeback,
556 * because there may have been pages dirtied before our sync
557 * call, but which had writeout started before we write it out.
558 * In which case, the inode may not be on the dirty list, but
559 * we still have to wait for that writeout.
561 list_for_each_entry(inode
, &sb
->s_inodes
, i_sb_list
) {
562 struct address_space
*mapping
;
565 (I_FREEING
|I_CLEAR
|I_WILL_FREE
|I_NEW
))
567 mapping
= inode
->i_mapping
;
568 if (mapping
->nrpages
== 0)
571 spin_unlock(&inode_lock
);
573 * We hold a reference to 'inode' so it couldn't have
574 * been removed from s_inodes list while we dropped the
575 * inode_lock. We cannot iput the inode now as we can
576 * be holding the last reference and we cannot iput it
577 * under inode_lock. So we keep the reference and iput
583 filemap_fdatawait(mapping
);
587 spin_lock(&inode_lock
);
589 spin_unlock(&inode_lock
);
592 spin_unlock(&inode_lock
);
594 return; /* Leave any unwritten inodes on s_io */
596 EXPORT_SYMBOL_GPL(generic_sync_sb_inodes
);
598 static void sync_sb_inodes(struct super_block
*sb
,
599 struct writeback_control
*wbc
)
601 generic_sync_sb_inodes(sb
, wbc
);
605 * Start writeback of dirty pagecache data against all unlocked inodes.
608 * We don't need to grab a reference to superblock here. If it has non-empty
609 * ->s_dirty it's hadn't been killed yet and kill_super() won't proceed
610 * past sync_inodes_sb() until the ->s_dirty/s_io/s_more_io lists are all
611 * empty. Since __sync_single_inode() regains inode_lock before it finally moves
612 * inode from superblock lists we are OK.
614 * If `older_than_this' is non-zero then only flush inodes which have a
615 * flushtime older than *older_than_this.
617 * If `bdi' is non-zero then we will scan the first inode against each
618 * superblock until we find the matching ones. One group will be the dirty
619 * inodes against a filesystem. Then when we hit the dummy blockdev superblock,
620 * sync_sb_inodes will seekout the blockdev which matches `bdi'. Maybe not
621 * super-efficient but we're about to do a ton of I/O...
624 writeback_inodes(struct writeback_control
*wbc
)
626 struct super_block
*sb
;
631 list_for_each_entry_reverse(sb
, &super_blocks
, s_list
) {
632 if (sb_has_dirty_inodes(sb
)) {
633 /* we're making our own get_super here */
635 spin_unlock(&sb_lock
);
637 * If we can't get the readlock, there's no sense in
638 * waiting around, most of the time the FS is going to
639 * be unmounted by the time it is released.
641 if (down_read_trylock(&sb
->s_umount
)) {
643 sync_sb_inodes(sb
, wbc
);
644 up_read(&sb
->s_umount
);
647 if (__put_super_and_need_restart(sb
))
650 if (wbc
->nr_to_write
<= 0)
653 spin_unlock(&sb_lock
);
657 * writeback and wait upon the filesystem's dirty inodes. The caller will
658 * do this in two passes - one to write, and one to wait.
660 * A finite limit is set on the number of pages which will be written.
661 * To prevent infinite livelock of sys_sync().
663 * We add in the number of potentially dirty inodes, because each inode write
664 * can dirty pagecache in the underlying blockdev.
666 void sync_inodes_sb(struct super_block
*sb
, int wait
)
668 struct writeback_control wbc
= {
669 .sync_mode
= wait
? WB_SYNC_ALL
: WB_SYNC_NONE
,
671 .range_end
= LLONG_MAX
,
675 unsigned long nr_dirty
= global_page_state(NR_FILE_DIRTY
);
676 unsigned long nr_unstable
= global_page_state(NR_UNSTABLE_NFS
);
678 wbc
.nr_to_write
= nr_dirty
+ nr_unstable
+
679 (inodes_stat
.nr_inodes
- inodes_stat
.nr_unused
);
681 wbc
.nr_to_write
= LONG_MAX
; /* doesn't actually matter */
683 sync_sb_inodes(sb
, &wbc
);
687 * write_inode_now - write an inode to disk
688 * @inode: inode to write to disk
689 * @sync: whether the write should be synchronous or not
691 * This function commits an inode to disk immediately if it is dirty. This is
692 * primarily needed by knfsd.
694 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
696 int write_inode_now(struct inode
*inode
, int sync
)
699 struct writeback_control wbc
= {
700 .nr_to_write
= LONG_MAX
,
701 .sync_mode
= sync
? WB_SYNC_ALL
: WB_SYNC_NONE
,
703 .range_end
= LLONG_MAX
,
706 if (!mapping_cap_writeback_dirty(inode
->i_mapping
))
710 spin_lock(&inode_lock
);
711 ret
= writeback_single_inode(inode
, &wbc
);
712 spin_unlock(&inode_lock
);
714 inode_sync_wait(inode
);
717 EXPORT_SYMBOL(write_inode_now
);
720 * sync_inode - write an inode and its pages to disk.
721 * @inode: the inode to sync
722 * @wbc: controls the writeback mode
724 * sync_inode() will write an inode and its pages to disk. It will also
725 * correctly update the inode on its superblock's dirty inode lists and will
726 * update inode->i_state.
728 * The caller must have a ref on the inode.
730 int sync_inode(struct inode
*inode
, struct writeback_control
*wbc
)
734 spin_lock(&inode_lock
);
735 ret
= writeback_single_inode(inode
, wbc
);
736 spin_unlock(&inode_lock
);
739 EXPORT_SYMBOL(sync_inode
);
742 * generic_osync_inode - flush all dirty data for a given inode to disk
743 * @inode: inode to write
744 * @mapping: the address_space that should be flushed
745 * @what: what to write and wait upon
747 * This can be called by file_write functions for files which have the
748 * O_SYNC flag set, to flush dirty writes to disk.
750 * @what is a bitmask, specifying which part of the inode's data should be
751 * written and waited upon.
753 * OSYNC_DATA: i_mapping's dirty data
754 * OSYNC_METADATA: the buffers at i_mapping->private_list
755 * OSYNC_INODE: the inode itself
758 int generic_osync_inode(struct inode
*inode
, struct address_space
*mapping
, int what
)
761 int need_write_inode_now
= 0;
764 if (what
& OSYNC_DATA
)
765 err
= filemap_fdatawrite(mapping
);
766 if (what
& (OSYNC_METADATA
|OSYNC_DATA
)) {
767 err2
= sync_mapping_buffers(mapping
);
771 if (what
& OSYNC_DATA
) {
772 err2
= filemap_fdatawait(mapping
);
777 spin_lock(&inode_lock
);
778 if ((inode
->i_state
& I_DIRTY
) &&
779 ((what
& OSYNC_INODE
) || (inode
->i_state
& I_DIRTY_DATASYNC
)))
780 need_write_inode_now
= 1;
781 spin_unlock(&inode_lock
);
783 if (need_write_inode_now
) {
784 err2
= write_inode_now(inode
, 1);
789 inode_sync_wait(inode
);
793 EXPORT_SYMBOL(generic_osync_inode
);