1 /* memcontrol.c - Memory Controller
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; either version 2 of the License, or
12 * (at your option) any later version.
14 * This program is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 * GNU General Public License for more details.
20 #include <linux/res_counter.h>
21 #include <linux/memcontrol.h>
22 #include <linux/cgroup.h>
24 #include <linux/pagemap.h>
25 #include <linux/smp.h>
26 #include <linux/page-flags.h>
27 #include <linux/backing-dev.h>
28 #include <linux/bit_spinlock.h>
29 #include <linux/rcupdate.h>
30 #include <linux/mutex.h>
31 #include <linux/slab.h>
32 #include <linux/swap.h>
33 #include <linux/spinlock.h>
35 #include <linux/seq_file.h>
36 #include <linux/vmalloc.h>
37 #include <linux/mm_inline.h>
38 #include <linux/page_cgroup.h>
41 #include <asm/uaccess.h>
43 struct cgroup_subsys mem_cgroup_subsys __read_mostly
;
44 #define MEM_CGROUP_RECLAIM_RETRIES 5
46 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
47 /* Turned on only when memory cgroup is enabled && really_do_swap_account = 0 */
48 int do_swap_account __read_mostly
;
49 static int really_do_swap_account __initdata
= 1; /* for remember boot option*/
51 #define do_swap_account (0)
56 * Statistics for memory cgroup.
58 enum mem_cgroup_stat_index
{
60 * For MEM_CONTAINER_TYPE_ALL, usage = pagecache + rss.
62 MEM_CGROUP_STAT_CACHE
, /* # of pages charged as cache */
63 MEM_CGROUP_STAT_RSS
, /* # of pages charged as rss */
64 MEM_CGROUP_STAT_PGPGIN_COUNT
, /* # of pages paged in */
65 MEM_CGROUP_STAT_PGPGOUT_COUNT
, /* # of pages paged out */
67 MEM_CGROUP_STAT_NSTATS
,
70 struct mem_cgroup_stat_cpu
{
71 s64 count
[MEM_CGROUP_STAT_NSTATS
];
72 } ____cacheline_aligned_in_smp
;
74 struct mem_cgroup_stat
{
75 struct mem_cgroup_stat_cpu cpustat
[0];
79 * For accounting under irq disable, no need for increment preempt count.
81 static inline void __mem_cgroup_stat_add_safe(struct mem_cgroup_stat_cpu
*stat
,
82 enum mem_cgroup_stat_index idx
, int val
)
84 stat
->count
[idx
] += val
;
87 static s64
mem_cgroup_read_stat(struct mem_cgroup_stat
*stat
,
88 enum mem_cgroup_stat_index idx
)
92 for_each_possible_cpu(cpu
)
93 ret
+= stat
->cpustat
[cpu
].count
[idx
];
98 * per-zone information in memory controller.
100 struct mem_cgroup_per_zone
{
102 * spin_lock to protect the per cgroup LRU
104 struct list_head lists
[NR_LRU_LISTS
];
105 unsigned long count
[NR_LRU_LISTS
];
107 struct zone_reclaim_stat reclaim_stat
;
109 /* Macro for accessing counter */
110 #define MEM_CGROUP_ZSTAT(mz, idx) ((mz)->count[(idx)])
112 struct mem_cgroup_per_node
{
113 struct mem_cgroup_per_zone zoneinfo
[MAX_NR_ZONES
];
116 struct mem_cgroup_lru_info
{
117 struct mem_cgroup_per_node
*nodeinfo
[MAX_NUMNODES
];
121 * The memory controller data structure. The memory controller controls both
122 * page cache and RSS per cgroup. We would eventually like to provide
123 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
124 * to help the administrator determine what knobs to tune.
126 * TODO: Add a water mark for the memory controller. Reclaim will begin when
127 * we hit the water mark. May be even add a low water mark, such that
128 * no reclaim occurs from a cgroup at it's low water mark, this is
129 * a feature that will be implemented much later in the future.
132 struct cgroup_subsys_state css
;
134 * the counter to account for memory usage
136 struct res_counter res
;
138 * the counter to account for mem+swap usage.
140 struct res_counter memsw
;
142 * Per cgroup active and inactive list, similar to the
143 * per zone LRU lists.
145 struct mem_cgroup_lru_info info
;
148 protect against reclaim related member.
150 spinlock_t reclaim_param_lock
;
152 int prev_priority
; /* for recording reclaim priority */
155 * While reclaiming in a hiearchy, we cache the last child we
156 * reclaimed from. Protected by cgroup_lock()
158 struct mem_cgroup
*last_scanned_child
;
160 * Should the accounting and control be hierarchical, per subtree?
163 unsigned long last_oom_jiffies
;
167 unsigned int swappiness
;
170 * statistics. This must be placed at the end of memcg.
172 struct mem_cgroup_stat stat
;
176 MEM_CGROUP_CHARGE_TYPE_CACHE
= 0,
177 MEM_CGROUP_CHARGE_TYPE_MAPPED
,
178 MEM_CGROUP_CHARGE_TYPE_SHMEM
, /* used by page migration of shmem */
179 MEM_CGROUP_CHARGE_TYPE_FORCE
, /* used by force_empty */
180 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
, /* for accounting swapcache */
184 /* only for here (for easy reading.) */
185 #define PCGF_CACHE (1UL << PCG_CACHE)
186 #define PCGF_USED (1UL << PCG_USED)
187 #define PCGF_LOCK (1UL << PCG_LOCK)
188 static const unsigned long
189 pcg_default_flags
[NR_CHARGE_TYPE
] = {
190 PCGF_CACHE
| PCGF_USED
| PCGF_LOCK
, /* File Cache */
191 PCGF_USED
| PCGF_LOCK
, /* Anon */
192 PCGF_CACHE
| PCGF_USED
| PCGF_LOCK
, /* Shmem */
196 /* for encoding cft->private value on file */
199 #define MEMFILE_PRIVATE(x, val) (((x) << 16) | (val))
200 #define MEMFILE_TYPE(val) (((val) >> 16) & 0xffff)
201 #define MEMFILE_ATTR(val) ((val) & 0xffff)
203 static void mem_cgroup_get(struct mem_cgroup
*mem
);
204 static void mem_cgroup_put(struct mem_cgroup
*mem
);
206 static void mem_cgroup_charge_statistics(struct mem_cgroup
*mem
,
207 struct page_cgroup
*pc
,
210 int val
= (charge
)? 1 : -1;
211 struct mem_cgroup_stat
*stat
= &mem
->stat
;
212 struct mem_cgroup_stat_cpu
*cpustat
;
215 cpustat
= &stat
->cpustat
[cpu
];
216 if (PageCgroupCache(pc
))
217 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_CACHE
, val
);
219 __mem_cgroup_stat_add_safe(cpustat
, MEM_CGROUP_STAT_RSS
, val
);
222 __mem_cgroup_stat_add_safe(cpustat
,
223 MEM_CGROUP_STAT_PGPGIN_COUNT
, 1);
225 __mem_cgroup_stat_add_safe(cpustat
,
226 MEM_CGROUP_STAT_PGPGOUT_COUNT
, 1);
230 static struct mem_cgroup_per_zone
*
231 mem_cgroup_zoneinfo(struct mem_cgroup
*mem
, int nid
, int zid
)
233 return &mem
->info
.nodeinfo
[nid
]->zoneinfo
[zid
];
236 static struct mem_cgroup_per_zone
*
237 page_cgroup_zoneinfo(struct page_cgroup
*pc
)
239 struct mem_cgroup
*mem
= pc
->mem_cgroup
;
240 int nid
= page_cgroup_nid(pc
);
241 int zid
= page_cgroup_zid(pc
);
246 return mem_cgroup_zoneinfo(mem
, nid
, zid
);
249 static unsigned long mem_cgroup_get_all_zonestat(struct mem_cgroup
*mem
,
253 struct mem_cgroup_per_zone
*mz
;
256 for_each_online_node(nid
)
257 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
258 mz
= mem_cgroup_zoneinfo(mem
, nid
, zid
);
259 total
+= MEM_CGROUP_ZSTAT(mz
, idx
);
264 static struct mem_cgroup
*mem_cgroup_from_cont(struct cgroup
*cont
)
266 return container_of(cgroup_subsys_state(cont
,
267 mem_cgroup_subsys_id
), struct mem_cgroup
,
271 struct mem_cgroup
*mem_cgroup_from_task(struct task_struct
*p
)
274 * mm_update_next_owner() may clear mm->owner to NULL
275 * if it races with swapoff, page migration, etc.
276 * So this can be called with p == NULL.
281 return container_of(task_subsys_state(p
, mem_cgroup_subsys_id
),
282 struct mem_cgroup
, css
);
286 * Following LRU functions are allowed to be used without PCG_LOCK.
287 * Operations are called by routine of global LRU independently from memcg.
288 * What we have to take care of here is validness of pc->mem_cgroup.
290 * Changes to pc->mem_cgroup happens when
293 * In typical case, "charge" is done before add-to-lru. Exception is SwapCache.
294 * It is added to LRU before charge.
295 * If PCG_USED bit is not set, page_cgroup is not added to this private LRU.
296 * When moving account, the page is not on LRU. It's isolated.
299 void mem_cgroup_del_lru_list(struct page
*page
, enum lru_list lru
)
301 struct page_cgroup
*pc
;
302 struct mem_cgroup
*mem
;
303 struct mem_cgroup_per_zone
*mz
;
305 if (mem_cgroup_disabled())
307 pc
= lookup_page_cgroup(page
);
308 /* can happen while we handle swapcache. */
309 if (list_empty(&pc
->lru
))
311 mz
= page_cgroup_zoneinfo(pc
);
312 mem
= pc
->mem_cgroup
;
313 MEM_CGROUP_ZSTAT(mz
, lru
) -= 1;
314 list_del_init(&pc
->lru
);
318 void mem_cgroup_del_lru(struct page
*page
)
320 mem_cgroup_del_lru_list(page
, page_lru(page
));
323 void mem_cgroup_rotate_lru_list(struct page
*page
, enum lru_list lru
)
325 struct mem_cgroup_per_zone
*mz
;
326 struct page_cgroup
*pc
;
328 if (mem_cgroup_disabled())
331 pc
= lookup_page_cgroup(page
);
333 /* unused page is not rotated. */
334 if (!PageCgroupUsed(pc
))
336 mz
= page_cgroup_zoneinfo(pc
);
337 list_move(&pc
->lru
, &mz
->lists
[lru
]);
340 void mem_cgroup_add_lru_list(struct page
*page
, enum lru_list lru
)
342 struct page_cgroup
*pc
;
343 struct mem_cgroup_per_zone
*mz
;
345 if (mem_cgroup_disabled())
347 pc
= lookup_page_cgroup(page
);
348 /* barrier to sync with "charge" */
350 if (!PageCgroupUsed(pc
))
353 mz
= page_cgroup_zoneinfo(pc
);
354 MEM_CGROUP_ZSTAT(mz
, lru
) += 1;
355 list_add(&pc
->lru
, &mz
->lists
[lru
]);
358 * To add swapcache into LRU. Be careful to all this function.
359 * zone->lru_lock shouldn't be held and irq must not be disabled.
361 static void mem_cgroup_lru_fixup(struct page
*page
)
363 if (!isolate_lru_page(page
))
364 putback_lru_page(page
);
367 void mem_cgroup_move_lists(struct page
*page
,
368 enum lru_list from
, enum lru_list to
)
370 if (mem_cgroup_disabled())
372 mem_cgroup_del_lru_list(page
, from
);
373 mem_cgroup_add_lru_list(page
, to
);
376 int task_in_mem_cgroup(struct task_struct
*task
, const struct mem_cgroup
*mem
)
381 ret
= task
->mm
&& mm_match_cgroup(task
->mm
, mem
);
387 * Calculate mapped_ratio under memory controller. This will be used in
388 * vmscan.c for deteremining we have to reclaim mapped pages.
390 int mem_cgroup_calc_mapped_ratio(struct mem_cgroup
*mem
)
395 * usage is recorded in bytes. But, here, we assume the number of
396 * physical pages can be represented by "long" on any arch.
398 total
= (long) (mem
->res
.usage
>> PAGE_SHIFT
) + 1L;
399 rss
= (long)mem_cgroup_read_stat(&mem
->stat
, MEM_CGROUP_STAT_RSS
);
400 return (int)((rss
* 100L) / total
);
404 * prev_priority control...this will be used in memory reclaim path.
406 int mem_cgroup_get_reclaim_priority(struct mem_cgroup
*mem
)
410 spin_lock(&mem
->reclaim_param_lock
);
411 prev_priority
= mem
->prev_priority
;
412 spin_unlock(&mem
->reclaim_param_lock
);
414 return prev_priority
;
417 void mem_cgroup_note_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
419 spin_lock(&mem
->reclaim_param_lock
);
420 if (priority
< mem
->prev_priority
)
421 mem
->prev_priority
= priority
;
422 spin_unlock(&mem
->reclaim_param_lock
);
425 void mem_cgroup_record_reclaim_priority(struct mem_cgroup
*mem
, int priority
)
427 spin_lock(&mem
->reclaim_param_lock
);
428 mem
->prev_priority
= priority
;
429 spin_unlock(&mem
->reclaim_param_lock
);
432 static int calc_inactive_ratio(struct mem_cgroup
*memcg
, unsigned long *present_pages
)
434 unsigned long active
;
435 unsigned long inactive
;
437 unsigned long inactive_ratio
;
439 inactive
= mem_cgroup_get_all_zonestat(memcg
, LRU_INACTIVE_ANON
);
440 active
= mem_cgroup_get_all_zonestat(memcg
, LRU_ACTIVE_ANON
);
442 gb
= (inactive
+ active
) >> (30 - PAGE_SHIFT
);
444 inactive_ratio
= int_sqrt(10 * gb
);
449 present_pages
[0] = inactive
;
450 present_pages
[1] = active
;
453 return inactive_ratio
;
456 int mem_cgroup_inactive_anon_is_low(struct mem_cgroup
*memcg
)
458 unsigned long active
;
459 unsigned long inactive
;
460 unsigned long present_pages
[2];
461 unsigned long inactive_ratio
;
463 inactive_ratio
= calc_inactive_ratio(memcg
, present_pages
);
465 inactive
= present_pages
[0];
466 active
= present_pages
[1];
468 if (inactive
* inactive_ratio
< active
)
474 unsigned long mem_cgroup_zone_nr_pages(struct mem_cgroup
*memcg
,
478 int nid
= zone
->zone_pgdat
->node_id
;
479 int zid
= zone_idx(zone
);
480 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
482 return MEM_CGROUP_ZSTAT(mz
, lru
);
485 struct zone_reclaim_stat
*mem_cgroup_get_reclaim_stat(struct mem_cgroup
*memcg
,
488 int nid
= zone
->zone_pgdat
->node_id
;
489 int zid
= zone_idx(zone
);
490 struct mem_cgroup_per_zone
*mz
= mem_cgroup_zoneinfo(memcg
, nid
, zid
);
492 return &mz
->reclaim_stat
;
495 struct zone_reclaim_stat
*
496 mem_cgroup_get_reclaim_stat_from_page(struct page
*page
)
498 struct page_cgroup
*pc
;
499 struct mem_cgroup_per_zone
*mz
;
501 if (mem_cgroup_disabled())
504 pc
= lookup_page_cgroup(page
);
505 mz
= page_cgroup_zoneinfo(pc
);
509 return &mz
->reclaim_stat
;
512 unsigned long mem_cgroup_isolate_pages(unsigned long nr_to_scan
,
513 struct list_head
*dst
,
514 unsigned long *scanned
, int order
,
515 int mode
, struct zone
*z
,
516 struct mem_cgroup
*mem_cont
,
517 int active
, int file
)
519 unsigned long nr_taken
= 0;
523 struct list_head
*src
;
524 struct page_cgroup
*pc
, *tmp
;
525 int nid
= z
->zone_pgdat
->node_id
;
526 int zid
= zone_idx(z
);
527 struct mem_cgroup_per_zone
*mz
;
528 int lru
= LRU_FILE
* !!file
+ !!active
;
531 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
532 src
= &mz
->lists
[lru
];
535 list_for_each_entry_safe_reverse(pc
, tmp
, src
, lru
) {
536 if (scan
>= nr_to_scan
)
540 if (unlikely(!PageCgroupUsed(pc
)))
542 if (unlikely(!PageLRU(page
)))
546 if (__isolate_lru_page(page
, mode
, file
) == 0) {
547 list_move(&page
->lru
, dst
);
556 #define mem_cgroup_from_res_counter(counter, member) \
557 container_of(counter, struct mem_cgroup, member)
560 * This routine finds the DFS walk successor. This routine should be
561 * called with cgroup_mutex held
563 static struct mem_cgroup
*
564 mem_cgroup_get_next_node(struct mem_cgroup
*curr
, struct mem_cgroup
*root_mem
)
566 struct cgroup
*cgroup
, *curr_cgroup
, *root_cgroup
;
568 curr_cgroup
= curr
->css
.cgroup
;
569 root_cgroup
= root_mem
->css
.cgroup
;
571 if (!list_empty(&curr_cgroup
->children
)) {
573 * Walk down to children
575 mem_cgroup_put(curr
);
576 cgroup
= list_entry(curr_cgroup
->children
.next
,
577 struct cgroup
, sibling
);
578 curr
= mem_cgroup_from_cont(cgroup
);
579 mem_cgroup_get(curr
);
584 if (curr_cgroup
== root_cgroup
) {
585 mem_cgroup_put(curr
);
587 mem_cgroup_get(curr
);
594 if (curr_cgroup
->sibling
.next
!= &curr_cgroup
->parent
->children
) {
595 mem_cgroup_put(curr
);
596 cgroup
= list_entry(curr_cgroup
->sibling
.next
, struct cgroup
,
598 curr
= mem_cgroup_from_cont(cgroup
);
599 mem_cgroup_get(curr
);
604 * Go up to next parent and next parent's sibling if need be
606 curr_cgroup
= curr_cgroup
->parent
;
610 root_mem
->last_scanned_child
= curr
;
615 * Visit the first child (need not be the first child as per the ordering
616 * of the cgroup list, since we track last_scanned_child) of @mem and use
617 * that to reclaim free pages from.
619 static struct mem_cgroup
*
620 mem_cgroup_get_first_node(struct mem_cgroup
*root_mem
)
622 struct cgroup
*cgroup
;
623 struct mem_cgroup
*ret
;
624 bool obsolete
= (root_mem
->last_scanned_child
&&
625 root_mem
->last_scanned_child
->obsolete
);
628 * Scan all children under the mem_cgroup mem
631 if (list_empty(&root_mem
->css
.cgroup
->children
)) {
636 if (!root_mem
->last_scanned_child
|| obsolete
) {
639 mem_cgroup_put(root_mem
->last_scanned_child
);
641 cgroup
= list_first_entry(&root_mem
->css
.cgroup
->children
,
642 struct cgroup
, sibling
);
643 ret
= mem_cgroup_from_cont(cgroup
);
646 ret
= mem_cgroup_get_next_node(root_mem
->last_scanned_child
,
650 root_mem
->last_scanned_child
= ret
;
655 static bool mem_cgroup_check_under_limit(struct mem_cgroup
*mem
)
657 if (do_swap_account
) {
658 if (res_counter_check_under_limit(&mem
->res
) &&
659 res_counter_check_under_limit(&mem
->memsw
))
662 if (res_counter_check_under_limit(&mem
->res
))
667 static unsigned int get_swappiness(struct mem_cgroup
*memcg
)
669 struct cgroup
*cgrp
= memcg
->css
.cgroup
;
670 unsigned int swappiness
;
673 if (cgrp
->parent
== NULL
)
674 return vm_swappiness
;
676 spin_lock(&memcg
->reclaim_param_lock
);
677 swappiness
= memcg
->swappiness
;
678 spin_unlock(&memcg
->reclaim_param_lock
);
684 * Dance down the hierarchy if needed to reclaim memory. We remember the
685 * last child we reclaimed from, so that we don't end up penalizing
686 * one child extensively based on its position in the children list.
688 * root_mem is the original ancestor that we've been reclaim from.
690 static int mem_cgroup_hierarchical_reclaim(struct mem_cgroup
*root_mem
,
691 gfp_t gfp_mask
, bool noswap
)
693 struct mem_cgroup
*next_mem
;
697 * Reclaim unconditionally and don't check for return value.
698 * We need to reclaim in the current group and down the tree.
699 * One might think about checking for children before reclaiming,
700 * but there might be left over accounting, even after children
703 ret
= try_to_free_mem_cgroup_pages(root_mem
, gfp_mask
, noswap
,
704 get_swappiness(root_mem
));
705 if (mem_cgroup_check_under_limit(root_mem
))
707 if (!root_mem
->use_hierarchy
)
710 next_mem
= mem_cgroup_get_first_node(root_mem
);
712 while (next_mem
!= root_mem
) {
713 if (next_mem
->obsolete
) {
714 mem_cgroup_put(next_mem
);
716 next_mem
= mem_cgroup_get_first_node(root_mem
);
720 ret
= try_to_free_mem_cgroup_pages(next_mem
, gfp_mask
, noswap
,
721 get_swappiness(next_mem
));
722 if (mem_cgroup_check_under_limit(root_mem
))
725 next_mem
= mem_cgroup_get_next_node(next_mem
, root_mem
);
731 bool mem_cgroup_oom_called(struct task_struct
*task
)
734 struct mem_cgroup
*mem
;
735 struct mm_struct
*mm
;
741 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
742 if (mem
&& time_before(jiffies
, mem
->last_oom_jiffies
+ HZ
/10))
748 * Unlike exported interface, "oom" parameter is added. if oom==true,
749 * oom-killer can be invoked.
751 static int __mem_cgroup_try_charge(struct mm_struct
*mm
,
752 gfp_t gfp_mask
, struct mem_cgroup
**memcg
,
755 struct mem_cgroup
*mem
, *mem_over_limit
;
756 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
757 struct res_counter
*fail_res
;
759 if (unlikely(test_thread_flag(TIF_MEMDIE
))) {
760 /* Don't account this! */
766 * We always charge the cgroup the mm_struct belongs to.
767 * The mm_struct's mem_cgroup changes on task migration if the
768 * thread group leader migrates. It's possible that mm is not
769 * set, if so charge the init_mm (happens for pagecache usage).
771 if (likely(!*memcg
)) {
773 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
774 if (unlikely(!mem
)) {
779 * For every charge from the cgroup, increment reference count
793 ret
= res_counter_charge(&mem
->res
, PAGE_SIZE
, &fail_res
);
795 if (!do_swap_account
)
797 ret
= res_counter_charge(&mem
->memsw
, PAGE_SIZE
,
801 /* mem+swap counter fails */
802 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
804 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
,
807 /* mem counter fails */
808 mem_over_limit
= mem_cgroup_from_res_counter(fail_res
,
811 if (!(gfp_mask
& __GFP_WAIT
))
814 ret
= mem_cgroup_hierarchical_reclaim(mem_over_limit
, gfp_mask
,
818 * try_to_free_mem_cgroup_pages() might not give us a full
819 * picture of reclaim. Some pages are reclaimed and might be
820 * moved to swap cache or just unmapped from the cgroup.
821 * Check the limit again to see if the reclaim reduced the
822 * current usage of the cgroup before giving up
825 if (mem_cgroup_check_under_limit(mem_over_limit
))
830 mem_cgroup_out_of_memory(mem_over_limit
, gfp_mask
);
831 mem_over_limit
->last_oom_jiffies
= jiffies
;
843 * mem_cgroup_try_charge - get charge of PAGE_SIZE.
844 * @mm: an mm_struct which is charged against. (when *memcg is NULL)
845 * @gfp_mask: gfp_mask for reclaim.
846 * @memcg: a pointer to memory cgroup which is charged against.
848 * charge against memory cgroup pointed by *memcg. if *memcg == NULL, estimated
849 * memory cgroup from @mm is got and stored in *memcg.
851 * Returns 0 if success. -ENOMEM at failure.
852 * This call can invoke OOM-Killer.
855 int mem_cgroup_try_charge(struct mm_struct
*mm
,
856 gfp_t mask
, struct mem_cgroup
**memcg
)
858 return __mem_cgroup_try_charge(mm
, mask
, memcg
, true);
862 * commit a charge got by mem_cgroup_try_charge() and makes page_cgroup to be
863 * USED state. If already USED, uncharge and return.
866 static void __mem_cgroup_commit_charge(struct mem_cgroup
*mem
,
867 struct page_cgroup
*pc
,
868 enum charge_type ctype
)
870 /* try_charge() can return NULL to *memcg, taking care of it. */
874 lock_page_cgroup(pc
);
875 if (unlikely(PageCgroupUsed(pc
))) {
876 unlock_page_cgroup(pc
);
877 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
879 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
883 pc
->mem_cgroup
= mem
;
885 pc
->flags
= pcg_default_flags
[ctype
];
887 mem_cgroup_charge_statistics(mem
, pc
, true);
889 unlock_page_cgroup(pc
);
893 * mem_cgroup_move_account - move account of the page
894 * @pc: page_cgroup of the page.
895 * @from: mem_cgroup which the page is moved from.
896 * @to: mem_cgroup which the page is moved to. @from != @to.
898 * The caller must confirm following.
899 * - page is not on LRU (isolate_page() is useful.)
901 * returns 0 at success,
902 * returns -EBUSY when lock is busy or "pc" is unstable.
904 * This function does "uncharge" from old cgroup but doesn't do "charge" to
905 * new cgroup. It should be done by a caller.
908 static int mem_cgroup_move_account(struct page_cgroup
*pc
,
909 struct mem_cgroup
*from
, struct mem_cgroup
*to
)
911 struct mem_cgroup_per_zone
*from_mz
, *to_mz
;
915 VM_BUG_ON(from
== to
);
916 VM_BUG_ON(PageLRU(pc
->page
));
918 nid
= page_cgroup_nid(pc
);
919 zid
= page_cgroup_zid(pc
);
920 from_mz
= mem_cgroup_zoneinfo(from
, nid
, zid
);
921 to_mz
= mem_cgroup_zoneinfo(to
, nid
, zid
);
923 if (!trylock_page_cgroup(pc
))
926 if (!PageCgroupUsed(pc
))
929 if (pc
->mem_cgroup
!= from
)
933 res_counter_uncharge(&from
->res
, PAGE_SIZE
);
934 mem_cgroup_charge_statistics(from
, pc
, false);
936 res_counter_uncharge(&from
->memsw
, PAGE_SIZE
);
938 mem_cgroup_charge_statistics(to
, pc
, true);
942 unlock_page_cgroup(pc
);
947 * move charges to its parent.
950 static int mem_cgroup_move_parent(struct page_cgroup
*pc
,
951 struct mem_cgroup
*child
,
954 struct page
*page
= pc
->page
;
955 struct cgroup
*cg
= child
->css
.cgroup
;
956 struct cgroup
*pcg
= cg
->parent
;
957 struct mem_cgroup
*parent
;
965 parent
= mem_cgroup_from_cont(pcg
);
968 ret
= __mem_cgroup_try_charge(NULL
, gfp_mask
, &parent
, false);
972 if (!get_page_unless_zero(page
))
975 ret
= isolate_lru_page(page
);
980 ret
= mem_cgroup_move_account(pc
, child
, parent
);
982 /* drop extra refcnt by try_charge() (move_account increment one) */
983 css_put(&parent
->css
);
984 putback_lru_page(page
);
989 /* uncharge if move fails */
991 res_counter_uncharge(&parent
->res
, PAGE_SIZE
);
993 res_counter_uncharge(&parent
->memsw
, PAGE_SIZE
);
999 * Charge the memory controller for page usage.
1001 * 0 if the charge was successful
1002 * < 0 if the cgroup is over its limit
1004 static int mem_cgroup_charge_common(struct page
*page
, struct mm_struct
*mm
,
1005 gfp_t gfp_mask
, enum charge_type ctype
,
1006 struct mem_cgroup
*memcg
)
1008 struct mem_cgroup
*mem
;
1009 struct page_cgroup
*pc
;
1012 pc
= lookup_page_cgroup(page
);
1013 /* can happen at boot */
1019 ret
= __mem_cgroup_try_charge(mm
, gfp_mask
, &mem
, true);
1023 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
1027 int mem_cgroup_newpage_charge(struct page
*page
,
1028 struct mm_struct
*mm
, gfp_t gfp_mask
)
1030 if (mem_cgroup_disabled())
1032 if (PageCompound(page
))
1035 * If already mapped, we don't have to account.
1036 * If page cache, page->mapping has address_space.
1037 * But page->mapping may have out-of-use anon_vma pointer,
1038 * detecit it by PageAnon() check. newly-mapped-anon's page->mapping
1041 if (page_mapped(page
) || (page
->mapping
&& !PageAnon(page
)))
1045 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1046 MEM_CGROUP_CHARGE_TYPE_MAPPED
, NULL
);
1049 int mem_cgroup_cache_charge(struct page
*page
, struct mm_struct
*mm
,
1052 if (mem_cgroup_disabled())
1054 if (PageCompound(page
))
1057 * Corner case handling. This is called from add_to_page_cache()
1058 * in usual. But some FS (shmem) precharges this page before calling it
1059 * and call add_to_page_cache() with GFP_NOWAIT.
1061 * For GFP_NOWAIT case, the page may be pre-charged before calling
1062 * add_to_page_cache(). (See shmem.c) check it here and avoid to call
1063 * charge twice. (It works but has to pay a bit larger cost.)
1065 if (!(gfp_mask
& __GFP_WAIT
)) {
1066 struct page_cgroup
*pc
;
1069 pc
= lookup_page_cgroup(page
);
1072 lock_page_cgroup(pc
);
1073 if (PageCgroupUsed(pc
)) {
1074 unlock_page_cgroup(pc
);
1077 unlock_page_cgroup(pc
);
1083 if (page_is_file_cache(page
))
1084 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1085 MEM_CGROUP_CHARGE_TYPE_CACHE
, NULL
);
1087 return mem_cgroup_charge_common(page
, mm
, gfp_mask
,
1088 MEM_CGROUP_CHARGE_TYPE_SHMEM
, NULL
);
1091 int mem_cgroup_try_charge_swapin(struct mm_struct
*mm
,
1093 gfp_t mask
, struct mem_cgroup
**ptr
)
1095 struct mem_cgroup
*mem
;
1098 if (mem_cgroup_disabled())
1101 if (!do_swap_account
)
1105 * A racing thread's fault, or swapoff, may have already updated
1106 * the pte, and even removed page from swap cache: return success
1107 * to go on to do_swap_page()'s pte_same() test, which should fail.
1109 if (!PageSwapCache(page
))
1112 ent
.val
= page_private(page
);
1114 mem
= lookup_swap_cgroup(ent
);
1115 if (!mem
|| mem
->obsolete
)
1118 return __mem_cgroup_try_charge(NULL
, mask
, ptr
, true);
1122 return __mem_cgroup_try_charge(mm
, mask
, ptr
, true);
1127 int mem_cgroup_cache_charge_swapin(struct page
*page
,
1128 struct mm_struct
*mm
, gfp_t mask
, bool locked
)
1132 if (mem_cgroup_disabled())
1139 * If not locked, the page can be dropped from SwapCache until
1142 if (PageSwapCache(page
)) {
1143 struct mem_cgroup
*mem
= NULL
;
1146 ent
.val
= page_private(page
);
1147 if (do_swap_account
) {
1148 mem
= lookup_swap_cgroup(ent
);
1149 if (mem
&& mem
->obsolete
)
1154 ret
= mem_cgroup_charge_common(page
, mm
, mask
,
1155 MEM_CGROUP_CHARGE_TYPE_SHMEM
, mem
);
1157 if (!ret
&& do_swap_account
) {
1158 /* avoid double counting */
1159 mem
= swap_cgroup_record(ent
, NULL
);
1161 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1162 mem_cgroup_put(mem
);
1168 /* add this page(page_cgroup) to the LRU we want. */
1169 mem_cgroup_lru_fixup(page
);
1175 void mem_cgroup_commit_charge_swapin(struct page
*page
, struct mem_cgroup
*ptr
)
1177 struct page_cgroup
*pc
;
1179 if (mem_cgroup_disabled())
1183 pc
= lookup_page_cgroup(page
);
1184 __mem_cgroup_commit_charge(ptr
, pc
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
1186 * Now swap is on-memory. This means this page may be
1187 * counted both as mem and swap....double count.
1188 * Fix it by uncharging from memsw. This SwapCache is stable
1189 * because we're still under lock_page().
1191 if (do_swap_account
) {
1192 swp_entry_t ent
= {.val
= page_private(page
)};
1193 struct mem_cgroup
*memcg
;
1194 memcg
= swap_cgroup_record(ent
, NULL
);
1196 /* If memcg is obsolete, memcg can be != ptr */
1197 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
1198 mem_cgroup_put(memcg
);
1202 /* add this page(page_cgroup) to the LRU we want. */
1203 mem_cgroup_lru_fixup(page
);
1206 void mem_cgroup_cancel_charge_swapin(struct mem_cgroup
*mem
)
1208 if (mem_cgroup_disabled())
1212 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
1213 if (do_swap_account
)
1214 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1220 * uncharge if !page_mapped(page)
1222 static struct mem_cgroup
*
1223 __mem_cgroup_uncharge_common(struct page
*page
, enum charge_type ctype
)
1225 struct page_cgroup
*pc
;
1226 struct mem_cgroup
*mem
= NULL
;
1227 struct mem_cgroup_per_zone
*mz
;
1229 if (mem_cgroup_disabled())
1232 if (PageSwapCache(page
))
1236 * Check if our page_cgroup is valid
1238 pc
= lookup_page_cgroup(page
);
1239 if (unlikely(!pc
|| !PageCgroupUsed(pc
)))
1242 lock_page_cgroup(pc
);
1244 mem
= pc
->mem_cgroup
;
1246 if (!PageCgroupUsed(pc
))
1250 case MEM_CGROUP_CHARGE_TYPE_MAPPED
:
1251 if (page_mapped(page
))
1254 case MEM_CGROUP_CHARGE_TYPE_SWAPOUT
:
1255 if (!PageAnon(page
)) { /* Shared memory */
1256 if (page
->mapping
&& !page_is_file_cache(page
))
1258 } else if (page_mapped(page
)) /* Anon */
1265 res_counter_uncharge(&mem
->res
, PAGE_SIZE
);
1266 if (do_swap_account
&& (ctype
!= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
))
1267 res_counter_uncharge(&mem
->memsw
, PAGE_SIZE
);
1269 mem_cgroup_charge_statistics(mem
, pc
, false);
1270 ClearPageCgroupUsed(pc
);
1272 mz
= page_cgroup_zoneinfo(pc
);
1273 unlock_page_cgroup(pc
);
1275 /* at swapout, this memcg will be accessed to record to swap */
1276 if (ctype
!= MEM_CGROUP_CHARGE_TYPE_SWAPOUT
)
1282 unlock_page_cgroup(pc
);
1286 void mem_cgroup_uncharge_page(struct page
*page
)
1289 if (page_mapped(page
))
1291 if (page
->mapping
&& !PageAnon(page
))
1293 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_MAPPED
);
1296 void mem_cgroup_uncharge_cache_page(struct page
*page
)
1298 VM_BUG_ON(page_mapped(page
));
1299 VM_BUG_ON(page
->mapping
);
1300 __mem_cgroup_uncharge_common(page
, MEM_CGROUP_CHARGE_TYPE_CACHE
);
1304 * called from __delete_from_swap_cache() and drop "page" account.
1305 * memcg information is recorded to swap_cgroup of "ent"
1307 void mem_cgroup_uncharge_swapcache(struct page
*page
, swp_entry_t ent
)
1309 struct mem_cgroup
*memcg
;
1311 memcg
= __mem_cgroup_uncharge_common(page
,
1312 MEM_CGROUP_CHARGE_TYPE_SWAPOUT
);
1313 /* record memcg information */
1314 if (do_swap_account
&& memcg
) {
1315 swap_cgroup_record(ent
, memcg
);
1316 mem_cgroup_get(memcg
);
1319 css_put(&memcg
->css
);
1322 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
1324 * called from swap_entry_free(). remove record in swap_cgroup and
1325 * uncharge "memsw" account.
1327 void mem_cgroup_uncharge_swap(swp_entry_t ent
)
1329 struct mem_cgroup
*memcg
;
1331 if (!do_swap_account
)
1334 memcg
= swap_cgroup_record(ent
, NULL
);
1336 res_counter_uncharge(&memcg
->memsw
, PAGE_SIZE
);
1337 mem_cgroup_put(memcg
);
1343 * Before starting migration, account PAGE_SIZE to mem_cgroup that the old
1346 int mem_cgroup_prepare_migration(struct page
*page
, struct mem_cgroup
**ptr
)
1348 struct page_cgroup
*pc
;
1349 struct mem_cgroup
*mem
= NULL
;
1352 if (mem_cgroup_disabled())
1355 pc
= lookup_page_cgroup(page
);
1356 lock_page_cgroup(pc
);
1357 if (PageCgroupUsed(pc
)) {
1358 mem
= pc
->mem_cgroup
;
1361 unlock_page_cgroup(pc
);
1364 ret
= mem_cgroup_try_charge(NULL
, GFP_KERNEL
, &mem
);
1371 /* remove redundant charge if migration failed*/
1372 void mem_cgroup_end_migration(struct mem_cgroup
*mem
,
1373 struct page
*oldpage
, struct page
*newpage
)
1375 struct page
*target
, *unused
;
1376 struct page_cgroup
*pc
;
1377 enum charge_type ctype
;
1382 /* at migration success, oldpage->mapping is NULL. */
1383 if (oldpage
->mapping
) {
1391 if (PageAnon(target
))
1392 ctype
= MEM_CGROUP_CHARGE_TYPE_MAPPED
;
1393 else if (page_is_file_cache(target
))
1394 ctype
= MEM_CGROUP_CHARGE_TYPE_CACHE
;
1396 ctype
= MEM_CGROUP_CHARGE_TYPE_SHMEM
;
1398 /* unused page is not on radix-tree now. */
1400 __mem_cgroup_uncharge_common(unused
, ctype
);
1402 pc
= lookup_page_cgroup(target
);
1404 * __mem_cgroup_commit_charge() check PCG_USED bit of page_cgroup.
1405 * So, double-counting is effectively avoided.
1407 __mem_cgroup_commit_charge(mem
, pc
, ctype
);
1410 * Both of oldpage and newpage are still under lock_page().
1411 * Then, we don't have to care about race in radix-tree.
1412 * But we have to be careful that this page is unmapped or not.
1414 * There is a case for !page_mapped(). At the start of
1415 * migration, oldpage was mapped. But now, it's zapped.
1416 * But we know *target* page is not freed/reused under us.
1417 * mem_cgroup_uncharge_page() does all necessary checks.
1419 if (ctype
== MEM_CGROUP_CHARGE_TYPE_MAPPED
)
1420 mem_cgroup_uncharge_page(target
);
1424 * A call to try to shrink memory usage under specified resource controller.
1425 * This is typically used for page reclaiming for shmem for reducing side
1426 * effect of page allocation from shmem, which is used by some mem_cgroup.
1428 int mem_cgroup_shrink_usage(struct mm_struct
*mm
, gfp_t gfp_mask
)
1430 struct mem_cgroup
*mem
;
1432 int retry
= MEM_CGROUP_RECLAIM_RETRIES
;
1434 if (mem_cgroup_disabled())
1440 mem
= mem_cgroup_from_task(rcu_dereference(mm
->owner
));
1441 if (unlikely(!mem
)) {
1449 progress
= try_to_free_mem_cgroup_pages(mem
, gfp_mask
, true,
1450 get_swappiness(mem
));
1451 progress
+= mem_cgroup_check_under_limit(mem
);
1452 } while (!progress
&& --retry
);
1460 static DEFINE_MUTEX(set_limit_mutex
);
1462 static int mem_cgroup_resize_limit(struct mem_cgroup
*memcg
,
1463 unsigned long long val
)
1466 int retry_count
= MEM_CGROUP_RECLAIM_RETRIES
;
1471 while (retry_count
) {
1472 if (signal_pending(current
)) {
1477 * Rather than hide all in some function, I do this in
1478 * open coded manner. You see what this really does.
1479 * We have to guarantee mem->res.limit < mem->memsw.limit.
1481 mutex_lock(&set_limit_mutex
);
1482 memswlimit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1483 if (memswlimit
< val
) {
1485 mutex_unlock(&set_limit_mutex
);
1488 ret
= res_counter_set_limit(&memcg
->res
, val
);
1489 mutex_unlock(&set_limit_mutex
);
1494 progress
= try_to_free_mem_cgroup_pages(memcg
,
1497 get_swappiness(memcg
));
1498 if (!progress
) retry_count
--;
1504 int mem_cgroup_resize_memsw_limit(struct mem_cgroup
*memcg
,
1505 unsigned long long val
)
1507 int retry_count
= MEM_CGROUP_RECLAIM_RETRIES
;
1508 u64 memlimit
, oldusage
, curusage
;
1511 if (!do_swap_account
)
1514 while (retry_count
) {
1515 if (signal_pending(current
)) {
1520 * Rather than hide all in some function, I do this in
1521 * open coded manner. You see what this really does.
1522 * We have to guarantee mem->res.limit < mem->memsw.limit.
1524 mutex_lock(&set_limit_mutex
);
1525 memlimit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1526 if (memlimit
> val
) {
1528 mutex_unlock(&set_limit_mutex
);
1531 ret
= res_counter_set_limit(&memcg
->memsw
, val
);
1532 mutex_unlock(&set_limit_mutex
);
1537 oldusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
1538 try_to_free_mem_cgroup_pages(memcg
, GFP_KERNEL
, true,
1539 get_swappiness(memcg
));
1540 curusage
= res_counter_read_u64(&memcg
->memsw
, RES_USAGE
);
1541 if (curusage
>= oldusage
)
1548 * This routine traverse page_cgroup in given list and drop them all.
1549 * *And* this routine doesn't reclaim page itself, just removes page_cgroup.
1551 static int mem_cgroup_force_empty_list(struct mem_cgroup
*mem
,
1552 int node
, int zid
, enum lru_list lru
)
1555 struct mem_cgroup_per_zone
*mz
;
1556 struct page_cgroup
*pc
, *busy
;
1557 unsigned long flags
, loop
;
1558 struct list_head
*list
;
1561 zone
= &NODE_DATA(node
)->node_zones
[zid
];
1562 mz
= mem_cgroup_zoneinfo(mem
, node
, zid
);
1563 list
= &mz
->lists
[lru
];
1565 loop
= MEM_CGROUP_ZSTAT(mz
, lru
);
1566 /* give some margin against EBUSY etc...*/
1571 spin_lock_irqsave(&zone
->lru_lock
, flags
);
1572 if (list_empty(list
)) {
1573 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1576 pc
= list_entry(list
->prev
, struct page_cgroup
, lru
);
1578 list_move(&pc
->lru
, list
);
1580 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1583 spin_unlock_irqrestore(&zone
->lru_lock
, flags
);
1585 ret
= mem_cgroup_move_parent(pc
, mem
, GFP_KERNEL
);
1589 if (ret
== -EBUSY
|| ret
== -EINVAL
) {
1590 /* found lock contention or "pc" is obsolete. */
1597 if (!ret
&& !list_empty(list
))
1603 * make mem_cgroup's charge to be 0 if there is no task.
1604 * This enables deleting this mem_cgroup.
1606 static int mem_cgroup_force_empty(struct mem_cgroup
*mem
, bool free_all
)
1609 int node
, zid
, shrink
;
1610 int nr_retries
= MEM_CGROUP_RECLAIM_RETRIES
;
1611 struct cgroup
*cgrp
= mem
->css
.cgroup
;
1616 /* should free all ? */
1620 while (mem
->res
.usage
> 0) {
1622 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
))
1625 if (signal_pending(current
))
1627 /* This is for making all *used* pages to be on LRU. */
1628 lru_add_drain_all();
1630 for_each_node_state(node
, N_POSSIBLE
) {
1631 for (zid
= 0; !ret
&& zid
< MAX_NR_ZONES
; zid
++) {
1634 ret
= mem_cgroup_force_empty_list(mem
,
1643 /* it seems parent cgroup doesn't have enough mem */
1654 /* returns EBUSY if there is a task or if we come here twice. */
1655 if (cgroup_task_count(cgrp
) || !list_empty(&cgrp
->children
) || shrink
) {
1659 /* we call try-to-free pages for make this cgroup empty */
1660 lru_add_drain_all();
1661 /* try to free all pages in this cgroup */
1663 while (nr_retries
&& mem
->res
.usage
> 0) {
1666 if (signal_pending(current
)) {
1670 progress
= try_to_free_mem_cgroup_pages(mem
, GFP_KERNEL
,
1671 false, get_swappiness(mem
));
1674 /* maybe some writeback is necessary */
1675 congestion_wait(WRITE
, HZ
/10);
1680 /* try move_account...there may be some *locked* pages. */
1687 int mem_cgroup_force_empty_write(struct cgroup
*cont
, unsigned int event
)
1689 return mem_cgroup_force_empty(mem_cgroup_from_cont(cont
), true);
1693 static u64
mem_cgroup_hierarchy_read(struct cgroup
*cont
, struct cftype
*cft
)
1695 return mem_cgroup_from_cont(cont
)->use_hierarchy
;
1698 static int mem_cgroup_hierarchy_write(struct cgroup
*cont
, struct cftype
*cft
,
1702 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
1703 struct cgroup
*parent
= cont
->parent
;
1704 struct mem_cgroup
*parent_mem
= NULL
;
1707 parent_mem
= mem_cgroup_from_cont(parent
);
1711 * If parent's use_hiearchy is set, we can't make any modifications
1712 * in the child subtrees. If it is unset, then the change can
1713 * occur, provided the current cgroup has no children.
1715 * For the root cgroup, parent_mem is NULL, we allow value to be
1716 * set if there are no children.
1718 if ((!parent_mem
|| !parent_mem
->use_hierarchy
) &&
1719 (val
== 1 || val
== 0)) {
1720 if (list_empty(&cont
->children
))
1721 mem
->use_hierarchy
= val
;
1731 static u64
mem_cgroup_read(struct cgroup
*cont
, struct cftype
*cft
)
1733 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
1737 type
= MEMFILE_TYPE(cft
->private);
1738 name
= MEMFILE_ATTR(cft
->private);
1741 val
= res_counter_read_u64(&mem
->res
, name
);
1744 if (do_swap_account
)
1745 val
= res_counter_read_u64(&mem
->memsw
, name
);
1754 * The user of this function is...
1757 static int mem_cgroup_write(struct cgroup
*cont
, struct cftype
*cft
,
1760 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cont
);
1762 unsigned long long val
;
1765 type
= MEMFILE_TYPE(cft
->private);
1766 name
= MEMFILE_ATTR(cft
->private);
1769 /* This function does all necessary parse...reuse it */
1770 ret
= res_counter_memparse_write_strategy(buffer
, &val
);
1774 ret
= mem_cgroup_resize_limit(memcg
, val
);
1776 ret
= mem_cgroup_resize_memsw_limit(memcg
, val
);
1779 ret
= -EINVAL
; /* should be BUG() ? */
1785 static void memcg_get_hierarchical_limit(struct mem_cgroup
*memcg
,
1786 unsigned long long *mem_limit
, unsigned long long *memsw_limit
)
1788 struct cgroup
*cgroup
;
1789 unsigned long long min_limit
, min_memsw_limit
, tmp
;
1791 min_limit
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1792 min_memsw_limit
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1793 cgroup
= memcg
->css
.cgroup
;
1794 if (!memcg
->use_hierarchy
)
1797 while (cgroup
->parent
) {
1798 cgroup
= cgroup
->parent
;
1799 memcg
= mem_cgroup_from_cont(cgroup
);
1800 if (!memcg
->use_hierarchy
)
1802 tmp
= res_counter_read_u64(&memcg
->res
, RES_LIMIT
);
1803 min_limit
= min(min_limit
, tmp
);
1804 tmp
= res_counter_read_u64(&memcg
->memsw
, RES_LIMIT
);
1805 min_memsw_limit
= min(min_memsw_limit
, tmp
);
1808 *mem_limit
= min_limit
;
1809 *memsw_limit
= min_memsw_limit
;
1813 static int mem_cgroup_reset(struct cgroup
*cont
, unsigned int event
)
1815 struct mem_cgroup
*mem
;
1818 mem
= mem_cgroup_from_cont(cont
);
1819 type
= MEMFILE_TYPE(event
);
1820 name
= MEMFILE_ATTR(event
);
1824 res_counter_reset_max(&mem
->res
);
1826 res_counter_reset_max(&mem
->memsw
);
1830 res_counter_reset_failcnt(&mem
->res
);
1832 res_counter_reset_failcnt(&mem
->memsw
);
1838 static const struct mem_cgroup_stat_desc
{
1841 } mem_cgroup_stat_desc
[] = {
1842 [MEM_CGROUP_STAT_CACHE
] = { "cache", PAGE_SIZE
, },
1843 [MEM_CGROUP_STAT_RSS
] = { "rss", PAGE_SIZE
, },
1844 [MEM_CGROUP_STAT_PGPGIN_COUNT
] = {"pgpgin", 1, },
1845 [MEM_CGROUP_STAT_PGPGOUT_COUNT
] = {"pgpgout", 1, },
1848 static int mem_control_stat_show(struct cgroup
*cont
, struct cftype
*cft
,
1849 struct cgroup_map_cb
*cb
)
1851 struct mem_cgroup
*mem_cont
= mem_cgroup_from_cont(cont
);
1852 struct mem_cgroup_stat
*stat
= &mem_cont
->stat
;
1855 for (i
= 0; i
< ARRAY_SIZE(stat
->cpustat
[0].count
); i
++) {
1858 val
= mem_cgroup_read_stat(stat
, i
);
1859 val
*= mem_cgroup_stat_desc
[i
].unit
;
1860 cb
->fill(cb
, mem_cgroup_stat_desc
[i
].msg
, val
);
1862 /* showing # of active pages */
1864 unsigned long active_anon
, inactive_anon
;
1865 unsigned long active_file
, inactive_file
;
1866 unsigned long unevictable
;
1868 inactive_anon
= mem_cgroup_get_all_zonestat(mem_cont
,
1870 active_anon
= mem_cgroup_get_all_zonestat(mem_cont
,
1872 inactive_file
= mem_cgroup_get_all_zonestat(mem_cont
,
1874 active_file
= mem_cgroup_get_all_zonestat(mem_cont
,
1876 unevictable
= mem_cgroup_get_all_zonestat(mem_cont
,
1879 cb
->fill(cb
, "active_anon", (active_anon
) * PAGE_SIZE
);
1880 cb
->fill(cb
, "inactive_anon", (inactive_anon
) * PAGE_SIZE
);
1881 cb
->fill(cb
, "active_file", (active_file
) * PAGE_SIZE
);
1882 cb
->fill(cb
, "inactive_file", (inactive_file
) * PAGE_SIZE
);
1883 cb
->fill(cb
, "unevictable", unevictable
* PAGE_SIZE
);
1887 unsigned long long limit
, memsw_limit
;
1888 memcg_get_hierarchical_limit(mem_cont
, &limit
, &memsw_limit
);
1889 cb
->fill(cb
, "hierarchical_memory_limit", limit
);
1890 if (do_swap_account
)
1891 cb
->fill(cb
, "hierarchical_memsw_limit", memsw_limit
);
1894 #ifdef CONFIG_DEBUG_VM
1895 cb
->fill(cb
, "inactive_ratio", calc_inactive_ratio(mem_cont
, NULL
));
1899 struct mem_cgroup_per_zone
*mz
;
1900 unsigned long recent_rotated
[2] = {0, 0};
1901 unsigned long recent_scanned
[2] = {0, 0};
1903 for_each_online_node(nid
)
1904 for (zid
= 0; zid
< MAX_NR_ZONES
; zid
++) {
1905 mz
= mem_cgroup_zoneinfo(mem_cont
, nid
, zid
);
1907 recent_rotated
[0] +=
1908 mz
->reclaim_stat
.recent_rotated
[0];
1909 recent_rotated
[1] +=
1910 mz
->reclaim_stat
.recent_rotated
[1];
1911 recent_scanned
[0] +=
1912 mz
->reclaim_stat
.recent_scanned
[0];
1913 recent_scanned
[1] +=
1914 mz
->reclaim_stat
.recent_scanned
[1];
1916 cb
->fill(cb
, "recent_rotated_anon", recent_rotated
[0]);
1917 cb
->fill(cb
, "recent_rotated_file", recent_rotated
[1]);
1918 cb
->fill(cb
, "recent_scanned_anon", recent_scanned
[0]);
1919 cb
->fill(cb
, "recent_scanned_file", recent_scanned
[1]);
1926 static u64
mem_cgroup_swappiness_read(struct cgroup
*cgrp
, struct cftype
*cft
)
1928 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
1930 return get_swappiness(memcg
);
1933 static int mem_cgroup_swappiness_write(struct cgroup
*cgrp
, struct cftype
*cft
,
1936 struct mem_cgroup
*memcg
= mem_cgroup_from_cont(cgrp
);
1937 struct mem_cgroup
*parent
;
1941 if (cgrp
->parent
== NULL
)
1944 parent
= mem_cgroup_from_cont(cgrp
->parent
);
1945 /* If under hierarchy, only empty-root can set this value */
1946 if ((parent
->use_hierarchy
) ||
1947 (memcg
->use_hierarchy
&& !list_empty(&cgrp
->children
)))
1950 spin_lock(&memcg
->reclaim_param_lock
);
1951 memcg
->swappiness
= val
;
1952 spin_unlock(&memcg
->reclaim_param_lock
);
1958 static struct cftype mem_cgroup_files
[] = {
1960 .name
= "usage_in_bytes",
1961 .private = MEMFILE_PRIVATE(_MEM
, RES_USAGE
),
1962 .read_u64
= mem_cgroup_read
,
1965 .name
= "max_usage_in_bytes",
1966 .private = MEMFILE_PRIVATE(_MEM
, RES_MAX_USAGE
),
1967 .trigger
= mem_cgroup_reset
,
1968 .read_u64
= mem_cgroup_read
,
1971 .name
= "limit_in_bytes",
1972 .private = MEMFILE_PRIVATE(_MEM
, RES_LIMIT
),
1973 .write_string
= mem_cgroup_write
,
1974 .read_u64
= mem_cgroup_read
,
1978 .private = MEMFILE_PRIVATE(_MEM
, RES_FAILCNT
),
1979 .trigger
= mem_cgroup_reset
,
1980 .read_u64
= mem_cgroup_read
,
1984 .read_map
= mem_control_stat_show
,
1987 .name
= "force_empty",
1988 .trigger
= mem_cgroup_force_empty_write
,
1991 .name
= "use_hierarchy",
1992 .write_u64
= mem_cgroup_hierarchy_write
,
1993 .read_u64
= mem_cgroup_hierarchy_read
,
1996 .name
= "swappiness",
1997 .read_u64
= mem_cgroup_swappiness_read
,
1998 .write_u64
= mem_cgroup_swappiness_write
,
2002 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2003 static struct cftype memsw_cgroup_files
[] = {
2005 .name
= "memsw.usage_in_bytes",
2006 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_USAGE
),
2007 .read_u64
= mem_cgroup_read
,
2010 .name
= "memsw.max_usage_in_bytes",
2011 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_MAX_USAGE
),
2012 .trigger
= mem_cgroup_reset
,
2013 .read_u64
= mem_cgroup_read
,
2016 .name
= "memsw.limit_in_bytes",
2017 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_LIMIT
),
2018 .write_string
= mem_cgroup_write
,
2019 .read_u64
= mem_cgroup_read
,
2022 .name
= "memsw.failcnt",
2023 .private = MEMFILE_PRIVATE(_MEMSWAP
, RES_FAILCNT
),
2024 .trigger
= mem_cgroup_reset
,
2025 .read_u64
= mem_cgroup_read
,
2029 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
2031 if (!do_swap_account
)
2033 return cgroup_add_files(cont
, ss
, memsw_cgroup_files
,
2034 ARRAY_SIZE(memsw_cgroup_files
));
2037 static int register_memsw_files(struct cgroup
*cont
, struct cgroup_subsys
*ss
)
2043 static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
2045 struct mem_cgroup_per_node
*pn
;
2046 struct mem_cgroup_per_zone
*mz
;
2048 int zone
, tmp
= node
;
2050 * This routine is called against possible nodes.
2051 * But it's BUG to call kmalloc() against offline node.
2053 * TODO: this routine can waste much memory for nodes which will
2054 * never be onlined. It's better to use memory hotplug callback
2057 if (!node_state(node
, N_NORMAL_MEMORY
))
2059 pn
= kmalloc_node(sizeof(*pn
), GFP_KERNEL
, tmp
);
2063 mem
->info
.nodeinfo
[node
] = pn
;
2064 memset(pn
, 0, sizeof(*pn
));
2066 for (zone
= 0; zone
< MAX_NR_ZONES
; zone
++) {
2067 mz
= &pn
->zoneinfo
[zone
];
2069 INIT_LIST_HEAD(&mz
->lists
[l
]);
2074 static void free_mem_cgroup_per_zone_info(struct mem_cgroup
*mem
, int node
)
2076 kfree(mem
->info
.nodeinfo
[node
]);
2079 static int mem_cgroup_size(void)
2081 int cpustat_size
= nr_cpu_ids
* sizeof(struct mem_cgroup_stat_cpu
);
2082 return sizeof(struct mem_cgroup
) + cpustat_size
;
2085 static struct mem_cgroup
*mem_cgroup_alloc(void)
2087 struct mem_cgroup
*mem
;
2088 int size
= mem_cgroup_size();
2090 if (size
< PAGE_SIZE
)
2091 mem
= kmalloc(size
, GFP_KERNEL
);
2093 mem
= vmalloc(size
);
2096 memset(mem
, 0, size
);
2101 * At destroying mem_cgroup, references from swap_cgroup can remain.
2102 * (scanning all at force_empty is too costly...)
2104 * Instead of clearing all references at force_empty, we remember
2105 * the number of reference from swap_cgroup and free mem_cgroup when
2106 * it goes down to 0.
2108 * When mem_cgroup is destroyed, mem->obsolete will be set to 0 and
2109 * entry which points to this memcg will be ignore at swapin.
2111 * Removal of cgroup itself succeeds regardless of refs from swap.
2114 static void mem_cgroup_free(struct mem_cgroup
*mem
)
2118 if (atomic_read(&mem
->refcnt
) > 0)
2122 for_each_node_state(node
, N_POSSIBLE
)
2123 free_mem_cgroup_per_zone_info(mem
, node
);
2125 if (mem_cgroup_size() < PAGE_SIZE
)
2131 static void mem_cgroup_get(struct mem_cgroup
*mem
)
2133 atomic_inc(&mem
->refcnt
);
2136 static void mem_cgroup_put(struct mem_cgroup
*mem
)
2138 if (atomic_dec_and_test(&mem
->refcnt
)) {
2141 mem_cgroup_free(mem
);
2146 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2147 static void __init
enable_swap_cgroup(void)
2149 if (!mem_cgroup_disabled() && really_do_swap_account
)
2150 do_swap_account
= 1;
2153 static void __init
enable_swap_cgroup(void)
2158 static struct cgroup_subsys_state
*
2159 mem_cgroup_create(struct cgroup_subsys
*ss
, struct cgroup
*cont
)
2161 struct mem_cgroup
*mem
, *parent
;
2164 mem
= mem_cgroup_alloc();
2166 return ERR_PTR(-ENOMEM
);
2168 for_each_node_state(node
, N_POSSIBLE
)
2169 if (alloc_mem_cgroup_per_zone_info(mem
, node
))
2172 if (cont
->parent
== NULL
) {
2173 enable_swap_cgroup();
2176 parent
= mem_cgroup_from_cont(cont
->parent
);
2177 mem
->use_hierarchy
= parent
->use_hierarchy
;
2180 if (parent
&& parent
->use_hierarchy
) {
2181 res_counter_init(&mem
->res
, &parent
->res
);
2182 res_counter_init(&mem
->memsw
, &parent
->memsw
);
2184 res_counter_init(&mem
->res
, NULL
);
2185 res_counter_init(&mem
->memsw
, NULL
);
2187 mem
->last_scanned_child
= NULL
;
2188 spin_lock_init(&mem
->reclaim_param_lock
);
2191 mem
->swappiness
= get_swappiness(parent
);
2195 for_each_node_state(node
, N_POSSIBLE
)
2196 free_mem_cgroup_per_zone_info(mem
, node
);
2197 mem_cgroup_free(mem
);
2198 return ERR_PTR(-ENOMEM
);
2201 static void mem_cgroup_pre_destroy(struct cgroup_subsys
*ss
,
2202 struct cgroup
*cont
)
2204 struct mem_cgroup
*mem
= mem_cgroup_from_cont(cont
);
2206 mem_cgroup_force_empty(mem
, false);
2209 static void mem_cgroup_destroy(struct cgroup_subsys
*ss
,
2210 struct cgroup
*cont
)
2212 mem_cgroup_free(mem_cgroup_from_cont(cont
));
2215 static int mem_cgroup_populate(struct cgroup_subsys
*ss
,
2216 struct cgroup
*cont
)
2220 ret
= cgroup_add_files(cont
, ss
, mem_cgroup_files
,
2221 ARRAY_SIZE(mem_cgroup_files
));
2224 ret
= register_memsw_files(cont
, ss
);
2228 static void mem_cgroup_move_task(struct cgroup_subsys
*ss
,
2229 struct cgroup
*cont
,
2230 struct cgroup
*old_cont
,
2231 struct task_struct
*p
)
2234 * FIXME: It's better to move charges of this process from old
2235 * memcg to new memcg. But it's just on TODO-List now.
2239 struct cgroup_subsys mem_cgroup_subsys
= {
2241 .subsys_id
= mem_cgroup_subsys_id
,
2242 .create
= mem_cgroup_create
,
2243 .pre_destroy
= mem_cgroup_pre_destroy
,
2244 .destroy
= mem_cgroup_destroy
,
2245 .populate
= mem_cgroup_populate
,
2246 .attach
= mem_cgroup_move_task
,
2250 #ifdef CONFIG_CGROUP_MEM_RES_CTLR_SWAP
2252 static int __init
disable_swap_account(char *s
)
2254 really_do_swap_account
= 0;
2257 __setup("noswapaccount", disable_swap_account
);