4 * Copyright (C) 2002, Linus Torvalds.
6 * Contains all the functions related to writing back and waiting
7 * upon dirty inodes against superblocks, and writing back dirty
8 * pages against inodes. ie: data writeback. Writeout of the
9 * inode itself is not handled here.
11 * 10Apr2002 Andrew Morton
12 * Split out of fs/inode.c
13 * Additions for address_space-based writeback
16 #include <linux/kernel.h>
17 #include <linux/module.h>
18 #include <linux/spinlock.h>
19 #include <linux/sched.h>
22 #include <linux/kthread.h>
23 #include <linux/freezer.h>
24 #include <linux/writeback.h>
25 #include <linux/blkdev.h>
26 #include <linux/backing-dev.h>
27 #include <linux/buffer_head.h>
30 #define inode_to_bdi(inode) ((inode)->i_mapping->backing_dev_info)
33 * We don't actually have pdflush, but this one is exported though /proc...
35 int nr_pdflush_threads
;
38 * Passed into wb_writeback(), essentially a subset of writeback_control
40 struct wb_writeback_args
{
42 struct super_block
*sb
;
43 enum writeback_sync_modes sync_mode
;
50 * Work items for the bdi_writeback threads
53 struct list_head list
; /* pending work list */
54 struct rcu_head rcu_head
; /* for RCU free/clear of work */
56 unsigned long seen
; /* threads that have seen this work */
57 atomic_t pending
; /* number of threads still to do work */
59 struct wb_writeback_args args
; /* writeback arguments */
61 unsigned long state
; /* flag bits, see WS_* */
69 #define WS_USED (1 << WS_USED_B)
70 #define WS_ONSTACK (1 << WS_ONSTACK_B)
72 static inline bool bdi_work_on_stack(struct bdi_work
*work
)
74 return test_bit(WS_ONSTACK_B
, &work
->state
);
77 static inline void bdi_work_init(struct bdi_work
*work
,
78 struct wb_writeback_args
*args
)
80 INIT_RCU_HEAD(&work
->rcu_head
);
82 work
->state
= WS_USED
;
86 * writeback_in_progress - determine whether there is writeback in progress
87 * @bdi: the device's backing_dev_info structure.
89 * Determine whether there is writeback waiting to be handled against a
92 int writeback_in_progress(struct backing_dev_info
*bdi
)
94 return !list_empty(&bdi
->work_list
);
97 static void bdi_work_clear(struct bdi_work
*work
)
99 clear_bit(WS_USED_B
, &work
->state
);
100 smp_mb__after_clear_bit();
102 * work can have disappeared at this point. bit waitq functions
103 * should be able to tolerate this, provided bdi_sched_wait does
104 * not dereference it's pointer argument.
106 wake_up_bit(&work
->state
, WS_USED_B
);
109 static void bdi_work_free(struct rcu_head
*head
)
111 struct bdi_work
*work
= container_of(head
, struct bdi_work
, rcu_head
);
113 if (!bdi_work_on_stack(work
))
116 bdi_work_clear(work
);
119 static void wb_work_complete(struct bdi_work
*work
)
121 const enum writeback_sync_modes sync_mode
= work
->args
.sync_mode
;
122 int onstack
= bdi_work_on_stack(work
);
125 * For allocated work, we can clear the done/seen bit right here.
126 * For on-stack work, we need to postpone both the clear and free
127 * to after the RCU grace period, since the stack could be invalidated
128 * as soon as bdi_work_clear() has done the wakeup.
131 bdi_work_clear(work
);
132 if (sync_mode
== WB_SYNC_NONE
|| onstack
)
133 call_rcu(&work
->rcu_head
, bdi_work_free
);
136 static void wb_clear_pending(struct bdi_writeback
*wb
, struct bdi_work
*work
)
139 * The caller has retrieved the work arguments from this work,
140 * drop our reference. If this is the last ref, delete and free it
142 if (atomic_dec_and_test(&work
->pending
)) {
143 struct backing_dev_info
*bdi
= wb
->bdi
;
145 spin_lock(&bdi
->wb_lock
);
146 list_del_rcu(&work
->list
);
147 spin_unlock(&bdi
->wb_lock
);
149 wb_work_complete(work
);
153 static void bdi_queue_work(struct backing_dev_info
*bdi
, struct bdi_work
*work
)
155 work
->seen
= bdi
->wb_mask
;
157 atomic_set(&work
->pending
, bdi
->wb_cnt
);
158 BUG_ON(!bdi
->wb_cnt
);
161 * list_add_tail_rcu() contains the necessary barriers to
162 * make sure the above stores are seen before the item is
163 * noticed on the list
165 spin_lock(&bdi
->wb_lock
);
166 list_add_tail_rcu(&work
->list
, &bdi
->work_list
);
167 spin_unlock(&bdi
->wb_lock
);
170 * If the default thread isn't there, make sure we add it. When
171 * it gets created and wakes up, we'll run this work.
173 if (unlikely(list_empty_careful(&bdi
->wb_list
)))
174 wake_up_process(default_backing_dev_info
.wb
.task
);
176 struct bdi_writeback
*wb
= &bdi
->wb
;
179 wake_up_process(wb
->task
);
184 * Used for on-stack allocated work items. The caller needs to wait until
185 * the wb threads have acked the work before it's safe to continue.
187 static void bdi_wait_on_work_clear(struct bdi_work
*work
)
189 wait_on_bit(&work
->state
, WS_USED_B
, bdi_sched_wait
,
190 TASK_UNINTERRUPTIBLE
);
193 static void bdi_alloc_queue_work(struct backing_dev_info
*bdi
,
194 struct wb_writeback_args
*args
)
196 struct bdi_work
*work
;
199 * This is WB_SYNC_NONE writeback, so if allocation fails just
200 * wakeup the thread for old dirty data writeback
202 work
= kmalloc(sizeof(*work
), GFP_ATOMIC
);
204 bdi_work_init(work
, args
);
205 bdi_queue_work(bdi
, work
);
207 struct bdi_writeback
*wb
= &bdi
->wb
;
210 wake_up_process(wb
->task
);
215 * bdi_sync_writeback - start and wait for writeback
216 * @bdi: the backing device to write from
217 * @sb: write inodes from this super_block
220 * This does WB_SYNC_ALL data integrity writeback and waits for the
221 * IO to complete. Callers must hold the sb s_umount semaphore for
222 * reading, to avoid having the super disappear before we are done.
224 static void bdi_sync_writeback(struct backing_dev_info
*bdi
,
225 struct super_block
*sb
)
227 struct wb_writeback_args args
= {
229 .sync_mode
= WB_SYNC_ALL
,
230 .nr_pages
= LONG_MAX
,
233 struct bdi_work work
;
235 bdi_work_init(&work
, &args
);
236 work
.state
|= WS_ONSTACK
;
238 bdi_queue_work(bdi
, &work
);
239 bdi_wait_on_work_clear(&work
);
243 * bdi_start_writeback - start writeback
244 * @bdi: the backing device to write from
245 * @sb: write inodes from this super_block
246 * @nr_pages: the number of pages to write
249 * This does WB_SYNC_NONE opportunistic writeback. The IO is only
250 * started when this function returns, we make no guarentees on
251 * completion. Caller need not hold sb s_umount semaphore.
254 void bdi_start_writeback(struct backing_dev_info
*bdi
, struct super_block
*sb
,
257 struct wb_writeback_args args
= {
259 .sync_mode
= WB_SYNC_NONE
,
260 .nr_pages
= nr_pages
,
265 * We treat @nr_pages=0 as the special case to do background writeback,
266 * ie. to sync pages until the background dirty threshold is reached.
269 args
.nr_pages
= LONG_MAX
;
270 args
.for_background
= 1;
273 bdi_alloc_queue_work(bdi
, &args
);
277 * Redirty an inode: set its when-it-was dirtied timestamp and move it to the
278 * furthest end of its superblock's dirty-inode list.
280 * Before stamping the inode's ->dirtied_when, we check to see whether it is
281 * already the most-recently-dirtied inode on the b_dirty list. If that is
282 * the case then the inode must have been redirtied while it was being written
283 * out and we don't reset its dirtied_when.
285 static void redirty_tail(struct inode
*inode
)
287 struct bdi_writeback
*wb
= &inode_to_bdi(inode
)->wb
;
289 if (!list_empty(&wb
->b_dirty
)) {
292 tail
= list_entry(wb
->b_dirty
.next
, struct inode
, i_list
);
293 if (time_before(inode
->dirtied_when
, tail
->dirtied_when
))
294 inode
->dirtied_when
= jiffies
;
296 list_move(&inode
->i_list
, &wb
->b_dirty
);
300 * requeue inode for re-scanning after bdi->b_io list is exhausted.
302 static void requeue_io(struct inode
*inode
)
304 struct bdi_writeback
*wb
= &inode_to_bdi(inode
)->wb
;
306 list_move(&inode
->i_list
, &wb
->b_more_io
);
309 static void inode_sync_complete(struct inode
*inode
)
312 * Prevent speculative execution through spin_unlock(&inode_lock);
315 wake_up_bit(&inode
->i_state
, __I_SYNC
);
318 static bool inode_dirtied_after(struct inode
*inode
, unsigned long t
)
320 bool ret
= time_after(inode
->dirtied_when
, t
);
323 * For inodes being constantly redirtied, dirtied_when can get stuck.
324 * It _appears_ to be in the future, but is actually in distant past.
325 * This test is necessary to prevent such wrapped-around relative times
326 * from permanently stopping the whole bdi writeback.
328 ret
= ret
&& time_before_eq(inode
->dirtied_when
, jiffies
);
334 * Move expired dirty inodes from @delaying_queue to @dispatch_queue.
336 static void move_expired_inodes(struct list_head
*delaying_queue
,
337 struct list_head
*dispatch_queue
,
338 unsigned long *older_than_this
)
341 struct list_head
*pos
, *node
;
342 struct super_block
*sb
= NULL
;
346 while (!list_empty(delaying_queue
)) {
347 inode
= list_entry(delaying_queue
->prev
, struct inode
, i_list
);
348 if (older_than_this
&&
349 inode_dirtied_after(inode
, *older_than_this
))
351 if (sb
&& sb
!= inode
->i_sb
)
354 list_move(&inode
->i_list
, &tmp
);
357 /* just one sb in list, splice to dispatch_queue and we're done */
359 list_splice(&tmp
, dispatch_queue
);
363 /* Move inodes from one superblock together */
364 while (!list_empty(&tmp
)) {
365 inode
= list_entry(tmp
.prev
, struct inode
, i_list
);
367 list_for_each_prev_safe(pos
, node
, &tmp
) {
368 inode
= list_entry(pos
, struct inode
, i_list
);
369 if (inode
->i_sb
== sb
)
370 list_move(&inode
->i_list
, dispatch_queue
);
376 * Queue all expired dirty inodes for io, eldest first.
378 static void queue_io(struct bdi_writeback
*wb
, unsigned long *older_than_this
)
380 list_splice_init(&wb
->b_more_io
, wb
->b_io
.prev
);
381 move_expired_inodes(&wb
->b_dirty
, &wb
->b_io
, older_than_this
);
384 static int write_inode(struct inode
*inode
, int sync
)
386 if (inode
->i_sb
->s_op
->write_inode
&& !is_bad_inode(inode
))
387 return inode
->i_sb
->s_op
->write_inode(inode
, sync
);
392 * Wait for writeback on an inode to complete.
394 static void inode_wait_for_writeback(struct inode
*inode
)
396 DEFINE_WAIT_BIT(wq
, &inode
->i_state
, __I_SYNC
);
397 wait_queue_head_t
*wqh
;
399 wqh
= bit_waitqueue(&inode
->i_state
, __I_SYNC
);
401 spin_unlock(&inode_lock
);
402 __wait_on_bit(wqh
, &wq
, inode_wait
, TASK_UNINTERRUPTIBLE
);
403 spin_lock(&inode_lock
);
404 } while (inode
->i_state
& I_SYNC
);
408 * Write out an inode's dirty pages. Called under inode_lock. Either the
409 * caller has ref on the inode (either via __iget or via syscall against an fd)
410 * or the inode has I_WILL_FREE set (via generic_forget_inode)
412 * If `wait' is set, wait on the writeout.
414 * The whole writeout design is quite complex and fragile. We want to avoid
415 * starvation of particular inodes when others are being redirtied, prevent
418 * Called under inode_lock.
421 writeback_single_inode(struct inode
*inode
, struct writeback_control
*wbc
)
423 struct address_space
*mapping
= inode
->i_mapping
;
424 int wait
= wbc
->sync_mode
== WB_SYNC_ALL
;
428 if (!atomic_read(&inode
->i_count
))
429 WARN_ON(!(inode
->i_state
& (I_WILL_FREE
|I_FREEING
)));
431 WARN_ON(inode
->i_state
& I_WILL_FREE
);
433 if (inode
->i_state
& I_SYNC
) {
435 * If this inode is locked for writeback and we are not doing
436 * writeback-for-data-integrity, move it to b_more_io so that
437 * writeback can proceed with the other inodes on s_io.
439 * We'll have another go at writing back this inode when we
440 * completed a full scan of b_io.
448 * It's a data-integrity sync. We must wait.
450 inode_wait_for_writeback(inode
);
453 BUG_ON(inode
->i_state
& I_SYNC
);
455 /* Set I_SYNC, reset I_DIRTY */
456 dirty
= inode
->i_state
& I_DIRTY
;
457 inode
->i_state
|= I_SYNC
;
458 inode
->i_state
&= ~I_DIRTY
;
460 spin_unlock(&inode_lock
);
462 ret
= do_writepages(mapping
, wbc
);
464 /* Don't write the inode if only I_DIRTY_PAGES was set */
465 if (dirty
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) {
466 int err
= write_inode(inode
, wait
);
472 int err
= filemap_fdatawait(mapping
);
477 spin_lock(&inode_lock
);
478 inode
->i_state
&= ~I_SYNC
;
479 if (!(inode
->i_state
& (I_FREEING
| I_CLEAR
))) {
480 if ((inode
->i_state
& I_DIRTY_PAGES
) && wbc
->for_kupdate
) {
482 * More pages get dirtied by a fast dirtier.
485 } else if (inode
->i_state
& I_DIRTY
) {
487 * At least XFS will redirty the inode during the
488 * writeback (delalloc) and on io completion (isize).
491 } else if (mapping_tagged(mapping
, PAGECACHE_TAG_DIRTY
)) {
493 * We didn't write back all the pages. nfs_writepages()
494 * sometimes bales out without doing anything. Redirty
495 * the inode; Move it from b_io onto b_more_io/b_dirty.
498 * akpm: if the caller was the kupdate function we put
499 * this inode at the head of b_dirty so it gets first
500 * consideration. Otherwise, move it to the tail, for
501 * the reasons described there. I'm not really sure
502 * how much sense this makes. Presumably I had a good
503 * reasons for doing it this way, and I'd rather not
504 * muck with it at present.
506 if (wbc
->for_kupdate
) {
508 * For the kupdate function we move the inode
509 * to b_more_io so it will get more writeout as
510 * soon as the queue becomes uncongested.
512 inode
->i_state
|= I_DIRTY_PAGES
;
514 if (wbc
->nr_to_write
<= 0) {
516 * slice used up: queue for next turn
521 * somehow blocked: retry later
527 * Otherwise fully redirty the inode so that
528 * other inodes on this superblock will get some
529 * writeout. Otherwise heavy writing to one
530 * file would indefinitely suspend writeout of
531 * all the other files.
533 inode
->i_state
|= I_DIRTY_PAGES
;
536 } else if (atomic_read(&inode
->i_count
)) {
538 * The inode is clean, inuse
540 list_move(&inode
->i_list
, &inode_in_use
);
543 * The inode is clean, unused
545 list_move(&inode
->i_list
, &inode_unused
);
548 inode_sync_complete(inode
);
552 static void unpin_sb_for_writeback(struct super_block
**psb
)
554 struct super_block
*sb
= *psb
;
557 up_read(&sb
->s_umount
);
564 * For WB_SYNC_NONE writeback, the caller does not have the sb pinned
565 * before calling writeback. So make sure that we do pin it, so it doesn't
566 * go away while we are writing inodes from it.
568 * Returns 0 if the super was successfully pinned (or pinning wasn't needed),
571 static int pin_sb_for_writeback(struct writeback_control
*wbc
,
572 struct inode
*inode
, struct super_block
**psb
)
574 struct super_block
*sb
= inode
->i_sb
;
577 * If this sb is already pinned, nothing more to do. If not and
578 * *psb is non-NULL, unpin the old one first
583 unpin_sb_for_writeback(psb
);
586 * Caller must already hold the ref for this
588 if (wbc
->sync_mode
== WB_SYNC_ALL
) {
589 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
595 if (down_read_trylock(&sb
->s_umount
)) {
597 spin_unlock(&sb_lock
);
601 * umounted, drop rwsem again and fall through to failure
603 up_read(&sb
->s_umount
);
607 spin_unlock(&sb_lock
);
614 static void writeback_inodes_wb(struct bdi_writeback
*wb
,
615 struct writeback_control
*wbc
)
617 struct super_block
*sb
= wbc
->sb
, *pin_sb
= NULL
;
618 const unsigned long start
= jiffies
; /* livelock avoidance */
620 spin_lock(&inode_lock
);
622 if (!wbc
->for_kupdate
|| list_empty(&wb
->b_io
))
623 queue_io(wb
, wbc
->older_than_this
);
625 while (!list_empty(&wb
->b_io
)) {
626 struct inode
*inode
= list_entry(wb
->b_io
.prev
,
627 struct inode
, i_list
);
631 * super block given and doesn't match, skip this inode
633 if (sb
&& sb
!= inode
->i_sb
) {
638 if (inode
->i_state
& (I_NEW
| I_WILL_FREE
)) {
644 * Was this inode dirtied after sync_sb_inodes was called?
645 * This keeps sync from extra jobs and livelock.
647 if (inode_dirtied_after(inode
, start
))
650 if (pin_sb_for_writeback(wbc
, inode
, &pin_sb
)) {
655 BUG_ON(inode
->i_state
& (I_FREEING
| I_CLEAR
));
657 pages_skipped
= wbc
->pages_skipped
;
658 writeback_single_inode(inode
, wbc
);
659 if (wbc
->pages_skipped
!= pages_skipped
) {
661 * writeback is not making progress due to locked
662 * buffers. Skip this inode for now.
666 spin_unlock(&inode_lock
);
669 spin_lock(&inode_lock
);
670 if (wbc
->nr_to_write
<= 0) {
674 if (!list_empty(&wb
->b_more_io
))
678 unpin_sb_for_writeback(&pin_sb
);
680 spin_unlock(&inode_lock
);
681 /* Leave any unwritten inodes on b_io */
684 void writeback_inodes_wbc(struct writeback_control
*wbc
)
686 struct backing_dev_info
*bdi
= wbc
->bdi
;
688 writeback_inodes_wb(&bdi
->wb
, wbc
);
692 * The maximum number of pages to writeout in a single bdi flush/kupdate
693 * operation. We do this so we don't hold I_SYNC against an inode for
694 * enormous amounts of time, which would block a userspace task which has
695 * been forced to throttle against that inode. Also, the code reevaluates
696 * the dirty each time it has written this many pages.
698 #define MAX_WRITEBACK_PAGES 1024
700 static inline bool over_bground_thresh(void)
702 unsigned long background_thresh
, dirty_thresh
;
704 get_dirty_limits(&background_thresh
, &dirty_thresh
, NULL
, NULL
);
706 return (global_page_state(NR_FILE_DIRTY
) +
707 global_page_state(NR_UNSTABLE_NFS
) >= background_thresh
);
711 * Explicit flushing or periodic writeback of "old" data.
713 * Define "old": the first time one of an inode's pages is dirtied, we mark the
714 * dirtying-time in the inode's address_space. So this periodic writeback code
715 * just walks the superblock inode list, writing back any inodes which are
716 * older than a specific point in time.
718 * Try to run once per dirty_writeback_interval. But if a writeback event
719 * takes longer than a dirty_writeback_interval interval, then leave a
722 * older_than_this takes precedence over nr_to_write. So we'll only write back
723 * all dirty pages if they are all attached to "old" mappings.
725 static long wb_writeback(struct bdi_writeback
*wb
,
726 struct wb_writeback_args
*args
)
728 struct writeback_control wbc
= {
731 .sync_mode
= args
->sync_mode
,
732 .older_than_this
= NULL
,
733 .for_kupdate
= args
->for_kupdate
,
734 .for_background
= args
->for_background
,
735 .range_cyclic
= args
->range_cyclic
,
737 unsigned long oldest_jif
;
741 if (wbc
.for_kupdate
) {
742 wbc
.older_than_this
= &oldest_jif
;
743 oldest_jif
= jiffies
-
744 msecs_to_jiffies(dirty_expire_interval
* 10);
746 if (!wbc
.range_cyclic
) {
748 wbc
.range_end
= LLONG_MAX
;
753 * Stop writeback when nr_pages has been consumed
755 if (args
->nr_pages
<= 0)
759 * For background writeout, stop when we are below the
760 * background dirty threshold
762 if (args
->for_background
&& !over_bground_thresh())
766 wbc
.nr_to_write
= MAX_WRITEBACK_PAGES
;
767 wbc
.pages_skipped
= 0;
768 writeback_inodes_wb(wb
, &wbc
);
769 args
->nr_pages
-= MAX_WRITEBACK_PAGES
- wbc
.nr_to_write
;
770 wrote
+= MAX_WRITEBACK_PAGES
- wbc
.nr_to_write
;
773 * If we consumed everything, see if we have more
775 if (wbc
.nr_to_write
<= 0)
778 * Didn't write everything and we don't have more IO, bail
783 * Did we write something? Try for more
785 if (wbc
.nr_to_write
< MAX_WRITEBACK_PAGES
)
788 * Nothing written. Wait for some inode to
789 * become available for writeback. Otherwise
790 * we'll just busyloop.
792 spin_lock(&inode_lock
);
793 if (!list_empty(&wb
->b_more_io
)) {
794 inode
= list_entry(wb
->b_more_io
.prev
,
795 struct inode
, i_list
);
796 inode_wait_for_writeback(inode
);
798 spin_unlock(&inode_lock
);
805 * Return the next bdi_work struct that hasn't been processed by this
806 * wb thread yet. ->seen is initially set for each thread that exists
807 * for this device, when a thread first notices a piece of work it
808 * clears its bit. Depending on writeback type, the thread will notify
809 * completion on either receiving the work (WB_SYNC_NONE) or after
810 * it is done (WB_SYNC_ALL).
812 static struct bdi_work
*get_next_work_item(struct backing_dev_info
*bdi
,
813 struct bdi_writeback
*wb
)
815 struct bdi_work
*work
, *ret
= NULL
;
819 list_for_each_entry_rcu(work
, &bdi
->work_list
, list
) {
820 if (!test_bit(wb
->nr
, &work
->seen
))
822 clear_bit(wb
->nr
, &work
->seen
);
832 static long wb_check_old_data_flush(struct bdi_writeback
*wb
)
834 unsigned long expired
;
837 expired
= wb
->last_old_flush
+
838 msecs_to_jiffies(dirty_writeback_interval
* 10);
839 if (time_before(jiffies
, expired
))
842 wb
->last_old_flush
= jiffies
;
843 nr_pages
= global_page_state(NR_FILE_DIRTY
) +
844 global_page_state(NR_UNSTABLE_NFS
) +
845 (inodes_stat
.nr_inodes
- inodes_stat
.nr_unused
);
848 struct wb_writeback_args args
= {
849 .nr_pages
= nr_pages
,
850 .sync_mode
= WB_SYNC_NONE
,
855 return wb_writeback(wb
, &args
);
862 * Retrieve work items and do the writeback they describe
864 long wb_do_writeback(struct bdi_writeback
*wb
, int force_wait
)
866 struct backing_dev_info
*bdi
= wb
->bdi
;
867 struct bdi_work
*work
;
870 while ((work
= get_next_work_item(bdi
, wb
)) != NULL
) {
871 struct wb_writeback_args args
= work
->args
;
874 * Override sync mode, in case we must wait for completion
877 work
->args
.sync_mode
= args
.sync_mode
= WB_SYNC_ALL
;
880 * If this isn't a data integrity operation, just notify
881 * that we have seen this work and we are now starting it.
883 if (args
.sync_mode
== WB_SYNC_NONE
)
884 wb_clear_pending(wb
, work
);
886 wrote
+= wb_writeback(wb
, &args
);
889 * This is a data integrity writeback, so only do the
890 * notification when we have completed the work.
892 if (args
.sync_mode
== WB_SYNC_ALL
)
893 wb_clear_pending(wb
, work
);
897 * Check for periodic writeback, kupdated() style
899 wrote
+= wb_check_old_data_flush(wb
);
905 * Handle writeback of dirty data for the device backed by this bdi. Also
906 * wakes up periodically and does kupdated style flushing.
908 int bdi_writeback_task(struct bdi_writeback
*wb
)
910 unsigned long last_active
= jiffies
;
911 unsigned long wait_jiffies
= -1UL;
914 while (!kthread_should_stop()) {
915 pages_written
= wb_do_writeback(wb
, 0);
918 last_active
= jiffies
;
919 else if (wait_jiffies
!= -1UL) {
920 unsigned long max_idle
;
923 * Longest period of inactivity that we tolerate. If we
924 * see dirty data again later, the task will get
925 * recreated automatically.
927 max_idle
= max(5UL * 60 * HZ
, wait_jiffies
);
928 if (time_after(jiffies
, max_idle
+ last_active
))
932 wait_jiffies
= msecs_to_jiffies(dirty_writeback_interval
* 10);
933 schedule_timeout_interruptible(wait_jiffies
);
941 * Schedule writeback for all backing devices. This does WB_SYNC_NONE
942 * writeback, for integrity writeback see bdi_sync_writeback().
944 static void bdi_writeback_all(struct super_block
*sb
, long nr_pages
)
946 struct wb_writeback_args args
= {
948 .nr_pages
= nr_pages
,
949 .sync_mode
= WB_SYNC_NONE
,
951 struct backing_dev_info
*bdi
;
955 list_for_each_entry_rcu(bdi
, &bdi_list
, bdi_list
) {
956 if (!bdi_has_dirty_io(bdi
))
959 bdi_alloc_queue_work(bdi
, &args
);
966 * Start writeback of `nr_pages' pages. If `nr_pages' is zero, write back
969 void wakeup_flusher_threads(long nr_pages
)
972 nr_pages
= global_page_state(NR_FILE_DIRTY
) +
973 global_page_state(NR_UNSTABLE_NFS
);
974 bdi_writeback_all(NULL
, nr_pages
);
977 static noinline
void block_dump___mark_inode_dirty(struct inode
*inode
)
979 if (inode
->i_ino
|| strcmp(inode
->i_sb
->s_id
, "bdev")) {
980 struct dentry
*dentry
;
981 const char *name
= "?";
983 dentry
= d_find_alias(inode
);
985 spin_lock(&dentry
->d_lock
);
986 name
= (const char *) dentry
->d_name
.name
;
989 "%s(%d): dirtied inode %lu (%s) on %s\n",
990 current
->comm
, task_pid_nr(current
), inode
->i_ino
,
991 name
, inode
->i_sb
->s_id
);
993 spin_unlock(&dentry
->d_lock
);
1000 * __mark_inode_dirty - internal function
1001 * @inode: inode to mark
1002 * @flags: what kind of dirty (i.e. I_DIRTY_SYNC)
1003 * Mark an inode as dirty. Callers should use mark_inode_dirty or
1004 * mark_inode_dirty_sync.
1006 * Put the inode on the super block's dirty list.
1008 * CAREFUL! We mark it dirty unconditionally, but move it onto the
1009 * dirty list only if it is hashed or if it refers to a blockdev.
1010 * If it was not hashed, it will never be added to the dirty list
1011 * even if it is later hashed, as it will have been marked dirty already.
1013 * In short, make sure you hash any inodes _before_ you start marking
1016 * This function *must* be atomic for the I_DIRTY_PAGES case -
1017 * set_page_dirty() is called under spinlock in several places.
1019 * Note that for blockdevs, inode->dirtied_when represents the dirtying time of
1020 * the block-special inode (/dev/hda1) itself. And the ->dirtied_when field of
1021 * the kernel-internal blockdev inode represents the dirtying time of the
1022 * blockdev's pages. This is why for I_DIRTY_PAGES we always use
1023 * page->mapping->host, so the page-dirtying time is recorded in the internal
1026 void __mark_inode_dirty(struct inode
*inode
, int flags
)
1028 struct super_block
*sb
= inode
->i_sb
;
1031 * Don't do this for I_DIRTY_PAGES - that doesn't actually
1032 * dirty the inode itself
1034 if (flags
& (I_DIRTY_SYNC
| I_DIRTY_DATASYNC
)) {
1035 if (sb
->s_op
->dirty_inode
)
1036 sb
->s_op
->dirty_inode(inode
);
1040 * make sure that changes are seen by all cpus before we test i_state
1045 /* avoid the locking if we can */
1046 if ((inode
->i_state
& flags
) == flags
)
1049 if (unlikely(block_dump
))
1050 block_dump___mark_inode_dirty(inode
);
1052 spin_lock(&inode_lock
);
1053 if ((inode
->i_state
& flags
) != flags
) {
1054 const int was_dirty
= inode
->i_state
& I_DIRTY
;
1056 inode
->i_state
|= flags
;
1059 * If the inode is being synced, just update its dirty state.
1060 * The unlocker will place the inode on the appropriate
1061 * superblock list, based upon its state.
1063 if (inode
->i_state
& I_SYNC
)
1067 * Only add valid (hashed) inodes to the superblock's
1068 * dirty list. Add blockdev inodes as well.
1070 if (!S_ISBLK(inode
->i_mode
)) {
1071 if (hlist_unhashed(&inode
->i_hash
))
1074 if (inode
->i_state
& (I_FREEING
|I_CLEAR
))
1078 * If the inode was already on b_dirty/b_io/b_more_io, don't
1079 * reposition it (that would break b_dirty time-ordering).
1082 struct bdi_writeback
*wb
= &inode_to_bdi(inode
)->wb
;
1083 struct backing_dev_info
*bdi
= wb
->bdi
;
1085 if (bdi_cap_writeback_dirty(bdi
) &&
1086 !test_bit(BDI_registered
, &bdi
->state
)) {
1088 printk(KERN_ERR
"bdi-%s not registered\n",
1092 inode
->dirtied_when
= jiffies
;
1093 list_move(&inode
->i_list
, &wb
->b_dirty
);
1097 spin_unlock(&inode_lock
);
1099 EXPORT_SYMBOL(__mark_inode_dirty
);
1102 * Write out a superblock's list of dirty inodes. A wait will be performed
1103 * upon no inodes, all inodes or the final one, depending upon sync_mode.
1105 * If older_than_this is non-NULL, then only write out inodes which
1106 * had their first dirtying at a time earlier than *older_than_this.
1108 * If `bdi' is non-zero then we're being asked to writeback a specific queue.
1109 * This function assumes that the blockdev superblock's inodes are backed by
1110 * a variety of queues, so all inodes are searched. For other superblocks,
1111 * assume that all inodes are backed by the same queue.
1113 * The inodes to be written are parked on bdi->b_io. They are moved back onto
1114 * bdi->b_dirty as they are selected for writing. This way, none can be missed
1115 * on the writer throttling path, and we get decent balancing between many
1116 * throttled threads: we don't want them all piling up on inode_sync_wait.
1118 static void wait_sb_inodes(struct super_block
*sb
)
1120 struct inode
*inode
, *old_inode
= NULL
;
1123 * We need to be protected against the filesystem going from
1124 * r/o to r/w or vice versa.
1126 WARN_ON(!rwsem_is_locked(&sb
->s_umount
));
1128 spin_lock(&inode_lock
);
1131 * Data integrity sync. Must wait for all pages under writeback,
1132 * because there may have been pages dirtied before our sync
1133 * call, but which had writeout started before we write it out.
1134 * In which case, the inode may not be on the dirty list, but
1135 * we still have to wait for that writeout.
1137 list_for_each_entry(inode
, &sb
->s_inodes
, i_sb_list
) {
1138 struct address_space
*mapping
;
1140 if (inode
->i_state
& (I_FREEING
|I_CLEAR
|I_WILL_FREE
|I_NEW
))
1142 mapping
= inode
->i_mapping
;
1143 if (mapping
->nrpages
== 0)
1146 spin_unlock(&inode_lock
);
1148 * We hold a reference to 'inode' so it couldn't have
1149 * been removed from s_inodes list while we dropped the
1150 * inode_lock. We cannot iput the inode now as we can
1151 * be holding the last reference and we cannot iput it
1152 * under inode_lock. So we keep the reference and iput
1158 filemap_fdatawait(mapping
);
1162 spin_lock(&inode_lock
);
1164 spin_unlock(&inode_lock
);
1169 * writeback_inodes_sb - writeback dirty inodes from given super_block
1170 * @sb: the superblock
1172 * Start writeback on some inodes on this super_block. No guarantees are made
1173 * on how many (if any) will be written, and this function does not wait
1174 * for IO completion of submitted IO. The number of pages submitted is
1177 void writeback_inodes_sb(struct super_block
*sb
)
1179 unsigned long nr_dirty
= global_page_state(NR_FILE_DIRTY
);
1180 unsigned long nr_unstable
= global_page_state(NR_UNSTABLE_NFS
);
1183 nr_to_write
= nr_dirty
+ nr_unstable
+
1184 (inodes_stat
.nr_inodes
- inodes_stat
.nr_unused
);
1186 bdi_start_writeback(sb
->s_bdi
, sb
, nr_to_write
);
1188 EXPORT_SYMBOL(writeback_inodes_sb
);
1191 * writeback_inodes_sb_if_idle - start writeback if none underway
1192 * @sb: the superblock
1194 * Invoke writeback_inodes_sb if no writeback is currently underway.
1195 * Returns 1 if writeback was started, 0 if not.
1197 int writeback_inodes_sb_if_idle(struct super_block
*sb
)
1199 if (!writeback_in_progress(sb
->s_bdi
)) {
1200 writeback_inodes_sb(sb
);
1205 EXPORT_SYMBOL(writeback_inodes_sb_if_idle
);
1208 * sync_inodes_sb - sync sb inode pages
1209 * @sb: the superblock
1211 * This function writes and waits on any dirty inode belonging to this
1212 * super_block. The number of pages synced is returned.
1214 void sync_inodes_sb(struct super_block
*sb
)
1216 bdi_sync_writeback(sb
->s_bdi
, sb
);
1219 EXPORT_SYMBOL(sync_inodes_sb
);
1222 * write_inode_now - write an inode to disk
1223 * @inode: inode to write to disk
1224 * @sync: whether the write should be synchronous or not
1226 * This function commits an inode to disk immediately if it is dirty. This is
1227 * primarily needed by knfsd.
1229 * The caller must either have a ref on the inode or must have set I_WILL_FREE.
1231 int write_inode_now(struct inode
*inode
, int sync
)
1234 struct writeback_control wbc
= {
1235 .nr_to_write
= LONG_MAX
,
1236 .sync_mode
= sync
? WB_SYNC_ALL
: WB_SYNC_NONE
,
1238 .range_end
= LLONG_MAX
,
1241 if (!mapping_cap_writeback_dirty(inode
->i_mapping
))
1242 wbc
.nr_to_write
= 0;
1245 spin_lock(&inode_lock
);
1246 ret
= writeback_single_inode(inode
, &wbc
);
1247 spin_unlock(&inode_lock
);
1249 inode_sync_wait(inode
);
1252 EXPORT_SYMBOL(write_inode_now
);
1255 * sync_inode - write an inode and its pages to disk.
1256 * @inode: the inode to sync
1257 * @wbc: controls the writeback mode
1259 * sync_inode() will write an inode and its pages to disk. It will also
1260 * correctly update the inode on its superblock's dirty inode lists and will
1261 * update inode->i_state.
1263 * The caller must have a ref on the inode.
1265 int sync_inode(struct inode
*inode
, struct writeback_control
*wbc
)
1269 spin_lock(&inode_lock
);
1270 ret
= writeback_single_inode(inode
, wbc
);
1271 spin_unlock(&inode_lock
);
1274 EXPORT_SYMBOL(sync_inode
);