2 * CFQ, or complete fairness queueing, disk scheduler.
4 * Based on ideas from a previously unfinished io
5 * scheduler (round robin per-process disk scheduling) and Andrea Arcangeli.
7 * Copyright (C) 2003 Jens Axboe <axboe@kernel.dk>
9 #include <linux/module.h>
10 #include <linux/blkdev.h>
11 #include <linux/elevator.h>
12 #include <linux/rbtree.h>
13 #include <linux/ioprio.h>
14 #include <linux/blktrace_api.h>
19 /* max queue in one round of service */
20 static const int cfq_quantum
= 4;
21 static const int cfq_fifo_expire
[2] = { HZ
/ 4, HZ
/ 8 };
22 /* maximum backwards seek, in KiB */
23 static const int cfq_back_max
= 16 * 1024;
24 /* penalty of a backwards seek */
25 static const int cfq_back_penalty
= 2;
26 static const int cfq_slice_sync
= HZ
/ 10;
27 static int cfq_slice_async
= HZ
/ 25;
28 static const int cfq_slice_async_rq
= 2;
29 static int cfq_slice_idle
= HZ
/ 125;
32 * offset from end of service tree
34 #define CFQ_IDLE_DELAY (HZ / 5)
37 * below this threshold, we consider thinktime immediate
39 #define CFQ_MIN_TT (2)
41 #define CFQ_SLICE_SCALE (5)
42 #define CFQ_HW_QUEUE_MIN (5)
45 ((struct cfq_io_context *) (rq)->elevator_private)
46 #define RQ_CFQQ(rq) (struct cfq_queue *) ((rq)->elevator_private2)
48 static struct kmem_cache
*cfq_pool
;
49 static struct kmem_cache
*cfq_ioc_pool
;
51 static DEFINE_PER_CPU(unsigned long, ioc_count
);
52 static struct completion
*ioc_gone
;
53 static DEFINE_SPINLOCK(ioc_gone_lock
);
55 #define CFQ_PRIO_LISTS IOPRIO_BE_NR
56 #define cfq_class_idle(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_IDLE)
57 #define cfq_class_rt(cfqq) ((cfqq)->ioprio_class == IOPRIO_CLASS_RT)
59 #define sample_valid(samples) ((samples) > 80)
62 * Most of our rbtree usage is for sorting with min extraction, so
63 * if we cache the leftmost node we don't have to walk down the tree
64 * to find it. Idea borrowed from Ingo Molnars CFS scheduler. We should
65 * move this into the elevator for the rq sorting as well.
71 #define CFQ_RB_ROOT (struct cfq_rb_root) { RB_ROOT, NULL, }
74 * Per process-grouping structure
79 /* various state flags, see below */
82 struct cfq_data
*cfqd
;
83 /* service_tree member */
84 struct rb_node rb_node
;
85 /* service_tree key */
87 /* prio tree member */
88 struct rb_node p_node
;
89 /* prio tree root we belong to, if any */
90 struct rb_root
*p_root
;
91 /* sorted list of pending requests */
92 struct rb_root sort_list
;
93 /* if fifo isn't expired, next request to serve */
94 struct request
*next_rq
;
95 /* requests queued in sort_list */
97 /* currently allocated requests */
99 /* fifo list of requests in sort_list */
100 struct list_head fifo
;
102 unsigned long slice_end
;
104 unsigned int slice_dispatch
;
106 /* pending metadata requests */
108 /* number of requests that are on the dispatch list or inside driver */
111 /* io prio of this group */
112 unsigned short ioprio
, org_ioprio
;
113 unsigned short ioprio_class
, org_ioprio_class
;
119 * Per block device queue structure
122 struct request_queue
*queue
;
125 * rr list of queues with requests and the count of them
127 struct cfq_rb_root service_tree
;
130 * Each priority tree is sorted by next_request position. These
131 * trees are used when determining if two or more queues are
132 * interleaving requests (see cfq_close_cooperator).
134 struct rb_root prio_trees
[CFQ_PRIO_LISTS
];
136 unsigned int busy_queues
;
138 * Used to track any pending rt requests so we can pre-empt current
139 * non-RT cfqq in service when this value is non-zero.
141 unsigned int busy_rt_queues
;
147 * queue-depth detection
152 int rq_in_driver_peak
;
155 * idle window management
157 struct timer_list idle_slice_timer
;
158 struct work_struct unplug_work
;
160 struct cfq_queue
*active_queue
;
161 struct cfq_io_context
*active_cic
;
164 * async queue for each priority case
166 struct cfq_queue
*async_cfqq
[2][IOPRIO_BE_NR
];
167 struct cfq_queue
*async_idle_cfqq
;
169 sector_t last_position
;
172 * tunables, see top of file
174 unsigned int cfq_quantum
;
175 unsigned int cfq_fifo_expire
[2];
176 unsigned int cfq_back_penalty
;
177 unsigned int cfq_back_max
;
178 unsigned int cfq_slice
[2];
179 unsigned int cfq_slice_async_rq
;
180 unsigned int cfq_slice_idle
;
182 struct list_head cic_list
;
185 * Fallback dummy cfqq for extreme OOM conditions
187 struct cfq_queue oom_cfqq
;
190 enum cfqq_state_flags
{
191 CFQ_CFQQ_FLAG_on_rr
= 0, /* on round-robin busy list */
192 CFQ_CFQQ_FLAG_wait_request
, /* waiting for a request */
193 CFQ_CFQQ_FLAG_must_dispatch
, /* must be allowed a dispatch */
194 CFQ_CFQQ_FLAG_must_alloc
, /* must be allowed rq alloc */
195 CFQ_CFQQ_FLAG_must_alloc_slice
, /* per-slice must_alloc flag */
196 CFQ_CFQQ_FLAG_fifo_expire
, /* FIFO checked in this slice */
197 CFQ_CFQQ_FLAG_idle_window
, /* slice idling enabled */
198 CFQ_CFQQ_FLAG_prio_changed
, /* task priority has changed */
199 CFQ_CFQQ_FLAG_slice_new
, /* no requests dispatched in slice */
200 CFQ_CFQQ_FLAG_sync
, /* synchronous queue */
201 CFQ_CFQQ_FLAG_coop
, /* has done a coop jump of the queue */
204 #define CFQ_CFQQ_FNS(name) \
205 static inline void cfq_mark_cfqq_##name(struct cfq_queue *cfqq) \
207 (cfqq)->flags |= (1 << CFQ_CFQQ_FLAG_##name); \
209 static inline void cfq_clear_cfqq_##name(struct cfq_queue *cfqq) \
211 (cfqq)->flags &= ~(1 << CFQ_CFQQ_FLAG_##name); \
213 static inline int cfq_cfqq_##name(const struct cfq_queue *cfqq) \
215 return ((cfqq)->flags & (1 << CFQ_CFQQ_FLAG_##name)) != 0; \
219 CFQ_CFQQ_FNS(wait_request
);
220 CFQ_CFQQ_FNS(must_dispatch
);
221 CFQ_CFQQ_FNS(must_alloc
);
222 CFQ_CFQQ_FNS(must_alloc_slice
);
223 CFQ_CFQQ_FNS(fifo_expire
);
224 CFQ_CFQQ_FNS(idle_window
);
225 CFQ_CFQQ_FNS(prio_changed
);
226 CFQ_CFQQ_FNS(slice_new
);
231 #define cfq_log_cfqq(cfqd, cfqq, fmt, args...) \
232 blk_add_trace_msg((cfqd)->queue, "cfq%d " fmt, (cfqq)->pid, ##args)
233 #define cfq_log(cfqd, fmt, args...) \
234 blk_add_trace_msg((cfqd)->queue, "cfq " fmt, ##args)
236 static void cfq_dispatch_insert(struct request_queue
*, struct request
*);
237 static struct cfq_queue
*cfq_get_queue(struct cfq_data
*, int,
238 struct io_context
*, gfp_t
);
239 static struct cfq_io_context
*cfq_cic_lookup(struct cfq_data
*,
240 struct io_context
*);
242 static inline struct cfq_queue
*cic_to_cfqq(struct cfq_io_context
*cic
,
245 return cic
->cfqq
[!!is_sync
];
248 static inline void cic_set_cfqq(struct cfq_io_context
*cic
,
249 struct cfq_queue
*cfqq
, int is_sync
)
251 cic
->cfqq
[!!is_sync
] = cfqq
;
255 * We regard a request as SYNC, if it's either a read or has the SYNC bit
256 * set (in which case it could also be direct WRITE).
258 static inline int cfq_bio_sync(struct bio
*bio
)
260 if (bio_data_dir(bio
) == READ
|| bio_sync(bio
))
267 * scheduler run of queue, if there are requests pending and no one in the
268 * driver that will restart queueing
270 static inline void cfq_schedule_dispatch(struct cfq_data
*cfqd
)
272 if (cfqd
->busy_queues
) {
273 cfq_log(cfqd
, "schedule dispatch");
274 kblockd_schedule_work(cfqd
->queue
, &cfqd
->unplug_work
);
278 static int cfq_queue_empty(struct request_queue
*q
)
280 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
282 return !cfqd
->busy_queues
;
286 * Scale schedule slice based on io priority. Use the sync time slice only
287 * if a queue is marked sync and has sync io queued. A sync queue with async
288 * io only, should not get full sync slice length.
290 static inline int cfq_prio_slice(struct cfq_data
*cfqd
, int sync
,
293 const int base_slice
= cfqd
->cfq_slice
[sync
];
295 WARN_ON(prio
>= IOPRIO_BE_NR
);
297 return base_slice
+ (base_slice
/CFQ_SLICE_SCALE
* (4 - prio
));
301 cfq_prio_to_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
303 return cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
);
307 cfq_set_prio_slice(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
309 cfqq
->slice_end
= cfq_prio_to_slice(cfqd
, cfqq
) + jiffies
;
310 cfq_log_cfqq(cfqd
, cfqq
, "set_slice=%lu", cfqq
->slice_end
- jiffies
);
314 * We need to wrap this check in cfq_cfqq_slice_new(), since ->slice_end
315 * isn't valid until the first request from the dispatch is activated
316 * and the slice time set.
318 static inline int cfq_slice_used(struct cfq_queue
*cfqq
)
320 if (cfq_cfqq_slice_new(cfqq
))
322 if (time_before(jiffies
, cfqq
->slice_end
))
329 * Lifted from AS - choose which of rq1 and rq2 that is best served now.
330 * We choose the request that is closest to the head right now. Distance
331 * behind the head is penalized and only allowed to a certain extent.
333 static struct request
*
334 cfq_choose_req(struct cfq_data
*cfqd
, struct request
*rq1
, struct request
*rq2
)
336 sector_t last
, s1
, s2
, d1
= 0, d2
= 0;
337 unsigned long back_max
;
338 #define CFQ_RQ1_WRAP 0x01 /* request 1 wraps */
339 #define CFQ_RQ2_WRAP 0x02 /* request 2 wraps */
340 unsigned wrap
= 0; /* bit mask: requests behind the disk head? */
342 if (rq1
== NULL
|| rq1
== rq2
)
347 if (rq_is_sync(rq1
) && !rq_is_sync(rq2
))
349 else if (rq_is_sync(rq2
) && !rq_is_sync(rq1
))
351 if (rq_is_meta(rq1
) && !rq_is_meta(rq2
))
353 else if (rq_is_meta(rq2
) && !rq_is_meta(rq1
))
356 s1
= blk_rq_pos(rq1
);
357 s2
= blk_rq_pos(rq2
);
359 last
= cfqd
->last_position
;
362 * by definition, 1KiB is 2 sectors
364 back_max
= cfqd
->cfq_back_max
* 2;
367 * Strict one way elevator _except_ in the case where we allow
368 * short backward seeks which are biased as twice the cost of a
369 * similar forward seek.
373 else if (s1
+ back_max
>= last
)
374 d1
= (last
- s1
) * cfqd
->cfq_back_penalty
;
376 wrap
|= CFQ_RQ1_WRAP
;
380 else if (s2
+ back_max
>= last
)
381 d2
= (last
- s2
) * cfqd
->cfq_back_penalty
;
383 wrap
|= CFQ_RQ2_WRAP
;
385 /* Found required data */
388 * By doing switch() on the bit mask "wrap" we avoid having to
389 * check two variables for all permutations: --> faster!
392 case 0: /* common case for CFQ: rq1 and rq2 not wrapped */
408 case (CFQ_RQ1_WRAP
|CFQ_RQ2_WRAP
): /* both rqs wrapped */
411 * Since both rqs are wrapped,
412 * start with the one that's further behind head
413 * (--> only *one* back seek required),
414 * since back seek takes more time than forward.
424 * The below is leftmost cache rbtree addon
426 static struct cfq_queue
*cfq_rb_first(struct cfq_rb_root
*root
)
429 root
->left
= rb_first(&root
->rb
);
432 return rb_entry(root
->left
, struct cfq_queue
, rb_node
);
437 static void rb_erase_init(struct rb_node
*n
, struct rb_root
*root
)
443 static void cfq_rb_erase(struct rb_node
*n
, struct cfq_rb_root
*root
)
447 rb_erase_init(n
, &root
->rb
);
451 * would be nice to take fifo expire time into account as well
453 static struct request
*
454 cfq_find_next_rq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
455 struct request
*last
)
457 struct rb_node
*rbnext
= rb_next(&last
->rb_node
);
458 struct rb_node
*rbprev
= rb_prev(&last
->rb_node
);
459 struct request
*next
= NULL
, *prev
= NULL
;
461 BUG_ON(RB_EMPTY_NODE(&last
->rb_node
));
464 prev
= rb_entry_rq(rbprev
);
467 next
= rb_entry_rq(rbnext
);
469 rbnext
= rb_first(&cfqq
->sort_list
);
470 if (rbnext
&& rbnext
!= &last
->rb_node
)
471 next
= rb_entry_rq(rbnext
);
474 return cfq_choose_req(cfqd
, next
, prev
);
477 static unsigned long cfq_slice_offset(struct cfq_data
*cfqd
,
478 struct cfq_queue
*cfqq
)
481 * just an approximation, should be ok.
483 return (cfqd
->busy_queues
- 1) * (cfq_prio_slice(cfqd
, 1, 0) -
484 cfq_prio_slice(cfqd
, cfq_cfqq_sync(cfqq
), cfqq
->ioprio
));
488 * The cfqd->service_tree holds all pending cfq_queue's that have
489 * requests waiting to be processed. It is sorted in the order that
490 * we will service the queues.
492 static void cfq_service_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
495 struct rb_node
**p
, *parent
;
496 struct cfq_queue
*__cfqq
;
497 unsigned long rb_key
;
500 if (cfq_class_idle(cfqq
)) {
501 rb_key
= CFQ_IDLE_DELAY
;
502 parent
= rb_last(&cfqd
->service_tree
.rb
);
503 if (parent
&& parent
!= &cfqq
->rb_node
) {
504 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
505 rb_key
+= __cfqq
->rb_key
;
508 } else if (!add_front
) {
509 rb_key
= cfq_slice_offset(cfqd
, cfqq
) + jiffies
;
510 rb_key
+= cfqq
->slice_resid
;
511 cfqq
->slice_resid
= 0;
515 if (!RB_EMPTY_NODE(&cfqq
->rb_node
)) {
517 * same position, nothing more to do
519 if (rb_key
== cfqq
->rb_key
)
522 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
527 p
= &cfqd
->service_tree
.rb
.rb_node
;
532 __cfqq
= rb_entry(parent
, struct cfq_queue
, rb_node
);
535 * sort RT queues first, we always want to give
536 * preference to them. IDLE queues goes to the back.
537 * after that, sort on the next service time.
539 if (cfq_class_rt(cfqq
) > cfq_class_rt(__cfqq
))
541 else if (cfq_class_rt(cfqq
) < cfq_class_rt(__cfqq
))
543 else if (cfq_class_idle(cfqq
) < cfq_class_idle(__cfqq
))
545 else if (cfq_class_idle(cfqq
) > cfq_class_idle(__cfqq
))
547 else if (rb_key
< __cfqq
->rb_key
)
552 if (n
== &(*p
)->rb_right
)
559 cfqd
->service_tree
.left
= &cfqq
->rb_node
;
561 cfqq
->rb_key
= rb_key
;
562 rb_link_node(&cfqq
->rb_node
, parent
, p
);
563 rb_insert_color(&cfqq
->rb_node
, &cfqd
->service_tree
.rb
);
566 static struct cfq_queue
*
567 cfq_prio_tree_lookup(struct cfq_data
*cfqd
, struct rb_root
*root
,
568 sector_t sector
, struct rb_node
**ret_parent
,
569 struct rb_node
***rb_link
)
571 struct rb_node
**p
, *parent
;
572 struct cfq_queue
*cfqq
= NULL
;
580 cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
583 * Sort strictly based on sector. Smallest to the left,
584 * largest to the right.
586 if (sector
> blk_rq_pos(cfqq
->next_rq
))
588 else if (sector
< blk_rq_pos(cfqq
->next_rq
))
596 *ret_parent
= parent
;
602 static void cfq_prio_tree_add(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
604 struct rb_node
**p
, *parent
;
605 struct cfq_queue
*__cfqq
;
608 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
612 if (cfq_class_idle(cfqq
))
617 cfqq
->p_root
= &cfqd
->prio_trees
[cfqq
->org_ioprio
];
618 __cfqq
= cfq_prio_tree_lookup(cfqd
, cfqq
->p_root
,
619 blk_rq_pos(cfqq
->next_rq
), &parent
, &p
);
621 rb_link_node(&cfqq
->p_node
, parent
, p
);
622 rb_insert_color(&cfqq
->p_node
, cfqq
->p_root
);
628 * Update cfqq's position in the service tree.
630 static void cfq_resort_rr_list(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
633 * Resorting requires the cfqq to be on the RR list already.
635 if (cfq_cfqq_on_rr(cfqq
)) {
636 cfq_service_tree_add(cfqd
, cfqq
, 0);
637 cfq_prio_tree_add(cfqd
, cfqq
);
642 * add to busy list of queues for service, trying to be fair in ordering
643 * the pending list according to last request service
645 static void cfq_add_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
647 cfq_log_cfqq(cfqd
, cfqq
, "add_to_rr");
648 BUG_ON(cfq_cfqq_on_rr(cfqq
));
649 cfq_mark_cfqq_on_rr(cfqq
);
651 if (cfq_class_rt(cfqq
))
652 cfqd
->busy_rt_queues
++;
654 cfq_resort_rr_list(cfqd
, cfqq
);
658 * Called when the cfqq no longer has requests pending, remove it from
661 static void cfq_del_cfqq_rr(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
663 cfq_log_cfqq(cfqd
, cfqq
, "del_from_rr");
664 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
665 cfq_clear_cfqq_on_rr(cfqq
);
667 if (!RB_EMPTY_NODE(&cfqq
->rb_node
))
668 cfq_rb_erase(&cfqq
->rb_node
, &cfqd
->service_tree
);
670 rb_erase(&cfqq
->p_node
, cfqq
->p_root
);
674 BUG_ON(!cfqd
->busy_queues
);
676 if (cfq_class_rt(cfqq
))
677 cfqd
->busy_rt_queues
--;
681 * rb tree support functions
683 static void cfq_del_rq_rb(struct request
*rq
)
685 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
686 struct cfq_data
*cfqd
= cfqq
->cfqd
;
687 const int sync
= rq_is_sync(rq
);
689 BUG_ON(!cfqq
->queued
[sync
]);
690 cfqq
->queued
[sync
]--;
692 elv_rb_del(&cfqq
->sort_list
, rq
);
694 if (cfq_cfqq_on_rr(cfqq
) && RB_EMPTY_ROOT(&cfqq
->sort_list
))
695 cfq_del_cfqq_rr(cfqd
, cfqq
);
698 static void cfq_add_rq_rb(struct request
*rq
)
700 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
701 struct cfq_data
*cfqd
= cfqq
->cfqd
;
702 struct request
*__alias
, *prev
;
704 cfqq
->queued
[rq_is_sync(rq
)]++;
707 * looks a little odd, but the first insert might return an alias.
708 * if that happens, put the alias on the dispatch list
710 while ((__alias
= elv_rb_add(&cfqq
->sort_list
, rq
)) != NULL
)
711 cfq_dispatch_insert(cfqd
->queue
, __alias
);
713 if (!cfq_cfqq_on_rr(cfqq
))
714 cfq_add_cfqq_rr(cfqd
, cfqq
);
717 * check if this request is a better next-serve candidate
719 prev
= cfqq
->next_rq
;
720 cfqq
->next_rq
= cfq_choose_req(cfqd
, cfqq
->next_rq
, rq
);
723 * adjust priority tree position, if ->next_rq changes
725 if (prev
!= cfqq
->next_rq
)
726 cfq_prio_tree_add(cfqd
, cfqq
);
728 BUG_ON(!cfqq
->next_rq
);
731 static void cfq_reposition_rq_rb(struct cfq_queue
*cfqq
, struct request
*rq
)
733 elv_rb_del(&cfqq
->sort_list
, rq
);
734 cfqq
->queued
[rq_is_sync(rq
)]--;
738 static struct request
*
739 cfq_find_rq_fmerge(struct cfq_data
*cfqd
, struct bio
*bio
)
741 struct task_struct
*tsk
= current
;
742 struct cfq_io_context
*cic
;
743 struct cfq_queue
*cfqq
;
745 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
749 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
751 sector_t sector
= bio
->bi_sector
+ bio_sectors(bio
);
753 return elv_rb_find(&cfqq
->sort_list
, sector
);
759 static void cfq_activate_request(struct request_queue
*q
, struct request
*rq
)
761 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
763 cfqd
->rq_in_driver
++;
764 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "activate rq, drv=%d",
767 cfqd
->last_position
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
770 static void cfq_deactivate_request(struct request_queue
*q
, struct request
*rq
)
772 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
774 WARN_ON(!cfqd
->rq_in_driver
);
775 cfqd
->rq_in_driver
--;
776 cfq_log_cfqq(cfqd
, RQ_CFQQ(rq
), "deactivate rq, drv=%d",
780 static void cfq_remove_request(struct request
*rq
)
782 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
784 if (cfqq
->next_rq
== rq
)
785 cfqq
->next_rq
= cfq_find_next_rq(cfqq
->cfqd
, cfqq
, rq
);
787 list_del_init(&rq
->queuelist
);
790 cfqq
->cfqd
->rq_queued
--;
791 if (rq_is_meta(rq
)) {
792 WARN_ON(!cfqq
->meta_pending
);
793 cfqq
->meta_pending
--;
797 static int cfq_merge(struct request_queue
*q
, struct request
**req
,
800 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
801 struct request
*__rq
;
803 __rq
= cfq_find_rq_fmerge(cfqd
, bio
);
804 if (__rq
&& elv_rq_merge_ok(__rq
, bio
)) {
806 return ELEVATOR_FRONT_MERGE
;
809 return ELEVATOR_NO_MERGE
;
812 static void cfq_merged_request(struct request_queue
*q
, struct request
*req
,
815 if (type
== ELEVATOR_FRONT_MERGE
) {
816 struct cfq_queue
*cfqq
= RQ_CFQQ(req
);
818 cfq_reposition_rq_rb(cfqq
, req
);
823 cfq_merged_requests(struct request_queue
*q
, struct request
*rq
,
824 struct request
*next
)
827 * reposition in fifo if next is older than rq
829 if (!list_empty(&rq
->queuelist
) && !list_empty(&next
->queuelist
) &&
830 time_before(next
->start_time
, rq
->start_time
))
831 list_move(&rq
->queuelist
, &next
->queuelist
);
833 cfq_remove_request(next
);
836 static int cfq_allow_merge(struct request_queue
*q
, struct request
*rq
,
839 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
840 struct cfq_io_context
*cic
;
841 struct cfq_queue
*cfqq
;
844 * Disallow merge of a sync bio into an async request.
846 if (cfq_bio_sync(bio
) && !rq_is_sync(rq
))
850 * Lookup the cfqq that this bio will be queued with. Allow
851 * merge only if rq is queued there.
853 cic
= cfq_cic_lookup(cfqd
, current
->io_context
);
857 cfqq
= cic_to_cfqq(cic
, cfq_bio_sync(bio
));
858 if (cfqq
== RQ_CFQQ(rq
))
864 static void __cfq_set_active_queue(struct cfq_data
*cfqd
,
865 struct cfq_queue
*cfqq
)
868 cfq_log_cfqq(cfqd
, cfqq
, "set_active");
870 cfqq
->slice_dispatch
= 0;
872 cfq_clear_cfqq_wait_request(cfqq
);
873 cfq_clear_cfqq_must_dispatch(cfqq
);
874 cfq_clear_cfqq_must_alloc_slice(cfqq
);
875 cfq_clear_cfqq_fifo_expire(cfqq
);
876 cfq_mark_cfqq_slice_new(cfqq
);
878 del_timer(&cfqd
->idle_slice_timer
);
881 cfqd
->active_queue
= cfqq
;
885 * current cfqq expired its slice (or was too idle), select new one
888 __cfq_slice_expired(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
891 cfq_log_cfqq(cfqd
, cfqq
, "slice expired t=%d", timed_out
);
893 if (cfq_cfqq_wait_request(cfqq
))
894 del_timer(&cfqd
->idle_slice_timer
);
896 cfq_clear_cfqq_wait_request(cfqq
);
899 * store what was left of this slice, if the queue idled/timed out
901 if (timed_out
&& !cfq_cfqq_slice_new(cfqq
)) {
902 cfqq
->slice_resid
= cfqq
->slice_end
- jiffies
;
903 cfq_log_cfqq(cfqd
, cfqq
, "resid=%ld", cfqq
->slice_resid
);
906 cfq_resort_rr_list(cfqd
, cfqq
);
908 if (cfqq
== cfqd
->active_queue
)
909 cfqd
->active_queue
= NULL
;
911 if (cfqd
->active_cic
) {
912 put_io_context(cfqd
->active_cic
->ioc
);
913 cfqd
->active_cic
= NULL
;
917 static inline void cfq_slice_expired(struct cfq_data
*cfqd
, int timed_out
)
919 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
922 __cfq_slice_expired(cfqd
, cfqq
, timed_out
);
926 * Get next queue for service. Unless we have a queue preemption,
927 * we'll simply select the first cfqq in the service tree.
929 static struct cfq_queue
*cfq_get_next_queue(struct cfq_data
*cfqd
)
931 if (RB_EMPTY_ROOT(&cfqd
->service_tree
.rb
))
934 return cfq_rb_first(&cfqd
->service_tree
);
938 * Get and set a new active queue for service.
940 static struct cfq_queue
*cfq_set_active_queue(struct cfq_data
*cfqd
,
941 struct cfq_queue
*cfqq
)
944 cfqq
= cfq_get_next_queue(cfqd
);
946 cfq_clear_cfqq_coop(cfqq
);
949 __cfq_set_active_queue(cfqd
, cfqq
);
953 static inline sector_t
cfq_dist_from_last(struct cfq_data
*cfqd
,
956 if (blk_rq_pos(rq
) >= cfqd
->last_position
)
957 return blk_rq_pos(rq
) - cfqd
->last_position
;
959 return cfqd
->last_position
- blk_rq_pos(rq
);
962 #define CIC_SEEK_THR 8 * 1024
963 #define CIC_SEEKY(cic) ((cic)->seek_mean > CIC_SEEK_THR)
965 static inline int cfq_rq_close(struct cfq_data
*cfqd
, struct request
*rq
)
967 struct cfq_io_context
*cic
= cfqd
->active_cic
;
968 sector_t sdist
= cic
->seek_mean
;
970 if (!sample_valid(cic
->seek_samples
))
971 sdist
= CIC_SEEK_THR
;
973 return cfq_dist_from_last(cfqd
, rq
) <= sdist
;
976 static struct cfq_queue
*cfqq_close(struct cfq_data
*cfqd
,
977 struct cfq_queue
*cur_cfqq
)
979 struct rb_root
*root
= &cfqd
->prio_trees
[cur_cfqq
->org_ioprio
];
980 struct rb_node
*parent
, *node
;
981 struct cfq_queue
*__cfqq
;
982 sector_t sector
= cfqd
->last_position
;
984 if (RB_EMPTY_ROOT(root
))
988 * First, if we find a request starting at the end of the last
989 * request, choose it.
991 __cfqq
= cfq_prio_tree_lookup(cfqd
, root
, sector
, &parent
, NULL
);
996 * If the exact sector wasn't found, the parent of the NULL leaf
997 * will contain the closest sector.
999 __cfqq
= rb_entry(parent
, struct cfq_queue
, p_node
);
1000 if (cfq_rq_close(cfqd
, __cfqq
->next_rq
))
1003 if (blk_rq_pos(__cfqq
->next_rq
) < sector
)
1004 node
= rb_next(&__cfqq
->p_node
);
1006 node
= rb_prev(&__cfqq
->p_node
);
1010 __cfqq
= rb_entry(node
, struct cfq_queue
, p_node
);
1011 if (cfq_rq_close(cfqd
, __cfqq
->next_rq
))
1019 * cur_cfqq - passed in so that we don't decide that the current queue is
1020 * closely cooperating with itself.
1022 * So, basically we're assuming that that cur_cfqq has dispatched at least
1023 * one request, and that cfqd->last_position reflects a position on the disk
1024 * associated with the I/O issued by cur_cfqq. I'm not sure this is a valid
1027 static struct cfq_queue
*cfq_close_cooperator(struct cfq_data
*cfqd
,
1028 struct cfq_queue
*cur_cfqq
,
1031 struct cfq_queue
*cfqq
;
1034 * A valid cfq_io_context is necessary to compare requests against
1035 * the seek_mean of the current cfqq.
1037 if (!cfqd
->active_cic
)
1041 * We should notice if some of the queues are cooperating, eg
1042 * working closely on the same area of the disk. In that case,
1043 * we can group them together and don't waste time idling.
1045 cfqq
= cfqq_close(cfqd
, cur_cfqq
);
1049 if (cfq_cfqq_coop(cfqq
))
1053 cfq_mark_cfqq_coop(cfqq
);
1057 static void cfq_arm_slice_timer(struct cfq_data
*cfqd
)
1059 struct cfq_queue
*cfqq
= cfqd
->active_queue
;
1060 struct cfq_io_context
*cic
;
1064 * SSD device without seek penalty, disable idling. But only do so
1065 * for devices that support queuing, otherwise we still have a problem
1066 * with sync vs async workloads.
1068 if (blk_queue_nonrot(cfqd
->queue
) && cfqd
->hw_tag
)
1071 WARN_ON(!RB_EMPTY_ROOT(&cfqq
->sort_list
));
1072 WARN_ON(cfq_cfqq_slice_new(cfqq
));
1075 * idle is disabled, either manually or by past process history
1077 if (!cfqd
->cfq_slice_idle
|| !cfq_cfqq_idle_window(cfqq
))
1081 * still requests with the driver, don't idle
1083 if (cfqd
->rq_in_driver
)
1087 * task has exited, don't wait
1089 cic
= cfqd
->active_cic
;
1090 if (!cic
|| !atomic_read(&cic
->ioc
->nr_tasks
))
1093 cfq_mark_cfqq_wait_request(cfqq
);
1096 * we don't want to idle for seeks, but we do want to allow
1097 * fair distribution of slice time for a process doing back-to-back
1098 * seeks. so allow a little bit of time for him to submit a new rq
1100 sl
= cfqd
->cfq_slice_idle
;
1101 if (sample_valid(cic
->seek_samples
) && CIC_SEEKY(cic
))
1102 sl
= min(sl
, msecs_to_jiffies(CFQ_MIN_TT
));
1104 mod_timer(&cfqd
->idle_slice_timer
, jiffies
+ sl
);
1105 cfq_log_cfqq(cfqd
, cfqq
, "arm_idle: %lu", sl
);
1109 * Move request from internal lists to the request queue dispatch list.
1111 static void cfq_dispatch_insert(struct request_queue
*q
, struct request
*rq
)
1113 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1114 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
1116 cfq_log_cfqq(cfqd
, cfqq
, "dispatch_insert");
1118 cfq_remove_request(rq
);
1120 elv_dispatch_sort(q
, rq
);
1122 if (cfq_cfqq_sync(cfqq
))
1123 cfqd
->sync_flight
++;
1127 * return expired entry, or NULL to just start from scratch in rbtree
1129 static struct request
*cfq_check_fifo(struct cfq_queue
*cfqq
)
1131 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1135 if (cfq_cfqq_fifo_expire(cfqq
))
1138 cfq_mark_cfqq_fifo_expire(cfqq
);
1140 if (list_empty(&cfqq
->fifo
))
1143 fifo
= cfq_cfqq_sync(cfqq
);
1144 rq
= rq_entry_fifo(cfqq
->fifo
.next
);
1146 if (time_before(jiffies
, rq
->start_time
+ cfqd
->cfq_fifo_expire
[fifo
]))
1149 cfq_log_cfqq(cfqd
, cfqq
, "fifo=%p", rq
);
1154 cfq_prio_to_maxrq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1156 const int base_rq
= cfqd
->cfq_slice_async_rq
;
1158 WARN_ON(cfqq
->ioprio
>= IOPRIO_BE_NR
);
1160 return 2 * (base_rq
+ base_rq
* (CFQ_PRIO_LISTS
- 1 - cfqq
->ioprio
));
1164 * Select a queue for service. If we have a current active queue,
1165 * check whether to continue servicing it, or retrieve and set a new one.
1167 static struct cfq_queue
*cfq_select_queue(struct cfq_data
*cfqd
)
1169 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1171 cfqq
= cfqd
->active_queue
;
1176 * The active queue has run out of time, expire it and select new.
1178 if (cfq_slice_used(cfqq
) && !cfq_cfqq_must_dispatch(cfqq
))
1182 * If we have a RT cfqq waiting, then we pre-empt the current non-rt
1185 if (!cfq_class_rt(cfqq
) && cfqd
->busy_rt_queues
) {
1187 * We simulate this as cfqq timed out so that it gets to bank
1188 * the remaining of its time slice.
1190 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
1191 cfq_slice_expired(cfqd
, 1);
1196 * The active queue has requests and isn't expired, allow it to
1199 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
1203 * If another queue has a request waiting within our mean seek
1204 * distance, let it run. The expire code will check for close
1205 * cooperators and put the close queue at the front of the service
1208 new_cfqq
= cfq_close_cooperator(cfqd
, cfqq
, 0);
1213 * No requests pending. If the active queue still has requests in
1214 * flight or is idling for a new request, allow either of these
1215 * conditions to happen (or time out) before selecting a new queue.
1217 if (timer_pending(&cfqd
->idle_slice_timer
) ||
1218 (cfqq
->dispatched
&& cfq_cfqq_idle_window(cfqq
))) {
1224 cfq_slice_expired(cfqd
, 0);
1226 cfqq
= cfq_set_active_queue(cfqd
, new_cfqq
);
1231 static int __cfq_forced_dispatch_cfqq(struct cfq_queue
*cfqq
)
1235 while (cfqq
->next_rq
) {
1236 cfq_dispatch_insert(cfqq
->cfqd
->queue
, cfqq
->next_rq
);
1240 BUG_ON(!list_empty(&cfqq
->fifo
));
1245 * Drain our current requests. Used for barriers and when switching
1246 * io schedulers on-the-fly.
1248 static int cfq_forced_dispatch(struct cfq_data
*cfqd
)
1250 struct cfq_queue
*cfqq
;
1253 while ((cfqq
= cfq_rb_first(&cfqd
->service_tree
)) != NULL
)
1254 dispatched
+= __cfq_forced_dispatch_cfqq(cfqq
);
1256 cfq_slice_expired(cfqd
, 0);
1258 BUG_ON(cfqd
->busy_queues
);
1260 cfq_log(cfqd
, "forced_dispatch=%d", dispatched
);
1265 * Dispatch a request from cfqq, moving them to the request queue
1268 static void cfq_dispatch_request(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1272 BUG_ON(RB_EMPTY_ROOT(&cfqq
->sort_list
));
1275 * follow expired path, else get first next available
1277 rq
= cfq_check_fifo(cfqq
);
1282 * insert request into driver dispatch list
1284 cfq_dispatch_insert(cfqd
->queue
, rq
);
1286 if (!cfqd
->active_cic
) {
1287 struct cfq_io_context
*cic
= RQ_CIC(rq
);
1289 atomic_long_inc(&cic
->ioc
->refcount
);
1290 cfqd
->active_cic
= cic
;
1295 * Find the cfqq that we need to service and move a request from that to the
1298 static int cfq_dispatch_requests(struct request_queue
*q
, int force
)
1300 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
1301 struct cfq_queue
*cfqq
;
1302 unsigned int max_dispatch
;
1304 if (!cfqd
->busy_queues
)
1307 if (unlikely(force
))
1308 return cfq_forced_dispatch(cfqd
);
1310 cfqq
= cfq_select_queue(cfqd
);
1315 * If this is an async queue and we have sync IO in flight, let it wait
1317 if (cfqd
->sync_flight
&& !cfq_cfqq_sync(cfqq
))
1320 max_dispatch
= cfqd
->cfq_quantum
;
1321 if (cfq_class_idle(cfqq
))
1325 * Does this cfqq already have too much IO in flight?
1327 if (cfqq
->dispatched
>= max_dispatch
) {
1329 * idle queue must always only have a single IO in flight
1331 if (cfq_class_idle(cfqq
))
1335 * We have other queues, don't allow more IO from this one
1337 if (cfqd
->busy_queues
> 1)
1341 * we are the only queue, allow up to 4 times of 'quantum'
1343 if (cfqq
->dispatched
>= 4 * max_dispatch
)
1348 * Dispatch a request from this cfqq
1350 cfq_dispatch_request(cfqd
, cfqq
);
1351 cfqq
->slice_dispatch
++;
1352 cfq_clear_cfqq_must_dispatch(cfqq
);
1355 * expire an async queue immediately if it has used up its slice. idle
1356 * queue always expire after 1 dispatch round.
1358 if (cfqd
->busy_queues
> 1 && ((!cfq_cfqq_sync(cfqq
) &&
1359 cfqq
->slice_dispatch
>= cfq_prio_to_maxrq(cfqd
, cfqq
)) ||
1360 cfq_class_idle(cfqq
))) {
1361 cfqq
->slice_end
= jiffies
+ 1;
1362 cfq_slice_expired(cfqd
, 0);
1365 cfq_log(cfqd
, "dispatched a request");
1370 * task holds one reference to the queue, dropped when task exits. each rq
1371 * in-flight on this queue also holds a reference, dropped when rq is freed.
1373 * queue lock must be held here.
1375 static void cfq_put_queue(struct cfq_queue
*cfqq
)
1377 struct cfq_data
*cfqd
= cfqq
->cfqd
;
1379 BUG_ON(atomic_read(&cfqq
->ref
) <= 0);
1381 if (!atomic_dec_and_test(&cfqq
->ref
))
1384 cfq_log_cfqq(cfqd
, cfqq
, "put_queue");
1385 BUG_ON(rb_first(&cfqq
->sort_list
));
1386 BUG_ON(cfqq
->allocated
[READ
] + cfqq
->allocated
[WRITE
]);
1387 BUG_ON(cfq_cfqq_on_rr(cfqq
));
1389 if (unlikely(cfqd
->active_queue
== cfqq
)) {
1390 __cfq_slice_expired(cfqd
, cfqq
, 0);
1391 cfq_schedule_dispatch(cfqd
);
1394 kmem_cache_free(cfq_pool
, cfqq
);
1398 * Must always be called with the rcu_read_lock() held
1401 __call_for_each_cic(struct io_context
*ioc
,
1402 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1404 struct cfq_io_context
*cic
;
1405 struct hlist_node
*n
;
1407 hlist_for_each_entry_rcu(cic
, n
, &ioc
->cic_list
, cic_list
)
1412 * Call func for each cic attached to this ioc.
1415 call_for_each_cic(struct io_context
*ioc
,
1416 void (*func
)(struct io_context
*, struct cfq_io_context
*))
1419 __call_for_each_cic(ioc
, func
);
1423 static void cfq_cic_free_rcu(struct rcu_head
*head
)
1425 struct cfq_io_context
*cic
;
1427 cic
= container_of(head
, struct cfq_io_context
, rcu_head
);
1429 kmem_cache_free(cfq_ioc_pool
, cic
);
1430 elv_ioc_count_dec(ioc_count
);
1434 * CFQ scheduler is exiting, grab exit lock and check
1435 * the pending io context count. If it hits zero,
1436 * complete ioc_gone and set it back to NULL
1438 spin_lock(&ioc_gone_lock
);
1439 if (ioc_gone
&& !elv_ioc_count_read(ioc_count
)) {
1443 spin_unlock(&ioc_gone_lock
);
1447 static void cfq_cic_free(struct cfq_io_context
*cic
)
1449 call_rcu(&cic
->rcu_head
, cfq_cic_free_rcu
);
1452 static void cic_free_func(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1454 unsigned long flags
;
1456 BUG_ON(!cic
->dead_key
);
1458 spin_lock_irqsave(&ioc
->lock
, flags
);
1459 radix_tree_delete(&ioc
->radix_root
, cic
->dead_key
);
1460 hlist_del_rcu(&cic
->cic_list
);
1461 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1467 * Must be called with rcu_read_lock() held or preemption otherwise disabled.
1468 * Only two callers of this - ->dtor() which is called with the rcu_read_lock(),
1469 * and ->trim() which is called with the task lock held
1471 static void cfq_free_io_context(struct io_context
*ioc
)
1474 * ioc->refcount is zero here, or we are called from elv_unregister(),
1475 * so no more cic's are allowed to be linked into this ioc. So it
1476 * should be ok to iterate over the known list, we will see all cic's
1477 * since no new ones are added.
1479 __call_for_each_cic(ioc
, cic_free_func
);
1482 static void cfq_exit_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
1484 if (unlikely(cfqq
== cfqd
->active_queue
)) {
1485 __cfq_slice_expired(cfqd
, cfqq
, 0);
1486 cfq_schedule_dispatch(cfqd
);
1489 cfq_put_queue(cfqq
);
1492 static void __cfq_exit_single_io_context(struct cfq_data
*cfqd
,
1493 struct cfq_io_context
*cic
)
1495 struct io_context
*ioc
= cic
->ioc
;
1497 list_del_init(&cic
->queue_list
);
1500 * Make sure key == NULL is seen for dead queues
1503 cic
->dead_key
= (unsigned long) cic
->key
;
1506 if (ioc
->ioc_data
== cic
)
1507 rcu_assign_pointer(ioc
->ioc_data
, NULL
);
1509 if (cic
->cfqq
[BLK_RW_ASYNC
]) {
1510 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_ASYNC
]);
1511 cic
->cfqq
[BLK_RW_ASYNC
] = NULL
;
1514 if (cic
->cfqq
[BLK_RW_SYNC
]) {
1515 cfq_exit_cfqq(cfqd
, cic
->cfqq
[BLK_RW_SYNC
]);
1516 cic
->cfqq
[BLK_RW_SYNC
] = NULL
;
1520 static void cfq_exit_single_io_context(struct io_context
*ioc
,
1521 struct cfq_io_context
*cic
)
1523 struct cfq_data
*cfqd
= cic
->key
;
1526 struct request_queue
*q
= cfqd
->queue
;
1527 unsigned long flags
;
1529 spin_lock_irqsave(q
->queue_lock
, flags
);
1532 * Ensure we get a fresh copy of the ->key to prevent
1533 * race between exiting task and queue
1535 smp_read_barrier_depends();
1537 __cfq_exit_single_io_context(cfqd
, cic
);
1539 spin_unlock_irqrestore(q
->queue_lock
, flags
);
1544 * The process that ioc belongs to has exited, we need to clean up
1545 * and put the internal structures we have that belongs to that process.
1547 static void cfq_exit_io_context(struct io_context
*ioc
)
1549 call_for_each_cic(ioc
, cfq_exit_single_io_context
);
1552 static struct cfq_io_context
*
1553 cfq_alloc_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1555 struct cfq_io_context
*cic
;
1557 cic
= kmem_cache_alloc_node(cfq_ioc_pool
, gfp_mask
| __GFP_ZERO
,
1560 cic
->last_end_request
= jiffies
;
1561 INIT_LIST_HEAD(&cic
->queue_list
);
1562 INIT_HLIST_NODE(&cic
->cic_list
);
1563 cic
->dtor
= cfq_free_io_context
;
1564 cic
->exit
= cfq_exit_io_context
;
1565 elv_ioc_count_inc(ioc_count
);
1571 static void cfq_init_prio_data(struct cfq_queue
*cfqq
, struct io_context
*ioc
)
1573 struct task_struct
*tsk
= current
;
1576 if (!cfq_cfqq_prio_changed(cfqq
))
1579 ioprio_class
= IOPRIO_PRIO_CLASS(ioc
->ioprio
);
1580 switch (ioprio_class
) {
1582 printk(KERN_ERR
"cfq: bad prio %x\n", ioprio_class
);
1583 case IOPRIO_CLASS_NONE
:
1585 * no prio set, inherit CPU scheduling settings
1587 cfqq
->ioprio
= task_nice_ioprio(tsk
);
1588 cfqq
->ioprio_class
= task_nice_ioclass(tsk
);
1590 case IOPRIO_CLASS_RT
:
1591 cfqq
->ioprio
= task_ioprio(ioc
);
1592 cfqq
->ioprio_class
= IOPRIO_CLASS_RT
;
1594 case IOPRIO_CLASS_BE
:
1595 cfqq
->ioprio
= task_ioprio(ioc
);
1596 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
1598 case IOPRIO_CLASS_IDLE
:
1599 cfqq
->ioprio_class
= IOPRIO_CLASS_IDLE
;
1601 cfq_clear_cfqq_idle_window(cfqq
);
1606 * keep track of original prio settings in case we have to temporarily
1607 * elevate the priority of this queue
1609 cfqq
->org_ioprio
= cfqq
->ioprio
;
1610 cfqq
->org_ioprio_class
= cfqq
->ioprio_class
;
1611 cfq_clear_cfqq_prio_changed(cfqq
);
1614 static void changed_ioprio(struct io_context
*ioc
, struct cfq_io_context
*cic
)
1616 struct cfq_data
*cfqd
= cic
->key
;
1617 struct cfq_queue
*cfqq
;
1618 unsigned long flags
;
1620 if (unlikely(!cfqd
))
1623 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1625 cfqq
= cic
->cfqq
[BLK_RW_ASYNC
];
1627 struct cfq_queue
*new_cfqq
;
1628 new_cfqq
= cfq_get_queue(cfqd
, BLK_RW_ASYNC
, cic
->ioc
,
1631 cic
->cfqq
[BLK_RW_ASYNC
] = new_cfqq
;
1632 cfq_put_queue(cfqq
);
1636 cfqq
= cic
->cfqq
[BLK_RW_SYNC
];
1638 cfq_mark_cfqq_prio_changed(cfqq
);
1640 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1643 static void cfq_ioc_set_ioprio(struct io_context
*ioc
)
1645 call_for_each_cic(ioc
, changed_ioprio
);
1646 ioc
->ioprio_changed
= 0;
1649 static void cfq_init_cfqq(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1650 pid_t pid
, int is_sync
)
1652 RB_CLEAR_NODE(&cfqq
->rb_node
);
1653 RB_CLEAR_NODE(&cfqq
->p_node
);
1654 INIT_LIST_HEAD(&cfqq
->fifo
);
1656 atomic_set(&cfqq
->ref
, 0);
1659 cfq_mark_cfqq_prio_changed(cfqq
);
1662 if (!cfq_class_idle(cfqq
))
1663 cfq_mark_cfqq_idle_window(cfqq
);
1664 cfq_mark_cfqq_sync(cfqq
);
1669 static struct cfq_queue
*
1670 cfq_find_alloc_queue(struct cfq_data
*cfqd
, int is_sync
,
1671 struct io_context
*ioc
, gfp_t gfp_mask
)
1673 struct cfq_queue
*cfqq
, *new_cfqq
= NULL
;
1674 struct cfq_io_context
*cic
;
1677 cic
= cfq_cic_lookup(cfqd
, ioc
);
1678 /* cic always exists here */
1679 cfqq
= cic_to_cfqq(cic
, is_sync
);
1682 * Always try a new alloc if we fell back to the OOM cfqq
1683 * originally, since it should just be a temporary situation.
1685 if (!cfqq
|| cfqq
== &cfqd
->oom_cfqq
) {
1690 } else if (gfp_mask
& __GFP_WAIT
) {
1691 spin_unlock_irq(cfqd
->queue
->queue_lock
);
1692 new_cfqq
= kmem_cache_alloc_node(cfq_pool
,
1693 gfp_mask
| __GFP_ZERO
,
1695 spin_lock_irq(cfqd
->queue
->queue_lock
);
1699 cfqq
= kmem_cache_alloc_node(cfq_pool
,
1700 gfp_mask
| __GFP_ZERO
,
1705 cfq_init_cfqq(cfqd
, cfqq
, current
->pid
, is_sync
);
1706 cfq_init_prio_data(cfqq
, ioc
);
1707 cfq_log_cfqq(cfqd
, cfqq
, "alloced");
1709 cfqq
= &cfqd
->oom_cfqq
;
1713 kmem_cache_free(cfq_pool
, new_cfqq
);
1718 static struct cfq_queue
**
1719 cfq_async_queue_prio(struct cfq_data
*cfqd
, int ioprio_class
, int ioprio
)
1721 switch (ioprio_class
) {
1722 case IOPRIO_CLASS_RT
:
1723 return &cfqd
->async_cfqq
[0][ioprio
];
1724 case IOPRIO_CLASS_BE
:
1725 return &cfqd
->async_cfqq
[1][ioprio
];
1726 case IOPRIO_CLASS_IDLE
:
1727 return &cfqd
->async_idle_cfqq
;
1733 static struct cfq_queue
*
1734 cfq_get_queue(struct cfq_data
*cfqd
, int is_sync
, struct io_context
*ioc
,
1737 const int ioprio
= task_ioprio(ioc
);
1738 const int ioprio_class
= task_ioprio_class(ioc
);
1739 struct cfq_queue
**async_cfqq
= NULL
;
1740 struct cfq_queue
*cfqq
= NULL
;
1743 async_cfqq
= cfq_async_queue_prio(cfqd
, ioprio_class
, ioprio
);
1748 cfqq
= cfq_find_alloc_queue(cfqd
, is_sync
, ioc
, gfp_mask
);
1751 * pin the queue now that it's allocated, scheduler exit will prune it
1753 if (!is_sync
&& !(*async_cfqq
)) {
1754 atomic_inc(&cfqq
->ref
);
1758 atomic_inc(&cfqq
->ref
);
1763 * We drop cfq io contexts lazily, so we may find a dead one.
1766 cfq_drop_dead_cic(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1767 struct cfq_io_context
*cic
)
1769 unsigned long flags
;
1771 WARN_ON(!list_empty(&cic
->queue_list
));
1773 spin_lock_irqsave(&ioc
->lock
, flags
);
1775 BUG_ON(ioc
->ioc_data
== cic
);
1777 radix_tree_delete(&ioc
->radix_root
, (unsigned long) cfqd
);
1778 hlist_del_rcu(&cic
->cic_list
);
1779 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1784 static struct cfq_io_context
*
1785 cfq_cic_lookup(struct cfq_data
*cfqd
, struct io_context
*ioc
)
1787 struct cfq_io_context
*cic
;
1788 unsigned long flags
;
1797 * we maintain a last-hit cache, to avoid browsing over the tree
1799 cic
= rcu_dereference(ioc
->ioc_data
);
1800 if (cic
&& cic
->key
== cfqd
) {
1806 cic
= radix_tree_lookup(&ioc
->radix_root
, (unsigned long) cfqd
);
1810 /* ->key must be copied to avoid race with cfq_exit_queue() */
1813 cfq_drop_dead_cic(cfqd
, ioc
, cic
);
1818 spin_lock_irqsave(&ioc
->lock
, flags
);
1819 rcu_assign_pointer(ioc
->ioc_data
, cic
);
1820 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1828 * Add cic into ioc, using cfqd as the search key. This enables us to lookup
1829 * the process specific cfq io context when entered from the block layer.
1830 * Also adds the cic to a per-cfqd list, used when this queue is removed.
1832 static int cfq_cic_link(struct cfq_data
*cfqd
, struct io_context
*ioc
,
1833 struct cfq_io_context
*cic
, gfp_t gfp_mask
)
1835 unsigned long flags
;
1838 ret
= radix_tree_preload(gfp_mask
);
1843 spin_lock_irqsave(&ioc
->lock
, flags
);
1844 ret
= radix_tree_insert(&ioc
->radix_root
,
1845 (unsigned long) cfqd
, cic
);
1847 hlist_add_head_rcu(&cic
->cic_list
, &ioc
->cic_list
);
1848 spin_unlock_irqrestore(&ioc
->lock
, flags
);
1850 radix_tree_preload_end();
1853 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
1854 list_add(&cic
->queue_list
, &cfqd
->cic_list
);
1855 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
1860 printk(KERN_ERR
"cfq: cic link failed!\n");
1866 * Setup general io context and cfq io context. There can be several cfq
1867 * io contexts per general io context, if this process is doing io to more
1868 * than one device managed by cfq.
1870 static struct cfq_io_context
*
1871 cfq_get_io_context(struct cfq_data
*cfqd
, gfp_t gfp_mask
)
1873 struct io_context
*ioc
= NULL
;
1874 struct cfq_io_context
*cic
;
1876 might_sleep_if(gfp_mask
& __GFP_WAIT
);
1878 ioc
= get_io_context(gfp_mask
, cfqd
->queue
->node
);
1882 cic
= cfq_cic_lookup(cfqd
, ioc
);
1886 cic
= cfq_alloc_io_context(cfqd
, gfp_mask
);
1890 if (cfq_cic_link(cfqd
, ioc
, cic
, gfp_mask
))
1894 smp_read_barrier_depends();
1895 if (unlikely(ioc
->ioprio_changed
))
1896 cfq_ioc_set_ioprio(ioc
);
1902 put_io_context(ioc
);
1907 cfq_update_io_thinktime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
)
1909 unsigned long elapsed
= jiffies
- cic
->last_end_request
;
1910 unsigned long ttime
= min(elapsed
, 2UL * cfqd
->cfq_slice_idle
);
1912 cic
->ttime_samples
= (7*cic
->ttime_samples
+ 256) / 8;
1913 cic
->ttime_total
= (7*cic
->ttime_total
+ 256*ttime
) / 8;
1914 cic
->ttime_mean
= (cic
->ttime_total
+ 128) / cic
->ttime_samples
;
1918 cfq_update_io_seektime(struct cfq_data
*cfqd
, struct cfq_io_context
*cic
,
1924 if (!cic
->last_request_pos
)
1926 else if (cic
->last_request_pos
< blk_rq_pos(rq
))
1927 sdist
= blk_rq_pos(rq
) - cic
->last_request_pos
;
1929 sdist
= cic
->last_request_pos
- blk_rq_pos(rq
);
1932 * Don't allow the seek distance to get too large from the
1933 * odd fragment, pagein, etc
1935 if (cic
->seek_samples
<= 60) /* second&third seek */
1936 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*1024);
1938 sdist
= min(sdist
, (cic
->seek_mean
* 4) + 2*1024*64);
1940 cic
->seek_samples
= (7*cic
->seek_samples
+ 256) / 8;
1941 cic
->seek_total
= (7*cic
->seek_total
+ (u64
)256*sdist
) / 8;
1942 total
= cic
->seek_total
+ (cic
->seek_samples
/2);
1943 do_div(total
, cic
->seek_samples
);
1944 cic
->seek_mean
= (sector_t
)total
;
1948 * Disable idle window if the process thinks too long or seeks so much that
1952 cfq_update_idle_window(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
1953 struct cfq_io_context
*cic
)
1955 int old_idle
, enable_idle
;
1958 * Don't idle for async or idle io prio class
1960 if (!cfq_cfqq_sync(cfqq
) || cfq_class_idle(cfqq
))
1963 enable_idle
= old_idle
= cfq_cfqq_idle_window(cfqq
);
1965 if (!atomic_read(&cic
->ioc
->nr_tasks
) || !cfqd
->cfq_slice_idle
||
1966 (cfqd
->hw_tag
&& CIC_SEEKY(cic
)))
1968 else if (sample_valid(cic
->ttime_samples
)) {
1969 if (cic
->ttime_mean
> cfqd
->cfq_slice_idle
)
1975 if (old_idle
!= enable_idle
) {
1976 cfq_log_cfqq(cfqd
, cfqq
, "idle=%d", enable_idle
);
1978 cfq_mark_cfqq_idle_window(cfqq
);
1980 cfq_clear_cfqq_idle_window(cfqq
);
1985 * Check if new_cfqq should preempt the currently active queue. Return 0 for
1986 * no or if we aren't sure, a 1 will cause a preempt.
1989 cfq_should_preempt(struct cfq_data
*cfqd
, struct cfq_queue
*new_cfqq
,
1992 struct cfq_queue
*cfqq
;
1994 cfqq
= cfqd
->active_queue
;
1998 if (cfq_slice_used(cfqq
))
2001 if (cfq_class_idle(new_cfqq
))
2004 if (cfq_class_idle(cfqq
))
2008 * if the new request is sync, but the currently running queue is
2009 * not, let the sync request have priority.
2011 if (rq_is_sync(rq
) && !cfq_cfqq_sync(cfqq
))
2015 * So both queues are sync. Let the new request get disk time if
2016 * it's a metadata request and the current queue is doing regular IO.
2018 if (rq_is_meta(rq
) && !cfqq
->meta_pending
)
2022 * Allow an RT request to pre-empt an ongoing non-RT cfqq timeslice.
2024 if (cfq_class_rt(new_cfqq
) && !cfq_class_rt(cfqq
))
2027 if (!cfqd
->active_cic
|| !cfq_cfqq_wait_request(cfqq
))
2031 * if this request is as-good as one we would expect from the
2032 * current cfqq, let it preempt
2034 if (cfq_rq_close(cfqd
, rq
))
2041 * cfqq preempts the active queue. if we allowed preempt with no slice left,
2042 * let it have half of its nominal slice.
2044 static void cfq_preempt_queue(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
)
2046 cfq_log_cfqq(cfqd
, cfqq
, "preempt");
2047 cfq_slice_expired(cfqd
, 1);
2050 * Put the new queue at the front of the of the current list,
2051 * so we know that it will be selected next.
2053 BUG_ON(!cfq_cfqq_on_rr(cfqq
));
2055 cfq_service_tree_add(cfqd
, cfqq
, 1);
2057 cfqq
->slice_end
= 0;
2058 cfq_mark_cfqq_slice_new(cfqq
);
2062 * Called when a new fs request (rq) is added (to cfqq). Check if there's
2063 * something we should do about it
2066 cfq_rq_enqueued(struct cfq_data
*cfqd
, struct cfq_queue
*cfqq
,
2069 struct cfq_io_context
*cic
= RQ_CIC(rq
);
2073 cfqq
->meta_pending
++;
2075 cfq_update_io_thinktime(cfqd
, cic
);
2076 cfq_update_io_seektime(cfqd
, cic
, rq
);
2077 cfq_update_idle_window(cfqd
, cfqq
, cic
);
2079 cic
->last_request_pos
= blk_rq_pos(rq
) + blk_rq_sectors(rq
);
2081 if (cfqq
== cfqd
->active_queue
) {
2083 * Remember that we saw a request from this process, but
2084 * don't start queuing just yet. Otherwise we risk seeing lots
2085 * of tiny requests, because we disrupt the normal plugging
2086 * and merging. If the request is already larger than a single
2087 * page, let it rip immediately. For that case we assume that
2088 * merging is already done. Ditto for a busy system that
2089 * has other work pending, don't risk delaying until the
2090 * idle timer unplug to continue working.
2092 if (cfq_cfqq_wait_request(cfqq
)) {
2093 if (blk_rq_bytes(rq
) > PAGE_CACHE_SIZE
||
2094 cfqd
->busy_queues
> 1) {
2095 del_timer(&cfqd
->idle_slice_timer
);
2096 __blk_run_queue(cfqd
->queue
);
2098 cfq_mark_cfqq_must_dispatch(cfqq
);
2100 } else if (cfq_should_preempt(cfqd
, cfqq
, rq
)) {
2102 * not the active queue - expire current slice if it is
2103 * idle and has expired it's mean thinktime or this new queue
2104 * has some old slice time left and is of higher priority or
2105 * this new queue is RT and the current one is BE
2107 cfq_preempt_queue(cfqd
, cfqq
);
2108 __blk_run_queue(cfqd
->queue
);
2112 static void cfq_insert_request(struct request_queue
*q
, struct request
*rq
)
2114 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2115 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2117 cfq_log_cfqq(cfqd
, cfqq
, "insert_request");
2118 cfq_init_prio_data(cfqq
, RQ_CIC(rq
)->ioc
);
2122 list_add_tail(&rq
->queuelist
, &cfqq
->fifo
);
2124 cfq_rq_enqueued(cfqd
, cfqq
, rq
);
2128 * Update hw_tag based on peak queue depth over 50 samples under
2131 static void cfq_update_hw_tag(struct cfq_data
*cfqd
)
2133 if (cfqd
->rq_in_driver
> cfqd
->rq_in_driver_peak
)
2134 cfqd
->rq_in_driver_peak
= cfqd
->rq_in_driver
;
2136 if (cfqd
->rq_queued
<= CFQ_HW_QUEUE_MIN
&&
2137 cfqd
->rq_in_driver
<= CFQ_HW_QUEUE_MIN
)
2140 if (cfqd
->hw_tag_samples
++ < 50)
2143 if (cfqd
->rq_in_driver_peak
>= CFQ_HW_QUEUE_MIN
)
2148 cfqd
->hw_tag_samples
= 0;
2149 cfqd
->rq_in_driver_peak
= 0;
2152 static void cfq_completed_request(struct request_queue
*q
, struct request
*rq
)
2154 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2155 struct cfq_data
*cfqd
= cfqq
->cfqd
;
2156 const int sync
= rq_is_sync(rq
);
2160 cfq_log_cfqq(cfqd
, cfqq
, "complete");
2162 cfq_update_hw_tag(cfqd
);
2164 WARN_ON(!cfqd
->rq_in_driver
);
2165 WARN_ON(!cfqq
->dispatched
);
2166 cfqd
->rq_in_driver
--;
2169 if (cfq_cfqq_sync(cfqq
))
2170 cfqd
->sync_flight
--;
2173 RQ_CIC(rq
)->last_end_request
= now
;
2176 * If this is the active queue, check if it needs to be expired,
2177 * or if we want to idle in case it has no pending requests.
2179 if (cfqd
->active_queue
== cfqq
) {
2180 const bool cfqq_empty
= RB_EMPTY_ROOT(&cfqq
->sort_list
);
2182 if (cfq_cfqq_slice_new(cfqq
)) {
2183 cfq_set_prio_slice(cfqd
, cfqq
);
2184 cfq_clear_cfqq_slice_new(cfqq
);
2187 * If there are no requests waiting in this queue, and
2188 * there are other queues ready to issue requests, AND
2189 * those other queues are issuing requests within our
2190 * mean seek distance, give them a chance to run instead
2193 if (cfq_slice_used(cfqq
) || cfq_class_idle(cfqq
))
2194 cfq_slice_expired(cfqd
, 1);
2195 else if (cfqq_empty
&& !cfq_close_cooperator(cfqd
, cfqq
, 1) &&
2196 sync
&& !rq_noidle(rq
))
2197 cfq_arm_slice_timer(cfqd
);
2200 if (!cfqd
->rq_in_driver
)
2201 cfq_schedule_dispatch(cfqd
);
2205 * we temporarily boost lower priority queues if they are holding fs exclusive
2206 * resources. they are boosted to normal prio (CLASS_BE/4)
2208 static void cfq_prio_boost(struct cfq_queue
*cfqq
)
2210 if (has_fs_excl()) {
2212 * boost idle prio on transactions that would lock out other
2213 * users of the filesystem
2215 if (cfq_class_idle(cfqq
))
2216 cfqq
->ioprio_class
= IOPRIO_CLASS_BE
;
2217 if (cfqq
->ioprio
> IOPRIO_NORM
)
2218 cfqq
->ioprio
= IOPRIO_NORM
;
2221 * check if we need to unboost the queue
2223 if (cfqq
->ioprio_class
!= cfqq
->org_ioprio_class
)
2224 cfqq
->ioprio_class
= cfqq
->org_ioprio_class
;
2225 if (cfqq
->ioprio
!= cfqq
->org_ioprio
)
2226 cfqq
->ioprio
= cfqq
->org_ioprio
;
2230 static inline int __cfq_may_queue(struct cfq_queue
*cfqq
)
2232 if ((cfq_cfqq_wait_request(cfqq
) || cfq_cfqq_must_alloc(cfqq
)) &&
2233 !cfq_cfqq_must_alloc_slice(cfqq
)) {
2234 cfq_mark_cfqq_must_alloc_slice(cfqq
);
2235 return ELV_MQUEUE_MUST
;
2238 return ELV_MQUEUE_MAY
;
2241 static int cfq_may_queue(struct request_queue
*q
, int rw
)
2243 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2244 struct task_struct
*tsk
= current
;
2245 struct cfq_io_context
*cic
;
2246 struct cfq_queue
*cfqq
;
2249 * don't force setup of a queue from here, as a call to may_queue
2250 * does not necessarily imply that a request actually will be queued.
2251 * so just lookup a possibly existing queue, or return 'may queue'
2254 cic
= cfq_cic_lookup(cfqd
, tsk
->io_context
);
2256 return ELV_MQUEUE_MAY
;
2258 cfqq
= cic_to_cfqq(cic
, rw_is_sync(rw
));
2260 cfq_init_prio_data(cfqq
, cic
->ioc
);
2261 cfq_prio_boost(cfqq
);
2263 return __cfq_may_queue(cfqq
);
2266 return ELV_MQUEUE_MAY
;
2270 * queue lock held here
2272 static void cfq_put_request(struct request
*rq
)
2274 struct cfq_queue
*cfqq
= RQ_CFQQ(rq
);
2277 const int rw
= rq_data_dir(rq
);
2279 BUG_ON(!cfqq
->allocated
[rw
]);
2280 cfqq
->allocated
[rw
]--;
2282 put_io_context(RQ_CIC(rq
)->ioc
);
2284 rq
->elevator_private
= NULL
;
2285 rq
->elevator_private2
= NULL
;
2287 cfq_put_queue(cfqq
);
2292 * Allocate cfq data structures associated with this request.
2295 cfq_set_request(struct request_queue
*q
, struct request
*rq
, gfp_t gfp_mask
)
2297 struct cfq_data
*cfqd
= q
->elevator
->elevator_data
;
2298 struct cfq_io_context
*cic
;
2299 const int rw
= rq_data_dir(rq
);
2300 const int is_sync
= rq_is_sync(rq
);
2301 struct cfq_queue
*cfqq
;
2302 unsigned long flags
;
2304 might_sleep_if(gfp_mask
& __GFP_WAIT
);
2306 cic
= cfq_get_io_context(cfqd
, gfp_mask
);
2308 spin_lock_irqsave(q
->queue_lock
, flags
);
2313 cfqq
= cic_to_cfqq(cic
, is_sync
);
2315 cfqq
= cfq_get_queue(cfqd
, is_sync
, cic
->ioc
, gfp_mask
);
2316 cic_set_cfqq(cic
, cfqq
, is_sync
);
2319 cfqq
->allocated
[rw
]++;
2320 cfq_clear_cfqq_must_alloc(cfqq
);
2321 atomic_inc(&cfqq
->ref
);
2323 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2325 rq
->elevator_private
= cic
;
2326 rq
->elevator_private2
= cfqq
;
2331 put_io_context(cic
->ioc
);
2333 cfq_schedule_dispatch(cfqd
);
2334 spin_unlock_irqrestore(q
->queue_lock
, flags
);
2335 cfq_log(cfqd
, "set_request fail");
2339 static void cfq_kick_queue(struct work_struct
*work
)
2341 struct cfq_data
*cfqd
=
2342 container_of(work
, struct cfq_data
, unplug_work
);
2343 struct request_queue
*q
= cfqd
->queue
;
2345 spin_lock_irq(q
->queue_lock
);
2346 __blk_run_queue(cfqd
->queue
);
2347 spin_unlock_irq(q
->queue_lock
);
2351 * Timer running if the active_queue is currently idling inside its time slice
2353 static void cfq_idle_slice_timer(unsigned long data
)
2355 struct cfq_data
*cfqd
= (struct cfq_data
*) data
;
2356 struct cfq_queue
*cfqq
;
2357 unsigned long flags
;
2360 cfq_log(cfqd
, "idle timer fired");
2362 spin_lock_irqsave(cfqd
->queue
->queue_lock
, flags
);
2364 cfqq
= cfqd
->active_queue
;
2369 * We saw a request before the queue expired, let it through
2371 if (cfq_cfqq_must_dispatch(cfqq
))
2377 if (cfq_slice_used(cfqq
))
2381 * only expire and reinvoke request handler, if there are
2382 * other queues with pending requests
2384 if (!cfqd
->busy_queues
)
2388 * not expired and it has a request pending, let it dispatch
2390 if (!RB_EMPTY_ROOT(&cfqq
->sort_list
))
2394 cfq_slice_expired(cfqd
, timed_out
);
2396 cfq_schedule_dispatch(cfqd
);
2398 spin_unlock_irqrestore(cfqd
->queue
->queue_lock
, flags
);
2401 static void cfq_shutdown_timer_wq(struct cfq_data
*cfqd
)
2403 del_timer_sync(&cfqd
->idle_slice_timer
);
2404 cancel_work_sync(&cfqd
->unplug_work
);
2407 static void cfq_put_async_queues(struct cfq_data
*cfqd
)
2411 for (i
= 0; i
< IOPRIO_BE_NR
; i
++) {
2412 if (cfqd
->async_cfqq
[0][i
])
2413 cfq_put_queue(cfqd
->async_cfqq
[0][i
]);
2414 if (cfqd
->async_cfqq
[1][i
])
2415 cfq_put_queue(cfqd
->async_cfqq
[1][i
]);
2418 if (cfqd
->async_idle_cfqq
)
2419 cfq_put_queue(cfqd
->async_idle_cfqq
);
2422 static void cfq_exit_queue(struct elevator_queue
*e
)
2424 struct cfq_data
*cfqd
= e
->elevator_data
;
2425 struct request_queue
*q
= cfqd
->queue
;
2427 cfq_shutdown_timer_wq(cfqd
);
2429 spin_lock_irq(q
->queue_lock
);
2431 if (cfqd
->active_queue
)
2432 __cfq_slice_expired(cfqd
, cfqd
->active_queue
, 0);
2434 while (!list_empty(&cfqd
->cic_list
)) {
2435 struct cfq_io_context
*cic
= list_entry(cfqd
->cic_list
.next
,
2436 struct cfq_io_context
,
2439 __cfq_exit_single_io_context(cfqd
, cic
);
2442 cfq_put_async_queues(cfqd
);
2444 spin_unlock_irq(q
->queue_lock
);
2446 cfq_shutdown_timer_wq(cfqd
);
2451 static void *cfq_init_queue(struct request_queue
*q
)
2453 struct cfq_data
*cfqd
;
2456 cfqd
= kmalloc_node(sizeof(*cfqd
), GFP_KERNEL
| __GFP_ZERO
, q
->node
);
2460 cfqd
->service_tree
= CFQ_RB_ROOT
;
2463 * Not strictly needed (since RB_ROOT just clears the node and we
2464 * zeroed cfqd on alloc), but better be safe in case someone decides
2465 * to add magic to the rb code
2467 for (i
= 0; i
< CFQ_PRIO_LISTS
; i
++)
2468 cfqd
->prio_trees
[i
] = RB_ROOT
;
2471 * Our fallback cfqq if cfq_find_alloc_queue() runs into OOM issues.
2472 * Grab a permanent reference to it, so that the normal code flow
2473 * will not attempt to free it.
2475 cfq_init_cfqq(cfqd
, &cfqd
->oom_cfqq
, 1, 0);
2476 atomic_inc(&cfqd
->oom_cfqq
.ref
);
2478 INIT_LIST_HEAD(&cfqd
->cic_list
);
2482 init_timer(&cfqd
->idle_slice_timer
);
2483 cfqd
->idle_slice_timer
.function
= cfq_idle_slice_timer
;
2484 cfqd
->idle_slice_timer
.data
= (unsigned long) cfqd
;
2486 INIT_WORK(&cfqd
->unplug_work
, cfq_kick_queue
);
2488 cfqd
->cfq_quantum
= cfq_quantum
;
2489 cfqd
->cfq_fifo_expire
[0] = cfq_fifo_expire
[0];
2490 cfqd
->cfq_fifo_expire
[1] = cfq_fifo_expire
[1];
2491 cfqd
->cfq_back_max
= cfq_back_max
;
2492 cfqd
->cfq_back_penalty
= cfq_back_penalty
;
2493 cfqd
->cfq_slice
[0] = cfq_slice_async
;
2494 cfqd
->cfq_slice
[1] = cfq_slice_sync
;
2495 cfqd
->cfq_slice_async_rq
= cfq_slice_async_rq
;
2496 cfqd
->cfq_slice_idle
= cfq_slice_idle
;
2502 static void cfq_slab_kill(void)
2505 * Caller already ensured that pending RCU callbacks are completed,
2506 * so we should have no busy allocations at this point.
2509 kmem_cache_destroy(cfq_pool
);
2511 kmem_cache_destroy(cfq_ioc_pool
);
2514 static int __init
cfq_slab_setup(void)
2516 cfq_pool
= KMEM_CACHE(cfq_queue
, 0);
2520 cfq_ioc_pool
= KMEM_CACHE(cfq_io_context
, 0);
2531 * sysfs parts below -->
2534 cfq_var_show(unsigned int var
, char *page
)
2536 return sprintf(page
, "%d\n", var
);
2540 cfq_var_store(unsigned int *var
, const char *page
, size_t count
)
2542 char *p
= (char *) page
;
2544 *var
= simple_strtoul(p
, &p
, 10);
2548 #define SHOW_FUNCTION(__FUNC, __VAR, __CONV) \
2549 static ssize_t __FUNC(struct elevator_queue *e, char *page) \
2551 struct cfq_data *cfqd = e->elevator_data; \
2552 unsigned int __data = __VAR; \
2554 __data = jiffies_to_msecs(__data); \
2555 return cfq_var_show(__data, (page)); \
2557 SHOW_FUNCTION(cfq_quantum_show
, cfqd
->cfq_quantum
, 0);
2558 SHOW_FUNCTION(cfq_fifo_expire_sync_show
, cfqd
->cfq_fifo_expire
[1], 1);
2559 SHOW_FUNCTION(cfq_fifo_expire_async_show
, cfqd
->cfq_fifo_expire
[0], 1);
2560 SHOW_FUNCTION(cfq_back_seek_max_show
, cfqd
->cfq_back_max
, 0);
2561 SHOW_FUNCTION(cfq_back_seek_penalty_show
, cfqd
->cfq_back_penalty
, 0);
2562 SHOW_FUNCTION(cfq_slice_idle_show
, cfqd
->cfq_slice_idle
, 1);
2563 SHOW_FUNCTION(cfq_slice_sync_show
, cfqd
->cfq_slice
[1], 1);
2564 SHOW_FUNCTION(cfq_slice_async_show
, cfqd
->cfq_slice
[0], 1);
2565 SHOW_FUNCTION(cfq_slice_async_rq_show
, cfqd
->cfq_slice_async_rq
, 0);
2566 #undef SHOW_FUNCTION
2568 #define STORE_FUNCTION(__FUNC, __PTR, MIN, MAX, __CONV) \
2569 static ssize_t __FUNC(struct elevator_queue *e, const char *page, size_t count) \
2571 struct cfq_data *cfqd = e->elevator_data; \
2572 unsigned int __data; \
2573 int ret = cfq_var_store(&__data, (page), count); \
2574 if (__data < (MIN)) \
2576 else if (__data > (MAX)) \
2579 *(__PTR) = msecs_to_jiffies(__data); \
2581 *(__PTR) = __data; \
2584 STORE_FUNCTION(cfq_quantum_store
, &cfqd
->cfq_quantum
, 1, UINT_MAX
, 0);
2585 STORE_FUNCTION(cfq_fifo_expire_sync_store
, &cfqd
->cfq_fifo_expire
[1], 1,
2587 STORE_FUNCTION(cfq_fifo_expire_async_store
, &cfqd
->cfq_fifo_expire
[0], 1,
2589 STORE_FUNCTION(cfq_back_seek_max_store
, &cfqd
->cfq_back_max
, 0, UINT_MAX
, 0);
2590 STORE_FUNCTION(cfq_back_seek_penalty_store
, &cfqd
->cfq_back_penalty
, 1,
2592 STORE_FUNCTION(cfq_slice_idle_store
, &cfqd
->cfq_slice_idle
, 0, UINT_MAX
, 1);
2593 STORE_FUNCTION(cfq_slice_sync_store
, &cfqd
->cfq_slice
[1], 1, UINT_MAX
, 1);
2594 STORE_FUNCTION(cfq_slice_async_store
, &cfqd
->cfq_slice
[0], 1, UINT_MAX
, 1);
2595 STORE_FUNCTION(cfq_slice_async_rq_store
, &cfqd
->cfq_slice_async_rq
, 1,
2597 #undef STORE_FUNCTION
2599 #define CFQ_ATTR(name) \
2600 __ATTR(name, S_IRUGO|S_IWUSR, cfq_##name##_show, cfq_##name##_store)
2602 static struct elv_fs_entry cfq_attrs
[] = {
2604 CFQ_ATTR(fifo_expire_sync
),
2605 CFQ_ATTR(fifo_expire_async
),
2606 CFQ_ATTR(back_seek_max
),
2607 CFQ_ATTR(back_seek_penalty
),
2608 CFQ_ATTR(slice_sync
),
2609 CFQ_ATTR(slice_async
),
2610 CFQ_ATTR(slice_async_rq
),
2611 CFQ_ATTR(slice_idle
),
2615 static struct elevator_type iosched_cfq
= {
2617 .elevator_merge_fn
= cfq_merge
,
2618 .elevator_merged_fn
= cfq_merged_request
,
2619 .elevator_merge_req_fn
= cfq_merged_requests
,
2620 .elevator_allow_merge_fn
= cfq_allow_merge
,
2621 .elevator_dispatch_fn
= cfq_dispatch_requests
,
2622 .elevator_add_req_fn
= cfq_insert_request
,
2623 .elevator_activate_req_fn
= cfq_activate_request
,
2624 .elevator_deactivate_req_fn
= cfq_deactivate_request
,
2625 .elevator_queue_empty_fn
= cfq_queue_empty
,
2626 .elevator_completed_req_fn
= cfq_completed_request
,
2627 .elevator_former_req_fn
= elv_rb_former_request
,
2628 .elevator_latter_req_fn
= elv_rb_latter_request
,
2629 .elevator_set_req_fn
= cfq_set_request
,
2630 .elevator_put_req_fn
= cfq_put_request
,
2631 .elevator_may_queue_fn
= cfq_may_queue
,
2632 .elevator_init_fn
= cfq_init_queue
,
2633 .elevator_exit_fn
= cfq_exit_queue
,
2634 .trim
= cfq_free_io_context
,
2636 .elevator_attrs
= cfq_attrs
,
2637 .elevator_name
= "cfq",
2638 .elevator_owner
= THIS_MODULE
,
2641 static int __init
cfq_init(void)
2644 * could be 0 on HZ < 1000 setups
2646 if (!cfq_slice_async
)
2647 cfq_slice_async
= 1;
2648 if (!cfq_slice_idle
)
2651 if (cfq_slab_setup())
2654 elv_register(&iosched_cfq
);
2659 static void __exit
cfq_exit(void)
2661 DECLARE_COMPLETION_ONSTACK(all_gone
);
2662 elv_unregister(&iosched_cfq
);
2663 ioc_gone
= &all_gone
;
2664 /* ioc_gone's update must be visible before reading ioc_count */
2668 * this also protects us from entering cfq_slab_kill() with
2669 * pending RCU callbacks
2671 if (elv_ioc_count_read(ioc_count
))
2672 wait_for_completion(&all_gone
);
2676 module_init(cfq_init
);
2677 module_exit(cfq_exit
);
2679 MODULE_AUTHOR("Jens Axboe");
2680 MODULE_LICENSE("GPL");
2681 MODULE_DESCRIPTION("Completely Fair Queueing IO scheduler");