Staging: hv: coding style cleanup for Channel.c
[linux-2.6/linux-2.6-openrd.git] / kernel / sched.c
blobd9db3fb17573b8aaf8449ade1d168eb20f9ba4f6
1 /*
2 * kernel/sched.c
4 * Kernel scheduler and related syscalls
6 * Copyright (C) 1991-2002 Linus Torvalds
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
29 #include <linux/mm.h>
30 #include <linux/module.h>
31 #include <linux/nmi.h>
32 #include <linux/init.h>
33 #include <linux/uaccess.h>
34 #include <linux/highmem.h>
35 #include <linux/smp_lock.h>
36 #include <asm/mmu_context.h>
37 #include <linux/interrupt.h>
38 #include <linux/capability.h>
39 #include <linux/completion.h>
40 #include <linux/kernel_stat.h>
41 #include <linux/debug_locks.h>
42 #include <linux/perf_counter.h>
43 #include <linux/security.h>
44 #include <linux/notifier.h>
45 #include <linux/profile.h>
46 #include <linux/freezer.h>
47 #include <linux/vmalloc.h>
48 #include <linux/blkdev.h>
49 #include <linux/delay.h>
50 #include <linux/pid_namespace.h>
51 #include <linux/smp.h>
52 #include <linux/threads.h>
53 #include <linux/timer.h>
54 #include <linux/rcupdate.h>
55 #include <linux/cpu.h>
56 #include <linux/cpuset.h>
57 #include <linux/percpu.h>
58 #include <linux/kthread.h>
59 #include <linux/proc_fs.h>
60 #include <linux/seq_file.h>
61 #include <linux/sysctl.h>
62 #include <linux/syscalls.h>
63 #include <linux/times.h>
64 #include <linux/tsacct_kern.h>
65 #include <linux/kprobes.h>
66 #include <linux/delayacct.h>
67 #include <linux/unistd.h>
68 #include <linux/pagemap.h>
69 #include <linux/hrtimer.h>
70 #include <linux/tick.h>
71 #include <linux/debugfs.h>
72 #include <linux/ctype.h>
73 #include <linux/ftrace.h>
75 #include <asm/tlb.h>
76 #include <asm/irq_regs.h>
78 #include "sched_cpupri.h"
80 #define CREATE_TRACE_POINTS
81 #include <trace/events/sched.h>
84 * Convert user-nice values [ -20 ... 0 ... 19 ]
85 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
86 * and back.
88 #define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
89 #define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
90 #define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
93 * 'User priority' is the nice value converted to something we
94 * can work with better when scaling various scheduler parameters,
95 * it's a [ 0 ... 39 ] range.
97 #define USER_PRIO(p) ((p)-MAX_RT_PRIO)
98 #define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
99 #define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
102 * Helpers for converting nanosecond timing to jiffy resolution
104 #define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (NSEC_PER_SEC / HZ))
106 #define NICE_0_LOAD SCHED_LOAD_SCALE
107 #define NICE_0_SHIFT SCHED_LOAD_SHIFT
110 * These are the 'tuning knobs' of the scheduler:
112 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
113 * Timeslices get refilled after they expire.
115 #define DEF_TIMESLICE (100 * HZ / 1000)
118 * single value that denotes runtime == period, ie unlimited time.
120 #define RUNTIME_INF ((u64)~0ULL)
122 static void double_rq_lock(struct rq *rq1, struct rq *rq2);
124 static inline int rt_policy(int policy)
126 if (unlikely(policy == SCHED_FIFO || policy == SCHED_RR))
127 return 1;
128 return 0;
131 static inline int task_has_rt_policy(struct task_struct *p)
133 return rt_policy(p->policy);
137 * This is the priority-queue data structure of the RT scheduling class:
139 struct rt_prio_array {
140 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
141 struct list_head queue[MAX_RT_PRIO];
144 struct rt_bandwidth {
145 /* nests inside the rq lock: */
146 spinlock_t rt_runtime_lock;
147 ktime_t rt_period;
148 u64 rt_runtime;
149 struct hrtimer rt_period_timer;
152 static struct rt_bandwidth def_rt_bandwidth;
154 static int do_sched_rt_period_timer(struct rt_bandwidth *rt_b, int overrun);
156 static enum hrtimer_restart sched_rt_period_timer(struct hrtimer *timer)
158 struct rt_bandwidth *rt_b =
159 container_of(timer, struct rt_bandwidth, rt_period_timer);
160 ktime_t now;
161 int overrun;
162 int idle = 0;
164 for (;;) {
165 now = hrtimer_cb_get_time(timer);
166 overrun = hrtimer_forward(timer, now, rt_b->rt_period);
168 if (!overrun)
169 break;
171 idle = do_sched_rt_period_timer(rt_b, overrun);
174 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
177 static
178 void init_rt_bandwidth(struct rt_bandwidth *rt_b, u64 period, u64 runtime)
180 rt_b->rt_period = ns_to_ktime(period);
181 rt_b->rt_runtime = runtime;
183 spin_lock_init(&rt_b->rt_runtime_lock);
185 hrtimer_init(&rt_b->rt_period_timer,
186 CLOCK_MONOTONIC, HRTIMER_MODE_REL);
187 rt_b->rt_period_timer.function = sched_rt_period_timer;
190 static inline int rt_bandwidth_enabled(void)
192 return sysctl_sched_rt_runtime >= 0;
195 static void start_rt_bandwidth(struct rt_bandwidth *rt_b)
197 ktime_t now;
199 if (!rt_bandwidth_enabled() || rt_b->rt_runtime == RUNTIME_INF)
200 return;
202 if (hrtimer_active(&rt_b->rt_period_timer))
203 return;
205 spin_lock(&rt_b->rt_runtime_lock);
206 for (;;) {
207 unsigned long delta;
208 ktime_t soft, hard;
210 if (hrtimer_active(&rt_b->rt_period_timer))
211 break;
213 now = hrtimer_cb_get_time(&rt_b->rt_period_timer);
214 hrtimer_forward(&rt_b->rt_period_timer, now, rt_b->rt_period);
216 soft = hrtimer_get_softexpires(&rt_b->rt_period_timer);
217 hard = hrtimer_get_expires(&rt_b->rt_period_timer);
218 delta = ktime_to_ns(ktime_sub(hard, soft));
219 __hrtimer_start_range_ns(&rt_b->rt_period_timer, soft, delta,
220 HRTIMER_MODE_ABS_PINNED, 0);
222 spin_unlock(&rt_b->rt_runtime_lock);
225 #ifdef CONFIG_RT_GROUP_SCHED
226 static void destroy_rt_bandwidth(struct rt_bandwidth *rt_b)
228 hrtimer_cancel(&rt_b->rt_period_timer);
230 #endif
233 * sched_domains_mutex serializes calls to arch_init_sched_domains,
234 * detach_destroy_domains and partition_sched_domains.
236 static DEFINE_MUTEX(sched_domains_mutex);
238 #ifdef CONFIG_GROUP_SCHED
240 #include <linux/cgroup.h>
242 struct cfs_rq;
244 static LIST_HEAD(task_groups);
246 /* task group related information */
247 struct task_group {
248 #ifdef CONFIG_CGROUP_SCHED
249 struct cgroup_subsys_state css;
250 #endif
252 #ifdef CONFIG_USER_SCHED
253 uid_t uid;
254 #endif
256 #ifdef CONFIG_FAIR_GROUP_SCHED
257 /* schedulable entities of this group on each cpu */
258 struct sched_entity **se;
259 /* runqueue "owned" by this group on each cpu */
260 struct cfs_rq **cfs_rq;
261 unsigned long shares;
262 #endif
264 #ifdef CONFIG_RT_GROUP_SCHED
265 struct sched_rt_entity **rt_se;
266 struct rt_rq **rt_rq;
268 struct rt_bandwidth rt_bandwidth;
269 #endif
271 struct rcu_head rcu;
272 struct list_head list;
274 struct task_group *parent;
275 struct list_head siblings;
276 struct list_head children;
279 #ifdef CONFIG_USER_SCHED
281 /* Helper function to pass uid information to create_sched_user() */
282 void set_tg_uid(struct user_struct *user)
284 user->tg->uid = user->uid;
288 * Root task group.
289 * Every UID task group (including init_task_group aka UID-0) will
290 * be a child to this group.
292 struct task_group root_task_group;
294 #ifdef CONFIG_FAIR_GROUP_SCHED
295 /* Default task group's sched entity on each cpu */
296 static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
297 /* Default task group's cfs_rq on each cpu */
298 static DEFINE_PER_CPU_SHARED_ALIGNED(struct cfs_rq, init_tg_cfs_rq);
299 #endif /* CONFIG_FAIR_GROUP_SCHED */
301 #ifdef CONFIG_RT_GROUP_SCHED
302 static DEFINE_PER_CPU(struct sched_rt_entity, init_sched_rt_entity);
303 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rt_rq, init_rt_rq);
304 #endif /* CONFIG_RT_GROUP_SCHED */
305 #else /* !CONFIG_USER_SCHED */
306 #define root_task_group init_task_group
307 #endif /* CONFIG_USER_SCHED */
309 /* task_group_lock serializes add/remove of task groups and also changes to
310 * a task group's cpu shares.
312 static DEFINE_SPINLOCK(task_group_lock);
314 #ifdef CONFIG_SMP
315 static int root_task_group_empty(void)
317 return list_empty(&root_task_group.children);
319 #endif
321 #ifdef CONFIG_FAIR_GROUP_SCHED
322 #ifdef CONFIG_USER_SCHED
323 # define INIT_TASK_GROUP_LOAD (2*NICE_0_LOAD)
324 #else /* !CONFIG_USER_SCHED */
325 # define INIT_TASK_GROUP_LOAD NICE_0_LOAD
326 #endif /* CONFIG_USER_SCHED */
329 * A weight of 0 or 1 can cause arithmetics problems.
330 * A weight of a cfs_rq is the sum of weights of which entities
331 * are queued on this cfs_rq, so a weight of a entity should not be
332 * too large, so as the shares value of a task group.
333 * (The default weight is 1024 - so there's no practical
334 * limitation from this.)
336 #define MIN_SHARES 2
337 #define MAX_SHARES (1UL << 18)
339 static int init_task_group_load = INIT_TASK_GROUP_LOAD;
340 #endif
342 /* Default task group.
343 * Every task in system belong to this group at bootup.
345 struct task_group init_task_group;
347 /* return group to which a task belongs */
348 static inline struct task_group *task_group(struct task_struct *p)
350 struct task_group *tg;
352 #ifdef CONFIG_USER_SCHED
353 rcu_read_lock();
354 tg = __task_cred(p)->user->tg;
355 rcu_read_unlock();
356 #elif defined(CONFIG_CGROUP_SCHED)
357 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
358 struct task_group, css);
359 #else
360 tg = &init_task_group;
361 #endif
362 return tg;
365 /* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
366 static inline void set_task_rq(struct task_struct *p, unsigned int cpu)
368 #ifdef CONFIG_FAIR_GROUP_SCHED
369 p->se.cfs_rq = task_group(p)->cfs_rq[cpu];
370 p->se.parent = task_group(p)->se[cpu];
371 #endif
373 #ifdef CONFIG_RT_GROUP_SCHED
374 p->rt.rt_rq = task_group(p)->rt_rq[cpu];
375 p->rt.parent = task_group(p)->rt_se[cpu];
376 #endif
379 #else
381 #ifdef CONFIG_SMP
382 static int root_task_group_empty(void)
384 return 1;
386 #endif
388 static inline void set_task_rq(struct task_struct *p, unsigned int cpu) { }
389 static inline struct task_group *task_group(struct task_struct *p)
391 return NULL;
394 #endif /* CONFIG_GROUP_SCHED */
396 /* CFS-related fields in a runqueue */
397 struct cfs_rq {
398 struct load_weight load;
399 unsigned long nr_running;
401 u64 exec_clock;
402 u64 min_vruntime;
404 struct rb_root tasks_timeline;
405 struct rb_node *rb_leftmost;
407 struct list_head tasks;
408 struct list_head *balance_iterator;
411 * 'curr' points to currently running entity on this cfs_rq.
412 * It is set to NULL otherwise (i.e when none are currently running).
414 struct sched_entity *curr, *next, *last;
416 unsigned int nr_spread_over;
418 #ifdef CONFIG_FAIR_GROUP_SCHED
419 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
422 * leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
423 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
424 * (like users, containers etc.)
426 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
427 * list is used during load balance.
429 struct list_head leaf_cfs_rq_list;
430 struct task_group *tg; /* group that "owns" this runqueue */
432 #ifdef CONFIG_SMP
434 * the part of load.weight contributed by tasks
436 unsigned long task_weight;
439 * h_load = weight * f(tg)
441 * Where f(tg) is the recursive weight fraction assigned to
442 * this group.
444 unsigned long h_load;
447 * this cpu's part of tg->shares
449 unsigned long shares;
452 * load.weight at the time we set shares
454 unsigned long rq_weight;
455 #endif
456 #endif
459 /* Real-Time classes' related field in a runqueue: */
460 struct rt_rq {
461 struct rt_prio_array active;
462 unsigned long rt_nr_running;
463 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
464 struct {
465 int curr; /* highest queued rt task prio */
466 #ifdef CONFIG_SMP
467 int next; /* next highest */
468 #endif
469 } highest_prio;
470 #endif
471 #ifdef CONFIG_SMP
472 unsigned long rt_nr_migratory;
473 unsigned long rt_nr_total;
474 int overloaded;
475 struct plist_head pushable_tasks;
476 #endif
477 int rt_throttled;
478 u64 rt_time;
479 u64 rt_runtime;
480 /* Nests inside the rq lock: */
481 spinlock_t rt_runtime_lock;
483 #ifdef CONFIG_RT_GROUP_SCHED
484 unsigned long rt_nr_boosted;
486 struct rq *rq;
487 struct list_head leaf_rt_rq_list;
488 struct task_group *tg;
489 struct sched_rt_entity *rt_se;
490 #endif
493 #ifdef CONFIG_SMP
496 * We add the notion of a root-domain which will be used to define per-domain
497 * variables. Each exclusive cpuset essentially defines an island domain by
498 * fully partitioning the member cpus from any other cpuset. Whenever a new
499 * exclusive cpuset is created, we also create and attach a new root-domain
500 * object.
503 struct root_domain {
504 atomic_t refcount;
505 cpumask_var_t span;
506 cpumask_var_t online;
509 * The "RT overload" flag: it gets set if a CPU has more than
510 * one runnable RT task.
512 cpumask_var_t rto_mask;
513 atomic_t rto_count;
514 #ifdef CONFIG_SMP
515 struct cpupri cpupri;
516 #endif
517 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
519 * Preferred wake up cpu nominated by sched_mc balance that will be
520 * used when most cpus are idle in the system indicating overall very
521 * low system utilisation. Triggered at POWERSAVINGS_BALANCE_WAKEUP(2)
523 unsigned int sched_mc_preferred_wakeup_cpu;
524 #endif
528 * By default the system creates a single root-domain with all cpus as
529 * members (mimicking the global state we have today).
531 static struct root_domain def_root_domain;
533 #endif
536 * This is the main, per-CPU runqueue data structure.
538 * Locking rule: those places that want to lock multiple runqueues
539 * (such as the load balancing or the thread migration code), lock
540 * acquire operations must be ordered by ascending &runqueue.
542 struct rq {
543 /* runqueue lock: */
544 spinlock_t lock;
547 * nr_running and cpu_load should be in the same cacheline because
548 * remote CPUs use both these fields when doing load calculation.
550 unsigned long nr_running;
551 #define CPU_LOAD_IDX_MAX 5
552 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
553 #ifdef CONFIG_NO_HZ
554 unsigned long last_tick_seen;
555 unsigned char in_nohz_recently;
556 #endif
557 /* capture load from *all* tasks on this cpu: */
558 struct load_weight load;
559 unsigned long nr_load_updates;
560 u64 nr_switches;
561 u64 nr_migrations_in;
563 struct cfs_rq cfs;
564 struct rt_rq rt;
566 #ifdef CONFIG_FAIR_GROUP_SCHED
567 /* list of leaf cfs_rq on this cpu: */
568 struct list_head leaf_cfs_rq_list;
569 #endif
570 #ifdef CONFIG_RT_GROUP_SCHED
571 struct list_head leaf_rt_rq_list;
572 #endif
575 * This is part of a global counter where only the total sum
576 * over all CPUs matters. A task can increase this counter on
577 * one CPU and if it got migrated afterwards it may decrease
578 * it on another CPU. Always updated under the runqueue lock:
580 unsigned long nr_uninterruptible;
582 struct task_struct *curr, *idle;
583 unsigned long next_balance;
584 struct mm_struct *prev_mm;
586 u64 clock;
588 atomic_t nr_iowait;
590 #ifdef CONFIG_SMP
591 struct root_domain *rd;
592 struct sched_domain *sd;
594 unsigned char idle_at_tick;
595 /* For active balancing */
596 int post_schedule;
597 int active_balance;
598 int push_cpu;
599 /* cpu of this runqueue: */
600 int cpu;
601 int online;
603 unsigned long avg_load_per_task;
605 struct task_struct *migration_thread;
606 struct list_head migration_queue;
608 u64 rt_avg;
609 u64 age_stamp;
610 #endif
612 /* calc_load related fields */
613 unsigned long calc_load_update;
614 long calc_load_active;
616 #ifdef CONFIG_SCHED_HRTICK
617 #ifdef CONFIG_SMP
618 int hrtick_csd_pending;
619 struct call_single_data hrtick_csd;
620 #endif
621 struct hrtimer hrtick_timer;
622 #endif
624 #ifdef CONFIG_SCHEDSTATS
625 /* latency stats */
626 struct sched_info rq_sched_info;
627 unsigned long long rq_cpu_time;
628 /* could above be rq->cfs_rq.exec_clock + rq->rt_rq.rt_runtime ? */
630 /* sys_sched_yield() stats */
631 unsigned int yld_count;
633 /* schedule() stats */
634 unsigned int sched_switch;
635 unsigned int sched_count;
636 unsigned int sched_goidle;
638 /* try_to_wake_up() stats */
639 unsigned int ttwu_count;
640 unsigned int ttwu_local;
642 /* BKL stats */
643 unsigned int bkl_count;
644 #endif
647 static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
649 static inline void check_preempt_curr(struct rq *rq, struct task_struct *p, int sync)
651 rq->curr->sched_class->check_preempt_curr(rq, p, sync);
654 static inline int cpu_of(struct rq *rq)
656 #ifdef CONFIG_SMP
657 return rq->cpu;
658 #else
659 return 0;
660 #endif
664 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
665 * See detach_destroy_domains: synchronize_sched for details.
667 * The domain tree of any CPU may only be accessed from within
668 * preempt-disabled sections.
670 #define for_each_domain(cpu, __sd) \
671 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
673 #define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
674 #define this_rq() (&__get_cpu_var(runqueues))
675 #define task_rq(p) cpu_rq(task_cpu(p))
676 #define cpu_curr(cpu) (cpu_rq(cpu)->curr)
677 #define raw_rq() (&__raw_get_cpu_var(runqueues))
679 inline void update_rq_clock(struct rq *rq)
681 rq->clock = sched_clock_cpu(cpu_of(rq));
685 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
687 #ifdef CONFIG_SCHED_DEBUG
688 # define const_debug __read_mostly
689 #else
690 # define const_debug static const
691 #endif
694 * runqueue_is_locked
696 * Returns true if the current cpu runqueue is locked.
697 * This interface allows printk to be called with the runqueue lock
698 * held and know whether or not it is OK to wake up the klogd.
700 int runqueue_is_locked(void)
702 int cpu = get_cpu();
703 struct rq *rq = cpu_rq(cpu);
704 int ret;
706 ret = spin_is_locked(&rq->lock);
707 put_cpu();
708 return ret;
712 * Debugging: various feature bits
715 #define SCHED_FEAT(name, enabled) \
716 __SCHED_FEAT_##name ,
718 enum {
719 #include "sched_features.h"
722 #undef SCHED_FEAT
724 #define SCHED_FEAT(name, enabled) \
725 (1UL << __SCHED_FEAT_##name) * enabled |
727 const_debug unsigned int sysctl_sched_features =
728 #include "sched_features.h"
731 #undef SCHED_FEAT
733 #ifdef CONFIG_SCHED_DEBUG
734 #define SCHED_FEAT(name, enabled) \
735 #name ,
737 static __read_mostly char *sched_feat_names[] = {
738 #include "sched_features.h"
739 NULL
742 #undef SCHED_FEAT
744 static int sched_feat_show(struct seq_file *m, void *v)
746 int i;
748 for (i = 0; sched_feat_names[i]; i++) {
749 if (!(sysctl_sched_features & (1UL << i)))
750 seq_puts(m, "NO_");
751 seq_printf(m, "%s ", sched_feat_names[i]);
753 seq_puts(m, "\n");
755 return 0;
758 static ssize_t
759 sched_feat_write(struct file *filp, const char __user *ubuf,
760 size_t cnt, loff_t *ppos)
762 char buf[64];
763 char *cmp = buf;
764 int neg = 0;
765 int i;
767 if (cnt > 63)
768 cnt = 63;
770 if (copy_from_user(&buf, ubuf, cnt))
771 return -EFAULT;
773 buf[cnt] = 0;
775 if (strncmp(buf, "NO_", 3) == 0) {
776 neg = 1;
777 cmp += 3;
780 for (i = 0; sched_feat_names[i]; i++) {
781 int len = strlen(sched_feat_names[i]);
783 if (strncmp(cmp, sched_feat_names[i], len) == 0) {
784 if (neg)
785 sysctl_sched_features &= ~(1UL << i);
786 else
787 sysctl_sched_features |= (1UL << i);
788 break;
792 if (!sched_feat_names[i])
793 return -EINVAL;
795 filp->f_pos += cnt;
797 return cnt;
800 static int sched_feat_open(struct inode *inode, struct file *filp)
802 return single_open(filp, sched_feat_show, NULL);
805 static struct file_operations sched_feat_fops = {
806 .open = sched_feat_open,
807 .write = sched_feat_write,
808 .read = seq_read,
809 .llseek = seq_lseek,
810 .release = single_release,
813 static __init int sched_init_debug(void)
815 debugfs_create_file("sched_features", 0644, NULL, NULL,
816 &sched_feat_fops);
818 return 0;
820 late_initcall(sched_init_debug);
822 #endif
824 #define sched_feat(x) (sysctl_sched_features & (1UL << __SCHED_FEAT_##x))
827 * Number of tasks to iterate in a single balance run.
828 * Limited because this is done with IRQs disabled.
830 const_debug unsigned int sysctl_sched_nr_migrate = 32;
833 * ratelimit for updating the group shares.
834 * default: 0.25ms
836 unsigned int sysctl_sched_shares_ratelimit = 250000;
839 * Inject some fuzzyness into changing the per-cpu group shares
840 * this avoids remote rq-locks at the expense of fairness.
841 * default: 4
843 unsigned int sysctl_sched_shares_thresh = 4;
846 * period over which we average the RT time consumption, measured
847 * in ms.
849 * default: 1s
851 const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
854 * period over which we measure -rt task cpu usage in us.
855 * default: 1s
857 unsigned int sysctl_sched_rt_period = 1000000;
859 static __read_mostly int scheduler_running;
862 * part of the period that we allow rt tasks to run in us.
863 * default: 0.95s
865 int sysctl_sched_rt_runtime = 950000;
867 static inline u64 global_rt_period(void)
869 return (u64)sysctl_sched_rt_period * NSEC_PER_USEC;
872 static inline u64 global_rt_runtime(void)
874 if (sysctl_sched_rt_runtime < 0)
875 return RUNTIME_INF;
877 return (u64)sysctl_sched_rt_runtime * NSEC_PER_USEC;
880 #ifndef prepare_arch_switch
881 # define prepare_arch_switch(next) do { } while (0)
882 #endif
883 #ifndef finish_arch_switch
884 # define finish_arch_switch(prev) do { } while (0)
885 #endif
887 static inline int task_current(struct rq *rq, struct task_struct *p)
889 return rq->curr == p;
892 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
893 static inline int task_running(struct rq *rq, struct task_struct *p)
895 return task_current(rq, p);
898 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
902 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
904 #ifdef CONFIG_DEBUG_SPINLOCK
905 /* this is a valid case when another task releases the spinlock */
906 rq->lock.owner = current;
907 #endif
909 * If we are tracking spinlock dependencies then we have to
910 * fix up the runqueue lock - which gets 'carried over' from
911 * prev into current:
913 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
915 spin_unlock_irq(&rq->lock);
918 #else /* __ARCH_WANT_UNLOCKED_CTXSW */
919 static inline int task_running(struct rq *rq, struct task_struct *p)
921 #ifdef CONFIG_SMP
922 return p->oncpu;
923 #else
924 return task_current(rq, p);
925 #endif
928 static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
930 #ifdef CONFIG_SMP
932 * We can optimise this out completely for !SMP, because the
933 * SMP rebalancing from interrupt is the only thing that cares
934 * here.
936 next->oncpu = 1;
937 #endif
938 #ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
939 spin_unlock_irq(&rq->lock);
940 #else
941 spin_unlock(&rq->lock);
942 #endif
945 static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
947 #ifdef CONFIG_SMP
949 * After ->oncpu is cleared, the task can be moved to a different CPU.
950 * We must ensure this doesn't happen until the switch is completely
951 * finished.
953 smp_wmb();
954 prev->oncpu = 0;
955 #endif
956 #ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
957 local_irq_enable();
958 #endif
960 #endif /* __ARCH_WANT_UNLOCKED_CTXSW */
963 * __task_rq_lock - lock the runqueue a given task resides on.
964 * Must be called interrupts disabled.
966 static inline struct rq *__task_rq_lock(struct task_struct *p)
967 __acquires(rq->lock)
969 for (;;) {
970 struct rq *rq = task_rq(p);
971 spin_lock(&rq->lock);
972 if (likely(rq == task_rq(p)))
973 return rq;
974 spin_unlock(&rq->lock);
979 * task_rq_lock - lock the runqueue a given task resides on and disable
980 * interrupts. Note the ordering: we can safely lookup the task_rq without
981 * explicitly disabling preemption.
983 static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
984 __acquires(rq->lock)
986 struct rq *rq;
988 for (;;) {
989 local_irq_save(*flags);
990 rq = task_rq(p);
991 spin_lock(&rq->lock);
992 if (likely(rq == task_rq(p)))
993 return rq;
994 spin_unlock_irqrestore(&rq->lock, *flags);
998 void task_rq_unlock_wait(struct task_struct *p)
1000 struct rq *rq = task_rq(p);
1002 smp_mb(); /* spin-unlock-wait is not a full memory barrier */
1003 spin_unlock_wait(&rq->lock);
1006 static void __task_rq_unlock(struct rq *rq)
1007 __releases(rq->lock)
1009 spin_unlock(&rq->lock);
1012 static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1013 __releases(rq->lock)
1015 spin_unlock_irqrestore(&rq->lock, *flags);
1019 * this_rq_lock - lock this runqueue and disable interrupts.
1021 static struct rq *this_rq_lock(void)
1022 __acquires(rq->lock)
1024 struct rq *rq;
1026 local_irq_disable();
1027 rq = this_rq();
1028 spin_lock(&rq->lock);
1030 return rq;
1033 #ifdef CONFIG_SCHED_HRTICK
1035 * Use HR-timers to deliver accurate preemption points.
1037 * Its all a bit involved since we cannot program an hrt while holding the
1038 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
1039 * reschedule event.
1041 * When we get rescheduled we reprogram the hrtick_timer outside of the
1042 * rq->lock.
1046 * Use hrtick when:
1047 * - enabled by features
1048 * - hrtimer is actually high res
1050 static inline int hrtick_enabled(struct rq *rq)
1052 if (!sched_feat(HRTICK))
1053 return 0;
1054 if (!cpu_active(cpu_of(rq)))
1055 return 0;
1056 return hrtimer_is_hres_active(&rq->hrtick_timer);
1059 static void hrtick_clear(struct rq *rq)
1061 if (hrtimer_active(&rq->hrtick_timer))
1062 hrtimer_cancel(&rq->hrtick_timer);
1066 * High-resolution timer tick.
1067 * Runs from hardirq context with interrupts disabled.
1069 static enum hrtimer_restart hrtick(struct hrtimer *timer)
1071 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
1073 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
1075 spin_lock(&rq->lock);
1076 update_rq_clock(rq);
1077 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
1078 spin_unlock(&rq->lock);
1080 return HRTIMER_NORESTART;
1083 #ifdef CONFIG_SMP
1085 * called from hardirq (IPI) context
1087 static void __hrtick_start(void *arg)
1089 struct rq *rq = arg;
1091 spin_lock(&rq->lock);
1092 hrtimer_restart(&rq->hrtick_timer);
1093 rq->hrtick_csd_pending = 0;
1094 spin_unlock(&rq->lock);
1098 * Called to set the hrtick timer state.
1100 * called with rq->lock held and irqs disabled
1102 static void hrtick_start(struct rq *rq, u64 delay)
1104 struct hrtimer *timer = &rq->hrtick_timer;
1105 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
1107 hrtimer_set_expires(timer, time);
1109 if (rq == this_rq()) {
1110 hrtimer_restart(timer);
1111 } else if (!rq->hrtick_csd_pending) {
1112 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
1113 rq->hrtick_csd_pending = 1;
1117 static int
1118 hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
1120 int cpu = (int)(long)hcpu;
1122 switch (action) {
1123 case CPU_UP_CANCELED:
1124 case CPU_UP_CANCELED_FROZEN:
1125 case CPU_DOWN_PREPARE:
1126 case CPU_DOWN_PREPARE_FROZEN:
1127 case CPU_DEAD:
1128 case CPU_DEAD_FROZEN:
1129 hrtick_clear(cpu_rq(cpu));
1130 return NOTIFY_OK;
1133 return NOTIFY_DONE;
1136 static __init void init_hrtick(void)
1138 hotcpu_notifier(hotplug_hrtick, 0);
1140 #else
1142 * Called to set the hrtick timer state.
1144 * called with rq->lock held and irqs disabled
1146 static void hrtick_start(struct rq *rq, u64 delay)
1148 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
1149 HRTIMER_MODE_REL_PINNED, 0);
1152 static inline void init_hrtick(void)
1155 #endif /* CONFIG_SMP */
1157 static void init_rq_hrtick(struct rq *rq)
1159 #ifdef CONFIG_SMP
1160 rq->hrtick_csd_pending = 0;
1162 rq->hrtick_csd.flags = 0;
1163 rq->hrtick_csd.func = __hrtick_start;
1164 rq->hrtick_csd.info = rq;
1165 #endif
1167 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1168 rq->hrtick_timer.function = hrtick;
1170 #else /* CONFIG_SCHED_HRTICK */
1171 static inline void hrtick_clear(struct rq *rq)
1175 static inline void init_rq_hrtick(struct rq *rq)
1179 static inline void init_hrtick(void)
1182 #endif /* CONFIG_SCHED_HRTICK */
1185 * resched_task - mark a task 'to be rescheduled now'.
1187 * On UP this means the setting of the need_resched flag, on SMP it
1188 * might also involve a cross-CPU call to trigger the scheduler on
1189 * the target CPU.
1191 #ifdef CONFIG_SMP
1193 #ifndef tsk_is_polling
1194 #define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
1195 #endif
1197 static void resched_task(struct task_struct *p)
1199 int cpu;
1201 assert_spin_locked(&task_rq(p)->lock);
1203 if (test_tsk_need_resched(p))
1204 return;
1206 set_tsk_need_resched(p);
1208 cpu = task_cpu(p);
1209 if (cpu == smp_processor_id())
1210 return;
1212 /* NEED_RESCHED must be visible before we test polling */
1213 smp_mb();
1214 if (!tsk_is_polling(p))
1215 smp_send_reschedule(cpu);
1218 static void resched_cpu(int cpu)
1220 struct rq *rq = cpu_rq(cpu);
1221 unsigned long flags;
1223 if (!spin_trylock_irqsave(&rq->lock, flags))
1224 return;
1225 resched_task(cpu_curr(cpu));
1226 spin_unlock_irqrestore(&rq->lock, flags);
1229 #ifdef CONFIG_NO_HZ
1231 * When add_timer_on() enqueues a timer into the timer wheel of an
1232 * idle CPU then this timer might expire before the next timer event
1233 * which is scheduled to wake up that CPU. In case of a completely
1234 * idle system the next event might even be infinite time into the
1235 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
1236 * leaves the inner idle loop so the newly added timer is taken into
1237 * account when the CPU goes back to idle and evaluates the timer
1238 * wheel for the next timer event.
1240 void wake_up_idle_cpu(int cpu)
1242 struct rq *rq = cpu_rq(cpu);
1244 if (cpu == smp_processor_id())
1245 return;
1248 * This is safe, as this function is called with the timer
1249 * wheel base lock of (cpu) held. When the CPU is on the way
1250 * to idle and has not yet set rq->curr to idle then it will
1251 * be serialized on the timer wheel base lock and take the new
1252 * timer into account automatically.
1254 if (rq->curr != rq->idle)
1255 return;
1258 * We can set TIF_RESCHED on the idle task of the other CPU
1259 * lockless. The worst case is that the other CPU runs the
1260 * idle task through an additional NOOP schedule()
1262 set_tsk_need_resched(rq->idle);
1264 /* NEED_RESCHED must be visible before we test polling */
1265 smp_mb();
1266 if (!tsk_is_polling(rq->idle))
1267 smp_send_reschedule(cpu);
1269 #endif /* CONFIG_NO_HZ */
1271 static u64 sched_avg_period(void)
1273 return (u64)sysctl_sched_time_avg * NSEC_PER_MSEC / 2;
1276 static void sched_avg_update(struct rq *rq)
1278 s64 period = sched_avg_period();
1280 while ((s64)(rq->clock - rq->age_stamp) > period) {
1281 rq->age_stamp += period;
1282 rq->rt_avg /= 2;
1286 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1288 rq->rt_avg += rt_delta;
1289 sched_avg_update(rq);
1292 #else /* !CONFIG_SMP */
1293 static void resched_task(struct task_struct *p)
1295 assert_spin_locked(&task_rq(p)->lock);
1296 set_tsk_need_resched(p);
1299 static void sched_rt_avg_update(struct rq *rq, u64 rt_delta)
1302 #endif /* CONFIG_SMP */
1304 #if BITS_PER_LONG == 32
1305 # define WMULT_CONST (~0UL)
1306 #else
1307 # define WMULT_CONST (1UL << 32)
1308 #endif
1310 #define WMULT_SHIFT 32
1313 * Shift right and round:
1315 #define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
1318 * delta *= weight / lw
1320 static unsigned long
1321 calc_delta_mine(unsigned long delta_exec, unsigned long weight,
1322 struct load_weight *lw)
1324 u64 tmp;
1326 if (!lw->inv_weight) {
1327 if (BITS_PER_LONG > 32 && unlikely(lw->weight >= WMULT_CONST))
1328 lw->inv_weight = 1;
1329 else
1330 lw->inv_weight = 1 + (WMULT_CONST-lw->weight/2)
1331 / (lw->weight+1);
1334 tmp = (u64)delta_exec * weight;
1336 * Check whether we'd overflow the 64-bit multiplication:
1338 if (unlikely(tmp > WMULT_CONST))
1339 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
1340 WMULT_SHIFT/2);
1341 else
1342 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
1344 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
1347 static inline void update_load_add(struct load_weight *lw, unsigned long inc)
1349 lw->weight += inc;
1350 lw->inv_weight = 0;
1353 static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
1355 lw->weight -= dec;
1356 lw->inv_weight = 0;
1360 * To aid in avoiding the subversion of "niceness" due to uneven distribution
1361 * of tasks with abnormal "nice" values across CPUs the contribution that
1362 * each task makes to its run queue's load is weighted according to its
1363 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
1364 * scaled version of the new time slice allocation that they receive on time
1365 * slice expiry etc.
1368 #define WEIGHT_IDLEPRIO 3
1369 #define WMULT_IDLEPRIO 1431655765
1372 * Nice levels are multiplicative, with a gentle 10% change for every
1373 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
1374 * nice 1, it will get ~10% less CPU time than another CPU-bound task
1375 * that remained on nice 0.
1377 * The "10% effect" is relative and cumulative: from _any_ nice level,
1378 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
1379 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
1380 * If a task goes up by ~10% and another task goes down by ~10% then
1381 * the relative distance between them is ~25%.)
1383 static const int prio_to_weight[40] = {
1384 /* -20 */ 88761, 71755, 56483, 46273, 36291,
1385 /* -15 */ 29154, 23254, 18705, 14949, 11916,
1386 /* -10 */ 9548, 7620, 6100, 4904, 3906,
1387 /* -5 */ 3121, 2501, 1991, 1586, 1277,
1388 /* 0 */ 1024, 820, 655, 526, 423,
1389 /* 5 */ 335, 272, 215, 172, 137,
1390 /* 10 */ 110, 87, 70, 56, 45,
1391 /* 15 */ 36, 29, 23, 18, 15,
1395 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
1397 * In cases where the weight does not change often, we can use the
1398 * precalculated inverse to speed up arithmetics by turning divisions
1399 * into multiplications:
1401 static const u32 prio_to_wmult[40] = {
1402 /* -20 */ 48388, 59856, 76040, 92818, 118348,
1403 /* -15 */ 147320, 184698, 229616, 287308, 360437,
1404 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
1405 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
1406 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
1407 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
1408 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
1409 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
1412 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
1415 * runqueue iterator, to support SMP load-balancing between different
1416 * scheduling classes, without having to expose their internal data
1417 * structures to the load-balancing proper:
1419 struct rq_iterator {
1420 void *arg;
1421 struct task_struct *(*start)(void *);
1422 struct task_struct *(*next)(void *);
1425 #ifdef CONFIG_SMP
1426 static unsigned long
1427 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
1428 unsigned long max_load_move, struct sched_domain *sd,
1429 enum cpu_idle_type idle, int *all_pinned,
1430 int *this_best_prio, struct rq_iterator *iterator);
1432 static int
1433 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
1434 struct sched_domain *sd, enum cpu_idle_type idle,
1435 struct rq_iterator *iterator);
1436 #endif
1438 /* Time spent by the tasks of the cpu accounting group executing in ... */
1439 enum cpuacct_stat_index {
1440 CPUACCT_STAT_USER, /* ... user mode */
1441 CPUACCT_STAT_SYSTEM, /* ... kernel mode */
1443 CPUACCT_STAT_NSTATS,
1446 #ifdef CONFIG_CGROUP_CPUACCT
1447 static void cpuacct_charge(struct task_struct *tsk, u64 cputime);
1448 static void cpuacct_update_stats(struct task_struct *tsk,
1449 enum cpuacct_stat_index idx, cputime_t val);
1450 #else
1451 static inline void cpuacct_charge(struct task_struct *tsk, u64 cputime) {}
1452 static inline void cpuacct_update_stats(struct task_struct *tsk,
1453 enum cpuacct_stat_index idx, cputime_t val) {}
1454 #endif
1456 static inline void inc_cpu_load(struct rq *rq, unsigned long load)
1458 update_load_add(&rq->load, load);
1461 static inline void dec_cpu_load(struct rq *rq, unsigned long load)
1463 update_load_sub(&rq->load, load);
1466 #if (defined(CONFIG_SMP) && defined(CONFIG_FAIR_GROUP_SCHED)) || defined(CONFIG_RT_GROUP_SCHED)
1467 typedef int (*tg_visitor)(struct task_group *, void *);
1470 * Iterate the full tree, calling @down when first entering a node and @up when
1471 * leaving it for the final time.
1473 static int walk_tg_tree(tg_visitor down, tg_visitor up, void *data)
1475 struct task_group *parent, *child;
1476 int ret;
1478 rcu_read_lock();
1479 parent = &root_task_group;
1480 down:
1481 ret = (*down)(parent, data);
1482 if (ret)
1483 goto out_unlock;
1484 list_for_each_entry_rcu(child, &parent->children, siblings) {
1485 parent = child;
1486 goto down;
1489 continue;
1491 ret = (*up)(parent, data);
1492 if (ret)
1493 goto out_unlock;
1495 child = parent;
1496 parent = parent->parent;
1497 if (parent)
1498 goto up;
1499 out_unlock:
1500 rcu_read_unlock();
1502 return ret;
1505 static int tg_nop(struct task_group *tg, void *data)
1507 return 0;
1509 #endif
1511 #ifdef CONFIG_SMP
1512 static unsigned long source_load(int cpu, int type);
1513 static unsigned long target_load(int cpu, int type);
1514 static int task_hot(struct task_struct *p, u64 now, struct sched_domain *sd);
1516 static unsigned long cpu_avg_load_per_task(int cpu)
1518 struct rq *rq = cpu_rq(cpu);
1519 unsigned long nr_running = ACCESS_ONCE(rq->nr_running);
1521 if (nr_running)
1522 rq->avg_load_per_task = rq->load.weight / nr_running;
1523 else
1524 rq->avg_load_per_task = 0;
1526 return rq->avg_load_per_task;
1529 #ifdef CONFIG_FAIR_GROUP_SCHED
1531 struct update_shares_data {
1532 unsigned long rq_weight[NR_CPUS];
1535 static DEFINE_PER_CPU(struct update_shares_data, update_shares_data);
1537 static void __set_se_shares(struct sched_entity *se, unsigned long shares);
1540 * Calculate and set the cpu's group shares.
1542 static void update_group_shares_cpu(struct task_group *tg, int cpu,
1543 unsigned long sd_shares,
1544 unsigned long sd_rq_weight,
1545 struct update_shares_data *usd)
1547 unsigned long shares, rq_weight;
1548 int boost = 0;
1550 rq_weight = usd->rq_weight[cpu];
1551 if (!rq_weight) {
1552 boost = 1;
1553 rq_weight = NICE_0_LOAD;
1557 * \Sum_j shares_j * rq_weight_i
1558 * shares_i = -----------------------------
1559 * \Sum_j rq_weight_j
1561 shares = (sd_shares * rq_weight) / sd_rq_weight;
1562 shares = clamp_t(unsigned long, shares, MIN_SHARES, MAX_SHARES);
1564 if (abs(shares - tg->se[cpu]->load.weight) >
1565 sysctl_sched_shares_thresh) {
1566 struct rq *rq = cpu_rq(cpu);
1567 unsigned long flags;
1569 spin_lock_irqsave(&rq->lock, flags);
1570 tg->cfs_rq[cpu]->rq_weight = boost ? 0 : rq_weight;
1571 tg->cfs_rq[cpu]->shares = boost ? 0 : shares;
1572 __set_se_shares(tg->se[cpu], shares);
1573 spin_unlock_irqrestore(&rq->lock, flags);
1578 * Re-compute the task group their per cpu shares over the given domain.
1579 * This needs to be done in a bottom-up fashion because the rq weight of a
1580 * parent group depends on the shares of its child groups.
1582 static int tg_shares_up(struct task_group *tg, void *data)
1584 unsigned long weight, rq_weight = 0, shares = 0;
1585 struct update_shares_data *usd;
1586 struct sched_domain *sd = data;
1587 unsigned long flags;
1588 int i;
1590 if (!tg->se[0])
1591 return 0;
1593 local_irq_save(flags);
1594 usd = &__get_cpu_var(update_shares_data);
1596 for_each_cpu(i, sched_domain_span(sd)) {
1597 weight = tg->cfs_rq[i]->load.weight;
1598 usd->rq_weight[i] = weight;
1601 * If there are currently no tasks on the cpu pretend there
1602 * is one of average load so that when a new task gets to
1603 * run here it will not get delayed by group starvation.
1605 if (!weight)
1606 weight = NICE_0_LOAD;
1608 rq_weight += weight;
1609 shares += tg->cfs_rq[i]->shares;
1612 if ((!shares && rq_weight) || shares > tg->shares)
1613 shares = tg->shares;
1615 if (!sd->parent || !(sd->parent->flags & SD_LOAD_BALANCE))
1616 shares = tg->shares;
1618 for_each_cpu(i, sched_domain_span(sd))
1619 update_group_shares_cpu(tg, i, shares, rq_weight, usd);
1621 local_irq_restore(flags);
1623 return 0;
1627 * Compute the cpu's hierarchical load factor for each task group.
1628 * This needs to be done in a top-down fashion because the load of a child
1629 * group is a fraction of its parents load.
1631 static int tg_load_down(struct task_group *tg, void *data)
1633 unsigned long load;
1634 long cpu = (long)data;
1636 if (!tg->parent) {
1637 load = cpu_rq(cpu)->load.weight;
1638 } else {
1639 load = tg->parent->cfs_rq[cpu]->h_load;
1640 load *= tg->cfs_rq[cpu]->shares;
1641 load /= tg->parent->cfs_rq[cpu]->load.weight + 1;
1644 tg->cfs_rq[cpu]->h_load = load;
1646 return 0;
1649 static void update_shares(struct sched_domain *sd)
1651 s64 elapsed;
1652 u64 now;
1654 if (root_task_group_empty())
1655 return;
1657 now = cpu_clock(raw_smp_processor_id());
1658 elapsed = now - sd->last_update;
1660 if (elapsed >= (s64)(u64)sysctl_sched_shares_ratelimit) {
1661 sd->last_update = now;
1662 walk_tg_tree(tg_nop, tg_shares_up, sd);
1666 static void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1668 if (root_task_group_empty())
1669 return;
1671 spin_unlock(&rq->lock);
1672 update_shares(sd);
1673 spin_lock(&rq->lock);
1676 static void update_h_load(long cpu)
1678 if (root_task_group_empty())
1679 return;
1681 walk_tg_tree(tg_load_down, tg_nop, (void *)cpu);
1684 #else
1686 static inline void update_shares(struct sched_domain *sd)
1690 static inline void update_shares_locked(struct rq *rq, struct sched_domain *sd)
1694 #endif
1696 #ifdef CONFIG_PREEMPT
1699 * fair double_lock_balance: Safely acquires both rq->locks in a fair
1700 * way at the expense of forcing extra atomic operations in all
1701 * invocations. This assures that the double_lock is acquired using the
1702 * same underlying policy as the spinlock_t on this architecture, which
1703 * reduces latency compared to the unfair variant below. However, it
1704 * also adds more overhead and therefore may reduce throughput.
1706 static inline int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1707 __releases(this_rq->lock)
1708 __acquires(busiest->lock)
1709 __acquires(this_rq->lock)
1711 spin_unlock(&this_rq->lock);
1712 double_rq_lock(this_rq, busiest);
1714 return 1;
1717 #else
1719 * Unfair double_lock_balance: Optimizes throughput at the expense of
1720 * latency by eliminating extra atomic operations when the locks are
1721 * already in proper order on entry. This favors lower cpu-ids and will
1722 * grant the double lock to lower cpus over higher ids under contention,
1723 * regardless of entry order into the function.
1725 static int _double_lock_balance(struct rq *this_rq, struct rq *busiest)
1726 __releases(this_rq->lock)
1727 __acquires(busiest->lock)
1728 __acquires(this_rq->lock)
1730 int ret = 0;
1732 if (unlikely(!spin_trylock(&busiest->lock))) {
1733 if (busiest < this_rq) {
1734 spin_unlock(&this_rq->lock);
1735 spin_lock(&busiest->lock);
1736 spin_lock_nested(&this_rq->lock, SINGLE_DEPTH_NESTING);
1737 ret = 1;
1738 } else
1739 spin_lock_nested(&busiest->lock, SINGLE_DEPTH_NESTING);
1741 return ret;
1744 #endif /* CONFIG_PREEMPT */
1747 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
1749 static int double_lock_balance(struct rq *this_rq, struct rq *busiest)
1751 if (unlikely(!irqs_disabled())) {
1752 /* printk() doesn't work good under rq->lock */
1753 spin_unlock(&this_rq->lock);
1754 BUG_ON(1);
1757 return _double_lock_balance(this_rq, busiest);
1760 static inline void double_unlock_balance(struct rq *this_rq, struct rq *busiest)
1761 __releases(busiest->lock)
1763 spin_unlock(&busiest->lock);
1764 lock_set_subclass(&this_rq->lock.dep_map, 0, _RET_IP_);
1766 #endif
1768 #ifdef CONFIG_FAIR_GROUP_SCHED
1769 static void cfs_rq_set_shares(struct cfs_rq *cfs_rq, unsigned long shares)
1771 #ifdef CONFIG_SMP
1772 cfs_rq->shares = shares;
1773 #endif
1775 #endif
1777 static void calc_load_account_active(struct rq *this_rq);
1779 #include "sched_stats.h"
1780 #include "sched_idletask.c"
1781 #include "sched_fair.c"
1782 #include "sched_rt.c"
1783 #ifdef CONFIG_SCHED_DEBUG
1784 # include "sched_debug.c"
1785 #endif
1787 #define sched_class_highest (&rt_sched_class)
1788 #define for_each_class(class) \
1789 for (class = sched_class_highest; class; class = class->next)
1791 static void inc_nr_running(struct rq *rq)
1793 rq->nr_running++;
1796 static void dec_nr_running(struct rq *rq)
1798 rq->nr_running--;
1801 static void set_load_weight(struct task_struct *p)
1803 if (task_has_rt_policy(p)) {
1804 p->se.load.weight = prio_to_weight[0] * 2;
1805 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
1806 return;
1810 * SCHED_IDLE tasks get minimal weight:
1812 if (p->policy == SCHED_IDLE) {
1813 p->se.load.weight = WEIGHT_IDLEPRIO;
1814 p->se.load.inv_weight = WMULT_IDLEPRIO;
1815 return;
1818 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
1819 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
1822 static void update_avg(u64 *avg, u64 sample)
1824 s64 diff = sample - *avg;
1825 *avg += diff >> 3;
1828 static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
1830 if (wakeup)
1831 p->se.start_runtime = p->se.sum_exec_runtime;
1833 sched_info_queued(p);
1834 p->sched_class->enqueue_task(rq, p, wakeup);
1835 p->se.on_rq = 1;
1838 static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
1840 if (sleep) {
1841 if (p->se.last_wakeup) {
1842 update_avg(&p->se.avg_overlap,
1843 p->se.sum_exec_runtime - p->se.last_wakeup);
1844 p->se.last_wakeup = 0;
1845 } else {
1846 update_avg(&p->se.avg_wakeup,
1847 sysctl_sched_wakeup_granularity);
1851 sched_info_dequeued(p);
1852 p->sched_class->dequeue_task(rq, p, sleep);
1853 p->se.on_rq = 0;
1857 * __normal_prio - return the priority that is based on the static prio
1859 static inline int __normal_prio(struct task_struct *p)
1861 return p->static_prio;
1865 * Calculate the expected normal priority: i.e. priority
1866 * without taking RT-inheritance into account. Might be
1867 * boosted by interactivity modifiers. Changes upon fork,
1868 * setprio syscalls, and whenever the interactivity
1869 * estimator recalculates.
1871 static inline int normal_prio(struct task_struct *p)
1873 int prio;
1875 if (task_has_rt_policy(p))
1876 prio = MAX_RT_PRIO-1 - p->rt_priority;
1877 else
1878 prio = __normal_prio(p);
1879 return prio;
1883 * Calculate the current priority, i.e. the priority
1884 * taken into account by the scheduler. This value might
1885 * be boosted by RT tasks, or might be boosted by
1886 * interactivity modifiers. Will be RT if the task got
1887 * RT-boosted. If not then it returns p->normal_prio.
1889 static int effective_prio(struct task_struct *p)
1891 p->normal_prio = normal_prio(p);
1893 * If we are RT tasks or we were boosted to RT priority,
1894 * keep the priority unchanged. Otherwise, update priority
1895 * to the normal priority:
1897 if (!rt_prio(p->prio))
1898 return p->normal_prio;
1899 return p->prio;
1903 * activate_task - move a task to the runqueue.
1905 static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1907 if (task_contributes_to_load(p))
1908 rq->nr_uninterruptible--;
1910 enqueue_task(rq, p, wakeup);
1911 inc_nr_running(rq);
1915 * deactivate_task - remove a task from the runqueue.
1917 static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1919 if (task_contributes_to_load(p))
1920 rq->nr_uninterruptible++;
1922 dequeue_task(rq, p, sleep);
1923 dec_nr_running(rq);
1927 * task_curr - is this task currently executing on a CPU?
1928 * @p: the task in question.
1930 inline int task_curr(const struct task_struct *p)
1932 return cpu_curr(task_cpu(p)) == p;
1935 static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1937 set_task_rq(p, cpu);
1938 #ifdef CONFIG_SMP
1940 * After ->cpu is set up to a new value, task_rq_lock(p, ...) can be
1941 * successfuly executed on another CPU. We must ensure that updates of
1942 * per-task data have been completed by this moment.
1944 smp_wmb();
1945 task_thread_info(p)->cpu = cpu;
1946 #endif
1949 static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1950 const struct sched_class *prev_class,
1951 int oldprio, int running)
1953 if (prev_class != p->sched_class) {
1954 if (prev_class->switched_from)
1955 prev_class->switched_from(rq, p, running);
1956 p->sched_class->switched_to(rq, p, running);
1957 } else
1958 p->sched_class->prio_changed(rq, p, oldprio, running);
1961 #ifdef CONFIG_SMP
1963 /* Used instead of source_load when we know the type == 0 */
1964 static unsigned long weighted_cpuload(const int cpu)
1966 return cpu_rq(cpu)->load.weight;
1970 * Is this task likely cache-hot:
1972 static int
1973 task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1975 s64 delta;
1978 * Buddy candidates are cache hot:
1980 if (sched_feat(CACHE_HOT_BUDDY) &&
1981 (&p->se == cfs_rq_of(&p->se)->next ||
1982 &p->se == cfs_rq_of(&p->se)->last))
1983 return 1;
1985 if (p->sched_class != &fair_sched_class)
1986 return 0;
1988 if (sysctl_sched_migration_cost == -1)
1989 return 1;
1990 if (sysctl_sched_migration_cost == 0)
1991 return 0;
1993 delta = now - p->se.exec_start;
1995 return delta < (s64)sysctl_sched_migration_cost;
1999 void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
2001 int old_cpu = task_cpu(p);
2002 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2003 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
2004 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
2005 u64 clock_offset;
2007 clock_offset = old_rq->clock - new_rq->clock;
2009 trace_sched_migrate_task(p, new_cpu);
2011 #ifdef CONFIG_SCHEDSTATS
2012 if (p->se.wait_start)
2013 p->se.wait_start -= clock_offset;
2014 if (p->se.sleep_start)
2015 p->se.sleep_start -= clock_offset;
2016 if (p->se.block_start)
2017 p->se.block_start -= clock_offset;
2018 #endif
2019 if (old_cpu != new_cpu) {
2020 p->se.nr_migrations++;
2021 new_rq->nr_migrations_in++;
2022 #ifdef CONFIG_SCHEDSTATS
2023 if (task_hot(p, old_rq->clock, NULL))
2024 schedstat_inc(p, se.nr_forced2_migrations);
2025 #endif
2026 perf_swcounter_event(PERF_COUNT_SW_CPU_MIGRATIONS,
2027 1, 1, NULL, 0);
2029 p->se.vruntime -= old_cfsrq->min_vruntime -
2030 new_cfsrq->min_vruntime;
2032 __set_task_cpu(p, new_cpu);
2035 struct migration_req {
2036 struct list_head list;
2038 struct task_struct *task;
2039 int dest_cpu;
2041 struct completion done;
2045 * The task's runqueue lock must be held.
2046 * Returns true if you have to wait for migration thread.
2048 static int
2049 migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
2051 struct rq *rq = task_rq(p);
2054 * If the task is not on a runqueue (and not running), then
2055 * it is sufficient to simply update the task's cpu field.
2057 if (!p->se.on_rq && !task_running(rq, p)) {
2058 set_task_cpu(p, dest_cpu);
2059 return 0;
2062 init_completion(&req->done);
2063 req->task = p;
2064 req->dest_cpu = dest_cpu;
2065 list_add(&req->list, &rq->migration_queue);
2067 return 1;
2071 * wait_task_context_switch - wait for a thread to complete at least one
2072 * context switch.
2074 * @p must not be current.
2076 void wait_task_context_switch(struct task_struct *p)
2078 unsigned long nvcsw, nivcsw, flags;
2079 int running;
2080 struct rq *rq;
2082 nvcsw = p->nvcsw;
2083 nivcsw = p->nivcsw;
2084 for (;;) {
2086 * The runqueue is assigned before the actual context
2087 * switch. We need to take the runqueue lock.
2089 * We could check initially without the lock but it is
2090 * very likely that we need to take the lock in every
2091 * iteration.
2093 rq = task_rq_lock(p, &flags);
2094 running = task_running(rq, p);
2095 task_rq_unlock(rq, &flags);
2097 if (likely(!running))
2098 break;
2100 * The switch count is incremented before the actual
2101 * context switch. We thus wait for two switches to be
2102 * sure at least one completed.
2104 if ((p->nvcsw - nvcsw) > 1)
2105 break;
2106 if ((p->nivcsw - nivcsw) > 1)
2107 break;
2109 cpu_relax();
2114 * wait_task_inactive - wait for a thread to unschedule.
2116 * If @match_state is nonzero, it's the @p->state value just checked and
2117 * not expected to change. If it changes, i.e. @p might have woken up,
2118 * then return zero. When we succeed in waiting for @p to be off its CPU,
2119 * we return a positive number (its total switch count). If a second call
2120 * a short while later returns the same number, the caller can be sure that
2121 * @p has remained unscheduled the whole time.
2123 * The caller must ensure that the task *will* unschedule sometime soon,
2124 * else this function might spin for a *long* time. This function can't
2125 * be called with interrupts off, or it may introduce deadlock with
2126 * smp_call_function() if an IPI is sent by the same process we are
2127 * waiting to become inactive.
2129 unsigned long wait_task_inactive(struct task_struct *p, long match_state)
2131 unsigned long flags;
2132 int running, on_rq;
2133 unsigned long ncsw;
2134 struct rq *rq;
2136 for (;;) {
2138 * We do the initial early heuristics without holding
2139 * any task-queue locks at all. We'll only try to get
2140 * the runqueue lock when things look like they will
2141 * work out!
2143 rq = task_rq(p);
2146 * If the task is actively running on another CPU
2147 * still, just relax and busy-wait without holding
2148 * any locks.
2150 * NOTE! Since we don't hold any locks, it's not
2151 * even sure that "rq" stays as the right runqueue!
2152 * But we don't care, since "task_running()" will
2153 * return false if the runqueue has changed and p
2154 * is actually now running somewhere else!
2156 while (task_running(rq, p)) {
2157 if (match_state && unlikely(p->state != match_state))
2158 return 0;
2159 cpu_relax();
2163 * Ok, time to look more closely! We need the rq
2164 * lock now, to be *sure*. If we're wrong, we'll
2165 * just go back and repeat.
2167 rq = task_rq_lock(p, &flags);
2168 trace_sched_wait_task(rq, p);
2169 running = task_running(rq, p);
2170 on_rq = p->se.on_rq;
2171 ncsw = 0;
2172 if (!match_state || p->state == match_state)
2173 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
2174 task_rq_unlock(rq, &flags);
2177 * If it changed from the expected state, bail out now.
2179 if (unlikely(!ncsw))
2180 break;
2183 * Was it really running after all now that we
2184 * checked with the proper locks actually held?
2186 * Oops. Go back and try again..
2188 if (unlikely(running)) {
2189 cpu_relax();
2190 continue;
2194 * It's not enough that it's not actively running,
2195 * it must be off the runqueue _entirely_, and not
2196 * preempted!
2198 * So if it was still runnable (but just not actively
2199 * running right now), it's preempted, and we should
2200 * yield - it could be a while.
2202 if (unlikely(on_rq)) {
2203 schedule_timeout_uninterruptible(1);
2204 continue;
2208 * Ahh, all good. It wasn't running, and it wasn't
2209 * runnable, which means that it will never become
2210 * running in the future either. We're all done!
2212 break;
2215 return ncsw;
2218 /***
2219 * kick_process - kick a running thread to enter/exit the kernel
2220 * @p: the to-be-kicked thread
2222 * Cause a process which is running on another CPU to enter
2223 * kernel-mode, without any delay. (to get signals handled.)
2225 * NOTE: this function doesnt have to take the runqueue lock,
2226 * because all it wants to ensure is that the remote task enters
2227 * the kernel. If the IPI races and the task has been migrated
2228 * to another CPU then no harm is done and the purpose has been
2229 * achieved as well.
2231 void kick_process(struct task_struct *p)
2233 int cpu;
2235 preempt_disable();
2236 cpu = task_cpu(p);
2237 if ((cpu != smp_processor_id()) && task_curr(p))
2238 smp_send_reschedule(cpu);
2239 preempt_enable();
2241 EXPORT_SYMBOL_GPL(kick_process);
2244 * Return a low guess at the load of a migration-source cpu weighted
2245 * according to the scheduling class and "nice" value.
2247 * We want to under-estimate the load of migration sources, to
2248 * balance conservatively.
2250 static unsigned long source_load(int cpu, int type)
2252 struct rq *rq = cpu_rq(cpu);
2253 unsigned long total = weighted_cpuload(cpu);
2255 if (type == 0 || !sched_feat(LB_BIAS))
2256 return total;
2258 return min(rq->cpu_load[type-1], total);
2262 * Return a high guess at the load of a migration-target cpu weighted
2263 * according to the scheduling class and "nice" value.
2265 static unsigned long target_load(int cpu, int type)
2267 struct rq *rq = cpu_rq(cpu);
2268 unsigned long total = weighted_cpuload(cpu);
2270 if (type == 0 || !sched_feat(LB_BIAS))
2271 return total;
2273 return max(rq->cpu_load[type-1], total);
2277 * find_idlest_group finds and returns the least busy CPU group within the
2278 * domain.
2280 static struct sched_group *
2281 find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
2283 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
2284 unsigned long min_load = ULONG_MAX, this_load = 0;
2285 int load_idx = sd->forkexec_idx;
2286 int imbalance = 100 + (sd->imbalance_pct-100)/2;
2288 do {
2289 unsigned long load, avg_load;
2290 int local_group;
2291 int i;
2293 /* Skip over this group if it has no CPUs allowed */
2294 if (!cpumask_intersects(sched_group_cpus(group),
2295 &p->cpus_allowed))
2296 continue;
2298 local_group = cpumask_test_cpu(this_cpu,
2299 sched_group_cpus(group));
2301 /* Tally up the load of all CPUs in the group */
2302 avg_load = 0;
2304 for_each_cpu(i, sched_group_cpus(group)) {
2305 /* Bias balancing toward cpus of our domain */
2306 if (local_group)
2307 load = source_load(i, load_idx);
2308 else
2309 load = target_load(i, load_idx);
2311 avg_load += load;
2314 /* Adjust by relative CPU power of the group */
2315 avg_load = (avg_load * SCHED_LOAD_SCALE) / group->cpu_power;
2317 if (local_group) {
2318 this_load = avg_load;
2319 this = group;
2320 } else if (avg_load < min_load) {
2321 min_load = avg_load;
2322 idlest = group;
2324 } while (group = group->next, group != sd->groups);
2326 if (!idlest || 100*this_load < imbalance*min_load)
2327 return NULL;
2328 return idlest;
2332 * find_idlest_cpu - find the idlest cpu among the cpus in group.
2334 static int
2335 find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
2337 unsigned long load, min_load = ULONG_MAX;
2338 int idlest = -1;
2339 int i;
2341 /* Traverse only the allowed CPUs */
2342 for_each_cpu_and(i, sched_group_cpus(group), &p->cpus_allowed) {
2343 load = weighted_cpuload(i);
2345 if (load < min_load || (load == min_load && i == this_cpu)) {
2346 min_load = load;
2347 idlest = i;
2351 return idlest;
2355 * sched_balance_self: balance the current task (running on cpu) in domains
2356 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
2357 * SD_BALANCE_EXEC.
2359 * Balance, ie. select the least loaded group.
2361 * Returns the target CPU number, or the same CPU if no balancing is needed.
2363 * preempt must be disabled.
2365 static int sched_balance_self(int cpu, int flag)
2367 struct task_struct *t = current;
2368 struct sched_domain *tmp, *sd = NULL;
2370 for_each_domain(cpu, tmp) {
2372 * If power savings logic is enabled for a domain, stop there.
2374 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
2375 break;
2376 if (tmp->flags & flag)
2377 sd = tmp;
2380 if (sd)
2381 update_shares(sd);
2383 while (sd) {
2384 struct sched_group *group;
2385 int new_cpu, weight;
2387 if (!(sd->flags & flag)) {
2388 sd = sd->child;
2389 continue;
2392 group = find_idlest_group(sd, t, cpu);
2393 if (!group) {
2394 sd = sd->child;
2395 continue;
2398 new_cpu = find_idlest_cpu(group, t, cpu);
2399 if (new_cpu == -1 || new_cpu == cpu) {
2400 /* Now try balancing at a lower domain level of cpu */
2401 sd = sd->child;
2402 continue;
2405 /* Now try balancing at a lower domain level of new_cpu */
2406 cpu = new_cpu;
2407 weight = cpumask_weight(sched_domain_span(sd));
2408 sd = NULL;
2409 for_each_domain(cpu, tmp) {
2410 if (weight <= cpumask_weight(sched_domain_span(tmp)))
2411 break;
2412 if (tmp->flags & flag)
2413 sd = tmp;
2415 /* while loop will break here if sd == NULL */
2418 return cpu;
2421 #endif /* CONFIG_SMP */
2424 * task_oncpu_function_call - call a function on the cpu on which a task runs
2425 * @p: the task to evaluate
2426 * @func: the function to be called
2427 * @info: the function call argument
2429 * Calls the function @func when the task is currently running. This might
2430 * be on the current CPU, which just calls the function directly
2432 void task_oncpu_function_call(struct task_struct *p,
2433 void (*func) (void *info), void *info)
2435 int cpu;
2437 preempt_disable();
2438 cpu = task_cpu(p);
2439 if (task_curr(p))
2440 smp_call_function_single(cpu, func, info, 1);
2441 preempt_enable();
2444 /***
2445 * try_to_wake_up - wake up a thread
2446 * @p: the to-be-woken-up thread
2447 * @state: the mask of task states that can be woken
2448 * @sync: do a synchronous wakeup?
2450 * Put it on the run-queue if it's not already there. The "current"
2451 * thread is always on the run-queue (except when the actual
2452 * re-schedule is in progress), and as such you're allowed to do
2453 * the simpler "current->state = TASK_RUNNING" to mark yourself
2454 * runnable without the overhead of this.
2456 * returns failure only if the task is already active.
2458 static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
2460 int cpu, orig_cpu, this_cpu, success = 0;
2461 unsigned long flags;
2462 long old_state;
2463 struct rq *rq;
2465 if (!sched_feat(SYNC_WAKEUPS))
2466 sync = 0;
2468 #ifdef CONFIG_SMP
2469 if (sched_feat(LB_WAKEUP_UPDATE) && !root_task_group_empty()) {
2470 struct sched_domain *sd;
2472 this_cpu = raw_smp_processor_id();
2473 cpu = task_cpu(p);
2475 for_each_domain(this_cpu, sd) {
2476 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2477 update_shares(sd);
2478 break;
2482 #endif
2484 smp_wmb();
2485 rq = task_rq_lock(p, &flags);
2486 update_rq_clock(rq);
2487 old_state = p->state;
2488 if (!(old_state & state))
2489 goto out;
2491 if (p->se.on_rq)
2492 goto out_running;
2494 cpu = task_cpu(p);
2495 orig_cpu = cpu;
2496 this_cpu = smp_processor_id();
2498 #ifdef CONFIG_SMP
2499 if (unlikely(task_running(rq, p)))
2500 goto out_activate;
2502 cpu = p->sched_class->select_task_rq(p, sync);
2503 if (cpu != orig_cpu) {
2504 set_task_cpu(p, cpu);
2505 task_rq_unlock(rq, &flags);
2506 /* might preempt at this point */
2507 rq = task_rq_lock(p, &flags);
2508 old_state = p->state;
2509 if (!(old_state & state))
2510 goto out;
2511 if (p->se.on_rq)
2512 goto out_running;
2514 this_cpu = smp_processor_id();
2515 cpu = task_cpu(p);
2518 #ifdef CONFIG_SCHEDSTATS
2519 schedstat_inc(rq, ttwu_count);
2520 if (cpu == this_cpu)
2521 schedstat_inc(rq, ttwu_local);
2522 else {
2523 struct sched_domain *sd;
2524 for_each_domain(this_cpu, sd) {
2525 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
2526 schedstat_inc(sd, ttwu_wake_remote);
2527 break;
2531 #endif /* CONFIG_SCHEDSTATS */
2533 out_activate:
2534 #endif /* CONFIG_SMP */
2535 schedstat_inc(p, se.nr_wakeups);
2536 if (sync)
2537 schedstat_inc(p, se.nr_wakeups_sync);
2538 if (orig_cpu != cpu)
2539 schedstat_inc(p, se.nr_wakeups_migrate);
2540 if (cpu == this_cpu)
2541 schedstat_inc(p, se.nr_wakeups_local);
2542 else
2543 schedstat_inc(p, se.nr_wakeups_remote);
2544 activate_task(rq, p, 1);
2545 success = 1;
2548 * Only attribute actual wakeups done by this task.
2550 if (!in_interrupt()) {
2551 struct sched_entity *se = &current->se;
2552 u64 sample = se->sum_exec_runtime;
2554 if (se->last_wakeup)
2555 sample -= se->last_wakeup;
2556 else
2557 sample -= se->start_runtime;
2558 update_avg(&se->avg_wakeup, sample);
2560 se->last_wakeup = se->sum_exec_runtime;
2563 out_running:
2564 trace_sched_wakeup(rq, p, success);
2565 check_preempt_curr(rq, p, sync);
2567 p->state = TASK_RUNNING;
2568 #ifdef CONFIG_SMP
2569 if (p->sched_class->task_wake_up)
2570 p->sched_class->task_wake_up(rq, p);
2571 #endif
2572 out:
2573 task_rq_unlock(rq, &flags);
2575 return success;
2579 * wake_up_process - Wake up a specific process
2580 * @p: The process to be woken up.
2582 * Attempt to wake up the nominated process and move it to the set of runnable
2583 * processes. Returns 1 if the process was woken up, 0 if it was already
2584 * running.
2586 * It may be assumed that this function implies a write memory barrier before
2587 * changing the task state if and only if any tasks are woken up.
2589 int wake_up_process(struct task_struct *p)
2591 return try_to_wake_up(p, TASK_ALL, 0);
2593 EXPORT_SYMBOL(wake_up_process);
2595 int wake_up_state(struct task_struct *p, unsigned int state)
2597 return try_to_wake_up(p, state, 0);
2601 * Perform scheduler related setup for a newly forked process p.
2602 * p is forked by current.
2604 * __sched_fork() is basic setup used by init_idle() too:
2606 static void __sched_fork(struct task_struct *p)
2608 p->se.exec_start = 0;
2609 p->se.sum_exec_runtime = 0;
2610 p->se.prev_sum_exec_runtime = 0;
2611 p->se.nr_migrations = 0;
2612 p->se.last_wakeup = 0;
2613 p->se.avg_overlap = 0;
2614 p->se.start_runtime = 0;
2615 p->se.avg_wakeup = sysctl_sched_wakeup_granularity;
2617 #ifdef CONFIG_SCHEDSTATS
2618 p->se.wait_start = 0;
2619 p->se.wait_max = 0;
2620 p->se.wait_count = 0;
2621 p->se.wait_sum = 0;
2623 p->se.sleep_start = 0;
2624 p->se.sleep_max = 0;
2625 p->se.sum_sleep_runtime = 0;
2627 p->se.block_start = 0;
2628 p->se.block_max = 0;
2629 p->se.exec_max = 0;
2630 p->se.slice_max = 0;
2632 p->se.nr_migrations_cold = 0;
2633 p->se.nr_failed_migrations_affine = 0;
2634 p->se.nr_failed_migrations_running = 0;
2635 p->se.nr_failed_migrations_hot = 0;
2636 p->se.nr_forced_migrations = 0;
2637 p->se.nr_forced2_migrations = 0;
2639 p->se.nr_wakeups = 0;
2640 p->se.nr_wakeups_sync = 0;
2641 p->se.nr_wakeups_migrate = 0;
2642 p->se.nr_wakeups_local = 0;
2643 p->se.nr_wakeups_remote = 0;
2644 p->se.nr_wakeups_affine = 0;
2645 p->se.nr_wakeups_affine_attempts = 0;
2646 p->se.nr_wakeups_passive = 0;
2647 p->se.nr_wakeups_idle = 0;
2649 #endif
2651 INIT_LIST_HEAD(&p->rt.run_list);
2652 p->se.on_rq = 0;
2653 INIT_LIST_HEAD(&p->se.group_node);
2655 #ifdef CONFIG_PREEMPT_NOTIFIERS
2656 INIT_HLIST_HEAD(&p->preempt_notifiers);
2657 #endif
2660 * We mark the process as running here, but have not actually
2661 * inserted it onto the runqueue yet. This guarantees that
2662 * nobody will actually run it, and a signal or other external
2663 * event cannot wake it up and insert it on the runqueue either.
2665 p->state = TASK_RUNNING;
2669 * fork()/clone()-time setup:
2671 void sched_fork(struct task_struct *p, int clone_flags)
2673 int cpu = get_cpu();
2675 __sched_fork(p);
2677 #ifdef CONFIG_SMP
2678 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
2679 #endif
2680 set_task_cpu(p, cpu);
2683 * Make sure we do not leak PI boosting priority to the child.
2685 p->prio = current->normal_prio;
2688 * Revert to default priority/policy on fork if requested.
2690 if (unlikely(p->sched_reset_on_fork)) {
2691 if (p->policy == SCHED_FIFO || p->policy == SCHED_RR)
2692 p->policy = SCHED_NORMAL;
2694 if (p->normal_prio < DEFAULT_PRIO)
2695 p->prio = DEFAULT_PRIO;
2697 if (PRIO_TO_NICE(p->static_prio) < 0) {
2698 p->static_prio = NICE_TO_PRIO(0);
2699 set_load_weight(p);
2703 * We don't need the reset flag anymore after the fork. It has
2704 * fulfilled its duty:
2706 p->sched_reset_on_fork = 0;
2709 if (!rt_prio(p->prio))
2710 p->sched_class = &fair_sched_class;
2712 #if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
2713 if (likely(sched_info_on()))
2714 memset(&p->sched_info, 0, sizeof(p->sched_info));
2715 #endif
2716 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
2717 p->oncpu = 0;
2718 #endif
2719 #ifdef CONFIG_PREEMPT
2720 /* Want to start with kernel preemption disabled. */
2721 task_thread_info(p)->preempt_count = 1;
2722 #endif
2723 plist_node_init(&p->pushable_tasks, MAX_PRIO);
2725 put_cpu();
2729 * wake_up_new_task - wake up a newly created task for the first time.
2731 * This function will do some initial scheduler statistics housekeeping
2732 * that must be done for every newly created context, then puts the task
2733 * on the runqueue and wakes it.
2735 void wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
2737 unsigned long flags;
2738 struct rq *rq;
2740 rq = task_rq_lock(p, &flags);
2741 BUG_ON(p->state != TASK_RUNNING);
2742 update_rq_clock(rq);
2744 p->prio = effective_prio(p);
2746 if (!p->sched_class->task_new || !current->se.on_rq) {
2747 activate_task(rq, p, 0);
2748 } else {
2750 * Let the scheduling class do new task startup
2751 * management (if any):
2753 p->sched_class->task_new(rq, p);
2754 inc_nr_running(rq);
2756 trace_sched_wakeup_new(rq, p, 1);
2757 check_preempt_curr(rq, p, 0);
2758 #ifdef CONFIG_SMP
2759 if (p->sched_class->task_wake_up)
2760 p->sched_class->task_wake_up(rq, p);
2761 #endif
2762 task_rq_unlock(rq, &flags);
2765 #ifdef CONFIG_PREEMPT_NOTIFIERS
2768 * preempt_notifier_register - tell me when current is being preempted & rescheduled
2769 * @notifier: notifier struct to register
2771 void preempt_notifier_register(struct preempt_notifier *notifier)
2773 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2775 EXPORT_SYMBOL_GPL(preempt_notifier_register);
2778 * preempt_notifier_unregister - no longer interested in preemption notifications
2779 * @notifier: notifier struct to unregister
2781 * This is safe to call from within a preemption notifier.
2783 void preempt_notifier_unregister(struct preempt_notifier *notifier)
2785 hlist_del(&notifier->link);
2787 EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2789 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2791 struct preempt_notifier *notifier;
2792 struct hlist_node *node;
2794 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2795 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2798 static void
2799 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2800 struct task_struct *next)
2802 struct preempt_notifier *notifier;
2803 struct hlist_node *node;
2805 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
2806 notifier->ops->sched_out(notifier, next);
2809 #else /* !CONFIG_PREEMPT_NOTIFIERS */
2811 static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2815 static void
2816 fire_sched_out_preempt_notifiers(struct task_struct *curr,
2817 struct task_struct *next)
2821 #endif /* CONFIG_PREEMPT_NOTIFIERS */
2824 * prepare_task_switch - prepare to switch tasks
2825 * @rq: the runqueue preparing to switch
2826 * @prev: the current task that is being switched out
2827 * @next: the task we are going to switch to.
2829 * This is called with the rq lock held and interrupts off. It must
2830 * be paired with a subsequent finish_task_switch after the context
2831 * switch.
2833 * prepare_task_switch sets up locking and calls architecture specific
2834 * hooks.
2836 static inline void
2837 prepare_task_switch(struct rq *rq, struct task_struct *prev,
2838 struct task_struct *next)
2840 fire_sched_out_preempt_notifiers(prev, next);
2841 prepare_lock_switch(rq, next);
2842 prepare_arch_switch(next);
2846 * finish_task_switch - clean up after a task-switch
2847 * @rq: runqueue associated with task-switch
2848 * @prev: the thread we just switched away from.
2850 * finish_task_switch must be called after the context switch, paired
2851 * with a prepare_task_switch call before the context switch.
2852 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2853 * and do any other architecture-specific cleanup actions.
2855 * Note that we may have delayed dropping an mm in context_switch(). If
2856 * so, we finish that here outside of the runqueue lock. (Doing it
2857 * with the lock held can cause deadlocks; see schedule() for
2858 * details.)
2860 static void finish_task_switch(struct rq *rq, struct task_struct *prev)
2861 __releases(rq->lock)
2863 struct mm_struct *mm = rq->prev_mm;
2864 long prev_state;
2866 rq->prev_mm = NULL;
2869 * A task struct has one reference for the use as "current".
2870 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
2871 * schedule one last time. The schedule call will never return, and
2872 * the scheduled task must drop that reference.
2873 * The test for TASK_DEAD must occur while the runqueue locks are
2874 * still held, otherwise prev could be scheduled on another cpu, die
2875 * there before we look at prev->state, and then the reference would
2876 * be dropped twice.
2877 * Manfred Spraul <manfred@colorfullife.com>
2879 prev_state = prev->state;
2880 finish_arch_switch(prev);
2881 perf_counter_task_sched_in(current, cpu_of(rq));
2882 finish_lock_switch(rq, prev);
2884 fire_sched_in_preempt_notifiers(current);
2885 if (mm)
2886 mmdrop(mm);
2887 if (unlikely(prev_state == TASK_DEAD)) {
2889 * Remove function-return probe instances associated with this
2890 * task and put them back on the free list.
2892 kprobe_flush_task(prev);
2893 put_task_struct(prev);
2897 #ifdef CONFIG_SMP
2899 /* assumes rq->lock is held */
2900 static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
2902 if (prev->sched_class->pre_schedule)
2903 prev->sched_class->pre_schedule(rq, prev);
2906 /* rq->lock is NOT held, but preemption is disabled */
2907 static inline void post_schedule(struct rq *rq)
2909 if (rq->post_schedule) {
2910 unsigned long flags;
2912 spin_lock_irqsave(&rq->lock, flags);
2913 if (rq->curr->sched_class->post_schedule)
2914 rq->curr->sched_class->post_schedule(rq);
2915 spin_unlock_irqrestore(&rq->lock, flags);
2917 rq->post_schedule = 0;
2921 #else
2923 static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2927 static inline void post_schedule(struct rq *rq)
2931 #endif
2934 * schedule_tail - first thing a freshly forked thread must call.
2935 * @prev: the thread we just switched away from.
2937 asmlinkage void schedule_tail(struct task_struct *prev)
2938 __releases(rq->lock)
2940 struct rq *rq = this_rq();
2942 finish_task_switch(rq, prev);
2945 * FIXME: do we need to worry about rq being invalidated by the
2946 * task_switch?
2948 post_schedule(rq);
2950 #ifdef __ARCH_WANT_UNLOCKED_CTXSW
2951 /* In this case, finish_task_switch does not reenable preemption */
2952 preempt_enable();
2953 #endif
2954 if (current->set_child_tid)
2955 put_user(task_pid_vnr(current), current->set_child_tid);
2959 * context_switch - switch to the new MM and the new
2960 * thread's register state.
2962 static inline void
2963 context_switch(struct rq *rq, struct task_struct *prev,
2964 struct task_struct *next)
2966 struct mm_struct *mm, *oldmm;
2968 prepare_task_switch(rq, prev, next);
2969 trace_sched_switch(rq, prev, next);
2970 mm = next->mm;
2971 oldmm = prev->active_mm;
2973 * For paravirt, this is coupled with an exit in switch_to to
2974 * combine the page table reload and the switch backend into
2975 * one hypercall.
2977 arch_start_context_switch(prev);
2979 if (unlikely(!mm)) {
2980 next->active_mm = oldmm;
2981 atomic_inc(&oldmm->mm_count);
2982 enter_lazy_tlb(oldmm, next);
2983 } else
2984 switch_mm(oldmm, mm, next);
2986 if (unlikely(!prev->mm)) {
2987 prev->active_mm = NULL;
2988 rq->prev_mm = oldmm;
2991 * Since the runqueue lock will be released by the next
2992 * task (which is an invalid locking op but in the case
2993 * of the scheduler it's an obvious special-case), so we
2994 * do an early lockdep release here:
2996 #ifndef __ARCH_WANT_UNLOCKED_CTXSW
2997 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
2998 #endif
3000 /* Here we just switch the register state and the stack. */
3001 switch_to(prev, next, prev);
3003 barrier();
3005 * this_rq must be evaluated again because prev may have moved
3006 * CPUs since it called schedule(), thus the 'rq' on its stack
3007 * frame will be invalid.
3009 finish_task_switch(this_rq(), prev);
3013 * nr_running, nr_uninterruptible and nr_context_switches:
3015 * externally visible scheduler statistics: current number of runnable
3016 * threads, current number of uninterruptible-sleeping threads, total
3017 * number of context switches performed since bootup.
3019 unsigned long nr_running(void)
3021 unsigned long i, sum = 0;
3023 for_each_online_cpu(i)
3024 sum += cpu_rq(i)->nr_running;
3026 return sum;
3029 unsigned long nr_uninterruptible(void)
3031 unsigned long i, sum = 0;
3033 for_each_possible_cpu(i)
3034 sum += cpu_rq(i)->nr_uninterruptible;
3037 * Since we read the counters lockless, it might be slightly
3038 * inaccurate. Do not allow it to go below zero though:
3040 if (unlikely((long)sum < 0))
3041 sum = 0;
3043 return sum;
3046 unsigned long long nr_context_switches(void)
3048 int i;
3049 unsigned long long sum = 0;
3051 for_each_possible_cpu(i)
3052 sum += cpu_rq(i)->nr_switches;
3054 return sum;
3057 unsigned long nr_iowait(void)
3059 unsigned long i, sum = 0;
3061 for_each_possible_cpu(i)
3062 sum += atomic_read(&cpu_rq(i)->nr_iowait);
3064 return sum;
3067 /* Variables and functions for calc_load */
3068 static atomic_long_t calc_load_tasks;
3069 static unsigned long calc_load_update;
3070 unsigned long avenrun[3];
3071 EXPORT_SYMBOL(avenrun);
3074 * get_avenrun - get the load average array
3075 * @loads: pointer to dest load array
3076 * @offset: offset to add
3077 * @shift: shift count to shift the result left
3079 * These values are estimates at best, so no need for locking.
3081 void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
3083 loads[0] = (avenrun[0] + offset) << shift;
3084 loads[1] = (avenrun[1] + offset) << shift;
3085 loads[2] = (avenrun[2] + offset) << shift;
3088 static unsigned long
3089 calc_load(unsigned long load, unsigned long exp, unsigned long active)
3091 load *= exp;
3092 load += active * (FIXED_1 - exp);
3093 return load >> FSHIFT;
3097 * calc_load - update the avenrun load estimates 10 ticks after the
3098 * CPUs have updated calc_load_tasks.
3100 void calc_global_load(void)
3102 unsigned long upd = calc_load_update + 10;
3103 long active;
3105 if (time_before(jiffies, upd))
3106 return;
3108 active = atomic_long_read(&calc_load_tasks);
3109 active = active > 0 ? active * FIXED_1 : 0;
3111 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
3112 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
3113 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
3115 calc_load_update += LOAD_FREQ;
3119 * Either called from update_cpu_load() or from a cpu going idle
3121 static void calc_load_account_active(struct rq *this_rq)
3123 long nr_active, delta;
3125 nr_active = this_rq->nr_running;
3126 nr_active += (long) this_rq->nr_uninterruptible;
3128 if (nr_active != this_rq->calc_load_active) {
3129 delta = nr_active - this_rq->calc_load_active;
3130 this_rq->calc_load_active = nr_active;
3131 atomic_long_add(delta, &calc_load_tasks);
3136 * Externally visible per-cpu scheduler statistics:
3137 * cpu_nr_migrations(cpu) - number of migrations into that cpu
3139 u64 cpu_nr_migrations(int cpu)
3141 return cpu_rq(cpu)->nr_migrations_in;
3145 * Update rq->cpu_load[] statistics. This function is usually called every
3146 * scheduler tick (TICK_NSEC).
3148 static void update_cpu_load(struct rq *this_rq)
3150 unsigned long this_load = this_rq->load.weight;
3151 int i, scale;
3153 this_rq->nr_load_updates++;
3155 /* Update our load: */
3156 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
3157 unsigned long old_load, new_load;
3159 /* scale is effectively 1 << i now, and >> i divides by scale */
3161 old_load = this_rq->cpu_load[i];
3162 new_load = this_load;
3164 * Round up the averaging division if load is increasing. This
3165 * prevents us from getting stuck on 9 if the load is 10, for
3166 * example.
3168 if (new_load > old_load)
3169 new_load += scale-1;
3170 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
3173 if (time_after_eq(jiffies, this_rq->calc_load_update)) {
3174 this_rq->calc_load_update += LOAD_FREQ;
3175 calc_load_account_active(this_rq);
3179 #ifdef CONFIG_SMP
3182 * double_rq_lock - safely lock two runqueues
3184 * Note this does not disable interrupts like task_rq_lock,
3185 * you need to do so manually before calling.
3187 static void double_rq_lock(struct rq *rq1, struct rq *rq2)
3188 __acquires(rq1->lock)
3189 __acquires(rq2->lock)
3191 BUG_ON(!irqs_disabled());
3192 if (rq1 == rq2) {
3193 spin_lock(&rq1->lock);
3194 __acquire(rq2->lock); /* Fake it out ;) */
3195 } else {
3196 if (rq1 < rq2) {
3197 spin_lock(&rq1->lock);
3198 spin_lock_nested(&rq2->lock, SINGLE_DEPTH_NESTING);
3199 } else {
3200 spin_lock(&rq2->lock);
3201 spin_lock_nested(&rq1->lock, SINGLE_DEPTH_NESTING);
3204 update_rq_clock(rq1);
3205 update_rq_clock(rq2);
3209 * double_rq_unlock - safely unlock two runqueues
3211 * Note this does not restore interrupts like task_rq_unlock,
3212 * you need to do so manually after calling.
3214 static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
3215 __releases(rq1->lock)
3216 __releases(rq2->lock)
3218 spin_unlock(&rq1->lock);
3219 if (rq1 != rq2)
3220 spin_unlock(&rq2->lock);
3221 else
3222 __release(rq2->lock);
3226 * If dest_cpu is allowed for this process, migrate the task to it.
3227 * This is accomplished by forcing the cpu_allowed mask to only
3228 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
3229 * the cpu_allowed mask is restored.
3231 static void sched_migrate_task(struct task_struct *p, int dest_cpu)
3233 struct migration_req req;
3234 unsigned long flags;
3235 struct rq *rq;
3237 rq = task_rq_lock(p, &flags);
3238 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed)
3239 || unlikely(!cpu_active(dest_cpu)))
3240 goto out;
3242 /* force the process onto the specified CPU */
3243 if (migrate_task(p, dest_cpu, &req)) {
3244 /* Need to wait for migration thread (might exit: take ref). */
3245 struct task_struct *mt = rq->migration_thread;
3247 get_task_struct(mt);
3248 task_rq_unlock(rq, &flags);
3249 wake_up_process(mt);
3250 put_task_struct(mt);
3251 wait_for_completion(&req.done);
3253 return;
3255 out:
3256 task_rq_unlock(rq, &flags);
3260 * sched_exec - execve() is a valuable balancing opportunity, because at
3261 * this point the task has the smallest effective memory and cache footprint.
3263 void sched_exec(void)
3265 int new_cpu, this_cpu = get_cpu();
3266 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
3267 put_cpu();
3268 if (new_cpu != this_cpu)
3269 sched_migrate_task(current, new_cpu);
3273 * pull_task - move a task from a remote runqueue to the local runqueue.
3274 * Both runqueues must be locked.
3276 static void pull_task(struct rq *src_rq, struct task_struct *p,
3277 struct rq *this_rq, int this_cpu)
3279 deactivate_task(src_rq, p, 0);
3280 set_task_cpu(p, this_cpu);
3281 activate_task(this_rq, p, 0);
3283 * Note that idle threads have a prio of MAX_PRIO, for this test
3284 * to be always true for them.
3286 check_preempt_curr(this_rq, p, 0);
3290 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
3292 static
3293 int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
3294 struct sched_domain *sd, enum cpu_idle_type idle,
3295 int *all_pinned)
3297 int tsk_cache_hot = 0;
3299 * We do not migrate tasks that are:
3300 * 1) running (obviously), or
3301 * 2) cannot be migrated to this CPU due to cpus_allowed, or
3302 * 3) are cache-hot on their current CPU.
3304 if (!cpumask_test_cpu(this_cpu, &p->cpus_allowed)) {
3305 schedstat_inc(p, se.nr_failed_migrations_affine);
3306 return 0;
3308 *all_pinned = 0;
3310 if (task_running(rq, p)) {
3311 schedstat_inc(p, se.nr_failed_migrations_running);
3312 return 0;
3316 * Aggressive migration if:
3317 * 1) task is cache cold, or
3318 * 2) too many balance attempts have failed.
3321 tsk_cache_hot = task_hot(p, rq->clock, sd);
3322 if (!tsk_cache_hot ||
3323 sd->nr_balance_failed > sd->cache_nice_tries) {
3324 #ifdef CONFIG_SCHEDSTATS
3325 if (tsk_cache_hot) {
3326 schedstat_inc(sd, lb_hot_gained[idle]);
3327 schedstat_inc(p, se.nr_forced_migrations);
3329 #endif
3330 return 1;
3333 if (tsk_cache_hot) {
3334 schedstat_inc(p, se.nr_failed_migrations_hot);
3335 return 0;
3337 return 1;
3340 static unsigned long
3341 balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3342 unsigned long max_load_move, struct sched_domain *sd,
3343 enum cpu_idle_type idle, int *all_pinned,
3344 int *this_best_prio, struct rq_iterator *iterator)
3346 int loops = 0, pulled = 0, pinned = 0;
3347 struct task_struct *p;
3348 long rem_load_move = max_load_move;
3350 if (max_load_move == 0)
3351 goto out;
3353 pinned = 1;
3356 * Start the load-balancing iterator:
3358 p = iterator->start(iterator->arg);
3359 next:
3360 if (!p || loops++ > sysctl_sched_nr_migrate)
3361 goto out;
3363 if ((p->se.load.weight >> 1) > rem_load_move ||
3364 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3365 p = iterator->next(iterator->arg);
3366 goto next;
3369 pull_task(busiest, p, this_rq, this_cpu);
3370 pulled++;
3371 rem_load_move -= p->se.load.weight;
3373 #ifdef CONFIG_PREEMPT
3375 * NEWIDLE balancing is a source of latency, so preemptible kernels
3376 * will stop after the first task is pulled to minimize the critical
3377 * section.
3379 if (idle == CPU_NEWLY_IDLE)
3380 goto out;
3381 #endif
3384 * We only want to steal up to the prescribed amount of weighted load.
3386 if (rem_load_move > 0) {
3387 if (p->prio < *this_best_prio)
3388 *this_best_prio = p->prio;
3389 p = iterator->next(iterator->arg);
3390 goto next;
3392 out:
3394 * Right now, this is one of only two places pull_task() is called,
3395 * so we can safely collect pull_task() stats here rather than
3396 * inside pull_task().
3398 schedstat_add(sd, lb_gained[idle], pulled);
3400 if (all_pinned)
3401 *all_pinned = pinned;
3403 return max_load_move - rem_load_move;
3407 * move_tasks tries to move up to max_load_move weighted load from busiest to
3408 * this_rq, as part of a balancing operation within domain "sd".
3409 * Returns 1 if successful and 0 otherwise.
3411 * Called with both runqueues locked.
3413 static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3414 unsigned long max_load_move,
3415 struct sched_domain *sd, enum cpu_idle_type idle,
3416 int *all_pinned)
3418 const struct sched_class *class = sched_class_highest;
3419 unsigned long total_load_moved = 0;
3420 int this_best_prio = this_rq->curr->prio;
3422 do {
3423 total_load_moved +=
3424 class->load_balance(this_rq, this_cpu, busiest,
3425 max_load_move - total_load_moved,
3426 sd, idle, all_pinned, &this_best_prio);
3427 class = class->next;
3429 #ifdef CONFIG_PREEMPT
3431 * NEWIDLE balancing is a source of latency, so preemptible
3432 * kernels will stop after the first task is pulled to minimize
3433 * the critical section.
3435 if (idle == CPU_NEWLY_IDLE && this_rq->nr_running)
3436 break;
3437 #endif
3438 } while (class && max_load_move > total_load_moved);
3440 return total_load_moved > 0;
3443 static int
3444 iter_move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3445 struct sched_domain *sd, enum cpu_idle_type idle,
3446 struct rq_iterator *iterator)
3448 struct task_struct *p = iterator->start(iterator->arg);
3449 int pinned = 0;
3451 while (p) {
3452 if (can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
3453 pull_task(busiest, p, this_rq, this_cpu);
3455 * Right now, this is only the second place pull_task()
3456 * is called, so we can safely collect pull_task()
3457 * stats here rather than inside pull_task().
3459 schedstat_inc(sd, lb_gained[idle]);
3461 return 1;
3463 p = iterator->next(iterator->arg);
3466 return 0;
3470 * move_one_task tries to move exactly one task from busiest to this_rq, as
3471 * part of active balancing operations within "domain".
3472 * Returns 1 if successful and 0 otherwise.
3474 * Called with both runqueues locked.
3476 static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
3477 struct sched_domain *sd, enum cpu_idle_type idle)
3479 const struct sched_class *class;
3481 for_each_class(class) {
3482 if (class->move_one_task(this_rq, this_cpu, busiest, sd, idle))
3483 return 1;
3486 return 0;
3488 /********** Helpers for find_busiest_group ************************/
3490 * sd_lb_stats - Structure to store the statistics of a sched_domain
3491 * during load balancing.
3493 struct sd_lb_stats {
3494 struct sched_group *busiest; /* Busiest group in this sd */
3495 struct sched_group *this; /* Local group in this sd */
3496 unsigned long total_load; /* Total load of all groups in sd */
3497 unsigned long total_pwr; /* Total power of all groups in sd */
3498 unsigned long avg_load; /* Average load across all groups in sd */
3500 /** Statistics of this group */
3501 unsigned long this_load;
3502 unsigned long this_load_per_task;
3503 unsigned long this_nr_running;
3505 /* Statistics of the busiest group */
3506 unsigned long max_load;
3507 unsigned long busiest_load_per_task;
3508 unsigned long busiest_nr_running;
3510 int group_imb; /* Is there imbalance in this sd */
3511 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3512 int power_savings_balance; /* Is powersave balance needed for this sd */
3513 struct sched_group *group_min; /* Least loaded group in sd */
3514 struct sched_group *group_leader; /* Group which relieves group_min */
3515 unsigned long min_load_per_task; /* load_per_task in group_min */
3516 unsigned long leader_nr_running; /* Nr running of group_leader */
3517 unsigned long min_nr_running; /* Nr running of group_min */
3518 #endif
3522 * sg_lb_stats - stats of a sched_group required for load_balancing
3524 struct sg_lb_stats {
3525 unsigned long avg_load; /*Avg load across the CPUs of the group */
3526 unsigned long group_load; /* Total load over the CPUs of the group */
3527 unsigned long sum_nr_running; /* Nr tasks running in the group */
3528 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
3529 unsigned long group_capacity;
3530 int group_imb; /* Is there an imbalance in the group ? */
3534 * group_first_cpu - Returns the first cpu in the cpumask of a sched_group.
3535 * @group: The group whose first cpu is to be returned.
3537 static inline unsigned int group_first_cpu(struct sched_group *group)
3539 return cpumask_first(sched_group_cpus(group));
3543 * get_sd_load_idx - Obtain the load index for a given sched domain.
3544 * @sd: The sched_domain whose load_idx is to be obtained.
3545 * @idle: The Idle status of the CPU for whose sd load_icx is obtained.
3547 static inline int get_sd_load_idx(struct sched_domain *sd,
3548 enum cpu_idle_type idle)
3550 int load_idx;
3552 switch (idle) {
3553 case CPU_NOT_IDLE:
3554 load_idx = sd->busy_idx;
3555 break;
3557 case CPU_NEWLY_IDLE:
3558 load_idx = sd->newidle_idx;
3559 break;
3560 default:
3561 load_idx = sd->idle_idx;
3562 break;
3565 return load_idx;
3569 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
3571 * init_sd_power_savings_stats - Initialize power savings statistics for
3572 * the given sched_domain, during load balancing.
3574 * @sd: Sched domain whose power-savings statistics are to be initialized.
3575 * @sds: Variable containing the statistics for sd.
3576 * @idle: Idle status of the CPU at which we're performing load-balancing.
3578 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3579 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3582 * Busy processors will not participate in power savings
3583 * balance.
3585 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
3586 sds->power_savings_balance = 0;
3587 else {
3588 sds->power_savings_balance = 1;
3589 sds->min_nr_running = ULONG_MAX;
3590 sds->leader_nr_running = 0;
3595 * update_sd_power_savings_stats - Update the power saving stats for a
3596 * sched_domain while performing load balancing.
3598 * @group: sched_group belonging to the sched_domain under consideration.
3599 * @sds: Variable containing the statistics of the sched_domain
3600 * @local_group: Does group contain the CPU for which we're performing
3601 * load balancing ?
3602 * @sgs: Variable containing the statistics of the group.
3604 static inline void update_sd_power_savings_stats(struct sched_group *group,
3605 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3608 if (!sds->power_savings_balance)
3609 return;
3612 * If the local group is idle or completely loaded
3613 * no need to do power savings balance at this domain
3615 if (local_group && (sds->this_nr_running >= sgs->group_capacity ||
3616 !sds->this_nr_running))
3617 sds->power_savings_balance = 0;
3620 * If a group is already running at full capacity or idle,
3621 * don't include that group in power savings calculations
3623 if (!sds->power_savings_balance ||
3624 sgs->sum_nr_running >= sgs->group_capacity ||
3625 !sgs->sum_nr_running)
3626 return;
3629 * Calculate the group which has the least non-idle load.
3630 * This is the group from where we need to pick up the load
3631 * for saving power
3633 if ((sgs->sum_nr_running < sds->min_nr_running) ||
3634 (sgs->sum_nr_running == sds->min_nr_running &&
3635 group_first_cpu(group) > group_first_cpu(sds->group_min))) {
3636 sds->group_min = group;
3637 sds->min_nr_running = sgs->sum_nr_running;
3638 sds->min_load_per_task = sgs->sum_weighted_load /
3639 sgs->sum_nr_running;
3643 * Calculate the group which is almost near its
3644 * capacity but still has some space to pick up some load
3645 * from other group and save more power
3647 if (sgs->sum_nr_running + 1 > sgs->group_capacity)
3648 return;
3650 if (sgs->sum_nr_running > sds->leader_nr_running ||
3651 (sgs->sum_nr_running == sds->leader_nr_running &&
3652 group_first_cpu(group) < group_first_cpu(sds->group_leader))) {
3653 sds->group_leader = group;
3654 sds->leader_nr_running = sgs->sum_nr_running;
3659 * check_power_save_busiest_group - see if there is potential for some power-savings balance
3660 * @sds: Variable containing the statistics of the sched_domain
3661 * under consideration.
3662 * @this_cpu: Cpu at which we're currently performing load-balancing.
3663 * @imbalance: Variable to store the imbalance.
3665 * Description:
3666 * Check if we have potential to perform some power-savings balance.
3667 * If yes, set the busiest group to be the least loaded group in the
3668 * sched_domain, so that it's CPUs can be put to idle.
3670 * Returns 1 if there is potential to perform power-savings balance.
3671 * Else returns 0.
3673 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3674 int this_cpu, unsigned long *imbalance)
3676 if (!sds->power_savings_balance)
3677 return 0;
3679 if (sds->this != sds->group_leader ||
3680 sds->group_leader == sds->group_min)
3681 return 0;
3683 *imbalance = sds->min_load_per_task;
3684 sds->busiest = sds->group_min;
3686 if (sched_mc_power_savings >= POWERSAVINGS_BALANCE_WAKEUP) {
3687 cpu_rq(this_cpu)->rd->sched_mc_preferred_wakeup_cpu =
3688 group_first_cpu(sds->group_leader);
3691 return 1;
3694 #else /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3695 static inline void init_sd_power_savings_stats(struct sched_domain *sd,
3696 struct sd_lb_stats *sds, enum cpu_idle_type idle)
3698 return;
3701 static inline void update_sd_power_savings_stats(struct sched_group *group,
3702 struct sd_lb_stats *sds, int local_group, struct sg_lb_stats *sgs)
3704 return;
3707 static inline int check_power_save_busiest_group(struct sd_lb_stats *sds,
3708 int this_cpu, unsigned long *imbalance)
3710 return 0;
3712 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
3714 unsigned long __weak arch_scale_smt_power(struct sched_domain *sd, int cpu)
3716 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3717 unsigned long smt_gain = sd->smt_gain;
3719 smt_gain /= weight;
3721 return smt_gain;
3724 unsigned long scale_rt_power(int cpu)
3726 struct rq *rq = cpu_rq(cpu);
3727 u64 total, available;
3729 sched_avg_update(rq);
3731 total = sched_avg_period() + (rq->clock - rq->age_stamp);
3732 available = total - rq->rt_avg;
3734 if (unlikely((s64)total < SCHED_LOAD_SCALE))
3735 total = SCHED_LOAD_SCALE;
3737 total >>= SCHED_LOAD_SHIFT;
3739 return div_u64(available, total);
3742 static void update_cpu_power(struct sched_domain *sd, int cpu)
3744 unsigned long weight = cpumask_weight(sched_domain_span(sd));
3745 unsigned long power = SCHED_LOAD_SCALE;
3746 struct sched_group *sdg = sd->groups;
3748 /* here we could scale based on cpufreq */
3750 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
3751 power *= arch_scale_smt_power(sd, cpu);
3752 power >>= SCHED_LOAD_SHIFT;
3755 power *= scale_rt_power(cpu);
3756 power >>= SCHED_LOAD_SHIFT;
3758 if (!power)
3759 power = 1;
3761 sdg->cpu_power = power;
3764 static void update_group_power(struct sched_domain *sd, int cpu)
3766 struct sched_domain *child = sd->child;
3767 struct sched_group *group, *sdg = sd->groups;
3768 unsigned long power;
3770 if (!child) {
3771 update_cpu_power(sd, cpu);
3772 return;
3775 power = 0;
3777 group = child->groups;
3778 do {
3779 power += group->cpu_power;
3780 group = group->next;
3781 } while (group != child->groups);
3783 sdg->cpu_power = power;
3787 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
3788 * @group: sched_group whose statistics are to be updated.
3789 * @this_cpu: Cpu for which load balance is currently performed.
3790 * @idle: Idle status of this_cpu
3791 * @load_idx: Load index of sched_domain of this_cpu for load calc.
3792 * @sd_idle: Idle status of the sched_domain containing group.
3793 * @local_group: Does group contain this_cpu.
3794 * @cpus: Set of cpus considered for load balancing.
3795 * @balance: Should we balance.
3796 * @sgs: variable to hold the statistics for this group.
3798 static inline void update_sg_lb_stats(struct sched_domain *sd,
3799 struct sched_group *group, int this_cpu,
3800 enum cpu_idle_type idle, int load_idx, int *sd_idle,
3801 int local_group, const struct cpumask *cpus,
3802 int *balance, struct sg_lb_stats *sgs)
3804 unsigned long load, max_cpu_load, min_cpu_load;
3805 int i;
3806 unsigned int balance_cpu = -1, first_idle_cpu = 0;
3807 unsigned long sum_avg_load_per_task;
3808 unsigned long avg_load_per_task;
3810 if (local_group) {
3811 balance_cpu = group_first_cpu(group);
3812 if (balance_cpu == this_cpu)
3813 update_group_power(sd, this_cpu);
3816 /* Tally up the load of all CPUs in the group */
3817 sum_avg_load_per_task = avg_load_per_task = 0;
3818 max_cpu_load = 0;
3819 min_cpu_load = ~0UL;
3821 for_each_cpu_and(i, sched_group_cpus(group), cpus) {
3822 struct rq *rq = cpu_rq(i);
3824 if (*sd_idle && rq->nr_running)
3825 *sd_idle = 0;
3827 /* Bias balancing toward cpus of our domain */
3828 if (local_group) {
3829 if (idle_cpu(i) && !first_idle_cpu) {
3830 first_idle_cpu = 1;
3831 balance_cpu = i;
3834 load = target_load(i, load_idx);
3835 } else {
3836 load = source_load(i, load_idx);
3837 if (load > max_cpu_load)
3838 max_cpu_load = load;
3839 if (min_cpu_load > load)
3840 min_cpu_load = load;
3843 sgs->group_load += load;
3844 sgs->sum_nr_running += rq->nr_running;
3845 sgs->sum_weighted_load += weighted_cpuload(i);
3847 sum_avg_load_per_task += cpu_avg_load_per_task(i);
3851 * First idle cpu or the first cpu(busiest) in this sched group
3852 * is eligible for doing load balancing at this and above
3853 * domains. In the newly idle case, we will allow all the cpu's
3854 * to do the newly idle load balance.
3856 if (idle != CPU_NEWLY_IDLE && local_group &&
3857 balance_cpu != this_cpu && balance) {
3858 *balance = 0;
3859 return;
3862 /* Adjust by relative CPU power of the group */
3863 sgs->avg_load = (sgs->group_load * SCHED_LOAD_SCALE) / group->cpu_power;
3867 * Consider the group unbalanced when the imbalance is larger
3868 * than the average weight of two tasks.
3870 * APZ: with cgroup the avg task weight can vary wildly and
3871 * might not be a suitable number - should we keep a
3872 * normalized nr_running number somewhere that negates
3873 * the hierarchy?
3875 avg_load_per_task = (sum_avg_load_per_task * SCHED_LOAD_SCALE) /
3876 group->cpu_power;
3878 if ((max_cpu_load - min_cpu_load) > 2*avg_load_per_task)
3879 sgs->group_imb = 1;
3881 sgs->group_capacity =
3882 DIV_ROUND_CLOSEST(group->cpu_power, SCHED_LOAD_SCALE);
3886 * update_sd_lb_stats - Update sched_group's statistics for load balancing.
3887 * @sd: sched_domain whose statistics are to be updated.
3888 * @this_cpu: Cpu for which load balance is currently performed.
3889 * @idle: Idle status of this_cpu
3890 * @sd_idle: Idle status of the sched_domain containing group.
3891 * @cpus: Set of cpus considered for load balancing.
3892 * @balance: Should we balance.
3893 * @sds: variable to hold the statistics for this sched_domain.
3895 static inline void update_sd_lb_stats(struct sched_domain *sd, int this_cpu,
3896 enum cpu_idle_type idle, int *sd_idle,
3897 const struct cpumask *cpus, int *balance,
3898 struct sd_lb_stats *sds)
3900 struct sched_domain *child = sd->child;
3901 struct sched_group *group = sd->groups;
3902 struct sg_lb_stats sgs;
3903 int load_idx, prefer_sibling = 0;
3905 if (child && child->flags & SD_PREFER_SIBLING)
3906 prefer_sibling = 1;
3908 init_sd_power_savings_stats(sd, sds, idle);
3909 load_idx = get_sd_load_idx(sd, idle);
3911 do {
3912 int local_group;
3914 local_group = cpumask_test_cpu(this_cpu,
3915 sched_group_cpus(group));
3916 memset(&sgs, 0, sizeof(sgs));
3917 update_sg_lb_stats(sd, group, this_cpu, idle, load_idx, sd_idle,
3918 local_group, cpus, balance, &sgs);
3920 if (local_group && balance && !(*balance))
3921 return;
3923 sds->total_load += sgs.group_load;
3924 sds->total_pwr += group->cpu_power;
3927 * In case the child domain prefers tasks go to siblings
3928 * first, lower the group capacity to one so that we'll try
3929 * and move all the excess tasks away.
3931 if (prefer_sibling)
3932 sgs.group_capacity = min(sgs.group_capacity, 1UL);
3934 if (local_group) {
3935 sds->this_load = sgs.avg_load;
3936 sds->this = group;
3937 sds->this_nr_running = sgs.sum_nr_running;
3938 sds->this_load_per_task = sgs.sum_weighted_load;
3939 } else if (sgs.avg_load > sds->max_load &&
3940 (sgs.sum_nr_running > sgs.group_capacity ||
3941 sgs.group_imb)) {
3942 sds->max_load = sgs.avg_load;
3943 sds->busiest = group;
3944 sds->busiest_nr_running = sgs.sum_nr_running;
3945 sds->busiest_load_per_task = sgs.sum_weighted_load;
3946 sds->group_imb = sgs.group_imb;
3949 update_sd_power_savings_stats(group, sds, local_group, &sgs);
3950 group = group->next;
3951 } while (group != sd->groups);
3955 * fix_small_imbalance - Calculate the minor imbalance that exists
3956 * amongst the groups of a sched_domain, during
3957 * load balancing.
3958 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
3959 * @this_cpu: The cpu at whose sched_domain we're performing load-balance.
3960 * @imbalance: Variable to store the imbalance.
3962 static inline void fix_small_imbalance(struct sd_lb_stats *sds,
3963 int this_cpu, unsigned long *imbalance)
3965 unsigned long tmp, pwr_now = 0, pwr_move = 0;
3966 unsigned int imbn = 2;
3968 if (sds->this_nr_running) {
3969 sds->this_load_per_task /= sds->this_nr_running;
3970 if (sds->busiest_load_per_task >
3971 sds->this_load_per_task)
3972 imbn = 1;
3973 } else
3974 sds->this_load_per_task =
3975 cpu_avg_load_per_task(this_cpu);
3977 if (sds->max_load - sds->this_load + sds->busiest_load_per_task >=
3978 sds->busiest_load_per_task * imbn) {
3979 *imbalance = sds->busiest_load_per_task;
3980 return;
3984 * OK, we don't have enough imbalance to justify moving tasks,
3985 * however we may be able to increase total CPU power used by
3986 * moving them.
3989 pwr_now += sds->busiest->cpu_power *
3990 min(sds->busiest_load_per_task, sds->max_load);
3991 pwr_now += sds->this->cpu_power *
3992 min(sds->this_load_per_task, sds->this_load);
3993 pwr_now /= SCHED_LOAD_SCALE;
3995 /* Amount of load we'd subtract */
3996 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
3997 sds->busiest->cpu_power;
3998 if (sds->max_load > tmp)
3999 pwr_move += sds->busiest->cpu_power *
4000 min(sds->busiest_load_per_task, sds->max_load - tmp);
4002 /* Amount of load we'd add */
4003 if (sds->max_load * sds->busiest->cpu_power <
4004 sds->busiest_load_per_task * SCHED_LOAD_SCALE)
4005 tmp = (sds->max_load * sds->busiest->cpu_power) /
4006 sds->this->cpu_power;
4007 else
4008 tmp = (sds->busiest_load_per_task * SCHED_LOAD_SCALE) /
4009 sds->this->cpu_power;
4010 pwr_move += sds->this->cpu_power *
4011 min(sds->this_load_per_task, sds->this_load + tmp);
4012 pwr_move /= SCHED_LOAD_SCALE;
4014 /* Move if we gain throughput */
4015 if (pwr_move > pwr_now)
4016 *imbalance = sds->busiest_load_per_task;
4020 * calculate_imbalance - Calculate the amount of imbalance present within the
4021 * groups of a given sched_domain during load balance.
4022 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
4023 * @this_cpu: Cpu for which currently load balance is being performed.
4024 * @imbalance: The variable to store the imbalance.
4026 static inline void calculate_imbalance(struct sd_lb_stats *sds, int this_cpu,
4027 unsigned long *imbalance)
4029 unsigned long max_pull;
4031 * In the presence of smp nice balancing, certain scenarios can have
4032 * max load less than avg load(as we skip the groups at or below
4033 * its cpu_power, while calculating max_load..)
4035 if (sds->max_load < sds->avg_load) {
4036 *imbalance = 0;
4037 return fix_small_imbalance(sds, this_cpu, imbalance);
4040 /* Don't want to pull so many tasks that a group would go idle */
4041 max_pull = min(sds->max_load - sds->avg_load,
4042 sds->max_load - sds->busiest_load_per_task);
4044 /* How much load to actually move to equalise the imbalance */
4045 *imbalance = min(max_pull * sds->busiest->cpu_power,
4046 (sds->avg_load - sds->this_load) * sds->this->cpu_power)
4047 / SCHED_LOAD_SCALE;
4050 * if *imbalance is less than the average load per runnable task
4051 * there is no gaurantee that any tasks will be moved so we'll have
4052 * a think about bumping its value to force at least one task to be
4053 * moved
4055 if (*imbalance < sds->busiest_load_per_task)
4056 return fix_small_imbalance(sds, this_cpu, imbalance);
4059 /******* find_busiest_group() helpers end here *********************/
4062 * find_busiest_group - Returns the busiest group within the sched_domain
4063 * if there is an imbalance. If there isn't an imbalance, and
4064 * the user has opted for power-savings, it returns a group whose
4065 * CPUs can be put to idle by rebalancing those tasks elsewhere, if
4066 * such a group exists.
4068 * Also calculates the amount of weighted load which should be moved
4069 * to restore balance.
4071 * @sd: The sched_domain whose busiest group is to be returned.
4072 * @this_cpu: The cpu for which load balancing is currently being performed.
4073 * @imbalance: Variable which stores amount of weighted load which should
4074 * be moved to restore balance/put a group to idle.
4075 * @idle: The idle status of this_cpu.
4076 * @sd_idle: The idleness of sd
4077 * @cpus: The set of CPUs under consideration for load-balancing.
4078 * @balance: Pointer to a variable indicating if this_cpu
4079 * is the appropriate cpu to perform load balancing at this_level.
4081 * Returns: - the busiest group if imbalance exists.
4082 * - If no imbalance and user has opted for power-savings balance,
4083 * return the least loaded group whose CPUs can be
4084 * put to idle by rebalancing its tasks onto our group.
4086 static struct sched_group *
4087 find_busiest_group(struct sched_domain *sd, int this_cpu,
4088 unsigned long *imbalance, enum cpu_idle_type idle,
4089 int *sd_idle, const struct cpumask *cpus, int *balance)
4091 struct sd_lb_stats sds;
4093 memset(&sds, 0, sizeof(sds));
4096 * Compute the various statistics relavent for load balancing at
4097 * this level.
4099 update_sd_lb_stats(sd, this_cpu, idle, sd_idle, cpus,
4100 balance, &sds);
4102 /* Cases where imbalance does not exist from POV of this_cpu */
4103 /* 1) this_cpu is not the appropriate cpu to perform load balancing
4104 * at this level.
4105 * 2) There is no busy sibling group to pull from.
4106 * 3) This group is the busiest group.
4107 * 4) This group is more busy than the avg busieness at this
4108 * sched_domain.
4109 * 5) The imbalance is within the specified limit.
4110 * 6) Any rebalance would lead to ping-pong
4112 if (balance && !(*balance))
4113 goto ret;
4115 if (!sds.busiest || sds.busiest_nr_running == 0)
4116 goto out_balanced;
4118 if (sds.this_load >= sds.max_load)
4119 goto out_balanced;
4121 sds.avg_load = (SCHED_LOAD_SCALE * sds.total_load) / sds.total_pwr;
4123 if (sds.this_load >= sds.avg_load)
4124 goto out_balanced;
4126 if (100 * sds.max_load <= sd->imbalance_pct * sds.this_load)
4127 goto out_balanced;
4129 sds.busiest_load_per_task /= sds.busiest_nr_running;
4130 if (sds.group_imb)
4131 sds.busiest_load_per_task =
4132 min(sds.busiest_load_per_task, sds.avg_load);
4135 * We're trying to get all the cpus to the average_load, so we don't
4136 * want to push ourselves above the average load, nor do we wish to
4137 * reduce the max loaded cpu below the average load, as either of these
4138 * actions would just result in more rebalancing later, and ping-pong
4139 * tasks around. Thus we look for the minimum possible imbalance.
4140 * Negative imbalances (*we* are more loaded than anyone else) will
4141 * be counted as no imbalance for these purposes -- we can't fix that
4142 * by pulling tasks to us. Be careful of negative numbers as they'll
4143 * appear as very large values with unsigned longs.
4145 if (sds.max_load <= sds.busiest_load_per_task)
4146 goto out_balanced;
4148 /* Looks like there is an imbalance. Compute it */
4149 calculate_imbalance(&sds, this_cpu, imbalance);
4150 return sds.busiest;
4152 out_balanced:
4154 * There is no obvious imbalance. But check if we can do some balancing
4155 * to save power.
4157 if (check_power_save_busiest_group(&sds, this_cpu, imbalance))
4158 return sds.busiest;
4159 ret:
4160 *imbalance = 0;
4161 return NULL;
4164 static struct sched_group *group_of(int cpu)
4166 struct sched_domain *sd = rcu_dereference(cpu_rq(cpu)->sd);
4168 if (!sd)
4169 return NULL;
4171 return sd->groups;
4174 static unsigned long power_of(int cpu)
4176 struct sched_group *group = group_of(cpu);
4178 if (!group)
4179 return SCHED_LOAD_SCALE;
4181 return group->cpu_power;
4185 * find_busiest_queue - find the busiest runqueue among the cpus in group.
4187 static struct rq *
4188 find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
4189 unsigned long imbalance, const struct cpumask *cpus)
4191 struct rq *busiest = NULL, *rq;
4192 unsigned long max_load = 0;
4193 int i;
4195 for_each_cpu(i, sched_group_cpus(group)) {
4196 unsigned long power = power_of(i);
4197 unsigned long capacity = DIV_ROUND_CLOSEST(power, SCHED_LOAD_SCALE);
4198 unsigned long wl;
4200 if (!cpumask_test_cpu(i, cpus))
4201 continue;
4203 rq = cpu_rq(i);
4204 wl = weighted_cpuload(i) * SCHED_LOAD_SCALE;
4205 wl /= power;
4207 if (capacity && rq->nr_running == 1 && wl > imbalance)
4208 continue;
4210 if (wl > max_load) {
4211 max_load = wl;
4212 busiest = rq;
4216 return busiest;
4220 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
4221 * so long as it is large enough.
4223 #define MAX_PINNED_INTERVAL 512
4225 /* Working cpumask for load_balance and load_balance_newidle. */
4226 static DEFINE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
4229 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4230 * tasks if there is an imbalance.
4232 static int load_balance(int this_cpu, struct rq *this_rq,
4233 struct sched_domain *sd, enum cpu_idle_type idle,
4234 int *balance)
4236 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
4237 struct sched_group *group;
4238 unsigned long imbalance;
4239 struct rq *busiest;
4240 unsigned long flags;
4241 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4243 cpumask_setall(cpus);
4246 * When power savings policy is enabled for the parent domain, idle
4247 * sibling can pick up load irrespective of busy siblings. In this case,
4248 * let the state of idle sibling percolate up as CPU_IDLE, instead of
4249 * portraying it as CPU_NOT_IDLE.
4251 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
4252 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4253 sd_idle = 1;
4255 schedstat_inc(sd, lb_count[idle]);
4257 redo:
4258 update_shares(sd);
4259 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
4260 cpus, balance);
4262 if (*balance == 0)
4263 goto out_balanced;
4265 if (!group) {
4266 schedstat_inc(sd, lb_nobusyg[idle]);
4267 goto out_balanced;
4270 busiest = find_busiest_queue(group, idle, imbalance, cpus);
4271 if (!busiest) {
4272 schedstat_inc(sd, lb_nobusyq[idle]);
4273 goto out_balanced;
4276 BUG_ON(busiest == this_rq);
4278 schedstat_add(sd, lb_imbalance[idle], imbalance);
4280 ld_moved = 0;
4281 if (busiest->nr_running > 1) {
4283 * Attempt to move tasks. If find_busiest_group has found
4284 * an imbalance but busiest->nr_running <= 1, the group is
4285 * still unbalanced. ld_moved simply stays zero, so it is
4286 * correctly treated as an imbalance.
4288 local_irq_save(flags);
4289 double_rq_lock(this_rq, busiest);
4290 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4291 imbalance, sd, idle, &all_pinned);
4292 double_rq_unlock(this_rq, busiest);
4293 local_irq_restore(flags);
4296 * some other cpu did the load balance for us.
4298 if (ld_moved && this_cpu != smp_processor_id())
4299 resched_cpu(this_cpu);
4301 /* All tasks on this runqueue were pinned by CPU affinity */
4302 if (unlikely(all_pinned)) {
4303 cpumask_clear_cpu(cpu_of(busiest), cpus);
4304 if (!cpumask_empty(cpus))
4305 goto redo;
4306 goto out_balanced;
4310 if (!ld_moved) {
4311 schedstat_inc(sd, lb_failed[idle]);
4312 sd->nr_balance_failed++;
4314 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
4316 spin_lock_irqsave(&busiest->lock, flags);
4318 /* don't kick the migration_thread, if the curr
4319 * task on busiest cpu can't be moved to this_cpu
4321 if (!cpumask_test_cpu(this_cpu,
4322 &busiest->curr->cpus_allowed)) {
4323 spin_unlock_irqrestore(&busiest->lock, flags);
4324 all_pinned = 1;
4325 goto out_one_pinned;
4328 if (!busiest->active_balance) {
4329 busiest->active_balance = 1;
4330 busiest->push_cpu = this_cpu;
4331 active_balance = 1;
4333 spin_unlock_irqrestore(&busiest->lock, flags);
4334 if (active_balance)
4335 wake_up_process(busiest->migration_thread);
4338 * We've kicked active balancing, reset the failure
4339 * counter.
4341 sd->nr_balance_failed = sd->cache_nice_tries+1;
4343 } else
4344 sd->nr_balance_failed = 0;
4346 if (likely(!active_balance)) {
4347 /* We were unbalanced, so reset the balancing interval */
4348 sd->balance_interval = sd->min_interval;
4349 } else {
4351 * If we've begun active balancing, start to back off. This
4352 * case may not be covered by the all_pinned logic if there
4353 * is only 1 task on the busy runqueue (because we don't call
4354 * move_tasks).
4356 if (sd->balance_interval < sd->max_interval)
4357 sd->balance_interval *= 2;
4360 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4361 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4362 ld_moved = -1;
4364 goto out;
4366 out_balanced:
4367 schedstat_inc(sd, lb_balanced[idle]);
4369 sd->nr_balance_failed = 0;
4371 out_one_pinned:
4372 /* tune up the balancing interval */
4373 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
4374 (sd->balance_interval < sd->max_interval))
4375 sd->balance_interval *= 2;
4377 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4378 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4379 ld_moved = -1;
4380 else
4381 ld_moved = 0;
4382 out:
4383 if (ld_moved)
4384 update_shares(sd);
4385 return ld_moved;
4389 * Check this_cpu to ensure it is balanced within domain. Attempt to move
4390 * tasks if there is an imbalance.
4392 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
4393 * this_rq is locked.
4395 static int
4396 load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
4398 struct sched_group *group;
4399 struct rq *busiest = NULL;
4400 unsigned long imbalance;
4401 int ld_moved = 0;
4402 int sd_idle = 0;
4403 int all_pinned = 0;
4404 struct cpumask *cpus = __get_cpu_var(load_balance_tmpmask);
4406 cpumask_setall(cpus);
4409 * When power savings policy is enabled for the parent domain, idle
4410 * sibling can pick up load irrespective of busy siblings. In this case,
4411 * let the state of idle sibling percolate up as IDLE, instead of
4412 * portraying it as CPU_NOT_IDLE.
4414 if (sd->flags & SD_SHARE_CPUPOWER &&
4415 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4416 sd_idle = 1;
4418 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
4419 redo:
4420 update_shares_locked(this_rq, sd);
4421 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
4422 &sd_idle, cpus, NULL);
4423 if (!group) {
4424 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
4425 goto out_balanced;
4428 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance, cpus);
4429 if (!busiest) {
4430 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
4431 goto out_balanced;
4434 BUG_ON(busiest == this_rq);
4436 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
4438 ld_moved = 0;
4439 if (busiest->nr_running > 1) {
4440 /* Attempt to move tasks */
4441 double_lock_balance(this_rq, busiest);
4442 /* this_rq->clock is already updated */
4443 update_rq_clock(busiest);
4444 ld_moved = move_tasks(this_rq, this_cpu, busiest,
4445 imbalance, sd, CPU_NEWLY_IDLE,
4446 &all_pinned);
4447 double_unlock_balance(this_rq, busiest);
4449 if (unlikely(all_pinned)) {
4450 cpumask_clear_cpu(cpu_of(busiest), cpus);
4451 if (!cpumask_empty(cpus))
4452 goto redo;
4456 if (!ld_moved) {
4457 int active_balance = 0;
4459 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
4460 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4461 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4462 return -1;
4464 if (sched_mc_power_savings < POWERSAVINGS_BALANCE_WAKEUP)
4465 return -1;
4467 if (sd->nr_balance_failed++ < 2)
4468 return -1;
4471 * The only task running in a non-idle cpu can be moved to this
4472 * cpu in an attempt to completely freeup the other CPU
4473 * package. The same method used to move task in load_balance()
4474 * have been extended for load_balance_newidle() to speedup
4475 * consolidation at sched_mc=POWERSAVINGS_BALANCE_WAKEUP (2)
4477 * The package power saving logic comes from
4478 * find_busiest_group(). If there are no imbalance, then
4479 * f_b_g() will return NULL. However when sched_mc={1,2} then
4480 * f_b_g() will select a group from which a running task may be
4481 * pulled to this cpu in order to make the other package idle.
4482 * If there is no opportunity to make a package idle and if
4483 * there are no imbalance, then f_b_g() will return NULL and no
4484 * action will be taken in load_balance_newidle().
4486 * Under normal task pull operation due to imbalance, there
4487 * will be more than one task in the source run queue and
4488 * move_tasks() will succeed. ld_moved will be true and this
4489 * active balance code will not be triggered.
4492 /* Lock busiest in correct order while this_rq is held */
4493 double_lock_balance(this_rq, busiest);
4496 * don't kick the migration_thread, if the curr
4497 * task on busiest cpu can't be moved to this_cpu
4499 if (!cpumask_test_cpu(this_cpu, &busiest->curr->cpus_allowed)) {
4500 double_unlock_balance(this_rq, busiest);
4501 all_pinned = 1;
4502 return ld_moved;
4505 if (!busiest->active_balance) {
4506 busiest->active_balance = 1;
4507 busiest->push_cpu = this_cpu;
4508 active_balance = 1;
4511 double_unlock_balance(this_rq, busiest);
4513 * Should not call ttwu while holding a rq->lock
4515 spin_unlock(&this_rq->lock);
4516 if (active_balance)
4517 wake_up_process(busiest->migration_thread);
4518 spin_lock(&this_rq->lock);
4520 } else
4521 sd->nr_balance_failed = 0;
4523 update_shares_locked(this_rq, sd);
4524 return ld_moved;
4526 out_balanced:
4527 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
4528 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
4529 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
4530 return -1;
4531 sd->nr_balance_failed = 0;
4533 return 0;
4537 * idle_balance is called by schedule() if this_cpu is about to become
4538 * idle. Attempts to pull tasks from other CPUs.
4540 static void idle_balance(int this_cpu, struct rq *this_rq)
4542 struct sched_domain *sd;
4543 int pulled_task = 0;
4544 unsigned long next_balance = jiffies + HZ;
4546 for_each_domain(this_cpu, sd) {
4547 unsigned long interval;
4549 if (!(sd->flags & SD_LOAD_BALANCE))
4550 continue;
4552 if (sd->flags & SD_BALANCE_NEWIDLE)
4553 /* If we've pulled tasks over stop searching: */
4554 pulled_task = load_balance_newidle(this_cpu, this_rq,
4555 sd);
4557 interval = msecs_to_jiffies(sd->balance_interval);
4558 if (time_after(next_balance, sd->last_balance + interval))
4559 next_balance = sd->last_balance + interval;
4560 if (pulled_task)
4561 break;
4563 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
4565 * We are going idle. next_balance may be set based on
4566 * a busy processor. So reset next_balance.
4568 this_rq->next_balance = next_balance;
4573 * active_load_balance is run by migration threads. It pushes running tasks
4574 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
4575 * running on each physical CPU where possible, and avoids physical /
4576 * logical imbalances.
4578 * Called with busiest_rq locked.
4580 static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
4582 int target_cpu = busiest_rq->push_cpu;
4583 struct sched_domain *sd;
4584 struct rq *target_rq;
4586 /* Is there any task to move? */
4587 if (busiest_rq->nr_running <= 1)
4588 return;
4590 target_rq = cpu_rq(target_cpu);
4593 * This condition is "impossible", if it occurs
4594 * we need to fix it. Originally reported by
4595 * Bjorn Helgaas on a 128-cpu setup.
4597 BUG_ON(busiest_rq == target_rq);
4599 /* move a task from busiest_rq to target_rq */
4600 double_lock_balance(busiest_rq, target_rq);
4601 update_rq_clock(busiest_rq);
4602 update_rq_clock(target_rq);
4604 /* Search for an sd spanning us and the target CPU. */
4605 for_each_domain(target_cpu, sd) {
4606 if ((sd->flags & SD_LOAD_BALANCE) &&
4607 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
4608 break;
4611 if (likely(sd)) {
4612 schedstat_inc(sd, alb_count);
4614 if (move_one_task(target_rq, target_cpu, busiest_rq,
4615 sd, CPU_IDLE))
4616 schedstat_inc(sd, alb_pushed);
4617 else
4618 schedstat_inc(sd, alb_failed);
4620 double_unlock_balance(busiest_rq, target_rq);
4623 #ifdef CONFIG_NO_HZ
4624 static struct {
4625 atomic_t load_balancer;
4626 cpumask_var_t cpu_mask;
4627 cpumask_var_t ilb_grp_nohz_mask;
4628 } nohz ____cacheline_aligned = {
4629 .load_balancer = ATOMIC_INIT(-1),
4632 int get_nohz_load_balancer(void)
4634 return atomic_read(&nohz.load_balancer);
4637 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
4639 * lowest_flag_domain - Return lowest sched_domain containing flag.
4640 * @cpu: The cpu whose lowest level of sched domain is to
4641 * be returned.
4642 * @flag: The flag to check for the lowest sched_domain
4643 * for the given cpu.
4645 * Returns the lowest sched_domain of a cpu which contains the given flag.
4647 static inline struct sched_domain *lowest_flag_domain(int cpu, int flag)
4649 struct sched_domain *sd;
4651 for_each_domain(cpu, sd)
4652 if (sd && (sd->flags & flag))
4653 break;
4655 return sd;
4659 * for_each_flag_domain - Iterates over sched_domains containing the flag.
4660 * @cpu: The cpu whose domains we're iterating over.
4661 * @sd: variable holding the value of the power_savings_sd
4662 * for cpu.
4663 * @flag: The flag to filter the sched_domains to be iterated.
4665 * Iterates over all the scheduler domains for a given cpu that has the 'flag'
4666 * set, starting from the lowest sched_domain to the highest.
4668 #define for_each_flag_domain(cpu, sd, flag) \
4669 for (sd = lowest_flag_domain(cpu, flag); \
4670 (sd && (sd->flags & flag)); sd = sd->parent)
4673 * is_semi_idle_group - Checks if the given sched_group is semi-idle.
4674 * @ilb_group: group to be checked for semi-idleness
4676 * Returns: 1 if the group is semi-idle. 0 otherwise.
4678 * We define a sched_group to be semi idle if it has atleast one idle-CPU
4679 * and atleast one non-idle CPU. This helper function checks if the given
4680 * sched_group is semi-idle or not.
4682 static inline int is_semi_idle_group(struct sched_group *ilb_group)
4684 cpumask_and(nohz.ilb_grp_nohz_mask, nohz.cpu_mask,
4685 sched_group_cpus(ilb_group));
4688 * A sched_group is semi-idle when it has atleast one busy cpu
4689 * and atleast one idle cpu.
4691 if (cpumask_empty(nohz.ilb_grp_nohz_mask))
4692 return 0;
4694 if (cpumask_equal(nohz.ilb_grp_nohz_mask, sched_group_cpus(ilb_group)))
4695 return 0;
4697 return 1;
4700 * find_new_ilb - Finds the optimum idle load balancer for nomination.
4701 * @cpu: The cpu which is nominating a new idle_load_balancer.
4703 * Returns: Returns the id of the idle load balancer if it exists,
4704 * Else, returns >= nr_cpu_ids.
4706 * This algorithm picks the idle load balancer such that it belongs to a
4707 * semi-idle powersavings sched_domain. The idea is to try and avoid
4708 * completely idle packages/cores just for the purpose of idle load balancing
4709 * when there are other idle cpu's which are better suited for that job.
4711 static int find_new_ilb(int cpu)
4713 struct sched_domain *sd;
4714 struct sched_group *ilb_group;
4717 * Have idle load balancer selection from semi-idle packages only
4718 * when power-aware load balancing is enabled
4720 if (!(sched_smt_power_savings || sched_mc_power_savings))
4721 goto out_done;
4724 * Optimize for the case when we have no idle CPUs or only one
4725 * idle CPU. Don't walk the sched_domain hierarchy in such cases
4727 if (cpumask_weight(nohz.cpu_mask) < 2)
4728 goto out_done;
4730 for_each_flag_domain(cpu, sd, SD_POWERSAVINGS_BALANCE) {
4731 ilb_group = sd->groups;
4733 do {
4734 if (is_semi_idle_group(ilb_group))
4735 return cpumask_first(nohz.ilb_grp_nohz_mask);
4737 ilb_group = ilb_group->next;
4739 } while (ilb_group != sd->groups);
4742 out_done:
4743 return cpumask_first(nohz.cpu_mask);
4745 #else /* (CONFIG_SCHED_MC || CONFIG_SCHED_SMT) */
4746 static inline int find_new_ilb(int call_cpu)
4748 return cpumask_first(nohz.cpu_mask);
4750 #endif
4753 * This routine will try to nominate the ilb (idle load balancing)
4754 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
4755 * load balancing on behalf of all those cpus. If all the cpus in the system
4756 * go into this tickless mode, then there will be no ilb owner (as there is
4757 * no need for one) and all the cpus will sleep till the next wakeup event
4758 * arrives...
4760 * For the ilb owner, tick is not stopped. And this tick will be used
4761 * for idle load balancing. ilb owner will still be part of
4762 * nohz.cpu_mask..
4764 * While stopping the tick, this cpu will become the ilb owner if there
4765 * is no other owner. And will be the owner till that cpu becomes busy
4766 * or if all cpus in the system stop their ticks at which point
4767 * there is no need for ilb owner.
4769 * When the ilb owner becomes busy, it nominates another owner, during the
4770 * next busy scheduler_tick()
4772 int select_nohz_load_balancer(int stop_tick)
4774 int cpu = smp_processor_id();
4776 if (stop_tick) {
4777 cpu_rq(cpu)->in_nohz_recently = 1;
4779 if (!cpu_active(cpu)) {
4780 if (atomic_read(&nohz.load_balancer) != cpu)
4781 return 0;
4784 * If we are going offline and still the leader,
4785 * give up!
4787 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4788 BUG();
4790 return 0;
4793 cpumask_set_cpu(cpu, nohz.cpu_mask);
4795 /* time for ilb owner also to sleep */
4796 if (cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
4797 if (atomic_read(&nohz.load_balancer) == cpu)
4798 atomic_set(&nohz.load_balancer, -1);
4799 return 0;
4802 if (atomic_read(&nohz.load_balancer) == -1) {
4803 /* make me the ilb owner */
4804 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
4805 return 1;
4806 } else if (atomic_read(&nohz.load_balancer) == cpu) {
4807 int new_ilb;
4809 if (!(sched_smt_power_savings ||
4810 sched_mc_power_savings))
4811 return 1;
4813 * Check to see if there is a more power-efficient
4814 * ilb.
4816 new_ilb = find_new_ilb(cpu);
4817 if (new_ilb < nr_cpu_ids && new_ilb != cpu) {
4818 atomic_set(&nohz.load_balancer, -1);
4819 resched_cpu(new_ilb);
4820 return 0;
4822 return 1;
4824 } else {
4825 if (!cpumask_test_cpu(cpu, nohz.cpu_mask))
4826 return 0;
4828 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4830 if (atomic_read(&nohz.load_balancer) == cpu)
4831 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
4832 BUG();
4834 return 0;
4836 #endif
4838 static DEFINE_SPINLOCK(balancing);
4841 * It checks each scheduling domain to see if it is due to be balanced,
4842 * and initiates a balancing operation if so.
4844 * Balancing parameters are set up in arch_init_sched_domains.
4846 static void rebalance_domains(int cpu, enum cpu_idle_type idle)
4848 int balance = 1;
4849 struct rq *rq = cpu_rq(cpu);
4850 unsigned long interval;
4851 struct sched_domain *sd;
4852 /* Earliest time when we have to do rebalance again */
4853 unsigned long next_balance = jiffies + 60*HZ;
4854 int update_next_balance = 0;
4855 int need_serialize;
4857 for_each_domain(cpu, sd) {
4858 if (!(sd->flags & SD_LOAD_BALANCE))
4859 continue;
4861 interval = sd->balance_interval;
4862 if (idle != CPU_IDLE)
4863 interval *= sd->busy_factor;
4865 /* scale ms to jiffies */
4866 interval = msecs_to_jiffies(interval);
4867 if (unlikely(!interval))
4868 interval = 1;
4869 if (interval > HZ*NR_CPUS/10)
4870 interval = HZ*NR_CPUS/10;
4872 need_serialize = sd->flags & SD_SERIALIZE;
4874 if (need_serialize) {
4875 if (!spin_trylock(&balancing))
4876 goto out;
4879 if (time_after_eq(jiffies, sd->last_balance + interval)) {
4880 if (load_balance(cpu, rq, sd, idle, &balance)) {
4882 * We've pulled tasks over so either we're no
4883 * longer idle, or one of our SMT siblings is
4884 * not idle.
4886 idle = CPU_NOT_IDLE;
4888 sd->last_balance = jiffies;
4890 if (need_serialize)
4891 spin_unlock(&balancing);
4892 out:
4893 if (time_after(next_balance, sd->last_balance + interval)) {
4894 next_balance = sd->last_balance + interval;
4895 update_next_balance = 1;
4899 * Stop the load balance at this level. There is another
4900 * CPU in our sched group which is doing load balancing more
4901 * actively.
4903 if (!balance)
4904 break;
4908 * next_balance will be updated only when there is a need.
4909 * When the cpu is attached to null domain for ex, it will not be
4910 * updated.
4912 if (likely(update_next_balance))
4913 rq->next_balance = next_balance;
4917 * run_rebalance_domains is triggered when needed from the scheduler tick.
4918 * In CONFIG_NO_HZ case, the idle load balance owner will do the
4919 * rebalancing for all the cpus for whom scheduler ticks are stopped.
4921 static void run_rebalance_domains(struct softirq_action *h)
4923 int this_cpu = smp_processor_id();
4924 struct rq *this_rq = cpu_rq(this_cpu);
4925 enum cpu_idle_type idle = this_rq->idle_at_tick ?
4926 CPU_IDLE : CPU_NOT_IDLE;
4928 rebalance_domains(this_cpu, idle);
4930 #ifdef CONFIG_NO_HZ
4932 * If this cpu is the owner for idle load balancing, then do the
4933 * balancing on behalf of the other idle cpus whose ticks are
4934 * stopped.
4936 if (this_rq->idle_at_tick &&
4937 atomic_read(&nohz.load_balancer) == this_cpu) {
4938 struct rq *rq;
4939 int balance_cpu;
4941 for_each_cpu(balance_cpu, nohz.cpu_mask) {
4942 if (balance_cpu == this_cpu)
4943 continue;
4946 * If this cpu gets work to do, stop the load balancing
4947 * work being done for other cpus. Next load
4948 * balancing owner will pick it up.
4950 if (need_resched())
4951 break;
4953 rebalance_domains(balance_cpu, CPU_IDLE);
4955 rq = cpu_rq(balance_cpu);
4956 if (time_after(this_rq->next_balance, rq->next_balance))
4957 this_rq->next_balance = rq->next_balance;
4960 #endif
4963 static inline int on_null_domain(int cpu)
4965 return !rcu_dereference(cpu_rq(cpu)->sd);
4969 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
4971 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
4972 * idle load balancing owner or decide to stop the periodic load balancing,
4973 * if the whole system is idle.
4975 static inline void trigger_load_balance(struct rq *rq, int cpu)
4977 #ifdef CONFIG_NO_HZ
4979 * If we were in the nohz mode recently and busy at the current
4980 * scheduler tick, then check if we need to nominate new idle
4981 * load balancer.
4983 if (rq->in_nohz_recently && !rq->idle_at_tick) {
4984 rq->in_nohz_recently = 0;
4986 if (atomic_read(&nohz.load_balancer) == cpu) {
4987 cpumask_clear_cpu(cpu, nohz.cpu_mask);
4988 atomic_set(&nohz.load_balancer, -1);
4991 if (atomic_read(&nohz.load_balancer) == -1) {
4992 int ilb = find_new_ilb(cpu);
4994 if (ilb < nr_cpu_ids)
4995 resched_cpu(ilb);
5000 * If this cpu is idle and doing idle load balancing for all the
5001 * cpus with ticks stopped, is it time for that to stop?
5003 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
5004 cpumask_weight(nohz.cpu_mask) == num_online_cpus()) {
5005 resched_cpu(cpu);
5006 return;
5010 * If this cpu is idle and the idle load balancing is done by
5011 * someone else, then no need raise the SCHED_SOFTIRQ
5013 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
5014 cpumask_test_cpu(cpu, nohz.cpu_mask))
5015 return;
5016 #endif
5017 /* Don't need to rebalance while attached to NULL domain */
5018 if (time_after_eq(jiffies, rq->next_balance) &&
5019 likely(!on_null_domain(cpu)))
5020 raise_softirq(SCHED_SOFTIRQ);
5023 #else /* CONFIG_SMP */
5026 * on UP we do not need to balance between CPUs:
5028 static inline void idle_balance(int cpu, struct rq *rq)
5032 #endif
5034 DEFINE_PER_CPU(struct kernel_stat, kstat);
5036 EXPORT_PER_CPU_SYMBOL(kstat);
5039 * Return any ns on the sched_clock that have not yet been accounted in
5040 * @p in case that task is currently running.
5042 * Called with task_rq_lock() held on @rq.
5044 static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
5046 u64 ns = 0;
5048 if (task_current(rq, p)) {
5049 update_rq_clock(rq);
5050 ns = rq->clock - p->se.exec_start;
5051 if ((s64)ns < 0)
5052 ns = 0;
5055 return ns;
5058 unsigned long long task_delta_exec(struct task_struct *p)
5060 unsigned long flags;
5061 struct rq *rq;
5062 u64 ns = 0;
5064 rq = task_rq_lock(p, &flags);
5065 ns = do_task_delta_exec(p, rq);
5066 task_rq_unlock(rq, &flags);
5068 return ns;
5072 * Return accounted runtime for the task.
5073 * In case the task is currently running, return the runtime plus current's
5074 * pending runtime that have not been accounted yet.
5076 unsigned long long task_sched_runtime(struct task_struct *p)
5078 unsigned long flags;
5079 struct rq *rq;
5080 u64 ns = 0;
5082 rq = task_rq_lock(p, &flags);
5083 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
5084 task_rq_unlock(rq, &flags);
5086 return ns;
5090 * Return sum_exec_runtime for the thread group.
5091 * In case the task is currently running, return the sum plus current's
5092 * pending runtime that have not been accounted yet.
5094 * Note that the thread group might have other running tasks as well,
5095 * so the return value not includes other pending runtime that other
5096 * running tasks might have.
5098 unsigned long long thread_group_sched_runtime(struct task_struct *p)
5100 struct task_cputime totals;
5101 unsigned long flags;
5102 struct rq *rq;
5103 u64 ns;
5105 rq = task_rq_lock(p, &flags);
5106 thread_group_cputime(p, &totals);
5107 ns = totals.sum_exec_runtime + do_task_delta_exec(p, rq);
5108 task_rq_unlock(rq, &flags);
5110 return ns;
5114 * Account user cpu time to a process.
5115 * @p: the process that the cpu time gets accounted to
5116 * @cputime: the cpu time spent in user space since the last update
5117 * @cputime_scaled: cputime scaled by cpu frequency
5119 void account_user_time(struct task_struct *p, cputime_t cputime,
5120 cputime_t cputime_scaled)
5122 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5123 cputime64_t tmp;
5125 /* Add user time to process. */
5126 p->utime = cputime_add(p->utime, cputime);
5127 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5128 account_group_user_time(p, cputime);
5130 /* Add user time to cpustat. */
5131 tmp = cputime_to_cputime64(cputime);
5132 if (TASK_NICE(p) > 0)
5133 cpustat->nice = cputime64_add(cpustat->nice, tmp);
5134 else
5135 cpustat->user = cputime64_add(cpustat->user, tmp);
5137 cpuacct_update_stats(p, CPUACCT_STAT_USER, cputime);
5138 /* Account for user time used */
5139 acct_update_integrals(p);
5143 * Account guest cpu time to a process.
5144 * @p: the process that the cpu time gets accounted to
5145 * @cputime: the cpu time spent in virtual machine since the last update
5146 * @cputime_scaled: cputime scaled by cpu frequency
5148 static void account_guest_time(struct task_struct *p, cputime_t cputime,
5149 cputime_t cputime_scaled)
5151 cputime64_t tmp;
5152 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5154 tmp = cputime_to_cputime64(cputime);
5156 /* Add guest time to process. */
5157 p->utime = cputime_add(p->utime, cputime);
5158 p->utimescaled = cputime_add(p->utimescaled, cputime_scaled);
5159 account_group_user_time(p, cputime);
5160 p->gtime = cputime_add(p->gtime, cputime);
5162 /* Add guest time to cpustat. */
5163 cpustat->user = cputime64_add(cpustat->user, tmp);
5164 cpustat->guest = cputime64_add(cpustat->guest, tmp);
5168 * Account system cpu time to a process.
5169 * @p: the process that the cpu time gets accounted to
5170 * @hardirq_offset: the offset to subtract from hardirq_count()
5171 * @cputime: the cpu time spent in kernel space since the last update
5172 * @cputime_scaled: cputime scaled by cpu frequency
5174 void account_system_time(struct task_struct *p, int hardirq_offset,
5175 cputime_t cputime, cputime_t cputime_scaled)
5177 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5178 cputime64_t tmp;
5180 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
5181 account_guest_time(p, cputime, cputime_scaled);
5182 return;
5185 /* Add system time to process. */
5186 p->stime = cputime_add(p->stime, cputime);
5187 p->stimescaled = cputime_add(p->stimescaled, cputime_scaled);
5188 account_group_system_time(p, cputime);
5190 /* Add system time to cpustat. */
5191 tmp = cputime_to_cputime64(cputime);
5192 if (hardirq_count() - hardirq_offset)
5193 cpustat->irq = cputime64_add(cpustat->irq, tmp);
5194 else if (softirq_count())
5195 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
5196 else
5197 cpustat->system = cputime64_add(cpustat->system, tmp);
5199 cpuacct_update_stats(p, CPUACCT_STAT_SYSTEM, cputime);
5201 /* Account for system time used */
5202 acct_update_integrals(p);
5206 * Account for involuntary wait time.
5207 * @steal: the cpu time spent in involuntary wait
5209 void account_steal_time(cputime_t cputime)
5211 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5212 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5214 cpustat->steal = cputime64_add(cpustat->steal, cputime64);
5218 * Account for idle time.
5219 * @cputime: the cpu time spent in idle wait
5221 void account_idle_time(cputime_t cputime)
5223 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
5224 cputime64_t cputime64 = cputime_to_cputime64(cputime);
5225 struct rq *rq = this_rq();
5227 if (atomic_read(&rq->nr_iowait) > 0)
5228 cpustat->iowait = cputime64_add(cpustat->iowait, cputime64);
5229 else
5230 cpustat->idle = cputime64_add(cpustat->idle, cputime64);
5233 #ifndef CONFIG_VIRT_CPU_ACCOUNTING
5236 * Account a single tick of cpu time.
5237 * @p: the process that the cpu time gets accounted to
5238 * @user_tick: indicates if the tick is a user or a system tick
5240 void account_process_tick(struct task_struct *p, int user_tick)
5242 cputime_t one_jiffy = jiffies_to_cputime(1);
5243 cputime_t one_jiffy_scaled = cputime_to_scaled(one_jiffy);
5244 struct rq *rq = this_rq();
5246 if (user_tick)
5247 account_user_time(p, one_jiffy, one_jiffy_scaled);
5248 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
5249 account_system_time(p, HARDIRQ_OFFSET, one_jiffy,
5250 one_jiffy_scaled);
5251 else
5252 account_idle_time(one_jiffy);
5256 * Account multiple ticks of steal time.
5257 * @p: the process from which the cpu time has been stolen
5258 * @ticks: number of stolen ticks
5260 void account_steal_ticks(unsigned long ticks)
5262 account_steal_time(jiffies_to_cputime(ticks));
5266 * Account multiple ticks of idle time.
5267 * @ticks: number of stolen ticks
5269 void account_idle_ticks(unsigned long ticks)
5271 account_idle_time(jiffies_to_cputime(ticks));
5274 #endif
5277 * Use precise platform statistics if available:
5279 #ifdef CONFIG_VIRT_CPU_ACCOUNTING
5280 cputime_t task_utime(struct task_struct *p)
5282 return p->utime;
5285 cputime_t task_stime(struct task_struct *p)
5287 return p->stime;
5289 #else
5290 cputime_t task_utime(struct task_struct *p)
5292 clock_t utime = cputime_to_clock_t(p->utime),
5293 total = utime + cputime_to_clock_t(p->stime);
5294 u64 temp;
5297 * Use CFS's precise accounting:
5299 temp = (u64)nsec_to_clock_t(p->se.sum_exec_runtime);
5301 if (total) {
5302 temp *= utime;
5303 do_div(temp, total);
5305 utime = (clock_t)temp;
5307 p->prev_utime = max(p->prev_utime, clock_t_to_cputime(utime));
5308 return p->prev_utime;
5311 cputime_t task_stime(struct task_struct *p)
5313 clock_t stime;
5316 * Use CFS's precise accounting. (we subtract utime from
5317 * the total, to make sure the total observed by userspace
5318 * grows monotonically - apps rely on that):
5320 stime = nsec_to_clock_t(p->se.sum_exec_runtime) -
5321 cputime_to_clock_t(task_utime(p));
5323 if (stime >= 0)
5324 p->prev_stime = max(p->prev_stime, clock_t_to_cputime(stime));
5326 return p->prev_stime;
5328 #endif
5330 inline cputime_t task_gtime(struct task_struct *p)
5332 return p->gtime;
5336 * This function gets called by the timer code, with HZ frequency.
5337 * We call it with interrupts disabled.
5339 * It also gets called by the fork code, when changing the parent's
5340 * timeslices.
5342 void scheduler_tick(void)
5344 int cpu = smp_processor_id();
5345 struct rq *rq = cpu_rq(cpu);
5346 struct task_struct *curr = rq->curr;
5348 sched_clock_tick();
5350 spin_lock(&rq->lock);
5351 update_rq_clock(rq);
5352 update_cpu_load(rq);
5353 curr->sched_class->task_tick(rq, curr, 0);
5354 spin_unlock(&rq->lock);
5356 perf_counter_task_tick(curr, cpu);
5358 #ifdef CONFIG_SMP
5359 rq->idle_at_tick = idle_cpu(cpu);
5360 trigger_load_balance(rq, cpu);
5361 #endif
5364 notrace unsigned long get_parent_ip(unsigned long addr)
5366 if (in_lock_functions(addr)) {
5367 addr = CALLER_ADDR2;
5368 if (in_lock_functions(addr))
5369 addr = CALLER_ADDR3;
5371 return addr;
5374 #if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
5375 defined(CONFIG_PREEMPT_TRACER))
5377 void __kprobes add_preempt_count(int val)
5379 #ifdef CONFIG_DEBUG_PREEMPT
5381 * Underflow?
5383 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
5384 return;
5385 #endif
5386 preempt_count() += val;
5387 #ifdef CONFIG_DEBUG_PREEMPT
5389 * Spinlock count overflowing soon?
5391 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
5392 PREEMPT_MASK - 10);
5393 #endif
5394 if (preempt_count() == val)
5395 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5397 EXPORT_SYMBOL(add_preempt_count);
5399 void __kprobes sub_preempt_count(int val)
5401 #ifdef CONFIG_DEBUG_PREEMPT
5403 * Underflow?
5405 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
5406 return;
5408 * Is the spinlock portion underflowing?
5410 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
5411 !(preempt_count() & PREEMPT_MASK)))
5412 return;
5413 #endif
5415 if (preempt_count() == val)
5416 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
5417 preempt_count() -= val;
5419 EXPORT_SYMBOL(sub_preempt_count);
5421 #endif
5424 * Print scheduling while atomic bug:
5426 static noinline void __schedule_bug(struct task_struct *prev)
5428 struct pt_regs *regs = get_irq_regs();
5430 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
5431 prev->comm, prev->pid, preempt_count());
5433 debug_show_held_locks(prev);
5434 print_modules();
5435 if (irqs_disabled())
5436 print_irqtrace_events(prev);
5438 if (regs)
5439 show_regs(regs);
5440 else
5441 dump_stack();
5445 * Various schedule()-time debugging checks and statistics:
5447 static inline void schedule_debug(struct task_struct *prev)
5450 * Test if we are atomic. Since do_exit() needs to call into
5451 * schedule() atomically, we ignore that path for now.
5452 * Otherwise, whine if we are scheduling when we should not be.
5454 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
5455 __schedule_bug(prev);
5457 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
5459 schedstat_inc(this_rq(), sched_count);
5460 #ifdef CONFIG_SCHEDSTATS
5461 if (unlikely(prev->lock_depth >= 0)) {
5462 schedstat_inc(this_rq(), bkl_count);
5463 schedstat_inc(prev, sched_info.bkl_count);
5465 #endif
5468 static void put_prev_task(struct rq *rq, struct task_struct *prev)
5470 if (prev->state == TASK_RUNNING) {
5471 u64 runtime = prev->se.sum_exec_runtime;
5473 runtime -= prev->se.prev_sum_exec_runtime;
5474 runtime = min_t(u64, runtime, 2*sysctl_sched_migration_cost);
5477 * In order to avoid avg_overlap growing stale when we are
5478 * indeed overlapping and hence not getting put to sleep, grow
5479 * the avg_overlap on preemption.
5481 * We use the average preemption runtime because that
5482 * correlates to the amount of cache footprint a task can
5483 * build up.
5485 update_avg(&prev->se.avg_overlap, runtime);
5487 prev->sched_class->put_prev_task(rq, prev);
5491 * Pick up the highest-prio task:
5493 static inline struct task_struct *
5494 pick_next_task(struct rq *rq)
5496 const struct sched_class *class;
5497 struct task_struct *p;
5500 * Optimization: we know that if all tasks are in
5501 * the fair class we can call that function directly:
5503 if (likely(rq->nr_running == rq->cfs.nr_running)) {
5504 p = fair_sched_class.pick_next_task(rq);
5505 if (likely(p))
5506 return p;
5509 class = sched_class_highest;
5510 for ( ; ; ) {
5511 p = class->pick_next_task(rq);
5512 if (p)
5513 return p;
5515 * Will never be NULL as the idle class always
5516 * returns a non-NULL p:
5518 class = class->next;
5523 * schedule() is the main scheduler function.
5525 asmlinkage void __sched schedule(void)
5527 struct task_struct *prev, *next;
5528 unsigned long *switch_count;
5529 struct rq *rq;
5530 int cpu;
5532 need_resched:
5533 preempt_disable();
5534 cpu = smp_processor_id();
5535 rq = cpu_rq(cpu);
5536 rcu_sched_qs(cpu);
5537 prev = rq->curr;
5538 switch_count = &prev->nivcsw;
5540 release_kernel_lock(prev);
5541 need_resched_nonpreemptible:
5543 schedule_debug(prev);
5545 if (sched_feat(HRTICK))
5546 hrtick_clear(rq);
5548 spin_lock_irq(&rq->lock);
5549 update_rq_clock(rq);
5550 clear_tsk_need_resched(prev);
5552 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
5553 if (unlikely(signal_pending_state(prev->state, prev)))
5554 prev->state = TASK_RUNNING;
5555 else
5556 deactivate_task(rq, prev, 1);
5557 switch_count = &prev->nvcsw;
5560 pre_schedule(rq, prev);
5562 if (unlikely(!rq->nr_running))
5563 idle_balance(cpu, rq);
5565 put_prev_task(rq, prev);
5566 next = pick_next_task(rq);
5568 if (likely(prev != next)) {
5569 sched_info_switch(prev, next);
5570 perf_counter_task_sched_out(prev, next, cpu);
5572 rq->nr_switches++;
5573 rq->curr = next;
5574 ++*switch_count;
5576 context_switch(rq, prev, next); /* unlocks the rq */
5578 * the context switch might have flipped the stack from under
5579 * us, hence refresh the local variables.
5581 cpu = smp_processor_id();
5582 rq = cpu_rq(cpu);
5583 } else
5584 spin_unlock_irq(&rq->lock);
5586 post_schedule(rq);
5588 if (unlikely(reacquire_kernel_lock(current) < 0))
5589 goto need_resched_nonpreemptible;
5591 preempt_enable_no_resched();
5592 if (need_resched())
5593 goto need_resched;
5595 EXPORT_SYMBOL(schedule);
5597 #ifdef CONFIG_SMP
5599 * Look out! "owner" is an entirely speculative pointer
5600 * access and not reliable.
5602 int mutex_spin_on_owner(struct mutex *lock, struct thread_info *owner)
5604 unsigned int cpu;
5605 struct rq *rq;
5607 if (!sched_feat(OWNER_SPIN))
5608 return 0;
5610 #ifdef CONFIG_DEBUG_PAGEALLOC
5612 * Need to access the cpu field knowing that
5613 * DEBUG_PAGEALLOC could have unmapped it if
5614 * the mutex owner just released it and exited.
5616 if (probe_kernel_address(&owner->cpu, cpu))
5617 goto out;
5618 #else
5619 cpu = owner->cpu;
5620 #endif
5623 * Even if the access succeeded (likely case),
5624 * the cpu field may no longer be valid.
5626 if (cpu >= nr_cpumask_bits)
5627 goto out;
5630 * We need to validate that we can do a
5631 * get_cpu() and that we have the percpu area.
5633 if (!cpu_online(cpu))
5634 goto out;
5636 rq = cpu_rq(cpu);
5638 for (;;) {
5640 * Owner changed, break to re-assess state.
5642 if (lock->owner != owner)
5643 break;
5646 * Is that owner really running on that cpu?
5648 if (task_thread_info(rq->curr) != owner || need_resched())
5649 return 0;
5651 cpu_relax();
5653 out:
5654 return 1;
5656 #endif
5658 #ifdef CONFIG_PREEMPT
5660 * this is the entry point to schedule() from in-kernel preemption
5661 * off of preempt_enable. Kernel preemptions off return from interrupt
5662 * occur there and call schedule directly.
5664 asmlinkage void __sched preempt_schedule(void)
5666 struct thread_info *ti = current_thread_info();
5669 * If there is a non-zero preempt_count or interrupts are disabled,
5670 * we do not want to preempt the current task. Just return..
5672 if (likely(ti->preempt_count || irqs_disabled()))
5673 return;
5675 do {
5676 add_preempt_count(PREEMPT_ACTIVE);
5677 schedule();
5678 sub_preempt_count(PREEMPT_ACTIVE);
5681 * Check again in case we missed a preemption opportunity
5682 * between schedule and now.
5684 barrier();
5685 } while (need_resched());
5687 EXPORT_SYMBOL(preempt_schedule);
5690 * this is the entry point to schedule() from kernel preemption
5691 * off of irq context.
5692 * Note, that this is called and return with irqs disabled. This will
5693 * protect us against recursive calling from irq.
5695 asmlinkage void __sched preempt_schedule_irq(void)
5697 struct thread_info *ti = current_thread_info();
5699 /* Catch callers which need to be fixed */
5700 BUG_ON(ti->preempt_count || !irqs_disabled());
5702 do {
5703 add_preempt_count(PREEMPT_ACTIVE);
5704 local_irq_enable();
5705 schedule();
5706 local_irq_disable();
5707 sub_preempt_count(PREEMPT_ACTIVE);
5710 * Check again in case we missed a preemption opportunity
5711 * between schedule and now.
5713 barrier();
5714 } while (need_resched());
5717 #endif /* CONFIG_PREEMPT */
5719 int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
5720 void *key)
5722 return try_to_wake_up(curr->private, mode, sync);
5724 EXPORT_SYMBOL(default_wake_function);
5727 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
5728 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
5729 * number) then we wake all the non-exclusive tasks and one exclusive task.
5731 * There are circumstances in which we can try to wake a task which has already
5732 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
5733 * zero in this (rare) case, and we handle it by continuing to scan the queue.
5735 static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
5736 int nr_exclusive, int sync, void *key)
5738 wait_queue_t *curr, *next;
5740 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
5741 unsigned flags = curr->flags;
5743 if (curr->func(curr, mode, sync, key) &&
5744 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
5745 break;
5750 * __wake_up - wake up threads blocked on a waitqueue.
5751 * @q: the waitqueue
5752 * @mode: which threads
5753 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5754 * @key: is directly passed to the wakeup function
5756 * It may be assumed that this function implies a write memory barrier before
5757 * changing the task state if and only if any tasks are woken up.
5759 void __wake_up(wait_queue_head_t *q, unsigned int mode,
5760 int nr_exclusive, void *key)
5762 unsigned long flags;
5764 spin_lock_irqsave(&q->lock, flags);
5765 __wake_up_common(q, mode, nr_exclusive, 0, key);
5766 spin_unlock_irqrestore(&q->lock, flags);
5768 EXPORT_SYMBOL(__wake_up);
5771 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
5773 void __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
5775 __wake_up_common(q, mode, 1, 0, NULL);
5778 void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
5780 __wake_up_common(q, mode, 1, 0, key);
5784 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
5785 * @q: the waitqueue
5786 * @mode: which threads
5787 * @nr_exclusive: how many wake-one or wake-many threads to wake up
5788 * @key: opaque value to be passed to wakeup targets
5790 * The sync wakeup differs that the waker knows that it will schedule
5791 * away soon, so while the target thread will be woken up, it will not
5792 * be migrated to another CPU - ie. the two threads are 'synchronized'
5793 * with each other. This can prevent needless bouncing between CPUs.
5795 * On UP it can prevent extra preemption.
5797 * It may be assumed that this function implies a write memory barrier before
5798 * changing the task state if and only if any tasks are woken up.
5800 void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
5801 int nr_exclusive, void *key)
5803 unsigned long flags;
5804 int sync = 1;
5806 if (unlikely(!q))
5807 return;
5809 if (unlikely(!nr_exclusive))
5810 sync = 0;
5812 spin_lock_irqsave(&q->lock, flags);
5813 __wake_up_common(q, mode, nr_exclusive, sync, key);
5814 spin_unlock_irqrestore(&q->lock, flags);
5816 EXPORT_SYMBOL_GPL(__wake_up_sync_key);
5819 * __wake_up_sync - see __wake_up_sync_key()
5821 void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
5823 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
5825 EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
5828 * complete: - signals a single thread waiting on this completion
5829 * @x: holds the state of this particular completion
5831 * This will wake up a single thread waiting on this completion. Threads will be
5832 * awakened in the same order in which they were queued.
5834 * See also complete_all(), wait_for_completion() and related routines.
5836 * It may be assumed that this function implies a write memory barrier before
5837 * changing the task state if and only if any tasks are woken up.
5839 void complete(struct completion *x)
5841 unsigned long flags;
5843 spin_lock_irqsave(&x->wait.lock, flags);
5844 x->done++;
5845 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
5846 spin_unlock_irqrestore(&x->wait.lock, flags);
5848 EXPORT_SYMBOL(complete);
5851 * complete_all: - signals all threads waiting on this completion
5852 * @x: holds the state of this particular completion
5854 * This will wake up all threads waiting on this particular completion event.
5856 * It may be assumed that this function implies a write memory barrier before
5857 * changing the task state if and only if any tasks are woken up.
5859 void complete_all(struct completion *x)
5861 unsigned long flags;
5863 spin_lock_irqsave(&x->wait.lock, flags);
5864 x->done += UINT_MAX/2;
5865 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
5866 spin_unlock_irqrestore(&x->wait.lock, flags);
5868 EXPORT_SYMBOL(complete_all);
5870 static inline long __sched
5871 do_wait_for_common(struct completion *x, long timeout, int state)
5873 if (!x->done) {
5874 DECLARE_WAITQUEUE(wait, current);
5876 wait.flags |= WQ_FLAG_EXCLUSIVE;
5877 __add_wait_queue_tail(&x->wait, &wait);
5878 do {
5879 if (signal_pending_state(state, current)) {
5880 timeout = -ERESTARTSYS;
5881 break;
5883 __set_current_state(state);
5884 spin_unlock_irq(&x->wait.lock);
5885 timeout = schedule_timeout(timeout);
5886 spin_lock_irq(&x->wait.lock);
5887 } while (!x->done && timeout);
5888 __remove_wait_queue(&x->wait, &wait);
5889 if (!x->done)
5890 return timeout;
5892 x->done--;
5893 return timeout ?: 1;
5896 static long __sched
5897 wait_for_common(struct completion *x, long timeout, int state)
5899 might_sleep();
5901 spin_lock_irq(&x->wait.lock);
5902 timeout = do_wait_for_common(x, timeout, state);
5903 spin_unlock_irq(&x->wait.lock);
5904 return timeout;
5908 * wait_for_completion: - waits for completion of a task
5909 * @x: holds the state of this particular completion
5911 * This waits to be signaled for completion of a specific task. It is NOT
5912 * interruptible and there is no timeout.
5914 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
5915 * and interrupt capability. Also see complete().
5917 void __sched wait_for_completion(struct completion *x)
5919 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
5921 EXPORT_SYMBOL(wait_for_completion);
5924 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
5925 * @x: holds the state of this particular completion
5926 * @timeout: timeout value in jiffies
5928 * This waits for either a completion of a specific task to be signaled or for a
5929 * specified timeout to expire. The timeout is in jiffies. It is not
5930 * interruptible.
5932 unsigned long __sched
5933 wait_for_completion_timeout(struct completion *x, unsigned long timeout)
5935 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
5937 EXPORT_SYMBOL(wait_for_completion_timeout);
5940 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
5941 * @x: holds the state of this particular completion
5943 * This waits for completion of a specific task to be signaled. It is
5944 * interruptible.
5946 int __sched wait_for_completion_interruptible(struct completion *x)
5948 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
5949 if (t == -ERESTARTSYS)
5950 return t;
5951 return 0;
5953 EXPORT_SYMBOL(wait_for_completion_interruptible);
5956 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
5957 * @x: holds the state of this particular completion
5958 * @timeout: timeout value in jiffies
5960 * This waits for either a completion of a specific task to be signaled or for a
5961 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
5963 unsigned long __sched
5964 wait_for_completion_interruptible_timeout(struct completion *x,
5965 unsigned long timeout)
5967 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
5969 EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
5972 * wait_for_completion_killable: - waits for completion of a task (killable)
5973 * @x: holds the state of this particular completion
5975 * This waits to be signaled for completion of a specific task. It can be
5976 * interrupted by a kill signal.
5978 int __sched wait_for_completion_killable(struct completion *x)
5980 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
5981 if (t == -ERESTARTSYS)
5982 return t;
5983 return 0;
5985 EXPORT_SYMBOL(wait_for_completion_killable);
5988 * try_wait_for_completion - try to decrement a completion without blocking
5989 * @x: completion structure
5991 * Returns: 0 if a decrement cannot be done without blocking
5992 * 1 if a decrement succeeded.
5994 * If a completion is being used as a counting completion,
5995 * attempt to decrement the counter without blocking. This
5996 * enables us to avoid waiting if the resource the completion
5997 * is protecting is not available.
5999 bool try_wait_for_completion(struct completion *x)
6001 int ret = 1;
6003 spin_lock_irq(&x->wait.lock);
6004 if (!x->done)
6005 ret = 0;
6006 else
6007 x->done--;
6008 spin_unlock_irq(&x->wait.lock);
6009 return ret;
6011 EXPORT_SYMBOL(try_wait_for_completion);
6014 * completion_done - Test to see if a completion has any waiters
6015 * @x: completion structure
6017 * Returns: 0 if there are waiters (wait_for_completion() in progress)
6018 * 1 if there are no waiters.
6021 bool completion_done(struct completion *x)
6023 int ret = 1;
6025 spin_lock_irq(&x->wait.lock);
6026 if (!x->done)
6027 ret = 0;
6028 spin_unlock_irq(&x->wait.lock);
6029 return ret;
6031 EXPORT_SYMBOL(completion_done);
6033 static long __sched
6034 sleep_on_common(wait_queue_head_t *q, int state, long timeout)
6036 unsigned long flags;
6037 wait_queue_t wait;
6039 init_waitqueue_entry(&wait, current);
6041 __set_current_state(state);
6043 spin_lock_irqsave(&q->lock, flags);
6044 __add_wait_queue(q, &wait);
6045 spin_unlock(&q->lock);
6046 timeout = schedule_timeout(timeout);
6047 spin_lock_irq(&q->lock);
6048 __remove_wait_queue(q, &wait);
6049 spin_unlock_irqrestore(&q->lock, flags);
6051 return timeout;
6054 void __sched interruptible_sleep_on(wait_queue_head_t *q)
6056 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
6058 EXPORT_SYMBOL(interruptible_sleep_on);
6060 long __sched
6061 interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
6063 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
6065 EXPORT_SYMBOL(interruptible_sleep_on_timeout);
6067 void __sched sleep_on(wait_queue_head_t *q)
6069 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
6071 EXPORT_SYMBOL(sleep_on);
6073 long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
6075 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
6077 EXPORT_SYMBOL(sleep_on_timeout);
6079 #ifdef CONFIG_RT_MUTEXES
6082 * rt_mutex_setprio - set the current priority of a task
6083 * @p: task
6084 * @prio: prio value (kernel-internal form)
6086 * This function changes the 'effective' priority of a task. It does
6087 * not touch ->normal_prio like __setscheduler().
6089 * Used by the rt_mutex code to implement priority inheritance logic.
6091 void rt_mutex_setprio(struct task_struct *p, int prio)
6093 unsigned long flags;
6094 int oldprio, on_rq, running;
6095 struct rq *rq;
6096 const struct sched_class *prev_class = p->sched_class;
6098 BUG_ON(prio < 0 || prio > MAX_PRIO);
6100 rq = task_rq_lock(p, &flags);
6101 update_rq_clock(rq);
6103 oldprio = p->prio;
6104 on_rq = p->se.on_rq;
6105 running = task_current(rq, p);
6106 if (on_rq)
6107 dequeue_task(rq, p, 0);
6108 if (running)
6109 p->sched_class->put_prev_task(rq, p);
6111 if (rt_prio(prio))
6112 p->sched_class = &rt_sched_class;
6113 else
6114 p->sched_class = &fair_sched_class;
6116 p->prio = prio;
6118 if (running)
6119 p->sched_class->set_curr_task(rq);
6120 if (on_rq) {
6121 enqueue_task(rq, p, 0);
6123 check_class_changed(rq, p, prev_class, oldprio, running);
6125 task_rq_unlock(rq, &flags);
6128 #endif
6130 void set_user_nice(struct task_struct *p, long nice)
6132 int old_prio, delta, on_rq;
6133 unsigned long flags;
6134 struct rq *rq;
6136 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
6137 return;
6139 * We have to be careful, if called from sys_setpriority(),
6140 * the task might be in the middle of scheduling on another CPU.
6142 rq = task_rq_lock(p, &flags);
6143 update_rq_clock(rq);
6145 * The RT priorities are set via sched_setscheduler(), but we still
6146 * allow the 'normal' nice value to be set - but as expected
6147 * it wont have any effect on scheduling until the task is
6148 * SCHED_FIFO/SCHED_RR:
6150 if (task_has_rt_policy(p)) {
6151 p->static_prio = NICE_TO_PRIO(nice);
6152 goto out_unlock;
6154 on_rq = p->se.on_rq;
6155 if (on_rq)
6156 dequeue_task(rq, p, 0);
6158 p->static_prio = NICE_TO_PRIO(nice);
6159 set_load_weight(p);
6160 old_prio = p->prio;
6161 p->prio = effective_prio(p);
6162 delta = p->prio - old_prio;
6164 if (on_rq) {
6165 enqueue_task(rq, p, 0);
6167 * If the task increased its priority or is running and
6168 * lowered its priority, then reschedule its CPU:
6170 if (delta < 0 || (delta > 0 && task_running(rq, p)))
6171 resched_task(rq->curr);
6173 out_unlock:
6174 task_rq_unlock(rq, &flags);
6176 EXPORT_SYMBOL(set_user_nice);
6179 * can_nice - check if a task can reduce its nice value
6180 * @p: task
6181 * @nice: nice value
6183 int can_nice(const struct task_struct *p, const int nice)
6185 /* convert nice value [19,-20] to rlimit style value [1,40] */
6186 int nice_rlim = 20 - nice;
6188 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
6189 capable(CAP_SYS_NICE));
6192 #ifdef __ARCH_WANT_SYS_NICE
6195 * sys_nice - change the priority of the current process.
6196 * @increment: priority increment
6198 * sys_setpriority is a more generic, but much slower function that
6199 * does similar things.
6201 SYSCALL_DEFINE1(nice, int, increment)
6203 long nice, retval;
6206 * Setpriority might change our priority at the same moment.
6207 * We don't have to worry. Conceptually one call occurs first
6208 * and we have a single winner.
6210 if (increment < -40)
6211 increment = -40;
6212 if (increment > 40)
6213 increment = 40;
6215 nice = TASK_NICE(current) + increment;
6216 if (nice < -20)
6217 nice = -20;
6218 if (nice > 19)
6219 nice = 19;
6221 if (increment < 0 && !can_nice(current, nice))
6222 return -EPERM;
6224 retval = security_task_setnice(current, nice);
6225 if (retval)
6226 return retval;
6228 set_user_nice(current, nice);
6229 return 0;
6232 #endif
6235 * task_prio - return the priority value of a given task.
6236 * @p: the task in question.
6238 * This is the priority value as seen by users in /proc.
6239 * RT tasks are offset by -200. Normal tasks are centered
6240 * around 0, value goes from -16 to +15.
6242 int task_prio(const struct task_struct *p)
6244 return p->prio - MAX_RT_PRIO;
6248 * task_nice - return the nice value of a given task.
6249 * @p: the task in question.
6251 int task_nice(const struct task_struct *p)
6253 return TASK_NICE(p);
6255 EXPORT_SYMBOL(task_nice);
6258 * idle_cpu - is a given cpu idle currently?
6259 * @cpu: the processor in question.
6261 int idle_cpu(int cpu)
6263 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
6267 * idle_task - return the idle task for a given cpu.
6268 * @cpu: the processor in question.
6270 struct task_struct *idle_task(int cpu)
6272 return cpu_rq(cpu)->idle;
6276 * find_process_by_pid - find a process with a matching PID value.
6277 * @pid: the pid in question.
6279 static struct task_struct *find_process_by_pid(pid_t pid)
6281 return pid ? find_task_by_vpid(pid) : current;
6284 /* Actually do priority change: must hold rq lock. */
6285 static void
6286 __setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
6288 BUG_ON(p->se.on_rq);
6290 p->policy = policy;
6291 switch (p->policy) {
6292 case SCHED_NORMAL:
6293 case SCHED_BATCH:
6294 case SCHED_IDLE:
6295 p->sched_class = &fair_sched_class;
6296 break;
6297 case SCHED_FIFO:
6298 case SCHED_RR:
6299 p->sched_class = &rt_sched_class;
6300 break;
6303 p->rt_priority = prio;
6304 p->normal_prio = normal_prio(p);
6305 /* we are holding p->pi_lock already */
6306 p->prio = rt_mutex_getprio(p);
6307 set_load_weight(p);
6311 * check the target process has a UID that matches the current process's
6313 static bool check_same_owner(struct task_struct *p)
6315 const struct cred *cred = current_cred(), *pcred;
6316 bool match;
6318 rcu_read_lock();
6319 pcred = __task_cred(p);
6320 match = (cred->euid == pcred->euid ||
6321 cred->euid == pcred->uid);
6322 rcu_read_unlock();
6323 return match;
6326 static int __sched_setscheduler(struct task_struct *p, int policy,
6327 struct sched_param *param, bool user)
6329 int retval, oldprio, oldpolicy = -1, on_rq, running;
6330 unsigned long flags;
6331 const struct sched_class *prev_class = p->sched_class;
6332 struct rq *rq;
6333 int reset_on_fork;
6335 /* may grab non-irq protected spin_locks */
6336 BUG_ON(in_interrupt());
6337 recheck:
6338 /* double check policy once rq lock held */
6339 if (policy < 0) {
6340 reset_on_fork = p->sched_reset_on_fork;
6341 policy = oldpolicy = p->policy;
6342 } else {
6343 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
6344 policy &= ~SCHED_RESET_ON_FORK;
6346 if (policy != SCHED_FIFO && policy != SCHED_RR &&
6347 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
6348 policy != SCHED_IDLE)
6349 return -EINVAL;
6353 * Valid priorities for SCHED_FIFO and SCHED_RR are
6354 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
6355 * SCHED_BATCH and SCHED_IDLE is 0.
6357 if (param->sched_priority < 0 ||
6358 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
6359 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
6360 return -EINVAL;
6361 if (rt_policy(policy) != (param->sched_priority != 0))
6362 return -EINVAL;
6365 * Allow unprivileged RT tasks to decrease priority:
6367 if (user && !capable(CAP_SYS_NICE)) {
6368 if (rt_policy(policy)) {
6369 unsigned long rlim_rtprio;
6371 if (!lock_task_sighand(p, &flags))
6372 return -ESRCH;
6373 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
6374 unlock_task_sighand(p, &flags);
6376 /* can't set/change the rt policy */
6377 if (policy != p->policy && !rlim_rtprio)
6378 return -EPERM;
6380 /* can't increase priority */
6381 if (param->sched_priority > p->rt_priority &&
6382 param->sched_priority > rlim_rtprio)
6383 return -EPERM;
6386 * Like positive nice levels, dont allow tasks to
6387 * move out of SCHED_IDLE either:
6389 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
6390 return -EPERM;
6392 /* can't change other user's priorities */
6393 if (!check_same_owner(p))
6394 return -EPERM;
6396 /* Normal users shall not reset the sched_reset_on_fork flag */
6397 if (p->sched_reset_on_fork && !reset_on_fork)
6398 return -EPERM;
6401 if (user) {
6402 #ifdef CONFIG_RT_GROUP_SCHED
6404 * Do not allow realtime tasks into groups that have no runtime
6405 * assigned.
6407 if (rt_bandwidth_enabled() && rt_policy(policy) &&
6408 task_group(p)->rt_bandwidth.rt_runtime == 0)
6409 return -EPERM;
6410 #endif
6412 retval = security_task_setscheduler(p, policy, param);
6413 if (retval)
6414 return retval;
6418 * make sure no PI-waiters arrive (or leave) while we are
6419 * changing the priority of the task:
6421 spin_lock_irqsave(&p->pi_lock, flags);
6423 * To be able to change p->policy safely, the apropriate
6424 * runqueue lock must be held.
6426 rq = __task_rq_lock(p);
6427 /* recheck policy now with rq lock held */
6428 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
6429 policy = oldpolicy = -1;
6430 __task_rq_unlock(rq);
6431 spin_unlock_irqrestore(&p->pi_lock, flags);
6432 goto recheck;
6434 update_rq_clock(rq);
6435 on_rq = p->se.on_rq;
6436 running = task_current(rq, p);
6437 if (on_rq)
6438 deactivate_task(rq, p, 0);
6439 if (running)
6440 p->sched_class->put_prev_task(rq, p);
6442 p->sched_reset_on_fork = reset_on_fork;
6444 oldprio = p->prio;
6445 __setscheduler(rq, p, policy, param->sched_priority);
6447 if (running)
6448 p->sched_class->set_curr_task(rq);
6449 if (on_rq) {
6450 activate_task(rq, p, 0);
6452 check_class_changed(rq, p, prev_class, oldprio, running);
6454 __task_rq_unlock(rq);
6455 spin_unlock_irqrestore(&p->pi_lock, flags);
6457 rt_mutex_adjust_pi(p);
6459 return 0;
6463 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
6464 * @p: the task in question.
6465 * @policy: new policy.
6466 * @param: structure containing the new RT priority.
6468 * NOTE that the task may be already dead.
6470 int sched_setscheduler(struct task_struct *p, int policy,
6471 struct sched_param *param)
6473 return __sched_setscheduler(p, policy, param, true);
6475 EXPORT_SYMBOL_GPL(sched_setscheduler);
6478 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
6479 * @p: the task in question.
6480 * @policy: new policy.
6481 * @param: structure containing the new RT priority.
6483 * Just like sched_setscheduler, only don't bother checking if the
6484 * current context has permission. For example, this is needed in
6485 * stop_machine(): we create temporary high priority worker threads,
6486 * but our caller might not have that capability.
6488 int sched_setscheduler_nocheck(struct task_struct *p, int policy,
6489 struct sched_param *param)
6491 return __sched_setscheduler(p, policy, param, false);
6494 static int
6495 do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
6497 struct sched_param lparam;
6498 struct task_struct *p;
6499 int retval;
6501 if (!param || pid < 0)
6502 return -EINVAL;
6503 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
6504 return -EFAULT;
6506 rcu_read_lock();
6507 retval = -ESRCH;
6508 p = find_process_by_pid(pid);
6509 if (p != NULL)
6510 retval = sched_setscheduler(p, policy, &lparam);
6511 rcu_read_unlock();
6513 return retval;
6517 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
6518 * @pid: the pid in question.
6519 * @policy: new policy.
6520 * @param: structure containing the new RT priority.
6522 SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
6523 struct sched_param __user *, param)
6525 /* negative values for policy are not valid */
6526 if (policy < 0)
6527 return -EINVAL;
6529 return do_sched_setscheduler(pid, policy, param);
6533 * sys_sched_setparam - set/change the RT priority of a thread
6534 * @pid: the pid in question.
6535 * @param: structure containing the new RT priority.
6537 SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
6539 return do_sched_setscheduler(pid, -1, param);
6543 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
6544 * @pid: the pid in question.
6546 SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
6548 struct task_struct *p;
6549 int retval;
6551 if (pid < 0)
6552 return -EINVAL;
6554 retval = -ESRCH;
6555 read_lock(&tasklist_lock);
6556 p = find_process_by_pid(pid);
6557 if (p) {
6558 retval = security_task_getscheduler(p);
6559 if (!retval)
6560 retval = p->policy
6561 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
6563 read_unlock(&tasklist_lock);
6564 return retval;
6568 * sys_sched_getparam - get the RT priority of a thread
6569 * @pid: the pid in question.
6570 * @param: structure containing the RT priority.
6572 SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
6574 struct sched_param lp;
6575 struct task_struct *p;
6576 int retval;
6578 if (!param || pid < 0)
6579 return -EINVAL;
6581 read_lock(&tasklist_lock);
6582 p = find_process_by_pid(pid);
6583 retval = -ESRCH;
6584 if (!p)
6585 goto out_unlock;
6587 retval = security_task_getscheduler(p);
6588 if (retval)
6589 goto out_unlock;
6591 lp.sched_priority = p->rt_priority;
6592 read_unlock(&tasklist_lock);
6595 * This one might sleep, we cannot do it with a spinlock held ...
6597 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
6599 return retval;
6601 out_unlock:
6602 read_unlock(&tasklist_lock);
6603 return retval;
6606 long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
6608 cpumask_var_t cpus_allowed, new_mask;
6609 struct task_struct *p;
6610 int retval;
6612 get_online_cpus();
6613 read_lock(&tasklist_lock);
6615 p = find_process_by_pid(pid);
6616 if (!p) {
6617 read_unlock(&tasklist_lock);
6618 put_online_cpus();
6619 return -ESRCH;
6623 * It is not safe to call set_cpus_allowed with the
6624 * tasklist_lock held. We will bump the task_struct's
6625 * usage count and then drop tasklist_lock.
6627 get_task_struct(p);
6628 read_unlock(&tasklist_lock);
6630 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
6631 retval = -ENOMEM;
6632 goto out_put_task;
6634 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
6635 retval = -ENOMEM;
6636 goto out_free_cpus_allowed;
6638 retval = -EPERM;
6639 if (!check_same_owner(p) && !capable(CAP_SYS_NICE))
6640 goto out_unlock;
6642 retval = security_task_setscheduler(p, 0, NULL);
6643 if (retval)
6644 goto out_unlock;
6646 cpuset_cpus_allowed(p, cpus_allowed);
6647 cpumask_and(new_mask, in_mask, cpus_allowed);
6648 again:
6649 retval = set_cpus_allowed_ptr(p, new_mask);
6651 if (!retval) {
6652 cpuset_cpus_allowed(p, cpus_allowed);
6653 if (!cpumask_subset(new_mask, cpus_allowed)) {
6655 * We must have raced with a concurrent cpuset
6656 * update. Just reset the cpus_allowed to the
6657 * cpuset's cpus_allowed
6659 cpumask_copy(new_mask, cpus_allowed);
6660 goto again;
6663 out_unlock:
6664 free_cpumask_var(new_mask);
6665 out_free_cpus_allowed:
6666 free_cpumask_var(cpus_allowed);
6667 out_put_task:
6668 put_task_struct(p);
6669 put_online_cpus();
6670 return retval;
6673 static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
6674 struct cpumask *new_mask)
6676 if (len < cpumask_size())
6677 cpumask_clear(new_mask);
6678 else if (len > cpumask_size())
6679 len = cpumask_size();
6681 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
6685 * sys_sched_setaffinity - set the cpu affinity of a process
6686 * @pid: pid of the process
6687 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6688 * @user_mask_ptr: user-space pointer to the new cpu mask
6690 SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
6691 unsigned long __user *, user_mask_ptr)
6693 cpumask_var_t new_mask;
6694 int retval;
6696 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
6697 return -ENOMEM;
6699 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
6700 if (retval == 0)
6701 retval = sched_setaffinity(pid, new_mask);
6702 free_cpumask_var(new_mask);
6703 return retval;
6706 long sched_getaffinity(pid_t pid, struct cpumask *mask)
6708 struct task_struct *p;
6709 int retval;
6711 get_online_cpus();
6712 read_lock(&tasklist_lock);
6714 retval = -ESRCH;
6715 p = find_process_by_pid(pid);
6716 if (!p)
6717 goto out_unlock;
6719 retval = security_task_getscheduler(p);
6720 if (retval)
6721 goto out_unlock;
6723 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
6725 out_unlock:
6726 read_unlock(&tasklist_lock);
6727 put_online_cpus();
6729 return retval;
6733 * sys_sched_getaffinity - get the cpu affinity of a process
6734 * @pid: pid of the process
6735 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
6736 * @user_mask_ptr: user-space pointer to hold the current cpu mask
6738 SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
6739 unsigned long __user *, user_mask_ptr)
6741 int ret;
6742 cpumask_var_t mask;
6744 if (len < cpumask_size())
6745 return -EINVAL;
6747 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
6748 return -ENOMEM;
6750 ret = sched_getaffinity(pid, mask);
6751 if (ret == 0) {
6752 if (copy_to_user(user_mask_ptr, mask, cpumask_size()))
6753 ret = -EFAULT;
6754 else
6755 ret = cpumask_size();
6757 free_cpumask_var(mask);
6759 return ret;
6763 * sys_sched_yield - yield the current processor to other threads.
6765 * This function yields the current CPU to other tasks. If there are no
6766 * other threads running on this CPU then this function will return.
6768 SYSCALL_DEFINE0(sched_yield)
6770 struct rq *rq = this_rq_lock();
6772 schedstat_inc(rq, yld_count);
6773 current->sched_class->yield_task(rq);
6776 * Since we are going to call schedule() anyway, there's
6777 * no need to preempt or enable interrupts:
6779 __release(rq->lock);
6780 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
6781 _raw_spin_unlock(&rq->lock);
6782 preempt_enable_no_resched();
6784 schedule();
6786 return 0;
6789 static inline int should_resched(void)
6791 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
6794 static void __cond_resched(void)
6796 add_preempt_count(PREEMPT_ACTIVE);
6797 schedule();
6798 sub_preempt_count(PREEMPT_ACTIVE);
6801 int __sched _cond_resched(void)
6803 if (should_resched()) {
6804 __cond_resched();
6805 return 1;
6807 return 0;
6809 EXPORT_SYMBOL(_cond_resched);
6812 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
6813 * call schedule, and on return reacquire the lock.
6815 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
6816 * operations here to prevent schedule() from being called twice (once via
6817 * spin_unlock(), once by hand).
6819 int __cond_resched_lock(spinlock_t *lock)
6821 int resched = should_resched();
6822 int ret = 0;
6824 lockdep_assert_held(lock);
6826 if (spin_needbreak(lock) || resched) {
6827 spin_unlock(lock);
6828 if (resched)
6829 __cond_resched();
6830 else
6831 cpu_relax();
6832 ret = 1;
6833 spin_lock(lock);
6835 return ret;
6837 EXPORT_SYMBOL(__cond_resched_lock);
6839 int __sched __cond_resched_softirq(void)
6841 BUG_ON(!in_softirq());
6843 if (should_resched()) {
6844 local_bh_enable();
6845 __cond_resched();
6846 local_bh_disable();
6847 return 1;
6849 return 0;
6851 EXPORT_SYMBOL(__cond_resched_softirq);
6854 * yield - yield the current processor to other threads.
6856 * This is a shortcut for kernel-space yielding - it marks the
6857 * thread runnable and calls sys_sched_yield().
6859 void __sched yield(void)
6861 set_current_state(TASK_RUNNING);
6862 sys_sched_yield();
6864 EXPORT_SYMBOL(yield);
6867 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
6868 * that process accounting knows that this is a task in IO wait state.
6870 * But don't do that if it is a deliberate, throttling IO wait (this task
6871 * has set its backing_dev_info: the queue against which it should throttle)
6873 void __sched io_schedule(void)
6875 struct rq *rq = raw_rq();
6877 delayacct_blkio_start();
6878 atomic_inc(&rq->nr_iowait);
6879 current->in_iowait = 1;
6880 schedule();
6881 current->in_iowait = 0;
6882 atomic_dec(&rq->nr_iowait);
6883 delayacct_blkio_end();
6885 EXPORT_SYMBOL(io_schedule);
6887 long __sched io_schedule_timeout(long timeout)
6889 struct rq *rq = raw_rq();
6890 long ret;
6892 delayacct_blkio_start();
6893 atomic_inc(&rq->nr_iowait);
6894 current->in_iowait = 1;
6895 ret = schedule_timeout(timeout);
6896 current->in_iowait = 0;
6897 atomic_dec(&rq->nr_iowait);
6898 delayacct_blkio_end();
6899 return ret;
6903 * sys_sched_get_priority_max - return maximum RT priority.
6904 * @policy: scheduling class.
6906 * this syscall returns the maximum rt_priority that can be used
6907 * by a given scheduling class.
6909 SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
6911 int ret = -EINVAL;
6913 switch (policy) {
6914 case SCHED_FIFO:
6915 case SCHED_RR:
6916 ret = MAX_USER_RT_PRIO-1;
6917 break;
6918 case SCHED_NORMAL:
6919 case SCHED_BATCH:
6920 case SCHED_IDLE:
6921 ret = 0;
6922 break;
6924 return ret;
6928 * sys_sched_get_priority_min - return minimum RT priority.
6929 * @policy: scheduling class.
6931 * this syscall returns the minimum rt_priority that can be used
6932 * by a given scheduling class.
6934 SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
6936 int ret = -EINVAL;
6938 switch (policy) {
6939 case SCHED_FIFO:
6940 case SCHED_RR:
6941 ret = 1;
6942 break;
6943 case SCHED_NORMAL:
6944 case SCHED_BATCH:
6945 case SCHED_IDLE:
6946 ret = 0;
6948 return ret;
6952 * sys_sched_rr_get_interval - return the default timeslice of a process.
6953 * @pid: pid of the process.
6954 * @interval: userspace pointer to the timeslice value.
6956 * this syscall writes the default timeslice value of a given process
6957 * into the user-space timespec buffer. A value of '0' means infinity.
6959 SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
6960 struct timespec __user *, interval)
6962 struct task_struct *p;
6963 unsigned int time_slice;
6964 int retval;
6965 struct timespec t;
6967 if (pid < 0)
6968 return -EINVAL;
6970 retval = -ESRCH;
6971 read_lock(&tasklist_lock);
6972 p = find_process_by_pid(pid);
6973 if (!p)
6974 goto out_unlock;
6976 retval = security_task_getscheduler(p);
6977 if (retval)
6978 goto out_unlock;
6981 * Time slice is 0 for SCHED_FIFO tasks and for SCHED_OTHER
6982 * tasks that are on an otherwise idle runqueue:
6984 time_slice = 0;
6985 if (p->policy == SCHED_RR) {
6986 time_slice = DEF_TIMESLICE;
6987 } else if (p->policy != SCHED_FIFO) {
6988 struct sched_entity *se = &p->se;
6989 unsigned long flags;
6990 struct rq *rq;
6992 rq = task_rq_lock(p, &flags);
6993 if (rq->cfs.load.weight)
6994 time_slice = NS_TO_JIFFIES(sched_slice(&rq->cfs, se));
6995 task_rq_unlock(rq, &flags);
6997 read_unlock(&tasklist_lock);
6998 jiffies_to_timespec(time_slice, &t);
6999 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
7000 return retval;
7002 out_unlock:
7003 read_unlock(&tasklist_lock);
7004 return retval;
7007 static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
7009 void sched_show_task(struct task_struct *p)
7011 unsigned long free = 0;
7012 unsigned state;
7014 state = p->state ? __ffs(p->state) + 1 : 0;
7015 printk(KERN_INFO "%-13.13s %c", p->comm,
7016 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
7017 #if BITS_PER_LONG == 32
7018 if (state == TASK_RUNNING)
7019 printk(KERN_CONT " running ");
7020 else
7021 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
7022 #else
7023 if (state == TASK_RUNNING)
7024 printk(KERN_CONT " running task ");
7025 else
7026 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
7027 #endif
7028 #ifdef CONFIG_DEBUG_STACK_USAGE
7029 free = stack_not_used(p);
7030 #endif
7031 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
7032 task_pid_nr(p), task_pid_nr(p->real_parent),
7033 (unsigned long)task_thread_info(p)->flags);
7035 show_stack(p, NULL);
7038 void show_state_filter(unsigned long state_filter)
7040 struct task_struct *g, *p;
7042 #if BITS_PER_LONG == 32
7043 printk(KERN_INFO
7044 " task PC stack pid father\n");
7045 #else
7046 printk(KERN_INFO
7047 " task PC stack pid father\n");
7048 #endif
7049 read_lock(&tasklist_lock);
7050 do_each_thread(g, p) {
7052 * reset the NMI-timeout, listing all files on a slow
7053 * console might take alot of time:
7055 touch_nmi_watchdog();
7056 if (!state_filter || (p->state & state_filter))
7057 sched_show_task(p);
7058 } while_each_thread(g, p);
7060 touch_all_softlockup_watchdogs();
7062 #ifdef CONFIG_SCHED_DEBUG
7063 sysrq_sched_debug_show();
7064 #endif
7065 read_unlock(&tasklist_lock);
7067 * Only show locks if all tasks are dumped:
7069 if (state_filter == -1)
7070 debug_show_all_locks();
7073 void __cpuinit init_idle_bootup_task(struct task_struct *idle)
7075 idle->sched_class = &idle_sched_class;
7079 * init_idle - set up an idle thread for a given CPU
7080 * @idle: task in question
7081 * @cpu: cpu the idle task belongs to
7083 * NOTE: this function does not set the idle thread's NEED_RESCHED
7084 * flag, to make booting more robust.
7086 void __cpuinit init_idle(struct task_struct *idle, int cpu)
7088 struct rq *rq = cpu_rq(cpu);
7089 unsigned long flags;
7091 spin_lock_irqsave(&rq->lock, flags);
7093 __sched_fork(idle);
7094 idle->se.exec_start = sched_clock();
7096 idle->prio = idle->normal_prio = MAX_PRIO;
7097 cpumask_copy(&idle->cpus_allowed, cpumask_of(cpu));
7098 __set_task_cpu(idle, cpu);
7100 rq->curr = rq->idle = idle;
7101 #if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
7102 idle->oncpu = 1;
7103 #endif
7104 spin_unlock_irqrestore(&rq->lock, flags);
7106 /* Set the preempt count _outside_ the spinlocks! */
7107 #if defined(CONFIG_PREEMPT)
7108 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
7109 #else
7110 task_thread_info(idle)->preempt_count = 0;
7111 #endif
7113 * The idle tasks have their own, simple scheduling class:
7115 idle->sched_class = &idle_sched_class;
7116 ftrace_graph_init_task(idle);
7120 * In a system that switches off the HZ timer nohz_cpu_mask
7121 * indicates which cpus entered this state. This is used
7122 * in the rcu update to wait only for active cpus. For system
7123 * which do not switch off the HZ timer nohz_cpu_mask should
7124 * always be CPU_BITS_NONE.
7126 cpumask_var_t nohz_cpu_mask;
7129 * Increase the granularity value when there are more CPUs,
7130 * because with more CPUs the 'effective latency' as visible
7131 * to users decreases. But the relationship is not linear,
7132 * so pick a second-best guess by going with the log2 of the
7133 * number of CPUs.
7135 * This idea comes from the SD scheduler of Con Kolivas:
7137 static inline void sched_init_granularity(void)
7139 unsigned int factor = 1 + ilog2(num_online_cpus());
7140 const unsigned long limit = 200000000;
7142 sysctl_sched_min_granularity *= factor;
7143 if (sysctl_sched_min_granularity > limit)
7144 sysctl_sched_min_granularity = limit;
7146 sysctl_sched_latency *= factor;
7147 if (sysctl_sched_latency > limit)
7148 sysctl_sched_latency = limit;
7150 sysctl_sched_wakeup_granularity *= factor;
7152 sysctl_sched_shares_ratelimit *= factor;
7155 #ifdef CONFIG_SMP
7157 * This is how migration works:
7159 * 1) we queue a struct migration_req structure in the source CPU's
7160 * runqueue and wake up that CPU's migration thread.
7161 * 2) we down() the locked semaphore => thread blocks.
7162 * 3) migration thread wakes up (implicitly it forces the migrated
7163 * thread off the CPU)
7164 * 4) it gets the migration request and checks whether the migrated
7165 * task is still in the wrong runqueue.
7166 * 5) if it's in the wrong runqueue then the migration thread removes
7167 * it and puts it into the right queue.
7168 * 6) migration thread up()s the semaphore.
7169 * 7) we wake up and the migration is done.
7173 * Change a given task's CPU affinity. Migrate the thread to a
7174 * proper CPU and schedule it away if the CPU it's executing on
7175 * is removed from the allowed bitmask.
7177 * NOTE: the caller must have a valid reference to the task, the
7178 * task must not exit() & deallocate itself prematurely. The
7179 * call is not atomic; no spinlocks may be held.
7181 int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
7183 struct migration_req req;
7184 unsigned long flags;
7185 struct rq *rq;
7186 int ret = 0;
7188 rq = task_rq_lock(p, &flags);
7189 if (!cpumask_intersects(new_mask, cpu_online_mask)) {
7190 ret = -EINVAL;
7191 goto out;
7194 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current &&
7195 !cpumask_equal(&p->cpus_allowed, new_mask))) {
7196 ret = -EINVAL;
7197 goto out;
7200 if (p->sched_class->set_cpus_allowed)
7201 p->sched_class->set_cpus_allowed(p, new_mask);
7202 else {
7203 cpumask_copy(&p->cpus_allowed, new_mask);
7204 p->rt.nr_cpus_allowed = cpumask_weight(new_mask);
7207 /* Can the task run on the task's current CPU? If so, we're done */
7208 if (cpumask_test_cpu(task_cpu(p), new_mask))
7209 goto out;
7211 if (migrate_task(p, cpumask_any_and(cpu_online_mask, new_mask), &req)) {
7212 /* Need help from migration thread: drop lock and wait. */
7213 struct task_struct *mt = rq->migration_thread;
7215 get_task_struct(mt);
7216 task_rq_unlock(rq, &flags);
7217 wake_up_process(rq->migration_thread);
7218 put_task_struct(mt);
7219 wait_for_completion(&req.done);
7220 tlb_migrate_finish(p->mm);
7221 return 0;
7223 out:
7224 task_rq_unlock(rq, &flags);
7226 return ret;
7228 EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
7231 * Move (not current) task off this cpu, onto dest cpu. We're doing
7232 * this because either it can't run here any more (set_cpus_allowed()
7233 * away from this CPU, or CPU going down), or because we're
7234 * attempting to rebalance this task on exec (sched_exec).
7236 * So we race with normal scheduler movements, but that's OK, as long
7237 * as the task is no longer on this CPU.
7239 * Returns non-zero if task was successfully migrated.
7241 static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
7243 struct rq *rq_dest, *rq_src;
7244 int ret = 0, on_rq;
7246 if (unlikely(!cpu_active(dest_cpu)))
7247 return ret;
7249 rq_src = cpu_rq(src_cpu);
7250 rq_dest = cpu_rq(dest_cpu);
7252 double_rq_lock(rq_src, rq_dest);
7253 /* Already moved. */
7254 if (task_cpu(p) != src_cpu)
7255 goto done;
7256 /* Affinity changed (again). */
7257 if (!cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7258 goto fail;
7260 on_rq = p->se.on_rq;
7261 if (on_rq)
7262 deactivate_task(rq_src, p, 0);
7264 set_task_cpu(p, dest_cpu);
7265 if (on_rq) {
7266 activate_task(rq_dest, p, 0);
7267 check_preempt_curr(rq_dest, p, 0);
7269 done:
7270 ret = 1;
7271 fail:
7272 double_rq_unlock(rq_src, rq_dest);
7273 return ret;
7276 #define RCU_MIGRATION_IDLE 0
7277 #define RCU_MIGRATION_NEED_QS 1
7278 #define RCU_MIGRATION_GOT_QS 2
7279 #define RCU_MIGRATION_MUST_SYNC 3
7282 * migration_thread - this is a highprio system thread that performs
7283 * thread migration by bumping thread off CPU then 'pushing' onto
7284 * another runqueue.
7286 static int migration_thread(void *data)
7288 int badcpu;
7289 int cpu = (long)data;
7290 struct rq *rq;
7292 rq = cpu_rq(cpu);
7293 BUG_ON(rq->migration_thread != current);
7295 set_current_state(TASK_INTERRUPTIBLE);
7296 while (!kthread_should_stop()) {
7297 struct migration_req *req;
7298 struct list_head *head;
7300 spin_lock_irq(&rq->lock);
7302 if (cpu_is_offline(cpu)) {
7303 spin_unlock_irq(&rq->lock);
7304 break;
7307 if (rq->active_balance) {
7308 active_load_balance(rq, cpu);
7309 rq->active_balance = 0;
7312 head = &rq->migration_queue;
7314 if (list_empty(head)) {
7315 spin_unlock_irq(&rq->lock);
7316 schedule();
7317 set_current_state(TASK_INTERRUPTIBLE);
7318 continue;
7320 req = list_entry(head->next, struct migration_req, list);
7321 list_del_init(head->next);
7323 if (req->task != NULL) {
7324 spin_unlock(&rq->lock);
7325 __migrate_task(req->task, cpu, req->dest_cpu);
7326 } else if (likely(cpu == (badcpu = smp_processor_id()))) {
7327 req->dest_cpu = RCU_MIGRATION_GOT_QS;
7328 spin_unlock(&rq->lock);
7329 } else {
7330 req->dest_cpu = RCU_MIGRATION_MUST_SYNC;
7331 spin_unlock(&rq->lock);
7332 WARN_ONCE(1, "migration_thread() on CPU %d, expected %d\n", badcpu, cpu);
7334 local_irq_enable();
7336 complete(&req->done);
7338 __set_current_state(TASK_RUNNING);
7340 return 0;
7343 #ifdef CONFIG_HOTPLUG_CPU
7345 static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
7347 int ret;
7349 local_irq_disable();
7350 ret = __migrate_task(p, src_cpu, dest_cpu);
7351 local_irq_enable();
7352 return ret;
7356 * Figure out where task on dead CPU should go, use force if necessary.
7358 static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
7360 int dest_cpu;
7361 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(dead_cpu));
7363 again:
7364 /* Look for allowed, online CPU in same node. */
7365 for_each_cpu_and(dest_cpu, nodemask, cpu_online_mask)
7366 if (cpumask_test_cpu(dest_cpu, &p->cpus_allowed))
7367 goto move;
7369 /* Any allowed, online CPU? */
7370 dest_cpu = cpumask_any_and(&p->cpus_allowed, cpu_online_mask);
7371 if (dest_cpu < nr_cpu_ids)
7372 goto move;
7374 /* No more Mr. Nice Guy. */
7375 if (dest_cpu >= nr_cpu_ids) {
7376 cpuset_cpus_allowed_locked(p, &p->cpus_allowed);
7377 dest_cpu = cpumask_any_and(cpu_online_mask, &p->cpus_allowed);
7380 * Don't tell them about moving exiting tasks or
7381 * kernel threads (both mm NULL), since they never
7382 * leave kernel.
7384 if (p->mm && printk_ratelimit()) {
7385 printk(KERN_INFO "process %d (%s) no "
7386 "longer affine to cpu%d\n",
7387 task_pid_nr(p), p->comm, dead_cpu);
7391 move:
7392 /* It can have affinity changed while we were choosing. */
7393 if (unlikely(!__migrate_task_irq(p, dead_cpu, dest_cpu)))
7394 goto again;
7398 * While a dead CPU has no uninterruptible tasks queued at this point,
7399 * it might still have a nonzero ->nr_uninterruptible counter, because
7400 * for performance reasons the counter is not stricly tracking tasks to
7401 * their home CPUs. So we just add the counter to another CPU's counter,
7402 * to keep the global sum constant after CPU-down:
7404 static void migrate_nr_uninterruptible(struct rq *rq_src)
7406 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_online_mask));
7407 unsigned long flags;
7409 local_irq_save(flags);
7410 double_rq_lock(rq_src, rq_dest);
7411 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
7412 rq_src->nr_uninterruptible = 0;
7413 double_rq_unlock(rq_src, rq_dest);
7414 local_irq_restore(flags);
7417 /* Run through task list and migrate tasks from the dead cpu. */
7418 static void migrate_live_tasks(int src_cpu)
7420 struct task_struct *p, *t;
7422 read_lock(&tasklist_lock);
7424 do_each_thread(t, p) {
7425 if (p == current)
7426 continue;
7428 if (task_cpu(p) == src_cpu)
7429 move_task_off_dead_cpu(src_cpu, p);
7430 } while_each_thread(t, p);
7432 read_unlock(&tasklist_lock);
7436 * Schedules idle task to be the next runnable task on current CPU.
7437 * It does so by boosting its priority to highest possible.
7438 * Used by CPU offline code.
7440 void sched_idle_next(void)
7442 int this_cpu = smp_processor_id();
7443 struct rq *rq = cpu_rq(this_cpu);
7444 struct task_struct *p = rq->idle;
7445 unsigned long flags;
7447 /* cpu has to be offline */
7448 BUG_ON(cpu_online(this_cpu));
7451 * Strictly not necessary since rest of the CPUs are stopped by now
7452 * and interrupts disabled on the current cpu.
7454 spin_lock_irqsave(&rq->lock, flags);
7456 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7458 update_rq_clock(rq);
7459 activate_task(rq, p, 0);
7461 spin_unlock_irqrestore(&rq->lock, flags);
7465 * Ensures that the idle task is using init_mm right before its cpu goes
7466 * offline.
7468 void idle_task_exit(void)
7470 struct mm_struct *mm = current->active_mm;
7472 BUG_ON(cpu_online(smp_processor_id()));
7474 if (mm != &init_mm)
7475 switch_mm(mm, &init_mm, current);
7476 mmdrop(mm);
7479 /* called under rq->lock with disabled interrupts */
7480 static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
7482 struct rq *rq = cpu_rq(dead_cpu);
7484 /* Must be exiting, otherwise would be on tasklist. */
7485 BUG_ON(!p->exit_state);
7487 /* Cannot have done final schedule yet: would have vanished. */
7488 BUG_ON(p->state == TASK_DEAD);
7490 get_task_struct(p);
7493 * Drop lock around migration; if someone else moves it,
7494 * that's OK. No task can be added to this CPU, so iteration is
7495 * fine.
7497 spin_unlock_irq(&rq->lock);
7498 move_task_off_dead_cpu(dead_cpu, p);
7499 spin_lock_irq(&rq->lock);
7501 put_task_struct(p);
7504 /* release_task() removes task from tasklist, so we won't find dead tasks. */
7505 static void migrate_dead_tasks(unsigned int dead_cpu)
7507 struct rq *rq = cpu_rq(dead_cpu);
7508 struct task_struct *next;
7510 for ( ; ; ) {
7511 if (!rq->nr_running)
7512 break;
7513 update_rq_clock(rq);
7514 next = pick_next_task(rq);
7515 if (!next)
7516 break;
7517 next->sched_class->put_prev_task(rq, next);
7518 migrate_dead(dead_cpu, next);
7524 * remove the tasks which were accounted by rq from calc_load_tasks.
7526 static void calc_global_load_remove(struct rq *rq)
7528 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
7529 rq->calc_load_active = 0;
7531 #endif /* CONFIG_HOTPLUG_CPU */
7533 #if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
7535 static struct ctl_table sd_ctl_dir[] = {
7537 .procname = "sched_domain",
7538 .mode = 0555,
7540 {0, },
7543 static struct ctl_table sd_ctl_root[] = {
7545 .ctl_name = CTL_KERN,
7546 .procname = "kernel",
7547 .mode = 0555,
7548 .child = sd_ctl_dir,
7550 {0, },
7553 static struct ctl_table *sd_alloc_ctl_entry(int n)
7555 struct ctl_table *entry =
7556 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
7558 return entry;
7561 static void sd_free_ctl_entry(struct ctl_table **tablep)
7563 struct ctl_table *entry;
7566 * In the intermediate directories, both the child directory and
7567 * procname are dynamically allocated and could fail but the mode
7568 * will always be set. In the lowest directory the names are
7569 * static strings and all have proc handlers.
7571 for (entry = *tablep; entry->mode; entry++) {
7572 if (entry->child)
7573 sd_free_ctl_entry(&entry->child);
7574 if (entry->proc_handler == NULL)
7575 kfree(entry->procname);
7578 kfree(*tablep);
7579 *tablep = NULL;
7582 static void
7583 set_table_entry(struct ctl_table *entry,
7584 const char *procname, void *data, int maxlen,
7585 mode_t mode, proc_handler *proc_handler)
7587 entry->procname = procname;
7588 entry->data = data;
7589 entry->maxlen = maxlen;
7590 entry->mode = mode;
7591 entry->proc_handler = proc_handler;
7594 static struct ctl_table *
7595 sd_alloc_ctl_domain_table(struct sched_domain *sd)
7597 struct ctl_table *table = sd_alloc_ctl_entry(13);
7599 if (table == NULL)
7600 return NULL;
7602 set_table_entry(&table[0], "min_interval", &sd->min_interval,
7603 sizeof(long), 0644, proc_doulongvec_minmax);
7604 set_table_entry(&table[1], "max_interval", &sd->max_interval,
7605 sizeof(long), 0644, proc_doulongvec_minmax);
7606 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
7607 sizeof(int), 0644, proc_dointvec_minmax);
7608 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
7609 sizeof(int), 0644, proc_dointvec_minmax);
7610 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
7611 sizeof(int), 0644, proc_dointvec_minmax);
7612 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
7613 sizeof(int), 0644, proc_dointvec_minmax);
7614 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
7615 sizeof(int), 0644, proc_dointvec_minmax);
7616 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
7617 sizeof(int), 0644, proc_dointvec_minmax);
7618 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
7619 sizeof(int), 0644, proc_dointvec_minmax);
7620 set_table_entry(&table[9], "cache_nice_tries",
7621 &sd->cache_nice_tries,
7622 sizeof(int), 0644, proc_dointvec_minmax);
7623 set_table_entry(&table[10], "flags", &sd->flags,
7624 sizeof(int), 0644, proc_dointvec_minmax);
7625 set_table_entry(&table[11], "name", sd->name,
7626 CORENAME_MAX_SIZE, 0444, proc_dostring);
7627 /* &table[12] is terminator */
7629 return table;
7632 static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
7634 struct ctl_table *entry, *table;
7635 struct sched_domain *sd;
7636 int domain_num = 0, i;
7637 char buf[32];
7639 for_each_domain(cpu, sd)
7640 domain_num++;
7641 entry = table = sd_alloc_ctl_entry(domain_num + 1);
7642 if (table == NULL)
7643 return NULL;
7645 i = 0;
7646 for_each_domain(cpu, sd) {
7647 snprintf(buf, 32, "domain%d", i);
7648 entry->procname = kstrdup(buf, GFP_KERNEL);
7649 entry->mode = 0555;
7650 entry->child = sd_alloc_ctl_domain_table(sd);
7651 entry++;
7652 i++;
7654 return table;
7657 static struct ctl_table_header *sd_sysctl_header;
7658 static void register_sched_domain_sysctl(void)
7660 int i, cpu_num = num_online_cpus();
7661 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
7662 char buf[32];
7664 WARN_ON(sd_ctl_dir[0].child);
7665 sd_ctl_dir[0].child = entry;
7667 if (entry == NULL)
7668 return;
7670 for_each_online_cpu(i) {
7671 snprintf(buf, 32, "cpu%d", i);
7672 entry->procname = kstrdup(buf, GFP_KERNEL);
7673 entry->mode = 0555;
7674 entry->child = sd_alloc_ctl_cpu_table(i);
7675 entry++;
7678 WARN_ON(sd_sysctl_header);
7679 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
7682 /* may be called multiple times per register */
7683 static void unregister_sched_domain_sysctl(void)
7685 if (sd_sysctl_header)
7686 unregister_sysctl_table(sd_sysctl_header);
7687 sd_sysctl_header = NULL;
7688 if (sd_ctl_dir[0].child)
7689 sd_free_ctl_entry(&sd_ctl_dir[0].child);
7691 #else
7692 static void register_sched_domain_sysctl(void)
7695 static void unregister_sched_domain_sysctl(void)
7698 #endif
7700 static void set_rq_online(struct rq *rq)
7702 if (!rq->online) {
7703 const struct sched_class *class;
7705 cpumask_set_cpu(rq->cpu, rq->rd->online);
7706 rq->online = 1;
7708 for_each_class(class) {
7709 if (class->rq_online)
7710 class->rq_online(rq);
7715 static void set_rq_offline(struct rq *rq)
7717 if (rq->online) {
7718 const struct sched_class *class;
7720 for_each_class(class) {
7721 if (class->rq_offline)
7722 class->rq_offline(rq);
7725 cpumask_clear_cpu(rq->cpu, rq->rd->online);
7726 rq->online = 0;
7731 * migration_call - callback that gets triggered when a CPU is added.
7732 * Here we can start up the necessary migration thread for the new CPU.
7734 static int __cpuinit
7735 migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
7737 struct task_struct *p;
7738 int cpu = (long)hcpu;
7739 unsigned long flags;
7740 struct rq *rq;
7742 switch (action) {
7744 case CPU_UP_PREPARE:
7745 case CPU_UP_PREPARE_FROZEN:
7746 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
7747 if (IS_ERR(p))
7748 return NOTIFY_BAD;
7749 kthread_bind(p, cpu);
7750 /* Must be high prio: stop_machine expects to yield to it. */
7751 rq = task_rq_lock(p, &flags);
7752 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
7753 task_rq_unlock(rq, &flags);
7754 get_task_struct(p);
7755 cpu_rq(cpu)->migration_thread = p;
7756 rq->calc_load_update = calc_load_update;
7757 break;
7759 case CPU_ONLINE:
7760 case CPU_ONLINE_FROZEN:
7761 /* Strictly unnecessary, as first user will wake it. */
7762 wake_up_process(cpu_rq(cpu)->migration_thread);
7764 /* Update our root-domain */
7765 rq = cpu_rq(cpu);
7766 spin_lock_irqsave(&rq->lock, flags);
7767 if (rq->rd) {
7768 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7770 set_rq_online(rq);
7772 spin_unlock_irqrestore(&rq->lock, flags);
7773 break;
7775 #ifdef CONFIG_HOTPLUG_CPU
7776 case CPU_UP_CANCELED:
7777 case CPU_UP_CANCELED_FROZEN:
7778 if (!cpu_rq(cpu)->migration_thread)
7779 break;
7780 /* Unbind it from offline cpu so it can run. Fall thru. */
7781 kthread_bind(cpu_rq(cpu)->migration_thread,
7782 cpumask_any(cpu_online_mask));
7783 kthread_stop(cpu_rq(cpu)->migration_thread);
7784 put_task_struct(cpu_rq(cpu)->migration_thread);
7785 cpu_rq(cpu)->migration_thread = NULL;
7786 break;
7788 case CPU_DEAD:
7789 case CPU_DEAD_FROZEN:
7790 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
7791 migrate_live_tasks(cpu);
7792 rq = cpu_rq(cpu);
7793 kthread_stop(rq->migration_thread);
7794 put_task_struct(rq->migration_thread);
7795 rq->migration_thread = NULL;
7796 /* Idle task back to normal (off runqueue, low prio) */
7797 spin_lock_irq(&rq->lock);
7798 update_rq_clock(rq);
7799 deactivate_task(rq, rq->idle, 0);
7800 rq->idle->static_prio = MAX_PRIO;
7801 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
7802 rq->idle->sched_class = &idle_sched_class;
7803 migrate_dead_tasks(cpu);
7804 spin_unlock_irq(&rq->lock);
7805 cpuset_unlock();
7806 migrate_nr_uninterruptible(rq);
7807 BUG_ON(rq->nr_running != 0);
7808 calc_global_load_remove(rq);
7810 * No need to migrate the tasks: it was best-effort if
7811 * they didn't take sched_hotcpu_mutex. Just wake up
7812 * the requestors.
7814 spin_lock_irq(&rq->lock);
7815 while (!list_empty(&rq->migration_queue)) {
7816 struct migration_req *req;
7818 req = list_entry(rq->migration_queue.next,
7819 struct migration_req, list);
7820 list_del_init(&req->list);
7821 spin_unlock_irq(&rq->lock);
7822 complete(&req->done);
7823 spin_lock_irq(&rq->lock);
7825 spin_unlock_irq(&rq->lock);
7826 break;
7828 case CPU_DYING:
7829 case CPU_DYING_FROZEN:
7830 /* Update our root-domain */
7831 rq = cpu_rq(cpu);
7832 spin_lock_irqsave(&rq->lock, flags);
7833 if (rq->rd) {
7834 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
7835 set_rq_offline(rq);
7837 spin_unlock_irqrestore(&rq->lock, flags);
7838 break;
7839 #endif
7841 return NOTIFY_OK;
7845 * Register at high priority so that task migration (migrate_all_tasks)
7846 * happens before everything else. This has to be lower priority than
7847 * the notifier in the perf_counter subsystem, though.
7849 static struct notifier_block __cpuinitdata migration_notifier = {
7850 .notifier_call = migration_call,
7851 .priority = 10
7854 static int __init migration_init(void)
7856 void *cpu = (void *)(long)smp_processor_id();
7857 int err;
7859 /* Start one for the boot CPU: */
7860 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
7861 BUG_ON(err == NOTIFY_BAD);
7862 migration_call(&migration_notifier, CPU_ONLINE, cpu);
7863 register_cpu_notifier(&migration_notifier);
7865 return 0;
7867 early_initcall(migration_init);
7868 #endif
7870 #ifdef CONFIG_SMP
7872 #ifdef CONFIG_SCHED_DEBUG
7874 static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
7875 struct cpumask *groupmask)
7877 struct sched_group *group = sd->groups;
7878 char str[256];
7880 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
7881 cpumask_clear(groupmask);
7883 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
7885 if (!(sd->flags & SD_LOAD_BALANCE)) {
7886 printk("does not load-balance\n");
7887 if (sd->parent)
7888 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
7889 " has parent");
7890 return -1;
7893 printk(KERN_CONT "span %s level %s\n", str, sd->name);
7895 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
7896 printk(KERN_ERR "ERROR: domain->span does not contain "
7897 "CPU%d\n", cpu);
7899 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
7900 printk(KERN_ERR "ERROR: domain->groups does not contain"
7901 " CPU%d\n", cpu);
7904 printk(KERN_DEBUG "%*s groups:", level + 1, "");
7905 do {
7906 if (!group) {
7907 printk("\n");
7908 printk(KERN_ERR "ERROR: group is NULL\n");
7909 break;
7912 if (!group->cpu_power) {
7913 printk(KERN_CONT "\n");
7914 printk(KERN_ERR "ERROR: domain->cpu_power not "
7915 "set\n");
7916 break;
7919 if (!cpumask_weight(sched_group_cpus(group))) {
7920 printk(KERN_CONT "\n");
7921 printk(KERN_ERR "ERROR: empty group\n");
7922 break;
7925 if (cpumask_intersects(groupmask, sched_group_cpus(group))) {
7926 printk(KERN_CONT "\n");
7927 printk(KERN_ERR "ERROR: repeated CPUs\n");
7928 break;
7931 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
7933 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
7935 printk(KERN_CONT " %s", str);
7936 if (group->cpu_power != SCHED_LOAD_SCALE) {
7937 printk(KERN_CONT " (cpu_power = %d)",
7938 group->cpu_power);
7941 group = group->next;
7942 } while (group != sd->groups);
7943 printk(KERN_CONT "\n");
7945 if (!cpumask_equal(sched_domain_span(sd), groupmask))
7946 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
7948 if (sd->parent &&
7949 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
7950 printk(KERN_ERR "ERROR: parent span is not a superset "
7951 "of domain->span\n");
7952 return 0;
7955 static void sched_domain_debug(struct sched_domain *sd, int cpu)
7957 cpumask_var_t groupmask;
7958 int level = 0;
7960 if (!sd) {
7961 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
7962 return;
7965 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
7967 if (!alloc_cpumask_var(&groupmask, GFP_KERNEL)) {
7968 printk(KERN_DEBUG "Cannot load-balance (out of memory)\n");
7969 return;
7972 for (;;) {
7973 if (sched_domain_debug_one(sd, cpu, level, groupmask))
7974 break;
7975 level++;
7976 sd = sd->parent;
7977 if (!sd)
7978 break;
7980 free_cpumask_var(groupmask);
7982 #else /* !CONFIG_SCHED_DEBUG */
7983 # define sched_domain_debug(sd, cpu) do { } while (0)
7984 #endif /* CONFIG_SCHED_DEBUG */
7986 static int sd_degenerate(struct sched_domain *sd)
7988 if (cpumask_weight(sched_domain_span(sd)) == 1)
7989 return 1;
7991 /* Following flags need at least 2 groups */
7992 if (sd->flags & (SD_LOAD_BALANCE |
7993 SD_BALANCE_NEWIDLE |
7994 SD_BALANCE_FORK |
7995 SD_BALANCE_EXEC |
7996 SD_SHARE_CPUPOWER |
7997 SD_SHARE_PKG_RESOURCES)) {
7998 if (sd->groups != sd->groups->next)
7999 return 0;
8002 /* Following flags don't use groups */
8003 if (sd->flags & (SD_WAKE_IDLE |
8004 SD_WAKE_AFFINE |
8005 SD_WAKE_BALANCE))
8006 return 0;
8008 return 1;
8011 static int
8012 sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
8014 unsigned long cflags = sd->flags, pflags = parent->flags;
8016 if (sd_degenerate(parent))
8017 return 1;
8019 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
8020 return 0;
8022 /* Does parent contain flags not in child? */
8023 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
8024 if (cflags & SD_WAKE_AFFINE)
8025 pflags &= ~SD_WAKE_BALANCE;
8026 /* Flags needing groups don't count if only 1 group in parent */
8027 if (parent->groups == parent->groups->next) {
8028 pflags &= ~(SD_LOAD_BALANCE |
8029 SD_BALANCE_NEWIDLE |
8030 SD_BALANCE_FORK |
8031 SD_BALANCE_EXEC |
8032 SD_SHARE_CPUPOWER |
8033 SD_SHARE_PKG_RESOURCES);
8034 if (nr_node_ids == 1)
8035 pflags &= ~SD_SERIALIZE;
8037 if (~cflags & pflags)
8038 return 0;
8040 return 1;
8043 static void free_rootdomain(struct root_domain *rd)
8045 cpupri_cleanup(&rd->cpupri);
8047 free_cpumask_var(rd->rto_mask);
8048 free_cpumask_var(rd->online);
8049 free_cpumask_var(rd->span);
8050 kfree(rd);
8053 static void rq_attach_root(struct rq *rq, struct root_domain *rd)
8055 struct root_domain *old_rd = NULL;
8056 unsigned long flags;
8058 spin_lock_irqsave(&rq->lock, flags);
8060 if (rq->rd) {
8061 old_rd = rq->rd;
8063 if (cpumask_test_cpu(rq->cpu, old_rd->online))
8064 set_rq_offline(rq);
8066 cpumask_clear_cpu(rq->cpu, old_rd->span);
8069 * If we dont want to free the old_rt yet then
8070 * set old_rd to NULL to skip the freeing later
8071 * in this function:
8073 if (!atomic_dec_and_test(&old_rd->refcount))
8074 old_rd = NULL;
8077 atomic_inc(&rd->refcount);
8078 rq->rd = rd;
8080 cpumask_set_cpu(rq->cpu, rd->span);
8081 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
8082 set_rq_online(rq);
8084 spin_unlock_irqrestore(&rq->lock, flags);
8086 if (old_rd)
8087 free_rootdomain(old_rd);
8090 static int init_rootdomain(struct root_domain *rd, bool bootmem)
8092 gfp_t gfp = GFP_KERNEL;
8094 memset(rd, 0, sizeof(*rd));
8096 if (bootmem)
8097 gfp = GFP_NOWAIT;
8099 if (!alloc_cpumask_var(&rd->span, gfp))
8100 goto out;
8101 if (!alloc_cpumask_var(&rd->online, gfp))
8102 goto free_span;
8103 if (!alloc_cpumask_var(&rd->rto_mask, gfp))
8104 goto free_online;
8106 if (cpupri_init(&rd->cpupri, bootmem) != 0)
8107 goto free_rto_mask;
8108 return 0;
8110 free_rto_mask:
8111 free_cpumask_var(rd->rto_mask);
8112 free_online:
8113 free_cpumask_var(rd->online);
8114 free_span:
8115 free_cpumask_var(rd->span);
8116 out:
8117 return -ENOMEM;
8120 static void init_defrootdomain(void)
8122 init_rootdomain(&def_root_domain, true);
8124 atomic_set(&def_root_domain.refcount, 1);
8127 static struct root_domain *alloc_rootdomain(void)
8129 struct root_domain *rd;
8131 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
8132 if (!rd)
8133 return NULL;
8135 if (init_rootdomain(rd, false) != 0) {
8136 kfree(rd);
8137 return NULL;
8140 return rd;
8144 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
8145 * hold the hotplug lock.
8147 static void
8148 cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
8150 struct rq *rq = cpu_rq(cpu);
8151 struct sched_domain *tmp;
8153 /* Remove the sched domains which do not contribute to scheduling. */
8154 for (tmp = sd; tmp; ) {
8155 struct sched_domain *parent = tmp->parent;
8156 if (!parent)
8157 break;
8159 if (sd_parent_degenerate(tmp, parent)) {
8160 tmp->parent = parent->parent;
8161 if (parent->parent)
8162 parent->parent->child = tmp;
8163 } else
8164 tmp = tmp->parent;
8167 if (sd && sd_degenerate(sd)) {
8168 sd = sd->parent;
8169 if (sd)
8170 sd->child = NULL;
8173 sched_domain_debug(sd, cpu);
8175 rq_attach_root(rq, rd);
8176 rcu_assign_pointer(rq->sd, sd);
8179 /* cpus with isolated domains */
8180 static cpumask_var_t cpu_isolated_map;
8182 /* Setup the mask of cpus configured for isolated domains */
8183 static int __init isolated_cpu_setup(char *str)
8185 cpulist_parse(str, cpu_isolated_map);
8186 return 1;
8189 __setup("isolcpus=", isolated_cpu_setup);
8192 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
8193 * to a function which identifies what group(along with sched group) a CPU
8194 * belongs to. The return value of group_fn must be a >= 0 and < nr_cpu_ids
8195 * (due to the fact that we keep track of groups covered with a struct cpumask).
8197 * init_sched_build_groups will build a circular linked list of the groups
8198 * covered by the given span, and will set each group's ->cpumask correctly,
8199 * and ->cpu_power to 0.
8201 static void
8202 init_sched_build_groups(const struct cpumask *span,
8203 const struct cpumask *cpu_map,
8204 int (*group_fn)(int cpu, const struct cpumask *cpu_map,
8205 struct sched_group **sg,
8206 struct cpumask *tmpmask),
8207 struct cpumask *covered, struct cpumask *tmpmask)
8209 struct sched_group *first = NULL, *last = NULL;
8210 int i;
8212 cpumask_clear(covered);
8214 for_each_cpu(i, span) {
8215 struct sched_group *sg;
8216 int group = group_fn(i, cpu_map, &sg, tmpmask);
8217 int j;
8219 if (cpumask_test_cpu(i, covered))
8220 continue;
8222 cpumask_clear(sched_group_cpus(sg));
8223 sg->cpu_power = 0;
8225 for_each_cpu(j, span) {
8226 if (group_fn(j, cpu_map, NULL, tmpmask) != group)
8227 continue;
8229 cpumask_set_cpu(j, covered);
8230 cpumask_set_cpu(j, sched_group_cpus(sg));
8232 if (!first)
8233 first = sg;
8234 if (last)
8235 last->next = sg;
8236 last = sg;
8238 last->next = first;
8241 #define SD_NODES_PER_DOMAIN 16
8243 #ifdef CONFIG_NUMA
8246 * find_next_best_node - find the next node to include in a sched_domain
8247 * @node: node whose sched_domain we're building
8248 * @used_nodes: nodes already in the sched_domain
8250 * Find the next node to include in a given scheduling domain. Simply
8251 * finds the closest node not already in the @used_nodes map.
8253 * Should use nodemask_t.
8255 static int find_next_best_node(int node, nodemask_t *used_nodes)
8257 int i, n, val, min_val, best_node = 0;
8259 min_val = INT_MAX;
8261 for (i = 0; i < nr_node_ids; i++) {
8262 /* Start at @node */
8263 n = (node + i) % nr_node_ids;
8265 if (!nr_cpus_node(n))
8266 continue;
8268 /* Skip already used nodes */
8269 if (node_isset(n, *used_nodes))
8270 continue;
8272 /* Simple min distance search */
8273 val = node_distance(node, n);
8275 if (val < min_val) {
8276 min_val = val;
8277 best_node = n;
8281 node_set(best_node, *used_nodes);
8282 return best_node;
8286 * sched_domain_node_span - get a cpumask for a node's sched_domain
8287 * @node: node whose cpumask we're constructing
8288 * @span: resulting cpumask
8290 * Given a node, construct a good cpumask for its sched_domain to span. It
8291 * should be one that prevents unnecessary balancing, but also spreads tasks
8292 * out optimally.
8294 static void sched_domain_node_span(int node, struct cpumask *span)
8296 nodemask_t used_nodes;
8297 int i;
8299 cpumask_clear(span);
8300 nodes_clear(used_nodes);
8302 cpumask_or(span, span, cpumask_of_node(node));
8303 node_set(node, used_nodes);
8305 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
8306 int next_node = find_next_best_node(node, &used_nodes);
8308 cpumask_or(span, span, cpumask_of_node(next_node));
8311 #endif /* CONFIG_NUMA */
8313 int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
8316 * The cpus mask in sched_group and sched_domain hangs off the end.
8318 * ( See the the comments in include/linux/sched.h:struct sched_group
8319 * and struct sched_domain. )
8321 struct static_sched_group {
8322 struct sched_group sg;
8323 DECLARE_BITMAP(cpus, CONFIG_NR_CPUS);
8326 struct static_sched_domain {
8327 struct sched_domain sd;
8328 DECLARE_BITMAP(span, CONFIG_NR_CPUS);
8331 struct s_data {
8332 #ifdef CONFIG_NUMA
8333 int sd_allnodes;
8334 cpumask_var_t domainspan;
8335 cpumask_var_t covered;
8336 cpumask_var_t notcovered;
8337 #endif
8338 cpumask_var_t nodemask;
8339 cpumask_var_t this_sibling_map;
8340 cpumask_var_t this_core_map;
8341 cpumask_var_t send_covered;
8342 cpumask_var_t tmpmask;
8343 struct sched_group **sched_group_nodes;
8344 struct root_domain *rd;
8347 enum s_alloc {
8348 sa_sched_groups = 0,
8349 sa_rootdomain,
8350 sa_tmpmask,
8351 sa_send_covered,
8352 sa_this_core_map,
8353 sa_this_sibling_map,
8354 sa_nodemask,
8355 sa_sched_group_nodes,
8356 #ifdef CONFIG_NUMA
8357 sa_notcovered,
8358 sa_covered,
8359 sa_domainspan,
8360 #endif
8361 sa_none,
8365 * SMT sched-domains:
8367 #ifdef CONFIG_SCHED_SMT
8368 static DEFINE_PER_CPU(struct static_sched_domain, cpu_domains);
8369 static DEFINE_PER_CPU(struct static_sched_group, sched_group_cpus);
8371 static int
8372 cpu_to_cpu_group(int cpu, const struct cpumask *cpu_map,
8373 struct sched_group **sg, struct cpumask *unused)
8375 if (sg)
8376 *sg = &per_cpu(sched_group_cpus, cpu).sg;
8377 return cpu;
8379 #endif /* CONFIG_SCHED_SMT */
8382 * multi-core sched-domains:
8384 #ifdef CONFIG_SCHED_MC
8385 static DEFINE_PER_CPU(struct static_sched_domain, core_domains);
8386 static DEFINE_PER_CPU(struct static_sched_group, sched_group_core);
8387 #endif /* CONFIG_SCHED_MC */
8389 #if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
8390 static int
8391 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8392 struct sched_group **sg, struct cpumask *mask)
8394 int group;
8396 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8397 group = cpumask_first(mask);
8398 if (sg)
8399 *sg = &per_cpu(sched_group_core, group).sg;
8400 return group;
8402 #elif defined(CONFIG_SCHED_MC)
8403 static int
8404 cpu_to_core_group(int cpu, const struct cpumask *cpu_map,
8405 struct sched_group **sg, struct cpumask *unused)
8407 if (sg)
8408 *sg = &per_cpu(sched_group_core, cpu).sg;
8409 return cpu;
8411 #endif
8413 static DEFINE_PER_CPU(struct static_sched_domain, phys_domains);
8414 static DEFINE_PER_CPU(struct static_sched_group, sched_group_phys);
8416 static int
8417 cpu_to_phys_group(int cpu, const struct cpumask *cpu_map,
8418 struct sched_group **sg, struct cpumask *mask)
8420 int group;
8421 #ifdef CONFIG_SCHED_MC
8422 cpumask_and(mask, cpu_coregroup_mask(cpu), cpu_map);
8423 group = cpumask_first(mask);
8424 #elif defined(CONFIG_SCHED_SMT)
8425 cpumask_and(mask, topology_thread_cpumask(cpu), cpu_map);
8426 group = cpumask_first(mask);
8427 #else
8428 group = cpu;
8429 #endif
8430 if (sg)
8431 *sg = &per_cpu(sched_group_phys, group).sg;
8432 return group;
8435 #ifdef CONFIG_NUMA
8437 * The init_sched_build_groups can't handle what we want to do with node
8438 * groups, so roll our own. Now each node has its own list of groups which
8439 * gets dynamically allocated.
8441 static DEFINE_PER_CPU(struct static_sched_domain, node_domains);
8442 static struct sched_group ***sched_group_nodes_bycpu;
8444 static DEFINE_PER_CPU(struct static_sched_domain, allnodes_domains);
8445 static DEFINE_PER_CPU(struct static_sched_group, sched_group_allnodes);
8447 static int cpu_to_allnodes_group(int cpu, const struct cpumask *cpu_map,
8448 struct sched_group **sg,
8449 struct cpumask *nodemask)
8451 int group;
8453 cpumask_and(nodemask, cpumask_of_node(cpu_to_node(cpu)), cpu_map);
8454 group = cpumask_first(nodemask);
8456 if (sg)
8457 *sg = &per_cpu(sched_group_allnodes, group).sg;
8458 return group;
8461 static void init_numa_sched_groups_power(struct sched_group *group_head)
8463 struct sched_group *sg = group_head;
8464 int j;
8466 if (!sg)
8467 return;
8468 do {
8469 for_each_cpu(j, sched_group_cpus(sg)) {
8470 struct sched_domain *sd;
8472 sd = &per_cpu(phys_domains, j).sd;
8473 if (j != group_first_cpu(sd->groups)) {
8475 * Only add "power" once for each
8476 * physical package.
8478 continue;
8481 sg->cpu_power += sd->groups->cpu_power;
8483 sg = sg->next;
8484 } while (sg != group_head);
8487 static int build_numa_sched_groups(struct s_data *d,
8488 const struct cpumask *cpu_map, int num)
8490 struct sched_domain *sd;
8491 struct sched_group *sg, *prev;
8492 int n, j;
8494 cpumask_clear(d->covered);
8495 cpumask_and(d->nodemask, cpumask_of_node(num), cpu_map);
8496 if (cpumask_empty(d->nodemask)) {
8497 d->sched_group_nodes[num] = NULL;
8498 goto out;
8501 sched_domain_node_span(num, d->domainspan);
8502 cpumask_and(d->domainspan, d->domainspan, cpu_map);
8504 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8505 GFP_KERNEL, num);
8506 if (!sg) {
8507 printk(KERN_WARNING "Can not alloc domain group for node %d\n",
8508 num);
8509 return -ENOMEM;
8511 d->sched_group_nodes[num] = sg;
8513 for_each_cpu(j, d->nodemask) {
8514 sd = &per_cpu(node_domains, j).sd;
8515 sd->groups = sg;
8518 sg->cpu_power = 0;
8519 cpumask_copy(sched_group_cpus(sg), d->nodemask);
8520 sg->next = sg;
8521 cpumask_or(d->covered, d->covered, d->nodemask);
8523 prev = sg;
8524 for (j = 0; j < nr_node_ids; j++) {
8525 n = (num + j) % nr_node_ids;
8526 cpumask_complement(d->notcovered, d->covered);
8527 cpumask_and(d->tmpmask, d->notcovered, cpu_map);
8528 cpumask_and(d->tmpmask, d->tmpmask, d->domainspan);
8529 if (cpumask_empty(d->tmpmask))
8530 break;
8531 cpumask_and(d->tmpmask, d->tmpmask, cpumask_of_node(n));
8532 if (cpumask_empty(d->tmpmask))
8533 continue;
8534 sg = kmalloc_node(sizeof(struct sched_group) + cpumask_size(),
8535 GFP_KERNEL, num);
8536 if (!sg) {
8537 printk(KERN_WARNING
8538 "Can not alloc domain group for node %d\n", j);
8539 return -ENOMEM;
8541 sg->cpu_power = 0;
8542 cpumask_copy(sched_group_cpus(sg), d->tmpmask);
8543 sg->next = prev->next;
8544 cpumask_or(d->covered, d->covered, d->tmpmask);
8545 prev->next = sg;
8546 prev = sg;
8548 out:
8549 return 0;
8551 #endif /* CONFIG_NUMA */
8553 #ifdef CONFIG_NUMA
8554 /* Free memory allocated for various sched_group structures */
8555 static void free_sched_groups(const struct cpumask *cpu_map,
8556 struct cpumask *nodemask)
8558 int cpu, i;
8560 for_each_cpu(cpu, cpu_map) {
8561 struct sched_group **sched_group_nodes
8562 = sched_group_nodes_bycpu[cpu];
8564 if (!sched_group_nodes)
8565 continue;
8567 for (i = 0; i < nr_node_ids; i++) {
8568 struct sched_group *oldsg, *sg = sched_group_nodes[i];
8570 cpumask_and(nodemask, cpumask_of_node(i), cpu_map);
8571 if (cpumask_empty(nodemask))
8572 continue;
8574 if (sg == NULL)
8575 continue;
8576 sg = sg->next;
8577 next_sg:
8578 oldsg = sg;
8579 sg = sg->next;
8580 kfree(oldsg);
8581 if (oldsg != sched_group_nodes[i])
8582 goto next_sg;
8584 kfree(sched_group_nodes);
8585 sched_group_nodes_bycpu[cpu] = NULL;
8588 #else /* !CONFIG_NUMA */
8589 static void free_sched_groups(const struct cpumask *cpu_map,
8590 struct cpumask *nodemask)
8593 #endif /* CONFIG_NUMA */
8596 * Initialize sched groups cpu_power.
8598 * cpu_power indicates the capacity of sched group, which is used while
8599 * distributing the load between different sched groups in a sched domain.
8600 * Typically cpu_power for all the groups in a sched domain will be same unless
8601 * there are asymmetries in the topology. If there are asymmetries, group
8602 * having more cpu_power will pickup more load compared to the group having
8603 * less cpu_power.
8605 static void init_sched_groups_power(int cpu, struct sched_domain *sd)
8607 struct sched_domain *child;
8608 struct sched_group *group;
8609 long power;
8610 int weight;
8612 WARN_ON(!sd || !sd->groups);
8614 if (cpu != group_first_cpu(sd->groups))
8615 return;
8617 child = sd->child;
8619 sd->groups->cpu_power = 0;
8621 if (!child) {
8622 power = SCHED_LOAD_SCALE;
8623 weight = cpumask_weight(sched_domain_span(sd));
8625 * SMT siblings share the power of a single core.
8626 * Usually multiple threads get a better yield out of
8627 * that one core than a single thread would have,
8628 * reflect that in sd->smt_gain.
8630 if ((sd->flags & SD_SHARE_CPUPOWER) && weight > 1) {
8631 power *= sd->smt_gain;
8632 power /= weight;
8633 power >>= SCHED_LOAD_SHIFT;
8635 sd->groups->cpu_power += power;
8636 return;
8640 * Add cpu_power of each child group to this groups cpu_power.
8642 group = child->groups;
8643 do {
8644 sd->groups->cpu_power += group->cpu_power;
8645 group = group->next;
8646 } while (group != child->groups);
8650 * Initializers for schedule domains
8651 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
8654 #ifdef CONFIG_SCHED_DEBUG
8655 # define SD_INIT_NAME(sd, type) sd->name = #type
8656 #else
8657 # define SD_INIT_NAME(sd, type) do { } while (0)
8658 #endif
8660 #define SD_INIT(sd, type) sd_init_##type(sd)
8662 #define SD_INIT_FUNC(type) \
8663 static noinline void sd_init_##type(struct sched_domain *sd) \
8665 memset(sd, 0, sizeof(*sd)); \
8666 *sd = SD_##type##_INIT; \
8667 sd->level = SD_LV_##type; \
8668 SD_INIT_NAME(sd, type); \
8671 SD_INIT_FUNC(CPU)
8672 #ifdef CONFIG_NUMA
8673 SD_INIT_FUNC(ALLNODES)
8674 SD_INIT_FUNC(NODE)
8675 #endif
8676 #ifdef CONFIG_SCHED_SMT
8677 SD_INIT_FUNC(SIBLING)
8678 #endif
8679 #ifdef CONFIG_SCHED_MC
8680 SD_INIT_FUNC(MC)
8681 #endif
8683 static int default_relax_domain_level = -1;
8685 static int __init setup_relax_domain_level(char *str)
8687 unsigned long val;
8689 val = simple_strtoul(str, NULL, 0);
8690 if (val < SD_LV_MAX)
8691 default_relax_domain_level = val;
8693 return 1;
8695 __setup("relax_domain_level=", setup_relax_domain_level);
8697 static void set_domain_attribute(struct sched_domain *sd,
8698 struct sched_domain_attr *attr)
8700 int request;
8702 if (!attr || attr->relax_domain_level < 0) {
8703 if (default_relax_domain_level < 0)
8704 return;
8705 else
8706 request = default_relax_domain_level;
8707 } else
8708 request = attr->relax_domain_level;
8709 if (request < sd->level) {
8710 /* turn off idle balance on this domain */
8711 sd->flags &= ~(SD_WAKE_IDLE|SD_BALANCE_NEWIDLE);
8712 } else {
8713 /* turn on idle balance on this domain */
8714 sd->flags |= (SD_WAKE_IDLE_FAR|SD_BALANCE_NEWIDLE);
8718 static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
8719 const struct cpumask *cpu_map)
8721 switch (what) {
8722 case sa_sched_groups:
8723 free_sched_groups(cpu_map, d->tmpmask); /* fall through */
8724 d->sched_group_nodes = NULL;
8725 case sa_rootdomain:
8726 free_rootdomain(d->rd); /* fall through */
8727 case sa_tmpmask:
8728 free_cpumask_var(d->tmpmask); /* fall through */
8729 case sa_send_covered:
8730 free_cpumask_var(d->send_covered); /* fall through */
8731 case sa_this_core_map:
8732 free_cpumask_var(d->this_core_map); /* fall through */
8733 case sa_this_sibling_map:
8734 free_cpumask_var(d->this_sibling_map); /* fall through */
8735 case sa_nodemask:
8736 free_cpumask_var(d->nodemask); /* fall through */
8737 case sa_sched_group_nodes:
8738 #ifdef CONFIG_NUMA
8739 kfree(d->sched_group_nodes); /* fall through */
8740 case sa_notcovered:
8741 free_cpumask_var(d->notcovered); /* fall through */
8742 case sa_covered:
8743 free_cpumask_var(d->covered); /* fall through */
8744 case sa_domainspan:
8745 free_cpumask_var(d->domainspan); /* fall through */
8746 #endif
8747 case sa_none:
8748 break;
8752 static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
8753 const struct cpumask *cpu_map)
8755 #ifdef CONFIG_NUMA
8756 if (!alloc_cpumask_var(&d->domainspan, GFP_KERNEL))
8757 return sa_none;
8758 if (!alloc_cpumask_var(&d->covered, GFP_KERNEL))
8759 return sa_domainspan;
8760 if (!alloc_cpumask_var(&d->notcovered, GFP_KERNEL))
8761 return sa_covered;
8762 /* Allocate the per-node list of sched groups */
8763 d->sched_group_nodes = kcalloc(nr_node_ids,
8764 sizeof(struct sched_group *), GFP_KERNEL);
8765 if (!d->sched_group_nodes) {
8766 printk(KERN_WARNING "Can not alloc sched group node list\n");
8767 return sa_notcovered;
8769 sched_group_nodes_bycpu[cpumask_first(cpu_map)] = d->sched_group_nodes;
8770 #endif
8771 if (!alloc_cpumask_var(&d->nodemask, GFP_KERNEL))
8772 return sa_sched_group_nodes;
8773 if (!alloc_cpumask_var(&d->this_sibling_map, GFP_KERNEL))
8774 return sa_nodemask;
8775 if (!alloc_cpumask_var(&d->this_core_map, GFP_KERNEL))
8776 return sa_this_sibling_map;
8777 if (!alloc_cpumask_var(&d->send_covered, GFP_KERNEL))
8778 return sa_this_core_map;
8779 if (!alloc_cpumask_var(&d->tmpmask, GFP_KERNEL))
8780 return sa_send_covered;
8781 d->rd = alloc_rootdomain();
8782 if (!d->rd) {
8783 printk(KERN_WARNING "Cannot alloc root domain\n");
8784 return sa_tmpmask;
8786 return sa_rootdomain;
8789 static struct sched_domain *__build_numa_sched_domains(struct s_data *d,
8790 const struct cpumask *cpu_map, struct sched_domain_attr *attr, int i)
8792 struct sched_domain *sd = NULL;
8793 #ifdef CONFIG_NUMA
8794 struct sched_domain *parent;
8796 d->sd_allnodes = 0;
8797 if (cpumask_weight(cpu_map) >
8798 SD_NODES_PER_DOMAIN * cpumask_weight(d->nodemask)) {
8799 sd = &per_cpu(allnodes_domains, i).sd;
8800 SD_INIT(sd, ALLNODES);
8801 set_domain_attribute(sd, attr);
8802 cpumask_copy(sched_domain_span(sd), cpu_map);
8803 cpu_to_allnodes_group(i, cpu_map, &sd->groups, d->tmpmask);
8804 d->sd_allnodes = 1;
8806 parent = sd;
8808 sd = &per_cpu(node_domains, i).sd;
8809 SD_INIT(sd, NODE);
8810 set_domain_attribute(sd, attr);
8811 sched_domain_node_span(cpu_to_node(i), sched_domain_span(sd));
8812 sd->parent = parent;
8813 if (parent)
8814 parent->child = sd;
8815 cpumask_and(sched_domain_span(sd), sched_domain_span(sd), cpu_map);
8816 #endif
8817 return sd;
8820 static struct sched_domain *__build_cpu_sched_domain(struct s_data *d,
8821 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8822 struct sched_domain *parent, int i)
8824 struct sched_domain *sd;
8825 sd = &per_cpu(phys_domains, i).sd;
8826 SD_INIT(sd, CPU);
8827 set_domain_attribute(sd, attr);
8828 cpumask_copy(sched_domain_span(sd), d->nodemask);
8829 sd->parent = parent;
8830 if (parent)
8831 parent->child = sd;
8832 cpu_to_phys_group(i, cpu_map, &sd->groups, d->tmpmask);
8833 return sd;
8836 static struct sched_domain *__build_mc_sched_domain(struct s_data *d,
8837 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8838 struct sched_domain *parent, int i)
8840 struct sched_domain *sd = parent;
8841 #ifdef CONFIG_SCHED_MC
8842 sd = &per_cpu(core_domains, i).sd;
8843 SD_INIT(sd, MC);
8844 set_domain_attribute(sd, attr);
8845 cpumask_and(sched_domain_span(sd), cpu_map, cpu_coregroup_mask(i));
8846 sd->parent = parent;
8847 parent->child = sd;
8848 cpu_to_core_group(i, cpu_map, &sd->groups, d->tmpmask);
8849 #endif
8850 return sd;
8853 static struct sched_domain *__build_smt_sched_domain(struct s_data *d,
8854 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
8855 struct sched_domain *parent, int i)
8857 struct sched_domain *sd = parent;
8858 #ifdef CONFIG_SCHED_SMT
8859 sd = &per_cpu(cpu_domains, i).sd;
8860 SD_INIT(sd, SIBLING);
8861 set_domain_attribute(sd, attr);
8862 cpumask_and(sched_domain_span(sd), cpu_map, topology_thread_cpumask(i));
8863 sd->parent = parent;
8864 parent->child = sd;
8865 cpu_to_cpu_group(i, cpu_map, &sd->groups, d->tmpmask);
8866 #endif
8867 return sd;
8870 static void build_sched_groups(struct s_data *d, enum sched_domain_level l,
8871 const struct cpumask *cpu_map, int cpu)
8873 switch (l) {
8874 #ifdef CONFIG_SCHED_SMT
8875 case SD_LV_SIBLING: /* set up CPU (sibling) groups */
8876 cpumask_and(d->this_sibling_map, cpu_map,
8877 topology_thread_cpumask(cpu));
8878 if (cpu == cpumask_first(d->this_sibling_map))
8879 init_sched_build_groups(d->this_sibling_map, cpu_map,
8880 &cpu_to_cpu_group,
8881 d->send_covered, d->tmpmask);
8882 break;
8883 #endif
8884 #ifdef CONFIG_SCHED_MC
8885 case SD_LV_MC: /* set up multi-core groups */
8886 cpumask_and(d->this_core_map, cpu_map, cpu_coregroup_mask(cpu));
8887 if (cpu == cpumask_first(d->this_core_map))
8888 init_sched_build_groups(d->this_core_map, cpu_map,
8889 &cpu_to_core_group,
8890 d->send_covered, d->tmpmask);
8891 break;
8892 #endif
8893 case SD_LV_CPU: /* set up physical groups */
8894 cpumask_and(d->nodemask, cpumask_of_node(cpu), cpu_map);
8895 if (!cpumask_empty(d->nodemask))
8896 init_sched_build_groups(d->nodemask, cpu_map,
8897 &cpu_to_phys_group,
8898 d->send_covered, d->tmpmask);
8899 break;
8900 #ifdef CONFIG_NUMA
8901 case SD_LV_ALLNODES:
8902 init_sched_build_groups(cpu_map, cpu_map, &cpu_to_allnodes_group,
8903 d->send_covered, d->tmpmask);
8904 break;
8905 #endif
8906 default:
8907 break;
8912 * Build sched domains for a given set of cpus and attach the sched domains
8913 * to the individual cpus
8915 static int __build_sched_domains(const struct cpumask *cpu_map,
8916 struct sched_domain_attr *attr)
8918 enum s_alloc alloc_state = sa_none;
8919 struct s_data d;
8920 struct sched_domain *sd;
8921 int i;
8922 #ifdef CONFIG_NUMA
8923 d.sd_allnodes = 0;
8924 #endif
8926 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
8927 if (alloc_state != sa_rootdomain)
8928 goto error;
8929 alloc_state = sa_sched_groups;
8932 * Set up domains for cpus specified by the cpu_map.
8934 for_each_cpu(i, cpu_map) {
8935 cpumask_and(d.nodemask, cpumask_of_node(cpu_to_node(i)),
8936 cpu_map);
8938 sd = __build_numa_sched_domains(&d, cpu_map, attr, i);
8939 sd = __build_cpu_sched_domain(&d, cpu_map, attr, sd, i);
8940 sd = __build_mc_sched_domain(&d, cpu_map, attr, sd, i);
8941 sd = __build_smt_sched_domain(&d, cpu_map, attr, sd, i);
8944 for_each_cpu(i, cpu_map) {
8945 build_sched_groups(&d, SD_LV_SIBLING, cpu_map, i);
8946 build_sched_groups(&d, SD_LV_MC, cpu_map, i);
8949 /* Set up physical groups */
8950 for (i = 0; i < nr_node_ids; i++)
8951 build_sched_groups(&d, SD_LV_CPU, cpu_map, i);
8953 #ifdef CONFIG_NUMA
8954 /* Set up node groups */
8955 if (d.sd_allnodes)
8956 build_sched_groups(&d, SD_LV_ALLNODES, cpu_map, 0);
8958 for (i = 0; i < nr_node_ids; i++)
8959 if (build_numa_sched_groups(&d, cpu_map, i))
8960 goto error;
8961 #endif
8963 /* Calculate CPU power for physical packages and nodes */
8964 #ifdef CONFIG_SCHED_SMT
8965 for_each_cpu(i, cpu_map) {
8966 sd = &per_cpu(cpu_domains, i).sd;
8967 init_sched_groups_power(i, sd);
8969 #endif
8970 #ifdef CONFIG_SCHED_MC
8971 for_each_cpu(i, cpu_map) {
8972 sd = &per_cpu(core_domains, i).sd;
8973 init_sched_groups_power(i, sd);
8975 #endif
8977 for_each_cpu(i, cpu_map) {
8978 sd = &per_cpu(phys_domains, i).sd;
8979 init_sched_groups_power(i, sd);
8982 #ifdef CONFIG_NUMA
8983 for (i = 0; i < nr_node_ids; i++)
8984 init_numa_sched_groups_power(d.sched_group_nodes[i]);
8986 if (d.sd_allnodes) {
8987 struct sched_group *sg;
8989 cpu_to_allnodes_group(cpumask_first(cpu_map), cpu_map, &sg,
8990 d.tmpmask);
8991 init_numa_sched_groups_power(sg);
8993 #endif
8995 /* Attach the domains */
8996 for_each_cpu(i, cpu_map) {
8997 #ifdef CONFIG_SCHED_SMT
8998 sd = &per_cpu(cpu_domains, i).sd;
8999 #elif defined(CONFIG_SCHED_MC)
9000 sd = &per_cpu(core_domains, i).sd;
9001 #else
9002 sd = &per_cpu(phys_domains, i).sd;
9003 #endif
9004 cpu_attach_domain(sd, d.rd, i);
9007 d.sched_group_nodes = NULL; /* don't free this we still need it */
9008 __free_domain_allocs(&d, sa_tmpmask, cpu_map);
9009 return 0;
9011 error:
9012 __free_domain_allocs(&d, alloc_state, cpu_map);
9013 return -ENOMEM;
9016 static int build_sched_domains(const struct cpumask *cpu_map)
9018 return __build_sched_domains(cpu_map, NULL);
9021 static struct cpumask *doms_cur; /* current sched domains */
9022 static int ndoms_cur; /* number of sched domains in 'doms_cur' */
9023 static struct sched_domain_attr *dattr_cur;
9024 /* attribues of custom domains in 'doms_cur' */
9027 * Special case: If a kmalloc of a doms_cur partition (array of
9028 * cpumask) fails, then fallback to a single sched domain,
9029 * as determined by the single cpumask fallback_doms.
9031 static cpumask_var_t fallback_doms;
9034 * arch_update_cpu_topology lets virtualized architectures update the
9035 * cpu core maps. It is supposed to return 1 if the topology changed
9036 * or 0 if it stayed the same.
9038 int __attribute__((weak)) arch_update_cpu_topology(void)
9040 return 0;
9044 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
9045 * For now this just excludes isolated cpus, but could be used to
9046 * exclude other special cases in the future.
9048 static int arch_init_sched_domains(const struct cpumask *cpu_map)
9050 int err;
9052 arch_update_cpu_topology();
9053 ndoms_cur = 1;
9054 doms_cur = kmalloc(cpumask_size(), GFP_KERNEL);
9055 if (!doms_cur)
9056 doms_cur = fallback_doms;
9057 cpumask_andnot(doms_cur, cpu_map, cpu_isolated_map);
9058 dattr_cur = NULL;
9059 err = build_sched_domains(doms_cur);
9060 register_sched_domain_sysctl();
9062 return err;
9065 static void arch_destroy_sched_domains(const struct cpumask *cpu_map,
9066 struct cpumask *tmpmask)
9068 free_sched_groups(cpu_map, tmpmask);
9072 * Detach sched domains from a group of cpus specified in cpu_map
9073 * These cpus will now be attached to the NULL domain
9075 static void detach_destroy_domains(const struct cpumask *cpu_map)
9077 /* Save because hotplug lock held. */
9078 static DECLARE_BITMAP(tmpmask, CONFIG_NR_CPUS);
9079 int i;
9081 for_each_cpu(i, cpu_map)
9082 cpu_attach_domain(NULL, &def_root_domain, i);
9083 synchronize_sched();
9084 arch_destroy_sched_domains(cpu_map, to_cpumask(tmpmask));
9087 /* handle null as "default" */
9088 static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
9089 struct sched_domain_attr *new, int idx_new)
9091 struct sched_domain_attr tmp;
9093 /* fast path */
9094 if (!new && !cur)
9095 return 1;
9097 tmp = SD_ATTR_INIT;
9098 return !memcmp(cur ? (cur + idx_cur) : &tmp,
9099 new ? (new + idx_new) : &tmp,
9100 sizeof(struct sched_domain_attr));
9104 * Partition sched domains as specified by the 'ndoms_new'
9105 * cpumasks in the array doms_new[] of cpumasks. This compares
9106 * doms_new[] to the current sched domain partitioning, doms_cur[].
9107 * It destroys each deleted domain and builds each new domain.
9109 * 'doms_new' is an array of cpumask's of length 'ndoms_new'.
9110 * The masks don't intersect (don't overlap.) We should setup one
9111 * sched domain for each mask. CPUs not in any of the cpumasks will
9112 * not be load balanced. If the same cpumask appears both in the
9113 * current 'doms_cur' domains and in the new 'doms_new', we can leave
9114 * it as it is.
9116 * The passed in 'doms_new' should be kmalloc'd. This routine takes
9117 * ownership of it and will kfree it when done with it. If the caller
9118 * failed the kmalloc call, then it can pass in doms_new == NULL &&
9119 * ndoms_new == 1, and partition_sched_domains() will fallback to
9120 * the single partition 'fallback_doms', it also forces the domains
9121 * to be rebuilt.
9123 * If doms_new == NULL it will be replaced with cpu_online_mask.
9124 * ndoms_new == 0 is a special case for destroying existing domains,
9125 * and it will not create the default domain.
9127 * Call with hotplug lock held
9129 /* FIXME: Change to struct cpumask *doms_new[] */
9130 void partition_sched_domains(int ndoms_new, struct cpumask *doms_new,
9131 struct sched_domain_attr *dattr_new)
9133 int i, j, n;
9134 int new_topology;
9136 mutex_lock(&sched_domains_mutex);
9138 /* always unregister in case we don't destroy any domains */
9139 unregister_sched_domain_sysctl();
9141 /* Let architecture update cpu core mappings. */
9142 new_topology = arch_update_cpu_topology();
9144 n = doms_new ? ndoms_new : 0;
9146 /* Destroy deleted domains */
9147 for (i = 0; i < ndoms_cur; i++) {
9148 for (j = 0; j < n && !new_topology; j++) {
9149 if (cpumask_equal(&doms_cur[i], &doms_new[j])
9150 && dattrs_equal(dattr_cur, i, dattr_new, j))
9151 goto match1;
9153 /* no match - a current sched domain not in new doms_new[] */
9154 detach_destroy_domains(doms_cur + i);
9155 match1:
9159 if (doms_new == NULL) {
9160 ndoms_cur = 0;
9161 doms_new = fallback_doms;
9162 cpumask_andnot(&doms_new[0], cpu_online_mask, cpu_isolated_map);
9163 WARN_ON_ONCE(dattr_new);
9166 /* Build new domains */
9167 for (i = 0; i < ndoms_new; i++) {
9168 for (j = 0; j < ndoms_cur && !new_topology; j++) {
9169 if (cpumask_equal(&doms_new[i], &doms_cur[j])
9170 && dattrs_equal(dattr_new, i, dattr_cur, j))
9171 goto match2;
9173 /* no match - add a new doms_new */
9174 __build_sched_domains(doms_new + i,
9175 dattr_new ? dattr_new + i : NULL);
9176 match2:
9180 /* Remember the new sched domains */
9181 if (doms_cur != fallback_doms)
9182 kfree(doms_cur);
9183 kfree(dattr_cur); /* kfree(NULL) is safe */
9184 doms_cur = doms_new;
9185 dattr_cur = dattr_new;
9186 ndoms_cur = ndoms_new;
9188 register_sched_domain_sysctl();
9190 mutex_unlock(&sched_domains_mutex);
9193 #if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
9194 static void arch_reinit_sched_domains(void)
9196 get_online_cpus();
9198 /* Destroy domains first to force the rebuild */
9199 partition_sched_domains(0, NULL, NULL);
9201 rebuild_sched_domains();
9202 put_online_cpus();
9205 static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
9207 unsigned int level = 0;
9209 if (sscanf(buf, "%u", &level) != 1)
9210 return -EINVAL;
9213 * level is always be positive so don't check for
9214 * level < POWERSAVINGS_BALANCE_NONE which is 0
9215 * What happens on 0 or 1 byte write,
9216 * need to check for count as well?
9219 if (level >= MAX_POWERSAVINGS_BALANCE_LEVELS)
9220 return -EINVAL;
9222 if (smt)
9223 sched_smt_power_savings = level;
9224 else
9225 sched_mc_power_savings = level;
9227 arch_reinit_sched_domains();
9229 return count;
9232 #ifdef CONFIG_SCHED_MC
9233 static ssize_t sched_mc_power_savings_show(struct sysdev_class *class,
9234 char *page)
9236 return sprintf(page, "%u\n", sched_mc_power_savings);
9238 static ssize_t sched_mc_power_savings_store(struct sysdev_class *class,
9239 const char *buf, size_t count)
9241 return sched_power_savings_store(buf, count, 0);
9243 static SYSDEV_CLASS_ATTR(sched_mc_power_savings, 0644,
9244 sched_mc_power_savings_show,
9245 sched_mc_power_savings_store);
9246 #endif
9248 #ifdef CONFIG_SCHED_SMT
9249 static ssize_t sched_smt_power_savings_show(struct sysdev_class *dev,
9250 char *page)
9252 return sprintf(page, "%u\n", sched_smt_power_savings);
9254 static ssize_t sched_smt_power_savings_store(struct sysdev_class *dev,
9255 const char *buf, size_t count)
9257 return sched_power_savings_store(buf, count, 1);
9259 static SYSDEV_CLASS_ATTR(sched_smt_power_savings, 0644,
9260 sched_smt_power_savings_show,
9261 sched_smt_power_savings_store);
9262 #endif
9264 int __init sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
9266 int err = 0;
9268 #ifdef CONFIG_SCHED_SMT
9269 if (smt_capable())
9270 err = sysfs_create_file(&cls->kset.kobj,
9271 &attr_sched_smt_power_savings.attr);
9272 #endif
9273 #ifdef CONFIG_SCHED_MC
9274 if (!err && mc_capable())
9275 err = sysfs_create_file(&cls->kset.kobj,
9276 &attr_sched_mc_power_savings.attr);
9277 #endif
9278 return err;
9280 #endif /* CONFIG_SCHED_MC || CONFIG_SCHED_SMT */
9282 #ifndef CONFIG_CPUSETS
9284 * Add online and remove offline CPUs from the scheduler domains.
9285 * When cpusets are enabled they take over this function.
9287 static int update_sched_domains(struct notifier_block *nfb,
9288 unsigned long action, void *hcpu)
9290 switch (action) {
9291 case CPU_ONLINE:
9292 case CPU_ONLINE_FROZEN:
9293 case CPU_DEAD:
9294 case CPU_DEAD_FROZEN:
9295 partition_sched_domains(1, NULL, NULL);
9296 return NOTIFY_OK;
9298 default:
9299 return NOTIFY_DONE;
9302 #endif
9304 static int update_runtime(struct notifier_block *nfb,
9305 unsigned long action, void *hcpu)
9307 int cpu = (int)(long)hcpu;
9309 switch (action) {
9310 case CPU_DOWN_PREPARE:
9311 case CPU_DOWN_PREPARE_FROZEN:
9312 disable_runtime(cpu_rq(cpu));
9313 return NOTIFY_OK;
9315 case CPU_DOWN_FAILED:
9316 case CPU_DOWN_FAILED_FROZEN:
9317 case CPU_ONLINE:
9318 case CPU_ONLINE_FROZEN:
9319 enable_runtime(cpu_rq(cpu));
9320 return NOTIFY_OK;
9322 default:
9323 return NOTIFY_DONE;
9327 void __init sched_init_smp(void)
9329 cpumask_var_t non_isolated_cpus;
9331 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
9333 #if defined(CONFIG_NUMA)
9334 sched_group_nodes_bycpu = kzalloc(nr_cpu_ids * sizeof(void **),
9335 GFP_KERNEL);
9336 BUG_ON(sched_group_nodes_bycpu == NULL);
9337 #endif
9338 get_online_cpus();
9339 mutex_lock(&sched_domains_mutex);
9340 arch_init_sched_domains(cpu_online_mask);
9341 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
9342 if (cpumask_empty(non_isolated_cpus))
9343 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
9344 mutex_unlock(&sched_domains_mutex);
9345 put_online_cpus();
9347 #ifndef CONFIG_CPUSETS
9348 /* XXX: Theoretical race here - CPU may be hotplugged now */
9349 hotcpu_notifier(update_sched_domains, 0);
9350 #endif
9352 /* RT runtime code needs to handle some hotplug events */
9353 hotcpu_notifier(update_runtime, 0);
9355 init_hrtick();
9357 /* Move init over to a non-isolated CPU */
9358 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
9359 BUG();
9360 sched_init_granularity();
9361 free_cpumask_var(non_isolated_cpus);
9363 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
9364 init_sched_rt_class();
9366 #else
9367 void __init sched_init_smp(void)
9369 sched_init_granularity();
9371 #endif /* CONFIG_SMP */
9373 const_debug unsigned int sysctl_timer_migration = 1;
9375 int in_sched_functions(unsigned long addr)
9377 return in_lock_functions(addr) ||
9378 (addr >= (unsigned long)__sched_text_start
9379 && addr < (unsigned long)__sched_text_end);
9382 static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
9384 cfs_rq->tasks_timeline = RB_ROOT;
9385 INIT_LIST_HEAD(&cfs_rq->tasks);
9386 #ifdef CONFIG_FAIR_GROUP_SCHED
9387 cfs_rq->rq = rq;
9388 #endif
9389 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
9392 static void init_rt_rq(struct rt_rq *rt_rq, struct rq *rq)
9394 struct rt_prio_array *array;
9395 int i;
9397 array = &rt_rq->active;
9398 for (i = 0; i < MAX_RT_PRIO; i++) {
9399 INIT_LIST_HEAD(array->queue + i);
9400 __clear_bit(i, array->bitmap);
9402 /* delimiter for bitsearch: */
9403 __set_bit(MAX_RT_PRIO, array->bitmap);
9405 #if defined CONFIG_SMP || defined CONFIG_RT_GROUP_SCHED
9406 rt_rq->highest_prio.curr = MAX_RT_PRIO;
9407 #ifdef CONFIG_SMP
9408 rt_rq->highest_prio.next = MAX_RT_PRIO;
9409 #endif
9410 #endif
9411 #ifdef CONFIG_SMP
9412 rt_rq->rt_nr_migratory = 0;
9413 rt_rq->overloaded = 0;
9414 plist_head_init(&rt_rq->pushable_tasks, &rq->lock);
9415 #endif
9417 rt_rq->rt_time = 0;
9418 rt_rq->rt_throttled = 0;
9419 rt_rq->rt_runtime = 0;
9420 spin_lock_init(&rt_rq->rt_runtime_lock);
9422 #ifdef CONFIG_RT_GROUP_SCHED
9423 rt_rq->rt_nr_boosted = 0;
9424 rt_rq->rq = rq;
9425 #endif
9428 #ifdef CONFIG_FAIR_GROUP_SCHED
9429 static void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
9430 struct sched_entity *se, int cpu, int add,
9431 struct sched_entity *parent)
9433 struct rq *rq = cpu_rq(cpu);
9434 tg->cfs_rq[cpu] = cfs_rq;
9435 init_cfs_rq(cfs_rq, rq);
9436 cfs_rq->tg = tg;
9437 if (add)
9438 list_add(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
9440 tg->se[cpu] = se;
9441 /* se could be NULL for init_task_group */
9442 if (!se)
9443 return;
9445 if (!parent)
9446 se->cfs_rq = &rq->cfs;
9447 else
9448 se->cfs_rq = parent->my_q;
9450 se->my_q = cfs_rq;
9451 se->load.weight = tg->shares;
9452 se->load.inv_weight = 0;
9453 se->parent = parent;
9455 #endif
9457 #ifdef CONFIG_RT_GROUP_SCHED
9458 static void init_tg_rt_entry(struct task_group *tg, struct rt_rq *rt_rq,
9459 struct sched_rt_entity *rt_se, int cpu, int add,
9460 struct sched_rt_entity *parent)
9462 struct rq *rq = cpu_rq(cpu);
9464 tg->rt_rq[cpu] = rt_rq;
9465 init_rt_rq(rt_rq, rq);
9466 rt_rq->tg = tg;
9467 rt_rq->rt_se = rt_se;
9468 rt_rq->rt_runtime = tg->rt_bandwidth.rt_runtime;
9469 if (add)
9470 list_add(&rt_rq->leaf_rt_rq_list, &rq->leaf_rt_rq_list);
9472 tg->rt_se[cpu] = rt_se;
9473 if (!rt_se)
9474 return;
9476 if (!parent)
9477 rt_se->rt_rq = &rq->rt;
9478 else
9479 rt_se->rt_rq = parent->my_q;
9481 rt_se->my_q = rt_rq;
9482 rt_se->parent = parent;
9483 INIT_LIST_HEAD(&rt_se->run_list);
9485 #endif
9487 void __init sched_init(void)
9489 int i, j;
9490 unsigned long alloc_size = 0, ptr;
9492 #ifdef CONFIG_FAIR_GROUP_SCHED
9493 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9494 #endif
9495 #ifdef CONFIG_RT_GROUP_SCHED
9496 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
9497 #endif
9498 #ifdef CONFIG_USER_SCHED
9499 alloc_size *= 2;
9500 #endif
9501 #ifdef CONFIG_CPUMASK_OFFSTACK
9502 alloc_size += num_possible_cpus() * cpumask_size();
9503 #endif
9505 * As sched_init() is called before page_alloc is setup,
9506 * we use alloc_bootmem().
9508 if (alloc_size) {
9509 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
9511 #ifdef CONFIG_FAIR_GROUP_SCHED
9512 init_task_group.se = (struct sched_entity **)ptr;
9513 ptr += nr_cpu_ids * sizeof(void **);
9515 init_task_group.cfs_rq = (struct cfs_rq **)ptr;
9516 ptr += nr_cpu_ids * sizeof(void **);
9518 #ifdef CONFIG_USER_SCHED
9519 root_task_group.se = (struct sched_entity **)ptr;
9520 ptr += nr_cpu_ids * sizeof(void **);
9522 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
9523 ptr += nr_cpu_ids * sizeof(void **);
9524 #endif /* CONFIG_USER_SCHED */
9525 #endif /* CONFIG_FAIR_GROUP_SCHED */
9526 #ifdef CONFIG_RT_GROUP_SCHED
9527 init_task_group.rt_se = (struct sched_rt_entity **)ptr;
9528 ptr += nr_cpu_ids * sizeof(void **);
9530 init_task_group.rt_rq = (struct rt_rq **)ptr;
9531 ptr += nr_cpu_ids * sizeof(void **);
9533 #ifdef CONFIG_USER_SCHED
9534 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
9535 ptr += nr_cpu_ids * sizeof(void **);
9537 root_task_group.rt_rq = (struct rt_rq **)ptr;
9538 ptr += nr_cpu_ids * sizeof(void **);
9539 #endif /* CONFIG_USER_SCHED */
9540 #endif /* CONFIG_RT_GROUP_SCHED */
9541 #ifdef CONFIG_CPUMASK_OFFSTACK
9542 for_each_possible_cpu(i) {
9543 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
9544 ptr += cpumask_size();
9546 #endif /* CONFIG_CPUMASK_OFFSTACK */
9549 #ifdef CONFIG_SMP
9550 init_defrootdomain();
9551 #endif
9553 init_rt_bandwidth(&def_rt_bandwidth,
9554 global_rt_period(), global_rt_runtime());
9556 #ifdef CONFIG_RT_GROUP_SCHED
9557 init_rt_bandwidth(&init_task_group.rt_bandwidth,
9558 global_rt_period(), global_rt_runtime());
9559 #ifdef CONFIG_USER_SCHED
9560 init_rt_bandwidth(&root_task_group.rt_bandwidth,
9561 global_rt_period(), RUNTIME_INF);
9562 #endif /* CONFIG_USER_SCHED */
9563 #endif /* CONFIG_RT_GROUP_SCHED */
9565 #ifdef CONFIG_GROUP_SCHED
9566 list_add(&init_task_group.list, &task_groups);
9567 INIT_LIST_HEAD(&init_task_group.children);
9569 #ifdef CONFIG_USER_SCHED
9570 INIT_LIST_HEAD(&root_task_group.children);
9571 init_task_group.parent = &root_task_group;
9572 list_add(&init_task_group.siblings, &root_task_group.children);
9573 #endif /* CONFIG_USER_SCHED */
9574 #endif /* CONFIG_GROUP_SCHED */
9576 for_each_possible_cpu(i) {
9577 struct rq *rq;
9579 rq = cpu_rq(i);
9580 spin_lock_init(&rq->lock);
9581 rq->nr_running = 0;
9582 rq->calc_load_active = 0;
9583 rq->calc_load_update = jiffies + LOAD_FREQ;
9584 init_cfs_rq(&rq->cfs, rq);
9585 init_rt_rq(&rq->rt, rq);
9586 #ifdef CONFIG_FAIR_GROUP_SCHED
9587 init_task_group.shares = init_task_group_load;
9588 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
9589 #ifdef CONFIG_CGROUP_SCHED
9591 * How much cpu bandwidth does init_task_group get?
9593 * In case of task-groups formed thr' the cgroup filesystem, it
9594 * gets 100% of the cpu resources in the system. This overall
9595 * system cpu resource is divided among the tasks of
9596 * init_task_group and its child task-groups in a fair manner,
9597 * based on each entity's (task or task-group's) weight
9598 * (se->load.weight).
9600 * In other words, if init_task_group has 10 tasks of weight
9601 * 1024) and two child groups A0 and A1 (of weight 1024 each),
9602 * then A0's share of the cpu resource is:
9604 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
9606 * We achieve this by letting init_task_group's tasks sit
9607 * directly in rq->cfs (i.e init_task_group->se[] = NULL).
9609 init_tg_cfs_entry(&init_task_group, &rq->cfs, NULL, i, 1, NULL);
9610 #elif defined CONFIG_USER_SCHED
9611 root_task_group.shares = NICE_0_LOAD;
9612 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, 0, NULL);
9614 * In case of task-groups formed thr' the user id of tasks,
9615 * init_task_group represents tasks belonging to root user.
9616 * Hence it forms a sibling of all subsequent groups formed.
9617 * In this case, init_task_group gets only a fraction of overall
9618 * system cpu resource, based on the weight assigned to root
9619 * user's cpu share (INIT_TASK_GROUP_LOAD). This is accomplished
9620 * by letting tasks of init_task_group sit in a separate cfs_rq
9621 * (init_tg_cfs_rq) and having one entity represent this group of
9622 * tasks in rq->cfs (i.e init_task_group->se[] != NULL).
9624 init_tg_cfs_entry(&init_task_group,
9625 &per_cpu(init_tg_cfs_rq, i),
9626 &per_cpu(init_sched_entity, i), i, 1,
9627 root_task_group.se[i]);
9629 #endif
9630 #endif /* CONFIG_FAIR_GROUP_SCHED */
9632 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
9633 #ifdef CONFIG_RT_GROUP_SCHED
9634 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
9635 #ifdef CONFIG_CGROUP_SCHED
9636 init_tg_rt_entry(&init_task_group, &rq->rt, NULL, i, 1, NULL);
9637 #elif defined CONFIG_USER_SCHED
9638 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, 0, NULL);
9639 init_tg_rt_entry(&init_task_group,
9640 &per_cpu(init_rt_rq, i),
9641 &per_cpu(init_sched_rt_entity, i), i, 1,
9642 root_task_group.rt_se[i]);
9643 #endif
9644 #endif
9646 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
9647 rq->cpu_load[j] = 0;
9648 #ifdef CONFIG_SMP
9649 rq->sd = NULL;
9650 rq->rd = NULL;
9651 rq->post_schedule = 0;
9652 rq->active_balance = 0;
9653 rq->next_balance = jiffies;
9654 rq->push_cpu = 0;
9655 rq->cpu = i;
9656 rq->online = 0;
9657 rq->migration_thread = NULL;
9658 INIT_LIST_HEAD(&rq->migration_queue);
9659 rq_attach_root(rq, &def_root_domain);
9660 #endif
9661 init_rq_hrtick(rq);
9662 atomic_set(&rq->nr_iowait, 0);
9665 set_load_weight(&init_task);
9667 #ifdef CONFIG_PREEMPT_NOTIFIERS
9668 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
9669 #endif
9671 #ifdef CONFIG_SMP
9672 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
9673 #endif
9675 #ifdef CONFIG_RT_MUTEXES
9676 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
9677 #endif
9680 * The boot idle thread does lazy MMU switching as well:
9682 atomic_inc(&init_mm.mm_count);
9683 enter_lazy_tlb(&init_mm, current);
9686 * Make us the idle thread. Technically, schedule() should not be
9687 * called from this thread, however somewhere below it might be,
9688 * but because we are the idle thread, we just pick up running again
9689 * when this runqueue becomes "idle".
9691 init_idle(current, smp_processor_id());
9693 calc_load_update = jiffies + LOAD_FREQ;
9696 * During early bootup we pretend to be a normal task:
9698 current->sched_class = &fair_sched_class;
9700 /* Allocate the nohz_cpu_mask if CONFIG_CPUMASK_OFFSTACK */
9701 alloc_cpumask_var(&nohz_cpu_mask, GFP_NOWAIT);
9702 #ifdef CONFIG_SMP
9703 #ifdef CONFIG_NO_HZ
9704 alloc_cpumask_var(&nohz.cpu_mask, GFP_NOWAIT);
9705 alloc_cpumask_var(&nohz.ilb_grp_nohz_mask, GFP_NOWAIT);
9706 #endif
9707 alloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
9708 #endif /* SMP */
9710 perf_counter_init();
9712 scheduler_running = 1;
9715 #ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
9716 static inline int preempt_count_equals(int preempt_offset)
9718 int nested = preempt_count() & ~PREEMPT_ACTIVE;
9720 return (nested == PREEMPT_INATOMIC_BASE + preempt_offset);
9723 void __might_sleep(char *file, int line, int preempt_offset)
9725 #ifdef in_atomic
9726 static unsigned long prev_jiffy; /* ratelimiting */
9728 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
9729 system_state != SYSTEM_RUNNING || oops_in_progress)
9730 return;
9731 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
9732 return;
9733 prev_jiffy = jiffies;
9735 printk(KERN_ERR
9736 "BUG: sleeping function called from invalid context at %s:%d\n",
9737 file, line);
9738 printk(KERN_ERR
9739 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
9740 in_atomic(), irqs_disabled(),
9741 current->pid, current->comm);
9743 debug_show_held_locks(current);
9744 if (irqs_disabled())
9745 print_irqtrace_events(current);
9746 dump_stack();
9747 #endif
9749 EXPORT_SYMBOL(__might_sleep);
9750 #endif
9752 #ifdef CONFIG_MAGIC_SYSRQ
9753 static void normalize_task(struct rq *rq, struct task_struct *p)
9755 int on_rq;
9757 update_rq_clock(rq);
9758 on_rq = p->se.on_rq;
9759 if (on_rq)
9760 deactivate_task(rq, p, 0);
9761 __setscheduler(rq, p, SCHED_NORMAL, 0);
9762 if (on_rq) {
9763 activate_task(rq, p, 0);
9764 resched_task(rq->curr);
9768 void normalize_rt_tasks(void)
9770 struct task_struct *g, *p;
9771 unsigned long flags;
9772 struct rq *rq;
9774 read_lock_irqsave(&tasklist_lock, flags);
9775 do_each_thread(g, p) {
9777 * Only normalize user tasks:
9779 if (!p->mm)
9780 continue;
9782 p->se.exec_start = 0;
9783 #ifdef CONFIG_SCHEDSTATS
9784 p->se.wait_start = 0;
9785 p->se.sleep_start = 0;
9786 p->se.block_start = 0;
9787 #endif
9789 if (!rt_task(p)) {
9791 * Renice negative nice level userspace
9792 * tasks back to 0:
9794 if (TASK_NICE(p) < 0 && p->mm)
9795 set_user_nice(p, 0);
9796 continue;
9799 spin_lock(&p->pi_lock);
9800 rq = __task_rq_lock(p);
9802 normalize_task(rq, p);
9804 __task_rq_unlock(rq);
9805 spin_unlock(&p->pi_lock);
9806 } while_each_thread(g, p);
9808 read_unlock_irqrestore(&tasklist_lock, flags);
9811 #endif /* CONFIG_MAGIC_SYSRQ */
9813 #ifdef CONFIG_IA64
9815 * These functions are only useful for the IA64 MCA handling.
9817 * They can only be called when the whole system has been
9818 * stopped - every CPU needs to be quiescent, and no scheduling
9819 * activity can take place. Using them for anything else would
9820 * be a serious bug, and as a result, they aren't even visible
9821 * under any other configuration.
9825 * curr_task - return the current task for a given cpu.
9826 * @cpu: the processor in question.
9828 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9830 struct task_struct *curr_task(int cpu)
9832 return cpu_curr(cpu);
9836 * set_curr_task - set the current task for a given cpu.
9837 * @cpu: the processor in question.
9838 * @p: the task pointer to set.
9840 * Description: This function must only be used when non-maskable interrupts
9841 * are serviced on a separate stack. It allows the architecture to switch the
9842 * notion of the current task on a cpu in a non-blocking manner. This function
9843 * must be called with all CPU's synchronized, and interrupts disabled, the
9844 * and caller must save the original value of the current task (see
9845 * curr_task() above) and restore that value before reenabling interrupts and
9846 * re-starting the system.
9848 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
9850 void set_curr_task(int cpu, struct task_struct *p)
9852 cpu_curr(cpu) = p;
9855 #endif
9857 #ifdef CONFIG_FAIR_GROUP_SCHED
9858 static void free_fair_sched_group(struct task_group *tg)
9860 int i;
9862 for_each_possible_cpu(i) {
9863 if (tg->cfs_rq)
9864 kfree(tg->cfs_rq[i]);
9865 if (tg->se)
9866 kfree(tg->se[i]);
9869 kfree(tg->cfs_rq);
9870 kfree(tg->se);
9873 static
9874 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9876 struct cfs_rq *cfs_rq;
9877 struct sched_entity *se;
9878 struct rq *rq;
9879 int i;
9881 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
9882 if (!tg->cfs_rq)
9883 goto err;
9884 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
9885 if (!tg->se)
9886 goto err;
9888 tg->shares = NICE_0_LOAD;
9890 for_each_possible_cpu(i) {
9891 rq = cpu_rq(i);
9893 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
9894 GFP_KERNEL, cpu_to_node(i));
9895 if (!cfs_rq)
9896 goto err;
9898 se = kzalloc_node(sizeof(struct sched_entity),
9899 GFP_KERNEL, cpu_to_node(i));
9900 if (!se)
9901 goto err;
9903 init_tg_cfs_entry(tg, cfs_rq, se, i, 0, parent->se[i]);
9906 return 1;
9908 err:
9909 return 0;
9912 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9914 list_add_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list,
9915 &cpu_rq(cpu)->leaf_cfs_rq_list);
9918 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9920 list_del_rcu(&tg->cfs_rq[cpu]->leaf_cfs_rq_list);
9922 #else /* !CONFG_FAIR_GROUP_SCHED */
9923 static inline void free_fair_sched_group(struct task_group *tg)
9927 static inline
9928 int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
9930 return 1;
9933 static inline void register_fair_sched_group(struct task_group *tg, int cpu)
9937 static inline void unregister_fair_sched_group(struct task_group *tg, int cpu)
9940 #endif /* CONFIG_FAIR_GROUP_SCHED */
9942 #ifdef CONFIG_RT_GROUP_SCHED
9943 static void free_rt_sched_group(struct task_group *tg)
9945 int i;
9947 destroy_rt_bandwidth(&tg->rt_bandwidth);
9949 for_each_possible_cpu(i) {
9950 if (tg->rt_rq)
9951 kfree(tg->rt_rq[i]);
9952 if (tg->rt_se)
9953 kfree(tg->rt_se[i]);
9956 kfree(tg->rt_rq);
9957 kfree(tg->rt_se);
9960 static
9961 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
9963 struct rt_rq *rt_rq;
9964 struct sched_rt_entity *rt_se;
9965 struct rq *rq;
9966 int i;
9968 tg->rt_rq = kzalloc(sizeof(rt_rq) * nr_cpu_ids, GFP_KERNEL);
9969 if (!tg->rt_rq)
9970 goto err;
9971 tg->rt_se = kzalloc(sizeof(rt_se) * nr_cpu_ids, GFP_KERNEL);
9972 if (!tg->rt_se)
9973 goto err;
9975 init_rt_bandwidth(&tg->rt_bandwidth,
9976 ktime_to_ns(def_rt_bandwidth.rt_period), 0);
9978 for_each_possible_cpu(i) {
9979 rq = cpu_rq(i);
9981 rt_rq = kzalloc_node(sizeof(struct rt_rq),
9982 GFP_KERNEL, cpu_to_node(i));
9983 if (!rt_rq)
9984 goto err;
9986 rt_se = kzalloc_node(sizeof(struct sched_rt_entity),
9987 GFP_KERNEL, cpu_to_node(i));
9988 if (!rt_se)
9989 goto err;
9991 init_tg_rt_entry(tg, rt_rq, rt_se, i, 0, parent->rt_se[i]);
9994 return 1;
9996 err:
9997 return 0;
10000 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
10002 list_add_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list,
10003 &cpu_rq(cpu)->leaf_rt_rq_list);
10006 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10008 list_del_rcu(&tg->rt_rq[cpu]->leaf_rt_rq_list);
10010 #else /* !CONFIG_RT_GROUP_SCHED */
10011 static inline void free_rt_sched_group(struct task_group *tg)
10015 static inline
10016 int alloc_rt_sched_group(struct task_group *tg, struct task_group *parent)
10018 return 1;
10021 static inline void register_rt_sched_group(struct task_group *tg, int cpu)
10025 static inline void unregister_rt_sched_group(struct task_group *tg, int cpu)
10028 #endif /* CONFIG_RT_GROUP_SCHED */
10030 #ifdef CONFIG_GROUP_SCHED
10031 static void free_sched_group(struct task_group *tg)
10033 free_fair_sched_group(tg);
10034 free_rt_sched_group(tg);
10035 kfree(tg);
10038 /* allocate runqueue etc for a new task group */
10039 struct task_group *sched_create_group(struct task_group *parent)
10041 struct task_group *tg;
10042 unsigned long flags;
10043 int i;
10045 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
10046 if (!tg)
10047 return ERR_PTR(-ENOMEM);
10049 if (!alloc_fair_sched_group(tg, parent))
10050 goto err;
10052 if (!alloc_rt_sched_group(tg, parent))
10053 goto err;
10055 spin_lock_irqsave(&task_group_lock, flags);
10056 for_each_possible_cpu(i) {
10057 register_fair_sched_group(tg, i);
10058 register_rt_sched_group(tg, i);
10060 list_add_rcu(&tg->list, &task_groups);
10062 WARN_ON(!parent); /* root should already exist */
10064 tg->parent = parent;
10065 INIT_LIST_HEAD(&tg->children);
10066 list_add_rcu(&tg->siblings, &parent->children);
10067 spin_unlock_irqrestore(&task_group_lock, flags);
10069 return tg;
10071 err:
10072 free_sched_group(tg);
10073 return ERR_PTR(-ENOMEM);
10076 /* rcu callback to free various structures associated with a task group */
10077 static void free_sched_group_rcu(struct rcu_head *rhp)
10079 /* now it should be safe to free those cfs_rqs */
10080 free_sched_group(container_of(rhp, struct task_group, rcu));
10083 /* Destroy runqueue etc associated with a task group */
10084 void sched_destroy_group(struct task_group *tg)
10086 unsigned long flags;
10087 int i;
10089 spin_lock_irqsave(&task_group_lock, flags);
10090 for_each_possible_cpu(i) {
10091 unregister_fair_sched_group(tg, i);
10092 unregister_rt_sched_group(tg, i);
10094 list_del_rcu(&tg->list);
10095 list_del_rcu(&tg->siblings);
10096 spin_unlock_irqrestore(&task_group_lock, flags);
10098 /* wait for possible concurrent references to cfs_rqs complete */
10099 call_rcu(&tg->rcu, free_sched_group_rcu);
10102 /* change task's runqueue when it moves between groups.
10103 * The caller of this function should have put the task in its new group
10104 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
10105 * reflect its new group.
10107 void sched_move_task(struct task_struct *tsk)
10109 int on_rq, running;
10110 unsigned long flags;
10111 struct rq *rq;
10113 rq = task_rq_lock(tsk, &flags);
10115 update_rq_clock(rq);
10117 running = task_current(rq, tsk);
10118 on_rq = tsk->se.on_rq;
10120 if (on_rq)
10121 dequeue_task(rq, tsk, 0);
10122 if (unlikely(running))
10123 tsk->sched_class->put_prev_task(rq, tsk);
10125 set_task_rq(tsk, task_cpu(tsk));
10127 #ifdef CONFIG_FAIR_GROUP_SCHED
10128 if (tsk->sched_class->moved_group)
10129 tsk->sched_class->moved_group(tsk);
10130 #endif
10132 if (unlikely(running))
10133 tsk->sched_class->set_curr_task(rq);
10134 if (on_rq)
10135 enqueue_task(rq, tsk, 0);
10137 task_rq_unlock(rq, &flags);
10139 #endif /* CONFIG_GROUP_SCHED */
10141 #ifdef CONFIG_FAIR_GROUP_SCHED
10142 static void __set_se_shares(struct sched_entity *se, unsigned long shares)
10144 struct cfs_rq *cfs_rq = se->cfs_rq;
10145 int on_rq;
10147 on_rq = se->on_rq;
10148 if (on_rq)
10149 dequeue_entity(cfs_rq, se, 0);
10151 se->load.weight = shares;
10152 se->load.inv_weight = 0;
10154 if (on_rq)
10155 enqueue_entity(cfs_rq, se, 0);
10158 static void set_se_shares(struct sched_entity *se, unsigned long shares)
10160 struct cfs_rq *cfs_rq = se->cfs_rq;
10161 struct rq *rq = cfs_rq->rq;
10162 unsigned long flags;
10164 spin_lock_irqsave(&rq->lock, flags);
10165 __set_se_shares(se, shares);
10166 spin_unlock_irqrestore(&rq->lock, flags);
10169 static DEFINE_MUTEX(shares_mutex);
10171 int sched_group_set_shares(struct task_group *tg, unsigned long shares)
10173 int i;
10174 unsigned long flags;
10177 * We can't change the weight of the root cgroup.
10179 if (!tg->se[0])
10180 return -EINVAL;
10182 if (shares < MIN_SHARES)
10183 shares = MIN_SHARES;
10184 else if (shares > MAX_SHARES)
10185 shares = MAX_SHARES;
10187 mutex_lock(&shares_mutex);
10188 if (tg->shares == shares)
10189 goto done;
10191 spin_lock_irqsave(&task_group_lock, flags);
10192 for_each_possible_cpu(i)
10193 unregister_fair_sched_group(tg, i);
10194 list_del_rcu(&tg->siblings);
10195 spin_unlock_irqrestore(&task_group_lock, flags);
10197 /* wait for any ongoing reference to this group to finish */
10198 synchronize_sched();
10201 * Now we are free to modify the group's share on each cpu
10202 * w/o tripping rebalance_share or load_balance_fair.
10204 tg->shares = shares;
10205 for_each_possible_cpu(i) {
10207 * force a rebalance
10209 cfs_rq_set_shares(tg->cfs_rq[i], 0);
10210 set_se_shares(tg->se[i], shares);
10214 * Enable load balance activity on this group, by inserting it back on
10215 * each cpu's rq->leaf_cfs_rq_list.
10217 spin_lock_irqsave(&task_group_lock, flags);
10218 for_each_possible_cpu(i)
10219 register_fair_sched_group(tg, i);
10220 list_add_rcu(&tg->siblings, &tg->parent->children);
10221 spin_unlock_irqrestore(&task_group_lock, flags);
10222 done:
10223 mutex_unlock(&shares_mutex);
10224 return 0;
10227 unsigned long sched_group_shares(struct task_group *tg)
10229 return tg->shares;
10231 #endif
10233 #ifdef CONFIG_RT_GROUP_SCHED
10235 * Ensure that the real time constraints are schedulable.
10237 static DEFINE_MUTEX(rt_constraints_mutex);
10239 static unsigned long to_ratio(u64 period, u64 runtime)
10241 if (runtime == RUNTIME_INF)
10242 return 1ULL << 20;
10244 return div64_u64(runtime << 20, period);
10247 /* Must be called with tasklist_lock held */
10248 static inline int tg_has_rt_tasks(struct task_group *tg)
10250 struct task_struct *g, *p;
10252 do_each_thread(g, p) {
10253 if (rt_task(p) && rt_rq_of_se(&p->rt)->tg == tg)
10254 return 1;
10255 } while_each_thread(g, p);
10257 return 0;
10260 struct rt_schedulable_data {
10261 struct task_group *tg;
10262 u64 rt_period;
10263 u64 rt_runtime;
10266 static int tg_schedulable(struct task_group *tg, void *data)
10268 struct rt_schedulable_data *d = data;
10269 struct task_group *child;
10270 unsigned long total, sum = 0;
10271 u64 period, runtime;
10273 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10274 runtime = tg->rt_bandwidth.rt_runtime;
10276 if (tg == d->tg) {
10277 period = d->rt_period;
10278 runtime = d->rt_runtime;
10281 #ifdef CONFIG_USER_SCHED
10282 if (tg == &root_task_group) {
10283 period = global_rt_period();
10284 runtime = global_rt_runtime();
10286 #endif
10289 * Cannot have more runtime than the period.
10291 if (runtime > period && runtime != RUNTIME_INF)
10292 return -EINVAL;
10295 * Ensure we don't starve existing RT tasks.
10297 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
10298 return -EBUSY;
10300 total = to_ratio(period, runtime);
10303 * Nobody can have more than the global setting allows.
10305 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
10306 return -EINVAL;
10309 * The sum of our children's runtime should not exceed our own.
10311 list_for_each_entry_rcu(child, &tg->children, siblings) {
10312 period = ktime_to_ns(child->rt_bandwidth.rt_period);
10313 runtime = child->rt_bandwidth.rt_runtime;
10315 if (child == d->tg) {
10316 period = d->rt_period;
10317 runtime = d->rt_runtime;
10320 sum += to_ratio(period, runtime);
10323 if (sum > total)
10324 return -EINVAL;
10326 return 0;
10329 static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
10331 struct rt_schedulable_data data = {
10332 .tg = tg,
10333 .rt_period = period,
10334 .rt_runtime = runtime,
10337 return walk_tg_tree(tg_schedulable, tg_nop, &data);
10340 static int tg_set_bandwidth(struct task_group *tg,
10341 u64 rt_period, u64 rt_runtime)
10343 int i, err = 0;
10345 mutex_lock(&rt_constraints_mutex);
10346 read_lock(&tasklist_lock);
10347 err = __rt_schedulable(tg, rt_period, rt_runtime);
10348 if (err)
10349 goto unlock;
10351 spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10352 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
10353 tg->rt_bandwidth.rt_runtime = rt_runtime;
10355 for_each_possible_cpu(i) {
10356 struct rt_rq *rt_rq = tg->rt_rq[i];
10358 spin_lock(&rt_rq->rt_runtime_lock);
10359 rt_rq->rt_runtime = rt_runtime;
10360 spin_unlock(&rt_rq->rt_runtime_lock);
10362 spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
10363 unlock:
10364 read_unlock(&tasklist_lock);
10365 mutex_unlock(&rt_constraints_mutex);
10367 return err;
10370 int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
10372 u64 rt_runtime, rt_period;
10374 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
10375 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
10376 if (rt_runtime_us < 0)
10377 rt_runtime = RUNTIME_INF;
10379 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10382 long sched_group_rt_runtime(struct task_group *tg)
10384 u64 rt_runtime_us;
10386 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
10387 return -1;
10389 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
10390 do_div(rt_runtime_us, NSEC_PER_USEC);
10391 return rt_runtime_us;
10394 int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
10396 u64 rt_runtime, rt_period;
10398 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
10399 rt_runtime = tg->rt_bandwidth.rt_runtime;
10401 if (rt_period == 0)
10402 return -EINVAL;
10404 return tg_set_bandwidth(tg, rt_period, rt_runtime);
10407 long sched_group_rt_period(struct task_group *tg)
10409 u64 rt_period_us;
10411 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
10412 do_div(rt_period_us, NSEC_PER_USEC);
10413 return rt_period_us;
10416 static int sched_rt_global_constraints(void)
10418 u64 runtime, period;
10419 int ret = 0;
10421 if (sysctl_sched_rt_period <= 0)
10422 return -EINVAL;
10424 runtime = global_rt_runtime();
10425 period = global_rt_period();
10428 * Sanity check on the sysctl variables.
10430 if (runtime > period && runtime != RUNTIME_INF)
10431 return -EINVAL;
10433 mutex_lock(&rt_constraints_mutex);
10434 read_lock(&tasklist_lock);
10435 ret = __rt_schedulable(NULL, 0, 0);
10436 read_unlock(&tasklist_lock);
10437 mutex_unlock(&rt_constraints_mutex);
10439 return ret;
10442 int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
10444 /* Don't accept realtime tasks when there is no way for them to run */
10445 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
10446 return 0;
10448 return 1;
10451 #else /* !CONFIG_RT_GROUP_SCHED */
10452 static int sched_rt_global_constraints(void)
10454 unsigned long flags;
10455 int i;
10457 if (sysctl_sched_rt_period <= 0)
10458 return -EINVAL;
10461 * There's always some RT tasks in the root group
10462 * -- migration, kstopmachine etc..
10464 if (sysctl_sched_rt_runtime == 0)
10465 return -EBUSY;
10467 spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
10468 for_each_possible_cpu(i) {
10469 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
10471 spin_lock(&rt_rq->rt_runtime_lock);
10472 rt_rq->rt_runtime = global_rt_runtime();
10473 spin_unlock(&rt_rq->rt_runtime_lock);
10475 spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
10477 return 0;
10479 #endif /* CONFIG_RT_GROUP_SCHED */
10481 int sched_rt_handler(struct ctl_table *table, int write,
10482 struct file *filp, void __user *buffer, size_t *lenp,
10483 loff_t *ppos)
10485 int ret;
10486 int old_period, old_runtime;
10487 static DEFINE_MUTEX(mutex);
10489 mutex_lock(&mutex);
10490 old_period = sysctl_sched_rt_period;
10491 old_runtime = sysctl_sched_rt_runtime;
10493 ret = proc_dointvec(table, write, filp, buffer, lenp, ppos);
10495 if (!ret && write) {
10496 ret = sched_rt_global_constraints();
10497 if (ret) {
10498 sysctl_sched_rt_period = old_period;
10499 sysctl_sched_rt_runtime = old_runtime;
10500 } else {
10501 def_rt_bandwidth.rt_runtime = global_rt_runtime();
10502 def_rt_bandwidth.rt_period =
10503 ns_to_ktime(global_rt_period());
10506 mutex_unlock(&mutex);
10508 return ret;
10511 #ifdef CONFIG_CGROUP_SCHED
10513 /* return corresponding task_group object of a cgroup */
10514 static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
10516 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
10517 struct task_group, css);
10520 static struct cgroup_subsys_state *
10521 cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cgrp)
10523 struct task_group *tg, *parent;
10525 if (!cgrp->parent) {
10526 /* This is early initialization for the top cgroup */
10527 return &init_task_group.css;
10530 parent = cgroup_tg(cgrp->parent);
10531 tg = sched_create_group(parent);
10532 if (IS_ERR(tg))
10533 return ERR_PTR(-ENOMEM);
10535 return &tg->css;
10538 static void
10539 cpu_cgroup_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10541 struct task_group *tg = cgroup_tg(cgrp);
10543 sched_destroy_group(tg);
10546 static int
10547 cpu_cgroup_can_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10548 struct task_struct *tsk)
10550 #ifdef CONFIG_RT_GROUP_SCHED
10551 if (!sched_rt_can_attach(cgroup_tg(cgrp), tsk))
10552 return -EINVAL;
10553 #else
10554 /* We don't support RT-tasks being in separate groups */
10555 if (tsk->sched_class != &fair_sched_class)
10556 return -EINVAL;
10557 #endif
10559 return 0;
10562 static void
10563 cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cgrp,
10564 struct cgroup *old_cont, struct task_struct *tsk)
10566 sched_move_task(tsk);
10569 #ifdef CONFIG_FAIR_GROUP_SCHED
10570 static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
10571 u64 shareval)
10573 return sched_group_set_shares(cgroup_tg(cgrp), shareval);
10576 static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
10578 struct task_group *tg = cgroup_tg(cgrp);
10580 return (u64) tg->shares;
10582 #endif /* CONFIG_FAIR_GROUP_SCHED */
10584 #ifdef CONFIG_RT_GROUP_SCHED
10585 static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
10586 s64 val)
10588 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
10591 static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
10593 return sched_group_rt_runtime(cgroup_tg(cgrp));
10596 static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
10597 u64 rt_period_us)
10599 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
10602 static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
10604 return sched_group_rt_period(cgroup_tg(cgrp));
10606 #endif /* CONFIG_RT_GROUP_SCHED */
10608 static struct cftype cpu_files[] = {
10609 #ifdef CONFIG_FAIR_GROUP_SCHED
10611 .name = "shares",
10612 .read_u64 = cpu_shares_read_u64,
10613 .write_u64 = cpu_shares_write_u64,
10615 #endif
10616 #ifdef CONFIG_RT_GROUP_SCHED
10618 .name = "rt_runtime_us",
10619 .read_s64 = cpu_rt_runtime_read,
10620 .write_s64 = cpu_rt_runtime_write,
10623 .name = "rt_period_us",
10624 .read_u64 = cpu_rt_period_read_uint,
10625 .write_u64 = cpu_rt_period_write_uint,
10627 #endif
10630 static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
10632 return cgroup_add_files(cont, ss, cpu_files, ARRAY_SIZE(cpu_files));
10635 struct cgroup_subsys cpu_cgroup_subsys = {
10636 .name = "cpu",
10637 .create = cpu_cgroup_create,
10638 .destroy = cpu_cgroup_destroy,
10639 .can_attach = cpu_cgroup_can_attach,
10640 .attach = cpu_cgroup_attach,
10641 .populate = cpu_cgroup_populate,
10642 .subsys_id = cpu_cgroup_subsys_id,
10643 .early_init = 1,
10646 #endif /* CONFIG_CGROUP_SCHED */
10648 #ifdef CONFIG_CGROUP_CPUACCT
10651 * CPU accounting code for task groups.
10653 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
10654 * (balbir@in.ibm.com).
10657 /* track cpu usage of a group of tasks and its child groups */
10658 struct cpuacct {
10659 struct cgroup_subsys_state css;
10660 /* cpuusage holds pointer to a u64-type object on every cpu */
10661 u64 *cpuusage;
10662 struct percpu_counter cpustat[CPUACCT_STAT_NSTATS];
10663 struct cpuacct *parent;
10666 struct cgroup_subsys cpuacct_subsys;
10668 /* return cpu accounting group corresponding to this container */
10669 static inline struct cpuacct *cgroup_ca(struct cgroup *cgrp)
10671 return container_of(cgroup_subsys_state(cgrp, cpuacct_subsys_id),
10672 struct cpuacct, css);
10675 /* return cpu accounting group to which this task belongs */
10676 static inline struct cpuacct *task_ca(struct task_struct *tsk)
10678 return container_of(task_subsys_state(tsk, cpuacct_subsys_id),
10679 struct cpuacct, css);
10682 /* create a new cpu accounting group */
10683 static struct cgroup_subsys_state *cpuacct_create(
10684 struct cgroup_subsys *ss, struct cgroup *cgrp)
10686 struct cpuacct *ca = kzalloc(sizeof(*ca), GFP_KERNEL);
10687 int i;
10689 if (!ca)
10690 goto out;
10692 ca->cpuusage = alloc_percpu(u64);
10693 if (!ca->cpuusage)
10694 goto out_free_ca;
10696 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10697 if (percpu_counter_init(&ca->cpustat[i], 0))
10698 goto out_free_counters;
10700 if (cgrp->parent)
10701 ca->parent = cgroup_ca(cgrp->parent);
10703 return &ca->css;
10705 out_free_counters:
10706 while (--i >= 0)
10707 percpu_counter_destroy(&ca->cpustat[i]);
10708 free_percpu(ca->cpuusage);
10709 out_free_ca:
10710 kfree(ca);
10711 out:
10712 return ERR_PTR(-ENOMEM);
10715 /* destroy an existing cpu accounting group */
10716 static void
10717 cpuacct_destroy(struct cgroup_subsys *ss, struct cgroup *cgrp)
10719 struct cpuacct *ca = cgroup_ca(cgrp);
10720 int i;
10722 for (i = 0; i < CPUACCT_STAT_NSTATS; i++)
10723 percpu_counter_destroy(&ca->cpustat[i]);
10724 free_percpu(ca->cpuusage);
10725 kfree(ca);
10728 static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
10730 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10731 u64 data;
10733 #ifndef CONFIG_64BIT
10735 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
10737 spin_lock_irq(&cpu_rq(cpu)->lock);
10738 data = *cpuusage;
10739 spin_unlock_irq(&cpu_rq(cpu)->lock);
10740 #else
10741 data = *cpuusage;
10742 #endif
10744 return data;
10747 static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
10749 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10751 #ifndef CONFIG_64BIT
10753 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
10755 spin_lock_irq(&cpu_rq(cpu)->lock);
10756 *cpuusage = val;
10757 spin_unlock_irq(&cpu_rq(cpu)->lock);
10758 #else
10759 *cpuusage = val;
10760 #endif
10763 /* return total cpu usage (in nanoseconds) of a group */
10764 static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
10766 struct cpuacct *ca = cgroup_ca(cgrp);
10767 u64 totalcpuusage = 0;
10768 int i;
10770 for_each_present_cpu(i)
10771 totalcpuusage += cpuacct_cpuusage_read(ca, i);
10773 return totalcpuusage;
10776 static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
10777 u64 reset)
10779 struct cpuacct *ca = cgroup_ca(cgrp);
10780 int err = 0;
10781 int i;
10783 if (reset) {
10784 err = -EINVAL;
10785 goto out;
10788 for_each_present_cpu(i)
10789 cpuacct_cpuusage_write(ca, i, 0);
10791 out:
10792 return err;
10795 static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
10796 struct seq_file *m)
10798 struct cpuacct *ca = cgroup_ca(cgroup);
10799 u64 percpu;
10800 int i;
10802 for_each_present_cpu(i) {
10803 percpu = cpuacct_cpuusage_read(ca, i);
10804 seq_printf(m, "%llu ", (unsigned long long) percpu);
10806 seq_printf(m, "\n");
10807 return 0;
10810 static const char *cpuacct_stat_desc[] = {
10811 [CPUACCT_STAT_USER] = "user",
10812 [CPUACCT_STAT_SYSTEM] = "system",
10815 static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
10816 struct cgroup_map_cb *cb)
10818 struct cpuacct *ca = cgroup_ca(cgrp);
10819 int i;
10821 for (i = 0; i < CPUACCT_STAT_NSTATS; i++) {
10822 s64 val = percpu_counter_read(&ca->cpustat[i]);
10823 val = cputime64_to_clock_t(val);
10824 cb->fill(cb, cpuacct_stat_desc[i], val);
10826 return 0;
10829 static struct cftype files[] = {
10831 .name = "usage",
10832 .read_u64 = cpuusage_read,
10833 .write_u64 = cpuusage_write,
10836 .name = "usage_percpu",
10837 .read_seq_string = cpuacct_percpu_seq_read,
10840 .name = "stat",
10841 .read_map = cpuacct_stats_show,
10845 static int cpuacct_populate(struct cgroup_subsys *ss, struct cgroup *cgrp)
10847 return cgroup_add_files(cgrp, ss, files, ARRAY_SIZE(files));
10851 * charge this task's execution time to its accounting group.
10853 * called with rq->lock held.
10855 static void cpuacct_charge(struct task_struct *tsk, u64 cputime)
10857 struct cpuacct *ca;
10858 int cpu;
10860 if (unlikely(!cpuacct_subsys.active))
10861 return;
10863 cpu = task_cpu(tsk);
10865 rcu_read_lock();
10867 ca = task_ca(tsk);
10869 for (; ca; ca = ca->parent) {
10870 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
10871 *cpuusage += cputime;
10874 rcu_read_unlock();
10878 * Charge the system/user time to the task's accounting group.
10880 static void cpuacct_update_stats(struct task_struct *tsk,
10881 enum cpuacct_stat_index idx, cputime_t val)
10883 struct cpuacct *ca;
10885 if (unlikely(!cpuacct_subsys.active))
10886 return;
10888 rcu_read_lock();
10889 ca = task_ca(tsk);
10891 do {
10892 percpu_counter_add(&ca->cpustat[idx], val);
10893 ca = ca->parent;
10894 } while (ca);
10895 rcu_read_unlock();
10898 struct cgroup_subsys cpuacct_subsys = {
10899 .name = "cpuacct",
10900 .create = cpuacct_create,
10901 .destroy = cpuacct_destroy,
10902 .populate = cpuacct_populate,
10903 .subsys_id = cpuacct_subsys_id,
10905 #endif /* CONFIG_CGROUP_CPUACCT */
10907 #ifndef CONFIG_SMP
10909 int rcu_expedited_torture_stats(char *page)
10911 return 0;
10913 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10915 void synchronize_sched_expedited(void)
10918 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
10920 #else /* #ifndef CONFIG_SMP */
10922 static DEFINE_PER_CPU(struct migration_req, rcu_migration_req);
10923 static DEFINE_MUTEX(rcu_sched_expedited_mutex);
10925 #define RCU_EXPEDITED_STATE_POST -2
10926 #define RCU_EXPEDITED_STATE_IDLE -1
10928 static int rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
10930 int rcu_expedited_torture_stats(char *page)
10932 int cnt = 0;
10933 int cpu;
10935 cnt += sprintf(&page[cnt], "state: %d /", rcu_expedited_state);
10936 for_each_online_cpu(cpu) {
10937 cnt += sprintf(&page[cnt], " %d:%d",
10938 cpu, per_cpu(rcu_migration_req, cpu).dest_cpu);
10940 cnt += sprintf(&page[cnt], "\n");
10941 return cnt;
10943 EXPORT_SYMBOL_GPL(rcu_expedited_torture_stats);
10945 static long synchronize_sched_expedited_count;
10948 * Wait for an rcu-sched grace period to elapse, but use "big hammer"
10949 * approach to force grace period to end quickly. This consumes
10950 * significant time on all CPUs, and is thus not recommended for
10951 * any sort of common-case code.
10953 * Note that it is illegal to call this function while holding any
10954 * lock that is acquired by a CPU-hotplug notifier. Failing to
10955 * observe this restriction will result in deadlock.
10957 void synchronize_sched_expedited(void)
10959 int cpu;
10960 unsigned long flags;
10961 bool need_full_sync = 0;
10962 struct rq *rq;
10963 struct migration_req *req;
10964 long snap;
10965 int trycount = 0;
10967 smp_mb(); /* ensure prior mod happens before capturing snap. */
10968 snap = ACCESS_ONCE(synchronize_sched_expedited_count) + 1;
10969 get_online_cpus();
10970 while (!mutex_trylock(&rcu_sched_expedited_mutex)) {
10971 put_online_cpus();
10972 if (trycount++ < 10)
10973 udelay(trycount * num_online_cpus());
10974 else {
10975 synchronize_sched();
10976 return;
10978 if (ACCESS_ONCE(synchronize_sched_expedited_count) - snap > 0) {
10979 smp_mb(); /* ensure test happens before caller kfree */
10980 return;
10982 get_online_cpus();
10984 rcu_expedited_state = RCU_EXPEDITED_STATE_POST;
10985 for_each_online_cpu(cpu) {
10986 rq = cpu_rq(cpu);
10987 req = &per_cpu(rcu_migration_req, cpu);
10988 init_completion(&req->done);
10989 req->task = NULL;
10990 req->dest_cpu = RCU_MIGRATION_NEED_QS;
10991 spin_lock_irqsave(&rq->lock, flags);
10992 list_add(&req->list, &rq->migration_queue);
10993 spin_unlock_irqrestore(&rq->lock, flags);
10994 wake_up_process(rq->migration_thread);
10996 for_each_online_cpu(cpu) {
10997 rcu_expedited_state = cpu;
10998 req = &per_cpu(rcu_migration_req, cpu);
10999 rq = cpu_rq(cpu);
11000 wait_for_completion(&req->done);
11001 spin_lock_irqsave(&rq->lock, flags);
11002 if (unlikely(req->dest_cpu == RCU_MIGRATION_MUST_SYNC))
11003 need_full_sync = 1;
11004 req->dest_cpu = RCU_MIGRATION_IDLE;
11005 spin_unlock_irqrestore(&rq->lock, flags);
11007 rcu_expedited_state = RCU_EXPEDITED_STATE_IDLE;
11008 mutex_unlock(&rcu_sched_expedited_mutex);
11009 put_online_cpus();
11010 if (need_full_sync)
11011 synchronize_sched();
11013 EXPORT_SYMBOL_GPL(synchronize_sched_expedited);
11015 #endif /* #else #ifndef CONFIG_SMP */