2 * INET An implementation of the TCP/IP protocol suite for the LINUX
3 * operating system. INET is implemented using the BSD Socket
4 * interface as the means of communication with the user level.
6 * Generic socket support routines. Memory allocators, socket lock/release
7 * handler for protocols to use and generic option handler.
11 * Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
12 * Florian La Roche, <flla@stud.uni-sb.de>
13 * Alan Cox, <A.Cox@swansea.ac.uk>
16 * Alan Cox : Numerous verify_area() problems
17 * Alan Cox : Connecting on a connecting socket
18 * now returns an error for tcp.
19 * Alan Cox : sock->protocol is set correctly.
20 * and is not sometimes left as 0.
21 * Alan Cox : connect handles icmp errors on a
22 * connect properly. Unfortunately there
23 * is a restart syscall nasty there. I
24 * can't match BSD without hacking the C
25 * library. Ideas urgently sought!
26 * Alan Cox : Disallow bind() to addresses that are
27 * not ours - especially broadcast ones!!
28 * Alan Cox : Socket 1024 _IS_ ok for users. (fencepost)
29 * Alan Cox : sock_wfree/sock_rfree don't destroy sockets,
30 * instead they leave that for the DESTROY timer.
31 * Alan Cox : Clean up error flag in accept
32 * Alan Cox : TCP ack handling is buggy, the DESTROY timer
33 * was buggy. Put a remove_sock() in the handler
34 * for memory when we hit 0. Also altered the timer
35 * code. The ACK stuff can wait and needs major
37 * Alan Cox : Fixed TCP ack bug, removed remove sock
38 * and fixed timer/inet_bh race.
39 * Alan Cox : Added zapped flag for TCP
40 * Alan Cox : Move kfree_skb into skbuff.c and tidied up surplus code
41 * Alan Cox : for new sk_buff allocations wmalloc/rmalloc now call alloc_skb
42 * Alan Cox : kfree_s calls now are kfree_skbmem so we can track skb resources
43 * Alan Cox : Supports socket option broadcast now as does udp. Packet and raw need fixing.
44 * Alan Cox : Added RCVBUF,SNDBUF size setting. It suddenly occurred to me how easy it was so...
45 * Rick Sladkey : Relaxed UDP rules for matching packets.
46 * C.E.Hawkins : IFF_PROMISC/SIOCGHWADDR support
47 * Pauline Middelink : identd support
48 * Alan Cox : Fixed connect() taking signals I think.
49 * Alan Cox : SO_LINGER supported
50 * Alan Cox : Error reporting fixes
51 * Anonymous : inet_create tidied up (sk->reuse setting)
52 * Alan Cox : inet sockets don't set sk->type!
53 * Alan Cox : Split socket option code
54 * Alan Cox : Callbacks
55 * Alan Cox : Nagle flag for Charles & Johannes stuff
56 * Alex : Removed restriction on inet fioctl
57 * Alan Cox : Splitting INET from NET core
58 * Alan Cox : Fixed bogus SO_TYPE handling in getsockopt()
59 * Adam Caldwell : Missing return in SO_DONTROUTE/SO_DEBUG code
60 * Alan Cox : Split IP from generic code
61 * Alan Cox : New kfree_skbmem()
62 * Alan Cox : Make SO_DEBUG superuser only.
63 * Alan Cox : Allow anyone to clear SO_DEBUG
65 * Alan Cox : Added optimistic memory grabbing for AF_UNIX throughput.
66 * Alan Cox : Allocator for a socket is settable.
67 * Alan Cox : SO_ERROR includes soft errors.
68 * Alan Cox : Allow NULL arguments on some SO_ opts
69 * Alan Cox : Generic socket allocation to make hooks
70 * easier (suggested by Craig Metz).
71 * Michael Pall : SO_ERROR returns positive errno again
72 * Steve Whitehouse: Added default destructor to free
73 * protocol private data.
74 * Steve Whitehouse: Added various other default routines
75 * common to several socket families.
76 * Chris Evans : Call suser() check last on F_SETOWN
77 * Jay Schulist : Added SO_ATTACH_FILTER and SO_DETACH_FILTER.
78 * Andi Kleen : Add sock_kmalloc()/sock_kfree_s()
79 * Andi Kleen : Fix write_space callback
80 * Chris Evans : Security fixes - signedness again
81 * Arnaldo C. Melo : cleanups, use skb_queue_purge
86 * This program is free software; you can redistribute it and/or
87 * modify it under the terms of the GNU General Public License
88 * as published by the Free Software Foundation; either version
89 * 2 of the License, or (at your option) any later version.
92 #include <linux/capability.h>
93 #include <linux/errno.h>
94 #include <linux/types.h>
95 #include <linux/socket.h>
97 #include <linux/kernel.h>
98 #include <linux/module.h>
99 #include <linux/proc_fs.h>
100 #include <linux/seq_file.h>
101 #include <linux/sched.h>
102 #include <linux/timer.h>
103 #include <linux/string.h>
104 #include <linux/sockios.h>
105 #include <linux/net.h>
106 #include <linux/mm.h>
107 #include <linux/slab.h>
108 #include <linux/interrupt.h>
109 #include <linux/poll.h>
110 #include <linux/tcp.h>
111 #include <linux/init.h>
112 #include <linux/highmem.h>
114 #include <asm/uaccess.h>
115 #include <asm/system.h>
117 #include <linux/netdevice.h>
118 #include <net/protocol.h>
119 #include <linux/skbuff.h>
120 #include <net/net_namespace.h>
121 #include <net/request_sock.h>
122 #include <net/sock.h>
123 #include <linux/net_tstamp.h>
124 #include <net/xfrm.h>
125 #include <linux/ipsec.h>
127 #include <linux/filter.h>
134 * Each address family might have different locking rules, so we have
135 * one slock key per address family:
137 static struct lock_class_key af_family_keys
[AF_MAX
];
138 static struct lock_class_key af_family_slock_keys
[AF_MAX
];
141 * Make lock validator output more readable. (we pre-construct these
142 * strings build-time, so that runtime initialization of socket
145 static const char *const af_family_key_strings
[AF_MAX
+1] = {
146 "sk_lock-AF_UNSPEC", "sk_lock-AF_UNIX" , "sk_lock-AF_INET" ,
147 "sk_lock-AF_AX25" , "sk_lock-AF_IPX" , "sk_lock-AF_APPLETALK",
148 "sk_lock-AF_NETROM", "sk_lock-AF_BRIDGE" , "sk_lock-AF_ATMPVC" ,
149 "sk_lock-AF_X25" , "sk_lock-AF_INET6" , "sk_lock-AF_ROSE" ,
150 "sk_lock-AF_DECnet", "sk_lock-AF_NETBEUI" , "sk_lock-AF_SECURITY" ,
151 "sk_lock-AF_KEY" , "sk_lock-AF_NETLINK" , "sk_lock-AF_PACKET" ,
152 "sk_lock-AF_ASH" , "sk_lock-AF_ECONET" , "sk_lock-AF_ATMSVC" ,
153 "sk_lock-AF_RDS" , "sk_lock-AF_SNA" , "sk_lock-AF_IRDA" ,
154 "sk_lock-AF_PPPOX" , "sk_lock-AF_WANPIPE" , "sk_lock-AF_LLC" ,
155 "sk_lock-27" , "sk_lock-28" , "sk_lock-AF_CAN" ,
156 "sk_lock-AF_TIPC" , "sk_lock-AF_BLUETOOTH", "sk_lock-IUCV" ,
157 "sk_lock-AF_RXRPC" , "sk_lock-AF_ISDN" , "sk_lock-AF_PHONET" ,
158 "sk_lock-AF_IEEE802154",
161 static const char *const af_family_slock_key_strings
[AF_MAX
+1] = {
162 "slock-AF_UNSPEC", "slock-AF_UNIX" , "slock-AF_INET" ,
163 "slock-AF_AX25" , "slock-AF_IPX" , "slock-AF_APPLETALK",
164 "slock-AF_NETROM", "slock-AF_BRIDGE" , "slock-AF_ATMPVC" ,
165 "slock-AF_X25" , "slock-AF_INET6" , "slock-AF_ROSE" ,
166 "slock-AF_DECnet", "slock-AF_NETBEUI" , "slock-AF_SECURITY" ,
167 "slock-AF_KEY" , "slock-AF_NETLINK" , "slock-AF_PACKET" ,
168 "slock-AF_ASH" , "slock-AF_ECONET" , "slock-AF_ATMSVC" ,
169 "slock-AF_RDS" , "slock-AF_SNA" , "slock-AF_IRDA" ,
170 "slock-AF_PPPOX" , "slock-AF_WANPIPE" , "slock-AF_LLC" ,
171 "slock-27" , "slock-28" , "slock-AF_CAN" ,
172 "slock-AF_TIPC" , "slock-AF_BLUETOOTH", "slock-AF_IUCV" ,
173 "slock-AF_RXRPC" , "slock-AF_ISDN" , "slock-AF_PHONET" ,
174 "slock-AF_IEEE802154",
177 static const char *const af_family_clock_key_strings
[AF_MAX
+1] = {
178 "clock-AF_UNSPEC", "clock-AF_UNIX" , "clock-AF_INET" ,
179 "clock-AF_AX25" , "clock-AF_IPX" , "clock-AF_APPLETALK",
180 "clock-AF_NETROM", "clock-AF_BRIDGE" , "clock-AF_ATMPVC" ,
181 "clock-AF_X25" , "clock-AF_INET6" , "clock-AF_ROSE" ,
182 "clock-AF_DECnet", "clock-AF_NETBEUI" , "clock-AF_SECURITY" ,
183 "clock-AF_KEY" , "clock-AF_NETLINK" , "clock-AF_PACKET" ,
184 "clock-AF_ASH" , "clock-AF_ECONET" , "clock-AF_ATMSVC" ,
185 "clock-AF_RDS" , "clock-AF_SNA" , "clock-AF_IRDA" ,
186 "clock-AF_PPPOX" , "clock-AF_WANPIPE" , "clock-AF_LLC" ,
187 "clock-27" , "clock-28" , "clock-AF_CAN" ,
188 "clock-AF_TIPC" , "clock-AF_BLUETOOTH", "clock-AF_IUCV" ,
189 "clock-AF_RXRPC" , "clock-AF_ISDN" , "clock-AF_PHONET" ,
190 "clock-AF_IEEE802154",
195 * sk_callback_lock locking rules are per-address-family,
196 * so split the lock classes by using a per-AF key:
198 static struct lock_class_key af_callback_keys
[AF_MAX
];
200 /* Take into consideration the size of the struct sk_buff overhead in the
201 * determination of these values, since that is non-constant across
202 * platforms. This makes socket queueing behavior and performance
203 * not depend upon such differences.
205 #define _SK_MEM_PACKETS 256
206 #define _SK_MEM_OVERHEAD (sizeof(struct sk_buff) + 256)
207 #define SK_WMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
208 #define SK_RMEM_MAX (_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
210 /* Run time adjustable parameters. */
211 __u32 sysctl_wmem_max __read_mostly
= SK_WMEM_MAX
;
212 __u32 sysctl_rmem_max __read_mostly
= SK_RMEM_MAX
;
213 __u32 sysctl_wmem_default __read_mostly
= SK_WMEM_MAX
;
214 __u32 sysctl_rmem_default __read_mostly
= SK_RMEM_MAX
;
216 /* Maximal space eaten by iovec or ancilliary data plus some space */
217 int sysctl_optmem_max __read_mostly
= sizeof(unsigned long)*(2*UIO_MAXIOV
+512);
218 EXPORT_SYMBOL(sysctl_optmem_max
);
220 static int sock_set_timeout(long *timeo_p
, char __user
*optval
, int optlen
)
224 if (optlen
< sizeof(tv
))
226 if (copy_from_user(&tv
, optval
, sizeof(tv
)))
228 if (tv
.tv_usec
< 0 || tv
.tv_usec
>= USEC_PER_SEC
)
232 static int warned __read_mostly
;
235 if (warned
< 10 && net_ratelimit()) {
237 printk(KERN_INFO
"sock_set_timeout: `%s' (pid %d) "
238 "tries to set negative timeout\n",
239 current
->comm
, task_pid_nr(current
));
243 *timeo_p
= MAX_SCHEDULE_TIMEOUT
;
244 if (tv
.tv_sec
== 0 && tv
.tv_usec
== 0)
246 if (tv
.tv_sec
< (MAX_SCHEDULE_TIMEOUT
/HZ
- 1))
247 *timeo_p
= tv
.tv_sec
*HZ
+ (tv
.tv_usec
+(1000000/HZ
-1))/(1000000/HZ
);
251 static void sock_warn_obsolete_bsdism(const char *name
)
254 static char warncomm
[TASK_COMM_LEN
];
255 if (strcmp(warncomm
, current
->comm
) && warned
< 5) {
256 strcpy(warncomm
, current
->comm
);
257 printk(KERN_WARNING
"process `%s' is using obsolete "
258 "%s SO_BSDCOMPAT\n", warncomm
, name
);
263 static void sock_disable_timestamp(struct sock
*sk
, int flag
)
265 if (sock_flag(sk
, flag
)) {
266 sock_reset_flag(sk
, flag
);
267 if (!sock_flag(sk
, SOCK_TIMESTAMP
) &&
268 !sock_flag(sk
, SOCK_TIMESTAMPING_RX_SOFTWARE
)) {
269 net_disable_timestamp();
275 int sock_queue_rcv_skb(struct sock
*sk
, struct sk_buff
*skb
)
280 struct sk_buff_head
*list
= &sk
->sk_receive_queue
;
282 /* Cast sk->rcvbuf to unsigned... It's pointless, but reduces
283 number of warnings when compiling with -W --ANK
285 if (atomic_read(&sk
->sk_rmem_alloc
) + skb
->truesize
>=
286 (unsigned)sk
->sk_rcvbuf
) {
287 atomic_inc(&sk
->sk_drops
);
291 err
= sk_filter(sk
, skb
);
295 if (!sk_rmem_schedule(sk
, skb
->truesize
)) {
296 atomic_inc(&sk
->sk_drops
);
301 skb_set_owner_r(skb
, sk
);
303 /* Cache the SKB length before we tack it onto the receive
304 * queue. Once it is added it no longer belongs to us and
305 * may be freed by other threads of control pulling packets
310 spin_lock_irqsave(&list
->lock
, flags
);
311 skb
->dropcount
= atomic_read(&sk
->sk_drops
);
312 __skb_queue_tail(list
, skb
);
313 spin_unlock_irqrestore(&list
->lock
, flags
);
315 if (!sock_flag(sk
, SOCK_DEAD
))
316 sk
->sk_data_ready(sk
, skb_len
);
319 EXPORT_SYMBOL(sock_queue_rcv_skb
);
321 int sk_receive_skb(struct sock
*sk
, struct sk_buff
*skb
, const int nested
)
323 int rc
= NET_RX_SUCCESS
;
325 if (sk_filter(sk
, skb
))
326 goto discard_and_relse
;
331 bh_lock_sock_nested(sk
);
334 if (!sock_owned_by_user(sk
)) {
336 * trylock + unlock semantics:
338 mutex_acquire(&sk
->sk_lock
.dep_map
, 0, 1, _RET_IP_
);
340 rc
= sk_backlog_rcv(sk
, skb
);
342 mutex_release(&sk
->sk_lock
.dep_map
, 1, _RET_IP_
);
344 sk_add_backlog(sk
, skb
);
353 EXPORT_SYMBOL(sk_receive_skb
);
355 void sk_reset_txq(struct sock
*sk
)
357 sk_tx_queue_clear(sk
);
359 EXPORT_SYMBOL(sk_reset_txq
);
361 struct dst_entry
*__sk_dst_check(struct sock
*sk
, u32 cookie
)
363 struct dst_entry
*dst
= sk
->sk_dst_cache
;
365 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
366 sk_tx_queue_clear(sk
);
367 sk
->sk_dst_cache
= NULL
;
374 EXPORT_SYMBOL(__sk_dst_check
);
376 struct dst_entry
*sk_dst_check(struct sock
*sk
, u32 cookie
)
378 struct dst_entry
*dst
= sk_dst_get(sk
);
380 if (dst
&& dst
->obsolete
&& dst
->ops
->check(dst
, cookie
) == NULL
) {
388 EXPORT_SYMBOL(sk_dst_check
);
390 static int sock_bindtodevice(struct sock
*sk
, char __user
*optval
, int optlen
)
392 int ret
= -ENOPROTOOPT
;
393 #ifdef CONFIG_NETDEVICES
394 struct net
*net
= sock_net(sk
);
395 char devname
[IFNAMSIZ
];
400 if (!capable(CAP_NET_RAW
))
407 /* Bind this socket to a particular device like "eth0",
408 * as specified in the passed interface name. If the
409 * name is "" or the option length is zero the socket
412 if (optlen
> IFNAMSIZ
- 1)
413 optlen
= IFNAMSIZ
- 1;
414 memset(devname
, 0, sizeof(devname
));
417 if (copy_from_user(devname
, optval
, optlen
))
421 if (devname
[0] != '\0') {
422 struct net_device
*dev
;
425 dev
= dev_get_by_name_rcu(net
, devname
);
427 index
= dev
->ifindex
;
435 sk
->sk_bound_dev_if
= index
;
447 static inline void sock_valbool_flag(struct sock
*sk
, int bit
, int valbool
)
450 sock_set_flag(sk
, bit
);
452 sock_reset_flag(sk
, bit
);
456 * This is meant for all protocols to use and covers goings on
457 * at the socket level. Everything here is generic.
460 int sock_setsockopt(struct socket
*sock
, int level
, int optname
,
461 char __user
*optval
, unsigned int optlen
)
463 struct sock
*sk
= sock
->sk
;
470 * Options without arguments
473 if (optname
== SO_BINDTODEVICE
)
474 return sock_bindtodevice(sk
, optval
, optlen
);
476 if (optlen
< sizeof(int))
479 if (get_user(val
, (int __user
*)optval
))
482 valbool
= val
? 1 : 0;
488 if (val
&& !capable(CAP_NET_ADMIN
))
491 sock_valbool_flag(sk
, SOCK_DBG
, valbool
);
494 sk
->sk_reuse
= valbool
;
503 sock_valbool_flag(sk
, SOCK_LOCALROUTE
, valbool
);
506 sock_valbool_flag(sk
, SOCK_BROADCAST
, valbool
);
509 /* Don't error on this BSD doesn't and if you think
510 about it this is right. Otherwise apps have to
511 play 'guess the biggest size' games. RCVBUF/SNDBUF
512 are treated in BSD as hints */
514 if (val
> sysctl_wmem_max
)
515 val
= sysctl_wmem_max
;
517 sk
->sk_userlocks
|= SOCK_SNDBUF_LOCK
;
518 if ((val
* 2) < SOCK_MIN_SNDBUF
)
519 sk
->sk_sndbuf
= SOCK_MIN_SNDBUF
;
521 sk
->sk_sndbuf
= val
* 2;
524 * Wake up sending tasks if we
527 sk
->sk_write_space(sk
);
531 if (!capable(CAP_NET_ADMIN
)) {
538 /* Don't error on this BSD doesn't and if you think
539 about it this is right. Otherwise apps have to
540 play 'guess the biggest size' games. RCVBUF/SNDBUF
541 are treated in BSD as hints */
543 if (val
> sysctl_rmem_max
)
544 val
= sysctl_rmem_max
;
546 sk
->sk_userlocks
|= SOCK_RCVBUF_LOCK
;
548 * We double it on the way in to account for
549 * "struct sk_buff" etc. overhead. Applications
550 * assume that the SO_RCVBUF setting they make will
551 * allow that much actual data to be received on that
554 * Applications are unaware that "struct sk_buff" and
555 * other overheads allocate from the receive buffer
556 * during socket buffer allocation.
558 * And after considering the possible alternatives,
559 * returning the value we actually used in getsockopt
560 * is the most desirable behavior.
562 if ((val
* 2) < SOCK_MIN_RCVBUF
)
563 sk
->sk_rcvbuf
= SOCK_MIN_RCVBUF
;
565 sk
->sk_rcvbuf
= val
* 2;
569 if (!capable(CAP_NET_ADMIN
)) {
577 if (sk
->sk_protocol
== IPPROTO_TCP
)
578 tcp_set_keepalive(sk
, valbool
);
580 sock_valbool_flag(sk
, SOCK_KEEPOPEN
, valbool
);
584 sock_valbool_flag(sk
, SOCK_URGINLINE
, valbool
);
588 sk
->sk_no_check
= valbool
;
592 if ((val
>= 0 && val
<= 6) || capable(CAP_NET_ADMIN
))
593 sk
->sk_priority
= val
;
599 if (optlen
< sizeof(ling
)) {
600 ret
= -EINVAL
; /* 1003.1g */
603 if (copy_from_user(&ling
, optval
, sizeof(ling
))) {
608 sock_reset_flag(sk
, SOCK_LINGER
);
610 #if (BITS_PER_LONG == 32)
611 if ((unsigned int)ling
.l_linger
>= MAX_SCHEDULE_TIMEOUT
/HZ
)
612 sk
->sk_lingertime
= MAX_SCHEDULE_TIMEOUT
;
615 sk
->sk_lingertime
= (unsigned int)ling
.l_linger
* HZ
;
616 sock_set_flag(sk
, SOCK_LINGER
);
621 sock_warn_obsolete_bsdism("setsockopt");
626 set_bit(SOCK_PASSCRED
, &sock
->flags
);
628 clear_bit(SOCK_PASSCRED
, &sock
->flags
);
634 if (optname
== SO_TIMESTAMP
)
635 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
637 sock_set_flag(sk
, SOCK_RCVTSTAMPNS
);
638 sock_set_flag(sk
, SOCK_RCVTSTAMP
);
639 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
641 sock_reset_flag(sk
, SOCK_RCVTSTAMP
);
642 sock_reset_flag(sk
, SOCK_RCVTSTAMPNS
);
646 case SO_TIMESTAMPING
:
647 if (val
& ~SOF_TIMESTAMPING_MASK
) {
651 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_TX_HARDWARE
,
652 val
& SOF_TIMESTAMPING_TX_HARDWARE
);
653 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_TX_SOFTWARE
,
654 val
& SOF_TIMESTAMPING_TX_SOFTWARE
);
655 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_RX_HARDWARE
,
656 val
& SOF_TIMESTAMPING_RX_HARDWARE
);
657 if (val
& SOF_TIMESTAMPING_RX_SOFTWARE
)
658 sock_enable_timestamp(sk
,
659 SOCK_TIMESTAMPING_RX_SOFTWARE
);
661 sock_disable_timestamp(sk
,
662 SOCK_TIMESTAMPING_RX_SOFTWARE
);
663 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_SOFTWARE
,
664 val
& SOF_TIMESTAMPING_SOFTWARE
);
665 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_SYS_HARDWARE
,
666 val
& SOF_TIMESTAMPING_SYS_HARDWARE
);
667 sock_valbool_flag(sk
, SOCK_TIMESTAMPING_RAW_HARDWARE
,
668 val
& SOF_TIMESTAMPING_RAW_HARDWARE
);
674 sk
->sk_rcvlowat
= val
? : 1;
678 ret
= sock_set_timeout(&sk
->sk_rcvtimeo
, optval
, optlen
);
682 ret
= sock_set_timeout(&sk
->sk_sndtimeo
, optval
, optlen
);
685 case SO_ATTACH_FILTER
:
687 if (optlen
== sizeof(struct sock_fprog
)) {
688 struct sock_fprog fprog
;
691 if (copy_from_user(&fprog
, optval
, sizeof(fprog
)))
694 ret
= sk_attach_filter(&fprog
, sk
);
698 case SO_DETACH_FILTER
:
699 ret
= sk_detach_filter(sk
);
704 set_bit(SOCK_PASSSEC
, &sock
->flags
);
706 clear_bit(SOCK_PASSSEC
, &sock
->flags
);
709 if (!capable(CAP_NET_ADMIN
))
715 /* We implement the SO_SNDLOWAT etc to
716 not be settable (1003.1g 5.3) */
719 sock_set_flag(sk
, SOCK_RXQ_OVFL
);
721 sock_reset_flag(sk
, SOCK_RXQ_OVFL
);
730 EXPORT_SYMBOL(sock_setsockopt
);
733 int sock_getsockopt(struct socket
*sock
, int level
, int optname
,
734 char __user
*optval
, int __user
*optlen
)
736 struct sock
*sk
= sock
->sk
;
744 unsigned int lv
= sizeof(int);
747 if (get_user(len
, optlen
))
752 memset(&v
, 0, sizeof(v
));
756 v
.val
= sock_flag(sk
, SOCK_DBG
);
760 v
.val
= sock_flag(sk
, SOCK_LOCALROUTE
);
764 v
.val
= !!sock_flag(sk
, SOCK_BROADCAST
);
768 v
.val
= sk
->sk_sndbuf
;
772 v
.val
= sk
->sk_rcvbuf
;
776 v
.val
= sk
->sk_reuse
;
780 v
.val
= !!sock_flag(sk
, SOCK_KEEPOPEN
);
788 v
.val
= sk
->sk_protocol
;
792 v
.val
= sk
->sk_family
;
796 v
.val
= -sock_error(sk
);
798 v
.val
= xchg(&sk
->sk_err_soft
, 0);
802 v
.val
= !!sock_flag(sk
, SOCK_URGINLINE
);
806 v
.val
= sk
->sk_no_check
;
810 v
.val
= sk
->sk_priority
;
815 v
.ling
.l_onoff
= !!sock_flag(sk
, SOCK_LINGER
);
816 v
.ling
.l_linger
= sk
->sk_lingertime
/ HZ
;
820 sock_warn_obsolete_bsdism("getsockopt");
824 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMP
) &&
825 !sock_flag(sk
, SOCK_RCVTSTAMPNS
);
829 v
.val
= sock_flag(sk
, SOCK_RCVTSTAMPNS
);
832 case SO_TIMESTAMPING
:
834 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_HARDWARE
))
835 v
.val
|= SOF_TIMESTAMPING_TX_HARDWARE
;
836 if (sock_flag(sk
, SOCK_TIMESTAMPING_TX_SOFTWARE
))
837 v
.val
|= SOF_TIMESTAMPING_TX_SOFTWARE
;
838 if (sock_flag(sk
, SOCK_TIMESTAMPING_RX_HARDWARE
))
839 v
.val
|= SOF_TIMESTAMPING_RX_HARDWARE
;
840 if (sock_flag(sk
, SOCK_TIMESTAMPING_RX_SOFTWARE
))
841 v
.val
|= SOF_TIMESTAMPING_RX_SOFTWARE
;
842 if (sock_flag(sk
, SOCK_TIMESTAMPING_SOFTWARE
))
843 v
.val
|= SOF_TIMESTAMPING_SOFTWARE
;
844 if (sock_flag(sk
, SOCK_TIMESTAMPING_SYS_HARDWARE
))
845 v
.val
|= SOF_TIMESTAMPING_SYS_HARDWARE
;
846 if (sock_flag(sk
, SOCK_TIMESTAMPING_RAW_HARDWARE
))
847 v
.val
|= SOF_TIMESTAMPING_RAW_HARDWARE
;
851 lv
= sizeof(struct timeval
);
852 if (sk
->sk_rcvtimeo
== MAX_SCHEDULE_TIMEOUT
) {
856 v
.tm
.tv_sec
= sk
->sk_rcvtimeo
/ HZ
;
857 v
.tm
.tv_usec
= ((sk
->sk_rcvtimeo
% HZ
) * 1000000) / HZ
;
862 lv
= sizeof(struct timeval
);
863 if (sk
->sk_sndtimeo
== MAX_SCHEDULE_TIMEOUT
) {
867 v
.tm
.tv_sec
= sk
->sk_sndtimeo
/ HZ
;
868 v
.tm
.tv_usec
= ((sk
->sk_sndtimeo
% HZ
) * 1000000) / HZ
;
873 v
.val
= sk
->sk_rcvlowat
;
881 v
.val
= test_bit(SOCK_PASSCRED
, &sock
->flags
) ? 1 : 0;
885 if (len
> sizeof(sk
->sk_peercred
))
886 len
= sizeof(sk
->sk_peercred
);
887 if (copy_to_user(optval
, &sk
->sk_peercred
, len
))
895 if (sock
->ops
->getname(sock
, (struct sockaddr
*)address
, &lv
, 2))
899 if (copy_to_user(optval
, address
, len
))
904 /* Dubious BSD thing... Probably nobody even uses it, but
905 * the UNIX standard wants it for whatever reason... -DaveM
908 v
.val
= sk
->sk_state
== TCP_LISTEN
;
912 v
.val
= test_bit(SOCK_PASSSEC
, &sock
->flags
) ? 1 : 0;
916 return security_socket_getpeersec_stream(sock
, optval
, optlen
, len
);
923 v
.val
= !!sock_flag(sk
, SOCK_RXQ_OVFL
);
932 if (copy_to_user(optval
, &v
, len
))
935 if (put_user(len
, optlen
))
941 * Initialize an sk_lock.
943 * (We also register the sk_lock with the lock validator.)
945 static inline void sock_lock_init(struct sock
*sk
)
947 sock_lock_init_class_and_name(sk
,
948 af_family_slock_key_strings
[sk
->sk_family
],
949 af_family_slock_keys
+ sk
->sk_family
,
950 af_family_key_strings
[sk
->sk_family
],
951 af_family_keys
+ sk
->sk_family
);
955 * Copy all fields from osk to nsk but nsk->sk_refcnt must not change yet,
956 * even temporarly, because of RCU lookups. sk_node should also be left as is.
958 static void sock_copy(struct sock
*nsk
, const struct sock
*osk
)
960 #ifdef CONFIG_SECURITY_NETWORK
961 void *sptr
= nsk
->sk_security
;
963 BUILD_BUG_ON(offsetof(struct sock
, sk_copy_start
) !=
964 sizeof(osk
->sk_node
) + sizeof(osk
->sk_refcnt
) +
965 sizeof(osk
->sk_tx_queue_mapping
));
966 memcpy(&nsk
->sk_copy_start
, &osk
->sk_copy_start
,
967 osk
->sk_prot
->obj_size
- offsetof(struct sock
, sk_copy_start
));
968 #ifdef CONFIG_SECURITY_NETWORK
969 nsk
->sk_security
= sptr
;
970 security_sk_clone(osk
, nsk
);
974 static struct sock
*sk_prot_alloc(struct proto
*prot
, gfp_t priority
,
978 struct kmem_cache
*slab
;
982 sk
= kmem_cache_alloc(slab
, priority
& ~__GFP_ZERO
);
985 if (priority
& __GFP_ZERO
) {
987 * caches using SLAB_DESTROY_BY_RCU should let
988 * sk_node.next un-modified. Special care is taken
989 * when initializing object to zero.
991 if (offsetof(struct sock
, sk_node
.next
) != 0)
992 memset(sk
, 0, offsetof(struct sock
, sk_node
.next
));
993 memset(&sk
->sk_node
.pprev
, 0,
994 prot
->obj_size
- offsetof(struct sock
,
999 sk
= kmalloc(prot
->obj_size
, priority
);
1002 kmemcheck_annotate_bitfield(sk
, flags
);
1004 if (security_sk_alloc(sk
, family
, priority
))
1007 if (!try_module_get(prot
->owner
))
1009 sk_tx_queue_clear(sk
);
1015 security_sk_free(sk
);
1018 kmem_cache_free(slab
, sk
);
1024 static void sk_prot_free(struct proto
*prot
, struct sock
*sk
)
1026 struct kmem_cache
*slab
;
1027 struct module
*owner
;
1029 owner
= prot
->owner
;
1032 security_sk_free(sk
);
1034 kmem_cache_free(slab
, sk
);
1041 * sk_alloc - All socket objects are allocated here
1042 * @net: the applicable net namespace
1043 * @family: protocol family
1044 * @priority: for allocation (%GFP_KERNEL, %GFP_ATOMIC, etc)
1045 * @prot: struct proto associated with this new sock instance
1047 struct sock
*sk_alloc(struct net
*net
, int family
, gfp_t priority
,
1052 sk
= sk_prot_alloc(prot
, priority
| __GFP_ZERO
, family
);
1054 sk
->sk_family
= family
;
1056 * See comment in struct sock definition to understand
1057 * why we need sk_prot_creator -acme
1059 sk
->sk_prot
= sk
->sk_prot_creator
= prot
;
1061 sock_net_set(sk
, get_net(net
));
1062 atomic_set(&sk
->sk_wmem_alloc
, 1);
1067 EXPORT_SYMBOL(sk_alloc
);
1069 static void __sk_free(struct sock
*sk
)
1071 struct sk_filter
*filter
;
1073 if (sk
->sk_destruct
)
1074 sk
->sk_destruct(sk
);
1076 filter
= rcu_dereference(sk
->sk_filter
);
1078 sk_filter_uncharge(sk
, filter
);
1079 rcu_assign_pointer(sk
->sk_filter
, NULL
);
1082 sock_disable_timestamp(sk
, SOCK_TIMESTAMP
);
1083 sock_disable_timestamp(sk
, SOCK_TIMESTAMPING_RX_SOFTWARE
);
1085 if (atomic_read(&sk
->sk_omem_alloc
))
1086 printk(KERN_DEBUG
"%s: optmem leakage (%d bytes) detected.\n",
1087 __func__
, atomic_read(&sk
->sk_omem_alloc
));
1089 put_net(sock_net(sk
));
1090 sk_prot_free(sk
->sk_prot_creator
, sk
);
1093 void sk_free(struct sock
*sk
)
1096 * We substract one from sk_wmem_alloc and can know if
1097 * some packets are still in some tx queue.
1098 * If not null, sock_wfree() will call __sk_free(sk) later
1100 if (atomic_dec_and_test(&sk
->sk_wmem_alloc
))
1103 EXPORT_SYMBOL(sk_free
);
1106 * Last sock_put should drop referrence to sk->sk_net. It has already
1107 * been dropped in sk_change_net. Taking referrence to stopping namespace
1109 * Take referrence to a socket to remove it from hash _alive_ and after that
1110 * destroy it in the context of init_net.
1112 void sk_release_kernel(struct sock
*sk
)
1114 if (sk
== NULL
|| sk
->sk_socket
== NULL
)
1118 sock_release(sk
->sk_socket
);
1119 release_net(sock_net(sk
));
1120 sock_net_set(sk
, get_net(&init_net
));
1123 EXPORT_SYMBOL(sk_release_kernel
);
1125 struct sock
*sk_clone(const struct sock
*sk
, const gfp_t priority
)
1129 newsk
= sk_prot_alloc(sk
->sk_prot
, priority
, sk
->sk_family
);
1130 if (newsk
!= NULL
) {
1131 struct sk_filter
*filter
;
1133 sock_copy(newsk
, sk
);
1136 get_net(sock_net(newsk
));
1137 sk_node_init(&newsk
->sk_node
);
1138 sock_lock_init(newsk
);
1139 bh_lock_sock(newsk
);
1140 newsk
->sk_backlog
.head
= newsk
->sk_backlog
.tail
= NULL
;
1142 atomic_set(&newsk
->sk_rmem_alloc
, 0);
1144 * sk_wmem_alloc set to one (see sk_free() and sock_wfree())
1146 atomic_set(&newsk
->sk_wmem_alloc
, 1);
1147 atomic_set(&newsk
->sk_omem_alloc
, 0);
1148 skb_queue_head_init(&newsk
->sk_receive_queue
);
1149 skb_queue_head_init(&newsk
->sk_write_queue
);
1150 #ifdef CONFIG_NET_DMA
1151 skb_queue_head_init(&newsk
->sk_async_wait_queue
);
1154 rwlock_init(&newsk
->sk_dst_lock
);
1155 rwlock_init(&newsk
->sk_callback_lock
);
1156 lockdep_set_class_and_name(&newsk
->sk_callback_lock
,
1157 af_callback_keys
+ newsk
->sk_family
,
1158 af_family_clock_key_strings
[newsk
->sk_family
]);
1160 newsk
->sk_dst_cache
= NULL
;
1161 newsk
->sk_wmem_queued
= 0;
1162 newsk
->sk_forward_alloc
= 0;
1163 newsk
->sk_send_head
= NULL
;
1164 newsk
->sk_userlocks
= sk
->sk_userlocks
& ~SOCK_BINDPORT_LOCK
;
1166 sock_reset_flag(newsk
, SOCK_DONE
);
1167 skb_queue_head_init(&newsk
->sk_error_queue
);
1169 filter
= newsk
->sk_filter
;
1171 sk_filter_charge(newsk
, filter
);
1173 if (unlikely(xfrm_sk_clone_policy(newsk
))) {
1174 /* It is still raw copy of parent, so invalidate
1175 * destructor and make plain sk_free() */
1176 newsk
->sk_destruct
= NULL
;
1183 newsk
->sk_priority
= 0;
1185 * Before updating sk_refcnt, we must commit prior changes to memory
1186 * (Documentation/RCU/rculist_nulls.txt for details)
1189 atomic_set(&newsk
->sk_refcnt
, 2);
1192 * Increment the counter in the same struct proto as the master
1193 * sock (sk_refcnt_debug_inc uses newsk->sk_prot->socks, that
1194 * is the same as sk->sk_prot->socks, as this field was copied
1197 * This _changes_ the previous behaviour, where
1198 * tcp_create_openreq_child always was incrementing the
1199 * equivalent to tcp_prot->socks (inet_sock_nr), so this have
1200 * to be taken into account in all callers. -acme
1202 sk_refcnt_debug_inc(newsk
);
1203 sk_set_socket(newsk
, NULL
);
1204 newsk
->sk_sleep
= NULL
;
1206 if (newsk
->sk_prot
->sockets_allocated
)
1207 percpu_counter_inc(newsk
->sk_prot
->sockets_allocated
);
1212 EXPORT_SYMBOL_GPL(sk_clone
);
1214 void sk_setup_caps(struct sock
*sk
, struct dst_entry
*dst
)
1216 __sk_dst_set(sk
, dst
);
1217 sk
->sk_route_caps
= dst
->dev
->features
;
1218 if (sk
->sk_route_caps
& NETIF_F_GSO
)
1219 sk
->sk_route_caps
|= NETIF_F_GSO_SOFTWARE
;
1220 if (sk_can_gso(sk
)) {
1221 if (dst
->header_len
) {
1222 sk
->sk_route_caps
&= ~NETIF_F_GSO_MASK
;
1224 sk
->sk_route_caps
|= NETIF_F_SG
| NETIF_F_HW_CSUM
;
1225 sk
->sk_gso_max_size
= dst
->dev
->gso_max_size
;
1229 EXPORT_SYMBOL_GPL(sk_setup_caps
);
1231 void __init
sk_init(void)
1233 if (totalram_pages
<= 4096) {
1234 sysctl_wmem_max
= 32767;
1235 sysctl_rmem_max
= 32767;
1236 sysctl_wmem_default
= 32767;
1237 sysctl_rmem_default
= 32767;
1238 } else if (totalram_pages
>= 131072) {
1239 sysctl_wmem_max
= 131071;
1240 sysctl_rmem_max
= 131071;
1245 * Simple resource managers for sockets.
1250 * Write buffer destructor automatically called from kfree_skb.
1252 void sock_wfree(struct sk_buff
*skb
)
1254 struct sock
*sk
= skb
->sk
;
1255 unsigned int len
= skb
->truesize
;
1257 if (!sock_flag(sk
, SOCK_USE_WRITE_QUEUE
)) {
1259 * Keep a reference on sk_wmem_alloc, this will be released
1260 * after sk_write_space() call
1262 atomic_sub(len
- 1, &sk
->sk_wmem_alloc
);
1263 sk
->sk_write_space(sk
);
1267 * if sk_wmem_alloc reaches 0, we must finish what sk_free()
1268 * could not do because of in-flight packets
1270 if (atomic_sub_and_test(len
, &sk
->sk_wmem_alloc
))
1273 EXPORT_SYMBOL(sock_wfree
);
1276 * Read buffer destructor automatically called from kfree_skb.
1278 void sock_rfree(struct sk_buff
*skb
)
1280 struct sock
*sk
= skb
->sk
;
1282 atomic_sub(skb
->truesize
, &sk
->sk_rmem_alloc
);
1283 sk_mem_uncharge(skb
->sk
, skb
->truesize
);
1285 EXPORT_SYMBOL(sock_rfree
);
1288 int sock_i_uid(struct sock
*sk
)
1292 read_lock(&sk
->sk_callback_lock
);
1293 uid
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_uid
: 0;
1294 read_unlock(&sk
->sk_callback_lock
);
1297 EXPORT_SYMBOL(sock_i_uid
);
1299 unsigned long sock_i_ino(struct sock
*sk
)
1303 read_lock(&sk
->sk_callback_lock
);
1304 ino
= sk
->sk_socket
? SOCK_INODE(sk
->sk_socket
)->i_ino
: 0;
1305 read_unlock(&sk
->sk_callback_lock
);
1308 EXPORT_SYMBOL(sock_i_ino
);
1311 * Allocate a skb from the socket's send buffer.
1313 struct sk_buff
*sock_wmalloc(struct sock
*sk
, unsigned long size
, int force
,
1316 if (force
|| atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
) {
1317 struct sk_buff
*skb
= alloc_skb(size
, priority
);
1319 skb_set_owner_w(skb
, sk
);
1325 EXPORT_SYMBOL(sock_wmalloc
);
1328 * Allocate a skb from the socket's receive buffer.
1330 struct sk_buff
*sock_rmalloc(struct sock
*sk
, unsigned long size
, int force
,
1333 if (force
|| atomic_read(&sk
->sk_rmem_alloc
) < sk
->sk_rcvbuf
) {
1334 struct sk_buff
*skb
= alloc_skb(size
, priority
);
1336 skb_set_owner_r(skb
, sk
);
1344 * Allocate a memory block from the socket's option memory buffer.
1346 void *sock_kmalloc(struct sock
*sk
, int size
, gfp_t priority
)
1348 if ((unsigned)size
<= sysctl_optmem_max
&&
1349 atomic_read(&sk
->sk_omem_alloc
) + size
< sysctl_optmem_max
) {
1351 /* First do the add, to avoid the race if kmalloc
1354 atomic_add(size
, &sk
->sk_omem_alloc
);
1355 mem
= kmalloc(size
, priority
);
1358 atomic_sub(size
, &sk
->sk_omem_alloc
);
1362 EXPORT_SYMBOL(sock_kmalloc
);
1365 * Free an option memory block.
1367 void sock_kfree_s(struct sock
*sk
, void *mem
, int size
)
1370 atomic_sub(size
, &sk
->sk_omem_alloc
);
1372 EXPORT_SYMBOL(sock_kfree_s
);
1374 /* It is almost wait_for_tcp_memory minus release_sock/lock_sock.
1375 I think, these locks should be removed for datagram sockets.
1377 static long sock_wait_for_wmem(struct sock
*sk
, long timeo
)
1381 clear_bit(SOCK_ASYNC_NOSPACE
, &sk
->sk_socket
->flags
);
1385 if (signal_pending(current
))
1387 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1388 prepare_to_wait(sk
->sk_sleep
, &wait
, TASK_INTERRUPTIBLE
);
1389 if (atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
)
1391 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
1395 timeo
= schedule_timeout(timeo
);
1397 finish_wait(sk
->sk_sleep
, &wait
);
1403 * Generic send/receive buffer handlers
1406 struct sk_buff
*sock_alloc_send_pskb(struct sock
*sk
, unsigned long header_len
,
1407 unsigned long data_len
, int noblock
,
1410 struct sk_buff
*skb
;
1415 gfp_mask
= sk
->sk_allocation
;
1416 if (gfp_mask
& __GFP_WAIT
)
1417 gfp_mask
|= __GFP_REPEAT
;
1419 timeo
= sock_sndtimeo(sk
, noblock
);
1421 err
= sock_error(sk
);
1426 if (sk
->sk_shutdown
& SEND_SHUTDOWN
)
1429 if (atomic_read(&sk
->sk_wmem_alloc
) < sk
->sk_sndbuf
) {
1430 skb
= alloc_skb(header_len
, gfp_mask
);
1435 /* No pages, we're done... */
1439 npages
= (data_len
+ (PAGE_SIZE
- 1)) >> PAGE_SHIFT
;
1440 skb
->truesize
+= data_len
;
1441 skb_shinfo(skb
)->nr_frags
= npages
;
1442 for (i
= 0; i
< npages
; i
++) {
1446 page
= alloc_pages(sk
->sk_allocation
, 0);
1449 skb_shinfo(skb
)->nr_frags
= i
;
1454 frag
= &skb_shinfo(skb
)->frags
[i
];
1456 frag
->page_offset
= 0;
1457 frag
->size
= (data_len
>= PAGE_SIZE
?
1460 data_len
-= PAGE_SIZE
;
1463 /* Full success... */
1469 set_bit(SOCK_ASYNC_NOSPACE
, &sk
->sk_socket
->flags
);
1470 set_bit(SOCK_NOSPACE
, &sk
->sk_socket
->flags
);
1474 if (signal_pending(current
))
1476 timeo
= sock_wait_for_wmem(sk
, timeo
);
1479 skb_set_owner_w(skb
, sk
);
1483 err
= sock_intr_errno(timeo
);
1488 EXPORT_SYMBOL(sock_alloc_send_pskb
);
1490 struct sk_buff
*sock_alloc_send_skb(struct sock
*sk
, unsigned long size
,
1491 int noblock
, int *errcode
)
1493 return sock_alloc_send_pskb(sk
, size
, 0, noblock
, errcode
);
1495 EXPORT_SYMBOL(sock_alloc_send_skb
);
1497 static void __lock_sock(struct sock
*sk
)
1502 prepare_to_wait_exclusive(&sk
->sk_lock
.wq
, &wait
,
1503 TASK_UNINTERRUPTIBLE
);
1504 spin_unlock_bh(&sk
->sk_lock
.slock
);
1506 spin_lock_bh(&sk
->sk_lock
.slock
);
1507 if (!sock_owned_by_user(sk
))
1510 finish_wait(&sk
->sk_lock
.wq
, &wait
);
1513 static void __release_sock(struct sock
*sk
)
1515 struct sk_buff
*skb
= sk
->sk_backlog
.head
;
1518 sk
->sk_backlog
.head
= sk
->sk_backlog
.tail
= NULL
;
1522 struct sk_buff
*next
= skb
->next
;
1525 sk_backlog_rcv(sk
, skb
);
1528 * We are in process context here with softirqs
1529 * disabled, use cond_resched_softirq() to preempt.
1530 * This is safe to do because we've taken the backlog
1533 cond_resched_softirq();
1536 } while (skb
!= NULL
);
1539 } while ((skb
= sk
->sk_backlog
.head
) != NULL
);
1543 * sk_wait_data - wait for data to arrive at sk_receive_queue
1544 * @sk: sock to wait on
1545 * @timeo: for how long
1547 * Now socket state including sk->sk_err is changed only under lock,
1548 * hence we may omit checks after joining wait queue.
1549 * We check receive queue before schedule() only as optimization;
1550 * it is very likely that release_sock() added new data.
1552 int sk_wait_data(struct sock
*sk
, long *timeo
)
1557 prepare_to_wait(sk
->sk_sleep
, &wait
, TASK_INTERRUPTIBLE
);
1558 set_bit(SOCK_ASYNC_WAITDATA
, &sk
->sk_socket
->flags
);
1559 rc
= sk_wait_event(sk
, timeo
, !skb_queue_empty(&sk
->sk_receive_queue
));
1560 clear_bit(SOCK_ASYNC_WAITDATA
, &sk
->sk_socket
->flags
);
1561 finish_wait(sk
->sk_sleep
, &wait
);
1564 EXPORT_SYMBOL(sk_wait_data
);
1567 * __sk_mem_schedule - increase sk_forward_alloc and memory_allocated
1569 * @size: memory size to allocate
1570 * @kind: allocation type
1572 * If kind is SK_MEM_SEND, it means wmem allocation. Otherwise it means
1573 * rmem allocation. This function assumes that protocols which have
1574 * memory_pressure use sk_wmem_queued as write buffer accounting.
1576 int __sk_mem_schedule(struct sock
*sk
, int size
, int kind
)
1578 struct proto
*prot
= sk
->sk_prot
;
1579 int amt
= sk_mem_pages(size
);
1582 sk
->sk_forward_alloc
+= amt
* SK_MEM_QUANTUM
;
1583 allocated
= atomic_add_return(amt
, prot
->memory_allocated
);
1586 if (allocated
<= prot
->sysctl_mem
[0]) {
1587 if (prot
->memory_pressure
&& *prot
->memory_pressure
)
1588 *prot
->memory_pressure
= 0;
1592 /* Under pressure. */
1593 if (allocated
> prot
->sysctl_mem
[1])
1594 if (prot
->enter_memory_pressure
)
1595 prot
->enter_memory_pressure(sk
);
1597 /* Over hard limit. */
1598 if (allocated
> prot
->sysctl_mem
[2])
1599 goto suppress_allocation
;
1601 /* guarantee minimum buffer size under pressure */
1602 if (kind
== SK_MEM_RECV
) {
1603 if (atomic_read(&sk
->sk_rmem_alloc
) < prot
->sysctl_rmem
[0])
1605 } else { /* SK_MEM_SEND */
1606 if (sk
->sk_type
== SOCK_STREAM
) {
1607 if (sk
->sk_wmem_queued
< prot
->sysctl_wmem
[0])
1609 } else if (atomic_read(&sk
->sk_wmem_alloc
) <
1610 prot
->sysctl_wmem
[0])
1614 if (prot
->memory_pressure
) {
1617 if (!*prot
->memory_pressure
)
1619 alloc
= percpu_counter_read_positive(prot
->sockets_allocated
);
1620 if (prot
->sysctl_mem
[2] > alloc
*
1621 sk_mem_pages(sk
->sk_wmem_queued
+
1622 atomic_read(&sk
->sk_rmem_alloc
) +
1623 sk
->sk_forward_alloc
))
1627 suppress_allocation
:
1629 if (kind
== SK_MEM_SEND
&& sk
->sk_type
== SOCK_STREAM
) {
1630 sk_stream_moderate_sndbuf(sk
);
1632 /* Fail only if socket is _under_ its sndbuf.
1633 * In this case we cannot block, so that we have to fail.
1635 if (sk
->sk_wmem_queued
+ size
>= sk
->sk_sndbuf
)
1639 /* Alas. Undo changes. */
1640 sk
->sk_forward_alloc
-= amt
* SK_MEM_QUANTUM
;
1641 atomic_sub(amt
, prot
->memory_allocated
);
1644 EXPORT_SYMBOL(__sk_mem_schedule
);
1647 * __sk_reclaim - reclaim memory_allocated
1650 void __sk_mem_reclaim(struct sock
*sk
)
1652 struct proto
*prot
= sk
->sk_prot
;
1654 atomic_sub(sk
->sk_forward_alloc
>> SK_MEM_QUANTUM_SHIFT
,
1655 prot
->memory_allocated
);
1656 sk
->sk_forward_alloc
&= SK_MEM_QUANTUM
- 1;
1658 if (prot
->memory_pressure
&& *prot
->memory_pressure
&&
1659 (atomic_read(prot
->memory_allocated
) < prot
->sysctl_mem
[0]))
1660 *prot
->memory_pressure
= 0;
1662 EXPORT_SYMBOL(__sk_mem_reclaim
);
1666 * Set of default routines for initialising struct proto_ops when
1667 * the protocol does not support a particular function. In certain
1668 * cases where it makes no sense for a protocol to have a "do nothing"
1669 * function, some default processing is provided.
1672 int sock_no_bind(struct socket
*sock
, struct sockaddr
*saddr
, int len
)
1676 EXPORT_SYMBOL(sock_no_bind
);
1678 int sock_no_connect(struct socket
*sock
, struct sockaddr
*saddr
,
1683 EXPORT_SYMBOL(sock_no_connect
);
1685 int sock_no_socketpair(struct socket
*sock1
, struct socket
*sock2
)
1689 EXPORT_SYMBOL(sock_no_socketpair
);
1691 int sock_no_accept(struct socket
*sock
, struct socket
*newsock
, int flags
)
1695 EXPORT_SYMBOL(sock_no_accept
);
1697 int sock_no_getname(struct socket
*sock
, struct sockaddr
*saddr
,
1702 EXPORT_SYMBOL(sock_no_getname
);
1704 unsigned int sock_no_poll(struct file
*file
, struct socket
*sock
, poll_table
*pt
)
1708 EXPORT_SYMBOL(sock_no_poll
);
1710 int sock_no_ioctl(struct socket
*sock
, unsigned int cmd
, unsigned long arg
)
1714 EXPORT_SYMBOL(sock_no_ioctl
);
1716 int sock_no_listen(struct socket
*sock
, int backlog
)
1720 EXPORT_SYMBOL(sock_no_listen
);
1722 int sock_no_shutdown(struct socket
*sock
, int how
)
1726 EXPORT_SYMBOL(sock_no_shutdown
);
1728 int sock_no_setsockopt(struct socket
*sock
, int level
, int optname
,
1729 char __user
*optval
, unsigned int optlen
)
1733 EXPORT_SYMBOL(sock_no_setsockopt
);
1735 int sock_no_getsockopt(struct socket
*sock
, int level
, int optname
,
1736 char __user
*optval
, int __user
*optlen
)
1740 EXPORT_SYMBOL(sock_no_getsockopt
);
1742 int sock_no_sendmsg(struct kiocb
*iocb
, struct socket
*sock
, struct msghdr
*m
,
1747 EXPORT_SYMBOL(sock_no_sendmsg
);
1749 int sock_no_recvmsg(struct kiocb
*iocb
, struct socket
*sock
, struct msghdr
*m
,
1750 size_t len
, int flags
)
1754 EXPORT_SYMBOL(sock_no_recvmsg
);
1756 int sock_no_mmap(struct file
*file
, struct socket
*sock
, struct vm_area_struct
*vma
)
1758 /* Mirror missing mmap method error code */
1761 EXPORT_SYMBOL(sock_no_mmap
);
1763 ssize_t
sock_no_sendpage(struct socket
*sock
, struct page
*page
, int offset
, size_t size
, int flags
)
1766 struct msghdr msg
= {.msg_flags
= flags
};
1768 char *kaddr
= kmap(page
);
1769 iov
.iov_base
= kaddr
+ offset
;
1771 res
= kernel_sendmsg(sock
, &msg
, &iov
, 1, size
);
1775 EXPORT_SYMBOL(sock_no_sendpage
);
1778 * Default Socket Callbacks
1781 static void sock_def_wakeup(struct sock
*sk
)
1783 read_lock(&sk
->sk_callback_lock
);
1784 if (sk_has_sleeper(sk
))
1785 wake_up_interruptible_all(sk
->sk_sleep
);
1786 read_unlock(&sk
->sk_callback_lock
);
1789 static void sock_def_error_report(struct sock
*sk
)
1791 read_lock(&sk
->sk_callback_lock
);
1792 if (sk_has_sleeper(sk
))
1793 wake_up_interruptible_poll(sk
->sk_sleep
, POLLERR
);
1794 sk_wake_async(sk
, SOCK_WAKE_IO
, POLL_ERR
);
1795 read_unlock(&sk
->sk_callback_lock
);
1798 static void sock_def_readable(struct sock
*sk
, int len
)
1800 read_lock(&sk
->sk_callback_lock
);
1801 if (sk_has_sleeper(sk
))
1802 wake_up_interruptible_sync_poll(sk
->sk_sleep
, POLLIN
|
1803 POLLRDNORM
| POLLRDBAND
);
1804 sk_wake_async(sk
, SOCK_WAKE_WAITD
, POLL_IN
);
1805 read_unlock(&sk
->sk_callback_lock
);
1808 static void sock_def_write_space(struct sock
*sk
)
1810 read_lock(&sk
->sk_callback_lock
);
1812 /* Do not wake up a writer until he can make "significant"
1815 if ((atomic_read(&sk
->sk_wmem_alloc
) << 1) <= sk
->sk_sndbuf
) {
1816 if (sk_has_sleeper(sk
))
1817 wake_up_interruptible_sync_poll(sk
->sk_sleep
, POLLOUT
|
1818 POLLWRNORM
| POLLWRBAND
);
1820 /* Should agree with poll, otherwise some programs break */
1821 if (sock_writeable(sk
))
1822 sk_wake_async(sk
, SOCK_WAKE_SPACE
, POLL_OUT
);
1825 read_unlock(&sk
->sk_callback_lock
);
1828 static void sock_def_destruct(struct sock
*sk
)
1830 kfree(sk
->sk_protinfo
);
1833 void sk_send_sigurg(struct sock
*sk
)
1835 if (sk
->sk_socket
&& sk
->sk_socket
->file
)
1836 if (send_sigurg(&sk
->sk_socket
->file
->f_owner
))
1837 sk_wake_async(sk
, SOCK_WAKE_URG
, POLL_PRI
);
1839 EXPORT_SYMBOL(sk_send_sigurg
);
1841 void sk_reset_timer(struct sock
*sk
, struct timer_list
* timer
,
1842 unsigned long expires
)
1844 if (!mod_timer(timer
, expires
))
1847 EXPORT_SYMBOL(sk_reset_timer
);
1849 void sk_stop_timer(struct sock
*sk
, struct timer_list
* timer
)
1851 if (timer_pending(timer
) && del_timer(timer
))
1854 EXPORT_SYMBOL(sk_stop_timer
);
1856 void sock_init_data(struct socket
*sock
, struct sock
*sk
)
1858 skb_queue_head_init(&sk
->sk_receive_queue
);
1859 skb_queue_head_init(&sk
->sk_write_queue
);
1860 skb_queue_head_init(&sk
->sk_error_queue
);
1861 #ifdef CONFIG_NET_DMA
1862 skb_queue_head_init(&sk
->sk_async_wait_queue
);
1865 sk
->sk_send_head
= NULL
;
1867 init_timer(&sk
->sk_timer
);
1869 sk
->sk_allocation
= GFP_KERNEL
;
1870 sk
->sk_rcvbuf
= sysctl_rmem_default
;
1871 sk
->sk_sndbuf
= sysctl_wmem_default
;
1872 sk
->sk_state
= TCP_CLOSE
;
1873 sk_set_socket(sk
, sock
);
1875 sock_set_flag(sk
, SOCK_ZAPPED
);
1878 sk
->sk_type
= sock
->type
;
1879 sk
->sk_sleep
= &sock
->wait
;
1882 sk
->sk_sleep
= NULL
;
1884 rwlock_init(&sk
->sk_dst_lock
);
1885 rwlock_init(&sk
->sk_callback_lock
);
1886 lockdep_set_class_and_name(&sk
->sk_callback_lock
,
1887 af_callback_keys
+ sk
->sk_family
,
1888 af_family_clock_key_strings
[sk
->sk_family
]);
1890 sk
->sk_state_change
= sock_def_wakeup
;
1891 sk
->sk_data_ready
= sock_def_readable
;
1892 sk
->sk_write_space
= sock_def_write_space
;
1893 sk
->sk_error_report
= sock_def_error_report
;
1894 sk
->sk_destruct
= sock_def_destruct
;
1896 sk
->sk_sndmsg_page
= NULL
;
1897 sk
->sk_sndmsg_off
= 0;
1899 sk
->sk_peercred
.pid
= 0;
1900 sk
->sk_peercred
.uid
= -1;
1901 sk
->sk_peercred
.gid
= -1;
1902 sk
->sk_write_pending
= 0;
1903 sk
->sk_rcvlowat
= 1;
1904 sk
->sk_rcvtimeo
= MAX_SCHEDULE_TIMEOUT
;
1905 sk
->sk_sndtimeo
= MAX_SCHEDULE_TIMEOUT
;
1907 sk
->sk_stamp
= ktime_set(-1L, 0);
1910 * Before updating sk_refcnt, we must commit prior changes to memory
1911 * (Documentation/RCU/rculist_nulls.txt for details)
1914 atomic_set(&sk
->sk_refcnt
, 1);
1915 atomic_set(&sk
->sk_drops
, 0);
1917 EXPORT_SYMBOL(sock_init_data
);
1919 void lock_sock_nested(struct sock
*sk
, int subclass
)
1922 spin_lock_bh(&sk
->sk_lock
.slock
);
1923 if (sk
->sk_lock
.owned
)
1925 sk
->sk_lock
.owned
= 1;
1926 spin_unlock(&sk
->sk_lock
.slock
);
1928 * The sk_lock has mutex_lock() semantics here:
1930 mutex_acquire(&sk
->sk_lock
.dep_map
, subclass
, 0, _RET_IP_
);
1933 EXPORT_SYMBOL(lock_sock_nested
);
1935 void release_sock(struct sock
*sk
)
1938 * The sk_lock has mutex_unlock() semantics:
1940 mutex_release(&sk
->sk_lock
.dep_map
, 1, _RET_IP_
);
1942 spin_lock_bh(&sk
->sk_lock
.slock
);
1943 if (sk
->sk_backlog
.tail
)
1945 sk
->sk_lock
.owned
= 0;
1946 if (waitqueue_active(&sk
->sk_lock
.wq
))
1947 wake_up(&sk
->sk_lock
.wq
);
1948 spin_unlock_bh(&sk
->sk_lock
.slock
);
1950 EXPORT_SYMBOL(release_sock
);
1952 int sock_get_timestamp(struct sock
*sk
, struct timeval __user
*userstamp
)
1955 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
1956 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
1957 tv
= ktime_to_timeval(sk
->sk_stamp
);
1958 if (tv
.tv_sec
== -1)
1960 if (tv
.tv_sec
== 0) {
1961 sk
->sk_stamp
= ktime_get_real();
1962 tv
= ktime_to_timeval(sk
->sk_stamp
);
1964 return copy_to_user(userstamp
, &tv
, sizeof(tv
)) ? -EFAULT
: 0;
1966 EXPORT_SYMBOL(sock_get_timestamp
);
1968 int sock_get_timestampns(struct sock
*sk
, struct timespec __user
*userstamp
)
1971 if (!sock_flag(sk
, SOCK_TIMESTAMP
))
1972 sock_enable_timestamp(sk
, SOCK_TIMESTAMP
);
1973 ts
= ktime_to_timespec(sk
->sk_stamp
);
1974 if (ts
.tv_sec
== -1)
1976 if (ts
.tv_sec
== 0) {
1977 sk
->sk_stamp
= ktime_get_real();
1978 ts
= ktime_to_timespec(sk
->sk_stamp
);
1980 return copy_to_user(userstamp
, &ts
, sizeof(ts
)) ? -EFAULT
: 0;
1982 EXPORT_SYMBOL(sock_get_timestampns
);
1984 void sock_enable_timestamp(struct sock
*sk
, int flag
)
1986 if (!sock_flag(sk
, flag
)) {
1987 sock_set_flag(sk
, flag
);
1989 * we just set one of the two flags which require net
1990 * time stamping, but time stamping might have been on
1991 * already because of the other one
1994 flag
== SOCK_TIMESTAMP
?
1995 SOCK_TIMESTAMPING_RX_SOFTWARE
:
1997 net_enable_timestamp();
2002 * Get a socket option on an socket.
2004 * FIX: POSIX 1003.1g is very ambiguous here. It states that
2005 * asynchronous errors should be reported by getsockopt. We assume
2006 * this means if you specify SO_ERROR (otherwise whats the point of it).
2008 int sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2009 char __user
*optval
, int __user
*optlen
)
2011 struct sock
*sk
= sock
->sk
;
2013 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
2015 EXPORT_SYMBOL(sock_common_getsockopt
);
2017 #ifdef CONFIG_COMPAT
2018 int compat_sock_common_getsockopt(struct socket
*sock
, int level
, int optname
,
2019 char __user
*optval
, int __user
*optlen
)
2021 struct sock
*sk
= sock
->sk
;
2023 if (sk
->sk_prot
->compat_getsockopt
!= NULL
)
2024 return sk
->sk_prot
->compat_getsockopt(sk
, level
, optname
,
2026 return sk
->sk_prot
->getsockopt(sk
, level
, optname
, optval
, optlen
);
2028 EXPORT_SYMBOL(compat_sock_common_getsockopt
);
2031 int sock_common_recvmsg(struct kiocb
*iocb
, struct socket
*sock
,
2032 struct msghdr
*msg
, size_t size
, int flags
)
2034 struct sock
*sk
= sock
->sk
;
2038 err
= sk
->sk_prot
->recvmsg(iocb
, sk
, msg
, size
, flags
& MSG_DONTWAIT
,
2039 flags
& ~MSG_DONTWAIT
, &addr_len
);
2041 msg
->msg_namelen
= addr_len
;
2044 EXPORT_SYMBOL(sock_common_recvmsg
);
2047 * Set socket options on an inet socket.
2049 int sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2050 char __user
*optval
, unsigned int optlen
)
2052 struct sock
*sk
= sock
->sk
;
2054 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2056 EXPORT_SYMBOL(sock_common_setsockopt
);
2058 #ifdef CONFIG_COMPAT
2059 int compat_sock_common_setsockopt(struct socket
*sock
, int level
, int optname
,
2060 char __user
*optval
, unsigned int optlen
)
2062 struct sock
*sk
= sock
->sk
;
2064 if (sk
->sk_prot
->compat_setsockopt
!= NULL
)
2065 return sk
->sk_prot
->compat_setsockopt(sk
, level
, optname
,
2067 return sk
->sk_prot
->setsockopt(sk
, level
, optname
, optval
, optlen
);
2069 EXPORT_SYMBOL(compat_sock_common_setsockopt
);
2072 void sk_common_release(struct sock
*sk
)
2074 if (sk
->sk_prot
->destroy
)
2075 sk
->sk_prot
->destroy(sk
);
2078 * Observation: when sock_common_release is called, processes have
2079 * no access to socket. But net still has.
2080 * Step one, detach it from networking:
2082 * A. Remove from hash tables.
2085 sk
->sk_prot
->unhash(sk
);
2088 * In this point socket cannot receive new packets, but it is possible
2089 * that some packets are in flight because some CPU runs receiver and
2090 * did hash table lookup before we unhashed socket. They will achieve
2091 * receive queue and will be purged by socket destructor.
2093 * Also we still have packets pending on receive queue and probably,
2094 * our own packets waiting in device queues. sock_destroy will drain
2095 * receive queue, but transmitted packets will delay socket destruction
2096 * until the last reference will be released.
2101 xfrm_sk_free_policy(sk
);
2103 sk_refcnt_debug_release(sk
);
2106 EXPORT_SYMBOL(sk_common_release
);
2108 static DEFINE_RWLOCK(proto_list_lock
);
2109 static LIST_HEAD(proto_list
);
2111 #ifdef CONFIG_PROC_FS
2112 #define PROTO_INUSE_NR 64 /* should be enough for the first time */
2114 int val
[PROTO_INUSE_NR
];
2117 static DECLARE_BITMAP(proto_inuse_idx
, PROTO_INUSE_NR
);
2119 #ifdef CONFIG_NET_NS
2120 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
2122 int cpu
= smp_processor_id();
2123 per_cpu_ptr(net
->core
.inuse
, cpu
)->val
[prot
->inuse_idx
] += val
;
2125 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
2127 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
2129 int cpu
, idx
= prot
->inuse_idx
;
2132 for_each_possible_cpu(cpu
)
2133 res
+= per_cpu_ptr(net
->core
.inuse
, cpu
)->val
[idx
];
2135 return res
>= 0 ? res
: 0;
2137 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
2139 static int sock_inuse_init_net(struct net
*net
)
2141 net
->core
.inuse
= alloc_percpu(struct prot_inuse
);
2142 return net
->core
.inuse
? 0 : -ENOMEM
;
2145 static void sock_inuse_exit_net(struct net
*net
)
2147 free_percpu(net
->core
.inuse
);
2150 static struct pernet_operations net_inuse_ops
= {
2151 .init
= sock_inuse_init_net
,
2152 .exit
= sock_inuse_exit_net
,
2155 static __init
int net_inuse_init(void)
2157 if (register_pernet_subsys(&net_inuse_ops
))
2158 panic("Cannot initialize net inuse counters");
2163 core_initcall(net_inuse_init
);
2165 static DEFINE_PER_CPU(struct prot_inuse
, prot_inuse
);
2167 void sock_prot_inuse_add(struct net
*net
, struct proto
*prot
, int val
)
2169 __get_cpu_var(prot_inuse
).val
[prot
->inuse_idx
] += val
;
2171 EXPORT_SYMBOL_GPL(sock_prot_inuse_add
);
2173 int sock_prot_inuse_get(struct net
*net
, struct proto
*prot
)
2175 int cpu
, idx
= prot
->inuse_idx
;
2178 for_each_possible_cpu(cpu
)
2179 res
+= per_cpu(prot_inuse
, cpu
).val
[idx
];
2181 return res
>= 0 ? res
: 0;
2183 EXPORT_SYMBOL_GPL(sock_prot_inuse_get
);
2186 static void assign_proto_idx(struct proto
*prot
)
2188 prot
->inuse_idx
= find_first_zero_bit(proto_inuse_idx
, PROTO_INUSE_NR
);
2190 if (unlikely(prot
->inuse_idx
== PROTO_INUSE_NR
- 1)) {
2191 printk(KERN_ERR
"PROTO_INUSE_NR exhausted\n");
2195 set_bit(prot
->inuse_idx
, proto_inuse_idx
);
2198 static void release_proto_idx(struct proto
*prot
)
2200 if (prot
->inuse_idx
!= PROTO_INUSE_NR
- 1)
2201 clear_bit(prot
->inuse_idx
, proto_inuse_idx
);
2204 static inline void assign_proto_idx(struct proto
*prot
)
2208 static inline void release_proto_idx(struct proto
*prot
)
2213 int proto_register(struct proto
*prot
, int alloc_slab
)
2216 prot
->slab
= kmem_cache_create(prot
->name
, prot
->obj_size
, 0,
2217 SLAB_HWCACHE_ALIGN
| prot
->slab_flags
,
2220 if (prot
->slab
== NULL
) {
2221 printk(KERN_CRIT
"%s: Can't create sock SLAB cache!\n",
2226 if (prot
->rsk_prot
!= NULL
) {
2227 static const char mask
[] = "request_sock_%s";
2229 prot
->rsk_prot
->slab_name
= kmalloc(strlen(prot
->name
) + sizeof(mask
) - 1, GFP_KERNEL
);
2230 if (prot
->rsk_prot
->slab_name
== NULL
)
2231 goto out_free_sock_slab
;
2233 sprintf(prot
->rsk_prot
->slab_name
, mask
, prot
->name
);
2234 prot
->rsk_prot
->slab
= kmem_cache_create(prot
->rsk_prot
->slab_name
,
2235 prot
->rsk_prot
->obj_size
, 0,
2236 SLAB_HWCACHE_ALIGN
, NULL
);
2238 if (prot
->rsk_prot
->slab
== NULL
) {
2239 printk(KERN_CRIT
"%s: Can't create request sock SLAB cache!\n",
2241 goto out_free_request_sock_slab_name
;
2245 if (prot
->twsk_prot
!= NULL
) {
2246 static const char mask
[] = "tw_sock_%s";
2248 prot
->twsk_prot
->twsk_slab_name
= kmalloc(strlen(prot
->name
) + sizeof(mask
) - 1, GFP_KERNEL
);
2250 if (prot
->twsk_prot
->twsk_slab_name
== NULL
)
2251 goto out_free_request_sock_slab
;
2253 sprintf(prot
->twsk_prot
->twsk_slab_name
, mask
, prot
->name
);
2254 prot
->twsk_prot
->twsk_slab
=
2255 kmem_cache_create(prot
->twsk_prot
->twsk_slab_name
,
2256 prot
->twsk_prot
->twsk_obj_size
,
2258 SLAB_HWCACHE_ALIGN
|
2261 if (prot
->twsk_prot
->twsk_slab
== NULL
)
2262 goto out_free_timewait_sock_slab_name
;
2266 write_lock(&proto_list_lock
);
2267 list_add(&prot
->node
, &proto_list
);
2268 assign_proto_idx(prot
);
2269 write_unlock(&proto_list_lock
);
2272 out_free_timewait_sock_slab_name
:
2273 kfree(prot
->twsk_prot
->twsk_slab_name
);
2274 out_free_request_sock_slab
:
2275 if (prot
->rsk_prot
&& prot
->rsk_prot
->slab
) {
2276 kmem_cache_destroy(prot
->rsk_prot
->slab
);
2277 prot
->rsk_prot
->slab
= NULL
;
2279 out_free_request_sock_slab_name
:
2280 kfree(prot
->rsk_prot
->slab_name
);
2282 kmem_cache_destroy(prot
->slab
);
2287 EXPORT_SYMBOL(proto_register
);
2289 void proto_unregister(struct proto
*prot
)
2291 write_lock(&proto_list_lock
);
2292 release_proto_idx(prot
);
2293 list_del(&prot
->node
);
2294 write_unlock(&proto_list_lock
);
2296 if (prot
->slab
!= NULL
) {
2297 kmem_cache_destroy(prot
->slab
);
2301 if (prot
->rsk_prot
!= NULL
&& prot
->rsk_prot
->slab
!= NULL
) {
2302 kmem_cache_destroy(prot
->rsk_prot
->slab
);
2303 kfree(prot
->rsk_prot
->slab_name
);
2304 prot
->rsk_prot
->slab
= NULL
;
2307 if (prot
->twsk_prot
!= NULL
&& prot
->twsk_prot
->twsk_slab
!= NULL
) {
2308 kmem_cache_destroy(prot
->twsk_prot
->twsk_slab
);
2309 kfree(prot
->twsk_prot
->twsk_slab_name
);
2310 prot
->twsk_prot
->twsk_slab
= NULL
;
2313 EXPORT_SYMBOL(proto_unregister
);
2315 #ifdef CONFIG_PROC_FS
2316 static void *proto_seq_start(struct seq_file
*seq
, loff_t
*pos
)
2317 __acquires(proto_list_lock
)
2319 read_lock(&proto_list_lock
);
2320 return seq_list_start_head(&proto_list
, *pos
);
2323 static void *proto_seq_next(struct seq_file
*seq
, void *v
, loff_t
*pos
)
2325 return seq_list_next(v
, &proto_list
, pos
);
2328 static void proto_seq_stop(struct seq_file
*seq
, void *v
)
2329 __releases(proto_list_lock
)
2331 read_unlock(&proto_list_lock
);
2334 static char proto_method_implemented(const void *method
)
2336 return method
== NULL
? 'n' : 'y';
2339 static void proto_seq_printf(struct seq_file
*seq
, struct proto
*proto
)
2341 seq_printf(seq
, "%-9s %4u %6d %6d %-3s %6u %-3s %-10s "
2342 "%2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c %2c\n",
2345 sock_prot_inuse_get(seq_file_net(seq
), proto
),
2346 proto
->memory_allocated
!= NULL
? atomic_read(proto
->memory_allocated
) : -1,
2347 proto
->memory_pressure
!= NULL
? *proto
->memory_pressure
? "yes" : "no" : "NI",
2349 proto
->slab
== NULL
? "no" : "yes",
2350 module_name(proto
->owner
),
2351 proto_method_implemented(proto
->close
),
2352 proto_method_implemented(proto
->connect
),
2353 proto_method_implemented(proto
->disconnect
),
2354 proto_method_implemented(proto
->accept
),
2355 proto_method_implemented(proto
->ioctl
),
2356 proto_method_implemented(proto
->init
),
2357 proto_method_implemented(proto
->destroy
),
2358 proto_method_implemented(proto
->shutdown
),
2359 proto_method_implemented(proto
->setsockopt
),
2360 proto_method_implemented(proto
->getsockopt
),
2361 proto_method_implemented(proto
->sendmsg
),
2362 proto_method_implemented(proto
->recvmsg
),
2363 proto_method_implemented(proto
->sendpage
),
2364 proto_method_implemented(proto
->bind
),
2365 proto_method_implemented(proto
->backlog_rcv
),
2366 proto_method_implemented(proto
->hash
),
2367 proto_method_implemented(proto
->unhash
),
2368 proto_method_implemented(proto
->get_port
),
2369 proto_method_implemented(proto
->enter_memory_pressure
));
2372 static int proto_seq_show(struct seq_file
*seq
, void *v
)
2374 if (v
== &proto_list
)
2375 seq_printf(seq
, "%-9s %-4s %-8s %-6s %-5s %-7s %-4s %-10s %s",
2384 "cl co di ac io in de sh ss gs se re sp bi br ha uh gp em\n");
2386 proto_seq_printf(seq
, list_entry(v
, struct proto
, node
));
2390 static const struct seq_operations proto_seq_ops
= {
2391 .start
= proto_seq_start
,
2392 .next
= proto_seq_next
,
2393 .stop
= proto_seq_stop
,
2394 .show
= proto_seq_show
,
2397 static int proto_seq_open(struct inode
*inode
, struct file
*file
)
2399 return seq_open_net(inode
, file
, &proto_seq_ops
,
2400 sizeof(struct seq_net_private
));
2403 static const struct file_operations proto_seq_fops
= {
2404 .owner
= THIS_MODULE
,
2405 .open
= proto_seq_open
,
2407 .llseek
= seq_lseek
,
2408 .release
= seq_release_net
,
2411 static __net_init
int proto_init_net(struct net
*net
)
2413 if (!proc_net_fops_create(net
, "protocols", S_IRUGO
, &proto_seq_fops
))
2419 static __net_exit
void proto_exit_net(struct net
*net
)
2421 proc_net_remove(net
, "protocols");
2425 static __net_initdata
struct pernet_operations proto_net_ops
= {
2426 .init
= proto_init_net
,
2427 .exit
= proto_exit_net
,
2430 static int __init
proto_init(void)
2432 return register_pernet_subsys(&proto_net_ops
);
2435 subsys_initcall(proto_init
);
2437 #endif /* PROC_FS */