USB: xhci: Configure endpoint code refactoring.
[linux-2.6/linux-2.6-openrd.git] / drivers / usb / host / xhci-mem.c
blobc5313c83f42e2174c5c73740d5503a08238beef3
1 /*
2 * xHCI host controller driver
4 * Copyright (C) 2008 Intel Corp.
6 * Author: Sarah Sharp
7 * Some code borrowed from the Linux EHCI driver.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License version 2 as
11 * published by the Free Software Foundation.
13 * This program is distributed in the hope that it will be useful, but
14 * WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
15 * or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 * for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software Foundation,
20 * Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 #include <linux/usb.h>
24 #include <linux/pci.h>
25 #include <linux/dmapool.h>
27 #include "xhci.h"
30 * Allocates a generic ring segment from the ring pool, sets the dma address,
31 * initializes the segment to zero, and sets the private next pointer to NULL.
33 * Section 4.11.1.1:
34 * "All components of all Command and Transfer TRBs shall be initialized to '0'"
36 static struct xhci_segment *xhci_segment_alloc(struct xhci_hcd *xhci, gfp_t flags)
38 struct xhci_segment *seg;
39 dma_addr_t dma;
41 seg = kzalloc(sizeof *seg, flags);
42 if (!seg)
43 return 0;
44 xhci_dbg(xhci, "Allocating priv segment structure at %p\n", seg);
46 seg->trbs = dma_pool_alloc(xhci->segment_pool, flags, &dma);
47 if (!seg->trbs) {
48 kfree(seg);
49 return 0;
51 xhci_dbg(xhci, "// Allocating segment at %p (virtual) 0x%llx (DMA)\n",
52 seg->trbs, (unsigned long long)dma);
54 memset(seg->trbs, 0, SEGMENT_SIZE);
55 seg->dma = dma;
56 seg->next = NULL;
58 return seg;
61 static void xhci_segment_free(struct xhci_hcd *xhci, struct xhci_segment *seg)
63 if (!seg)
64 return;
65 if (seg->trbs) {
66 xhci_dbg(xhci, "Freeing DMA segment at %p (virtual) 0x%llx (DMA)\n",
67 seg->trbs, (unsigned long long)seg->dma);
68 dma_pool_free(xhci->segment_pool, seg->trbs, seg->dma);
69 seg->trbs = NULL;
71 xhci_dbg(xhci, "Freeing priv segment structure at %p\n", seg);
72 kfree(seg);
76 * Make the prev segment point to the next segment.
78 * Change the last TRB in the prev segment to be a Link TRB which points to the
79 * DMA address of the next segment. The caller needs to set any Link TRB
80 * related flags, such as End TRB, Toggle Cycle, and no snoop.
82 static void xhci_link_segments(struct xhci_hcd *xhci, struct xhci_segment *prev,
83 struct xhci_segment *next, bool link_trbs)
85 u32 val;
87 if (!prev || !next)
88 return;
89 prev->next = next;
90 if (link_trbs) {
91 prev->trbs[TRBS_PER_SEGMENT-1].link.segment_ptr = next->dma;
93 /* Set the last TRB in the segment to have a TRB type ID of Link TRB */
94 val = prev->trbs[TRBS_PER_SEGMENT-1].link.control;
95 val &= ~TRB_TYPE_BITMASK;
96 val |= TRB_TYPE(TRB_LINK);
97 /* Always set the chain bit with 0.95 hardware */
98 if (xhci_link_trb_quirk(xhci))
99 val |= TRB_CHAIN;
100 prev->trbs[TRBS_PER_SEGMENT-1].link.control = val;
102 xhci_dbg(xhci, "Linking segment 0x%llx to segment 0x%llx (DMA)\n",
103 (unsigned long long)prev->dma,
104 (unsigned long long)next->dma);
107 /* XXX: Do we need the hcd structure in all these functions? */
108 void xhci_ring_free(struct xhci_hcd *xhci, struct xhci_ring *ring)
110 struct xhci_segment *seg;
111 struct xhci_segment *first_seg;
113 if (!ring || !ring->first_seg)
114 return;
115 first_seg = ring->first_seg;
116 seg = first_seg->next;
117 xhci_dbg(xhci, "Freeing ring at %p\n", ring);
118 while (seg != first_seg) {
119 struct xhci_segment *next = seg->next;
120 xhci_segment_free(xhci, seg);
121 seg = next;
123 xhci_segment_free(xhci, first_seg);
124 ring->first_seg = NULL;
125 kfree(ring);
129 * Create a new ring with zero or more segments.
131 * Link each segment together into a ring.
132 * Set the end flag and the cycle toggle bit on the last segment.
133 * See section 4.9.1 and figures 15 and 16.
135 static struct xhci_ring *xhci_ring_alloc(struct xhci_hcd *xhci,
136 unsigned int num_segs, bool link_trbs, gfp_t flags)
138 struct xhci_ring *ring;
139 struct xhci_segment *prev;
141 ring = kzalloc(sizeof *(ring), flags);
142 xhci_dbg(xhci, "Allocating ring at %p\n", ring);
143 if (!ring)
144 return 0;
146 INIT_LIST_HEAD(&ring->td_list);
147 INIT_LIST_HEAD(&ring->cancelled_td_list);
148 if (num_segs == 0)
149 return ring;
151 ring->first_seg = xhci_segment_alloc(xhci, flags);
152 if (!ring->first_seg)
153 goto fail;
154 num_segs--;
156 prev = ring->first_seg;
157 while (num_segs > 0) {
158 struct xhci_segment *next;
160 next = xhci_segment_alloc(xhci, flags);
161 if (!next)
162 goto fail;
163 xhci_link_segments(xhci, prev, next, link_trbs);
165 prev = next;
166 num_segs--;
168 xhci_link_segments(xhci, prev, ring->first_seg, link_trbs);
170 if (link_trbs) {
171 /* See section 4.9.2.1 and 6.4.4.1 */
172 prev->trbs[TRBS_PER_SEGMENT-1].link.control |= (LINK_TOGGLE);
173 xhci_dbg(xhci, "Wrote link toggle flag to"
174 " segment %p (virtual), 0x%llx (DMA)\n",
175 prev, (unsigned long long)prev->dma);
177 /* The ring is empty, so the enqueue pointer == dequeue pointer */
178 ring->enqueue = ring->first_seg->trbs;
179 ring->enq_seg = ring->first_seg;
180 ring->dequeue = ring->enqueue;
181 ring->deq_seg = ring->first_seg;
182 /* The ring is initialized to 0. The producer must write 1 to the cycle
183 * bit to handover ownership of the TRB, so PCS = 1. The consumer must
184 * compare CCS to the cycle bit to check ownership, so CCS = 1.
186 ring->cycle_state = 1;
188 return ring;
190 fail:
191 xhci_ring_free(xhci, ring);
192 return 0;
195 #define CTX_SIZE(_hcc) (HCC_64BYTE_CONTEXT(_hcc) ? 64 : 32)
197 struct xhci_container_ctx *xhci_alloc_container_ctx(struct xhci_hcd *xhci,
198 int type, gfp_t flags)
200 struct xhci_container_ctx *ctx = kzalloc(sizeof(*ctx), flags);
201 if (!ctx)
202 return NULL;
204 BUG_ON((type != XHCI_CTX_TYPE_DEVICE) && (type != XHCI_CTX_TYPE_INPUT));
205 ctx->type = type;
206 ctx->size = HCC_64BYTE_CONTEXT(xhci->hcc_params) ? 2048 : 1024;
207 if (type == XHCI_CTX_TYPE_INPUT)
208 ctx->size += CTX_SIZE(xhci->hcc_params);
210 ctx->bytes = dma_pool_alloc(xhci->device_pool, flags, &ctx->dma);
211 memset(ctx->bytes, 0, ctx->size);
212 return ctx;
215 void xhci_free_container_ctx(struct xhci_hcd *xhci,
216 struct xhci_container_ctx *ctx)
218 dma_pool_free(xhci->device_pool, ctx->bytes, ctx->dma);
219 kfree(ctx);
222 struct xhci_input_control_ctx *xhci_get_input_control_ctx(struct xhci_hcd *xhci,
223 struct xhci_container_ctx *ctx)
225 BUG_ON(ctx->type != XHCI_CTX_TYPE_INPUT);
226 return (struct xhci_input_control_ctx *)ctx->bytes;
229 struct xhci_slot_ctx *xhci_get_slot_ctx(struct xhci_hcd *xhci,
230 struct xhci_container_ctx *ctx)
232 if (ctx->type == XHCI_CTX_TYPE_DEVICE)
233 return (struct xhci_slot_ctx *)ctx->bytes;
235 return (struct xhci_slot_ctx *)
236 (ctx->bytes + CTX_SIZE(xhci->hcc_params));
239 struct xhci_ep_ctx *xhci_get_ep_ctx(struct xhci_hcd *xhci,
240 struct xhci_container_ctx *ctx,
241 unsigned int ep_index)
243 /* increment ep index by offset of start of ep ctx array */
244 ep_index++;
245 if (ctx->type == XHCI_CTX_TYPE_INPUT)
246 ep_index++;
248 return (struct xhci_ep_ctx *)
249 (ctx->bytes + (ep_index * CTX_SIZE(xhci->hcc_params)));
252 /* All the xhci_tds in the ring's TD list should be freed at this point */
253 void xhci_free_virt_device(struct xhci_hcd *xhci, int slot_id)
255 struct xhci_virt_device *dev;
256 int i;
258 /* Slot ID 0 is reserved */
259 if (slot_id == 0 || !xhci->devs[slot_id])
260 return;
262 dev = xhci->devs[slot_id];
263 xhci->dcbaa->dev_context_ptrs[slot_id] = 0;
264 if (!dev)
265 return;
267 for (i = 0; i < 31; ++i)
268 if (dev->ep_rings[i])
269 xhci_ring_free(xhci, dev->ep_rings[i]);
271 if (dev->in_ctx)
272 xhci_free_container_ctx(xhci, dev->in_ctx);
273 if (dev->out_ctx)
274 xhci_free_container_ctx(xhci, dev->out_ctx);
276 kfree(xhci->devs[slot_id]);
277 xhci->devs[slot_id] = 0;
280 int xhci_alloc_virt_device(struct xhci_hcd *xhci, int slot_id,
281 struct usb_device *udev, gfp_t flags)
283 struct xhci_virt_device *dev;
285 /* Slot ID 0 is reserved */
286 if (slot_id == 0 || xhci->devs[slot_id]) {
287 xhci_warn(xhci, "Bad Slot ID %d\n", slot_id);
288 return 0;
291 xhci->devs[slot_id] = kzalloc(sizeof(*xhci->devs[slot_id]), flags);
292 if (!xhci->devs[slot_id])
293 return 0;
294 dev = xhci->devs[slot_id];
296 /* Allocate the (output) device context that will be used in the HC. */
297 dev->out_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_DEVICE, flags);
298 if (!dev->out_ctx)
299 goto fail;
301 xhci_dbg(xhci, "Slot %d output ctx = 0x%llx (dma)\n", slot_id,
302 (unsigned long long)dev->out_ctx->dma);
304 /* Allocate the (input) device context for address device command */
305 dev->in_ctx = xhci_alloc_container_ctx(xhci, XHCI_CTX_TYPE_INPUT, flags);
306 if (!dev->in_ctx)
307 goto fail;
309 xhci_dbg(xhci, "Slot %d input ctx = 0x%llx (dma)\n", slot_id,
310 (unsigned long long)dev->in_ctx->dma);
312 /* Allocate endpoint 0 ring */
313 dev->ep_rings[0] = xhci_ring_alloc(xhci, 1, true, flags);
314 if (!dev->ep_rings[0])
315 goto fail;
317 init_completion(&dev->cmd_completion);
319 /* Point to output device context in dcbaa. */
320 xhci->dcbaa->dev_context_ptrs[slot_id] = dev->out_ctx->dma;
321 xhci_dbg(xhci, "Set slot id %d dcbaa entry %p to 0x%llx\n",
322 slot_id,
323 &xhci->dcbaa->dev_context_ptrs[slot_id],
324 (unsigned long long) xhci->dcbaa->dev_context_ptrs[slot_id]);
326 return 1;
327 fail:
328 xhci_free_virt_device(xhci, slot_id);
329 return 0;
332 /* Setup an xHCI virtual device for a Set Address command */
333 int xhci_setup_addressable_virt_dev(struct xhci_hcd *xhci, struct usb_device *udev)
335 struct xhci_virt_device *dev;
336 struct xhci_ep_ctx *ep0_ctx;
337 struct usb_device *top_dev;
338 struct xhci_slot_ctx *slot_ctx;
339 struct xhci_input_control_ctx *ctrl_ctx;
341 dev = xhci->devs[udev->slot_id];
342 /* Slot ID 0 is reserved */
343 if (udev->slot_id == 0 || !dev) {
344 xhci_warn(xhci, "Slot ID %d is not assigned to this device\n",
345 udev->slot_id);
346 return -EINVAL;
348 ep0_ctx = xhci_get_ep_ctx(xhci, dev->in_ctx, 0);
349 ctrl_ctx = xhci_get_input_control_ctx(xhci, dev->in_ctx);
350 slot_ctx = xhci_get_slot_ctx(xhci, dev->in_ctx);
352 /* 2) New slot context and endpoint 0 context are valid*/
353 ctrl_ctx->add_flags = SLOT_FLAG | EP0_FLAG;
355 /* 3) Only the control endpoint is valid - one endpoint context */
356 slot_ctx->dev_info |= LAST_CTX(1);
358 switch (udev->speed) {
359 case USB_SPEED_SUPER:
360 slot_ctx->dev_info |= (u32) udev->route;
361 slot_ctx->dev_info |= (u32) SLOT_SPEED_SS;
362 break;
363 case USB_SPEED_HIGH:
364 slot_ctx->dev_info |= (u32) SLOT_SPEED_HS;
365 break;
366 case USB_SPEED_FULL:
367 slot_ctx->dev_info |= (u32) SLOT_SPEED_FS;
368 break;
369 case USB_SPEED_LOW:
370 slot_ctx->dev_info |= (u32) SLOT_SPEED_LS;
371 break;
372 case USB_SPEED_VARIABLE:
373 xhci_dbg(xhci, "FIXME xHCI doesn't support wireless speeds\n");
374 return -EINVAL;
375 break;
376 default:
377 /* Speed was set earlier, this shouldn't happen. */
378 BUG();
380 /* Find the root hub port this device is under */
381 for (top_dev = udev; top_dev->parent && top_dev->parent->parent;
382 top_dev = top_dev->parent)
383 /* Found device below root hub */;
384 slot_ctx->dev_info2 |= (u32) ROOT_HUB_PORT(top_dev->portnum);
385 xhci_dbg(xhci, "Set root hub portnum to %d\n", top_dev->portnum);
387 /* Is this a LS/FS device under a HS hub? */
389 * FIXME: I don't think this is right, where does the TT info for the
390 * roothub or parent hub come from?
392 if ((udev->speed == USB_SPEED_LOW || udev->speed == USB_SPEED_FULL) &&
393 udev->tt) {
394 slot_ctx->tt_info = udev->tt->hub->slot_id;
395 slot_ctx->tt_info |= udev->ttport << 8;
397 xhci_dbg(xhci, "udev->tt = %p\n", udev->tt);
398 xhci_dbg(xhci, "udev->ttport = 0x%x\n", udev->ttport);
400 /* Step 4 - ring already allocated */
401 /* Step 5 */
402 ep0_ctx->ep_info2 = EP_TYPE(CTRL_EP);
404 * See section 4.3 bullet 6:
405 * The default Max Packet size for ep0 is "8 bytes for a USB2
406 * LS/FS/HS device or 512 bytes for a USB3 SS device"
407 * XXX: Not sure about wireless USB devices.
409 if (udev->speed == USB_SPEED_SUPER)
410 ep0_ctx->ep_info2 |= MAX_PACKET(512);
411 else
412 ep0_ctx->ep_info2 |= MAX_PACKET(8);
413 /* EP 0 can handle "burst" sizes of 1, so Max Burst Size field is 0 */
414 ep0_ctx->ep_info2 |= MAX_BURST(0);
415 ep0_ctx->ep_info2 |= ERROR_COUNT(3);
417 ep0_ctx->deq =
418 dev->ep_rings[0]->first_seg->dma;
419 ep0_ctx->deq |= dev->ep_rings[0]->cycle_state;
421 /* Steps 7 and 8 were done in xhci_alloc_virt_device() */
423 return 0;
426 /* Return the polling or NAK interval.
428 * The polling interval is expressed in "microframes". If xHCI's Interval field
429 * is set to N, it will service the endpoint every 2^(Interval)*125us.
431 * The NAK interval is one NAK per 1 to 255 microframes, or no NAKs if interval
432 * is set to 0.
434 static inline unsigned int xhci_get_endpoint_interval(struct usb_device *udev,
435 struct usb_host_endpoint *ep)
437 unsigned int interval = 0;
439 switch (udev->speed) {
440 case USB_SPEED_HIGH:
441 /* Max NAK rate */
442 if (usb_endpoint_xfer_control(&ep->desc) ||
443 usb_endpoint_xfer_bulk(&ep->desc))
444 interval = ep->desc.bInterval;
445 /* Fall through - SS and HS isoc/int have same decoding */
446 case USB_SPEED_SUPER:
447 if (usb_endpoint_xfer_int(&ep->desc) ||
448 usb_endpoint_xfer_isoc(&ep->desc)) {
449 if (ep->desc.bInterval == 0)
450 interval = 0;
451 else
452 interval = ep->desc.bInterval - 1;
453 if (interval > 15)
454 interval = 15;
455 if (interval != ep->desc.bInterval + 1)
456 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
457 ep->desc.bEndpointAddress, 1 << interval);
459 break;
460 /* Convert bInterval (in 1-255 frames) to microframes and round down to
461 * nearest power of 2.
463 case USB_SPEED_FULL:
464 case USB_SPEED_LOW:
465 if (usb_endpoint_xfer_int(&ep->desc) ||
466 usb_endpoint_xfer_isoc(&ep->desc)) {
467 interval = fls(8*ep->desc.bInterval) - 1;
468 if (interval > 10)
469 interval = 10;
470 if (interval < 3)
471 interval = 3;
472 if ((1 << interval) != 8*ep->desc.bInterval)
473 dev_warn(&udev->dev, "ep %#x - rounding interval to %d microframes\n",
474 ep->desc.bEndpointAddress, 1 << interval);
476 break;
477 default:
478 BUG();
480 return EP_INTERVAL(interval);
483 static inline u32 xhci_get_endpoint_type(struct usb_device *udev,
484 struct usb_host_endpoint *ep)
486 int in;
487 u32 type;
489 in = usb_endpoint_dir_in(&ep->desc);
490 if (usb_endpoint_xfer_control(&ep->desc)) {
491 type = EP_TYPE(CTRL_EP);
492 } else if (usb_endpoint_xfer_bulk(&ep->desc)) {
493 if (in)
494 type = EP_TYPE(BULK_IN_EP);
495 else
496 type = EP_TYPE(BULK_OUT_EP);
497 } else if (usb_endpoint_xfer_isoc(&ep->desc)) {
498 if (in)
499 type = EP_TYPE(ISOC_IN_EP);
500 else
501 type = EP_TYPE(ISOC_OUT_EP);
502 } else if (usb_endpoint_xfer_int(&ep->desc)) {
503 if (in)
504 type = EP_TYPE(INT_IN_EP);
505 else
506 type = EP_TYPE(INT_OUT_EP);
507 } else {
508 BUG();
510 return type;
513 int xhci_endpoint_init(struct xhci_hcd *xhci,
514 struct xhci_virt_device *virt_dev,
515 struct usb_device *udev,
516 struct usb_host_endpoint *ep,
517 gfp_t mem_flags)
519 unsigned int ep_index;
520 struct xhci_ep_ctx *ep_ctx;
521 struct xhci_ring *ep_ring;
522 unsigned int max_packet;
523 unsigned int max_burst;
525 ep_index = xhci_get_endpoint_index(&ep->desc);
526 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
528 /* Set up the endpoint ring */
529 virt_dev->new_ep_rings[ep_index] = xhci_ring_alloc(xhci, 1, true, mem_flags);
530 if (!virt_dev->new_ep_rings[ep_index])
531 return -ENOMEM;
532 ep_ring = virt_dev->new_ep_rings[ep_index];
533 ep_ctx->deq = ep_ring->first_seg->dma | ep_ring->cycle_state;
535 ep_ctx->ep_info = xhci_get_endpoint_interval(udev, ep);
537 /* FIXME dig Mult and streams info out of ep companion desc */
539 /* Allow 3 retries for everything but isoc;
540 * error count = 0 means infinite retries.
542 if (!usb_endpoint_xfer_isoc(&ep->desc))
543 ep_ctx->ep_info2 = ERROR_COUNT(3);
544 else
545 ep_ctx->ep_info2 = ERROR_COUNT(1);
547 ep_ctx->ep_info2 |= xhci_get_endpoint_type(udev, ep);
549 /* Set the max packet size and max burst */
550 switch (udev->speed) {
551 case USB_SPEED_SUPER:
552 max_packet = ep->desc.wMaxPacketSize;
553 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
554 /* dig out max burst from ep companion desc */
555 if (!ep->ss_ep_comp) {
556 xhci_warn(xhci, "WARN no SS endpoint companion descriptor.\n");
557 max_packet = 0;
558 } else {
559 max_packet = ep->ss_ep_comp->desc.bMaxBurst;
561 ep_ctx->ep_info2 |= MAX_BURST(max_packet);
562 break;
563 case USB_SPEED_HIGH:
564 /* bits 11:12 specify the number of additional transaction
565 * opportunities per microframe (USB 2.0, section 9.6.6)
567 if (usb_endpoint_xfer_isoc(&ep->desc) ||
568 usb_endpoint_xfer_int(&ep->desc)) {
569 max_burst = (ep->desc.wMaxPacketSize & 0x1800) >> 11;
570 ep_ctx->ep_info2 |= MAX_BURST(max_burst);
572 /* Fall through */
573 case USB_SPEED_FULL:
574 case USB_SPEED_LOW:
575 max_packet = ep->desc.wMaxPacketSize & 0x3ff;
576 ep_ctx->ep_info2 |= MAX_PACKET(max_packet);
577 break;
578 default:
579 BUG();
581 /* FIXME Debug endpoint context */
582 return 0;
585 void xhci_endpoint_zero(struct xhci_hcd *xhci,
586 struct xhci_virt_device *virt_dev,
587 struct usb_host_endpoint *ep)
589 unsigned int ep_index;
590 struct xhci_ep_ctx *ep_ctx;
592 ep_index = xhci_get_endpoint_index(&ep->desc);
593 ep_ctx = xhci_get_ep_ctx(xhci, virt_dev->in_ctx, ep_index);
595 ep_ctx->ep_info = 0;
596 ep_ctx->ep_info2 = 0;
597 ep_ctx->deq = 0;
598 ep_ctx->tx_info = 0;
599 /* Don't free the endpoint ring until the set interface or configuration
600 * request succeeds.
604 /* Copy output xhci_ep_ctx to the input xhci_ep_ctx copy.
605 * Useful when you want to change one particular aspect of the endpoint and then
606 * issue a configure endpoint command.
608 void xhci_endpoint_copy(struct xhci_hcd *xhci,
609 struct xhci_virt_device *vdev, unsigned int ep_index)
611 struct xhci_ep_ctx *out_ep_ctx;
612 struct xhci_ep_ctx *in_ep_ctx;
614 out_ep_ctx = xhci_get_ep_ctx(xhci, vdev->out_ctx, ep_index);
615 in_ep_ctx = xhci_get_ep_ctx(xhci, vdev->in_ctx, ep_index);
617 in_ep_ctx->ep_info = out_ep_ctx->ep_info;
618 in_ep_ctx->ep_info2 = out_ep_ctx->ep_info2;
619 in_ep_ctx->deq = out_ep_ctx->deq;
620 in_ep_ctx->tx_info = out_ep_ctx->tx_info;
623 /* Copy output xhci_slot_ctx to the input xhci_slot_ctx.
624 * Useful when you want to change one particular aspect of the endpoint and then
625 * issue a configure endpoint command. Only the context entries field matters,
626 * but we'll copy the whole thing anyway.
628 void xhci_slot_copy(struct xhci_hcd *xhci, struct xhci_virt_device *vdev)
630 struct xhci_slot_ctx *in_slot_ctx;
631 struct xhci_slot_ctx *out_slot_ctx;
633 in_slot_ctx = xhci_get_slot_ctx(xhci, vdev->in_ctx);
634 out_slot_ctx = xhci_get_slot_ctx(xhci, vdev->out_ctx);
636 in_slot_ctx->dev_info = out_slot_ctx->dev_info;
637 in_slot_ctx->dev_info2 = out_slot_ctx->dev_info2;
638 in_slot_ctx->tt_info = out_slot_ctx->tt_info;
639 in_slot_ctx->dev_state = out_slot_ctx->dev_state;
642 /* Set up the scratchpad buffer array and scratchpad buffers, if needed. */
643 static int scratchpad_alloc(struct xhci_hcd *xhci, gfp_t flags)
645 int i;
646 struct device *dev = xhci_to_hcd(xhci)->self.controller;
647 int num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
649 xhci_dbg(xhci, "Allocating %d scratchpad buffers\n", num_sp);
651 if (!num_sp)
652 return 0;
654 xhci->scratchpad = kzalloc(sizeof(*xhci->scratchpad), flags);
655 if (!xhci->scratchpad)
656 goto fail_sp;
658 xhci->scratchpad->sp_array =
659 pci_alloc_consistent(to_pci_dev(dev),
660 num_sp * sizeof(u64),
661 &xhci->scratchpad->sp_dma);
662 if (!xhci->scratchpad->sp_array)
663 goto fail_sp2;
665 xhci->scratchpad->sp_buffers = kzalloc(sizeof(void *) * num_sp, flags);
666 if (!xhci->scratchpad->sp_buffers)
667 goto fail_sp3;
669 xhci->scratchpad->sp_dma_buffers =
670 kzalloc(sizeof(dma_addr_t) * num_sp, flags);
672 if (!xhci->scratchpad->sp_dma_buffers)
673 goto fail_sp4;
675 xhci->dcbaa->dev_context_ptrs[0] = xhci->scratchpad->sp_dma;
676 for (i = 0; i < num_sp; i++) {
677 dma_addr_t dma;
678 void *buf = pci_alloc_consistent(to_pci_dev(dev),
679 xhci->page_size, &dma);
680 if (!buf)
681 goto fail_sp5;
683 xhci->scratchpad->sp_array[i] = dma;
684 xhci->scratchpad->sp_buffers[i] = buf;
685 xhci->scratchpad->sp_dma_buffers[i] = dma;
688 return 0;
690 fail_sp5:
691 for (i = i - 1; i >= 0; i--) {
692 pci_free_consistent(to_pci_dev(dev), xhci->page_size,
693 xhci->scratchpad->sp_buffers[i],
694 xhci->scratchpad->sp_dma_buffers[i]);
696 kfree(xhci->scratchpad->sp_dma_buffers);
698 fail_sp4:
699 kfree(xhci->scratchpad->sp_buffers);
701 fail_sp3:
702 pci_free_consistent(to_pci_dev(dev), num_sp * sizeof(u64),
703 xhci->scratchpad->sp_array,
704 xhci->scratchpad->sp_dma);
706 fail_sp2:
707 kfree(xhci->scratchpad);
708 xhci->scratchpad = NULL;
710 fail_sp:
711 return -ENOMEM;
714 static void scratchpad_free(struct xhci_hcd *xhci)
716 int num_sp;
717 int i;
718 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
720 if (!xhci->scratchpad)
721 return;
723 num_sp = HCS_MAX_SCRATCHPAD(xhci->hcs_params2);
725 for (i = 0; i < num_sp; i++) {
726 pci_free_consistent(pdev, xhci->page_size,
727 xhci->scratchpad->sp_buffers[i],
728 xhci->scratchpad->sp_dma_buffers[i]);
730 kfree(xhci->scratchpad->sp_dma_buffers);
731 kfree(xhci->scratchpad->sp_buffers);
732 pci_free_consistent(pdev, num_sp * sizeof(u64),
733 xhci->scratchpad->sp_array,
734 xhci->scratchpad->sp_dma);
735 kfree(xhci->scratchpad);
736 xhci->scratchpad = NULL;
739 void xhci_mem_cleanup(struct xhci_hcd *xhci)
741 struct pci_dev *pdev = to_pci_dev(xhci_to_hcd(xhci)->self.controller);
742 int size;
743 int i;
745 /* Free the Event Ring Segment Table and the actual Event Ring */
746 xhci_writel(xhci, 0, &xhci->ir_set->erst_size);
747 xhci_write_64(xhci, 0, &xhci->ir_set->erst_base);
748 xhci_write_64(xhci, 0, &xhci->ir_set->erst_dequeue);
749 size = sizeof(struct xhci_erst_entry)*(xhci->erst.num_entries);
750 if (xhci->erst.entries)
751 pci_free_consistent(pdev, size,
752 xhci->erst.entries, xhci->erst.erst_dma_addr);
753 xhci->erst.entries = NULL;
754 xhci_dbg(xhci, "Freed ERST\n");
755 if (xhci->event_ring)
756 xhci_ring_free(xhci, xhci->event_ring);
757 xhci->event_ring = NULL;
758 xhci_dbg(xhci, "Freed event ring\n");
760 xhci_write_64(xhci, 0, &xhci->op_regs->cmd_ring);
761 if (xhci->cmd_ring)
762 xhci_ring_free(xhci, xhci->cmd_ring);
763 xhci->cmd_ring = NULL;
764 xhci_dbg(xhci, "Freed command ring\n");
766 for (i = 1; i < MAX_HC_SLOTS; ++i)
767 xhci_free_virt_device(xhci, i);
769 if (xhci->segment_pool)
770 dma_pool_destroy(xhci->segment_pool);
771 xhci->segment_pool = NULL;
772 xhci_dbg(xhci, "Freed segment pool\n");
774 if (xhci->device_pool)
775 dma_pool_destroy(xhci->device_pool);
776 xhci->device_pool = NULL;
777 xhci_dbg(xhci, "Freed device context pool\n");
779 xhci_write_64(xhci, 0, &xhci->op_regs->dcbaa_ptr);
780 if (xhci->dcbaa)
781 pci_free_consistent(pdev, sizeof(*xhci->dcbaa),
782 xhci->dcbaa, xhci->dcbaa->dma);
783 xhci->dcbaa = NULL;
785 xhci->page_size = 0;
786 xhci->page_shift = 0;
787 scratchpad_free(xhci);
790 int xhci_mem_init(struct xhci_hcd *xhci, gfp_t flags)
792 dma_addr_t dma;
793 struct device *dev = xhci_to_hcd(xhci)->self.controller;
794 unsigned int val, val2;
795 u64 val_64;
796 struct xhci_segment *seg;
797 u32 page_size;
798 int i;
800 page_size = xhci_readl(xhci, &xhci->op_regs->page_size);
801 xhci_dbg(xhci, "Supported page size register = 0x%x\n", page_size);
802 for (i = 0; i < 16; i++) {
803 if ((0x1 & page_size) != 0)
804 break;
805 page_size = page_size >> 1;
807 if (i < 16)
808 xhci_dbg(xhci, "Supported page size of %iK\n", (1 << (i+12)) / 1024);
809 else
810 xhci_warn(xhci, "WARN: no supported page size\n");
811 /* Use 4K pages, since that's common and the minimum the HC supports */
812 xhci->page_shift = 12;
813 xhci->page_size = 1 << xhci->page_shift;
814 xhci_dbg(xhci, "HCD page size set to %iK\n", xhci->page_size / 1024);
817 * Program the Number of Device Slots Enabled field in the CONFIG
818 * register with the max value of slots the HC can handle.
820 val = HCS_MAX_SLOTS(xhci_readl(xhci, &xhci->cap_regs->hcs_params1));
821 xhci_dbg(xhci, "// xHC can handle at most %d device slots.\n",
822 (unsigned int) val);
823 val2 = xhci_readl(xhci, &xhci->op_regs->config_reg);
824 val |= (val2 & ~HCS_SLOTS_MASK);
825 xhci_dbg(xhci, "// Setting Max device slots reg = 0x%x.\n",
826 (unsigned int) val);
827 xhci_writel(xhci, val, &xhci->op_regs->config_reg);
830 * Section 5.4.8 - doorbell array must be
831 * "physically contiguous and 64-byte (cache line) aligned".
833 xhci->dcbaa = pci_alloc_consistent(to_pci_dev(dev),
834 sizeof(*xhci->dcbaa), &dma);
835 if (!xhci->dcbaa)
836 goto fail;
837 memset(xhci->dcbaa, 0, sizeof *(xhci->dcbaa));
838 xhci->dcbaa->dma = dma;
839 xhci_dbg(xhci, "// Device context base array address = 0x%llx (DMA), %p (virt)\n",
840 (unsigned long long)xhci->dcbaa->dma, xhci->dcbaa);
841 xhci_write_64(xhci, dma, &xhci->op_regs->dcbaa_ptr);
844 * Initialize the ring segment pool. The ring must be a contiguous
845 * structure comprised of TRBs. The TRBs must be 16 byte aligned,
846 * however, the command ring segment needs 64-byte aligned segments,
847 * so we pick the greater alignment need.
849 xhci->segment_pool = dma_pool_create("xHCI ring segments", dev,
850 SEGMENT_SIZE, 64, xhci->page_size);
852 /* See Table 46 and Note on Figure 55 */
853 xhci->device_pool = dma_pool_create("xHCI input/output contexts", dev,
854 2112, 64, xhci->page_size);
855 if (!xhci->segment_pool || !xhci->device_pool)
856 goto fail;
858 /* Set up the command ring to have one segments for now. */
859 xhci->cmd_ring = xhci_ring_alloc(xhci, 1, true, flags);
860 if (!xhci->cmd_ring)
861 goto fail;
862 xhci_dbg(xhci, "Allocated command ring at %p\n", xhci->cmd_ring);
863 xhci_dbg(xhci, "First segment DMA is 0x%llx\n",
864 (unsigned long long)xhci->cmd_ring->first_seg->dma);
866 /* Set the address in the Command Ring Control register */
867 val_64 = xhci_read_64(xhci, &xhci->op_regs->cmd_ring);
868 val_64 = (val_64 & (u64) CMD_RING_RSVD_BITS) |
869 (xhci->cmd_ring->first_seg->dma & (u64) ~CMD_RING_RSVD_BITS) |
870 xhci->cmd_ring->cycle_state;
871 xhci_dbg(xhci, "// Setting command ring address to 0x%x\n", val);
872 xhci_write_64(xhci, val_64, &xhci->op_regs->cmd_ring);
873 xhci_dbg_cmd_ptrs(xhci);
875 val = xhci_readl(xhci, &xhci->cap_regs->db_off);
876 val &= DBOFF_MASK;
877 xhci_dbg(xhci, "// Doorbell array is located at offset 0x%x"
878 " from cap regs base addr\n", val);
879 xhci->dba = (void *) xhci->cap_regs + val;
880 xhci_dbg_regs(xhci);
881 xhci_print_run_regs(xhci);
882 /* Set ir_set to interrupt register set 0 */
883 xhci->ir_set = (void *) xhci->run_regs->ir_set;
886 * Event ring setup: Allocate a normal ring, but also setup
887 * the event ring segment table (ERST). Section 4.9.3.
889 xhci_dbg(xhci, "// Allocating event ring\n");
890 xhci->event_ring = xhci_ring_alloc(xhci, ERST_NUM_SEGS, false, flags);
891 if (!xhci->event_ring)
892 goto fail;
894 xhci->erst.entries = pci_alloc_consistent(to_pci_dev(dev),
895 sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS, &dma);
896 if (!xhci->erst.entries)
897 goto fail;
898 xhci_dbg(xhci, "// Allocated event ring segment table at 0x%llx\n",
899 (unsigned long long)dma);
901 memset(xhci->erst.entries, 0, sizeof(struct xhci_erst_entry)*ERST_NUM_SEGS);
902 xhci->erst.num_entries = ERST_NUM_SEGS;
903 xhci->erst.erst_dma_addr = dma;
904 xhci_dbg(xhci, "Set ERST to 0; private num segs = %i, virt addr = %p, dma addr = 0x%llx\n",
905 xhci->erst.num_entries,
906 xhci->erst.entries,
907 (unsigned long long)xhci->erst.erst_dma_addr);
909 /* set ring base address and size for each segment table entry */
910 for (val = 0, seg = xhci->event_ring->first_seg; val < ERST_NUM_SEGS; val++) {
911 struct xhci_erst_entry *entry = &xhci->erst.entries[val];
912 entry->seg_addr = seg->dma;
913 entry->seg_size = TRBS_PER_SEGMENT;
914 entry->rsvd = 0;
915 seg = seg->next;
918 /* set ERST count with the number of entries in the segment table */
919 val = xhci_readl(xhci, &xhci->ir_set->erst_size);
920 val &= ERST_SIZE_MASK;
921 val |= ERST_NUM_SEGS;
922 xhci_dbg(xhci, "// Write ERST size = %i to ir_set 0 (some bits preserved)\n",
923 val);
924 xhci_writel(xhci, val, &xhci->ir_set->erst_size);
926 xhci_dbg(xhci, "// Set ERST entries to point to event ring.\n");
927 /* set the segment table base address */
928 xhci_dbg(xhci, "// Set ERST base address for ir_set 0 = 0x%llx\n",
929 (unsigned long long)xhci->erst.erst_dma_addr);
930 val_64 = xhci_read_64(xhci, &xhci->ir_set->erst_base);
931 val_64 &= ERST_PTR_MASK;
932 val_64 |= (xhci->erst.erst_dma_addr & (u64) ~ERST_PTR_MASK);
933 xhci_write_64(xhci, val_64, &xhci->ir_set->erst_base);
935 /* Set the event ring dequeue address */
936 xhci_set_hc_event_deq(xhci);
937 xhci_dbg(xhci, "Wrote ERST address to ir_set 0.\n");
938 xhci_print_ir_set(xhci, xhci->ir_set, 0);
941 * XXX: Might need to set the Interrupter Moderation Register to
942 * something other than the default (~1ms minimum between interrupts).
943 * See section 5.5.1.2.
945 init_completion(&xhci->addr_dev);
946 for (i = 0; i < MAX_HC_SLOTS; ++i)
947 xhci->devs[i] = 0;
949 if (scratchpad_alloc(xhci, flags))
950 goto fail;
952 return 0;
954 fail:
955 xhci_warn(xhci, "Couldn't initialize memory\n");
956 xhci_mem_cleanup(xhci);
957 return -ENOMEM;