4 * Copyright (C) 1991, 1992 Linus Torvalds
8 #include <linux/slab.h>
9 #include <linux/interrupt.h>
10 #include <linux/module.h>
11 #include <linux/capability.h>
12 #include <linux/completion.h>
13 #include <linux/personality.h>
14 #include <linux/tty.h>
15 #include <linux/iocontext.h>
16 #include <linux/key.h>
17 #include <linux/security.h>
18 #include <linux/cpu.h>
19 #include <linux/acct.h>
20 #include <linux/tsacct_kern.h>
21 #include <linux/file.h>
22 #include <linux/fdtable.h>
23 #include <linux/binfmts.h>
24 #include <linux/nsproxy.h>
25 #include <linux/pid_namespace.h>
26 #include <linux/ptrace.h>
27 #include <linux/profile.h>
28 #include <linux/mount.h>
29 #include <linux/proc_fs.h>
30 #include <linux/kthread.h>
31 #include <linux/mempolicy.h>
32 #include <linux/taskstats_kern.h>
33 #include <linux/delayacct.h>
34 #include <linux/freezer.h>
35 #include <linux/cgroup.h>
36 #include <linux/syscalls.h>
37 #include <linux/signal.h>
38 #include <linux/posix-timers.h>
39 #include <linux/cn_proc.h>
40 #include <linux/mutex.h>
41 #include <linux/futex.h>
42 #include <linux/pipe_fs_i.h>
43 #include <linux/audit.h> /* for audit_free() */
44 #include <linux/resource.h>
45 #include <linux/blkdev.h>
46 #include <linux/task_io_accounting_ops.h>
47 #include <linux/tracehook.h>
48 #include <linux/fs_struct.h>
49 #include <linux/init_task.h>
50 #include <linux/perf_counter.h>
51 #include <trace/events/sched.h>
53 #include <asm/uaccess.h>
54 #include <asm/unistd.h>
55 #include <asm/pgtable.h>
56 #include <asm/mmu_context.h>
57 #include "cred-internals.h"
59 static void exit_mm(struct task_struct
* tsk
);
61 static void __unhash_process(struct task_struct
*p
)
64 detach_pid(p
, PIDTYPE_PID
);
65 if (thread_group_leader(p
)) {
66 detach_pid(p
, PIDTYPE_PGID
);
67 detach_pid(p
, PIDTYPE_SID
);
69 list_del_rcu(&p
->tasks
);
70 __get_cpu_var(process_counts
)--;
72 list_del_rcu(&p
->thread_group
);
73 list_del_init(&p
->sibling
);
77 * This function expects the tasklist_lock write-locked.
79 static void __exit_signal(struct task_struct
*tsk
)
81 struct signal_struct
*sig
= tsk
->signal
;
82 struct sighand_struct
*sighand
;
85 BUG_ON(!atomic_read(&sig
->count
));
87 sighand
= rcu_dereference(tsk
->sighand
);
88 spin_lock(&sighand
->siglock
);
90 posix_cpu_timers_exit(tsk
);
91 if (atomic_dec_and_test(&sig
->count
))
92 posix_cpu_timers_exit_group(tsk
);
95 * If there is any task waiting for the group exit
98 if (sig
->group_exit_task
&& atomic_read(&sig
->count
) == sig
->notify_count
)
99 wake_up_process(sig
->group_exit_task
);
101 if (tsk
== sig
->curr_target
)
102 sig
->curr_target
= next_thread(tsk
);
104 * Accumulate here the counters for all threads but the
105 * group leader as they die, so they can be added into
106 * the process-wide totals when those are taken.
107 * The group leader stays around as a zombie as long
108 * as there are other threads. When it gets reaped,
109 * the exit.c code will add its counts into these totals.
110 * We won't ever get here for the group leader, since it
111 * will have been the last reference on the signal_struct.
113 sig
->utime
= cputime_add(sig
->utime
, task_utime(tsk
));
114 sig
->stime
= cputime_add(sig
->stime
, task_stime(tsk
));
115 sig
->gtime
= cputime_add(sig
->gtime
, task_gtime(tsk
));
116 sig
->min_flt
+= tsk
->min_flt
;
117 sig
->maj_flt
+= tsk
->maj_flt
;
118 sig
->nvcsw
+= tsk
->nvcsw
;
119 sig
->nivcsw
+= tsk
->nivcsw
;
120 sig
->inblock
+= task_io_get_inblock(tsk
);
121 sig
->oublock
+= task_io_get_oublock(tsk
);
122 task_io_accounting_add(&sig
->ioac
, &tsk
->ioac
);
123 sig
->sum_sched_runtime
+= tsk
->se
.sum_exec_runtime
;
124 sig
= NULL
; /* Marker for below. */
127 __unhash_process(tsk
);
130 * Do this under ->siglock, we can race with another thread
131 * doing sigqueue_free() if we have SIGQUEUE_PREALLOC signals.
133 flush_sigqueue(&tsk
->pending
);
137 spin_unlock(&sighand
->siglock
);
139 __cleanup_sighand(sighand
);
140 clear_tsk_thread_flag(tsk
,TIF_SIGPENDING
);
142 flush_sigqueue(&sig
->shared_pending
);
143 taskstats_tgid_free(sig
);
145 * Make sure ->signal can't go away under rq->lock,
146 * see account_group_exec_runtime().
148 task_rq_unlock_wait(tsk
);
149 __cleanup_signal(sig
);
153 static void delayed_put_task_struct(struct rcu_head
*rhp
)
155 struct task_struct
*tsk
= container_of(rhp
, struct task_struct
, rcu
);
157 #ifdef CONFIG_PERF_COUNTERS
158 WARN_ON_ONCE(tsk
->perf_counter_ctxp
);
160 trace_sched_process_free(tsk
);
161 put_task_struct(tsk
);
165 void release_task(struct task_struct
* p
)
167 struct task_struct
*leader
;
170 tracehook_prepare_release_task(p
);
171 /* don't need to get the RCU readlock here - the process is dead and
172 * can't be modifying its own credentials */
173 atomic_dec(&__task_cred(p
)->user
->processes
);
177 write_lock_irq(&tasklist_lock
);
178 tracehook_finish_release_task(p
);
182 * If we are the last non-leader member of the thread
183 * group, and the leader is zombie, then notify the
184 * group leader's parent process. (if it wants notification.)
187 leader
= p
->group_leader
;
188 if (leader
!= p
&& thread_group_empty(leader
) && leader
->exit_state
== EXIT_ZOMBIE
) {
189 BUG_ON(task_detached(leader
));
190 do_notify_parent(leader
, leader
->exit_signal
);
192 * If we were the last child thread and the leader has
193 * exited already, and the leader's parent ignores SIGCHLD,
194 * then we are the one who should release the leader.
196 * do_notify_parent() will have marked it self-reaping in
199 zap_leader
= task_detached(leader
);
202 * This maintains the invariant that release_task()
203 * only runs on a task in EXIT_DEAD, just for sanity.
206 leader
->exit_state
= EXIT_DEAD
;
209 write_unlock_irq(&tasklist_lock
);
211 call_rcu(&p
->rcu
, delayed_put_task_struct
);
214 if (unlikely(zap_leader
))
219 * This checks not only the pgrp, but falls back on the pid if no
220 * satisfactory pgrp is found. I dunno - gdb doesn't work correctly
223 * The caller must hold rcu lock or the tasklist lock.
225 struct pid
*session_of_pgrp(struct pid
*pgrp
)
227 struct task_struct
*p
;
228 struct pid
*sid
= NULL
;
230 p
= pid_task(pgrp
, PIDTYPE_PGID
);
232 p
= pid_task(pgrp
, PIDTYPE_PID
);
234 sid
= task_session(p
);
240 * Determine if a process group is "orphaned", according to the POSIX
241 * definition in 2.2.2.52. Orphaned process groups are not to be affected
242 * by terminal-generated stop signals. Newly orphaned process groups are
243 * to receive a SIGHUP and a SIGCONT.
245 * "I ask you, have you ever known what it is to be an orphan?"
247 static int will_become_orphaned_pgrp(struct pid
*pgrp
, struct task_struct
*ignored_task
)
249 struct task_struct
*p
;
251 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
252 if ((p
== ignored_task
) ||
253 (p
->exit_state
&& thread_group_empty(p
)) ||
254 is_global_init(p
->real_parent
))
257 if (task_pgrp(p
->real_parent
) != pgrp
&&
258 task_session(p
->real_parent
) == task_session(p
))
260 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
265 int is_current_pgrp_orphaned(void)
269 read_lock(&tasklist_lock
);
270 retval
= will_become_orphaned_pgrp(task_pgrp(current
), NULL
);
271 read_unlock(&tasklist_lock
);
276 static int has_stopped_jobs(struct pid
*pgrp
)
279 struct task_struct
*p
;
281 do_each_pid_task(pgrp
, PIDTYPE_PGID
, p
) {
282 if (!task_is_stopped(p
))
286 } while_each_pid_task(pgrp
, PIDTYPE_PGID
, p
);
291 * Check to see if any process groups have become orphaned as
292 * a result of our exiting, and if they have any stopped jobs,
293 * send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
296 kill_orphaned_pgrp(struct task_struct
*tsk
, struct task_struct
*parent
)
298 struct pid
*pgrp
= task_pgrp(tsk
);
299 struct task_struct
*ignored_task
= tsk
;
302 /* exit: our father is in a different pgrp than
303 * we are and we were the only connection outside.
305 parent
= tsk
->real_parent
;
307 /* reparent: our child is in a different pgrp than
308 * we are, and it was the only connection outside.
312 if (task_pgrp(parent
) != pgrp
&&
313 task_session(parent
) == task_session(tsk
) &&
314 will_become_orphaned_pgrp(pgrp
, ignored_task
) &&
315 has_stopped_jobs(pgrp
)) {
316 __kill_pgrp_info(SIGHUP
, SEND_SIG_PRIV
, pgrp
);
317 __kill_pgrp_info(SIGCONT
, SEND_SIG_PRIV
, pgrp
);
322 * reparent_to_kthreadd - Reparent the calling kernel thread to kthreadd
324 * If a kernel thread is launched as a result of a system call, or if
325 * it ever exits, it should generally reparent itself to kthreadd so it
326 * isn't in the way of other processes and is correctly cleaned up on exit.
328 * The various task state such as scheduling policy and priority may have
329 * been inherited from a user process, so we reset them to sane values here.
331 * NOTE that reparent_to_kthreadd() gives the caller full capabilities.
333 static void reparent_to_kthreadd(void)
335 write_lock_irq(&tasklist_lock
);
337 ptrace_unlink(current
);
338 /* Reparent to init */
339 current
->real_parent
= current
->parent
= kthreadd_task
;
340 list_move_tail(¤t
->sibling
, ¤t
->real_parent
->children
);
342 /* Set the exit signal to SIGCHLD so we signal init on exit */
343 current
->exit_signal
= SIGCHLD
;
345 if (task_nice(current
) < 0)
346 set_user_nice(current
, 0);
350 memcpy(current
->signal
->rlim
, init_task
.signal
->rlim
,
351 sizeof(current
->signal
->rlim
));
353 atomic_inc(&init_cred
.usage
);
354 commit_creds(&init_cred
);
355 write_unlock_irq(&tasklist_lock
);
358 void __set_special_pids(struct pid
*pid
)
360 struct task_struct
*curr
= current
->group_leader
;
362 if (task_session(curr
) != pid
)
363 change_pid(curr
, PIDTYPE_SID
, pid
);
365 if (task_pgrp(curr
) != pid
)
366 change_pid(curr
, PIDTYPE_PGID
, pid
);
369 static void set_special_pids(struct pid
*pid
)
371 write_lock_irq(&tasklist_lock
);
372 __set_special_pids(pid
);
373 write_unlock_irq(&tasklist_lock
);
377 * Let kernel threads use this to say that they allow a certain signal.
378 * Must not be used if kthread was cloned with CLONE_SIGHAND.
380 int allow_signal(int sig
)
382 if (!valid_signal(sig
) || sig
< 1)
385 spin_lock_irq(¤t
->sighand
->siglock
);
386 /* This is only needed for daemonize()'ed kthreads */
387 sigdelset(¤t
->blocked
, sig
);
389 * Kernel threads handle their own signals. Let the signal code
390 * know it'll be handled, so that they don't get converted to
391 * SIGKILL or just silently dropped.
393 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= (void __user
*)2;
395 spin_unlock_irq(¤t
->sighand
->siglock
);
399 EXPORT_SYMBOL(allow_signal
);
401 int disallow_signal(int sig
)
403 if (!valid_signal(sig
) || sig
< 1)
406 spin_lock_irq(¤t
->sighand
->siglock
);
407 current
->sighand
->action
[(sig
)-1].sa
.sa_handler
= SIG_IGN
;
409 spin_unlock_irq(¤t
->sighand
->siglock
);
413 EXPORT_SYMBOL(disallow_signal
);
416 * Put all the gunge required to become a kernel thread without
417 * attached user resources in one place where it belongs.
420 void daemonize(const char *name
, ...)
425 va_start(args
, name
);
426 vsnprintf(current
->comm
, sizeof(current
->comm
), name
, args
);
430 * If we were started as result of loading a module, close all of the
431 * user space pages. We don't need them, and if we didn't close them
432 * they would be locked into memory.
436 * We don't want to have TIF_FREEZE set if the system-wide hibernation
437 * or suspend transition begins right now.
439 current
->flags
|= (PF_NOFREEZE
| PF_KTHREAD
);
441 if (current
->nsproxy
!= &init_nsproxy
) {
442 get_nsproxy(&init_nsproxy
);
443 switch_task_namespaces(current
, &init_nsproxy
);
445 set_special_pids(&init_struct_pid
);
446 proc_clear_tty(current
);
448 /* Block and flush all signals */
449 sigfillset(&blocked
);
450 sigprocmask(SIG_BLOCK
, &blocked
, NULL
);
451 flush_signals(current
);
453 /* Become as one with the init task */
455 daemonize_fs_struct();
457 current
->files
= init_task
.files
;
458 atomic_inc(¤t
->files
->count
);
460 reparent_to_kthreadd();
463 EXPORT_SYMBOL(daemonize
);
465 static void close_files(struct files_struct
* files
)
473 * It is safe to dereference the fd table without RCU or
474 * ->file_lock because this is the last reference to the
477 fdt
= files_fdtable(files
);
481 if (i
>= fdt
->max_fds
)
483 set
= fdt
->open_fds
->fds_bits
[j
++];
486 struct file
* file
= xchg(&fdt
->fd
[i
], NULL
);
488 filp_close(file
, files
);
498 struct files_struct
*get_files_struct(struct task_struct
*task
)
500 struct files_struct
*files
;
505 atomic_inc(&files
->count
);
511 void put_files_struct(struct files_struct
*files
)
515 if (atomic_dec_and_test(&files
->count
)) {
518 * Free the fd and fdset arrays if we expanded them.
519 * If the fdtable was embedded, pass files for freeing
520 * at the end of the RCU grace period. Otherwise,
521 * you can free files immediately.
523 fdt
= files_fdtable(files
);
524 if (fdt
!= &files
->fdtab
)
525 kmem_cache_free(files_cachep
, files
);
530 void reset_files_struct(struct files_struct
*files
)
532 struct task_struct
*tsk
= current
;
533 struct files_struct
*old
;
539 put_files_struct(old
);
542 void exit_files(struct task_struct
*tsk
)
544 struct files_struct
* files
= tsk
->files
;
550 put_files_struct(files
);
554 #ifdef CONFIG_MM_OWNER
556 * Task p is exiting and it owned mm, lets find a new owner for it
559 mm_need_new_owner(struct mm_struct
*mm
, struct task_struct
*p
)
562 * If there are other users of the mm and the owner (us) is exiting
563 * we need to find a new owner to take on the responsibility.
565 if (atomic_read(&mm
->mm_users
) <= 1)
572 void mm_update_next_owner(struct mm_struct
*mm
)
574 struct task_struct
*c
, *g
, *p
= current
;
577 if (!mm_need_new_owner(mm
, p
))
580 read_lock(&tasklist_lock
);
582 * Search in the children
584 list_for_each_entry(c
, &p
->children
, sibling
) {
586 goto assign_new_owner
;
590 * Search in the siblings
592 list_for_each_entry(c
, &p
->real_parent
->children
, sibling
) {
594 goto assign_new_owner
;
598 * Search through everything else. We should not get
601 do_each_thread(g
, c
) {
603 goto assign_new_owner
;
604 } while_each_thread(g
, c
);
606 read_unlock(&tasklist_lock
);
608 * We found no owner yet mm_users > 1: this implies that we are
609 * most likely racing with swapoff (try_to_unuse()) or /proc or
610 * ptrace or page migration (get_task_mm()). Mark owner as NULL.
619 * The task_lock protects c->mm from changing.
620 * We always want mm->owner->mm == mm
624 * Delay read_unlock() till we have the task_lock()
625 * to ensure that c does not slip away underneath us
627 read_unlock(&tasklist_lock
);
637 #endif /* CONFIG_MM_OWNER */
640 * Turn us into a lazy TLB process if we
643 static void exit_mm(struct task_struct
* tsk
)
645 struct mm_struct
*mm
= tsk
->mm
;
646 struct core_state
*core_state
;
652 * Serialize with any possible pending coredump.
653 * We must hold mmap_sem around checking core_state
654 * and clearing tsk->mm. The core-inducing thread
655 * will increment ->nr_threads for each thread in the
656 * group with ->mm != NULL.
658 down_read(&mm
->mmap_sem
);
659 core_state
= mm
->core_state
;
661 struct core_thread self
;
662 up_read(&mm
->mmap_sem
);
665 self
.next
= xchg(&core_state
->dumper
.next
, &self
);
667 * Implies mb(), the result of xchg() must be visible
668 * to core_state->dumper.
670 if (atomic_dec_and_test(&core_state
->nr_threads
))
671 complete(&core_state
->startup
);
674 set_task_state(tsk
, TASK_UNINTERRUPTIBLE
);
675 if (!self
.task
) /* see coredump_finish() */
679 __set_task_state(tsk
, TASK_RUNNING
);
680 down_read(&mm
->mmap_sem
);
682 atomic_inc(&mm
->mm_count
);
683 BUG_ON(mm
!= tsk
->active_mm
);
684 /* more a memory barrier than a real lock */
687 up_read(&mm
->mmap_sem
);
688 enter_lazy_tlb(mm
, current
);
689 /* We don't want this task to be frozen prematurely */
690 clear_freeze_flag(tsk
);
692 mm_update_next_owner(mm
);
697 * When we die, we re-parent all our children.
698 * Try to give them to another thread in our thread
699 * group, and if no such member exists, give it to
700 * the child reaper process (ie "init") in our pid
703 static struct task_struct
*find_new_reaper(struct task_struct
*father
)
705 struct pid_namespace
*pid_ns
= task_active_pid_ns(father
);
706 struct task_struct
*thread
;
709 while_each_thread(father
, thread
) {
710 if (thread
->flags
& PF_EXITING
)
712 if (unlikely(pid_ns
->child_reaper
== father
))
713 pid_ns
->child_reaper
= thread
;
717 if (unlikely(pid_ns
->child_reaper
== father
)) {
718 write_unlock_irq(&tasklist_lock
);
719 if (unlikely(pid_ns
== &init_pid_ns
))
720 panic("Attempted to kill init!");
722 zap_pid_ns_processes(pid_ns
);
723 write_lock_irq(&tasklist_lock
);
725 * We can not clear ->child_reaper or leave it alone.
726 * There may by stealth EXIT_DEAD tasks on ->children,
727 * forget_original_parent() must move them somewhere.
729 pid_ns
->child_reaper
= init_pid_ns
.child_reaper
;
732 return pid_ns
->child_reaper
;
736 * Any that need to be release_task'd are put on the @dead list.
738 static void reparent_thread(struct task_struct
*father
, struct task_struct
*p
,
739 struct list_head
*dead
)
741 if (p
->pdeath_signal
)
742 group_send_sig_info(p
->pdeath_signal
, SEND_SIG_NOINFO
, p
);
744 list_move_tail(&p
->sibling
, &p
->real_parent
->children
);
746 if (task_detached(p
))
749 * If this is a threaded reparent there is no need to
750 * notify anyone anything has happened.
752 if (same_thread_group(p
->real_parent
, father
))
755 /* We don't want people slaying init. */
756 p
->exit_signal
= SIGCHLD
;
758 /* If it has exited notify the new parent about this child's death. */
759 if (!task_ptrace(p
) &&
760 p
->exit_state
== EXIT_ZOMBIE
&& thread_group_empty(p
)) {
761 do_notify_parent(p
, p
->exit_signal
);
762 if (task_detached(p
)) {
763 p
->exit_state
= EXIT_DEAD
;
764 list_move_tail(&p
->sibling
, dead
);
768 kill_orphaned_pgrp(p
, father
);
771 static void forget_original_parent(struct task_struct
*father
)
773 struct task_struct
*p
, *n
, *reaper
;
774 LIST_HEAD(dead_children
);
778 write_lock_irq(&tasklist_lock
);
779 reaper
= find_new_reaper(father
);
781 list_for_each_entry_safe(p
, n
, &father
->children
, sibling
) {
782 p
->real_parent
= reaper
;
783 if (p
->parent
== father
) {
784 BUG_ON(task_ptrace(p
));
785 p
->parent
= p
->real_parent
;
787 reparent_thread(father
, p
, &dead_children
);
789 write_unlock_irq(&tasklist_lock
);
791 BUG_ON(!list_empty(&father
->children
));
793 list_for_each_entry_safe(p
, n
, &dead_children
, sibling
) {
794 list_del_init(&p
->sibling
);
800 * Send signals to all our closest relatives so that they know
801 * to properly mourn us..
803 static void exit_notify(struct task_struct
*tsk
, int group_dead
)
809 * This does two things:
811 * A. Make init inherit all the child processes
812 * B. Check to see if any process groups have become orphaned
813 * as a result of our exiting, and if they have any stopped
814 * jobs, send them a SIGHUP and then a SIGCONT. (POSIX 3.2.2.2)
816 forget_original_parent(tsk
);
817 exit_task_namespaces(tsk
);
819 write_lock_irq(&tasklist_lock
);
821 kill_orphaned_pgrp(tsk
->group_leader
, NULL
);
823 /* Let father know we died
825 * Thread signals are configurable, but you aren't going to use
826 * that to send signals to arbitary processes.
827 * That stops right now.
829 * If the parent exec id doesn't match the exec id we saved
830 * when we started then we know the parent has changed security
833 * If our self_exec id doesn't match our parent_exec_id then
834 * we have changed execution domain as these two values started
835 * the same after a fork.
837 if (tsk
->exit_signal
!= SIGCHLD
&& !task_detached(tsk
) &&
838 (tsk
->parent_exec_id
!= tsk
->real_parent
->self_exec_id
||
839 tsk
->self_exec_id
!= tsk
->parent_exec_id
))
840 tsk
->exit_signal
= SIGCHLD
;
842 signal
= tracehook_notify_death(tsk
, &cookie
, group_dead
);
844 signal
= do_notify_parent(tsk
, signal
);
846 tsk
->exit_state
= signal
== DEATH_REAP
? EXIT_DEAD
: EXIT_ZOMBIE
;
848 /* mt-exec, de_thread() is waiting for us */
849 if (thread_group_leader(tsk
) &&
850 tsk
->signal
->group_exit_task
&&
851 tsk
->signal
->notify_count
< 0)
852 wake_up_process(tsk
->signal
->group_exit_task
);
854 write_unlock_irq(&tasklist_lock
);
856 tracehook_report_death(tsk
, signal
, cookie
, group_dead
);
858 /* If the process is dead, release it - nobody will wait for it */
859 if (signal
== DEATH_REAP
)
863 #ifdef CONFIG_DEBUG_STACK_USAGE
864 static void check_stack_usage(void)
866 static DEFINE_SPINLOCK(low_water_lock
);
867 static int lowest_to_date
= THREAD_SIZE
;
870 free
= stack_not_used(current
);
872 if (free
>= lowest_to_date
)
875 spin_lock(&low_water_lock
);
876 if (free
< lowest_to_date
) {
877 printk(KERN_WARNING
"%s used greatest stack depth: %lu bytes "
879 current
->comm
, free
);
880 lowest_to_date
= free
;
882 spin_unlock(&low_water_lock
);
885 static inline void check_stack_usage(void) {}
888 NORET_TYPE
void do_exit(long code
)
890 struct task_struct
*tsk
= current
;
893 profile_task_exit(tsk
);
895 WARN_ON(atomic_read(&tsk
->fs_excl
));
897 if (unlikely(in_interrupt()))
898 panic("Aiee, killing interrupt handler!");
899 if (unlikely(!tsk
->pid
))
900 panic("Attempted to kill the idle task!");
902 tracehook_report_exit(&code
);
904 validate_creds_for_do_exit(tsk
);
907 * We're taking recursive faults here in do_exit. Safest is to just
908 * leave this task alone and wait for reboot.
910 if (unlikely(tsk
->flags
& PF_EXITING
)) {
912 "Fixing recursive fault but reboot is needed!\n");
914 * We can do this unlocked here. The futex code uses
915 * this flag just to verify whether the pi state
916 * cleanup has been done or not. In the worst case it
917 * loops once more. We pretend that the cleanup was
918 * done as there is no way to return. Either the
919 * OWNER_DIED bit is set by now or we push the blocked
920 * task into the wait for ever nirwana as well.
922 tsk
->flags
|= PF_EXITPIDONE
;
923 set_current_state(TASK_UNINTERRUPTIBLE
);
929 exit_signals(tsk
); /* sets PF_EXITING */
931 * tsk->flags are checked in the futex code to protect against
932 * an exiting task cleaning up the robust pi futexes.
935 spin_unlock_wait(&tsk
->pi_lock
);
937 if (unlikely(in_atomic()))
938 printk(KERN_INFO
"note: %s[%d] exited with preempt_count %d\n",
939 current
->comm
, task_pid_nr(current
),
942 acct_update_integrals(tsk
);
944 group_dead
= atomic_dec_and_test(&tsk
->signal
->live
);
946 hrtimer_cancel(&tsk
->signal
->real_timer
);
947 exit_itimers(tsk
->signal
);
949 acct_collect(code
, group_dead
);
952 if (unlikely(tsk
->audit_context
))
955 tsk
->exit_code
= code
;
956 taskstats_exit(tsk
, group_dead
);
962 trace_sched_process_exit(tsk
);
971 if (group_dead
&& tsk
->signal
->leader
)
972 disassociate_ctty(1);
974 module_put(task_thread_info(tsk
)->exec_domain
->module
);
976 module_put(tsk
->binfmt
->module
);
978 proc_exit_connector(tsk
);
981 * Flush inherited counters to the parent - before the parent
982 * gets woken up by child-exit notifications.
984 perf_counter_exit_task(tsk
);
986 exit_notify(tsk
, group_dead
);
988 mpol_put(tsk
->mempolicy
);
989 tsk
->mempolicy
= NULL
;
992 if (unlikely(!list_empty(&tsk
->pi_state_list
)))
993 exit_pi_state_list(tsk
);
994 if (unlikely(current
->pi_state_cache
))
995 kfree(current
->pi_state_cache
);
998 * Make sure we are holding no locks:
1000 debug_check_no_locks_held(tsk
);
1002 * We can do this unlocked here. The futex code uses this flag
1003 * just to verify whether the pi state cleanup has been done
1004 * or not. In the worst case it loops once more.
1006 tsk
->flags
|= PF_EXITPIDONE
;
1008 if (tsk
->io_context
)
1011 if (tsk
->splice_pipe
)
1012 __free_pipe_info(tsk
->splice_pipe
);
1014 validate_creds_for_do_exit(tsk
);
1018 /* causes final put_task_struct in finish_task_switch(). */
1019 tsk
->state
= TASK_DEAD
;
1022 /* Avoid "noreturn function does return". */
1024 cpu_relax(); /* For when BUG is null */
1027 EXPORT_SYMBOL_GPL(do_exit
);
1029 NORET_TYPE
void complete_and_exit(struct completion
*comp
, long code
)
1037 EXPORT_SYMBOL(complete_and_exit
);
1039 SYSCALL_DEFINE1(exit
, int, error_code
)
1041 do_exit((error_code
&0xff)<<8);
1045 * Take down every thread in the group. This is called by fatal signals
1046 * as well as by sys_exit_group (below).
1049 do_group_exit(int exit_code
)
1051 struct signal_struct
*sig
= current
->signal
;
1053 BUG_ON(exit_code
& 0x80); /* core dumps don't get here */
1055 if (signal_group_exit(sig
))
1056 exit_code
= sig
->group_exit_code
;
1057 else if (!thread_group_empty(current
)) {
1058 struct sighand_struct
*const sighand
= current
->sighand
;
1059 spin_lock_irq(&sighand
->siglock
);
1060 if (signal_group_exit(sig
))
1061 /* Another thread got here before we took the lock. */
1062 exit_code
= sig
->group_exit_code
;
1064 sig
->group_exit_code
= exit_code
;
1065 sig
->flags
= SIGNAL_GROUP_EXIT
;
1066 zap_other_threads(current
);
1068 spin_unlock_irq(&sighand
->siglock
);
1076 * this kills every thread in the thread group. Note that any externally
1077 * wait4()-ing process will get the correct exit code - even if this
1078 * thread is not the thread group leader.
1080 SYSCALL_DEFINE1(exit_group
, int, error_code
)
1082 do_group_exit((error_code
& 0xff) << 8);
1088 enum pid_type wo_type
;
1092 struct siginfo __user
*wo_info
;
1093 int __user
*wo_stat
;
1094 struct rusage __user
*wo_rusage
;
1099 static struct pid
*task_pid_type(struct task_struct
*task
, enum pid_type type
)
1101 struct pid
*pid
= NULL
;
1102 if (type
== PIDTYPE_PID
)
1103 pid
= task
->pids
[type
].pid
;
1104 else if (type
< PIDTYPE_MAX
)
1105 pid
= task
->group_leader
->pids
[type
].pid
;
1109 static int eligible_child(struct wait_opts
*wo
, struct task_struct
*p
)
1113 if (wo
->wo_type
< PIDTYPE_MAX
) {
1114 if (task_pid_type(p
, wo
->wo_type
) != wo
->wo_pid
)
1118 /* Wait for all children (clone and not) if __WALL is set;
1119 * otherwise, wait for clone children *only* if __WCLONE is
1120 * set; otherwise, wait for non-clone children *only*. (Note:
1121 * A "clone" child here is one that reports to its parent
1122 * using a signal other than SIGCHLD.) */
1123 if (((p
->exit_signal
!= SIGCHLD
) ^ !!(wo
->wo_flags
& __WCLONE
))
1124 && !(wo
->wo_flags
& __WALL
))
1127 err
= security_task_wait(p
);
1134 static int wait_noreap_copyout(struct wait_opts
*wo
, struct task_struct
*p
,
1135 pid_t pid
, uid_t uid
, int why
, int status
)
1137 struct siginfo __user
*infop
;
1138 int retval
= wo
->wo_rusage
1139 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1142 infop
= wo
->wo_info
;
1144 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1146 retval
= put_user(0, &infop
->si_errno
);
1148 retval
= put_user((short)why
, &infop
->si_code
);
1150 retval
= put_user(pid
, &infop
->si_pid
);
1152 retval
= put_user(uid
, &infop
->si_uid
);
1154 retval
= put_user(status
, &infop
->si_status
);
1161 * Handle sys_wait4 work for one task in state EXIT_ZOMBIE. We hold
1162 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1163 * the lock and this task is uninteresting. If we return nonzero, we have
1164 * released the lock and the system call should return.
1166 static int wait_task_zombie(struct wait_opts
*wo
, struct task_struct
*p
)
1168 unsigned long state
;
1169 int retval
, status
, traced
;
1170 pid_t pid
= task_pid_vnr(p
);
1171 uid_t uid
= __task_cred(p
)->uid
;
1172 struct siginfo __user
*infop
;
1174 if (!likely(wo
->wo_flags
& WEXITED
))
1177 if (unlikely(wo
->wo_flags
& WNOWAIT
)) {
1178 int exit_code
= p
->exit_code
;
1182 read_unlock(&tasklist_lock
);
1183 if ((exit_code
& 0x7f) == 0) {
1185 status
= exit_code
>> 8;
1187 why
= (exit_code
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1188 status
= exit_code
& 0x7f;
1190 return wait_noreap_copyout(wo
, p
, pid
, uid
, why
, status
);
1194 * Try to move the task's state to DEAD
1195 * only one thread is allowed to do this:
1197 state
= xchg(&p
->exit_state
, EXIT_DEAD
);
1198 if (state
!= EXIT_ZOMBIE
) {
1199 BUG_ON(state
!= EXIT_DEAD
);
1203 traced
= ptrace_reparented(p
);
1205 * It can be ptraced but not reparented, check
1206 * !task_detached() to filter out sub-threads.
1208 if (likely(!traced
) && likely(!task_detached(p
))) {
1209 struct signal_struct
*psig
;
1210 struct signal_struct
*sig
;
1213 * The resource counters for the group leader are in its
1214 * own task_struct. Those for dead threads in the group
1215 * are in its signal_struct, as are those for the child
1216 * processes it has previously reaped. All these
1217 * accumulate in the parent's signal_struct c* fields.
1219 * We don't bother to take a lock here to protect these
1220 * p->signal fields, because they are only touched by
1221 * __exit_signal, which runs with tasklist_lock
1222 * write-locked anyway, and so is excluded here. We do
1223 * need to protect the access to parent->signal fields,
1224 * as other threads in the parent group can be right
1225 * here reaping other children at the same time.
1227 spin_lock_irq(&p
->real_parent
->sighand
->siglock
);
1228 psig
= p
->real_parent
->signal
;
1231 cputime_add(psig
->cutime
,
1232 cputime_add(p
->utime
,
1233 cputime_add(sig
->utime
,
1236 cputime_add(psig
->cstime
,
1237 cputime_add(p
->stime
,
1238 cputime_add(sig
->stime
,
1241 cputime_add(psig
->cgtime
,
1242 cputime_add(p
->gtime
,
1243 cputime_add(sig
->gtime
,
1246 p
->min_flt
+ sig
->min_flt
+ sig
->cmin_flt
;
1248 p
->maj_flt
+ sig
->maj_flt
+ sig
->cmaj_flt
;
1250 p
->nvcsw
+ sig
->nvcsw
+ sig
->cnvcsw
;
1252 p
->nivcsw
+ sig
->nivcsw
+ sig
->cnivcsw
;
1254 task_io_get_inblock(p
) +
1255 sig
->inblock
+ sig
->cinblock
;
1257 task_io_get_oublock(p
) +
1258 sig
->oublock
+ sig
->coublock
;
1259 task_io_accounting_add(&psig
->ioac
, &p
->ioac
);
1260 task_io_accounting_add(&psig
->ioac
, &sig
->ioac
);
1261 spin_unlock_irq(&p
->real_parent
->sighand
->siglock
);
1265 * Now we are sure this task is interesting, and no other
1266 * thread can reap it because we set its state to EXIT_DEAD.
1268 read_unlock(&tasklist_lock
);
1270 retval
= wo
->wo_rusage
1271 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1272 status
= (p
->signal
->flags
& SIGNAL_GROUP_EXIT
)
1273 ? p
->signal
->group_exit_code
: p
->exit_code
;
1274 if (!retval
&& wo
->wo_stat
)
1275 retval
= put_user(status
, wo
->wo_stat
);
1277 infop
= wo
->wo_info
;
1278 if (!retval
&& infop
)
1279 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1280 if (!retval
&& infop
)
1281 retval
= put_user(0, &infop
->si_errno
);
1282 if (!retval
&& infop
) {
1285 if ((status
& 0x7f) == 0) {
1289 why
= (status
& 0x80) ? CLD_DUMPED
: CLD_KILLED
;
1292 retval
= put_user((short)why
, &infop
->si_code
);
1294 retval
= put_user(status
, &infop
->si_status
);
1296 if (!retval
&& infop
)
1297 retval
= put_user(pid
, &infop
->si_pid
);
1298 if (!retval
&& infop
)
1299 retval
= put_user(uid
, &infop
->si_uid
);
1304 write_lock_irq(&tasklist_lock
);
1305 /* We dropped tasklist, ptracer could die and untrace */
1308 * If this is not a detached task, notify the parent.
1309 * If it's still not detached after that, don't release
1312 if (!task_detached(p
)) {
1313 do_notify_parent(p
, p
->exit_signal
);
1314 if (!task_detached(p
)) {
1315 p
->exit_state
= EXIT_ZOMBIE
;
1319 write_unlock_irq(&tasklist_lock
);
1327 static int *task_stopped_code(struct task_struct
*p
, bool ptrace
)
1330 if (task_is_stopped_or_traced(p
))
1331 return &p
->exit_code
;
1333 if (p
->signal
->flags
& SIGNAL_STOP_STOPPED
)
1334 return &p
->signal
->group_exit_code
;
1340 * Handle sys_wait4 work for one task in state TASK_STOPPED. We hold
1341 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1342 * the lock and this task is uninteresting. If we return nonzero, we have
1343 * released the lock and the system call should return.
1345 static int wait_task_stopped(struct wait_opts
*wo
,
1346 int ptrace
, struct task_struct
*p
)
1348 struct siginfo __user
*infop
;
1349 int retval
, exit_code
, *p_code
, why
;
1350 uid_t uid
= 0; /* unneeded, required by compiler */
1354 * Traditionally we see ptrace'd stopped tasks regardless of options.
1356 if (!ptrace
&& !(wo
->wo_flags
& WUNTRACED
))
1360 spin_lock_irq(&p
->sighand
->siglock
);
1362 p_code
= task_stopped_code(p
, ptrace
);
1363 if (unlikely(!p_code
))
1366 exit_code
= *p_code
;
1370 if (!unlikely(wo
->wo_flags
& WNOWAIT
))
1373 /* don't need the RCU readlock here as we're holding a spinlock */
1374 uid
= __task_cred(p
)->uid
;
1376 spin_unlock_irq(&p
->sighand
->siglock
);
1381 * Now we are pretty sure this task is interesting.
1382 * Make sure it doesn't get reaped out from under us while we
1383 * give up the lock and then examine it below. We don't want to
1384 * keep holding onto the tasklist_lock while we call getrusage and
1385 * possibly take page faults for user memory.
1388 pid
= task_pid_vnr(p
);
1389 why
= ptrace
? CLD_TRAPPED
: CLD_STOPPED
;
1390 read_unlock(&tasklist_lock
);
1392 if (unlikely(wo
->wo_flags
& WNOWAIT
))
1393 return wait_noreap_copyout(wo
, p
, pid
, uid
, why
, exit_code
);
1395 retval
= wo
->wo_rusage
1396 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1397 if (!retval
&& wo
->wo_stat
)
1398 retval
= put_user((exit_code
<< 8) | 0x7f, wo
->wo_stat
);
1400 infop
= wo
->wo_info
;
1401 if (!retval
&& infop
)
1402 retval
= put_user(SIGCHLD
, &infop
->si_signo
);
1403 if (!retval
&& infop
)
1404 retval
= put_user(0, &infop
->si_errno
);
1405 if (!retval
&& infop
)
1406 retval
= put_user((short)why
, &infop
->si_code
);
1407 if (!retval
&& infop
)
1408 retval
= put_user(exit_code
, &infop
->si_status
);
1409 if (!retval
&& infop
)
1410 retval
= put_user(pid
, &infop
->si_pid
);
1411 if (!retval
&& infop
)
1412 retval
= put_user(uid
, &infop
->si_uid
);
1422 * Handle do_wait work for one task in a live, non-stopped state.
1423 * read_lock(&tasklist_lock) on entry. If we return zero, we still hold
1424 * the lock and this task is uninteresting. If we return nonzero, we have
1425 * released the lock and the system call should return.
1427 static int wait_task_continued(struct wait_opts
*wo
, struct task_struct
*p
)
1433 if (!unlikely(wo
->wo_flags
& WCONTINUED
))
1436 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
))
1439 spin_lock_irq(&p
->sighand
->siglock
);
1440 /* Re-check with the lock held. */
1441 if (!(p
->signal
->flags
& SIGNAL_STOP_CONTINUED
)) {
1442 spin_unlock_irq(&p
->sighand
->siglock
);
1445 if (!unlikely(wo
->wo_flags
& WNOWAIT
))
1446 p
->signal
->flags
&= ~SIGNAL_STOP_CONTINUED
;
1447 uid
= __task_cred(p
)->uid
;
1448 spin_unlock_irq(&p
->sighand
->siglock
);
1450 pid
= task_pid_vnr(p
);
1452 read_unlock(&tasklist_lock
);
1455 retval
= wo
->wo_rusage
1456 ? getrusage(p
, RUSAGE_BOTH
, wo
->wo_rusage
) : 0;
1458 if (!retval
&& wo
->wo_stat
)
1459 retval
= put_user(0xffff, wo
->wo_stat
);
1463 retval
= wait_noreap_copyout(wo
, p
, pid
, uid
,
1464 CLD_CONTINUED
, SIGCONT
);
1465 BUG_ON(retval
== 0);
1472 * Consider @p for a wait by @parent.
1474 * -ECHILD should be in ->notask_error before the first call.
1475 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1476 * Returns zero if the search for a child should continue;
1477 * then ->notask_error is 0 if @p is an eligible child,
1478 * or another error from security_task_wait(), or still -ECHILD.
1480 static int wait_consider_task(struct wait_opts
*wo
, struct task_struct
*parent
,
1481 int ptrace
, struct task_struct
*p
)
1483 int ret
= eligible_child(wo
, p
);
1487 if (unlikely(ret
< 0)) {
1489 * If we have not yet seen any eligible child,
1490 * then let this error code replace -ECHILD.
1491 * A permission error will give the user a clue
1492 * to look for security policy problems, rather
1493 * than for mysterious wait bugs.
1495 if (wo
->notask_error
)
1496 wo
->notask_error
= ret
;
1500 if (likely(!ptrace
) && unlikely(task_ptrace(p
))) {
1502 * This child is hidden by ptrace.
1503 * We aren't allowed to see it now, but eventually we will.
1505 wo
->notask_error
= 0;
1509 if (p
->exit_state
== EXIT_DEAD
)
1513 * We don't reap group leaders with subthreads.
1515 if (p
->exit_state
== EXIT_ZOMBIE
&& !delay_group_leader(p
))
1516 return wait_task_zombie(wo
, p
);
1519 * It's stopped or running now, so it might
1520 * later continue, exit, or stop again.
1522 wo
->notask_error
= 0;
1524 if (task_stopped_code(p
, ptrace
))
1525 return wait_task_stopped(wo
, ptrace
, p
);
1527 return wait_task_continued(wo
, p
);
1531 * Do the work of do_wait() for one thread in the group, @tsk.
1533 * -ECHILD should be in ->notask_error before the first call.
1534 * Returns nonzero for a final return, when we have unlocked tasklist_lock.
1535 * Returns zero if the search for a child should continue; then
1536 * ->notask_error is 0 if there were any eligible children,
1537 * or another error from security_task_wait(), or still -ECHILD.
1539 static int do_wait_thread(struct wait_opts
*wo
, struct task_struct
*tsk
)
1541 struct task_struct
*p
;
1543 list_for_each_entry(p
, &tsk
->children
, sibling
) {
1545 * Do not consider detached threads.
1547 if (!task_detached(p
)) {
1548 int ret
= wait_consider_task(wo
, tsk
, 0, p
);
1557 static int ptrace_do_wait(struct wait_opts
*wo
, struct task_struct
*tsk
)
1559 struct task_struct
*p
;
1561 list_for_each_entry(p
, &tsk
->ptraced
, ptrace_entry
) {
1562 int ret
= wait_consider_task(wo
, tsk
, 1, p
);
1570 static long do_wait(struct wait_opts
*wo
)
1572 DECLARE_WAITQUEUE(wait
, current
);
1573 struct task_struct
*tsk
;
1576 trace_sched_process_wait(wo
->wo_pid
);
1578 add_wait_queue(¤t
->signal
->wait_chldexit
,&wait
);
1581 * If there is nothing that can match our critiera just get out.
1582 * We will clear ->notask_error to zero if we see any child that
1583 * might later match our criteria, even if we are not able to reap
1586 wo
->notask_error
= -ECHILD
;
1587 if ((wo
->wo_type
< PIDTYPE_MAX
) &&
1588 (!wo
->wo_pid
|| hlist_empty(&wo
->wo_pid
->tasks
[wo
->wo_type
])))
1591 set_current_state(TASK_INTERRUPTIBLE
);
1592 read_lock(&tasklist_lock
);
1595 retval
= do_wait_thread(wo
, tsk
);
1599 retval
= ptrace_do_wait(wo
, tsk
);
1603 if (wo
->wo_flags
& __WNOTHREAD
)
1605 } while_each_thread(current
, tsk
);
1606 read_unlock(&tasklist_lock
);
1609 retval
= wo
->notask_error
;
1610 if (!retval
&& !(wo
->wo_flags
& WNOHANG
)) {
1611 retval
= -ERESTARTSYS
;
1612 if (!signal_pending(current
)) {
1618 __set_current_state(TASK_RUNNING
);
1619 remove_wait_queue(¤t
->signal
->wait_chldexit
,&wait
);
1621 struct siginfo __user
*infop
= wo
->wo_info
;
1627 * For a WNOHANG return, clear out all the fields
1628 * we would set so the user can easily tell the
1632 retval
= put_user(0, &infop
->si_signo
);
1634 retval
= put_user(0, &infop
->si_errno
);
1636 retval
= put_user(0, &infop
->si_code
);
1638 retval
= put_user(0, &infop
->si_pid
);
1640 retval
= put_user(0, &infop
->si_uid
);
1642 retval
= put_user(0, &infop
->si_status
);
1648 SYSCALL_DEFINE5(waitid
, int, which
, pid_t
, upid
, struct siginfo __user
*,
1649 infop
, int, options
, struct rusage __user
*, ru
)
1651 struct wait_opts wo
;
1652 struct pid
*pid
= NULL
;
1656 if (options
& ~(WNOHANG
|WNOWAIT
|WEXITED
|WSTOPPED
|WCONTINUED
))
1658 if (!(options
& (WEXITED
|WSTOPPED
|WCONTINUED
)))
1671 type
= PIDTYPE_PGID
;
1679 if (type
< PIDTYPE_MAX
)
1680 pid
= find_get_pid(upid
);
1684 wo
.wo_flags
= options
;
1691 /* avoid REGPARM breakage on x86: */
1692 asmlinkage_protect(5, ret
, which
, upid
, infop
, options
, ru
);
1696 SYSCALL_DEFINE4(wait4
, pid_t
, upid
, int __user
*, stat_addr
,
1697 int, options
, struct rusage __user
*, ru
)
1699 struct wait_opts wo
;
1700 struct pid
*pid
= NULL
;
1704 if (options
& ~(WNOHANG
|WUNTRACED
|WCONTINUED
|
1705 __WNOTHREAD
|__WCLONE
|__WALL
))
1710 else if (upid
< 0) {
1711 type
= PIDTYPE_PGID
;
1712 pid
= find_get_pid(-upid
);
1713 } else if (upid
== 0) {
1714 type
= PIDTYPE_PGID
;
1715 pid
= get_task_pid(current
, PIDTYPE_PGID
);
1716 } else /* upid > 0 */ {
1718 pid
= find_get_pid(upid
);
1723 wo
.wo_flags
= options
| WEXITED
;
1725 wo
.wo_stat
= stat_addr
;
1730 /* avoid REGPARM breakage on x86: */
1731 asmlinkage_protect(4, ret
, upid
, stat_addr
, options
, ru
);
1735 #ifdef __ARCH_WANT_SYS_WAITPID
1738 * sys_waitpid() remains for compatibility. waitpid() should be
1739 * implemented by calling sys_wait4() from libc.a.
1741 SYSCALL_DEFINE3(waitpid
, pid_t
, pid
, int __user
*, stat_addr
, int, options
)
1743 return sys_wait4(pid
, stat_addr
, options
, NULL
);