rt2x00: treat firmware data as const
[linux-2.6/linux-2.6-openrd.git] / drivers / crypto / padlock-aes.c
blobbb30eb9b93ef7539c3548d763235dc92a077831d
1 /*
2 * Cryptographic API.
4 * Support for VIA PadLock hardware crypto engine.
6 * Copyright (c) 2004 Michal Ludvig <michal@logix.cz>
8 */
10 #include <crypto/algapi.h>
11 #include <crypto/aes.h>
12 #include <linux/module.h>
13 #include <linux/init.h>
14 #include <linux/types.h>
15 #include <linux/errno.h>
16 #include <linux/interrupt.h>
17 #include <linux/kernel.h>
18 #include <asm/byteorder.h>
19 #include "padlock.h"
21 /* Control word. */
22 struct cword {
23 unsigned int __attribute__ ((__packed__))
24 rounds:4,
25 algo:3,
26 keygen:1,
27 interm:1,
28 encdec:1,
29 ksize:2;
30 } __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
32 /* Whenever making any changes to the following
33 * structure *make sure* you keep E, d_data
34 * and cword aligned on 16 Bytes boundaries and
35 * the Hardware can access 16 * 16 bytes of E and d_data
36 * (only the first 15 * 16 bytes matter but the HW reads
37 * more).
39 struct aes_ctx {
40 u32 E[AES_MAX_KEYLENGTH_U32]
41 __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
42 u32 d_data[AES_MAX_KEYLENGTH_U32]
43 __attribute__ ((__aligned__(PADLOCK_ALIGNMENT)));
44 struct {
45 struct cword encrypt;
46 struct cword decrypt;
47 } cword;
48 u32 *D;
51 /* Tells whether the ACE is capable to generate
52 the extended key for a given key_len. */
53 static inline int
54 aes_hw_extkey_available(uint8_t key_len)
56 /* TODO: We should check the actual CPU model/stepping
57 as it's possible that the capability will be
58 added in the next CPU revisions. */
59 if (key_len == 16)
60 return 1;
61 return 0;
64 static inline struct aes_ctx *aes_ctx_common(void *ctx)
66 unsigned long addr = (unsigned long)ctx;
67 unsigned long align = PADLOCK_ALIGNMENT;
69 if (align <= crypto_tfm_ctx_alignment())
70 align = 1;
71 return (struct aes_ctx *)ALIGN(addr, align);
74 static inline struct aes_ctx *aes_ctx(struct crypto_tfm *tfm)
76 return aes_ctx_common(crypto_tfm_ctx(tfm));
79 static inline struct aes_ctx *blk_aes_ctx(struct crypto_blkcipher *tfm)
81 return aes_ctx_common(crypto_blkcipher_ctx(tfm));
84 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
85 unsigned int key_len)
87 struct aes_ctx *ctx = aes_ctx(tfm);
88 const __le32 *key = (const __le32 *)in_key;
89 u32 *flags = &tfm->crt_flags;
90 struct crypto_aes_ctx gen_aes;
92 if (key_len % 8) {
93 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
94 return -EINVAL;
98 * If the hardware is capable of generating the extended key
99 * itself we must supply the plain key for both encryption
100 * and decryption.
102 ctx->D = ctx->E;
104 ctx->E[0] = le32_to_cpu(key[0]);
105 ctx->E[1] = le32_to_cpu(key[1]);
106 ctx->E[2] = le32_to_cpu(key[2]);
107 ctx->E[3] = le32_to_cpu(key[3]);
109 /* Prepare control words. */
110 memset(&ctx->cword, 0, sizeof(ctx->cword));
112 ctx->cword.decrypt.encdec = 1;
113 ctx->cword.encrypt.rounds = 10 + (key_len - 16) / 4;
114 ctx->cword.decrypt.rounds = ctx->cword.encrypt.rounds;
115 ctx->cword.encrypt.ksize = (key_len - 16) / 8;
116 ctx->cword.decrypt.ksize = ctx->cword.encrypt.ksize;
118 /* Don't generate extended keys if the hardware can do it. */
119 if (aes_hw_extkey_available(key_len))
120 return 0;
122 ctx->D = ctx->d_data;
123 ctx->cword.encrypt.keygen = 1;
124 ctx->cword.decrypt.keygen = 1;
126 if (crypto_aes_expand_key(&gen_aes, in_key, key_len)) {
127 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
128 return -EINVAL;
131 memcpy(ctx->E, gen_aes.key_enc, AES_MAX_KEYLENGTH);
132 memcpy(ctx->D, gen_aes.key_dec, AES_MAX_KEYLENGTH);
133 return 0;
136 /* ====== Encryption/decryption routines ====== */
138 /* These are the real call to PadLock. */
139 static inline void padlock_reset_key(void)
141 asm volatile ("pushfl; popfl");
144 static inline void padlock_xcrypt(const u8 *input, u8 *output, void *key,
145 void *control_word)
147 asm volatile (".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
148 : "+S"(input), "+D"(output)
149 : "d"(control_word), "b"(key), "c"(1));
152 static void aes_crypt_copy(const u8 *in, u8 *out, u32 *key, struct cword *cword)
154 u8 buf[AES_BLOCK_SIZE * 2 + PADLOCK_ALIGNMENT - 1];
155 u8 *tmp = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
157 memcpy(tmp, in, AES_BLOCK_SIZE);
158 padlock_xcrypt(tmp, out, key, cword);
161 static inline void aes_crypt(const u8 *in, u8 *out, u32 *key,
162 struct cword *cword)
164 /* padlock_xcrypt requires at least two blocks of data. */
165 if (unlikely(!(((unsigned long)in ^ (PAGE_SIZE - AES_BLOCK_SIZE)) &
166 (PAGE_SIZE - 1)))) {
167 aes_crypt_copy(in, out, key, cword);
168 return;
171 padlock_xcrypt(in, out, key, cword);
174 static inline void padlock_xcrypt_ecb(const u8 *input, u8 *output, void *key,
175 void *control_word, u32 count)
177 if (count == 1) {
178 aes_crypt(input, output, key, control_word);
179 return;
182 asm volatile ("test $1, %%cl;"
183 "je 1f;"
184 "lea -1(%%ecx), %%eax;"
185 "mov $1, %%ecx;"
186 ".byte 0xf3,0x0f,0xa7,0xc8;" /* rep xcryptecb */
187 "mov %%eax, %%ecx;"
188 "1:"
189 ".byte 0xf3,0x0f,0xa7,0xc8" /* rep xcryptecb */
190 : "+S"(input), "+D"(output)
191 : "d"(control_word), "b"(key), "c"(count)
192 : "ax");
195 static inline u8 *padlock_xcrypt_cbc(const u8 *input, u8 *output, void *key,
196 u8 *iv, void *control_word, u32 count)
198 /* rep xcryptcbc */
199 asm volatile (".byte 0xf3,0x0f,0xa7,0xd0"
200 : "+S" (input), "+D" (output), "+a" (iv)
201 : "d" (control_word), "b" (key), "c" (count));
202 return iv;
205 static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
207 struct aes_ctx *ctx = aes_ctx(tfm);
208 padlock_reset_key();
209 aes_crypt(in, out, ctx->E, &ctx->cword.encrypt);
212 static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
214 struct aes_ctx *ctx = aes_ctx(tfm);
215 padlock_reset_key();
216 aes_crypt(in, out, ctx->D, &ctx->cword.decrypt);
219 static struct crypto_alg aes_alg = {
220 .cra_name = "aes",
221 .cra_driver_name = "aes-padlock",
222 .cra_priority = PADLOCK_CRA_PRIORITY,
223 .cra_flags = CRYPTO_ALG_TYPE_CIPHER,
224 .cra_blocksize = AES_BLOCK_SIZE,
225 .cra_ctxsize = sizeof(struct aes_ctx),
226 .cra_alignmask = PADLOCK_ALIGNMENT - 1,
227 .cra_module = THIS_MODULE,
228 .cra_list = LIST_HEAD_INIT(aes_alg.cra_list),
229 .cra_u = {
230 .cipher = {
231 .cia_min_keysize = AES_MIN_KEY_SIZE,
232 .cia_max_keysize = AES_MAX_KEY_SIZE,
233 .cia_setkey = aes_set_key,
234 .cia_encrypt = aes_encrypt,
235 .cia_decrypt = aes_decrypt,
240 static int ecb_aes_encrypt(struct blkcipher_desc *desc,
241 struct scatterlist *dst, struct scatterlist *src,
242 unsigned int nbytes)
244 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
245 struct blkcipher_walk walk;
246 int err;
248 padlock_reset_key();
250 blkcipher_walk_init(&walk, dst, src, nbytes);
251 err = blkcipher_walk_virt(desc, &walk);
253 while ((nbytes = walk.nbytes)) {
254 padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
255 ctx->E, &ctx->cword.encrypt,
256 nbytes / AES_BLOCK_SIZE);
257 nbytes &= AES_BLOCK_SIZE - 1;
258 err = blkcipher_walk_done(desc, &walk, nbytes);
261 return err;
264 static int ecb_aes_decrypt(struct blkcipher_desc *desc,
265 struct scatterlist *dst, struct scatterlist *src,
266 unsigned int nbytes)
268 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
269 struct blkcipher_walk walk;
270 int err;
272 padlock_reset_key();
274 blkcipher_walk_init(&walk, dst, src, nbytes);
275 err = blkcipher_walk_virt(desc, &walk);
277 while ((nbytes = walk.nbytes)) {
278 padlock_xcrypt_ecb(walk.src.virt.addr, walk.dst.virt.addr,
279 ctx->D, &ctx->cword.decrypt,
280 nbytes / AES_BLOCK_SIZE);
281 nbytes &= AES_BLOCK_SIZE - 1;
282 err = blkcipher_walk_done(desc, &walk, nbytes);
285 return err;
288 static struct crypto_alg ecb_aes_alg = {
289 .cra_name = "ecb(aes)",
290 .cra_driver_name = "ecb-aes-padlock",
291 .cra_priority = PADLOCK_COMPOSITE_PRIORITY,
292 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
293 .cra_blocksize = AES_BLOCK_SIZE,
294 .cra_ctxsize = sizeof(struct aes_ctx),
295 .cra_alignmask = PADLOCK_ALIGNMENT - 1,
296 .cra_type = &crypto_blkcipher_type,
297 .cra_module = THIS_MODULE,
298 .cra_list = LIST_HEAD_INIT(ecb_aes_alg.cra_list),
299 .cra_u = {
300 .blkcipher = {
301 .min_keysize = AES_MIN_KEY_SIZE,
302 .max_keysize = AES_MAX_KEY_SIZE,
303 .setkey = aes_set_key,
304 .encrypt = ecb_aes_encrypt,
305 .decrypt = ecb_aes_decrypt,
310 static int cbc_aes_encrypt(struct blkcipher_desc *desc,
311 struct scatterlist *dst, struct scatterlist *src,
312 unsigned int nbytes)
314 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
315 struct blkcipher_walk walk;
316 int err;
318 padlock_reset_key();
320 blkcipher_walk_init(&walk, dst, src, nbytes);
321 err = blkcipher_walk_virt(desc, &walk);
323 while ((nbytes = walk.nbytes)) {
324 u8 *iv = padlock_xcrypt_cbc(walk.src.virt.addr,
325 walk.dst.virt.addr, ctx->E,
326 walk.iv, &ctx->cword.encrypt,
327 nbytes / AES_BLOCK_SIZE);
328 memcpy(walk.iv, iv, AES_BLOCK_SIZE);
329 nbytes &= AES_BLOCK_SIZE - 1;
330 err = blkcipher_walk_done(desc, &walk, nbytes);
333 return err;
336 static int cbc_aes_decrypt(struct blkcipher_desc *desc,
337 struct scatterlist *dst, struct scatterlist *src,
338 unsigned int nbytes)
340 struct aes_ctx *ctx = blk_aes_ctx(desc->tfm);
341 struct blkcipher_walk walk;
342 int err;
344 padlock_reset_key();
346 blkcipher_walk_init(&walk, dst, src, nbytes);
347 err = blkcipher_walk_virt(desc, &walk);
349 while ((nbytes = walk.nbytes)) {
350 padlock_xcrypt_cbc(walk.src.virt.addr, walk.dst.virt.addr,
351 ctx->D, walk.iv, &ctx->cword.decrypt,
352 nbytes / AES_BLOCK_SIZE);
353 nbytes &= AES_BLOCK_SIZE - 1;
354 err = blkcipher_walk_done(desc, &walk, nbytes);
357 return err;
360 static struct crypto_alg cbc_aes_alg = {
361 .cra_name = "cbc(aes)",
362 .cra_driver_name = "cbc-aes-padlock",
363 .cra_priority = PADLOCK_COMPOSITE_PRIORITY,
364 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
365 .cra_blocksize = AES_BLOCK_SIZE,
366 .cra_ctxsize = sizeof(struct aes_ctx),
367 .cra_alignmask = PADLOCK_ALIGNMENT - 1,
368 .cra_type = &crypto_blkcipher_type,
369 .cra_module = THIS_MODULE,
370 .cra_list = LIST_HEAD_INIT(cbc_aes_alg.cra_list),
371 .cra_u = {
372 .blkcipher = {
373 .min_keysize = AES_MIN_KEY_SIZE,
374 .max_keysize = AES_MAX_KEY_SIZE,
375 .ivsize = AES_BLOCK_SIZE,
376 .setkey = aes_set_key,
377 .encrypt = cbc_aes_encrypt,
378 .decrypt = cbc_aes_decrypt,
383 static int __init padlock_init(void)
385 int ret;
387 if (!cpu_has_xcrypt) {
388 printk(KERN_ERR PFX "VIA PadLock not detected.\n");
389 return -ENODEV;
392 if (!cpu_has_xcrypt_enabled) {
393 printk(KERN_ERR PFX "VIA PadLock detected, but not enabled. Hmm, strange...\n");
394 return -ENODEV;
397 if ((ret = crypto_register_alg(&aes_alg)))
398 goto aes_err;
400 if ((ret = crypto_register_alg(&ecb_aes_alg)))
401 goto ecb_aes_err;
403 if ((ret = crypto_register_alg(&cbc_aes_alg)))
404 goto cbc_aes_err;
406 printk(KERN_NOTICE PFX "Using VIA PadLock ACE for AES algorithm.\n");
408 out:
409 return ret;
411 cbc_aes_err:
412 crypto_unregister_alg(&ecb_aes_alg);
413 ecb_aes_err:
414 crypto_unregister_alg(&aes_alg);
415 aes_err:
416 printk(KERN_ERR PFX "VIA PadLock AES initialization failed.\n");
417 goto out;
420 static void __exit padlock_fini(void)
422 crypto_unregister_alg(&cbc_aes_alg);
423 crypto_unregister_alg(&ecb_aes_alg);
424 crypto_unregister_alg(&aes_alg);
427 module_init(padlock_init);
428 module_exit(padlock_fini);
430 MODULE_DESCRIPTION("VIA PadLock AES algorithm support");
431 MODULE_LICENSE("GPL");
432 MODULE_AUTHOR("Michal Ludvig");
434 MODULE_ALIAS("aes");