2 * Generic process-grouping system.
4 * Based originally on the cpuset system, extracted by Paul Menage
5 * Copyright (C) 2006 Google, Inc
7 * Copyright notices from the original cpuset code:
8 * --------------------------------------------------
9 * Copyright (C) 2003 BULL SA.
10 * Copyright (C) 2004-2006 Silicon Graphics, Inc.
12 * Portions derived from Patrick Mochel's sysfs code.
13 * sysfs is Copyright (c) 2001-3 Patrick Mochel
15 * 2003-10-10 Written by Simon Derr.
16 * 2003-10-22 Updates by Stephen Hemminger.
17 * 2004 May-July Rework by Paul Jackson.
18 * ---------------------------------------------------
20 * This file is subject to the terms and conditions of the GNU General Public
21 * License. See the file COPYING in the main directory of the Linux
22 * distribution for more details.
25 #include <linux/cgroup.h>
26 #include <linux/errno.h>
28 #include <linux/kernel.h>
29 #include <linux/list.h>
31 #include <linux/mutex.h>
32 #include <linux/mount.h>
33 #include <linux/pagemap.h>
34 #include <linux/proc_fs.h>
35 #include <linux/rcupdate.h>
36 #include <linux/sched.h>
37 #include <linux/backing-dev.h>
38 #include <linux/seq_file.h>
39 #include <linux/slab.h>
40 #include <linux/magic.h>
41 #include <linux/spinlock.h>
42 #include <linux/string.h>
43 #include <linux/sort.h>
44 #include <linux/kmod.h>
45 #include <linux/delayacct.h>
46 #include <linux/cgroupstats.h>
47 #include <linux/hash.h>
48 #include <linux/namei.h>
49 #include <linux/smp_lock.h>
50 #include <linux/pid_namespace.h>
52 #include <asm/atomic.h>
54 static DEFINE_MUTEX(cgroup_mutex
);
56 /* Generate an array of cgroup subsystem pointers */
57 #define SUBSYS(_x) &_x ## _subsys,
59 static struct cgroup_subsys
*subsys
[] = {
60 #include <linux/cgroup_subsys.h>
64 * A cgroupfs_root represents the root of a cgroup hierarchy,
65 * and may be associated with a superblock to form an active
68 struct cgroupfs_root
{
69 struct super_block
*sb
;
72 * The bitmask of subsystems intended to be attached to this
75 unsigned long subsys_bits
;
77 /* The bitmask of subsystems currently attached to this hierarchy */
78 unsigned long actual_subsys_bits
;
80 /* A list running through the attached subsystems */
81 struct list_head subsys_list
;
83 /* The root cgroup for this hierarchy */
84 struct cgroup top_cgroup
;
86 /* Tracks how many cgroups are currently defined in hierarchy.*/
87 int number_of_cgroups
;
89 /* A list running through the active hierarchies */
90 struct list_head root_list
;
92 /* Hierarchy-specific flags */
95 /* The path to use for release notifications. */
96 char release_agent_path
[PATH_MAX
];
100 * The "rootnode" hierarchy is the "dummy hierarchy", reserved for the
101 * subsystems that are otherwise unattached - it never has more than a
102 * single cgroup, and all tasks are part of that cgroup.
104 static struct cgroupfs_root rootnode
;
107 * CSS ID -- ID per subsys's Cgroup Subsys State(CSS). used only when
108 * cgroup_subsys->use_id != 0.
110 #define CSS_ID_MAX (65535)
113 * The css to which this ID points. This pointer is set to valid value
114 * after cgroup is populated. If cgroup is removed, this will be NULL.
115 * This pointer is expected to be RCU-safe because destroy()
116 * is called after synchronize_rcu(). But for safe use, css_is_removed()
117 * css_tryget() should be used for avoiding race.
119 struct cgroup_subsys_state
*css
;
125 * Depth in hierarchy which this ID belongs to.
127 unsigned short depth
;
129 * ID is freed by RCU. (and lookup routine is RCU safe.)
131 struct rcu_head rcu_head
;
133 * Hierarchy of CSS ID belongs to.
135 unsigned short stack
[0]; /* Array of Length (depth+1) */
139 /* The list of hierarchy roots */
141 static LIST_HEAD(roots
);
142 static int root_count
;
144 /* dummytop is a shorthand for the dummy hierarchy's top cgroup */
145 #define dummytop (&rootnode.top_cgroup)
147 /* This flag indicates whether tasks in the fork and exit paths should
148 * check for fork/exit handlers to call. This avoids us having to do
149 * extra work in the fork/exit path if none of the subsystems need to
152 static int need_forkexit_callback __read_mostly
;
154 /* convenient tests for these bits */
155 inline int cgroup_is_removed(const struct cgroup
*cgrp
)
157 return test_bit(CGRP_REMOVED
, &cgrp
->flags
);
160 /* bits in struct cgroupfs_root flags field */
162 ROOT_NOPREFIX
, /* mounted subsystems have no named prefix */
165 static int cgroup_is_releasable(const struct cgroup
*cgrp
)
168 (1 << CGRP_RELEASABLE
) |
169 (1 << CGRP_NOTIFY_ON_RELEASE
);
170 return (cgrp
->flags
& bits
) == bits
;
173 static int notify_on_release(const struct cgroup
*cgrp
)
175 return test_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
179 * for_each_subsys() allows you to iterate on each subsystem attached to
180 * an active hierarchy
182 #define for_each_subsys(_root, _ss) \
183 list_for_each_entry(_ss, &_root->subsys_list, sibling)
185 /* for_each_active_root() allows you to iterate across the active hierarchies */
186 #define for_each_active_root(_root) \
187 list_for_each_entry(_root, &roots, root_list)
189 /* the list of cgroups eligible for automatic release. Protected by
190 * release_list_lock */
191 static LIST_HEAD(release_list
);
192 static DEFINE_SPINLOCK(release_list_lock
);
193 static void cgroup_release_agent(struct work_struct
*work
);
194 static DECLARE_WORK(release_agent_work
, cgroup_release_agent
);
195 static void check_for_release(struct cgroup
*cgrp
);
197 /* Link structure for associating css_set objects with cgroups */
198 struct cg_cgroup_link
{
200 * List running through cg_cgroup_links associated with a
201 * cgroup, anchored on cgroup->css_sets
203 struct list_head cgrp_link_list
;
205 * List running through cg_cgroup_links pointing at a
206 * single css_set object, anchored on css_set->cg_links
208 struct list_head cg_link_list
;
212 /* The default css_set - used by init and its children prior to any
213 * hierarchies being mounted. It contains a pointer to the root state
214 * for each subsystem. Also used to anchor the list of css_sets. Not
215 * reference-counted, to improve performance when child cgroups
216 * haven't been created.
219 static struct css_set init_css_set
;
220 static struct cg_cgroup_link init_css_set_link
;
222 static int cgroup_subsys_init_idr(struct cgroup_subsys
*ss
);
224 /* css_set_lock protects the list of css_set objects, and the
225 * chain of tasks off each css_set. Nests outside task->alloc_lock
226 * due to cgroup_iter_start() */
227 static DEFINE_RWLOCK(css_set_lock
);
228 static int css_set_count
;
230 /* hash table for cgroup groups. This improves the performance to
231 * find an existing css_set */
232 #define CSS_SET_HASH_BITS 7
233 #define CSS_SET_TABLE_SIZE (1 << CSS_SET_HASH_BITS)
234 static struct hlist_head css_set_table
[CSS_SET_TABLE_SIZE
];
236 static struct hlist_head
*css_set_hash(struct cgroup_subsys_state
*css
[])
240 unsigned long tmp
= 0UL;
242 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++)
243 tmp
+= (unsigned long)css
[i
];
244 tmp
= (tmp
>> 16) ^ tmp
;
246 index
= hash_long(tmp
, CSS_SET_HASH_BITS
);
248 return &css_set_table
[index
];
251 /* We don't maintain the lists running through each css_set to its
252 * task until after the first call to cgroup_iter_start(). This
253 * reduces the fork()/exit() overhead for people who have cgroups
254 * compiled into their kernel but not actually in use */
255 static int use_task_css_set_links __read_mostly
;
257 /* When we create or destroy a css_set, the operation simply
258 * takes/releases a reference count on all the cgroups referenced
259 * by subsystems in this css_set. This can end up multiple-counting
260 * some cgroups, but that's OK - the ref-count is just a
261 * busy/not-busy indicator; ensuring that we only count each cgroup
262 * once would require taking a global lock to ensure that no
263 * subsystems moved between hierarchies while we were doing so.
265 * Possible TODO: decide at boot time based on the number of
266 * registered subsystems and the number of CPUs or NUMA nodes whether
267 * it's better for performance to ref-count every subsystem, or to
268 * take a global lock and only add one ref count to each hierarchy.
272 * unlink a css_set from the list and free it
274 static void unlink_css_set(struct css_set
*cg
)
276 struct cg_cgroup_link
*link
;
277 struct cg_cgroup_link
*saved_link
;
279 hlist_del(&cg
->hlist
);
282 list_for_each_entry_safe(link
, saved_link
, &cg
->cg_links
,
284 list_del(&link
->cg_link_list
);
285 list_del(&link
->cgrp_link_list
);
290 static void __put_css_set(struct css_set
*cg
, int taskexit
)
294 * Ensure that the refcount doesn't hit zero while any readers
295 * can see it. Similar to atomic_dec_and_lock(), but for an
298 if (atomic_add_unless(&cg
->refcount
, -1, 1))
300 write_lock(&css_set_lock
);
301 if (!atomic_dec_and_test(&cg
->refcount
)) {
302 write_unlock(&css_set_lock
);
306 write_unlock(&css_set_lock
);
309 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
310 struct cgroup
*cgrp
= rcu_dereference(cg
->subsys
[i
]->cgroup
);
311 if (atomic_dec_and_test(&cgrp
->count
) &&
312 notify_on_release(cgrp
)) {
314 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
315 check_for_release(cgrp
);
323 * refcounted get/put for css_set objects
325 static inline void get_css_set(struct css_set
*cg
)
327 atomic_inc(&cg
->refcount
);
330 static inline void put_css_set(struct css_set
*cg
)
332 __put_css_set(cg
, 0);
335 static inline void put_css_set_taskexit(struct css_set
*cg
)
337 __put_css_set(cg
, 1);
341 * find_existing_css_set() is a helper for
342 * find_css_set(), and checks to see whether an existing
343 * css_set is suitable.
345 * oldcg: the cgroup group that we're using before the cgroup
348 * cgrp: the cgroup that we're moving into
350 * template: location in which to build the desired set of subsystem
351 * state objects for the new cgroup group
353 static struct css_set
*find_existing_css_set(
354 struct css_set
*oldcg
,
356 struct cgroup_subsys_state
*template[])
359 struct cgroupfs_root
*root
= cgrp
->root
;
360 struct hlist_head
*hhead
;
361 struct hlist_node
*node
;
364 /* Built the set of subsystem state objects that we want to
365 * see in the new css_set */
366 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
367 if (root
->subsys_bits
& (1UL << i
)) {
368 /* Subsystem is in this hierarchy. So we want
369 * the subsystem state from the new
371 template[i
] = cgrp
->subsys
[i
];
373 /* Subsystem is not in this hierarchy, so we
374 * don't want to change the subsystem state */
375 template[i
] = oldcg
->subsys
[i
];
379 hhead
= css_set_hash(template);
380 hlist_for_each_entry(cg
, node
, hhead
, hlist
) {
381 if (!memcmp(template, cg
->subsys
, sizeof(cg
->subsys
))) {
382 /* All subsystems matched */
387 /* No existing cgroup group matched */
391 static void free_cg_links(struct list_head
*tmp
)
393 struct cg_cgroup_link
*link
;
394 struct cg_cgroup_link
*saved_link
;
396 list_for_each_entry_safe(link
, saved_link
, tmp
, cgrp_link_list
) {
397 list_del(&link
->cgrp_link_list
);
403 * allocate_cg_links() allocates "count" cg_cgroup_link structures
404 * and chains them on tmp through their cgrp_link_list fields. Returns 0 on
405 * success or a negative error
407 static int allocate_cg_links(int count
, struct list_head
*tmp
)
409 struct cg_cgroup_link
*link
;
412 for (i
= 0; i
< count
; i
++) {
413 link
= kmalloc(sizeof(*link
), GFP_KERNEL
);
418 list_add(&link
->cgrp_link_list
, tmp
);
424 * link_css_set - a helper function to link a css_set to a cgroup
425 * @tmp_cg_links: cg_cgroup_link objects allocated by allocate_cg_links()
426 * @cg: the css_set to be linked
427 * @cgrp: the destination cgroup
429 static void link_css_set(struct list_head
*tmp_cg_links
,
430 struct css_set
*cg
, struct cgroup
*cgrp
)
432 struct cg_cgroup_link
*link
;
434 BUG_ON(list_empty(tmp_cg_links
));
435 link
= list_first_entry(tmp_cg_links
, struct cg_cgroup_link
,
438 list_move(&link
->cgrp_link_list
, &cgrp
->css_sets
);
439 list_add(&link
->cg_link_list
, &cg
->cg_links
);
443 * find_css_set() takes an existing cgroup group and a
444 * cgroup object, and returns a css_set object that's
445 * equivalent to the old group, but with the given cgroup
446 * substituted into the appropriate hierarchy. Must be called with
449 static struct css_set
*find_css_set(
450 struct css_set
*oldcg
, struct cgroup
*cgrp
)
453 struct cgroup_subsys_state
*template[CGROUP_SUBSYS_COUNT
];
456 struct list_head tmp_cg_links
;
458 struct hlist_head
*hhead
;
460 /* First see if we already have a cgroup group that matches
462 read_lock(&css_set_lock
);
463 res
= find_existing_css_set(oldcg
, cgrp
, template);
466 read_unlock(&css_set_lock
);
471 res
= kmalloc(sizeof(*res
), GFP_KERNEL
);
475 /* Allocate all the cg_cgroup_link objects that we'll need */
476 if (allocate_cg_links(root_count
, &tmp_cg_links
) < 0) {
481 atomic_set(&res
->refcount
, 1);
482 INIT_LIST_HEAD(&res
->cg_links
);
483 INIT_LIST_HEAD(&res
->tasks
);
484 INIT_HLIST_NODE(&res
->hlist
);
486 /* Copy the set of subsystem state objects generated in
487 * find_existing_css_set() */
488 memcpy(res
->subsys
, template, sizeof(res
->subsys
));
490 write_lock(&css_set_lock
);
491 /* Add reference counts and links from the new css_set. */
492 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
493 struct cgroup
*cgrp
= res
->subsys
[i
]->cgroup
;
494 struct cgroup_subsys
*ss
= subsys
[i
];
495 atomic_inc(&cgrp
->count
);
497 * We want to add a link once per cgroup, so we
498 * only do it for the first subsystem in each
501 if (ss
->root
->subsys_list
.next
== &ss
->sibling
)
502 link_css_set(&tmp_cg_links
, res
, cgrp
);
504 if (list_empty(&rootnode
.subsys_list
))
505 link_css_set(&tmp_cg_links
, res
, dummytop
);
507 BUG_ON(!list_empty(&tmp_cg_links
));
511 /* Add this cgroup group to the hash table */
512 hhead
= css_set_hash(res
->subsys
);
513 hlist_add_head(&res
->hlist
, hhead
);
515 write_unlock(&css_set_lock
);
521 * There is one global cgroup mutex. We also require taking
522 * task_lock() when dereferencing a task's cgroup subsys pointers.
523 * See "The task_lock() exception", at the end of this comment.
525 * A task must hold cgroup_mutex to modify cgroups.
527 * Any task can increment and decrement the count field without lock.
528 * So in general, code holding cgroup_mutex can't rely on the count
529 * field not changing. However, if the count goes to zero, then only
530 * cgroup_attach_task() can increment it again. Because a count of zero
531 * means that no tasks are currently attached, therefore there is no
532 * way a task attached to that cgroup can fork (the other way to
533 * increment the count). So code holding cgroup_mutex can safely
534 * assume that if the count is zero, it will stay zero. Similarly, if
535 * a task holds cgroup_mutex on a cgroup with zero count, it
536 * knows that the cgroup won't be removed, as cgroup_rmdir()
539 * The fork and exit callbacks cgroup_fork() and cgroup_exit(), don't
540 * (usually) take cgroup_mutex. These are the two most performance
541 * critical pieces of code here. The exception occurs on cgroup_exit(),
542 * when a task in a notify_on_release cgroup exits. Then cgroup_mutex
543 * is taken, and if the cgroup count is zero, a usermode call made
544 * to the release agent with the name of the cgroup (path relative to
545 * the root of cgroup file system) as the argument.
547 * A cgroup can only be deleted if both its 'count' of using tasks
548 * is zero, and its list of 'children' cgroups is empty. Since all
549 * tasks in the system use _some_ cgroup, and since there is always at
550 * least one task in the system (init, pid == 1), therefore, top_cgroup
551 * always has either children cgroups and/or using tasks. So we don't
552 * need a special hack to ensure that top_cgroup cannot be deleted.
554 * The task_lock() exception
556 * The need for this exception arises from the action of
557 * cgroup_attach_task(), which overwrites one tasks cgroup pointer with
558 * another. It does so using cgroup_mutex, however there are
559 * several performance critical places that need to reference
560 * task->cgroup without the expense of grabbing a system global
561 * mutex. Therefore except as noted below, when dereferencing or, as
562 * in cgroup_attach_task(), modifying a task'ss cgroup pointer we use
563 * task_lock(), which acts on a spinlock (task->alloc_lock) already in
564 * the task_struct routinely used for such matters.
566 * P.S. One more locking exception. RCU is used to guard the
567 * update of a tasks cgroup pointer by cgroup_attach_task()
571 * cgroup_lock - lock out any changes to cgroup structures
574 void cgroup_lock(void)
576 mutex_lock(&cgroup_mutex
);
580 * cgroup_unlock - release lock on cgroup changes
582 * Undo the lock taken in a previous cgroup_lock() call.
584 void cgroup_unlock(void)
586 mutex_unlock(&cgroup_mutex
);
590 * A couple of forward declarations required, due to cyclic reference loop:
591 * cgroup_mkdir -> cgroup_create -> cgroup_populate_dir ->
592 * cgroup_add_file -> cgroup_create_file -> cgroup_dir_inode_operations
596 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
);
597 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
);
598 static int cgroup_populate_dir(struct cgroup
*cgrp
);
599 static struct inode_operations cgroup_dir_inode_operations
;
600 static struct file_operations proc_cgroupstats_operations
;
602 static struct backing_dev_info cgroup_backing_dev_info
= {
603 .capabilities
= BDI_CAP_NO_ACCT_AND_WRITEBACK
,
606 static int alloc_css_id(struct cgroup_subsys
*ss
,
607 struct cgroup
*parent
, struct cgroup
*child
);
609 static struct inode
*cgroup_new_inode(mode_t mode
, struct super_block
*sb
)
611 struct inode
*inode
= new_inode(sb
);
614 inode
->i_mode
= mode
;
615 inode
->i_uid
= current_fsuid();
616 inode
->i_gid
= current_fsgid();
617 inode
->i_atime
= inode
->i_mtime
= inode
->i_ctime
= CURRENT_TIME
;
618 inode
->i_mapping
->backing_dev_info
= &cgroup_backing_dev_info
;
624 * Call subsys's pre_destroy handler.
625 * This is called before css refcnt check.
627 static int cgroup_call_pre_destroy(struct cgroup
*cgrp
)
629 struct cgroup_subsys
*ss
;
632 for_each_subsys(cgrp
->root
, ss
)
633 if (ss
->pre_destroy
) {
634 ret
= ss
->pre_destroy(ss
, cgrp
);
641 static void free_cgroup_rcu(struct rcu_head
*obj
)
643 struct cgroup
*cgrp
= container_of(obj
, struct cgroup
, rcu_head
);
648 static void cgroup_diput(struct dentry
*dentry
, struct inode
*inode
)
650 /* is dentry a directory ? if so, kfree() associated cgroup */
651 if (S_ISDIR(inode
->i_mode
)) {
652 struct cgroup
*cgrp
= dentry
->d_fsdata
;
653 struct cgroup_subsys
*ss
;
654 BUG_ON(!(cgroup_is_removed(cgrp
)));
655 /* It's possible for external users to be holding css
656 * reference counts on a cgroup; css_put() needs to
657 * be able to access the cgroup after decrementing
658 * the reference count in order to know if it needs to
659 * queue the cgroup to be handled by the release
663 mutex_lock(&cgroup_mutex
);
665 * Release the subsystem state objects.
667 for_each_subsys(cgrp
->root
, ss
)
668 ss
->destroy(ss
, cgrp
);
670 cgrp
->root
->number_of_cgroups
--;
671 mutex_unlock(&cgroup_mutex
);
674 * Drop the active superblock reference that we took when we
677 deactivate_super(cgrp
->root
->sb
);
679 call_rcu(&cgrp
->rcu_head
, free_cgroup_rcu
);
684 static void remove_dir(struct dentry
*d
)
686 struct dentry
*parent
= dget(d
->d_parent
);
689 simple_rmdir(parent
->d_inode
, d
);
693 static void cgroup_clear_directory(struct dentry
*dentry
)
695 struct list_head
*node
;
697 BUG_ON(!mutex_is_locked(&dentry
->d_inode
->i_mutex
));
698 spin_lock(&dcache_lock
);
699 node
= dentry
->d_subdirs
.next
;
700 while (node
!= &dentry
->d_subdirs
) {
701 struct dentry
*d
= list_entry(node
, struct dentry
, d_u
.d_child
);
704 /* This should never be called on a cgroup
705 * directory with child cgroups */
706 BUG_ON(d
->d_inode
->i_mode
& S_IFDIR
);
708 spin_unlock(&dcache_lock
);
710 simple_unlink(dentry
->d_inode
, d
);
712 spin_lock(&dcache_lock
);
714 node
= dentry
->d_subdirs
.next
;
716 spin_unlock(&dcache_lock
);
720 * NOTE : the dentry must have been dget()'ed
722 static void cgroup_d_remove_dir(struct dentry
*dentry
)
724 cgroup_clear_directory(dentry
);
726 spin_lock(&dcache_lock
);
727 list_del_init(&dentry
->d_u
.d_child
);
728 spin_unlock(&dcache_lock
);
733 * A queue for waiters to do rmdir() cgroup. A tasks will sleep when
734 * cgroup->count == 0 && list_empty(&cgroup->children) && subsys has some
735 * reference to css->refcnt. In general, this refcnt is expected to goes down
738 * CGRP_WAIT_ON_RMDIR flag is set under cgroup's inode->i_mutex;
740 DECLARE_WAIT_QUEUE_HEAD(cgroup_rmdir_waitq
);
742 static void cgroup_wakeup_rmdir_waiter(struct cgroup
*cgrp
)
744 if (unlikely(test_and_clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
)))
745 wake_up_all(&cgroup_rmdir_waitq
);
748 void cgroup_exclude_rmdir(struct cgroup_subsys_state
*css
)
753 void cgroup_release_and_wakeup_rmdir(struct cgroup_subsys_state
*css
)
755 cgroup_wakeup_rmdir_waiter(css
->cgroup
);
760 static int rebind_subsystems(struct cgroupfs_root
*root
,
761 unsigned long final_bits
)
763 unsigned long added_bits
, removed_bits
;
764 struct cgroup
*cgrp
= &root
->top_cgroup
;
767 removed_bits
= root
->actual_subsys_bits
& ~final_bits
;
768 added_bits
= final_bits
& ~root
->actual_subsys_bits
;
769 /* Check that any added subsystems are currently free */
770 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
771 unsigned long bit
= 1UL << i
;
772 struct cgroup_subsys
*ss
= subsys
[i
];
773 if (!(bit
& added_bits
))
775 if (ss
->root
!= &rootnode
) {
776 /* Subsystem isn't free */
781 /* Currently we don't handle adding/removing subsystems when
782 * any child cgroups exist. This is theoretically supportable
783 * but involves complex error handling, so it's being left until
785 if (root
->number_of_cgroups
> 1)
788 /* Process each subsystem */
789 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
790 struct cgroup_subsys
*ss
= subsys
[i
];
791 unsigned long bit
= 1UL << i
;
792 if (bit
& added_bits
) {
793 /* We're binding this subsystem to this hierarchy */
794 BUG_ON(cgrp
->subsys
[i
]);
795 BUG_ON(!dummytop
->subsys
[i
]);
796 BUG_ON(dummytop
->subsys
[i
]->cgroup
!= dummytop
);
797 mutex_lock(&ss
->hierarchy_mutex
);
798 cgrp
->subsys
[i
] = dummytop
->subsys
[i
];
799 cgrp
->subsys
[i
]->cgroup
= cgrp
;
800 list_move(&ss
->sibling
, &root
->subsys_list
);
804 mutex_unlock(&ss
->hierarchy_mutex
);
805 } else if (bit
& removed_bits
) {
806 /* We're removing this subsystem */
807 BUG_ON(cgrp
->subsys
[i
] != dummytop
->subsys
[i
]);
808 BUG_ON(cgrp
->subsys
[i
]->cgroup
!= cgrp
);
809 mutex_lock(&ss
->hierarchy_mutex
);
811 ss
->bind(ss
, dummytop
);
812 dummytop
->subsys
[i
]->cgroup
= dummytop
;
813 cgrp
->subsys
[i
] = NULL
;
814 subsys
[i
]->root
= &rootnode
;
815 list_move(&ss
->sibling
, &rootnode
.subsys_list
);
816 mutex_unlock(&ss
->hierarchy_mutex
);
817 } else if (bit
& final_bits
) {
818 /* Subsystem state should already exist */
819 BUG_ON(!cgrp
->subsys
[i
]);
821 /* Subsystem state shouldn't exist */
822 BUG_ON(cgrp
->subsys
[i
]);
825 root
->subsys_bits
= root
->actual_subsys_bits
= final_bits
;
831 static int cgroup_show_options(struct seq_file
*seq
, struct vfsmount
*vfs
)
833 struct cgroupfs_root
*root
= vfs
->mnt_sb
->s_fs_info
;
834 struct cgroup_subsys
*ss
;
836 mutex_lock(&cgroup_mutex
);
837 for_each_subsys(root
, ss
)
838 seq_printf(seq
, ",%s", ss
->name
);
839 if (test_bit(ROOT_NOPREFIX
, &root
->flags
))
840 seq_puts(seq
, ",noprefix");
841 if (strlen(root
->release_agent_path
))
842 seq_printf(seq
, ",release_agent=%s", root
->release_agent_path
);
843 mutex_unlock(&cgroup_mutex
);
847 struct cgroup_sb_opts
{
848 unsigned long subsys_bits
;
853 /* Convert a hierarchy specifier into a bitmask of subsystems and
855 static int parse_cgroupfs_options(char *data
,
856 struct cgroup_sb_opts
*opts
)
858 char *token
, *o
= data
?: "all";
859 unsigned long mask
= (unsigned long)-1;
861 #ifdef CONFIG_CPUSETS
862 mask
= ~(1UL << cpuset_subsys_id
);
865 opts
->subsys_bits
= 0;
867 opts
->release_agent
= NULL
;
869 while ((token
= strsep(&o
, ",")) != NULL
) {
872 if (!strcmp(token
, "all")) {
873 /* Add all non-disabled subsystems */
875 opts
->subsys_bits
= 0;
876 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
877 struct cgroup_subsys
*ss
= subsys
[i
];
879 opts
->subsys_bits
|= 1ul << i
;
881 } else if (!strcmp(token
, "noprefix")) {
882 set_bit(ROOT_NOPREFIX
, &opts
->flags
);
883 } else if (!strncmp(token
, "release_agent=", 14)) {
884 /* Specifying two release agents is forbidden */
885 if (opts
->release_agent
)
887 opts
->release_agent
= kzalloc(PATH_MAX
, GFP_KERNEL
);
888 if (!opts
->release_agent
)
890 strncpy(opts
->release_agent
, token
+ 14, PATH_MAX
- 1);
891 opts
->release_agent
[PATH_MAX
- 1] = 0;
893 struct cgroup_subsys
*ss
;
895 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
897 if (!strcmp(token
, ss
->name
)) {
899 set_bit(i
, &opts
->subsys_bits
);
903 if (i
== CGROUP_SUBSYS_COUNT
)
909 * Option noprefix was introduced just for backward compatibility
910 * with the old cpuset, so we allow noprefix only if mounting just
911 * the cpuset subsystem.
913 if (test_bit(ROOT_NOPREFIX
, &opts
->flags
) &&
914 (opts
->subsys_bits
& mask
))
917 /* We can't have an empty hierarchy */
918 if (!opts
->subsys_bits
)
924 static int cgroup_remount(struct super_block
*sb
, int *flags
, char *data
)
927 struct cgroupfs_root
*root
= sb
->s_fs_info
;
928 struct cgroup
*cgrp
= &root
->top_cgroup
;
929 struct cgroup_sb_opts opts
;
932 mutex_lock(&cgrp
->dentry
->d_inode
->i_mutex
);
933 mutex_lock(&cgroup_mutex
);
935 /* See what subsystems are wanted */
936 ret
= parse_cgroupfs_options(data
, &opts
);
940 /* Don't allow flags to change at remount */
941 if (opts
.flags
!= root
->flags
) {
946 ret
= rebind_subsystems(root
, opts
.subsys_bits
);
950 /* (re)populate subsystem files */
951 cgroup_populate_dir(cgrp
);
953 if (opts
.release_agent
)
954 strcpy(root
->release_agent_path
, opts
.release_agent
);
956 kfree(opts
.release_agent
);
957 mutex_unlock(&cgroup_mutex
);
958 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
963 static struct super_operations cgroup_ops
= {
964 .statfs
= simple_statfs
,
965 .drop_inode
= generic_delete_inode
,
966 .show_options
= cgroup_show_options
,
967 .remount_fs
= cgroup_remount
,
970 static void init_cgroup_housekeeping(struct cgroup
*cgrp
)
972 INIT_LIST_HEAD(&cgrp
->sibling
);
973 INIT_LIST_HEAD(&cgrp
->children
);
974 INIT_LIST_HEAD(&cgrp
->css_sets
);
975 INIT_LIST_HEAD(&cgrp
->release_list
);
976 INIT_LIST_HEAD(&cgrp
->pids_list
);
977 init_rwsem(&cgrp
->pids_mutex
);
979 static void init_cgroup_root(struct cgroupfs_root
*root
)
981 struct cgroup
*cgrp
= &root
->top_cgroup
;
982 INIT_LIST_HEAD(&root
->subsys_list
);
983 INIT_LIST_HEAD(&root
->root_list
);
984 root
->number_of_cgroups
= 1;
986 cgrp
->top_cgroup
= cgrp
;
987 init_cgroup_housekeeping(cgrp
);
990 static int cgroup_test_super(struct super_block
*sb
, void *data
)
992 struct cgroupfs_root
*new = data
;
993 struct cgroupfs_root
*root
= sb
->s_fs_info
;
995 /* First check subsystems */
996 if (new->subsys_bits
!= root
->subsys_bits
)
999 /* Next check flags */
1000 if (new->flags
!= root
->flags
)
1006 static int cgroup_set_super(struct super_block
*sb
, void *data
)
1009 struct cgroupfs_root
*root
= data
;
1011 ret
= set_anon_super(sb
, NULL
);
1015 sb
->s_fs_info
= root
;
1018 sb
->s_blocksize
= PAGE_CACHE_SIZE
;
1019 sb
->s_blocksize_bits
= PAGE_CACHE_SHIFT
;
1020 sb
->s_magic
= CGROUP_SUPER_MAGIC
;
1021 sb
->s_op
= &cgroup_ops
;
1026 static int cgroup_get_rootdir(struct super_block
*sb
)
1028 struct inode
*inode
=
1029 cgroup_new_inode(S_IFDIR
| S_IRUGO
| S_IXUGO
| S_IWUSR
, sb
);
1030 struct dentry
*dentry
;
1035 inode
->i_fop
= &simple_dir_operations
;
1036 inode
->i_op
= &cgroup_dir_inode_operations
;
1037 /* directories start off with i_nlink == 2 (for "." entry) */
1039 dentry
= d_alloc_root(inode
);
1044 sb
->s_root
= dentry
;
1048 static int cgroup_get_sb(struct file_system_type
*fs_type
,
1049 int flags
, const char *unused_dev_name
,
1050 void *data
, struct vfsmount
*mnt
)
1052 struct cgroup_sb_opts opts
;
1054 struct super_block
*sb
;
1055 struct cgroupfs_root
*root
;
1056 struct list_head tmp_cg_links
;
1058 /* First find the desired set of subsystems */
1059 ret
= parse_cgroupfs_options(data
, &opts
);
1061 kfree(opts
.release_agent
);
1065 root
= kzalloc(sizeof(*root
), GFP_KERNEL
);
1067 kfree(opts
.release_agent
);
1071 init_cgroup_root(root
);
1072 root
->subsys_bits
= opts
.subsys_bits
;
1073 root
->flags
= opts
.flags
;
1074 if (opts
.release_agent
) {
1075 strcpy(root
->release_agent_path
, opts
.release_agent
);
1076 kfree(opts
.release_agent
);
1079 sb
= sget(fs_type
, cgroup_test_super
, cgroup_set_super
, root
);
1086 if (sb
->s_fs_info
!= root
) {
1087 /* Reusing an existing superblock */
1088 BUG_ON(sb
->s_root
== NULL
);
1092 /* New superblock */
1093 struct cgroup
*root_cgrp
= &root
->top_cgroup
;
1094 struct inode
*inode
;
1097 BUG_ON(sb
->s_root
!= NULL
);
1099 ret
= cgroup_get_rootdir(sb
);
1101 goto drop_new_super
;
1102 inode
= sb
->s_root
->d_inode
;
1104 mutex_lock(&inode
->i_mutex
);
1105 mutex_lock(&cgroup_mutex
);
1108 * We're accessing css_set_count without locking
1109 * css_set_lock here, but that's OK - it can only be
1110 * increased by someone holding cgroup_lock, and
1111 * that's us. The worst that can happen is that we
1112 * have some link structures left over
1114 ret
= allocate_cg_links(css_set_count
, &tmp_cg_links
);
1116 mutex_unlock(&cgroup_mutex
);
1117 mutex_unlock(&inode
->i_mutex
);
1118 goto drop_new_super
;
1121 ret
= rebind_subsystems(root
, root
->subsys_bits
);
1122 if (ret
== -EBUSY
) {
1123 mutex_unlock(&cgroup_mutex
);
1124 mutex_unlock(&inode
->i_mutex
);
1128 /* EBUSY should be the only error here */
1131 list_add(&root
->root_list
, &roots
);
1134 sb
->s_root
->d_fsdata
= root_cgrp
;
1135 root
->top_cgroup
.dentry
= sb
->s_root
;
1137 /* Link the top cgroup in this hierarchy into all
1138 * the css_set objects */
1139 write_lock(&css_set_lock
);
1140 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++) {
1141 struct hlist_head
*hhead
= &css_set_table
[i
];
1142 struct hlist_node
*node
;
1145 hlist_for_each_entry(cg
, node
, hhead
, hlist
)
1146 link_css_set(&tmp_cg_links
, cg
, root_cgrp
);
1148 write_unlock(&css_set_lock
);
1150 free_cg_links(&tmp_cg_links
);
1152 BUG_ON(!list_empty(&root_cgrp
->sibling
));
1153 BUG_ON(!list_empty(&root_cgrp
->children
));
1154 BUG_ON(root
->number_of_cgroups
!= 1);
1156 cgroup_populate_dir(root_cgrp
);
1157 mutex_unlock(&inode
->i_mutex
);
1158 mutex_unlock(&cgroup_mutex
);
1161 simple_set_mnt(mnt
, sb
);
1165 free_cg_links(&tmp_cg_links
);
1167 deactivate_locked_super(sb
);
1171 static void cgroup_kill_sb(struct super_block
*sb
) {
1172 struct cgroupfs_root
*root
= sb
->s_fs_info
;
1173 struct cgroup
*cgrp
= &root
->top_cgroup
;
1175 struct cg_cgroup_link
*link
;
1176 struct cg_cgroup_link
*saved_link
;
1180 BUG_ON(root
->number_of_cgroups
!= 1);
1181 BUG_ON(!list_empty(&cgrp
->children
));
1182 BUG_ON(!list_empty(&cgrp
->sibling
));
1184 mutex_lock(&cgroup_mutex
);
1186 /* Rebind all subsystems back to the default hierarchy */
1187 ret
= rebind_subsystems(root
, 0);
1188 /* Shouldn't be able to fail ... */
1192 * Release all the links from css_sets to this hierarchy's
1195 write_lock(&css_set_lock
);
1197 list_for_each_entry_safe(link
, saved_link
, &cgrp
->css_sets
,
1199 list_del(&link
->cg_link_list
);
1200 list_del(&link
->cgrp_link_list
);
1203 write_unlock(&css_set_lock
);
1205 if (!list_empty(&root
->root_list
)) {
1206 list_del(&root
->root_list
);
1210 mutex_unlock(&cgroup_mutex
);
1212 kill_litter_super(sb
);
1216 static struct file_system_type cgroup_fs_type
= {
1218 .get_sb
= cgroup_get_sb
,
1219 .kill_sb
= cgroup_kill_sb
,
1222 static inline struct cgroup
*__d_cgrp(struct dentry
*dentry
)
1224 return dentry
->d_fsdata
;
1227 static inline struct cftype
*__d_cft(struct dentry
*dentry
)
1229 return dentry
->d_fsdata
;
1233 * cgroup_path - generate the path of a cgroup
1234 * @cgrp: the cgroup in question
1235 * @buf: the buffer to write the path into
1236 * @buflen: the length of the buffer
1238 * Called with cgroup_mutex held or else with an RCU-protected cgroup
1239 * reference. Writes path of cgroup into buf. Returns 0 on success,
1242 int cgroup_path(const struct cgroup
*cgrp
, char *buf
, int buflen
)
1245 struct dentry
*dentry
= rcu_dereference(cgrp
->dentry
);
1247 if (!dentry
|| cgrp
== dummytop
) {
1249 * Inactive subsystems have no dentry for their root
1256 start
= buf
+ buflen
;
1260 int len
= dentry
->d_name
.len
;
1261 if ((start
-= len
) < buf
)
1262 return -ENAMETOOLONG
;
1263 memcpy(start
, cgrp
->dentry
->d_name
.name
, len
);
1264 cgrp
= cgrp
->parent
;
1267 dentry
= rcu_dereference(cgrp
->dentry
);
1271 return -ENAMETOOLONG
;
1274 memmove(buf
, start
, buf
+ buflen
- start
);
1279 * Return the first subsystem attached to a cgroup's hierarchy, and
1283 static void get_first_subsys(const struct cgroup
*cgrp
,
1284 struct cgroup_subsys_state
**css
, int *subsys_id
)
1286 const struct cgroupfs_root
*root
= cgrp
->root
;
1287 const struct cgroup_subsys
*test_ss
;
1288 BUG_ON(list_empty(&root
->subsys_list
));
1289 test_ss
= list_entry(root
->subsys_list
.next
,
1290 struct cgroup_subsys
, sibling
);
1292 *css
= cgrp
->subsys
[test_ss
->subsys_id
];
1296 *subsys_id
= test_ss
->subsys_id
;
1300 * cgroup_attach_task - attach task 'tsk' to cgroup 'cgrp'
1301 * @cgrp: the cgroup the task is attaching to
1302 * @tsk: the task to be attached
1304 * Call holding cgroup_mutex. May take task_lock of
1305 * the task 'tsk' during call.
1307 int cgroup_attach_task(struct cgroup
*cgrp
, struct task_struct
*tsk
)
1310 struct cgroup_subsys
*ss
;
1311 struct cgroup
*oldcgrp
;
1313 struct css_set
*newcg
;
1314 struct cgroupfs_root
*root
= cgrp
->root
;
1317 get_first_subsys(cgrp
, NULL
, &subsys_id
);
1319 /* Nothing to do if the task is already in that cgroup */
1320 oldcgrp
= task_cgroup(tsk
, subsys_id
);
1321 if (cgrp
== oldcgrp
)
1324 for_each_subsys(root
, ss
) {
1325 if (ss
->can_attach
) {
1326 retval
= ss
->can_attach(ss
, cgrp
, tsk
);
1337 * Locate or allocate a new css_set for this task,
1338 * based on its final set of cgroups
1340 newcg
= find_css_set(cg
, cgrp
);
1346 if (tsk
->flags
& PF_EXITING
) {
1351 rcu_assign_pointer(tsk
->cgroups
, newcg
);
1354 /* Update the css_set linked lists if we're using them */
1355 write_lock(&css_set_lock
);
1356 if (!list_empty(&tsk
->cg_list
)) {
1357 list_del(&tsk
->cg_list
);
1358 list_add(&tsk
->cg_list
, &newcg
->tasks
);
1360 write_unlock(&css_set_lock
);
1362 for_each_subsys(root
, ss
) {
1364 ss
->attach(ss
, cgrp
, oldcgrp
, tsk
);
1366 set_bit(CGRP_RELEASABLE
, &oldcgrp
->flags
);
1371 * wake up rmdir() waiter. the rmdir should fail since the cgroup
1372 * is no longer empty.
1374 cgroup_wakeup_rmdir_waiter(cgrp
);
1379 * Attach task with pid 'pid' to cgroup 'cgrp'. Call with cgroup_mutex
1380 * held. May take task_lock of task
1382 static int attach_task_by_pid(struct cgroup
*cgrp
, u64 pid
)
1384 struct task_struct
*tsk
;
1385 const struct cred
*cred
= current_cred(), *tcred
;
1390 tsk
= find_task_by_vpid(pid
);
1391 if (!tsk
|| tsk
->flags
& PF_EXITING
) {
1396 tcred
= __task_cred(tsk
);
1398 cred
->euid
!= tcred
->uid
&&
1399 cred
->euid
!= tcred
->suid
) {
1403 get_task_struct(tsk
);
1407 get_task_struct(tsk
);
1410 ret
= cgroup_attach_task(cgrp
, tsk
);
1411 put_task_struct(tsk
);
1415 static int cgroup_tasks_write(struct cgroup
*cgrp
, struct cftype
*cft
, u64 pid
)
1418 if (!cgroup_lock_live_group(cgrp
))
1420 ret
= attach_task_by_pid(cgrp
, pid
);
1425 /* The various types of files and directories in a cgroup file system */
1426 enum cgroup_filetype
{
1430 FILE_NOTIFY_ON_RELEASE
,
1435 * cgroup_lock_live_group - take cgroup_mutex and check that cgrp is alive.
1436 * @cgrp: the cgroup to be checked for liveness
1438 * On success, returns true; the lock should be later released with
1439 * cgroup_unlock(). On failure returns false with no lock held.
1441 bool cgroup_lock_live_group(struct cgroup
*cgrp
)
1443 mutex_lock(&cgroup_mutex
);
1444 if (cgroup_is_removed(cgrp
)) {
1445 mutex_unlock(&cgroup_mutex
);
1451 static int cgroup_release_agent_write(struct cgroup
*cgrp
, struct cftype
*cft
,
1454 BUILD_BUG_ON(sizeof(cgrp
->root
->release_agent_path
) < PATH_MAX
);
1455 if (!cgroup_lock_live_group(cgrp
))
1457 strcpy(cgrp
->root
->release_agent_path
, buffer
);
1462 static int cgroup_release_agent_show(struct cgroup
*cgrp
, struct cftype
*cft
,
1463 struct seq_file
*seq
)
1465 if (!cgroup_lock_live_group(cgrp
))
1467 seq_puts(seq
, cgrp
->root
->release_agent_path
);
1468 seq_putc(seq
, '\n');
1473 /* A buffer size big enough for numbers or short strings */
1474 #define CGROUP_LOCAL_BUFFER_SIZE 64
1476 static ssize_t
cgroup_write_X64(struct cgroup
*cgrp
, struct cftype
*cft
,
1478 const char __user
*userbuf
,
1479 size_t nbytes
, loff_t
*unused_ppos
)
1481 char buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
1487 if (nbytes
>= sizeof(buffer
))
1489 if (copy_from_user(buffer
, userbuf
, nbytes
))
1492 buffer
[nbytes
] = 0; /* nul-terminate */
1494 if (cft
->write_u64
) {
1495 u64 val
= simple_strtoull(buffer
, &end
, 0);
1498 retval
= cft
->write_u64(cgrp
, cft
, val
);
1500 s64 val
= simple_strtoll(buffer
, &end
, 0);
1503 retval
= cft
->write_s64(cgrp
, cft
, val
);
1510 static ssize_t
cgroup_write_string(struct cgroup
*cgrp
, struct cftype
*cft
,
1512 const char __user
*userbuf
,
1513 size_t nbytes
, loff_t
*unused_ppos
)
1515 char local_buffer
[CGROUP_LOCAL_BUFFER_SIZE
];
1517 size_t max_bytes
= cft
->max_write_len
;
1518 char *buffer
= local_buffer
;
1521 max_bytes
= sizeof(local_buffer
) - 1;
1522 if (nbytes
>= max_bytes
)
1524 /* Allocate a dynamic buffer if we need one */
1525 if (nbytes
>= sizeof(local_buffer
)) {
1526 buffer
= kmalloc(nbytes
+ 1, GFP_KERNEL
);
1530 if (nbytes
&& copy_from_user(buffer
, userbuf
, nbytes
)) {
1535 buffer
[nbytes
] = 0; /* nul-terminate */
1537 retval
= cft
->write_string(cgrp
, cft
, buffer
);
1541 if (buffer
!= local_buffer
)
1546 static ssize_t
cgroup_file_write(struct file
*file
, const char __user
*buf
,
1547 size_t nbytes
, loff_t
*ppos
)
1549 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1550 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
1552 if (cgroup_is_removed(cgrp
))
1555 return cft
->write(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1556 if (cft
->write_u64
|| cft
->write_s64
)
1557 return cgroup_write_X64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1558 if (cft
->write_string
)
1559 return cgroup_write_string(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1561 int ret
= cft
->trigger(cgrp
, (unsigned int)cft
->private);
1562 return ret
? ret
: nbytes
;
1567 static ssize_t
cgroup_read_u64(struct cgroup
*cgrp
, struct cftype
*cft
,
1569 char __user
*buf
, size_t nbytes
,
1572 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
1573 u64 val
= cft
->read_u64(cgrp
, cft
);
1574 int len
= sprintf(tmp
, "%llu\n", (unsigned long long) val
);
1576 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
1579 static ssize_t
cgroup_read_s64(struct cgroup
*cgrp
, struct cftype
*cft
,
1581 char __user
*buf
, size_t nbytes
,
1584 char tmp
[CGROUP_LOCAL_BUFFER_SIZE
];
1585 s64 val
= cft
->read_s64(cgrp
, cft
);
1586 int len
= sprintf(tmp
, "%lld\n", (long long) val
);
1588 return simple_read_from_buffer(buf
, nbytes
, ppos
, tmp
, len
);
1591 static ssize_t
cgroup_file_read(struct file
*file
, char __user
*buf
,
1592 size_t nbytes
, loff_t
*ppos
)
1594 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1595 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
1597 if (cgroup_is_removed(cgrp
))
1601 return cft
->read(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1603 return cgroup_read_u64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1605 return cgroup_read_s64(cgrp
, cft
, file
, buf
, nbytes
, ppos
);
1610 * seqfile ops/methods for returning structured data. Currently just
1611 * supports string->u64 maps, but can be extended in future.
1614 struct cgroup_seqfile_state
{
1616 struct cgroup
*cgroup
;
1619 static int cgroup_map_add(struct cgroup_map_cb
*cb
, const char *key
, u64 value
)
1621 struct seq_file
*sf
= cb
->state
;
1622 return seq_printf(sf
, "%s %llu\n", key
, (unsigned long long)value
);
1625 static int cgroup_seqfile_show(struct seq_file
*m
, void *arg
)
1627 struct cgroup_seqfile_state
*state
= m
->private;
1628 struct cftype
*cft
= state
->cft
;
1629 if (cft
->read_map
) {
1630 struct cgroup_map_cb cb
= {
1631 .fill
= cgroup_map_add
,
1634 return cft
->read_map(state
->cgroup
, cft
, &cb
);
1636 return cft
->read_seq_string(state
->cgroup
, cft
, m
);
1639 static int cgroup_seqfile_release(struct inode
*inode
, struct file
*file
)
1641 struct seq_file
*seq
= file
->private_data
;
1642 kfree(seq
->private);
1643 return single_release(inode
, file
);
1646 static struct file_operations cgroup_seqfile_operations
= {
1648 .write
= cgroup_file_write
,
1649 .llseek
= seq_lseek
,
1650 .release
= cgroup_seqfile_release
,
1653 static int cgroup_file_open(struct inode
*inode
, struct file
*file
)
1658 err
= generic_file_open(inode
, file
);
1661 cft
= __d_cft(file
->f_dentry
);
1663 if (cft
->read_map
|| cft
->read_seq_string
) {
1664 struct cgroup_seqfile_state
*state
=
1665 kzalloc(sizeof(*state
), GFP_USER
);
1669 state
->cgroup
= __d_cgrp(file
->f_dentry
->d_parent
);
1670 file
->f_op
= &cgroup_seqfile_operations
;
1671 err
= single_open(file
, cgroup_seqfile_show
, state
);
1674 } else if (cft
->open
)
1675 err
= cft
->open(inode
, file
);
1682 static int cgroup_file_release(struct inode
*inode
, struct file
*file
)
1684 struct cftype
*cft
= __d_cft(file
->f_dentry
);
1686 return cft
->release(inode
, file
);
1691 * cgroup_rename - Only allow simple rename of directories in place.
1693 static int cgroup_rename(struct inode
*old_dir
, struct dentry
*old_dentry
,
1694 struct inode
*new_dir
, struct dentry
*new_dentry
)
1696 if (!S_ISDIR(old_dentry
->d_inode
->i_mode
))
1698 if (new_dentry
->d_inode
)
1700 if (old_dir
!= new_dir
)
1702 return simple_rename(old_dir
, old_dentry
, new_dir
, new_dentry
);
1705 static struct file_operations cgroup_file_operations
= {
1706 .read
= cgroup_file_read
,
1707 .write
= cgroup_file_write
,
1708 .llseek
= generic_file_llseek
,
1709 .open
= cgroup_file_open
,
1710 .release
= cgroup_file_release
,
1713 static struct inode_operations cgroup_dir_inode_operations
= {
1714 .lookup
= simple_lookup
,
1715 .mkdir
= cgroup_mkdir
,
1716 .rmdir
= cgroup_rmdir
,
1717 .rename
= cgroup_rename
,
1720 static int cgroup_create_file(struct dentry
*dentry
, mode_t mode
,
1721 struct super_block
*sb
)
1723 static const struct dentry_operations cgroup_dops
= {
1724 .d_iput
= cgroup_diput
,
1727 struct inode
*inode
;
1731 if (dentry
->d_inode
)
1734 inode
= cgroup_new_inode(mode
, sb
);
1738 if (S_ISDIR(mode
)) {
1739 inode
->i_op
= &cgroup_dir_inode_operations
;
1740 inode
->i_fop
= &simple_dir_operations
;
1742 /* start off with i_nlink == 2 (for "." entry) */
1745 /* start with the directory inode held, so that we can
1746 * populate it without racing with another mkdir */
1747 mutex_lock_nested(&inode
->i_mutex
, I_MUTEX_CHILD
);
1748 } else if (S_ISREG(mode
)) {
1750 inode
->i_fop
= &cgroup_file_operations
;
1752 dentry
->d_op
= &cgroup_dops
;
1753 d_instantiate(dentry
, inode
);
1754 dget(dentry
); /* Extra count - pin the dentry in core */
1759 * cgroup_create_dir - create a directory for an object.
1760 * @cgrp: the cgroup we create the directory for. It must have a valid
1761 * ->parent field. And we are going to fill its ->dentry field.
1762 * @dentry: dentry of the new cgroup
1763 * @mode: mode to set on new directory.
1765 static int cgroup_create_dir(struct cgroup
*cgrp
, struct dentry
*dentry
,
1768 struct dentry
*parent
;
1771 parent
= cgrp
->parent
->dentry
;
1772 error
= cgroup_create_file(dentry
, S_IFDIR
| mode
, cgrp
->root
->sb
);
1774 dentry
->d_fsdata
= cgrp
;
1775 inc_nlink(parent
->d_inode
);
1776 rcu_assign_pointer(cgrp
->dentry
, dentry
);
1785 * cgroup_file_mode - deduce file mode of a control file
1786 * @cft: the control file in question
1788 * returns cft->mode if ->mode is not 0
1789 * returns S_IRUGO|S_IWUSR if it has both a read and a write handler
1790 * returns S_IRUGO if it has only a read handler
1791 * returns S_IWUSR if it has only a write hander
1793 static mode_t
cgroup_file_mode(const struct cftype
*cft
)
1800 if (cft
->read
|| cft
->read_u64
|| cft
->read_s64
||
1801 cft
->read_map
|| cft
->read_seq_string
)
1804 if (cft
->write
|| cft
->write_u64
|| cft
->write_s64
||
1805 cft
->write_string
|| cft
->trigger
)
1811 int cgroup_add_file(struct cgroup
*cgrp
,
1812 struct cgroup_subsys
*subsys
,
1813 const struct cftype
*cft
)
1815 struct dentry
*dir
= cgrp
->dentry
;
1816 struct dentry
*dentry
;
1820 char name
[MAX_CGROUP_TYPE_NAMELEN
+ MAX_CFTYPE_NAME
+ 2] = { 0 };
1821 if (subsys
&& !test_bit(ROOT_NOPREFIX
, &cgrp
->root
->flags
)) {
1822 strcpy(name
, subsys
->name
);
1825 strcat(name
, cft
->name
);
1826 BUG_ON(!mutex_is_locked(&dir
->d_inode
->i_mutex
));
1827 dentry
= lookup_one_len(name
, dir
, strlen(name
));
1828 if (!IS_ERR(dentry
)) {
1829 mode
= cgroup_file_mode(cft
);
1830 error
= cgroup_create_file(dentry
, mode
| S_IFREG
,
1833 dentry
->d_fsdata
= (void *)cft
;
1836 error
= PTR_ERR(dentry
);
1840 int cgroup_add_files(struct cgroup
*cgrp
,
1841 struct cgroup_subsys
*subsys
,
1842 const struct cftype cft
[],
1846 for (i
= 0; i
< count
; i
++) {
1847 err
= cgroup_add_file(cgrp
, subsys
, &cft
[i
]);
1855 * cgroup_task_count - count the number of tasks in a cgroup.
1856 * @cgrp: the cgroup in question
1858 * Return the number of tasks in the cgroup.
1860 int cgroup_task_count(const struct cgroup
*cgrp
)
1863 struct cg_cgroup_link
*link
;
1865 read_lock(&css_set_lock
);
1866 list_for_each_entry(link
, &cgrp
->css_sets
, cgrp_link_list
) {
1867 count
+= atomic_read(&link
->cg
->refcount
);
1869 read_unlock(&css_set_lock
);
1874 * Advance a list_head iterator. The iterator should be positioned at
1875 * the start of a css_set
1877 static void cgroup_advance_iter(struct cgroup
*cgrp
,
1878 struct cgroup_iter
*it
)
1880 struct list_head
*l
= it
->cg_link
;
1881 struct cg_cgroup_link
*link
;
1884 /* Advance to the next non-empty css_set */
1887 if (l
== &cgrp
->css_sets
) {
1891 link
= list_entry(l
, struct cg_cgroup_link
, cgrp_link_list
);
1893 } while (list_empty(&cg
->tasks
));
1895 it
->task
= cg
->tasks
.next
;
1899 * To reduce the fork() overhead for systems that are not actually
1900 * using their cgroups capability, we don't maintain the lists running
1901 * through each css_set to its tasks until we see the list actually
1902 * used - in other words after the first call to cgroup_iter_start().
1904 * The tasklist_lock is not held here, as do_each_thread() and
1905 * while_each_thread() are protected by RCU.
1907 static void cgroup_enable_task_cg_lists(void)
1909 struct task_struct
*p
, *g
;
1910 write_lock(&css_set_lock
);
1911 use_task_css_set_links
= 1;
1912 do_each_thread(g
, p
) {
1915 * We should check if the process is exiting, otherwise
1916 * it will race with cgroup_exit() in that the list
1917 * entry won't be deleted though the process has exited.
1919 if (!(p
->flags
& PF_EXITING
) && list_empty(&p
->cg_list
))
1920 list_add(&p
->cg_list
, &p
->cgroups
->tasks
);
1922 } while_each_thread(g
, p
);
1923 write_unlock(&css_set_lock
);
1926 void cgroup_iter_start(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
1929 * The first time anyone tries to iterate across a cgroup,
1930 * we need to enable the list linking each css_set to its
1931 * tasks, and fix up all existing tasks.
1933 if (!use_task_css_set_links
)
1934 cgroup_enable_task_cg_lists();
1936 read_lock(&css_set_lock
);
1937 it
->cg_link
= &cgrp
->css_sets
;
1938 cgroup_advance_iter(cgrp
, it
);
1941 struct task_struct
*cgroup_iter_next(struct cgroup
*cgrp
,
1942 struct cgroup_iter
*it
)
1944 struct task_struct
*res
;
1945 struct list_head
*l
= it
->task
;
1946 struct cg_cgroup_link
*link
;
1948 /* If the iterator cg is NULL, we have no tasks */
1951 res
= list_entry(l
, struct task_struct
, cg_list
);
1952 /* Advance iterator to find next entry */
1954 link
= list_entry(it
->cg_link
, struct cg_cgroup_link
, cgrp_link_list
);
1955 if (l
== &link
->cg
->tasks
) {
1956 /* We reached the end of this task list - move on to
1957 * the next cg_cgroup_link */
1958 cgroup_advance_iter(cgrp
, it
);
1965 void cgroup_iter_end(struct cgroup
*cgrp
, struct cgroup_iter
*it
)
1967 read_unlock(&css_set_lock
);
1970 static inline int started_after_time(struct task_struct
*t1
,
1971 struct timespec
*time
,
1972 struct task_struct
*t2
)
1974 int start_diff
= timespec_compare(&t1
->start_time
, time
);
1975 if (start_diff
> 0) {
1977 } else if (start_diff
< 0) {
1981 * Arbitrarily, if two processes started at the same
1982 * time, we'll say that the lower pointer value
1983 * started first. Note that t2 may have exited by now
1984 * so this may not be a valid pointer any longer, but
1985 * that's fine - it still serves to distinguish
1986 * between two tasks started (effectively) simultaneously.
1993 * This function is a callback from heap_insert() and is used to order
1995 * In this case we order the heap in descending task start time.
1997 static inline int started_after(void *p1
, void *p2
)
1999 struct task_struct
*t1
= p1
;
2000 struct task_struct
*t2
= p2
;
2001 return started_after_time(t1
, &t2
->start_time
, t2
);
2005 * cgroup_scan_tasks - iterate though all the tasks in a cgroup
2006 * @scan: struct cgroup_scanner containing arguments for the scan
2008 * Arguments include pointers to callback functions test_task() and
2010 * Iterate through all the tasks in a cgroup, calling test_task() for each,
2011 * and if it returns true, call process_task() for it also.
2012 * The test_task pointer may be NULL, meaning always true (select all tasks).
2013 * Effectively duplicates cgroup_iter_{start,next,end}()
2014 * but does not lock css_set_lock for the call to process_task().
2015 * The struct cgroup_scanner may be embedded in any structure of the caller's
2017 * It is guaranteed that process_task() will act on every task that
2018 * is a member of the cgroup for the duration of this call. This
2019 * function may or may not call process_task() for tasks that exit
2020 * or move to a different cgroup during the call, or are forked or
2021 * move into the cgroup during the call.
2023 * Note that test_task() may be called with locks held, and may in some
2024 * situations be called multiple times for the same task, so it should
2026 * If the heap pointer in the struct cgroup_scanner is non-NULL, a heap has been
2027 * pre-allocated and will be used for heap operations (and its "gt" member will
2028 * be overwritten), else a temporary heap will be used (allocation of which
2029 * may cause this function to fail).
2031 int cgroup_scan_tasks(struct cgroup_scanner
*scan
)
2034 struct cgroup_iter it
;
2035 struct task_struct
*p
, *dropped
;
2036 /* Never dereference latest_task, since it's not refcounted */
2037 struct task_struct
*latest_task
= NULL
;
2038 struct ptr_heap tmp_heap
;
2039 struct ptr_heap
*heap
;
2040 struct timespec latest_time
= { 0, 0 };
2043 /* The caller supplied our heap and pre-allocated its memory */
2045 heap
->gt
= &started_after
;
2047 /* We need to allocate our own heap memory */
2049 retval
= heap_init(heap
, PAGE_SIZE
, GFP_KERNEL
, &started_after
);
2051 /* cannot allocate the heap */
2057 * Scan tasks in the cgroup, using the scanner's "test_task" callback
2058 * to determine which are of interest, and using the scanner's
2059 * "process_task" callback to process any of them that need an update.
2060 * Since we don't want to hold any locks during the task updates,
2061 * gather tasks to be processed in a heap structure.
2062 * The heap is sorted by descending task start time.
2063 * If the statically-sized heap fills up, we overflow tasks that
2064 * started later, and in future iterations only consider tasks that
2065 * started after the latest task in the previous pass. This
2066 * guarantees forward progress and that we don't miss any tasks.
2069 cgroup_iter_start(scan
->cg
, &it
);
2070 while ((p
= cgroup_iter_next(scan
->cg
, &it
))) {
2072 * Only affect tasks that qualify per the caller's callback,
2073 * if he provided one
2075 if (scan
->test_task
&& !scan
->test_task(p
, scan
))
2078 * Only process tasks that started after the last task
2081 if (!started_after_time(p
, &latest_time
, latest_task
))
2083 dropped
= heap_insert(heap
, p
);
2084 if (dropped
== NULL
) {
2086 * The new task was inserted; the heap wasn't
2090 } else if (dropped
!= p
) {
2092 * The new task was inserted, and pushed out a
2096 put_task_struct(dropped
);
2099 * Else the new task was newer than anything already in
2100 * the heap and wasn't inserted
2103 cgroup_iter_end(scan
->cg
, &it
);
2106 for (i
= 0; i
< heap
->size
; i
++) {
2107 struct task_struct
*q
= heap
->ptrs
[i
];
2109 latest_time
= q
->start_time
;
2112 /* Process the task per the caller's callback */
2113 scan
->process_task(q
, scan
);
2117 * If we had to process any tasks at all, scan again
2118 * in case some of them were in the middle of forking
2119 * children that didn't get processed.
2120 * Not the most efficient way to do it, but it avoids
2121 * having to take callback_mutex in the fork path
2125 if (heap
== &tmp_heap
)
2126 heap_free(&tmp_heap
);
2131 * Stuff for reading the 'tasks' file.
2133 * Reading this file can return large amounts of data if a cgroup has
2134 * *lots* of attached tasks. So it may need several calls to read(),
2135 * but we cannot guarantee that the information we produce is correct
2136 * unless we produce it entirely atomically.
2141 * Load into 'pidarray' up to 'npids' of the tasks using cgroup
2142 * 'cgrp'. Return actual number of pids loaded. No need to
2143 * task_lock(p) when reading out p->cgroup, since we're in an RCU
2144 * read section, so the css_set can't go away, and is
2145 * immutable after creation.
2147 static int pid_array_load(pid_t
*pidarray
, int npids
, struct cgroup
*cgrp
)
2150 struct cgroup_iter it
;
2151 struct task_struct
*tsk
;
2152 cgroup_iter_start(cgrp
, &it
);
2153 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2154 if (unlikely(n
== npids
))
2156 pid
= task_pid_vnr(tsk
);
2158 pidarray
[n
++] = pid
;
2160 cgroup_iter_end(cgrp
, &it
);
2165 * cgroupstats_build - build and fill cgroupstats
2166 * @stats: cgroupstats to fill information into
2167 * @dentry: A dentry entry belonging to the cgroup for which stats have
2170 * Build and fill cgroupstats so that taskstats can export it to user
2173 int cgroupstats_build(struct cgroupstats
*stats
, struct dentry
*dentry
)
2176 struct cgroup
*cgrp
;
2177 struct cgroup_iter it
;
2178 struct task_struct
*tsk
;
2181 * Validate dentry by checking the superblock operations,
2182 * and make sure it's a directory.
2184 if (dentry
->d_sb
->s_op
!= &cgroup_ops
||
2185 !S_ISDIR(dentry
->d_inode
->i_mode
))
2189 cgrp
= dentry
->d_fsdata
;
2191 cgroup_iter_start(cgrp
, &it
);
2192 while ((tsk
= cgroup_iter_next(cgrp
, &it
))) {
2193 switch (tsk
->state
) {
2195 stats
->nr_running
++;
2197 case TASK_INTERRUPTIBLE
:
2198 stats
->nr_sleeping
++;
2200 case TASK_UNINTERRUPTIBLE
:
2201 stats
->nr_uninterruptible
++;
2204 stats
->nr_stopped
++;
2207 if (delayacct_is_task_waiting_on_io(tsk
))
2208 stats
->nr_io_wait
++;
2212 cgroup_iter_end(cgrp
, &it
);
2219 * Cache pids for all threads in the same pid namespace that are
2220 * opening the same "tasks" file.
2222 struct cgroup_pids
{
2223 /* The node in cgrp->pids_list */
2224 struct list_head list
;
2225 /* The cgroup those pids belong to */
2226 struct cgroup
*cgrp
;
2227 /* The namepsace those pids belong to */
2228 struct pid_namespace
*ns
;
2229 /* Array of process ids in the cgroup */
2231 /* How many files are using the this tasks_pids array */
2233 /* Length of the current tasks_pids array */
2237 static int cmppid(const void *a
, const void *b
)
2239 return *(pid_t
*)a
- *(pid_t
*)b
;
2243 * seq_file methods for the "tasks" file. The seq_file position is the
2244 * next pid to display; the seq_file iterator is a pointer to the pid
2245 * in the cgroup->tasks_pids array.
2248 static void *cgroup_tasks_start(struct seq_file
*s
, loff_t
*pos
)
2251 * Initially we receive a position value that corresponds to
2252 * one more than the last pid shown (or 0 on the first call or
2253 * after a seek to the start). Use a binary-search to find the
2254 * next pid to display, if any
2256 struct cgroup_pids
*cp
= s
->private;
2257 struct cgroup
*cgrp
= cp
->cgrp
;
2258 int index
= 0, pid
= *pos
;
2261 down_read(&cgrp
->pids_mutex
);
2263 int end
= cp
->length
;
2265 while (index
< end
) {
2266 int mid
= (index
+ end
) / 2;
2267 if (cp
->tasks_pids
[mid
] == pid
) {
2270 } else if (cp
->tasks_pids
[mid
] <= pid
)
2276 /* If we're off the end of the array, we're done */
2277 if (index
>= cp
->length
)
2279 /* Update the abstract position to be the actual pid that we found */
2280 iter
= cp
->tasks_pids
+ index
;
2285 static void cgroup_tasks_stop(struct seq_file
*s
, void *v
)
2287 struct cgroup_pids
*cp
= s
->private;
2288 struct cgroup
*cgrp
= cp
->cgrp
;
2289 up_read(&cgrp
->pids_mutex
);
2292 static void *cgroup_tasks_next(struct seq_file
*s
, void *v
, loff_t
*pos
)
2294 struct cgroup_pids
*cp
= s
->private;
2296 int *end
= cp
->tasks_pids
+ cp
->length
;
2299 * Advance to the next pid in the array. If this goes off the
2311 static int cgroup_tasks_show(struct seq_file
*s
, void *v
)
2313 return seq_printf(s
, "%d\n", *(int *)v
);
2316 static struct seq_operations cgroup_tasks_seq_operations
= {
2317 .start
= cgroup_tasks_start
,
2318 .stop
= cgroup_tasks_stop
,
2319 .next
= cgroup_tasks_next
,
2320 .show
= cgroup_tasks_show
,
2323 static void release_cgroup_pid_array(struct cgroup_pids
*cp
)
2325 struct cgroup
*cgrp
= cp
->cgrp
;
2327 down_write(&cgrp
->pids_mutex
);
2328 BUG_ON(!cp
->use_count
);
2329 if (!--cp
->use_count
) {
2330 list_del(&cp
->list
);
2332 kfree(cp
->tasks_pids
);
2335 up_write(&cgrp
->pids_mutex
);
2338 static int cgroup_tasks_release(struct inode
*inode
, struct file
*file
)
2340 struct seq_file
*seq
;
2341 struct cgroup_pids
*cp
;
2343 if (!(file
->f_mode
& FMODE_READ
))
2346 seq
= file
->private_data
;
2349 release_cgroup_pid_array(cp
);
2350 return seq_release(inode
, file
);
2353 static struct file_operations cgroup_tasks_operations
= {
2355 .llseek
= seq_lseek
,
2356 .write
= cgroup_file_write
,
2357 .release
= cgroup_tasks_release
,
2361 * Handle an open on 'tasks' file. Prepare an array containing the
2362 * process id's of tasks currently attached to the cgroup being opened.
2365 static int cgroup_tasks_open(struct inode
*unused
, struct file
*file
)
2367 struct cgroup
*cgrp
= __d_cgrp(file
->f_dentry
->d_parent
);
2368 struct pid_namespace
*ns
= current
->nsproxy
->pid_ns
;
2369 struct cgroup_pids
*cp
;
2374 /* Nothing to do for write-only files */
2375 if (!(file
->f_mode
& FMODE_READ
))
2379 * If cgroup gets more users after we read count, we won't have
2380 * enough space - tough. This race is indistinguishable to the
2381 * caller from the case that the additional cgroup users didn't
2382 * show up until sometime later on.
2384 npids
= cgroup_task_count(cgrp
);
2385 pidarray
= kmalloc(npids
* sizeof(pid_t
), GFP_KERNEL
);
2388 npids
= pid_array_load(pidarray
, npids
, cgrp
);
2389 sort(pidarray
, npids
, sizeof(pid_t
), cmppid
, NULL
);
2392 * Store the array in the cgroup, freeing the old
2393 * array if necessary
2395 down_write(&cgrp
->pids_mutex
);
2397 list_for_each_entry(cp
, &cgrp
->pids_list
, list
) {
2402 cp
= kzalloc(sizeof(*cp
), GFP_KERNEL
);
2404 up_write(&cgrp
->pids_mutex
);
2411 list_add(&cp
->list
, &cgrp
->pids_list
);
2413 kfree(cp
->tasks_pids
);
2414 cp
->tasks_pids
= pidarray
;
2417 up_write(&cgrp
->pids_mutex
);
2419 file
->f_op
= &cgroup_tasks_operations
;
2421 retval
= seq_open(file
, &cgroup_tasks_seq_operations
);
2423 release_cgroup_pid_array(cp
);
2426 ((struct seq_file
*)file
->private_data
)->private = cp
;
2430 static u64
cgroup_read_notify_on_release(struct cgroup
*cgrp
,
2433 return notify_on_release(cgrp
);
2436 static int cgroup_write_notify_on_release(struct cgroup
*cgrp
,
2440 clear_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
2442 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
2444 clear_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
2449 * for the common functions, 'private' gives the type of file
2451 static struct cftype files
[] = {
2454 .open
= cgroup_tasks_open
,
2455 .write_u64
= cgroup_tasks_write
,
2456 .release
= cgroup_tasks_release
,
2457 .private = FILE_TASKLIST
,
2458 .mode
= S_IRUGO
| S_IWUSR
,
2462 .name
= "notify_on_release",
2463 .read_u64
= cgroup_read_notify_on_release
,
2464 .write_u64
= cgroup_write_notify_on_release
,
2465 .private = FILE_NOTIFY_ON_RELEASE
,
2469 static struct cftype cft_release_agent
= {
2470 .name
= "release_agent",
2471 .read_seq_string
= cgroup_release_agent_show
,
2472 .write_string
= cgroup_release_agent_write
,
2473 .max_write_len
= PATH_MAX
,
2474 .private = FILE_RELEASE_AGENT
,
2477 static int cgroup_populate_dir(struct cgroup
*cgrp
)
2480 struct cgroup_subsys
*ss
;
2482 /* First clear out any existing files */
2483 cgroup_clear_directory(cgrp
->dentry
);
2485 err
= cgroup_add_files(cgrp
, NULL
, files
, ARRAY_SIZE(files
));
2489 if (cgrp
== cgrp
->top_cgroup
) {
2490 if ((err
= cgroup_add_file(cgrp
, NULL
, &cft_release_agent
)) < 0)
2494 for_each_subsys(cgrp
->root
, ss
) {
2495 if (ss
->populate
&& (err
= ss
->populate(ss
, cgrp
)) < 0)
2498 /* This cgroup is ready now */
2499 for_each_subsys(cgrp
->root
, ss
) {
2500 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
2502 * Update id->css pointer and make this css visible from
2503 * CSS ID functions. This pointer will be dereferened
2504 * from RCU-read-side without locks.
2507 rcu_assign_pointer(css
->id
->css
, css
);
2513 static void init_cgroup_css(struct cgroup_subsys_state
*css
,
2514 struct cgroup_subsys
*ss
,
2515 struct cgroup
*cgrp
)
2518 atomic_set(&css
->refcnt
, 1);
2521 if (cgrp
== dummytop
)
2522 set_bit(CSS_ROOT
, &css
->flags
);
2523 BUG_ON(cgrp
->subsys
[ss
->subsys_id
]);
2524 cgrp
->subsys
[ss
->subsys_id
] = css
;
2527 static void cgroup_lock_hierarchy(struct cgroupfs_root
*root
)
2529 /* We need to take each hierarchy_mutex in a consistent order */
2532 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2533 struct cgroup_subsys
*ss
= subsys
[i
];
2534 if (ss
->root
== root
)
2535 mutex_lock(&ss
->hierarchy_mutex
);
2539 static void cgroup_unlock_hierarchy(struct cgroupfs_root
*root
)
2543 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2544 struct cgroup_subsys
*ss
= subsys
[i
];
2545 if (ss
->root
== root
)
2546 mutex_unlock(&ss
->hierarchy_mutex
);
2551 * cgroup_create - create a cgroup
2552 * @parent: cgroup that will be parent of the new cgroup
2553 * @dentry: dentry of the new cgroup
2554 * @mode: mode to set on new inode
2556 * Must be called with the mutex on the parent inode held
2558 static long cgroup_create(struct cgroup
*parent
, struct dentry
*dentry
,
2561 struct cgroup
*cgrp
;
2562 struct cgroupfs_root
*root
= parent
->root
;
2564 struct cgroup_subsys
*ss
;
2565 struct super_block
*sb
= root
->sb
;
2567 cgrp
= kzalloc(sizeof(*cgrp
), GFP_KERNEL
);
2571 /* Grab a reference on the superblock so the hierarchy doesn't
2572 * get deleted on unmount if there are child cgroups. This
2573 * can be done outside cgroup_mutex, since the sb can't
2574 * disappear while someone has an open control file on the
2576 atomic_inc(&sb
->s_active
);
2578 mutex_lock(&cgroup_mutex
);
2580 init_cgroup_housekeeping(cgrp
);
2582 cgrp
->parent
= parent
;
2583 cgrp
->root
= parent
->root
;
2584 cgrp
->top_cgroup
= parent
->top_cgroup
;
2586 if (notify_on_release(parent
))
2587 set_bit(CGRP_NOTIFY_ON_RELEASE
, &cgrp
->flags
);
2589 for_each_subsys(root
, ss
) {
2590 struct cgroup_subsys_state
*css
= ss
->create(ss
, cgrp
);
2595 init_cgroup_css(css
, ss
, cgrp
);
2597 if (alloc_css_id(ss
, parent
, cgrp
))
2599 /* At error, ->destroy() callback has to free assigned ID. */
2602 cgroup_lock_hierarchy(root
);
2603 list_add(&cgrp
->sibling
, &cgrp
->parent
->children
);
2604 cgroup_unlock_hierarchy(root
);
2605 root
->number_of_cgroups
++;
2607 err
= cgroup_create_dir(cgrp
, dentry
, mode
);
2611 /* The cgroup directory was pre-locked for us */
2612 BUG_ON(!mutex_is_locked(&cgrp
->dentry
->d_inode
->i_mutex
));
2614 err
= cgroup_populate_dir(cgrp
);
2615 /* If err < 0, we have a half-filled directory - oh well ;) */
2617 mutex_unlock(&cgroup_mutex
);
2618 mutex_unlock(&cgrp
->dentry
->d_inode
->i_mutex
);
2624 cgroup_lock_hierarchy(root
);
2625 list_del(&cgrp
->sibling
);
2626 cgroup_unlock_hierarchy(root
);
2627 root
->number_of_cgroups
--;
2631 for_each_subsys(root
, ss
) {
2632 if (cgrp
->subsys
[ss
->subsys_id
])
2633 ss
->destroy(ss
, cgrp
);
2636 mutex_unlock(&cgroup_mutex
);
2638 /* Release the reference count that we took on the superblock */
2639 deactivate_super(sb
);
2645 static int cgroup_mkdir(struct inode
*dir
, struct dentry
*dentry
, int mode
)
2647 struct cgroup
*c_parent
= dentry
->d_parent
->d_fsdata
;
2649 /* the vfs holds inode->i_mutex already */
2650 return cgroup_create(c_parent
, dentry
, mode
| S_IFDIR
);
2653 static int cgroup_has_css_refs(struct cgroup
*cgrp
)
2655 /* Check the reference count on each subsystem. Since we
2656 * already established that there are no tasks in the
2657 * cgroup, if the css refcount is also 1, then there should
2658 * be no outstanding references, so the subsystem is safe to
2659 * destroy. We scan across all subsystems rather than using
2660 * the per-hierarchy linked list of mounted subsystems since
2661 * we can be called via check_for_release() with no
2662 * synchronization other than RCU, and the subsystem linked
2663 * list isn't RCU-safe */
2665 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2666 struct cgroup_subsys
*ss
= subsys
[i
];
2667 struct cgroup_subsys_state
*css
;
2668 /* Skip subsystems not in this hierarchy */
2669 if (ss
->root
!= cgrp
->root
)
2671 css
= cgrp
->subsys
[ss
->subsys_id
];
2672 /* When called from check_for_release() it's possible
2673 * that by this point the cgroup has been removed
2674 * and the css deleted. But a false-positive doesn't
2675 * matter, since it can only happen if the cgroup
2676 * has been deleted and hence no longer needs the
2677 * release agent to be called anyway. */
2678 if (css
&& (atomic_read(&css
->refcnt
) > 1))
2685 * Atomically mark all (or else none) of the cgroup's CSS objects as
2686 * CSS_REMOVED. Return true on success, or false if the cgroup has
2687 * busy subsystems. Call with cgroup_mutex held
2690 static int cgroup_clear_css_refs(struct cgroup
*cgrp
)
2692 struct cgroup_subsys
*ss
;
2693 unsigned long flags
;
2694 bool failed
= false;
2695 local_irq_save(flags
);
2696 for_each_subsys(cgrp
->root
, ss
) {
2697 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
2700 /* We can only remove a CSS with a refcnt==1 */
2701 refcnt
= atomic_read(&css
->refcnt
);
2708 * Drop the refcnt to 0 while we check other
2709 * subsystems. This will cause any racing
2710 * css_tryget() to spin until we set the
2711 * CSS_REMOVED bits or abort
2713 if (atomic_cmpxchg(&css
->refcnt
, refcnt
, 0) == refcnt
)
2719 for_each_subsys(cgrp
->root
, ss
) {
2720 struct cgroup_subsys_state
*css
= cgrp
->subsys
[ss
->subsys_id
];
2723 * Restore old refcnt if we previously managed
2724 * to clear it from 1 to 0
2726 if (!atomic_read(&css
->refcnt
))
2727 atomic_set(&css
->refcnt
, 1);
2729 /* Commit the fact that the CSS is removed */
2730 set_bit(CSS_REMOVED
, &css
->flags
);
2733 local_irq_restore(flags
);
2737 static int cgroup_rmdir(struct inode
*unused_dir
, struct dentry
*dentry
)
2739 struct cgroup
*cgrp
= dentry
->d_fsdata
;
2741 struct cgroup
*parent
;
2745 /* the vfs holds both inode->i_mutex already */
2747 mutex_lock(&cgroup_mutex
);
2748 if (atomic_read(&cgrp
->count
) != 0) {
2749 mutex_unlock(&cgroup_mutex
);
2752 if (!list_empty(&cgrp
->children
)) {
2753 mutex_unlock(&cgroup_mutex
);
2756 mutex_unlock(&cgroup_mutex
);
2759 * In general, subsystem has no css->refcnt after pre_destroy(). But
2760 * in racy cases, subsystem may have to get css->refcnt after
2761 * pre_destroy() and it makes rmdir return with -EBUSY. This sometimes
2762 * make rmdir return -EBUSY too often. To avoid that, we use waitqueue
2763 * for cgroup's rmdir. CGRP_WAIT_ON_RMDIR is for synchronizing rmdir
2764 * and subsystem's reference count handling. Please see css_get/put
2765 * and css_tryget() and cgroup_wakeup_rmdir_waiter() implementation.
2767 set_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
2770 * Call pre_destroy handlers of subsys. Notify subsystems
2771 * that rmdir() request comes.
2773 ret
= cgroup_call_pre_destroy(cgrp
);
2775 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
2779 mutex_lock(&cgroup_mutex
);
2780 parent
= cgrp
->parent
;
2781 if (atomic_read(&cgrp
->count
) || !list_empty(&cgrp
->children
)) {
2782 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
2783 mutex_unlock(&cgroup_mutex
);
2786 prepare_to_wait(&cgroup_rmdir_waitq
, &wait
, TASK_INTERRUPTIBLE
);
2787 if (!cgroup_clear_css_refs(cgrp
)) {
2788 mutex_unlock(&cgroup_mutex
);
2790 * Because someone may call cgroup_wakeup_rmdir_waiter() before
2791 * prepare_to_wait(), we need to check this flag.
2793 if (test_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
))
2795 finish_wait(&cgroup_rmdir_waitq
, &wait
);
2796 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
2797 if (signal_pending(current
))
2801 /* NO css_tryget() can success after here. */
2802 finish_wait(&cgroup_rmdir_waitq
, &wait
);
2803 clear_bit(CGRP_WAIT_ON_RMDIR
, &cgrp
->flags
);
2805 spin_lock(&release_list_lock
);
2806 set_bit(CGRP_REMOVED
, &cgrp
->flags
);
2807 if (!list_empty(&cgrp
->release_list
))
2808 list_del(&cgrp
->release_list
);
2809 spin_unlock(&release_list_lock
);
2811 cgroup_lock_hierarchy(cgrp
->root
);
2812 /* delete this cgroup from parent->children */
2813 list_del(&cgrp
->sibling
);
2814 cgroup_unlock_hierarchy(cgrp
->root
);
2816 spin_lock(&cgrp
->dentry
->d_lock
);
2817 d
= dget(cgrp
->dentry
);
2818 spin_unlock(&d
->d_lock
);
2820 cgroup_d_remove_dir(d
);
2823 set_bit(CGRP_RELEASABLE
, &parent
->flags
);
2824 check_for_release(parent
);
2826 mutex_unlock(&cgroup_mutex
);
2830 static void __init
cgroup_init_subsys(struct cgroup_subsys
*ss
)
2832 struct cgroup_subsys_state
*css
;
2834 printk(KERN_INFO
"Initializing cgroup subsys %s\n", ss
->name
);
2836 /* Create the top cgroup state for this subsystem */
2837 list_add(&ss
->sibling
, &rootnode
.subsys_list
);
2838 ss
->root
= &rootnode
;
2839 css
= ss
->create(ss
, dummytop
);
2840 /* We don't handle early failures gracefully */
2841 BUG_ON(IS_ERR(css
));
2842 init_cgroup_css(css
, ss
, dummytop
);
2844 /* Update the init_css_set to contain a subsys
2845 * pointer to this state - since the subsystem is
2846 * newly registered, all tasks and hence the
2847 * init_css_set is in the subsystem's top cgroup. */
2848 init_css_set
.subsys
[ss
->subsys_id
] = dummytop
->subsys
[ss
->subsys_id
];
2850 need_forkexit_callback
|= ss
->fork
|| ss
->exit
;
2852 /* At system boot, before all subsystems have been
2853 * registered, no tasks have been forked, so we don't
2854 * need to invoke fork callbacks here. */
2855 BUG_ON(!list_empty(&init_task
.tasks
));
2857 mutex_init(&ss
->hierarchy_mutex
);
2858 lockdep_set_class(&ss
->hierarchy_mutex
, &ss
->subsys_key
);
2863 * cgroup_init_early - cgroup initialization at system boot
2865 * Initialize cgroups at system boot, and initialize any
2866 * subsystems that request early init.
2868 int __init
cgroup_init_early(void)
2871 atomic_set(&init_css_set
.refcount
, 1);
2872 INIT_LIST_HEAD(&init_css_set
.cg_links
);
2873 INIT_LIST_HEAD(&init_css_set
.tasks
);
2874 INIT_HLIST_NODE(&init_css_set
.hlist
);
2876 init_cgroup_root(&rootnode
);
2878 init_task
.cgroups
= &init_css_set
;
2880 init_css_set_link
.cg
= &init_css_set
;
2881 list_add(&init_css_set_link
.cgrp_link_list
,
2882 &rootnode
.top_cgroup
.css_sets
);
2883 list_add(&init_css_set_link
.cg_link_list
,
2884 &init_css_set
.cg_links
);
2886 for (i
= 0; i
< CSS_SET_TABLE_SIZE
; i
++)
2887 INIT_HLIST_HEAD(&css_set_table
[i
]);
2889 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2890 struct cgroup_subsys
*ss
= subsys
[i
];
2893 BUG_ON(strlen(ss
->name
) > MAX_CGROUP_TYPE_NAMELEN
);
2894 BUG_ON(!ss
->create
);
2895 BUG_ON(!ss
->destroy
);
2896 if (ss
->subsys_id
!= i
) {
2897 printk(KERN_ERR
"cgroup: Subsys %s id == %d\n",
2898 ss
->name
, ss
->subsys_id
);
2903 cgroup_init_subsys(ss
);
2909 * cgroup_init - cgroup initialization
2911 * Register cgroup filesystem and /proc file, and initialize
2912 * any subsystems that didn't request early init.
2914 int __init
cgroup_init(void)
2918 struct hlist_head
*hhead
;
2920 err
= bdi_init(&cgroup_backing_dev_info
);
2924 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
2925 struct cgroup_subsys
*ss
= subsys
[i
];
2926 if (!ss
->early_init
)
2927 cgroup_init_subsys(ss
);
2929 cgroup_subsys_init_idr(ss
);
2932 /* Add init_css_set to the hash table */
2933 hhead
= css_set_hash(init_css_set
.subsys
);
2934 hlist_add_head(&init_css_set
.hlist
, hhead
);
2936 err
= register_filesystem(&cgroup_fs_type
);
2940 proc_create("cgroups", 0, NULL
, &proc_cgroupstats_operations
);
2944 bdi_destroy(&cgroup_backing_dev_info
);
2950 * proc_cgroup_show()
2951 * - Print task's cgroup paths into seq_file, one line for each hierarchy
2952 * - Used for /proc/<pid>/cgroup.
2953 * - No need to task_lock(tsk) on this tsk->cgroup reference, as it
2954 * doesn't really matter if tsk->cgroup changes after we read it,
2955 * and we take cgroup_mutex, keeping cgroup_attach_task() from changing it
2956 * anyway. No need to check that tsk->cgroup != NULL, thanks to
2957 * the_top_cgroup_hack in cgroup_exit(), which sets an exiting tasks
2958 * cgroup to top_cgroup.
2961 /* TODO: Use a proper seq_file iterator */
2962 static int proc_cgroup_show(struct seq_file
*m
, void *v
)
2965 struct task_struct
*tsk
;
2968 struct cgroupfs_root
*root
;
2971 buf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
2977 tsk
= get_pid_task(pid
, PIDTYPE_PID
);
2983 mutex_lock(&cgroup_mutex
);
2985 for_each_active_root(root
) {
2986 struct cgroup_subsys
*ss
;
2987 struct cgroup
*cgrp
;
2991 seq_printf(m
, "%lu:", root
->subsys_bits
);
2992 for_each_subsys(root
, ss
)
2993 seq_printf(m
, "%s%s", count
++ ? "," : "", ss
->name
);
2995 get_first_subsys(&root
->top_cgroup
, NULL
, &subsys_id
);
2996 cgrp
= task_cgroup(tsk
, subsys_id
);
2997 retval
= cgroup_path(cgrp
, buf
, PAGE_SIZE
);
3005 mutex_unlock(&cgroup_mutex
);
3006 put_task_struct(tsk
);
3013 static int cgroup_open(struct inode
*inode
, struct file
*file
)
3015 struct pid
*pid
= PROC_I(inode
)->pid
;
3016 return single_open(file
, proc_cgroup_show
, pid
);
3019 struct file_operations proc_cgroup_operations
= {
3020 .open
= cgroup_open
,
3022 .llseek
= seq_lseek
,
3023 .release
= single_release
,
3026 /* Display information about each subsystem and each hierarchy */
3027 static int proc_cgroupstats_show(struct seq_file
*m
, void *v
)
3031 seq_puts(m
, "#subsys_name\thierarchy\tnum_cgroups\tenabled\n");
3032 mutex_lock(&cgroup_mutex
);
3033 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3034 struct cgroup_subsys
*ss
= subsys
[i
];
3035 seq_printf(m
, "%s\t%lu\t%d\t%d\n",
3036 ss
->name
, ss
->root
->subsys_bits
,
3037 ss
->root
->number_of_cgroups
, !ss
->disabled
);
3039 mutex_unlock(&cgroup_mutex
);
3043 static int cgroupstats_open(struct inode
*inode
, struct file
*file
)
3045 return single_open(file
, proc_cgroupstats_show
, NULL
);
3048 static struct file_operations proc_cgroupstats_operations
= {
3049 .open
= cgroupstats_open
,
3051 .llseek
= seq_lseek
,
3052 .release
= single_release
,
3056 * cgroup_fork - attach newly forked task to its parents cgroup.
3057 * @child: pointer to task_struct of forking parent process.
3059 * Description: A task inherits its parent's cgroup at fork().
3061 * A pointer to the shared css_set was automatically copied in
3062 * fork.c by dup_task_struct(). However, we ignore that copy, since
3063 * it was not made under the protection of RCU or cgroup_mutex, so
3064 * might no longer be a valid cgroup pointer. cgroup_attach_task() might
3065 * have already changed current->cgroups, allowing the previously
3066 * referenced cgroup group to be removed and freed.
3068 * At the point that cgroup_fork() is called, 'current' is the parent
3069 * task, and the passed argument 'child' points to the child task.
3071 void cgroup_fork(struct task_struct
*child
)
3074 child
->cgroups
= current
->cgroups
;
3075 get_css_set(child
->cgroups
);
3076 task_unlock(current
);
3077 INIT_LIST_HEAD(&child
->cg_list
);
3081 * cgroup_fork_callbacks - run fork callbacks
3082 * @child: the new task
3084 * Called on a new task very soon before adding it to the
3085 * tasklist. No need to take any locks since no-one can
3086 * be operating on this task.
3088 void cgroup_fork_callbacks(struct task_struct
*child
)
3090 if (need_forkexit_callback
) {
3092 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3093 struct cgroup_subsys
*ss
= subsys
[i
];
3095 ss
->fork(ss
, child
);
3101 * cgroup_post_fork - called on a new task after adding it to the task list
3102 * @child: the task in question
3104 * Adds the task to the list running through its css_set if necessary.
3105 * Has to be after the task is visible on the task list in case we race
3106 * with the first call to cgroup_iter_start() - to guarantee that the
3107 * new task ends up on its list.
3109 void cgroup_post_fork(struct task_struct
*child
)
3111 if (use_task_css_set_links
) {
3112 write_lock(&css_set_lock
);
3114 if (list_empty(&child
->cg_list
))
3115 list_add(&child
->cg_list
, &child
->cgroups
->tasks
);
3117 write_unlock(&css_set_lock
);
3121 * cgroup_exit - detach cgroup from exiting task
3122 * @tsk: pointer to task_struct of exiting process
3123 * @run_callback: run exit callbacks?
3125 * Description: Detach cgroup from @tsk and release it.
3127 * Note that cgroups marked notify_on_release force every task in
3128 * them to take the global cgroup_mutex mutex when exiting.
3129 * This could impact scaling on very large systems. Be reluctant to
3130 * use notify_on_release cgroups where very high task exit scaling
3131 * is required on large systems.
3133 * the_top_cgroup_hack:
3135 * Set the exiting tasks cgroup to the root cgroup (top_cgroup).
3137 * We call cgroup_exit() while the task is still competent to
3138 * handle notify_on_release(), then leave the task attached to the
3139 * root cgroup in each hierarchy for the remainder of its exit.
3141 * To do this properly, we would increment the reference count on
3142 * top_cgroup, and near the very end of the kernel/exit.c do_exit()
3143 * code we would add a second cgroup function call, to drop that
3144 * reference. This would just create an unnecessary hot spot on
3145 * the top_cgroup reference count, to no avail.
3147 * Normally, holding a reference to a cgroup without bumping its
3148 * count is unsafe. The cgroup could go away, or someone could
3149 * attach us to a different cgroup, decrementing the count on
3150 * the first cgroup that we never incremented. But in this case,
3151 * top_cgroup isn't going away, and either task has PF_EXITING set,
3152 * which wards off any cgroup_attach_task() attempts, or task is a failed
3153 * fork, never visible to cgroup_attach_task.
3155 void cgroup_exit(struct task_struct
*tsk
, int run_callbacks
)
3160 if (run_callbacks
&& need_forkexit_callback
) {
3161 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3162 struct cgroup_subsys
*ss
= subsys
[i
];
3169 * Unlink from the css_set task list if necessary.
3170 * Optimistically check cg_list before taking
3173 if (!list_empty(&tsk
->cg_list
)) {
3174 write_lock(&css_set_lock
);
3175 if (!list_empty(&tsk
->cg_list
))
3176 list_del(&tsk
->cg_list
);
3177 write_unlock(&css_set_lock
);
3180 /* Reassign the task to the init_css_set. */
3183 tsk
->cgroups
= &init_css_set
;
3186 put_css_set_taskexit(cg
);
3190 * cgroup_clone - clone the cgroup the given subsystem is attached to
3191 * @tsk: the task to be moved
3192 * @subsys: the given subsystem
3193 * @nodename: the name for the new cgroup
3195 * Duplicate the current cgroup in the hierarchy that the given
3196 * subsystem is attached to, and move this task into the new
3199 int cgroup_clone(struct task_struct
*tsk
, struct cgroup_subsys
*subsys
,
3202 struct dentry
*dentry
;
3204 struct cgroup
*parent
, *child
;
3205 struct inode
*inode
;
3207 struct cgroupfs_root
*root
;
3208 struct cgroup_subsys
*ss
;
3210 /* We shouldn't be called by an unregistered subsystem */
3211 BUG_ON(!subsys
->active
);
3213 /* First figure out what hierarchy and cgroup we're dealing
3214 * with, and pin them so we can drop cgroup_mutex */
3215 mutex_lock(&cgroup_mutex
);
3217 root
= subsys
->root
;
3218 if (root
== &rootnode
) {
3219 mutex_unlock(&cgroup_mutex
);
3223 /* Pin the hierarchy */
3224 if (!atomic_inc_not_zero(&root
->sb
->s_active
)) {
3225 /* We race with the final deactivate_super() */
3226 mutex_unlock(&cgroup_mutex
);
3230 /* Keep the cgroup alive */
3232 parent
= task_cgroup(tsk
, subsys
->subsys_id
);
3237 mutex_unlock(&cgroup_mutex
);
3239 /* Now do the VFS work to create a cgroup */
3240 inode
= parent
->dentry
->d_inode
;
3242 /* Hold the parent directory mutex across this operation to
3243 * stop anyone else deleting the new cgroup */
3244 mutex_lock(&inode
->i_mutex
);
3245 dentry
= lookup_one_len(nodename
, parent
->dentry
, strlen(nodename
));
3246 if (IS_ERR(dentry
)) {
3248 "cgroup: Couldn't allocate dentry for %s: %ld\n", nodename
,
3250 ret
= PTR_ERR(dentry
);
3254 /* Create the cgroup directory, which also creates the cgroup */
3255 ret
= vfs_mkdir(inode
, dentry
, 0755);
3256 child
= __d_cgrp(dentry
);
3260 "Failed to create cgroup %s: %d\n", nodename
,
3265 /* The cgroup now exists. Retake cgroup_mutex and check
3266 * that we're still in the same state that we thought we
3268 mutex_lock(&cgroup_mutex
);
3269 if ((root
!= subsys
->root
) ||
3270 (parent
!= task_cgroup(tsk
, subsys
->subsys_id
))) {
3271 /* Aargh, we raced ... */
3272 mutex_unlock(&inode
->i_mutex
);
3275 deactivate_super(root
->sb
);
3276 /* The cgroup is still accessible in the VFS, but
3277 * we're not going to try to rmdir() it at this
3280 "Race in cgroup_clone() - leaking cgroup %s\n",
3285 /* do any required auto-setup */
3286 for_each_subsys(root
, ss
) {
3288 ss
->post_clone(ss
, child
);
3291 /* All seems fine. Finish by moving the task into the new cgroup */
3292 ret
= cgroup_attach_task(child
, tsk
);
3293 mutex_unlock(&cgroup_mutex
);
3296 mutex_unlock(&inode
->i_mutex
);
3298 mutex_lock(&cgroup_mutex
);
3300 mutex_unlock(&cgroup_mutex
);
3301 deactivate_super(root
->sb
);
3306 * cgroup_is_descendant - see if @cgrp is a descendant of @task's cgrp
3307 * @cgrp: the cgroup in question
3308 * @task: the task in question
3310 * See if @cgrp is a descendant of @task's cgroup in the appropriate
3313 * If we are sending in dummytop, then presumably we are creating
3314 * the top cgroup in the subsystem.
3316 * Called only by the ns (nsproxy) cgroup.
3318 int cgroup_is_descendant(const struct cgroup
*cgrp
, struct task_struct
*task
)
3321 struct cgroup
*target
;
3324 if (cgrp
== dummytop
)
3327 get_first_subsys(cgrp
, NULL
, &subsys_id
);
3328 target
= task_cgroup(task
, subsys_id
);
3329 while (cgrp
!= target
&& cgrp
!= cgrp
->top_cgroup
)
3330 cgrp
= cgrp
->parent
;
3331 ret
= (cgrp
== target
);
3335 static void check_for_release(struct cgroup
*cgrp
)
3337 /* All of these checks rely on RCU to keep the cgroup
3338 * structure alive */
3339 if (cgroup_is_releasable(cgrp
) && !atomic_read(&cgrp
->count
)
3340 && list_empty(&cgrp
->children
) && !cgroup_has_css_refs(cgrp
)) {
3341 /* Control Group is currently removeable. If it's not
3342 * already queued for a userspace notification, queue
3344 int need_schedule_work
= 0;
3345 spin_lock(&release_list_lock
);
3346 if (!cgroup_is_removed(cgrp
) &&
3347 list_empty(&cgrp
->release_list
)) {
3348 list_add(&cgrp
->release_list
, &release_list
);
3349 need_schedule_work
= 1;
3351 spin_unlock(&release_list_lock
);
3352 if (need_schedule_work
)
3353 schedule_work(&release_agent_work
);
3357 void __css_put(struct cgroup_subsys_state
*css
)
3359 struct cgroup
*cgrp
= css
->cgroup
;
3361 if (atomic_dec_return(&css
->refcnt
) == 1) {
3362 if (notify_on_release(cgrp
)) {
3363 set_bit(CGRP_RELEASABLE
, &cgrp
->flags
);
3364 check_for_release(cgrp
);
3366 cgroup_wakeup_rmdir_waiter(cgrp
);
3372 * Notify userspace when a cgroup is released, by running the
3373 * configured release agent with the name of the cgroup (path
3374 * relative to the root of cgroup file system) as the argument.
3376 * Most likely, this user command will try to rmdir this cgroup.
3378 * This races with the possibility that some other task will be
3379 * attached to this cgroup before it is removed, or that some other
3380 * user task will 'mkdir' a child cgroup of this cgroup. That's ok.
3381 * The presumed 'rmdir' will fail quietly if this cgroup is no longer
3382 * unused, and this cgroup will be reprieved from its death sentence,
3383 * to continue to serve a useful existence. Next time it's released,
3384 * we will get notified again, if it still has 'notify_on_release' set.
3386 * The final arg to call_usermodehelper() is UMH_WAIT_EXEC, which
3387 * means only wait until the task is successfully execve()'d. The
3388 * separate release agent task is forked by call_usermodehelper(),
3389 * then control in this thread returns here, without waiting for the
3390 * release agent task. We don't bother to wait because the caller of
3391 * this routine has no use for the exit status of the release agent
3392 * task, so no sense holding our caller up for that.
3394 static void cgroup_release_agent(struct work_struct
*work
)
3396 BUG_ON(work
!= &release_agent_work
);
3397 mutex_lock(&cgroup_mutex
);
3398 spin_lock(&release_list_lock
);
3399 while (!list_empty(&release_list
)) {
3400 char *argv
[3], *envp
[3];
3402 char *pathbuf
= NULL
, *agentbuf
= NULL
;
3403 struct cgroup
*cgrp
= list_entry(release_list
.next
,
3406 list_del_init(&cgrp
->release_list
);
3407 spin_unlock(&release_list_lock
);
3408 pathbuf
= kmalloc(PAGE_SIZE
, GFP_KERNEL
);
3411 if (cgroup_path(cgrp
, pathbuf
, PAGE_SIZE
) < 0)
3413 agentbuf
= kstrdup(cgrp
->root
->release_agent_path
, GFP_KERNEL
);
3418 argv
[i
++] = agentbuf
;
3419 argv
[i
++] = pathbuf
;
3423 /* minimal command environment */
3424 envp
[i
++] = "HOME=/";
3425 envp
[i
++] = "PATH=/sbin:/bin:/usr/sbin:/usr/bin";
3428 /* Drop the lock while we invoke the usermode helper,
3429 * since the exec could involve hitting disk and hence
3430 * be a slow process */
3431 mutex_unlock(&cgroup_mutex
);
3432 call_usermodehelper(argv
[0], argv
, envp
, UMH_WAIT_EXEC
);
3433 mutex_lock(&cgroup_mutex
);
3437 spin_lock(&release_list_lock
);
3439 spin_unlock(&release_list_lock
);
3440 mutex_unlock(&cgroup_mutex
);
3443 static int __init
cgroup_disable(char *str
)
3448 while ((token
= strsep(&str
, ",")) != NULL
) {
3452 for (i
= 0; i
< CGROUP_SUBSYS_COUNT
; i
++) {
3453 struct cgroup_subsys
*ss
= subsys
[i
];
3455 if (!strcmp(token
, ss
->name
)) {
3457 printk(KERN_INFO
"Disabling %s control group"
3458 " subsystem\n", ss
->name
);
3465 __setup("cgroup_disable=", cgroup_disable
);
3468 * Functons for CSS ID.
3472 *To get ID other than 0, this should be called when !cgroup_is_removed().
3474 unsigned short css_id(struct cgroup_subsys_state
*css
)
3476 struct css_id
*cssid
= rcu_dereference(css
->id
);
3483 unsigned short css_depth(struct cgroup_subsys_state
*css
)
3485 struct css_id
*cssid
= rcu_dereference(css
->id
);
3488 return cssid
->depth
;
3492 bool css_is_ancestor(struct cgroup_subsys_state
*child
,
3493 const struct cgroup_subsys_state
*root
)
3495 struct css_id
*child_id
= rcu_dereference(child
->id
);
3496 struct css_id
*root_id
= rcu_dereference(root
->id
);
3498 if (!child_id
|| !root_id
|| (child_id
->depth
< root_id
->depth
))
3500 return child_id
->stack
[root_id
->depth
] == root_id
->id
;
3503 static void __free_css_id_cb(struct rcu_head
*head
)
3507 id
= container_of(head
, struct css_id
, rcu_head
);
3511 void free_css_id(struct cgroup_subsys
*ss
, struct cgroup_subsys_state
*css
)
3513 struct css_id
*id
= css
->id
;
3514 /* When this is called before css_id initialization, id can be NULL */
3518 BUG_ON(!ss
->use_id
);
3520 rcu_assign_pointer(id
->css
, NULL
);
3521 rcu_assign_pointer(css
->id
, NULL
);
3522 spin_lock(&ss
->id_lock
);
3523 idr_remove(&ss
->idr
, id
->id
);
3524 spin_unlock(&ss
->id_lock
);
3525 call_rcu(&id
->rcu_head
, __free_css_id_cb
);
3529 * This is called by init or create(). Then, calls to this function are
3530 * always serialized (By cgroup_mutex() at create()).
3533 static struct css_id
*get_new_cssid(struct cgroup_subsys
*ss
, int depth
)
3535 struct css_id
*newid
;
3536 int myid
, error
, size
;
3538 BUG_ON(!ss
->use_id
);
3540 size
= sizeof(*newid
) + sizeof(unsigned short) * (depth
+ 1);
3541 newid
= kzalloc(size
, GFP_KERNEL
);
3543 return ERR_PTR(-ENOMEM
);
3545 if (unlikely(!idr_pre_get(&ss
->idr
, GFP_KERNEL
))) {
3549 spin_lock(&ss
->id_lock
);
3550 /* Don't use 0. allocates an ID of 1-65535 */
3551 error
= idr_get_new_above(&ss
->idr
, newid
, 1, &myid
);
3552 spin_unlock(&ss
->id_lock
);
3554 /* Returns error when there are no free spaces for new ID.*/
3559 if (myid
> CSS_ID_MAX
)
3563 newid
->depth
= depth
;
3567 spin_lock(&ss
->id_lock
);
3568 idr_remove(&ss
->idr
, myid
);
3569 spin_unlock(&ss
->id_lock
);
3572 return ERR_PTR(error
);
3576 static int __init
cgroup_subsys_init_idr(struct cgroup_subsys
*ss
)
3578 struct css_id
*newid
;
3579 struct cgroup_subsys_state
*rootcss
;
3581 spin_lock_init(&ss
->id_lock
);
3584 rootcss
= init_css_set
.subsys
[ss
->subsys_id
];
3585 newid
= get_new_cssid(ss
, 0);
3587 return PTR_ERR(newid
);
3589 newid
->stack
[0] = newid
->id
;
3590 newid
->css
= rootcss
;
3591 rootcss
->id
= newid
;
3595 static int alloc_css_id(struct cgroup_subsys
*ss
, struct cgroup
*parent
,
3596 struct cgroup
*child
)
3598 int subsys_id
, i
, depth
= 0;
3599 struct cgroup_subsys_state
*parent_css
, *child_css
;
3600 struct css_id
*child_id
, *parent_id
= NULL
;
3602 subsys_id
= ss
->subsys_id
;
3603 parent_css
= parent
->subsys
[subsys_id
];
3604 child_css
= child
->subsys
[subsys_id
];
3605 depth
= css_depth(parent_css
) + 1;
3606 parent_id
= parent_css
->id
;
3608 child_id
= get_new_cssid(ss
, depth
);
3609 if (IS_ERR(child_id
))
3610 return PTR_ERR(child_id
);
3612 for (i
= 0; i
< depth
; i
++)
3613 child_id
->stack
[i
] = parent_id
->stack
[i
];
3614 child_id
->stack
[depth
] = child_id
->id
;
3616 * child_id->css pointer will be set after this cgroup is available
3617 * see cgroup_populate_dir()
3619 rcu_assign_pointer(child_css
->id
, child_id
);
3625 * css_lookup - lookup css by id
3626 * @ss: cgroup subsys to be looked into.
3629 * Returns pointer to cgroup_subsys_state if there is valid one with id.
3630 * NULL if not. Should be called under rcu_read_lock()
3632 struct cgroup_subsys_state
*css_lookup(struct cgroup_subsys
*ss
, int id
)
3634 struct css_id
*cssid
= NULL
;
3636 BUG_ON(!ss
->use_id
);
3637 cssid
= idr_find(&ss
->idr
, id
);
3639 if (unlikely(!cssid
))
3642 return rcu_dereference(cssid
->css
);
3646 * css_get_next - lookup next cgroup under specified hierarchy.
3647 * @ss: pointer to subsystem
3648 * @id: current position of iteration.
3649 * @root: pointer to css. search tree under this.
3650 * @foundid: position of found object.
3652 * Search next css under the specified hierarchy of rootid. Calling under
3653 * rcu_read_lock() is necessary. Returns NULL if it reaches the end.
3655 struct cgroup_subsys_state
*
3656 css_get_next(struct cgroup_subsys
*ss
, int id
,
3657 struct cgroup_subsys_state
*root
, int *foundid
)
3659 struct cgroup_subsys_state
*ret
= NULL
;
3662 int rootid
= css_id(root
);
3663 int depth
= css_depth(root
);
3668 BUG_ON(!ss
->use_id
);
3669 /* fill start point for scan */
3673 * scan next entry from bitmap(tree), tmpid is updated after
3676 spin_lock(&ss
->id_lock
);
3677 tmp
= idr_get_next(&ss
->idr
, &tmpid
);
3678 spin_unlock(&ss
->id_lock
);
3682 if (tmp
->depth
>= depth
&& tmp
->stack
[depth
] == rootid
) {
3683 ret
= rcu_dereference(tmp
->css
);
3689 /* continue to scan from next id */