x86: change size of APICIDs from u8 to u16
[linux-2.6/linux-2.6-openrd.git] / arch / x86 / mm / numa_64.c
blob650001a87c8f7bd433c7b0716c0c1280323182b2
1 /*
2 * Generic VM initialization for x86-64 NUMA setups.
3 * Copyright 2002,2003 Andi Kleen, SuSE Labs.
4 */
5 #include <linux/kernel.h>
6 #include <linux/mm.h>
7 #include <linux/string.h>
8 #include <linux/init.h>
9 #include <linux/bootmem.h>
10 #include <linux/mmzone.h>
11 #include <linux/ctype.h>
12 #include <linux/module.h>
13 #include <linux/nodemask.h>
15 #include <asm/e820.h>
16 #include <asm/proto.h>
17 #include <asm/dma.h>
18 #include <asm/numa.h>
19 #include <asm/acpi.h>
20 #include <asm/k8.h>
22 #ifndef Dprintk
23 #define Dprintk(x...)
24 #endif
26 struct pglist_data *node_data[MAX_NUMNODES] __read_mostly;
27 EXPORT_SYMBOL(node_data);
29 bootmem_data_t plat_node_bdata[MAX_NUMNODES];
31 struct memnode memnode;
33 int cpu_to_node_map[NR_CPUS] __read_mostly = {
34 [0 ... NR_CPUS-1] = NUMA_NO_NODE
36 EXPORT_SYMBOL(cpu_to_node_map);
38 unsigned char apicid_to_node[MAX_LOCAL_APIC] __cpuinitdata = {
39 [0 ... MAX_LOCAL_APIC-1] = NUMA_NO_NODE
42 cpumask_t node_to_cpumask_map[MAX_NUMNODES] __read_mostly;
43 EXPORT_SYMBOL(node_to_cpumask_map);
45 int numa_off __initdata;
46 unsigned long __initdata nodemap_addr;
47 unsigned long __initdata nodemap_size;
50 * Given a shift value, try to populate memnodemap[]
51 * Returns :
52 * 1 if OK
53 * 0 if memnodmap[] too small (of shift too small)
54 * -1 if node overlap or lost ram (shift too big)
56 static int __init populate_memnodemap(const struct bootnode *nodes,
57 int numnodes, int shift)
59 unsigned long addr, end;
60 int i, res = -1;
62 memset(memnodemap, 0xff, memnodemapsize);
63 for (i = 0; i < numnodes; i++) {
64 addr = nodes[i].start;
65 end = nodes[i].end;
66 if (addr >= end)
67 continue;
68 if ((end >> shift) >= memnodemapsize)
69 return 0;
70 do {
71 if (memnodemap[addr >> shift] != 0xff)
72 return -1;
73 memnodemap[addr >> shift] = i;
74 addr += (1UL << shift);
75 } while (addr < end);
76 res = 1;
78 return res;
81 static int __init allocate_cachealigned_memnodemap(void)
83 unsigned long pad, pad_addr;
85 memnodemap = memnode.embedded_map;
86 if (memnodemapsize <= 48)
87 return 0;
89 pad = L1_CACHE_BYTES - 1;
90 pad_addr = 0x8000;
91 nodemap_size = pad + memnodemapsize;
92 nodemap_addr = find_e820_area(pad_addr, end_pfn<<PAGE_SHIFT,
93 nodemap_size);
94 if (nodemap_addr == -1UL) {
95 printk(KERN_ERR
96 "NUMA: Unable to allocate Memory to Node hash map\n");
97 nodemap_addr = nodemap_size = 0;
98 return -1;
100 pad_addr = (nodemap_addr + pad) & ~pad;
101 memnodemap = phys_to_virt(pad_addr);
103 printk(KERN_DEBUG "NUMA: Allocated memnodemap from %lx - %lx\n",
104 nodemap_addr, nodemap_addr + nodemap_size);
105 return 0;
109 * The LSB of all start and end addresses in the node map is the value of the
110 * maximum possible shift.
112 static int __init extract_lsb_from_nodes(const struct bootnode *nodes,
113 int numnodes)
115 int i, nodes_used = 0;
116 unsigned long start, end;
117 unsigned long bitfield = 0, memtop = 0;
119 for (i = 0; i < numnodes; i++) {
120 start = nodes[i].start;
121 end = nodes[i].end;
122 if (start >= end)
123 continue;
124 bitfield |= start;
125 nodes_used++;
126 if (end > memtop)
127 memtop = end;
129 if (nodes_used <= 1)
130 i = 63;
131 else
132 i = find_first_bit(&bitfield, sizeof(unsigned long)*8);
133 memnodemapsize = (memtop >> i)+1;
134 return i;
137 int __init compute_hash_shift(struct bootnode *nodes, int numnodes)
139 int shift;
141 shift = extract_lsb_from_nodes(nodes, numnodes);
142 if (allocate_cachealigned_memnodemap())
143 return -1;
144 printk(KERN_DEBUG "NUMA: Using %d for the hash shift.\n",
145 shift);
147 if (populate_memnodemap(nodes, numnodes, shift) != 1) {
148 printk(KERN_INFO "Your memory is not aligned you need to "
149 "rebuild your kernel with a bigger NODEMAPSIZE "
150 "shift=%d\n", shift);
151 return -1;
153 return shift;
156 int early_pfn_to_nid(unsigned long pfn)
158 return phys_to_nid(pfn << PAGE_SHIFT);
161 static void * __init early_node_mem(int nodeid, unsigned long start,
162 unsigned long end, unsigned long size)
164 unsigned long mem = find_e820_area(start, end, size);
165 void *ptr;
167 if (mem != -1L)
168 return __va(mem);
169 ptr = __alloc_bootmem_nopanic(size,
170 SMP_CACHE_BYTES, __pa(MAX_DMA_ADDRESS));
171 if (ptr == NULL) {
172 printk(KERN_ERR "Cannot find %lu bytes in node %d\n",
173 size, nodeid);
174 return NULL;
176 return ptr;
179 /* Initialize bootmem allocator for a node */
180 void __init setup_node_bootmem(int nodeid, unsigned long start,
181 unsigned long end)
183 unsigned long start_pfn, end_pfn, bootmap_pages, bootmap_size;
184 unsigned long bootmap_start, nodedata_phys;
185 void *bootmap;
186 const int pgdat_size = round_up(sizeof(pg_data_t), PAGE_SIZE);
188 start = round_up(start, ZONE_ALIGN);
190 printk(KERN_INFO "Bootmem setup node %d %016lx-%016lx\n", nodeid,
191 start, end);
193 start_pfn = start >> PAGE_SHIFT;
194 end_pfn = end >> PAGE_SHIFT;
196 node_data[nodeid] = early_node_mem(nodeid, start, end, pgdat_size);
197 if (node_data[nodeid] == NULL)
198 return;
199 nodedata_phys = __pa(node_data[nodeid]);
201 memset(NODE_DATA(nodeid), 0, sizeof(pg_data_t));
202 NODE_DATA(nodeid)->bdata = &plat_node_bdata[nodeid];
203 NODE_DATA(nodeid)->node_start_pfn = start_pfn;
204 NODE_DATA(nodeid)->node_spanned_pages = end_pfn - start_pfn;
206 /* Find a place for the bootmem map */
207 bootmap_pages = bootmem_bootmap_pages(end_pfn - start_pfn);
208 bootmap_start = round_up(nodedata_phys + pgdat_size, PAGE_SIZE);
209 bootmap = early_node_mem(nodeid, bootmap_start, end,
210 bootmap_pages<<PAGE_SHIFT);
211 if (bootmap == NULL) {
212 if (nodedata_phys < start || nodedata_phys >= end)
213 free_bootmem((unsigned long)node_data[nodeid],
214 pgdat_size);
215 node_data[nodeid] = NULL;
216 return;
218 bootmap_start = __pa(bootmap);
219 Dprintk("bootmap start %lu pages %lu\n", bootmap_start, bootmap_pages);
221 bootmap_size = init_bootmem_node(NODE_DATA(nodeid),
222 bootmap_start >> PAGE_SHIFT,
223 start_pfn, end_pfn);
225 free_bootmem_with_active_regions(nodeid, end);
227 reserve_bootmem_node(NODE_DATA(nodeid), nodedata_phys, pgdat_size);
228 reserve_bootmem_node(NODE_DATA(nodeid), bootmap_start,
229 bootmap_pages<<PAGE_SHIFT);
230 #ifdef CONFIG_ACPI_NUMA
231 srat_reserve_add_area(nodeid);
232 #endif
233 node_set_online(nodeid);
236 #ifdef CONFIG_FLAT_NODE_MEM_MAP
237 /* Initialize final allocator for a zone */
238 static void __init flat_setup_node_zones(int nodeid)
240 unsigned long start_pfn, end_pfn, memmapsize, limit;
242 start_pfn = node_start_pfn(nodeid);
243 end_pfn = node_end_pfn(nodeid);
245 Dprintk(KERN_INFO "Setting up memmap for node %d %lx-%lx\n",
246 nodeid, start_pfn, end_pfn);
249 * Try to allocate mem_map at end to not fill up precious <4GB
250 * memory.
252 memmapsize = sizeof(struct page) * (end_pfn-start_pfn);
253 limit = end_pfn << PAGE_SHIFT;
255 NODE_DATA(nodeid)->node_mem_map =
256 __alloc_bootmem_core(NODE_DATA(nodeid)->bdata,
257 memmapsize, SMP_CACHE_BYTES,
258 round_down(limit - memmapsize, PAGE_SIZE),
259 limit);
261 #else
262 #define flat_setup_node_zones(i) do {} while (0)
263 #endif
266 * There are unfortunately some poorly designed mainboards around that
267 * only connect memory to a single CPU. This breaks the 1:1 cpu->node
268 * mapping. To avoid this fill in the mapping for all possible CPUs,
269 * as the number of CPUs is not known yet. We round robin the existing
270 * nodes.
272 void __init numa_init_array(void)
274 int rr, i;
276 rr = first_node(node_online_map);
277 for (i = 0; i < NR_CPUS; i++) {
278 if (cpu_to_node(i) != NUMA_NO_NODE)
279 continue;
280 numa_set_node(i, rr);
281 rr = next_node(rr, node_online_map);
282 if (rr == MAX_NUMNODES)
283 rr = first_node(node_online_map);
287 #ifdef CONFIG_NUMA_EMU
288 /* Numa emulation */
289 char *cmdline __initdata;
292 * Setups up nid to range from addr to addr + size. If the end
293 * boundary is greater than max_addr, then max_addr is used instead.
294 * The return value is 0 if there is additional memory left for
295 * allocation past addr and -1 otherwise. addr is adjusted to be at
296 * the end of the node.
298 static int __init setup_node_range(int nid, struct bootnode *nodes, u64 *addr,
299 u64 size, u64 max_addr)
301 int ret = 0;
303 nodes[nid].start = *addr;
304 *addr += size;
305 if (*addr >= max_addr) {
306 *addr = max_addr;
307 ret = -1;
309 nodes[nid].end = *addr;
310 node_set(nid, node_possible_map);
311 printk(KERN_INFO "Faking node %d at %016Lx-%016Lx (%LuMB)\n", nid,
312 nodes[nid].start, nodes[nid].end,
313 (nodes[nid].end - nodes[nid].start) >> 20);
314 return ret;
318 * Splits num_nodes nodes up equally starting at node_start. The return value
319 * is the number of nodes split up and addr is adjusted to be at the end of the
320 * last node allocated.
322 static int __init split_nodes_equally(struct bootnode *nodes, u64 *addr,
323 u64 max_addr, int node_start,
324 int num_nodes)
326 unsigned int big;
327 u64 size;
328 int i;
330 if (num_nodes <= 0)
331 return -1;
332 if (num_nodes > MAX_NUMNODES)
333 num_nodes = MAX_NUMNODES;
334 size = (max_addr - *addr - e820_hole_size(*addr, max_addr)) /
335 num_nodes;
337 * Calculate the number of big nodes that can be allocated as a result
338 * of consolidating the leftovers.
340 big = ((size & ~FAKE_NODE_MIN_HASH_MASK) * num_nodes) /
341 FAKE_NODE_MIN_SIZE;
343 /* Round down to nearest FAKE_NODE_MIN_SIZE. */
344 size &= FAKE_NODE_MIN_HASH_MASK;
345 if (!size) {
346 printk(KERN_ERR "Not enough memory for each node. "
347 "NUMA emulation disabled.\n");
348 return -1;
351 for (i = node_start; i < num_nodes + node_start; i++) {
352 u64 end = *addr + size;
354 if (i < big)
355 end += FAKE_NODE_MIN_SIZE;
357 * The final node can have the remaining system RAM. Other
358 * nodes receive roughly the same amount of available pages.
360 if (i == num_nodes + node_start - 1)
361 end = max_addr;
362 else
363 while (end - *addr - e820_hole_size(*addr, end) <
364 size) {
365 end += FAKE_NODE_MIN_SIZE;
366 if (end > max_addr) {
367 end = max_addr;
368 break;
371 if (setup_node_range(i, nodes, addr, end - *addr, max_addr) < 0)
372 break;
374 return i - node_start + 1;
378 * Splits the remaining system RAM into chunks of size. The remaining memory is
379 * always assigned to a final node and can be asymmetric. Returns the number of
380 * nodes split.
382 static int __init split_nodes_by_size(struct bootnode *nodes, u64 *addr,
383 u64 max_addr, int node_start, u64 size)
385 int i = node_start;
386 size = (size << 20) & FAKE_NODE_MIN_HASH_MASK;
387 while (!setup_node_range(i++, nodes, addr, size, max_addr))
389 return i - node_start;
393 * Sets up the system RAM area from start_pfn to end_pfn according to the
394 * numa=fake command-line option.
396 static int __init numa_emulation(unsigned long start_pfn, unsigned long end_pfn)
398 struct bootnode nodes[MAX_NUMNODES];
399 u64 size, addr = start_pfn << PAGE_SHIFT;
400 u64 max_addr = end_pfn << PAGE_SHIFT;
401 int num_nodes = 0, num = 0, coeff_flag, coeff = -1, i;
403 memset(&nodes, 0, sizeof(nodes));
405 * If the numa=fake command-line is just a single number N, split the
406 * system RAM into N fake nodes.
408 if (!strchr(cmdline, '*') && !strchr(cmdline, ',')) {
409 long n = simple_strtol(cmdline, NULL, 0);
411 num_nodes = split_nodes_equally(nodes, &addr, max_addr, 0, n);
412 if (num_nodes < 0)
413 return num_nodes;
414 goto out;
417 /* Parse the command line. */
418 for (coeff_flag = 0; ; cmdline++) {
419 if (*cmdline && isdigit(*cmdline)) {
420 num = num * 10 + *cmdline - '0';
421 continue;
423 if (*cmdline == '*') {
424 if (num > 0)
425 coeff = num;
426 coeff_flag = 1;
428 if (!*cmdline || *cmdline == ',') {
429 if (!coeff_flag)
430 coeff = 1;
432 * Round down to the nearest FAKE_NODE_MIN_SIZE.
433 * Command-line coefficients are in megabytes.
435 size = ((u64)num << 20) & FAKE_NODE_MIN_HASH_MASK;
436 if (size)
437 for (i = 0; i < coeff; i++, num_nodes++)
438 if (setup_node_range(num_nodes, nodes,
439 &addr, size, max_addr) < 0)
440 goto done;
441 if (!*cmdline)
442 break;
443 coeff_flag = 0;
444 coeff = -1;
446 num = 0;
448 done:
449 if (!num_nodes)
450 return -1;
451 /* Fill remainder of system RAM, if appropriate. */
452 if (addr < max_addr) {
453 if (coeff_flag && coeff < 0) {
454 /* Split remaining nodes into num-sized chunks */
455 num_nodes += split_nodes_by_size(nodes, &addr, max_addr,
456 num_nodes, num);
457 goto out;
459 switch (*(cmdline - 1)) {
460 case '*':
461 /* Split remaining nodes into coeff chunks */
462 if (coeff <= 0)
463 break;
464 num_nodes += split_nodes_equally(nodes, &addr, max_addr,
465 num_nodes, coeff);
466 break;
467 case ',':
468 /* Do not allocate remaining system RAM */
469 break;
470 default:
471 /* Give one final node */
472 setup_node_range(num_nodes, nodes, &addr,
473 max_addr - addr, max_addr);
474 num_nodes++;
477 out:
478 memnode_shift = compute_hash_shift(nodes, num_nodes);
479 if (memnode_shift < 0) {
480 memnode_shift = 0;
481 printk(KERN_ERR "No NUMA hash function found. NUMA emulation "
482 "disabled.\n");
483 return -1;
487 * We need to vacate all active ranges that may have been registered by
488 * SRAT and set acpi_numa to -1 so that srat_disabled() always returns
489 * true. NUMA emulation has succeeded so we will not scan ACPI nodes.
491 remove_all_active_ranges();
492 #ifdef CONFIG_ACPI_NUMA
493 acpi_numa = -1;
494 #endif
495 for_each_node_mask(i, node_possible_map) {
496 e820_register_active_regions(i, nodes[i].start >> PAGE_SHIFT,
497 nodes[i].end >> PAGE_SHIFT);
498 setup_node_bootmem(i, nodes[i].start, nodes[i].end);
500 acpi_fake_nodes(nodes, num_nodes);
501 numa_init_array();
502 return 0;
504 #endif /* CONFIG_NUMA_EMU */
506 void __init numa_initmem_init(unsigned long start_pfn, unsigned long end_pfn)
508 int i;
510 nodes_clear(node_possible_map);
512 #ifdef CONFIG_NUMA_EMU
513 if (cmdline && !numa_emulation(start_pfn, end_pfn))
514 return;
515 nodes_clear(node_possible_map);
516 #endif
518 #ifdef CONFIG_ACPI_NUMA
519 if (!numa_off && !acpi_scan_nodes(start_pfn << PAGE_SHIFT,
520 end_pfn << PAGE_SHIFT))
521 return;
522 nodes_clear(node_possible_map);
523 #endif
525 #ifdef CONFIG_K8_NUMA
526 if (!numa_off && !k8_scan_nodes(start_pfn<<PAGE_SHIFT,
527 end_pfn<<PAGE_SHIFT))
528 return;
529 nodes_clear(node_possible_map);
530 #endif
531 printk(KERN_INFO "%s\n",
532 numa_off ? "NUMA turned off" : "No NUMA configuration found");
534 printk(KERN_INFO "Faking a node at %016lx-%016lx\n",
535 start_pfn << PAGE_SHIFT,
536 end_pfn << PAGE_SHIFT);
537 /* setup dummy node covering all memory */
538 memnode_shift = 63;
539 memnodemap = memnode.embedded_map;
540 memnodemap[0] = 0;
541 nodes_clear(node_online_map);
542 node_set_online(0);
543 node_set(0, node_possible_map);
544 for (i = 0; i < NR_CPUS; i++)
545 numa_set_node(i, 0);
546 node_to_cpumask_map[0] = cpumask_of_cpu(0);
547 e820_register_active_regions(0, start_pfn, end_pfn);
548 setup_node_bootmem(0, start_pfn << PAGE_SHIFT, end_pfn << PAGE_SHIFT);
551 __cpuinit void numa_add_cpu(int cpu)
553 set_bit(cpu, (unsigned long *)&node_to_cpumask_map[cpu_to_node(cpu)]);
556 void __cpuinit numa_set_node(int cpu, int node)
558 cpu_pda(cpu)->nodenumber = node;
559 cpu_to_node_map[cpu] = node;
562 unsigned long __init numa_free_all_bootmem(void)
564 unsigned long pages = 0;
565 int i;
567 for_each_online_node(i)
568 pages += free_all_bootmem_node(NODE_DATA(i));
570 return pages;
573 void __init paging_init(void)
575 unsigned long max_zone_pfns[MAX_NR_ZONES];
576 int i;
578 memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
579 max_zone_pfns[ZONE_DMA] = MAX_DMA_PFN;
580 max_zone_pfns[ZONE_DMA32] = MAX_DMA32_PFN;
581 max_zone_pfns[ZONE_NORMAL] = end_pfn;
583 sparse_memory_present_with_active_regions(MAX_NUMNODES);
584 sparse_init();
586 for_each_online_node(i)
587 flat_setup_node_zones(i);
589 free_area_init_nodes(max_zone_pfns);
592 static __init int numa_setup(char *opt)
594 if (!opt)
595 return -EINVAL;
596 if (!strncmp(opt, "off", 3))
597 numa_off = 1;
598 #ifdef CONFIG_NUMA_EMU
599 if (!strncmp(opt, "fake=", 5))
600 cmdline = opt + 5;
601 #endif
602 #ifdef CONFIG_ACPI_NUMA
603 if (!strncmp(opt, "noacpi", 6))
604 acpi_numa = -1;
605 if (!strncmp(opt, "hotadd=", 7))
606 hotadd_percent = simple_strtoul(opt+7, NULL, 10);
607 #endif
608 return 0;
610 early_param("numa", numa_setup);
613 * Setup early cpu_to_node.
615 * Populate cpu_to_node[] only if x86_cpu_to_apicid[],
616 * and apicid_to_node[] tables have valid entries for a CPU.
617 * This means we skip cpu_to_node[] initialisation for NUMA
618 * emulation and faking node case (when running a kernel compiled
619 * for NUMA on a non NUMA box), which is OK as cpu_to_node[]
620 * is already initialized in a round robin manner at numa_init_array,
621 * prior to this call, and this initialization is good enough
622 * for the fake NUMA cases.
624 void __init init_cpu_to_node(void)
626 int i;
628 for (i = 0; i < NR_CPUS; i++) {
629 u16 apicid = x86_cpu_to_apicid_init[i];
631 if (apicid == BAD_APICID)
632 continue;
633 if (apicid_to_node[apicid] == NUMA_NO_NODE)
634 continue;
635 numa_set_node(i, apicid_to_node[apicid]);