powerpc: Don't emulate mr. instructions
[linux-2.6/linux-2.6-openrd.git] / drivers / crypto / ixp4xx_crypto.c
blob2d637e0fbc038df28dbfbff2d342b89edf6db4a4
1 /*
2 * Intel IXP4xx NPE-C crypto driver
4 * Copyright (C) 2008 Christian Hohnstaedt <chohnstaedt@innominate.com>
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms of version 2 of the GNU General Public License
8 * as published by the Free Software Foundation.
12 #include <linux/platform_device.h>
13 #include <linux/dma-mapping.h>
14 #include <linux/dmapool.h>
15 #include <linux/crypto.h>
16 #include <linux/kernel.h>
17 #include <linux/rtnetlink.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
21 #include <crypto/ctr.h>
22 #include <crypto/des.h>
23 #include <crypto/aes.h>
24 #include <crypto/sha.h>
25 #include <crypto/algapi.h>
26 #include <crypto/aead.h>
27 #include <crypto/authenc.h>
28 #include <crypto/scatterwalk.h>
30 #include <mach/npe.h>
31 #include <mach/qmgr.h>
33 #define MAX_KEYLEN 32
35 /* hash: cfgword + 2 * digestlen; crypt: keylen + cfgword */
36 #define NPE_CTX_LEN 80
37 #define AES_BLOCK128 16
39 #define NPE_OP_HASH_VERIFY 0x01
40 #define NPE_OP_CCM_ENABLE 0x04
41 #define NPE_OP_CRYPT_ENABLE 0x08
42 #define NPE_OP_HASH_ENABLE 0x10
43 #define NPE_OP_NOT_IN_PLACE 0x20
44 #define NPE_OP_HMAC_DISABLE 0x40
45 #define NPE_OP_CRYPT_ENCRYPT 0x80
47 #define NPE_OP_CCM_GEN_MIC 0xcc
48 #define NPE_OP_HASH_GEN_ICV 0x50
49 #define NPE_OP_ENC_GEN_KEY 0xc9
51 #define MOD_ECB 0x0000
52 #define MOD_CTR 0x1000
53 #define MOD_CBC_ENC 0x2000
54 #define MOD_CBC_DEC 0x3000
55 #define MOD_CCM_ENC 0x4000
56 #define MOD_CCM_DEC 0x5000
58 #define KEYLEN_128 4
59 #define KEYLEN_192 6
60 #define KEYLEN_256 8
62 #define CIPH_DECR 0x0000
63 #define CIPH_ENCR 0x0400
65 #define MOD_DES 0x0000
66 #define MOD_TDEA2 0x0100
67 #define MOD_3DES 0x0200
68 #define MOD_AES 0x0800
69 #define MOD_AES128 (0x0800 | KEYLEN_128)
70 #define MOD_AES192 (0x0900 | KEYLEN_192)
71 #define MOD_AES256 (0x0a00 | KEYLEN_256)
73 #define MAX_IVLEN 16
74 #define NPE_ID 2 /* NPE C */
75 #define NPE_QLEN 16
76 /* Space for registering when the first
77 * NPE_QLEN crypt_ctl are busy */
78 #define NPE_QLEN_TOTAL 64
80 #define SEND_QID 29
81 #define RECV_QID 30
83 #define CTL_FLAG_UNUSED 0x0000
84 #define CTL_FLAG_USED 0x1000
85 #define CTL_FLAG_PERFORM_ABLK 0x0001
86 #define CTL_FLAG_GEN_ICV 0x0002
87 #define CTL_FLAG_GEN_REVAES 0x0004
88 #define CTL_FLAG_PERFORM_AEAD 0x0008
89 #define CTL_FLAG_MASK 0x000f
91 #define HMAC_IPAD_VALUE 0x36
92 #define HMAC_OPAD_VALUE 0x5C
93 #define HMAC_PAD_BLOCKLEN SHA1_BLOCK_SIZE
95 #define MD5_DIGEST_SIZE 16
97 struct buffer_desc {
98 u32 phys_next;
99 u16 buf_len;
100 u16 pkt_len;
101 u32 phys_addr;
102 u32 __reserved[4];
103 struct buffer_desc *next;
106 struct crypt_ctl {
107 u8 mode; /* NPE_OP_* operation mode */
108 u8 init_len;
109 u16 reserved;
110 u8 iv[MAX_IVLEN]; /* IV for CBC mode or CTR IV for CTR mode */
111 u32 icv_rev_aes; /* icv or rev aes */
112 u32 src_buf;
113 u32 dst_buf;
114 u16 auth_offs; /* Authentication start offset */
115 u16 auth_len; /* Authentication data length */
116 u16 crypt_offs; /* Cryption start offset */
117 u16 crypt_len; /* Cryption data length */
118 u32 aadAddr; /* Additional Auth Data Addr for CCM mode */
119 u32 crypto_ctx; /* NPE Crypto Param structure address */
121 /* Used by Host: 4*4 bytes*/
122 unsigned ctl_flags;
123 union {
124 struct ablkcipher_request *ablk_req;
125 struct aead_request *aead_req;
126 struct crypto_tfm *tfm;
127 } data;
128 struct buffer_desc *regist_buf;
129 u8 *regist_ptr;
132 struct ablk_ctx {
133 struct buffer_desc *src;
134 struct buffer_desc *dst;
135 unsigned src_nents;
136 unsigned dst_nents;
139 struct aead_ctx {
140 struct buffer_desc *buffer;
141 unsigned short assoc_nents;
142 unsigned short src_nents;
143 struct scatterlist ivlist;
144 /* used when the hmac is not on one sg entry */
145 u8 *hmac_virt;
146 int encrypt;
149 struct ix_hash_algo {
150 u32 cfgword;
151 unsigned char *icv;
154 struct ix_sa_dir {
155 unsigned char *npe_ctx;
156 dma_addr_t npe_ctx_phys;
157 int npe_ctx_idx;
158 u8 npe_mode;
161 struct ixp_ctx {
162 struct ix_sa_dir encrypt;
163 struct ix_sa_dir decrypt;
164 int authkey_len;
165 u8 authkey[MAX_KEYLEN];
166 int enckey_len;
167 u8 enckey[MAX_KEYLEN];
168 u8 salt[MAX_IVLEN];
169 u8 nonce[CTR_RFC3686_NONCE_SIZE];
170 unsigned salted;
171 atomic_t configuring;
172 struct completion completion;
175 struct ixp_alg {
176 struct crypto_alg crypto;
177 const struct ix_hash_algo *hash;
178 u32 cfg_enc;
179 u32 cfg_dec;
181 int registered;
184 static const struct ix_hash_algo hash_alg_md5 = {
185 .cfgword = 0xAA010004,
186 .icv = "\x01\x23\x45\x67\x89\xAB\xCD\xEF"
187 "\xFE\xDC\xBA\x98\x76\x54\x32\x10",
189 static const struct ix_hash_algo hash_alg_sha1 = {
190 .cfgword = 0x00000005,
191 .icv = "\x67\x45\x23\x01\xEF\xCD\xAB\x89\x98\xBA"
192 "\xDC\xFE\x10\x32\x54\x76\xC3\xD2\xE1\xF0",
195 static struct npe *npe_c;
196 static struct dma_pool *buffer_pool = NULL;
197 static struct dma_pool *ctx_pool = NULL;
199 static struct crypt_ctl *crypt_virt = NULL;
200 static dma_addr_t crypt_phys;
202 static int support_aes = 1;
204 static void dev_release(struct device *dev)
206 return;
209 #define DRIVER_NAME "ixp4xx_crypto"
210 static struct platform_device pseudo_dev = {
211 .name = DRIVER_NAME,
212 .id = 0,
213 .num_resources = 0,
214 .dev = {
215 .coherent_dma_mask = DMA_32BIT_MASK,
216 .release = dev_release,
220 static struct device *dev = &pseudo_dev.dev;
222 static inline dma_addr_t crypt_virt2phys(struct crypt_ctl *virt)
224 return crypt_phys + (virt - crypt_virt) * sizeof(struct crypt_ctl);
227 static inline struct crypt_ctl *crypt_phys2virt(dma_addr_t phys)
229 return crypt_virt + (phys - crypt_phys) / sizeof(struct crypt_ctl);
232 static inline u32 cipher_cfg_enc(struct crypto_tfm *tfm)
234 return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_enc;
237 static inline u32 cipher_cfg_dec(struct crypto_tfm *tfm)
239 return container_of(tfm->__crt_alg, struct ixp_alg,crypto)->cfg_dec;
242 static inline const struct ix_hash_algo *ix_hash(struct crypto_tfm *tfm)
244 return container_of(tfm->__crt_alg, struct ixp_alg, crypto)->hash;
247 static int setup_crypt_desc(void)
249 BUILD_BUG_ON(sizeof(struct crypt_ctl) != 64);
250 crypt_virt = dma_alloc_coherent(dev,
251 NPE_QLEN * sizeof(struct crypt_ctl),
252 &crypt_phys, GFP_KERNEL);
253 if (!crypt_virt)
254 return -ENOMEM;
255 memset(crypt_virt, 0, NPE_QLEN * sizeof(struct crypt_ctl));
256 return 0;
259 static spinlock_t desc_lock;
260 static struct crypt_ctl *get_crypt_desc(void)
262 int i;
263 static int idx = 0;
264 unsigned long flags;
266 spin_lock_irqsave(&desc_lock, flags);
268 if (unlikely(!crypt_virt))
269 setup_crypt_desc();
270 if (unlikely(!crypt_virt)) {
271 spin_unlock_irqrestore(&desc_lock, flags);
272 return NULL;
274 i = idx;
275 if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
276 if (++idx >= NPE_QLEN)
277 idx = 0;
278 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
279 spin_unlock_irqrestore(&desc_lock, flags);
280 return crypt_virt +i;
281 } else {
282 spin_unlock_irqrestore(&desc_lock, flags);
283 return NULL;
287 static spinlock_t emerg_lock;
288 static struct crypt_ctl *get_crypt_desc_emerg(void)
290 int i;
291 static int idx = NPE_QLEN;
292 struct crypt_ctl *desc;
293 unsigned long flags;
295 desc = get_crypt_desc();
296 if (desc)
297 return desc;
298 if (unlikely(!crypt_virt))
299 return NULL;
301 spin_lock_irqsave(&emerg_lock, flags);
302 i = idx;
303 if (crypt_virt[i].ctl_flags == CTL_FLAG_UNUSED) {
304 if (++idx >= NPE_QLEN_TOTAL)
305 idx = NPE_QLEN;
306 crypt_virt[i].ctl_flags = CTL_FLAG_USED;
307 spin_unlock_irqrestore(&emerg_lock, flags);
308 return crypt_virt +i;
309 } else {
310 spin_unlock_irqrestore(&emerg_lock, flags);
311 return NULL;
315 static void free_buf_chain(struct buffer_desc *buf, u32 phys)
317 while (buf) {
318 struct buffer_desc *buf1;
319 u32 phys1;
321 buf1 = buf->next;
322 phys1 = buf->phys_next;
323 dma_pool_free(buffer_pool, buf, phys);
324 buf = buf1;
325 phys = phys1;
329 static struct tasklet_struct crypto_done_tasklet;
331 static void finish_scattered_hmac(struct crypt_ctl *crypt)
333 struct aead_request *req = crypt->data.aead_req;
334 struct aead_ctx *req_ctx = aead_request_ctx(req);
335 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
336 int authsize = crypto_aead_authsize(tfm);
337 int decryptlen = req->cryptlen - authsize;
339 if (req_ctx->encrypt) {
340 scatterwalk_map_and_copy(req_ctx->hmac_virt,
341 req->src, decryptlen, authsize, 1);
343 dma_pool_free(buffer_pool, req_ctx->hmac_virt, crypt->icv_rev_aes);
346 static void one_packet(dma_addr_t phys)
348 struct crypt_ctl *crypt;
349 struct ixp_ctx *ctx;
350 int failed;
351 enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
353 failed = phys & 0x1 ? -EBADMSG : 0;
354 phys &= ~0x3;
355 crypt = crypt_phys2virt(phys);
357 switch (crypt->ctl_flags & CTL_FLAG_MASK) {
358 case CTL_FLAG_PERFORM_AEAD: {
359 struct aead_request *req = crypt->data.aead_req;
360 struct aead_ctx *req_ctx = aead_request_ctx(req);
361 dma_unmap_sg(dev, req->assoc, req_ctx->assoc_nents,
362 DMA_TO_DEVICE);
363 dma_unmap_sg(dev, &req_ctx->ivlist, 1, DMA_BIDIRECTIONAL);
364 dma_unmap_sg(dev, req->src, req_ctx->src_nents,
365 DMA_BIDIRECTIONAL);
367 free_buf_chain(req_ctx->buffer, crypt->src_buf);
368 if (req_ctx->hmac_virt) {
369 finish_scattered_hmac(crypt);
371 req->base.complete(&req->base, failed);
372 break;
374 case CTL_FLAG_PERFORM_ABLK: {
375 struct ablkcipher_request *req = crypt->data.ablk_req;
376 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
377 int nents;
378 if (req_ctx->dst) {
379 nents = req_ctx->dst_nents;
380 dma_unmap_sg(dev, req->dst, nents, DMA_FROM_DEVICE);
381 free_buf_chain(req_ctx->dst, crypt->dst_buf);
382 src_direction = DMA_TO_DEVICE;
384 nents = req_ctx->src_nents;
385 dma_unmap_sg(dev, req->src, nents, src_direction);
386 free_buf_chain(req_ctx->src, crypt->src_buf);
387 req->base.complete(&req->base, failed);
388 break;
390 case CTL_FLAG_GEN_ICV:
391 ctx = crypto_tfm_ctx(crypt->data.tfm);
392 dma_pool_free(ctx_pool, crypt->regist_ptr,
393 crypt->regist_buf->phys_addr);
394 dma_pool_free(buffer_pool, crypt->regist_buf, crypt->src_buf);
395 if (atomic_dec_and_test(&ctx->configuring))
396 complete(&ctx->completion);
397 break;
398 case CTL_FLAG_GEN_REVAES:
399 ctx = crypto_tfm_ctx(crypt->data.tfm);
400 *(u32*)ctx->decrypt.npe_ctx &= cpu_to_be32(~CIPH_ENCR);
401 if (atomic_dec_and_test(&ctx->configuring))
402 complete(&ctx->completion);
403 break;
404 default:
405 BUG();
407 crypt->ctl_flags = CTL_FLAG_UNUSED;
410 static void irqhandler(void *_unused)
412 tasklet_schedule(&crypto_done_tasklet);
415 static void crypto_done_action(unsigned long arg)
417 int i;
419 for(i=0; i<4; i++) {
420 dma_addr_t phys = qmgr_get_entry(RECV_QID);
421 if (!phys)
422 return;
423 one_packet(phys);
425 tasklet_schedule(&crypto_done_tasklet);
428 static int init_ixp_crypto(void)
430 int ret = -ENODEV;
432 if (! ( ~(*IXP4XX_EXP_CFG2) & (IXP4XX_FEATURE_HASH |
433 IXP4XX_FEATURE_AES | IXP4XX_FEATURE_DES))) {
434 printk(KERN_ERR "ixp_crypto: No HW crypto available\n");
435 return ret;
437 npe_c = npe_request(NPE_ID);
438 if (!npe_c)
439 return ret;
441 if (!npe_running(npe_c)) {
442 npe_load_firmware(npe_c, npe_name(npe_c), dev);
445 /* buffer_pool will also be used to sometimes store the hmac,
446 * so assure it is large enough
448 BUILD_BUG_ON(SHA1_DIGEST_SIZE > sizeof(struct buffer_desc));
449 buffer_pool = dma_pool_create("buffer", dev,
450 sizeof(struct buffer_desc), 32, 0);
451 ret = -ENOMEM;
452 if (!buffer_pool) {
453 goto err;
455 ctx_pool = dma_pool_create("context", dev,
456 NPE_CTX_LEN, 16, 0);
457 if (!ctx_pool) {
458 goto err;
460 ret = qmgr_request_queue(SEND_QID, NPE_QLEN_TOTAL, 0, 0);
461 if (ret)
462 goto err;
463 ret = qmgr_request_queue(RECV_QID, NPE_QLEN, 0, 0);
464 if (ret) {
465 qmgr_release_queue(SEND_QID);
466 goto err;
468 qmgr_set_irq(RECV_QID, QUEUE_IRQ_SRC_NOT_EMPTY, irqhandler, NULL);
469 tasklet_init(&crypto_done_tasklet, crypto_done_action, 0);
471 qmgr_enable_irq(RECV_QID);
472 return 0;
473 err:
474 if (ctx_pool)
475 dma_pool_destroy(ctx_pool);
476 if (buffer_pool)
477 dma_pool_destroy(buffer_pool);
478 npe_release(npe_c);
479 return ret;
482 static void release_ixp_crypto(void)
484 qmgr_disable_irq(RECV_QID);
485 tasklet_kill(&crypto_done_tasklet);
487 qmgr_release_queue(SEND_QID);
488 qmgr_release_queue(RECV_QID);
490 dma_pool_destroy(ctx_pool);
491 dma_pool_destroy(buffer_pool);
493 npe_release(npe_c);
495 if (crypt_virt) {
496 dma_free_coherent(dev,
497 NPE_QLEN_TOTAL * sizeof( struct crypt_ctl),
498 crypt_virt, crypt_phys);
500 return;
503 static void reset_sa_dir(struct ix_sa_dir *dir)
505 memset(dir->npe_ctx, 0, NPE_CTX_LEN);
506 dir->npe_ctx_idx = 0;
507 dir->npe_mode = 0;
510 static int init_sa_dir(struct ix_sa_dir *dir)
512 dir->npe_ctx = dma_pool_alloc(ctx_pool, GFP_KERNEL, &dir->npe_ctx_phys);
513 if (!dir->npe_ctx) {
514 return -ENOMEM;
516 reset_sa_dir(dir);
517 return 0;
520 static void free_sa_dir(struct ix_sa_dir *dir)
522 memset(dir->npe_ctx, 0, NPE_CTX_LEN);
523 dma_pool_free(ctx_pool, dir->npe_ctx, dir->npe_ctx_phys);
526 static int init_tfm(struct crypto_tfm *tfm)
528 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
529 int ret;
531 atomic_set(&ctx->configuring, 0);
532 ret = init_sa_dir(&ctx->encrypt);
533 if (ret)
534 return ret;
535 ret = init_sa_dir(&ctx->decrypt);
536 if (ret) {
537 free_sa_dir(&ctx->encrypt);
539 return ret;
542 static int init_tfm_ablk(struct crypto_tfm *tfm)
544 tfm->crt_ablkcipher.reqsize = sizeof(struct ablk_ctx);
545 return init_tfm(tfm);
548 static int init_tfm_aead(struct crypto_tfm *tfm)
550 tfm->crt_aead.reqsize = sizeof(struct aead_ctx);
551 return init_tfm(tfm);
554 static void exit_tfm(struct crypto_tfm *tfm)
556 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
557 free_sa_dir(&ctx->encrypt);
558 free_sa_dir(&ctx->decrypt);
561 static int register_chain_var(struct crypto_tfm *tfm, u8 xpad, u32 target,
562 int init_len, u32 ctx_addr, const u8 *key, int key_len)
564 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
565 struct crypt_ctl *crypt;
566 struct buffer_desc *buf;
567 int i;
568 u8 *pad;
569 u32 pad_phys, buf_phys;
571 BUILD_BUG_ON(NPE_CTX_LEN < HMAC_PAD_BLOCKLEN);
572 pad = dma_pool_alloc(ctx_pool, GFP_KERNEL, &pad_phys);
573 if (!pad)
574 return -ENOMEM;
575 buf = dma_pool_alloc(buffer_pool, GFP_KERNEL, &buf_phys);
576 if (!buf) {
577 dma_pool_free(ctx_pool, pad, pad_phys);
578 return -ENOMEM;
580 crypt = get_crypt_desc_emerg();
581 if (!crypt) {
582 dma_pool_free(ctx_pool, pad, pad_phys);
583 dma_pool_free(buffer_pool, buf, buf_phys);
584 return -EAGAIN;
587 memcpy(pad, key, key_len);
588 memset(pad + key_len, 0, HMAC_PAD_BLOCKLEN - key_len);
589 for (i = 0; i < HMAC_PAD_BLOCKLEN; i++) {
590 pad[i] ^= xpad;
593 crypt->data.tfm = tfm;
594 crypt->regist_ptr = pad;
595 crypt->regist_buf = buf;
597 crypt->auth_offs = 0;
598 crypt->auth_len = HMAC_PAD_BLOCKLEN;
599 crypt->crypto_ctx = ctx_addr;
600 crypt->src_buf = buf_phys;
601 crypt->icv_rev_aes = target;
602 crypt->mode = NPE_OP_HASH_GEN_ICV;
603 crypt->init_len = init_len;
604 crypt->ctl_flags |= CTL_FLAG_GEN_ICV;
606 buf->next = 0;
607 buf->buf_len = HMAC_PAD_BLOCKLEN;
608 buf->pkt_len = 0;
609 buf->phys_addr = pad_phys;
611 atomic_inc(&ctx->configuring);
612 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
613 BUG_ON(qmgr_stat_overflow(SEND_QID));
614 return 0;
617 static int setup_auth(struct crypto_tfm *tfm, int encrypt, unsigned authsize,
618 const u8 *key, int key_len, unsigned digest_len)
620 u32 itarget, otarget, npe_ctx_addr;
621 unsigned char *cinfo;
622 int init_len, ret = 0;
623 u32 cfgword;
624 struct ix_sa_dir *dir;
625 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
626 const struct ix_hash_algo *algo;
628 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
629 cinfo = dir->npe_ctx + dir->npe_ctx_idx;
630 algo = ix_hash(tfm);
632 /* write cfg word to cryptinfo */
633 cfgword = algo->cfgword | ( authsize << 6); /* (authsize/4) << 8 */
634 *(u32*)cinfo = cpu_to_be32(cfgword);
635 cinfo += sizeof(cfgword);
637 /* write ICV to cryptinfo */
638 memcpy(cinfo, algo->icv, digest_len);
639 cinfo += digest_len;
641 itarget = dir->npe_ctx_phys + dir->npe_ctx_idx
642 + sizeof(algo->cfgword);
643 otarget = itarget + digest_len;
644 init_len = cinfo - (dir->npe_ctx + dir->npe_ctx_idx);
645 npe_ctx_addr = dir->npe_ctx_phys + dir->npe_ctx_idx;
647 dir->npe_ctx_idx += init_len;
648 dir->npe_mode |= NPE_OP_HASH_ENABLE;
650 if (!encrypt)
651 dir->npe_mode |= NPE_OP_HASH_VERIFY;
653 ret = register_chain_var(tfm, HMAC_OPAD_VALUE, otarget,
654 init_len, npe_ctx_addr, key, key_len);
655 if (ret)
656 return ret;
657 return register_chain_var(tfm, HMAC_IPAD_VALUE, itarget,
658 init_len, npe_ctx_addr, key, key_len);
661 static int gen_rev_aes_key(struct crypto_tfm *tfm)
663 struct crypt_ctl *crypt;
664 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
665 struct ix_sa_dir *dir = &ctx->decrypt;
667 crypt = get_crypt_desc_emerg();
668 if (!crypt) {
669 return -EAGAIN;
671 *(u32*)dir->npe_ctx |= cpu_to_be32(CIPH_ENCR);
673 crypt->data.tfm = tfm;
674 crypt->crypt_offs = 0;
675 crypt->crypt_len = AES_BLOCK128;
676 crypt->src_buf = 0;
677 crypt->crypto_ctx = dir->npe_ctx_phys;
678 crypt->icv_rev_aes = dir->npe_ctx_phys + sizeof(u32);
679 crypt->mode = NPE_OP_ENC_GEN_KEY;
680 crypt->init_len = dir->npe_ctx_idx;
681 crypt->ctl_flags |= CTL_FLAG_GEN_REVAES;
683 atomic_inc(&ctx->configuring);
684 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
685 BUG_ON(qmgr_stat_overflow(SEND_QID));
686 return 0;
689 static int setup_cipher(struct crypto_tfm *tfm, int encrypt,
690 const u8 *key, int key_len)
692 u8 *cinfo;
693 u32 cipher_cfg;
694 u32 keylen_cfg = 0;
695 struct ix_sa_dir *dir;
696 struct ixp_ctx *ctx = crypto_tfm_ctx(tfm);
697 u32 *flags = &tfm->crt_flags;
699 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
700 cinfo = dir->npe_ctx;
702 if (encrypt) {
703 cipher_cfg = cipher_cfg_enc(tfm);
704 dir->npe_mode |= NPE_OP_CRYPT_ENCRYPT;
705 } else {
706 cipher_cfg = cipher_cfg_dec(tfm);
708 if (cipher_cfg & MOD_AES) {
709 switch (key_len) {
710 case 16: keylen_cfg = MOD_AES128 | KEYLEN_128; break;
711 case 24: keylen_cfg = MOD_AES192 | KEYLEN_192; break;
712 case 32: keylen_cfg = MOD_AES256 | KEYLEN_256; break;
713 default:
714 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
715 return -EINVAL;
717 cipher_cfg |= keylen_cfg;
718 } else if (cipher_cfg & MOD_3DES) {
719 const u32 *K = (const u32 *)key;
720 if (unlikely(!((K[0] ^ K[2]) | (K[1] ^ K[3])) ||
721 !((K[2] ^ K[4]) | (K[3] ^ K[5]))))
723 *flags |= CRYPTO_TFM_RES_BAD_KEY_SCHED;
724 return -EINVAL;
726 } else {
727 u32 tmp[DES_EXPKEY_WORDS];
728 if (des_ekey(tmp, key) == 0) {
729 *flags |= CRYPTO_TFM_RES_WEAK_KEY;
732 /* write cfg word to cryptinfo */
733 *(u32*)cinfo = cpu_to_be32(cipher_cfg);
734 cinfo += sizeof(cipher_cfg);
736 /* write cipher key to cryptinfo */
737 memcpy(cinfo, key, key_len);
738 /* NPE wants keylen set to DES3_EDE_KEY_SIZE even for single DES */
739 if (key_len < DES3_EDE_KEY_SIZE && !(cipher_cfg & MOD_AES)) {
740 memset(cinfo + key_len, 0, DES3_EDE_KEY_SIZE -key_len);
741 key_len = DES3_EDE_KEY_SIZE;
743 dir->npe_ctx_idx = sizeof(cipher_cfg) + key_len;
744 dir->npe_mode |= NPE_OP_CRYPT_ENABLE;
745 if ((cipher_cfg & MOD_AES) && !encrypt) {
746 return gen_rev_aes_key(tfm);
748 return 0;
751 static int count_sg(struct scatterlist *sg, int nbytes)
753 int i;
754 for (i = 0; nbytes > 0; i++, sg = sg_next(sg))
755 nbytes -= sg->length;
756 return i;
759 static struct buffer_desc *chainup_buffers(struct scatterlist *sg,
760 unsigned nbytes, struct buffer_desc *buf, gfp_t flags)
762 int nents = 0;
764 while (nbytes > 0) {
765 struct buffer_desc *next_buf;
766 u32 next_buf_phys;
767 unsigned len = min(nbytes, sg_dma_len(sg));
769 nents++;
770 nbytes -= len;
771 if (!buf->phys_addr) {
772 buf->phys_addr = sg_dma_address(sg);
773 buf->buf_len = len;
774 buf->next = NULL;
775 buf->phys_next = 0;
776 goto next;
778 /* Two consecutive chunks on one page may be handled by the old
779 * buffer descriptor, increased by the length of the new one
781 if (sg_dma_address(sg) == buf->phys_addr + buf->buf_len) {
782 buf->buf_len += len;
783 goto next;
785 next_buf = dma_pool_alloc(buffer_pool, flags, &next_buf_phys);
786 if (!next_buf)
787 return NULL;
788 buf->next = next_buf;
789 buf->phys_next = next_buf_phys;
791 buf = next_buf;
792 buf->next = NULL;
793 buf->phys_next = 0;
794 buf->phys_addr = sg_dma_address(sg);
795 buf->buf_len = len;
796 next:
797 if (nbytes > 0) {
798 sg = sg_next(sg);
801 return buf;
804 static int ablk_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
805 unsigned int key_len)
807 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
808 u32 *flags = &tfm->base.crt_flags;
809 int ret;
811 init_completion(&ctx->completion);
812 atomic_inc(&ctx->configuring);
814 reset_sa_dir(&ctx->encrypt);
815 reset_sa_dir(&ctx->decrypt);
817 ctx->encrypt.npe_mode = NPE_OP_HMAC_DISABLE;
818 ctx->decrypt.npe_mode = NPE_OP_HMAC_DISABLE;
820 ret = setup_cipher(&tfm->base, 0, key, key_len);
821 if (ret)
822 goto out;
823 ret = setup_cipher(&tfm->base, 1, key, key_len);
824 if (ret)
825 goto out;
827 if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
828 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
829 ret = -EINVAL;
830 } else {
831 *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
834 out:
835 if (!atomic_dec_and_test(&ctx->configuring))
836 wait_for_completion(&ctx->completion);
837 return ret;
840 static int ablk_rfc3686_setkey(struct crypto_ablkcipher *tfm, const u8 *key,
841 unsigned int key_len)
843 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
845 /* the nonce is stored in bytes at end of key */
846 if (key_len < CTR_RFC3686_NONCE_SIZE)
847 return -EINVAL;
849 memcpy(ctx->nonce, key + (key_len - CTR_RFC3686_NONCE_SIZE),
850 CTR_RFC3686_NONCE_SIZE);
852 key_len -= CTR_RFC3686_NONCE_SIZE;
853 return ablk_setkey(tfm, key, key_len);
856 static int ablk_perform(struct ablkcipher_request *req, int encrypt)
858 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
859 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
860 unsigned ivsize = crypto_ablkcipher_ivsize(tfm);
861 int ret = -ENOMEM;
862 struct ix_sa_dir *dir;
863 struct crypt_ctl *crypt;
864 unsigned int nbytes = req->nbytes, nents;
865 enum dma_data_direction src_direction = DMA_BIDIRECTIONAL;
866 struct ablk_ctx *req_ctx = ablkcipher_request_ctx(req);
867 gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
868 GFP_KERNEL : GFP_ATOMIC;
870 if (qmgr_stat_full(SEND_QID))
871 return -EAGAIN;
872 if (atomic_read(&ctx->configuring))
873 return -EAGAIN;
875 dir = encrypt ? &ctx->encrypt : &ctx->decrypt;
877 crypt = get_crypt_desc();
878 if (!crypt)
879 return ret;
881 crypt->data.ablk_req = req;
882 crypt->crypto_ctx = dir->npe_ctx_phys;
883 crypt->mode = dir->npe_mode;
884 crypt->init_len = dir->npe_ctx_idx;
886 crypt->crypt_offs = 0;
887 crypt->crypt_len = nbytes;
889 BUG_ON(ivsize && !req->info);
890 memcpy(crypt->iv, req->info, ivsize);
891 if (req->src != req->dst) {
892 crypt->mode |= NPE_OP_NOT_IN_PLACE;
893 nents = count_sg(req->dst, nbytes);
894 /* This was never tested by Intel
895 * for more than one dst buffer, I think. */
896 BUG_ON(nents != 1);
897 req_ctx->dst_nents = nents;
898 dma_map_sg(dev, req->dst, nents, DMA_FROM_DEVICE);
899 req_ctx->dst = dma_pool_alloc(buffer_pool, flags,&crypt->dst_buf);
900 if (!req_ctx->dst)
901 goto unmap_sg_dest;
902 req_ctx->dst->phys_addr = 0;
903 if (!chainup_buffers(req->dst, nbytes, req_ctx->dst, flags))
904 goto free_buf_dest;
905 src_direction = DMA_TO_DEVICE;
906 } else {
907 req_ctx->dst = NULL;
908 req_ctx->dst_nents = 0;
910 nents = count_sg(req->src, nbytes);
911 req_ctx->src_nents = nents;
912 dma_map_sg(dev, req->src, nents, src_direction);
914 req_ctx->src = dma_pool_alloc(buffer_pool, flags, &crypt->src_buf);
915 if (!req_ctx->src)
916 goto unmap_sg_src;
917 req_ctx->src->phys_addr = 0;
918 if (!chainup_buffers(req->src, nbytes, req_ctx->src, flags))
919 goto free_buf_src;
921 crypt->ctl_flags |= CTL_FLAG_PERFORM_ABLK;
922 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
923 BUG_ON(qmgr_stat_overflow(SEND_QID));
924 return -EINPROGRESS;
926 free_buf_src:
927 free_buf_chain(req_ctx->src, crypt->src_buf);
928 unmap_sg_src:
929 dma_unmap_sg(dev, req->src, req_ctx->src_nents, src_direction);
930 free_buf_dest:
931 if (req->src != req->dst) {
932 free_buf_chain(req_ctx->dst, crypt->dst_buf);
933 unmap_sg_dest:
934 dma_unmap_sg(dev, req->src, req_ctx->dst_nents,
935 DMA_FROM_DEVICE);
937 crypt->ctl_flags = CTL_FLAG_UNUSED;
938 return ret;
941 static int ablk_encrypt(struct ablkcipher_request *req)
943 return ablk_perform(req, 1);
946 static int ablk_decrypt(struct ablkcipher_request *req)
948 return ablk_perform(req, 0);
951 static int ablk_rfc3686_crypt(struct ablkcipher_request *req)
953 struct crypto_ablkcipher *tfm = crypto_ablkcipher_reqtfm(req);
954 struct ixp_ctx *ctx = crypto_ablkcipher_ctx(tfm);
955 u8 iv[CTR_RFC3686_BLOCK_SIZE];
956 u8 *info = req->info;
957 int ret;
959 /* set up counter block */
960 memcpy(iv, ctx->nonce, CTR_RFC3686_NONCE_SIZE);
961 memcpy(iv + CTR_RFC3686_NONCE_SIZE, info, CTR_RFC3686_IV_SIZE);
963 /* initialize counter portion of counter block */
964 *(__be32 *)(iv + CTR_RFC3686_NONCE_SIZE + CTR_RFC3686_IV_SIZE) =
965 cpu_to_be32(1);
967 req->info = iv;
968 ret = ablk_perform(req, 1);
969 req->info = info;
970 return ret;
973 static int hmac_inconsistent(struct scatterlist *sg, unsigned start,
974 unsigned int nbytes)
976 int offset = 0;
978 if (!nbytes)
979 return 0;
981 for (;;) {
982 if (start < offset + sg->length)
983 break;
985 offset += sg->length;
986 sg = sg_next(sg);
988 return (start + nbytes > offset + sg->length);
991 static int aead_perform(struct aead_request *req, int encrypt,
992 int cryptoffset, int eff_cryptlen, u8 *iv)
994 struct crypto_aead *tfm = crypto_aead_reqtfm(req);
995 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
996 unsigned ivsize = crypto_aead_ivsize(tfm);
997 unsigned authsize = crypto_aead_authsize(tfm);
998 int ret = -ENOMEM;
999 struct ix_sa_dir *dir;
1000 struct crypt_ctl *crypt;
1001 unsigned int cryptlen, nents;
1002 struct buffer_desc *buf;
1003 struct aead_ctx *req_ctx = aead_request_ctx(req);
1004 gfp_t flags = req->base.flags & CRYPTO_TFM_REQ_MAY_SLEEP ?
1005 GFP_KERNEL : GFP_ATOMIC;
1007 if (qmgr_stat_full(SEND_QID))
1008 return -EAGAIN;
1009 if (atomic_read(&ctx->configuring))
1010 return -EAGAIN;
1012 if (encrypt) {
1013 dir = &ctx->encrypt;
1014 cryptlen = req->cryptlen;
1015 } else {
1016 dir = &ctx->decrypt;
1017 /* req->cryptlen includes the authsize when decrypting */
1018 cryptlen = req->cryptlen -authsize;
1019 eff_cryptlen -= authsize;
1021 crypt = get_crypt_desc();
1022 if (!crypt)
1023 return ret;
1025 crypt->data.aead_req = req;
1026 crypt->crypto_ctx = dir->npe_ctx_phys;
1027 crypt->mode = dir->npe_mode;
1028 crypt->init_len = dir->npe_ctx_idx;
1030 crypt->crypt_offs = cryptoffset;
1031 crypt->crypt_len = eff_cryptlen;
1033 crypt->auth_offs = 0;
1034 crypt->auth_len = req->assoclen + ivsize + cryptlen;
1035 BUG_ON(ivsize && !req->iv);
1036 memcpy(crypt->iv, req->iv, ivsize);
1038 if (req->src != req->dst) {
1039 BUG(); /* -ENOTSUP because of my lazyness */
1042 req_ctx->buffer = dma_pool_alloc(buffer_pool, flags, &crypt->src_buf);
1043 if (!req_ctx->buffer)
1044 goto out;
1045 req_ctx->buffer->phys_addr = 0;
1046 /* ASSOC data */
1047 nents = count_sg(req->assoc, req->assoclen);
1048 req_ctx->assoc_nents = nents;
1049 dma_map_sg(dev, req->assoc, nents, DMA_TO_DEVICE);
1050 buf = chainup_buffers(req->assoc, req->assoclen, req_ctx->buffer,flags);
1051 if (!buf)
1052 goto unmap_sg_assoc;
1053 /* IV */
1054 sg_init_table(&req_ctx->ivlist, 1);
1055 sg_set_buf(&req_ctx->ivlist, iv, ivsize);
1056 dma_map_sg(dev, &req_ctx->ivlist, 1, DMA_BIDIRECTIONAL);
1057 buf = chainup_buffers(&req_ctx->ivlist, ivsize, buf, flags);
1058 if (!buf)
1059 goto unmap_sg_iv;
1060 if (unlikely(hmac_inconsistent(req->src, cryptlen, authsize))) {
1061 /* The 12 hmac bytes are scattered,
1062 * we need to copy them into a safe buffer */
1063 req_ctx->hmac_virt = dma_pool_alloc(buffer_pool, flags,
1064 &crypt->icv_rev_aes);
1065 if (unlikely(!req_ctx->hmac_virt))
1066 goto unmap_sg_iv;
1067 if (!encrypt) {
1068 scatterwalk_map_and_copy(req_ctx->hmac_virt,
1069 req->src, cryptlen, authsize, 0);
1071 req_ctx->encrypt = encrypt;
1072 } else {
1073 req_ctx->hmac_virt = NULL;
1075 /* Crypt */
1076 nents = count_sg(req->src, cryptlen + authsize);
1077 req_ctx->src_nents = nents;
1078 dma_map_sg(dev, req->src, nents, DMA_BIDIRECTIONAL);
1079 buf = chainup_buffers(req->src, cryptlen + authsize, buf, flags);
1080 if (!buf)
1081 goto unmap_sg_src;
1082 if (!req_ctx->hmac_virt) {
1083 crypt->icv_rev_aes = buf->phys_addr + buf->buf_len - authsize;
1085 crypt->ctl_flags |= CTL_FLAG_PERFORM_AEAD;
1086 qmgr_put_entry(SEND_QID, crypt_virt2phys(crypt));
1087 BUG_ON(qmgr_stat_overflow(SEND_QID));
1088 return -EINPROGRESS;
1089 unmap_sg_src:
1090 dma_unmap_sg(dev, req->src, req_ctx->src_nents, DMA_BIDIRECTIONAL);
1091 if (req_ctx->hmac_virt) {
1092 dma_pool_free(buffer_pool, req_ctx->hmac_virt,
1093 crypt->icv_rev_aes);
1095 unmap_sg_iv:
1096 dma_unmap_sg(dev, &req_ctx->ivlist, 1, DMA_BIDIRECTIONAL);
1097 unmap_sg_assoc:
1098 dma_unmap_sg(dev, req->assoc, req_ctx->assoc_nents, DMA_TO_DEVICE);
1099 free_buf_chain(req_ctx->buffer, crypt->src_buf);
1100 out:
1101 crypt->ctl_flags = CTL_FLAG_UNUSED;
1102 return ret;
1105 static int aead_setup(struct crypto_aead *tfm, unsigned int authsize)
1107 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1108 u32 *flags = &tfm->base.crt_flags;
1109 unsigned digest_len = crypto_aead_alg(tfm)->maxauthsize;
1110 int ret;
1112 if (!ctx->enckey_len && !ctx->authkey_len)
1113 return 0;
1114 init_completion(&ctx->completion);
1115 atomic_inc(&ctx->configuring);
1117 reset_sa_dir(&ctx->encrypt);
1118 reset_sa_dir(&ctx->decrypt);
1120 ret = setup_cipher(&tfm->base, 0, ctx->enckey, ctx->enckey_len);
1121 if (ret)
1122 goto out;
1123 ret = setup_cipher(&tfm->base, 1, ctx->enckey, ctx->enckey_len);
1124 if (ret)
1125 goto out;
1126 ret = setup_auth(&tfm->base, 0, authsize, ctx->authkey,
1127 ctx->authkey_len, digest_len);
1128 if (ret)
1129 goto out;
1130 ret = setup_auth(&tfm->base, 1, authsize, ctx->authkey,
1131 ctx->authkey_len, digest_len);
1132 if (ret)
1133 goto out;
1135 if (*flags & CRYPTO_TFM_RES_WEAK_KEY) {
1136 if (*flags & CRYPTO_TFM_REQ_WEAK_KEY) {
1137 ret = -EINVAL;
1138 goto out;
1139 } else {
1140 *flags &= ~CRYPTO_TFM_RES_WEAK_KEY;
1143 out:
1144 if (!atomic_dec_and_test(&ctx->configuring))
1145 wait_for_completion(&ctx->completion);
1146 return ret;
1149 static int aead_setauthsize(struct crypto_aead *tfm, unsigned int authsize)
1151 int max = crypto_aead_alg(tfm)->maxauthsize >> 2;
1153 if ((authsize>>2) < 1 || (authsize>>2) > max || (authsize & 3))
1154 return -EINVAL;
1155 return aead_setup(tfm, authsize);
1158 static int aead_setkey(struct crypto_aead *tfm, const u8 *key,
1159 unsigned int keylen)
1161 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1162 struct rtattr *rta = (struct rtattr *)key;
1163 struct crypto_authenc_key_param *param;
1165 if (!RTA_OK(rta, keylen))
1166 goto badkey;
1167 if (rta->rta_type != CRYPTO_AUTHENC_KEYA_PARAM)
1168 goto badkey;
1169 if (RTA_PAYLOAD(rta) < sizeof(*param))
1170 goto badkey;
1172 param = RTA_DATA(rta);
1173 ctx->enckey_len = be32_to_cpu(param->enckeylen);
1175 key += RTA_ALIGN(rta->rta_len);
1176 keylen -= RTA_ALIGN(rta->rta_len);
1178 if (keylen < ctx->enckey_len)
1179 goto badkey;
1181 ctx->authkey_len = keylen - ctx->enckey_len;
1182 memcpy(ctx->enckey, key + ctx->authkey_len, ctx->enckey_len);
1183 memcpy(ctx->authkey, key, ctx->authkey_len);
1185 return aead_setup(tfm, crypto_aead_authsize(tfm));
1186 badkey:
1187 ctx->enckey_len = 0;
1188 crypto_aead_set_flags(tfm, CRYPTO_TFM_RES_BAD_KEY_LEN);
1189 return -EINVAL;
1192 static int aead_encrypt(struct aead_request *req)
1194 unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1195 return aead_perform(req, 1, req->assoclen + ivsize,
1196 req->cryptlen, req->iv);
1199 static int aead_decrypt(struct aead_request *req)
1201 unsigned ivsize = crypto_aead_ivsize(crypto_aead_reqtfm(req));
1202 return aead_perform(req, 0, req->assoclen + ivsize,
1203 req->cryptlen, req->iv);
1206 static int aead_givencrypt(struct aead_givcrypt_request *req)
1208 struct crypto_aead *tfm = aead_givcrypt_reqtfm(req);
1209 struct ixp_ctx *ctx = crypto_aead_ctx(tfm);
1210 unsigned len, ivsize = crypto_aead_ivsize(tfm);
1211 __be64 seq;
1213 /* copied from eseqiv.c */
1214 if (!ctx->salted) {
1215 get_random_bytes(ctx->salt, ivsize);
1216 ctx->salted = 1;
1218 memcpy(req->areq.iv, ctx->salt, ivsize);
1219 len = ivsize;
1220 if (ivsize > sizeof(u64)) {
1221 memset(req->giv, 0, ivsize - sizeof(u64));
1222 len = sizeof(u64);
1224 seq = cpu_to_be64(req->seq);
1225 memcpy(req->giv + ivsize - len, &seq, len);
1226 return aead_perform(&req->areq, 1, req->areq.assoclen,
1227 req->areq.cryptlen +ivsize, req->giv);
1230 static struct ixp_alg ixp4xx_algos[] = {
1232 .crypto = {
1233 .cra_name = "cbc(des)",
1234 .cra_blocksize = DES_BLOCK_SIZE,
1235 .cra_u = { .ablkcipher = {
1236 .min_keysize = DES_KEY_SIZE,
1237 .max_keysize = DES_KEY_SIZE,
1238 .ivsize = DES_BLOCK_SIZE,
1239 .geniv = "eseqiv",
1243 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1244 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1246 }, {
1247 .crypto = {
1248 .cra_name = "ecb(des)",
1249 .cra_blocksize = DES_BLOCK_SIZE,
1250 .cra_u = { .ablkcipher = {
1251 .min_keysize = DES_KEY_SIZE,
1252 .max_keysize = DES_KEY_SIZE,
1256 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_ECB | KEYLEN_192,
1257 .cfg_dec = CIPH_DECR | MOD_DES | MOD_ECB | KEYLEN_192,
1258 }, {
1259 .crypto = {
1260 .cra_name = "cbc(des3_ede)",
1261 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1262 .cra_u = { .ablkcipher = {
1263 .min_keysize = DES3_EDE_KEY_SIZE,
1264 .max_keysize = DES3_EDE_KEY_SIZE,
1265 .ivsize = DES3_EDE_BLOCK_SIZE,
1266 .geniv = "eseqiv",
1270 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1271 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1272 }, {
1273 .crypto = {
1274 .cra_name = "ecb(des3_ede)",
1275 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1276 .cra_u = { .ablkcipher = {
1277 .min_keysize = DES3_EDE_KEY_SIZE,
1278 .max_keysize = DES3_EDE_KEY_SIZE,
1282 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_ECB | KEYLEN_192,
1283 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_ECB | KEYLEN_192,
1284 }, {
1285 .crypto = {
1286 .cra_name = "cbc(aes)",
1287 .cra_blocksize = AES_BLOCK_SIZE,
1288 .cra_u = { .ablkcipher = {
1289 .min_keysize = AES_MIN_KEY_SIZE,
1290 .max_keysize = AES_MAX_KEY_SIZE,
1291 .ivsize = AES_BLOCK_SIZE,
1292 .geniv = "eseqiv",
1296 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1297 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1298 }, {
1299 .crypto = {
1300 .cra_name = "ecb(aes)",
1301 .cra_blocksize = AES_BLOCK_SIZE,
1302 .cra_u = { .ablkcipher = {
1303 .min_keysize = AES_MIN_KEY_SIZE,
1304 .max_keysize = AES_MAX_KEY_SIZE,
1308 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_ECB,
1309 .cfg_dec = CIPH_DECR | MOD_AES | MOD_ECB,
1310 }, {
1311 .crypto = {
1312 .cra_name = "ctr(aes)",
1313 .cra_blocksize = AES_BLOCK_SIZE,
1314 .cra_u = { .ablkcipher = {
1315 .min_keysize = AES_MIN_KEY_SIZE,
1316 .max_keysize = AES_MAX_KEY_SIZE,
1317 .ivsize = AES_BLOCK_SIZE,
1318 .geniv = "eseqiv",
1322 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1323 .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1324 }, {
1325 .crypto = {
1326 .cra_name = "rfc3686(ctr(aes))",
1327 .cra_blocksize = AES_BLOCK_SIZE,
1328 .cra_u = { .ablkcipher = {
1329 .min_keysize = AES_MIN_KEY_SIZE,
1330 .max_keysize = AES_MAX_KEY_SIZE,
1331 .ivsize = AES_BLOCK_SIZE,
1332 .geniv = "eseqiv",
1333 .setkey = ablk_rfc3686_setkey,
1334 .encrypt = ablk_rfc3686_crypt,
1335 .decrypt = ablk_rfc3686_crypt }
1338 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CTR,
1339 .cfg_dec = CIPH_ENCR | MOD_AES | MOD_CTR,
1340 }, {
1341 .crypto = {
1342 .cra_name = "authenc(hmac(md5),cbc(des))",
1343 .cra_blocksize = DES_BLOCK_SIZE,
1344 .cra_u = { .aead = {
1345 .ivsize = DES_BLOCK_SIZE,
1346 .maxauthsize = MD5_DIGEST_SIZE,
1350 .hash = &hash_alg_md5,
1351 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1352 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1353 }, {
1354 .crypto = {
1355 .cra_name = "authenc(hmac(md5),cbc(des3_ede))",
1356 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1357 .cra_u = { .aead = {
1358 .ivsize = DES3_EDE_BLOCK_SIZE,
1359 .maxauthsize = MD5_DIGEST_SIZE,
1363 .hash = &hash_alg_md5,
1364 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1365 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1366 }, {
1367 .crypto = {
1368 .cra_name = "authenc(hmac(sha1),cbc(des))",
1369 .cra_blocksize = DES_BLOCK_SIZE,
1370 .cra_u = { .aead = {
1371 .ivsize = DES_BLOCK_SIZE,
1372 .maxauthsize = SHA1_DIGEST_SIZE,
1376 .hash = &hash_alg_sha1,
1377 .cfg_enc = CIPH_ENCR | MOD_DES | MOD_CBC_ENC | KEYLEN_192,
1378 .cfg_dec = CIPH_DECR | MOD_DES | MOD_CBC_DEC | KEYLEN_192,
1379 }, {
1380 .crypto = {
1381 .cra_name = "authenc(hmac(sha1),cbc(des3_ede))",
1382 .cra_blocksize = DES3_EDE_BLOCK_SIZE,
1383 .cra_u = { .aead = {
1384 .ivsize = DES3_EDE_BLOCK_SIZE,
1385 .maxauthsize = SHA1_DIGEST_SIZE,
1389 .hash = &hash_alg_sha1,
1390 .cfg_enc = CIPH_ENCR | MOD_3DES | MOD_CBC_ENC | KEYLEN_192,
1391 .cfg_dec = CIPH_DECR | MOD_3DES | MOD_CBC_DEC | KEYLEN_192,
1392 }, {
1393 .crypto = {
1394 .cra_name = "authenc(hmac(md5),cbc(aes))",
1395 .cra_blocksize = AES_BLOCK_SIZE,
1396 .cra_u = { .aead = {
1397 .ivsize = AES_BLOCK_SIZE,
1398 .maxauthsize = MD5_DIGEST_SIZE,
1402 .hash = &hash_alg_md5,
1403 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1404 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1405 }, {
1406 .crypto = {
1407 .cra_name = "authenc(hmac(sha1),cbc(aes))",
1408 .cra_blocksize = AES_BLOCK_SIZE,
1409 .cra_u = { .aead = {
1410 .ivsize = AES_BLOCK_SIZE,
1411 .maxauthsize = SHA1_DIGEST_SIZE,
1415 .hash = &hash_alg_sha1,
1416 .cfg_enc = CIPH_ENCR | MOD_AES | MOD_CBC_ENC,
1417 .cfg_dec = CIPH_DECR | MOD_AES | MOD_CBC_DEC,
1418 } };
1420 #define IXP_POSTFIX "-ixp4xx"
1421 static int __init ixp_module_init(void)
1423 int num = ARRAY_SIZE(ixp4xx_algos);
1424 int i,err ;
1426 if (platform_device_register(&pseudo_dev))
1427 return -ENODEV;
1429 spin_lock_init(&desc_lock);
1430 spin_lock_init(&emerg_lock);
1432 err = init_ixp_crypto();
1433 if (err) {
1434 platform_device_unregister(&pseudo_dev);
1435 return err;
1437 for (i=0; i< num; i++) {
1438 struct crypto_alg *cra = &ixp4xx_algos[i].crypto;
1440 if (snprintf(cra->cra_driver_name, CRYPTO_MAX_ALG_NAME,
1441 "%s"IXP_POSTFIX, cra->cra_name) >=
1442 CRYPTO_MAX_ALG_NAME)
1444 continue;
1446 if (!support_aes && (ixp4xx_algos[i].cfg_enc & MOD_AES)) {
1447 continue;
1449 if (!ixp4xx_algos[i].hash) {
1450 /* block ciphers */
1451 cra->cra_type = &crypto_ablkcipher_type;
1452 cra->cra_flags = CRYPTO_ALG_TYPE_ABLKCIPHER |
1453 CRYPTO_ALG_ASYNC;
1454 if (!cra->cra_ablkcipher.setkey)
1455 cra->cra_ablkcipher.setkey = ablk_setkey;
1456 if (!cra->cra_ablkcipher.encrypt)
1457 cra->cra_ablkcipher.encrypt = ablk_encrypt;
1458 if (!cra->cra_ablkcipher.decrypt)
1459 cra->cra_ablkcipher.decrypt = ablk_decrypt;
1460 cra->cra_init = init_tfm_ablk;
1461 } else {
1462 /* authenc */
1463 cra->cra_type = &crypto_aead_type;
1464 cra->cra_flags = CRYPTO_ALG_TYPE_AEAD |
1465 CRYPTO_ALG_ASYNC;
1466 cra->cra_aead.setkey = aead_setkey;
1467 cra->cra_aead.setauthsize = aead_setauthsize;
1468 cra->cra_aead.encrypt = aead_encrypt;
1469 cra->cra_aead.decrypt = aead_decrypt;
1470 cra->cra_aead.givencrypt = aead_givencrypt;
1471 cra->cra_init = init_tfm_aead;
1473 cra->cra_ctxsize = sizeof(struct ixp_ctx);
1474 cra->cra_module = THIS_MODULE;
1475 cra->cra_alignmask = 3;
1476 cra->cra_priority = 300;
1477 cra->cra_exit = exit_tfm;
1478 if (crypto_register_alg(cra))
1479 printk(KERN_ERR "Failed to register '%s'\n",
1480 cra->cra_name);
1481 else
1482 ixp4xx_algos[i].registered = 1;
1484 return 0;
1487 static void __exit ixp_module_exit(void)
1489 int num = ARRAY_SIZE(ixp4xx_algos);
1490 int i;
1492 for (i=0; i< num; i++) {
1493 if (ixp4xx_algos[i].registered)
1494 crypto_unregister_alg(&ixp4xx_algos[i].crypto);
1496 release_ixp_crypto();
1497 platform_device_unregister(&pseudo_dev);
1500 module_init(ixp_module_init);
1501 module_exit(ixp_module_exit);
1503 MODULE_LICENSE("GPL");
1504 MODULE_AUTHOR("Christian Hohnstaedt <chohnstaedt@innominate.com>");
1505 MODULE_DESCRIPTION("IXP4xx hardware crypto");