2 * Read-Copy Update mechanism for mutual exclusion
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 * Copyright IBM Corporation, 2008
20 * Authors: Dipankar Sarma <dipankar@in.ibm.com>
21 * Manfred Spraul <manfred@colorfullife.com>
22 * Paul E. McKenney <paulmck@linux.vnet.ibm.com> Hierarchical version
24 * Based on the original work by Paul McKenney <paulmck@us.ibm.com>
25 * and inputs from Rusty Russell, Andrea Arcangeli and Andi Kleen.
27 * For detailed explanation of Read-Copy Update mechanism see -
30 #include <linux/types.h>
31 #include <linux/kernel.h>
32 #include <linux/init.h>
33 #include <linux/spinlock.h>
34 #include <linux/smp.h>
35 #include <linux/rcupdate.h>
36 #include <linux/interrupt.h>
37 #include <linux/sched.h>
38 #include <asm/atomic.h>
39 #include <linux/bitops.h>
40 #include <linux/module.h>
41 #include <linux/completion.h>
42 #include <linux/moduleparam.h>
43 #include <linux/percpu.h>
44 #include <linux/notifier.h>
45 #include <linux/cpu.h>
46 #include <linux/mutex.h>
47 #include <linux/time.h>
49 #ifdef CONFIG_DEBUG_LOCK_ALLOC
50 static struct lock_class_key rcu_lock_key
;
51 struct lockdep_map rcu_lock_map
=
52 STATIC_LOCKDEP_MAP_INIT("rcu_read_lock", &rcu_lock_key
);
53 EXPORT_SYMBOL_GPL(rcu_lock_map
);
56 /* Data structures. */
58 #define RCU_STATE_INITIALIZER(name) { \
59 .level = { &name.node[0] }, \
61 NUM_RCU_LVL_0, /* root of hierarchy. */ \
64 NUM_RCU_LVL_3, /* == MAX_RCU_LVLS */ \
66 .signaled = RCU_SIGNAL_INIT, \
69 .onofflock = __SPIN_LOCK_UNLOCKED(&name.onofflock), \
70 .fqslock = __SPIN_LOCK_UNLOCKED(&name.fqslock), \
72 .n_force_qs_ngp = 0, \
75 struct rcu_state rcu_state
= RCU_STATE_INITIALIZER(rcu_state
);
76 DEFINE_PER_CPU(struct rcu_data
, rcu_data
);
78 struct rcu_state rcu_bh_state
= RCU_STATE_INITIALIZER(rcu_bh_state
);
79 DEFINE_PER_CPU(struct rcu_data
, rcu_bh_data
);
82 * Increment the quiescent state counter.
83 * The counter is a bit degenerated: We do not need to know
84 * how many quiescent states passed, just if there was at least
85 * one since the start of the grace period. Thus just a flag.
87 void rcu_qsctr_inc(int cpu
)
89 struct rcu_data
*rdp
= &per_cpu(rcu_data
, cpu
);
90 rdp
->passed_quiesc
= 1;
91 rdp
->passed_quiesc_completed
= rdp
->completed
;
94 void rcu_bh_qsctr_inc(int cpu
)
96 struct rcu_data
*rdp
= &per_cpu(rcu_bh_data
, cpu
);
97 rdp
->passed_quiesc
= 1;
98 rdp
->passed_quiesc_completed
= rdp
->completed
;
102 DEFINE_PER_CPU(struct rcu_dynticks
, rcu_dynticks
) = {
103 .dynticks_nesting
= 1,
106 #endif /* #ifdef CONFIG_NO_HZ */
108 static int blimit
= 10; /* Maximum callbacks per softirq. */
109 static int qhimark
= 10000; /* If this many pending, ignore blimit. */
110 static int qlowmark
= 100; /* Once only this many pending, use blimit. */
112 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
);
115 * Return the number of RCU batches processed thus far for debug & stats.
117 long rcu_batches_completed(void)
119 return rcu_state
.completed
;
121 EXPORT_SYMBOL_GPL(rcu_batches_completed
);
124 * Return the number of RCU BH batches processed thus far for debug & stats.
126 long rcu_batches_completed_bh(void)
128 return rcu_bh_state
.completed
;
130 EXPORT_SYMBOL_GPL(rcu_batches_completed_bh
);
133 * Does the CPU have callbacks ready to be invoked?
136 cpu_has_callbacks_ready_to_invoke(struct rcu_data
*rdp
)
138 return &rdp
->nxtlist
!= rdp
->nxttail
[RCU_DONE_TAIL
];
142 * Does the current CPU require a yet-as-unscheduled grace period?
145 cpu_needs_another_gp(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
147 /* ACCESS_ONCE() because we are accessing outside of lock. */
148 return *rdp
->nxttail
[RCU_DONE_TAIL
] &&
149 ACCESS_ONCE(rsp
->completed
) == ACCESS_ONCE(rsp
->gpnum
);
153 * Return the root node of the specified rcu_state structure.
155 static struct rcu_node
*rcu_get_root(struct rcu_state
*rsp
)
157 return &rsp
->node
[0];
163 * If the specified CPU is offline, tell the caller that it is in
164 * a quiescent state. Otherwise, whack it with a reschedule IPI.
165 * Grace periods can end up waiting on an offline CPU when that
166 * CPU is in the process of coming online -- it will be added to the
167 * rcu_node bitmasks before it actually makes it online. The same thing
168 * can happen while a CPU is in the process of coming online. Because this
169 * race is quite rare, we check for it after detecting that the grace
170 * period has been delayed rather than checking each and every CPU
171 * each and every time we start a new grace period.
173 static int rcu_implicit_offline_qs(struct rcu_data
*rdp
)
176 * If the CPU is offline, it is in a quiescent state. We can
177 * trust its state not to change because interrupts are disabled.
179 if (cpu_is_offline(rdp
->cpu
)) {
184 /* The CPU is online, so send it a reschedule IPI. */
185 if (rdp
->cpu
!= smp_processor_id())
186 smp_send_reschedule(rdp
->cpu
);
193 #endif /* #ifdef CONFIG_SMP */
196 static DEFINE_RATELIMIT_STATE(rcu_rs
, 10 * HZ
, 5);
199 * rcu_enter_nohz - inform RCU that current CPU is entering nohz
201 * Enter nohz mode, in other words, -leave- the mode in which RCU
202 * read-side critical sections can occur. (Though RCU read-side
203 * critical sections can occur in irq handlers in nohz mode, a possibility
204 * handled by rcu_irq_enter() and rcu_irq_exit()).
206 void rcu_enter_nohz(void)
209 struct rcu_dynticks
*rdtp
;
211 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
212 local_irq_save(flags
);
213 rdtp
= &__get_cpu_var(rcu_dynticks
);
215 rdtp
->dynticks_nesting
--;
216 WARN_ON_RATELIMIT(rdtp
->dynticks
& 0x1, &rcu_rs
);
217 local_irq_restore(flags
);
221 * rcu_exit_nohz - inform RCU that current CPU is leaving nohz
223 * Exit nohz mode, in other words, -enter- the mode in which RCU
224 * read-side critical sections normally occur.
226 void rcu_exit_nohz(void)
229 struct rcu_dynticks
*rdtp
;
231 local_irq_save(flags
);
232 rdtp
= &__get_cpu_var(rcu_dynticks
);
234 rdtp
->dynticks_nesting
++;
235 WARN_ON_RATELIMIT(!(rdtp
->dynticks
& 0x1), &rcu_rs
);
236 local_irq_restore(flags
);
237 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
241 * rcu_nmi_enter - inform RCU of entry to NMI context
243 * If the CPU was idle with dynamic ticks active, and there is no
244 * irq handler running, this updates rdtp->dynticks_nmi to let the
245 * RCU grace-period handling know that the CPU is active.
247 void rcu_nmi_enter(void)
249 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
251 if (rdtp
->dynticks
& 0x1)
253 rdtp
->dynticks_nmi
++;
254 WARN_ON_RATELIMIT(!(rdtp
->dynticks_nmi
& 0x1), &rcu_rs
);
255 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
259 * rcu_nmi_exit - inform RCU of exit from NMI context
261 * If the CPU was idle with dynamic ticks active, and there is no
262 * irq handler running, this updates rdtp->dynticks_nmi to let the
263 * RCU grace-period handling know that the CPU is no longer active.
265 void rcu_nmi_exit(void)
267 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
269 if (rdtp
->dynticks
& 0x1)
271 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
272 rdtp
->dynticks_nmi
++;
273 WARN_ON_RATELIMIT(rdtp
->dynticks_nmi
& 0x1, &rcu_rs
);
277 * rcu_irq_enter - inform RCU of entry to hard irq context
279 * If the CPU was idle with dynamic ticks active, this updates the
280 * rdtp->dynticks to let the RCU handling know that the CPU is active.
282 void rcu_irq_enter(void)
284 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
286 if (rdtp
->dynticks_nesting
++)
289 WARN_ON_RATELIMIT(!(rdtp
->dynticks
& 0x1), &rcu_rs
);
290 smp_mb(); /* CPUs seeing ++ must see later RCU read-side crit sects */
294 * rcu_irq_exit - inform RCU of exit from hard irq context
296 * If the CPU was idle with dynamic ticks active, update the rdp->dynticks
297 * to put let the RCU handling be aware that the CPU is going back to idle
300 void rcu_irq_exit(void)
302 struct rcu_dynticks
*rdtp
= &__get_cpu_var(rcu_dynticks
);
304 if (--rdtp
->dynticks_nesting
)
306 smp_mb(); /* CPUs seeing ++ must see prior RCU read-side crit sects */
308 WARN_ON_RATELIMIT(rdtp
->dynticks
& 0x1, &rcu_rs
);
310 /* If the interrupt queued a callback, get out of dyntick mode. */
311 if (__get_cpu_var(rcu_data
).nxtlist
||
312 __get_cpu_var(rcu_bh_data
).nxtlist
)
317 * Record the specified "completed" value, which is later used to validate
318 * dynticks counter manipulations. Specify "rsp->completed - 1" to
319 * unconditionally invalidate any future dynticks manipulations (which is
320 * useful at the beginning of a grace period).
322 static void dyntick_record_completed(struct rcu_state
*rsp
, long comp
)
324 rsp
->dynticks_completed
= comp
;
330 * Recall the previously recorded value of the completion for dynticks.
332 static long dyntick_recall_completed(struct rcu_state
*rsp
)
334 return rsp
->dynticks_completed
;
338 * Snapshot the specified CPU's dynticks counter so that we can later
339 * credit them with an implicit quiescent state. Return 1 if this CPU
340 * is already in a quiescent state courtesy of dynticks idle mode.
342 static int dyntick_save_progress_counter(struct rcu_data
*rdp
)
348 snap
= rdp
->dynticks
->dynticks
;
349 snap_nmi
= rdp
->dynticks
->dynticks_nmi
;
350 smp_mb(); /* Order sampling of snap with end of grace period. */
351 rdp
->dynticks_snap
= snap
;
352 rdp
->dynticks_nmi_snap
= snap_nmi
;
353 ret
= ((snap
& 0x1) == 0) && ((snap_nmi
& 0x1) == 0);
360 * Return true if the specified CPU has passed through a quiescent
361 * state by virtue of being in or having passed through an dynticks
362 * idle state since the last call to dyntick_save_progress_counter()
365 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
)
372 curr
= rdp
->dynticks
->dynticks
;
373 snap
= rdp
->dynticks_snap
;
374 curr_nmi
= rdp
->dynticks
->dynticks_nmi
;
375 snap_nmi
= rdp
->dynticks_nmi_snap
;
376 smp_mb(); /* force ordering with cpu entering/leaving dynticks. */
379 * If the CPU passed through or entered a dynticks idle phase with
380 * no active irq/NMI handlers, then we can safely pretend that the CPU
381 * already acknowledged the request to pass through a quiescent
382 * state. Either way, that CPU cannot possibly be in an RCU
383 * read-side critical section that started before the beginning
384 * of the current RCU grace period.
386 if ((curr
!= snap
|| (curr
& 0x1) == 0) &&
387 (curr_nmi
!= snap_nmi
|| (curr_nmi
& 0x1) == 0)) {
392 /* Go check for the CPU being offline. */
393 return rcu_implicit_offline_qs(rdp
);
396 #endif /* #ifdef CONFIG_SMP */
398 #else /* #ifdef CONFIG_NO_HZ */
400 static void dyntick_record_completed(struct rcu_state
*rsp
, long comp
)
407 * If there are no dynticks, then the only way that a CPU can passively
408 * be in a quiescent state is to be offline. Unlike dynticks idle, which
409 * is a point in time during the prior (already finished) grace period,
410 * an offline CPU is always in a quiescent state, and thus can be
411 * unconditionally applied. So just return the current value of completed.
413 static long dyntick_recall_completed(struct rcu_state
*rsp
)
415 return rsp
->completed
;
418 static int dyntick_save_progress_counter(struct rcu_data
*rdp
)
423 static int rcu_implicit_dynticks_qs(struct rcu_data
*rdp
)
425 return rcu_implicit_offline_qs(rdp
);
428 #endif /* #ifdef CONFIG_SMP */
430 #endif /* #else #ifdef CONFIG_NO_HZ */
432 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
434 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
436 rsp
->gp_start
= jiffies
;
437 rsp
->jiffies_stall
= jiffies
+ RCU_SECONDS_TILL_STALL_CHECK
;
440 static void print_other_cpu_stall(struct rcu_state
*rsp
)
445 struct rcu_node
*rnp
= rcu_get_root(rsp
);
446 struct rcu_node
*rnp_cur
= rsp
->level
[NUM_RCU_LVLS
- 1];
447 struct rcu_node
*rnp_end
= &rsp
->node
[NUM_RCU_NODES
];
449 /* Only let one CPU complain about others per time interval. */
451 spin_lock_irqsave(&rnp
->lock
, flags
);
452 delta
= jiffies
- rsp
->jiffies_stall
;
453 if (delta
< RCU_STALL_RAT_DELAY
|| rsp
->gpnum
== rsp
->completed
) {
454 spin_unlock_irqrestore(&rnp
->lock
, flags
);
457 rsp
->jiffies_stall
= jiffies
+ RCU_SECONDS_TILL_STALL_RECHECK
;
458 spin_unlock_irqrestore(&rnp
->lock
, flags
);
460 /* OK, time to rat on our buddy... */
462 printk(KERN_ERR
"INFO: RCU detected CPU stalls:");
463 for (; rnp_cur
< rnp_end
; rnp_cur
++) {
464 if (rnp_cur
->qsmask
== 0)
466 for (cpu
= 0; cpu
<= rnp_cur
->grphi
- rnp_cur
->grplo
; cpu
++)
467 if (rnp_cur
->qsmask
& (1UL << cpu
))
468 printk(" %d", rnp_cur
->grplo
+ cpu
);
470 printk(" (detected by %d, t=%ld jiffies)\n",
471 smp_processor_id(), (long)(jiffies
- rsp
->gp_start
));
472 force_quiescent_state(rsp
, 0); /* Kick them all. */
475 static void print_cpu_stall(struct rcu_state
*rsp
)
478 struct rcu_node
*rnp
= rcu_get_root(rsp
);
480 printk(KERN_ERR
"INFO: RCU detected CPU %d stall (t=%lu jiffies)\n",
481 smp_processor_id(), jiffies
- rsp
->gp_start
);
483 spin_lock_irqsave(&rnp
->lock
, flags
);
484 if ((long)(jiffies
- rsp
->jiffies_stall
) >= 0)
486 jiffies
+ RCU_SECONDS_TILL_STALL_RECHECK
;
487 spin_unlock_irqrestore(&rnp
->lock
, flags
);
488 set_need_resched(); /* kick ourselves to get things going. */
491 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
494 struct rcu_node
*rnp
;
496 delta
= jiffies
- rsp
->jiffies_stall
;
498 if ((rnp
->qsmask
& rdp
->grpmask
) && delta
>= 0) {
500 /* We haven't checked in, so go dump stack. */
501 print_cpu_stall(rsp
);
503 } else if (rsp
->gpnum
!= rsp
->completed
&&
504 delta
>= RCU_STALL_RAT_DELAY
) {
506 /* They had two time units to dump stack, so complain. */
507 print_other_cpu_stall(rsp
);
511 #else /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
513 static void record_gp_stall_check_time(struct rcu_state
*rsp
)
517 static void check_cpu_stall(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
521 #endif /* #else #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
524 * Update CPU-local rcu_data state to record the newly noticed grace period.
525 * This is used both when we started the grace period and when we notice
526 * that someone else started the grace period.
528 static void note_new_gpnum(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
531 rdp
->passed_quiesc
= 0;
532 rdp
->gpnum
= rsp
->gpnum
;
536 * Did someone else start a new RCU grace period start since we last
537 * checked? Update local state appropriately if so. Must be called
538 * on the CPU corresponding to rdp.
541 check_for_new_grace_period(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
546 local_irq_save(flags
);
547 if (rdp
->gpnum
!= rsp
->gpnum
) {
548 note_new_gpnum(rsp
, rdp
);
551 local_irq_restore(flags
);
556 * Start a new RCU grace period if warranted, re-initializing the hierarchy
557 * in preparation for detecting the next grace period. The caller must hold
558 * the root node's ->lock, which is released before return. Hard irqs must
562 rcu_start_gp(struct rcu_state
*rsp
, unsigned long flags
)
563 __releases(rcu_get_root(rsp
)->lock
)
565 struct rcu_data
*rdp
= rsp
->rda
[smp_processor_id()];
566 struct rcu_node
*rnp
= rcu_get_root(rsp
);
567 struct rcu_node
*rnp_cur
;
568 struct rcu_node
*rnp_end
;
570 if (!cpu_needs_another_gp(rsp
, rdp
)) {
571 spin_unlock_irqrestore(&rnp
->lock
, flags
);
575 /* Advance to a new grace period and initialize state. */
577 rsp
->signaled
= RCU_GP_INIT
; /* Hold off force_quiescent_state. */
578 rsp
->jiffies_force_qs
= jiffies
+ RCU_JIFFIES_TILL_FORCE_QS
;
579 record_gp_stall_check_time(rsp
);
580 dyntick_record_completed(rsp
, rsp
->completed
- 1);
581 note_new_gpnum(rsp
, rdp
);
584 * Because we are first, we know that all our callbacks will
585 * be covered by this upcoming grace period, even the ones
586 * that were registered arbitrarily recently.
588 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
589 rdp
->nxttail
[RCU_WAIT_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
591 /* Special-case the common single-level case. */
592 if (NUM_RCU_NODES
== 1) {
593 rnp
->qsmask
= rnp
->qsmaskinit
;
594 rsp
->signaled
= RCU_SIGNAL_INIT
; /* force_quiescent_state OK. */
595 spin_unlock_irqrestore(&rnp
->lock
, flags
);
599 spin_unlock(&rnp
->lock
); /* leave irqs disabled. */
602 /* Exclude any concurrent CPU-hotplug operations. */
603 spin_lock(&rsp
->onofflock
); /* irqs already disabled. */
606 * Set the quiescent-state-needed bits in all the non-leaf RCU
607 * nodes for all currently online CPUs. This operation relies
608 * on the layout of the hierarchy within the rsp->node[] array.
609 * Note that other CPUs will access only the leaves of the
610 * hierarchy, which still indicate that no grace period is in
611 * progress. In addition, we have excluded CPU-hotplug operations.
613 * We therefore do not need to hold any locks. Any required
614 * memory barriers will be supplied by the locks guarding the
615 * leaf rcu_nodes in the hierarchy.
618 rnp_end
= rsp
->level
[NUM_RCU_LVLS
- 1];
619 for (rnp_cur
= &rsp
->node
[0]; rnp_cur
< rnp_end
; rnp_cur
++)
620 rnp_cur
->qsmask
= rnp_cur
->qsmaskinit
;
623 * Now set up the leaf nodes. Here we must be careful. First,
624 * we need to hold the lock in order to exclude other CPUs, which
625 * might be contending for the leaf nodes' locks. Second, as
626 * soon as we initialize a given leaf node, its CPUs might run
627 * up the rest of the hierarchy. We must therefore acquire locks
628 * for each node that we touch during this stage. (But we still
629 * are excluding CPU-hotplug operations.)
631 * Note that the grace period cannot complete until we finish
632 * the initialization process, as there will be at least one
633 * qsmask bit set in the root node until that time, namely the
634 * one corresponding to this CPU.
636 rnp_end
= &rsp
->node
[NUM_RCU_NODES
];
637 rnp_cur
= rsp
->level
[NUM_RCU_LVLS
- 1];
638 for (; rnp_cur
< rnp_end
; rnp_cur
++) {
639 spin_lock(&rnp_cur
->lock
); /* irqs already disabled. */
640 rnp_cur
->qsmask
= rnp_cur
->qsmaskinit
;
641 spin_unlock(&rnp_cur
->lock
); /* irqs already disabled. */
644 rsp
->signaled
= RCU_SIGNAL_INIT
; /* force_quiescent_state now OK. */
645 spin_unlock_irqrestore(&rsp
->onofflock
, flags
);
649 * Advance this CPU's callbacks, but only if the current grace period
650 * has ended. This may be called only from the CPU to whom the rdp
654 rcu_process_gp_end(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
659 local_irq_save(flags
);
660 completed_snap
= ACCESS_ONCE(rsp
->completed
); /* outside of lock. */
662 /* Did another grace period end? */
663 if (rdp
->completed
!= completed_snap
) {
665 /* Advance callbacks. No harm if list empty. */
666 rdp
->nxttail
[RCU_DONE_TAIL
] = rdp
->nxttail
[RCU_WAIT_TAIL
];
667 rdp
->nxttail
[RCU_WAIT_TAIL
] = rdp
->nxttail
[RCU_NEXT_READY_TAIL
];
668 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
670 /* Remember that we saw this grace-period completion. */
671 rdp
->completed
= completed_snap
;
673 local_irq_restore(flags
);
677 * Similar to cpu_quiet(), for which it is a helper function. Allows
678 * a group of CPUs to be quieted at one go, though all the CPUs in the
679 * group must be represented by the same leaf rcu_node structure.
680 * That structure's lock must be held upon entry, and it is released
684 cpu_quiet_msk(unsigned long mask
, struct rcu_state
*rsp
, struct rcu_node
*rnp
,
686 __releases(rnp
->lock
)
688 /* Walk up the rcu_node hierarchy. */
690 if (!(rnp
->qsmask
& mask
)) {
692 /* Our bit has already been cleared, so done. */
693 spin_unlock_irqrestore(&rnp
->lock
, flags
);
696 rnp
->qsmask
&= ~mask
;
697 if (rnp
->qsmask
!= 0) {
699 /* Other bits still set at this level, so done. */
700 spin_unlock_irqrestore(&rnp
->lock
, flags
);
704 if (rnp
->parent
== NULL
) {
706 /* No more levels. Exit loop holding root lock. */
710 spin_unlock_irqrestore(&rnp
->lock
, flags
);
712 spin_lock_irqsave(&rnp
->lock
, flags
);
716 * Get here if we are the last CPU to pass through a quiescent
717 * state for this grace period. Clean up and let rcu_start_gp()
718 * start up the next grace period if one is needed. Note that
719 * we still hold rnp->lock, as required by rcu_start_gp(), which
722 rsp
->completed
= rsp
->gpnum
;
723 rcu_process_gp_end(rsp
, rsp
->rda
[smp_processor_id()]);
724 rcu_start_gp(rsp
, flags
); /* releases rnp->lock. */
728 * Record a quiescent state for the specified CPU, which must either be
729 * the current CPU or an offline CPU. The lastcomp argument is used to
730 * make sure we are still in the grace period of interest. We don't want
731 * to end the current grace period based on quiescent states detected in
732 * an earlier grace period!
735 cpu_quiet(int cpu
, struct rcu_state
*rsp
, struct rcu_data
*rdp
, long lastcomp
)
739 struct rcu_node
*rnp
;
742 spin_lock_irqsave(&rnp
->lock
, flags
);
743 if (lastcomp
!= ACCESS_ONCE(rsp
->completed
)) {
746 * Someone beat us to it for this grace period, so leave.
747 * The race with GP start is resolved by the fact that we
748 * hold the leaf rcu_node lock, so that the per-CPU bits
749 * cannot yet be initialized -- so we would simply find our
750 * CPU's bit already cleared in cpu_quiet_msk() if this race
753 rdp
->passed_quiesc
= 0; /* try again later! */
754 spin_unlock_irqrestore(&rnp
->lock
, flags
);
758 if ((rnp
->qsmask
& mask
) == 0) {
759 spin_unlock_irqrestore(&rnp
->lock
, flags
);
764 * This GP can't end until cpu checks in, so all of our
765 * callbacks can be processed during the next GP.
767 rdp
= rsp
->rda
[smp_processor_id()];
768 rdp
->nxttail
[RCU_NEXT_READY_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
770 cpu_quiet_msk(mask
, rsp
, rnp
, flags
); /* releases rnp->lock */
775 * Check to see if there is a new grace period of which this CPU
776 * is not yet aware, and if so, set up local rcu_data state for it.
777 * Otherwise, see if this CPU has just passed through its first
778 * quiescent state for this grace period, and record that fact if so.
781 rcu_check_quiescent_state(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
783 /* If there is now a new grace period, record and return. */
784 if (check_for_new_grace_period(rsp
, rdp
))
788 * Does this CPU still need to do its part for current grace period?
789 * If no, return and let the other CPUs do their part as well.
791 if (!rdp
->qs_pending
)
795 * Was there a quiescent state since the beginning of the grace
796 * period? If no, then exit and wait for the next call.
798 if (!rdp
->passed_quiesc
)
801 /* Tell RCU we are done (but cpu_quiet() will be the judge of that). */
802 cpu_quiet(rdp
->cpu
, rsp
, rdp
, rdp
->passed_quiesc_completed
);
805 #ifdef CONFIG_HOTPLUG_CPU
808 * Remove the outgoing CPU from the bitmasks in the rcu_node hierarchy
809 * and move all callbacks from the outgoing CPU to the current one.
811 static void __rcu_offline_cpu(int cpu
, struct rcu_state
*rsp
)
817 struct rcu_data
*rdp
= rsp
->rda
[cpu
];
818 struct rcu_data
*rdp_me
;
819 struct rcu_node
*rnp
;
821 /* Exclude any attempts to start a new grace period. */
822 spin_lock_irqsave(&rsp
->onofflock
, flags
);
824 /* Remove the outgoing CPU from the masks in the rcu_node hierarchy. */
826 mask
= rdp
->grpmask
; /* rnp->grplo is constant. */
828 spin_lock(&rnp
->lock
); /* irqs already disabled. */
829 rnp
->qsmaskinit
&= ~mask
;
830 if (rnp
->qsmaskinit
!= 0) {
831 spin_unlock(&rnp
->lock
); /* irqs already disabled. */
835 spin_unlock(&rnp
->lock
); /* irqs already disabled. */
837 } while (rnp
!= NULL
);
838 lastcomp
= rsp
->completed
;
840 spin_unlock(&rsp
->onofflock
); /* irqs remain disabled. */
842 /* Being offline is a quiescent state, so go record it. */
843 cpu_quiet(cpu
, rsp
, rdp
, lastcomp
);
846 * Move callbacks from the outgoing CPU to the running CPU.
847 * Note that the outgoing CPU is now quiscent, so it is now
848 * (uncharacteristically) safe to access it rcu_data structure.
849 * Note also that we must carefully retain the order of the
850 * outgoing CPU's callbacks in order for rcu_barrier() to work
851 * correctly. Finally, note that we start all the callbacks
852 * afresh, even those that have passed through a grace period
853 * and are therefore ready to invoke. The theory is that hotplug
854 * events are rare, and that if they are frequent enough to
855 * indefinitely delay callbacks, you have far worse things to
858 rdp_me
= rsp
->rda
[smp_processor_id()];
859 if (rdp
->nxtlist
!= NULL
) {
860 *rdp_me
->nxttail
[RCU_NEXT_TAIL
] = rdp
->nxtlist
;
861 rdp_me
->nxttail
[RCU_NEXT_TAIL
] = rdp
->nxttail
[RCU_NEXT_TAIL
];
863 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
864 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
865 rdp_me
->qlen
+= rdp
->qlen
;
868 local_irq_restore(flags
);
872 * Remove the specified CPU from the RCU hierarchy and move any pending
873 * callbacks that it might have to the current CPU. This code assumes
874 * that at least one CPU in the system will remain running at all times.
875 * Any attempt to offline -all- CPUs is likely to strand RCU callbacks.
877 static void rcu_offline_cpu(int cpu
)
879 __rcu_offline_cpu(cpu
, &rcu_state
);
880 __rcu_offline_cpu(cpu
, &rcu_bh_state
);
883 #else /* #ifdef CONFIG_HOTPLUG_CPU */
885 static void rcu_offline_cpu(int cpu
)
889 #endif /* #else #ifdef CONFIG_HOTPLUG_CPU */
892 * Invoke any RCU callbacks that have made it to the end of their grace
893 * period. Thottle as specified by rdp->blimit.
895 static void rcu_do_batch(struct rcu_data
*rdp
)
898 struct rcu_head
*next
, *list
, **tail
;
901 /* If no callbacks are ready, just return.*/
902 if (!cpu_has_callbacks_ready_to_invoke(rdp
))
906 * Extract the list of ready callbacks, disabling to prevent
907 * races with call_rcu() from interrupt handlers.
909 local_irq_save(flags
);
911 rdp
->nxtlist
= *rdp
->nxttail
[RCU_DONE_TAIL
];
912 *rdp
->nxttail
[RCU_DONE_TAIL
] = NULL
;
913 tail
= rdp
->nxttail
[RCU_DONE_TAIL
];
914 for (count
= RCU_NEXT_SIZE
- 1; count
>= 0; count
--)
915 if (rdp
->nxttail
[count
] == rdp
->nxttail
[RCU_DONE_TAIL
])
916 rdp
->nxttail
[count
] = &rdp
->nxtlist
;
917 local_irq_restore(flags
);
919 /* Invoke callbacks. */
926 if (++count
>= rdp
->blimit
)
930 local_irq_save(flags
);
932 /* Update count, and requeue any remaining callbacks. */
935 *tail
= rdp
->nxtlist
;
937 for (count
= 0; count
< RCU_NEXT_SIZE
; count
++)
938 if (&rdp
->nxtlist
== rdp
->nxttail
[count
])
939 rdp
->nxttail
[count
] = tail
;
944 /* Reinstate batch limit if we have worked down the excess. */
945 if (rdp
->blimit
== LONG_MAX
&& rdp
->qlen
<= qlowmark
)
946 rdp
->blimit
= blimit
;
948 local_irq_restore(flags
);
950 /* Re-raise the RCU softirq if there are callbacks remaining. */
951 if (cpu_has_callbacks_ready_to_invoke(rdp
))
952 raise_softirq(RCU_SOFTIRQ
);
956 * Check to see if this CPU is in a non-context-switch quiescent state
957 * (user mode or idle loop for rcu, non-softirq execution for rcu_bh).
958 * Also schedule the RCU softirq handler.
960 * This function must be called with hardirqs disabled. It is normally
961 * invoked from the scheduling-clock interrupt. If rcu_pending returns
962 * false, there is no point in invoking rcu_check_callbacks().
964 void rcu_check_callbacks(int cpu
, int user
)
967 (idle_cpu(cpu
) && rcu_scheduler_active
&&
968 !in_softirq() && hardirq_count() <= (1 << HARDIRQ_SHIFT
))) {
971 * Get here if this CPU took its interrupt from user
972 * mode or from the idle loop, and if this is not a
973 * nested interrupt. In this case, the CPU is in
974 * a quiescent state, so count it.
976 * No memory barrier is required here because both
977 * rcu_qsctr_inc() and rcu_bh_qsctr_inc() reference
978 * only CPU-local variables that other CPUs neither
979 * access nor modify, at least not while the corresponding
984 rcu_bh_qsctr_inc(cpu
);
986 } else if (!in_softirq()) {
989 * Get here if this CPU did not take its interrupt from
990 * softirq, in other words, if it is not interrupting
991 * a rcu_bh read-side critical section. This is an _bh
992 * critical section, so count it.
995 rcu_bh_qsctr_inc(cpu
);
997 raise_softirq(RCU_SOFTIRQ
);
1003 * Scan the leaf rcu_node structures, processing dyntick state for any that
1004 * have not yet encountered a quiescent state, using the function specified.
1005 * Returns 1 if the current grace period ends while scanning (possibly
1006 * because we made it end).
1008 static int rcu_process_dyntick(struct rcu_state
*rsp
, long lastcomp
,
1009 int (*f
)(struct rcu_data
*))
1013 unsigned long flags
;
1015 struct rcu_node
*rnp_cur
= rsp
->level
[NUM_RCU_LVLS
- 1];
1016 struct rcu_node
*rnp_end
= &rsp
->node
[NUM_RCU_NODES
];
1018 for (; rnp_cur
< rnp_end
; rnp_cur
++) {
1020 spin_lock_irqsave(&rnp_cur
->lock
, flags
);
1021 if (rsp
->completed
!= lastcomp
) {
1022 spin_unlock_irqrestore(&rnp_cur
->lock
, flags
);
1025 if (rnp_cur
->qsmask
== 0) {
1026 spin_unlock_irqrestore(&rnp_cur
->lock
, flags
);
1029 cpu
= rnp_cur
->grplo
;
1031 for (; cpu
<= rnp_cur
->grphi
; cpu
++, bit
<<= 1) {
1032 if ((rnp_cur
->qsmask
& bit
) != 0 && f(rsp
->rda
[cpu
]))
1035 if (mask
!= 0 && rsp
->completed
== lastcomp
) {
1037 /* cpu_quiet_msk() releases rnp_cur->lock. */
1038 cpu_quiet_msk(mask
, rsp
, rnp_cur
, flags
);
1041 spin_unlock_irqrestore(&rnp_cur
->lock
, flags
);
1047 * Force quiescent states on reluctant CPUs, and also detect which
1048 * CPUs are in dyntick-idle mode.
1050 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
)
1052 unsigned long flags
;
1054 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1057 if (ACCESS_ONCE(rsp
->completed
) == ACCESS_ONCE(rsp
->gpnum
))
1058 return; /* No grace period in progress, nothing to force. */
1059 if (!spin_trylock_irqsave(&rsp
->fqslock
, flags
)) {
1060 rsp
->n_force_qs_lh
++; /* Inexact, can lose counts. Tough! */
1061 return; /* Someone else is already on the job. */
1064 (long)(rsp
->jiffies_force_qs
- jiffies
) >= 0)
1065 goto unlock_ret
; /* no emergency and done recently. */
1067 spin_lock(&rnp
->lock
);
1068 lastcomp
= rsp
->completed
;
1069 signaled
= rsp
->signaled
;
1070 rsp
->jiffies_force_qs
= jiffies
+ RCU_JIFFIES_TILL_FORCE_QS
;
1071 if (lastcomp
== rsp
->gpnum
) {
1072 rsp
->n_force_qs_ngp
++;
1073 spin_unlock(&rnp
->lock
);
1074 goto unlock_ret
; /* no GP in progress, time updated. */
1076 spin_unlock(&rnp
->lock
);
1080 break; /* grace period still initializing, ignore. */
1082 case RCU_SAVE_DYNTICK
:
1084 if (RCU_SIGNAL_INIT
!= RCU_SAVE_DYNTICK
)
1085 break; /* So gcc recognizes the dead code. */
1087 /* Record dyntick-idle state. */
1088 if (rcu_process_dyntick(rsp
, lastcomp
,
1089 dyntick_save_progress_counter
))
1092 /* Update state, record completion counter. */
1093 spin_lock(&rnp
->lock
);
1094 if (lastcomp
== rsp
->completed
) {
1095 rsp
->signaled
= RCU_FORCE_QS
;
1096 dyntick_record_completed(rsp
, lastcomp
);
1098 spin_unlock(&rnp
->lock
);
1103 /* Check dyntick-idle state, send IPI to laggarts. */
1104 if (rcu_process_dyntick(rsp
, dyntick_recall_completed(rsp
),
1105 rcu_implicit_dynticks_qs
))
1108 /* Leave state in case more forcing is required. */
1113 spin_unlock_irqrestore(&rsp
->fqslock
, flags
);
1116 #else /* #ifdef CONFIG_SMP */
1118 static void force_quiescent_state(struct rcu_state
*rsp
, int relaxed
)
1123 #endif /* #else #ifdef CONFIG_SMP */
1126 * This does the RCU processing work from softirq context for the
1127 * specified rcu_state and rcu_data structures. This may be called
1128 * only from the CPU to whom the rdp belongs.
1131 __rcu_process_callbacks(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1133 unsigned long flags
;
1136 * If an RCU GP has gone long enough, go check for dyntick
1137 * idle CPUs and, if needed, send resched IPIs.
1139 if ((long)(ACCESS_ONCE(rsp
->jiffies_force_qs
) - jiffies
) < 0)
1140 force_quiescent_state(rsp
, 1);
1143 * Advance callbacks in response to end of earlier grace
1144 * period that some other CPU ended.
1146 rcu_process_gp_end(rsp
, rdp
);
1148 /* Update RCU state based on any recent quiescent states. */
1149 rcu_check_quiescent_state(rsp
, rdp
);
1151 /* Does this CPU require a not-yet-started grace period? */
1152 if (cpu_needs_another_gp(rsp
, rdp
)) {
1153 spin_lock_irqsave(&rcu_get_root(rsp
)->lock
, flags
);
1154 rcu_start_gp(rsp
, flags
); /* releases above lock */
1157 /* If there are callbacks ready, invoke them. */
1162 * Do softirq processing for the current CPU.
1164 static void rcu_process_callbacks(struct softirq_action
*unused
)
1167 * Memory references from any prior RCU read-side critical sections
1168 * executed by the interrupted code must be seen before any RCU
1169 * grace-period manipulations below.
1171 smp_mb(); /* See above block comment. */
1173 __rcu_process_callbacks(&rcu_state
, &__get_cpu_var(rcu_data
));
1174 __rcu_process_callbacks(&rcu_bh_state
, &__get_cpu_var(rcu_bh_data
));
1177 * Memory references from any later RCU read-side critical sections
1178 * executed by the interrupted code must be seen after any RCU
1179 * grace-period manipulations above.
1181 smp_mb(); /* See above block comment. */
1185 __call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
),
1186 struct rcu_state
*rsp
)
1188 unsigned long flags
;
1189 struct rcu_data
*rdp
;
1194 smp_mb(); /* Ensure RCU update seen before callback registry. */
1197 * Opportunistically note grace-period endings and beginnings.
1198 * Note that we might see a beginning right after we see an
1199 * end, but never vice versa, since this CPU has to pass through
1200 * a quiescent state betweentimes.
1202 local_irq_save(flags
);
1203 rdp
= rsp
->rda
[smp_processor_id()];
1204 rcu_process_gp_end(rsp
, rdp
);
1205 check_for_new_grace_period(rsp
, rdp
);
1207 /* Add the callback to our list. */
1208 *rdp
->nxttail
[RCU_NEXT_TAIL
] = head
;
1209 rdp
->nxttail
[RCU_NEXT_TAIL
] = &head
->next
;
1211 /* Start a new grace period if one not already started. */
1212 if (ACCESS_ONCE(rsp
->completed
) == ACCESS_ONCE(rsp
->gpnum
)) {
1213 unsigned long nestflag
;
1214 struct rcu_node
*rnp_root
= rcu_get_root(rsp
);
1216 spin_lock_irqsave(&rnp_root
->lock
, nestflag
);
1217 rcu_start_gp(rsp
, nestflag
); /* releases rnp_root->lock. */
1220 /* Force the grace period if too many callbacks or too long waiting. */
1221 if (unlikely(++rdp
->qlen
> qhimark
)) {
1222 rdp
->blimit
= LONG_MAX
;
1223 force_quiescent_state(rsp
, 0);
1224 } else if ((long)(ACCESS_ONCE(rsp
->jiffies_force_qs
) - jiffies
) < 0)
1225 force_quiescent_state(rsp
, 1);
1226 local_irq_restore(flags
);
1230 * Queue an RCU callback for invocation after a grace period.
1232 void call_rcu(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
1234 __call_rcu(head
, func
, &rcu_state
);
1236 EXPORT_SYMBOL_GPL(call_rcu
);
1239 * Queue an RCU for invocation after a quicker grace period.
1241 void call_rcu_bh(struct rcu_head
*head
, void (*func
)(struct rcu_head
*rcu
))
1243 __call_rcu(head
, func
, &rcu_bh_state
);
1245 EXPORT_SYMBOL_GPL(call_rcu_bh
);
1248 * Check to see if there is any immediate RCU-related work to be done
1249 * by the current CPU, for the specified type of RCU, returning 1 if so.
1250 * The checks are in order of increasing expense: checks that can be
1251 * carried out against CPU-local state are performed first. However,
1252 * we must check for CPU stalls first, else we might not get a chance.
1254 static int __rcu_pending(struct rcu_state
*rsp
, struct rcu_data
*rdp
)
1256 rdp
->n_rcu_pending
++;
1258 /* Check for CPU stalls, if enabled. */
1259 check_cpu_stall(rsp
, rdp
);
1261 /* Is the RCU core waiting for a quiescent state from this CPU? */
1262 if (rdp
->qs_pending
)
1265 /* Does this CPU have callbacks ready to invoke? */
1266 if (cpu_has_callbacks_ready_to_invoke(rdp
))
1269 /* Has RCU gone idle with this CPU needing another grace period? */
1270 if (cpu_needs_another_gp(rsp
, rdp
))
1273 /* Has another RCU grace period completed? */
1274 if (ACCESS_ONCE(rsp
->completed
) != rdp
->completed
) /* outside of lock */
1277 /* Has a new RCU grace period started? */
1278 if (ACCESS_ONCE(rsp
->gpnum
) != rdp
->gpnum
) /* outside of lock */
1281 /* Has an RCU GP gone long enough to send resched IPIs &c? */
1282 if (ACCESS_ONCE(rsp
->completed
) != ACCESS_ONCE(rsp
->gpnum
) &&
1283 ((long)(ACCESS_ONCE(rsp
->jiffies_force_qs
) - jiffies
) < 0))
1291 * Check to see if there is any immediate RCU-related work to be done
1292 * by the current CPU, returning 1 if so. This function is part of the
1293 * RCU implementation; it is -not- an exported member of the RCU API.
1295 int rcu_pending(int cpu
)
1297 return __rcu_pending(&rcu_state
, &per_cpu(rcu_data
, cpu
)) ||
1298 __rcu_pending(&rcu_bh_state
, &per_cpu(rcu_bh_data
, cpu
));
1302 * Check to see if any future RCU-related work will need to be done
1303 * by the current CPU, even if none need be done immediately, returning
1304 * 1 if so. This function is part of the RCU implementation; it is -not-
1305 * an exported member of the RCU API.
1307 int rcu_needs_cpu(int cpu
)
1309 /* RCU callbacks either ready or pending? */
1310 return per_cpu(rcu_data
, cpu
).nxtlist
||
1311 per_cpu(rcu_bh_data
, cpu
).nxtlist
;
1315 * Initialize a CPU's per-CPU RCU data. We take this "scorched earth"
1316 * approach so that we don't have to worry about how long the CPU has
1317 * been gone, or whether it ever was online previously. We do trust the
1318 * ->mynode field, as it is constant for a given struct rcu_data and
1319 * initialized during early boot.
1321 * Note that only one online or offline event can be happening at a given
1322 * time. Note also that we can accept some slop in the rsp->completed
1323 * access due to the fact that this CPU cannot possibly have any RCU
1324 * callbacks in flight yet.
1326 static void __cpuinit
1327 rcu_init_percpu_data(int cpu
, struct rcu_state
*rsp
)
1329 unsigned long flags
;
1333 struct rcu_data
*rdp
= rsp
->rda
[cpu
];
1334 struct rcu_node
*rnp
= rcu_get_root(rsp
);
1336 /* Set up local state, ensuring consistent view of global state. */
1337 spin_lock_irqsave(&rnp
->lock
, flags
);
1338 lastcomp
= rsp
->completed
;
1339 rdp
->completed
= lastcomp
;
1340 rdp
->gpnum
= lastcomp
;
1341 rdp
->passed_quiesc
= 0; /* We could be racing with new GP, */
1342 rdp
->qs_pending
= 1; /* so set up to respond to current GP. */
1343 rdp
->beenonline
= 1; /* We have now been online. */
1344 rdp
->passed_quiesc_completed
= lastcomp
- 1;
1345 rdp
->grpmask
= 1UL << (cpu
- rdp
->mynode
->grplo
);
1346 rdp
->nxtlist
= NULL
;
1347 for (i
= 0; i
< RCU_NEXT_SIZE
; i
++)
1348 rdp
->nxttail
[i
] = &rdp
->nxtlist
;
1350 rdp
->blimit
= blimit
;
1352 rdp
->dynticks
= &per_cpu(rcu_dynticks
, cpu
);
1353 #endif /* #ifdef CONFIG_NO_HZ */
1355 spin_unlock(&rnp
->lock
); /* irqs remain disabled. */
1358 * A new grace period might start here. If so, we won't be part
1359 * of it, but that is OK, as we are currently in a quiescent state.
1362 /* Exclude any attempts to start a new GP on large systems. */
1363 spin_lock(&rsp
->onofflock
); /* irqs already disabled. */
1365 /* Add CPU to rcu_node bitmasks. */
1367 mask
= rdp
->grpmask
;
1369 /* Exclude any attempts to start a new GP on small systems. */
1370 spin_lock(&rnp
->lock
); /* irqs already disabled. */
1371 rnp
->qsmaskinit
|= mask
;
1372 mask
= rnp
->grpmask
;
1373 spin_unlock(&rnp
->lock
); /* irqs already disabled. */
1375 } while (rnp
!= NULL
&& !(rnp
->qsmaskinit
& mask
));
1377 spin_unlock(&rsp
->onofflock
); /* irqs remain disabled. */
1380 * A new grace period might start here. If so, we will be part of
1381 * it, and its gpnum will be greater than ours, so we will
1382 * participate. It is also possible for the gpnum to have been
1383 * incremented before this function was called, and the bitmasks
1384 * to not be filled out until now, in which case we will also
1385 * participate due to our gpnum being behind.
1388 /* Since it is coming online, the CPU is in a quiescent state. */
1389 cpu_quiet(cpu
, rsp
, rdp
, lastcomp
);
1390 local_irq_restore(flags
);
1393 static void __cpuinit
rcu_online_cpu(int cpu
)
1395 rcu_init_percpu_data(cpu
, &rcu_state
);
1396 rcu_init_percpu_data(cpu
, &rcu_bh_state
);
1397 open_softirq(RCU_SOFTIRQ
, rcu_process_callbacks
);
1401 * Handle CPU online/offline notifcation events.
1403 static int __cpuinit
rcu_cpu_notify(struct notifier_block
*self
,
1404 unsigned long action
, void *hcpu
)
1406 long cpu
= (long)hcpu
;
1409 case CPU_UP_PREPARE
:
1410 case CPU_UP_PREPARE_FROZEN
:
1411 rcu_online_cpu(cpu
);
1414 case CPU_DEAD_FROZEN
:
1415 case CPU_UP_CANCELED
:
1416 case CPU_UP_CANCELED_FROZEN
:
1417 rcu_offline_cpu(cpu
);
1426 * Compute the per-level fanout, either using the exact fanout specified
1427 * or balancing the tree, depending on CONFIG_RCU_FANOUT_EXACT.
1429 #ifdef CONFIG_RCU_FANOUT_EXACT
1430 static void __init
rcu_init_levelspread(struct rcu_state
*rsp
)
1434 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--)
1435 rsp
->levelspread
[i
] = CONFIG_RCU_FANOUT
;
1437 #else /* #ifdef CONFIG_RCU_FANOUT_EXACT */
1438 static void __init
rcu_init_levelspread(struct rcu_state
*rsp
)
1445 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--) {
1446 ccur
= rsp
->levelcnt
[i
];
1447 rsp
->levelspread
[i
] = (cprv
+ ccur
- 1) / ccur
;
1451 #endif /* #else #ifdef CONFIG_RCU_FANOUT_EXACT */
1454 * Helper function for rcu_init() that initializes one rcu_state structure.
1456 static void __init
rcu_init_one(struct rcu_state
*rsp
)
1461 struct rcu_node
*rnp
;
1463 /* Initialize the level-tracking arrays. */
1465 for (i
= 1; i
< NUM_RCU_LVLS
; i
++)
1466 rsp
->level
[i
] = rsp
->level
[i
- 1] + rsp
->levelcnt
[i
- 1];
1467 rcu_init_levelspread(rsp
);
1469 /* Initialize the elements themselves, starting from the leaves. */
1471 for (i
= NUM_RCU_LVLS
- 1; i
>= 0; i
--) {
1472 cpustride
*= rsp
->levelspread
[i
];
1473 rnp
= rsp
->level
[i
];
1474 for (j
= 0; j
< rsp
->levelcnt
[i
]; j
++, rnp
++) {
1475 spin_lock_init(&rnp
->lock
);
1477 rnp
->qsmaskinit
= 0;
1478 rnp
->grplo
= j
* cpustride
;
1479 rnp
->grphi
= (j
+ 1) * cpustride
- 1;
1480 if (rnp
->grphi
>= NR_CPUS
)
1481 rnp
->grphi
= NR_CPUS
- 1;
1487 rnp
->grpnum
= j
% rsp
->levelspread
[i
- 1];
1488 rnp
->grpmask
= 1UL << rnp
->grpnum
;
1489 rnp
->parent
= rsp
->level
[i
- 1] +
1490 j
/ rsp
->levelspread
[i
- 1];
1498 * Helper macro for __rcu_init(). To be used nowhere else!
1499 * Assigns leaf node pointers into each CPU's rcu_data structure.
1501 #define RCU_DATA_PTR_INIT(rsp, rcu_data) \
1503 rnp = (rsp)->level[NUM_RCU_LVLS - 1]; \
1505 for_each_possible_cpu(i) { \
1506 if (i > rnp[j].grphi) \
1508 per_cpu(rcu_data, i).mynode = &rnp[j]; \
1509 (rsp)->rda[i] = &per_cpu(rcu_data, i); \
1513 static struct notifier_block __cpuinitdata rcu_nb
= {
1514 .notifier_call
= rcu_cpu_notify
,
1517 void __init
__rcu_init(void)
1519 int i
; /* All used by RCU_DATA_PTR_INIT(). */
1521 struct rcu_node
*rnp
;
1523 printk(KERN_WARNING
"Experimental hierarchical RCU implementation.\n");
1524 #ifdef CONFIG_RCU_CPU_STALL_DETECTOR
1525 printk(KERN_INFO
"RCU-based detection of stalled CPUs is enabled.\n");
1526 #endif /* #ifdef CONFIG_RCU_CPU_STALL_DETECTOR */
1527 rcu_init_one(&rcu_state
);
1528 RCU_DATA_PTR_INIT(&rcu_state
, rcu_data
);
1529 rcu_init_one(&rcu_bh_state
);
1530 RCU_DATA_PTR_INIT(&rcu_bh_state
, rcu_bh_data
);
1532 for_each_online_cpu(i
)
1533 rcu_cpu_notify(&rcu_nb
, CPU_UP_PREPARE
, (void *)(long)i
);
1534 /* Register notifier for non-boot CPUs */
1535 register_cpu_notifier(&rcu_nb
);
1536 printk(KERN_WARNING
"Experimental hierarchical RCU init done.\n");
1539 module_param(blimit
, int, 0);
1540 module_param(qhimark
, int, 0);
1541 module_param(qlowmark
, int, 0);