4 * (C) Copyright 1995 Linus Torvalds
5 * (C) Copyright 2002 Christoph Hellwig
8 #include <linux/capability.h>
9 #include <linux/mman.h>
11 #include <linux/swap.h>
12 #include <linux/swapops.h>
13 #include <linux/pagemap.h>
14 #include <linux/mempolicy.h>
15 #include <linux/syscalls.h>
16 #include <linux/sched.h>
17 #include <linux/module.h>
18 #include <linux/rmap.h>
19 #include <linux/mmzone.h>
20 #include <linux/hugetlb.h>
24 int can_do_mlock(void)
26 if (capable(CAP_IPC_LOCK
))
28 if (current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
!= 0)
32 EXPORT_SYMBOL(can_do_mlock
);
35 * Mlocked pages are marked with PageMlocked() flag for efficient testing
36 * in vmscan and, possibly, the fault path; and to support semi-accurate
39 * An mlocked page [PageMlocked(page)] is unevictable. As such, it will
40 * be placed on the LRU "unevictable" list, rather than the [in]active lists.
41 * The unevictable list is an LRU sibling list to the [in]active lists.
42 * PageUnevictable is set to indicate the unevictable state.
44 * When lazy mlocking via vmscan, it is important to ensure that the
45 * vma's VM_LOCKED status is not concurrently being modified, otherwise we
46 * may have mlocked a page that is being munlocked. So lazy mlock must take
47 * the mmap_sem for read, and verify that the vma really is locked
52 * LRU accounting for clear_page_mlock()
54 void __clear_page_mlock(struct page
*page
)
56 VM_BUG_ON(!PageLocked(page
));
58 if (!page
->mapping
) { /* truncated ? */
62 dec_zone_page_state(page
, NR_MLOCK
);
63 count_vm_event(UNEVICTABLE_PGCLEARED
);
64 if (!isolate_lru_page(page
)) {
65 putback_lru_page(page
);
68 * We lost the race. the page already moved to evictable list.
70 if (PageUnevictable(page
))
71 count_vm_event(UNEVICTABLE_PGSTRANDED
);
76 * Mark page as mlocked if not already.
77 * If page on LRU, isolate and putback to move to unevictable list.
79 void mlock_vma_page(struct page
*page
)
81 BUG_ON(!PageLocked(page
));
83 if (!TestSetPageMlocked(page
)) {
84 inc_zone_page_state(page
, NR_MLOCK
);
85 count_vm_event(UNEVICTABLE_PGMLOCKED
);
86 if (!isolate_lru_page(page
))
87 putback_lru_page(page
);
92 * called from munlock()/munmap() path with page supposedly on the LRU.
94 * Note: unlike mlock_vma_page(), we can't just clear the PageMlocked
95 * [in try_to_munlock()] and then attempt to isolate the page. We must
96 * isolate the page to keep others from messing with its unevictable
97 * and mlocked state while trying to munlock. However, we pre-clear the
98 * mlocked state anyway as we might lose the isolation race and we might
99 * not get another chance to clear PageMlocked. If we successfully
100 * isolate the page and try_to_munlock() detects other VM_LOCKED vmas
101 * mapping the page, it will restore the PageMlocked state, unless the page
102 * is mapped in a non-linear vma. So, we go ahead and SetPageMlocked(),
103 * perhaps redundantly.
104 * If we lose the isolation race, and the page is mapped by other VM_LOCKED
105 * vmas, we'll detect this in vmscan--via try_to_munlock() or try_to_unmap()
106 * either of which will restore the PageMlocked state by calling
107 * mlock_vma_page() above, if it can grab the vma's mmap sem.
109 static void munlock_vma_page(struct page
*page
)
111 BUG_ON(!PageLocked(page
));
113 if (TestClearPageMlocked(page
)) {
114 dec_zone_page_state(page
, NR_MLOCK
);
115 if (!isolate_lru_page(page
)) {
116 int ret
= try_to_munlock(page
);
118 * did try_to_unlock() succeed or punt?
120 if (ret
== SWAP_SUCCESS
|| ret
== SWAP_AGAIN
)
121 count_vm_event(UNEVICTABLE_PGMUNLOCKED
);
123 putback_lru_page(page
);
126 * We lost the race. let try_to_unmap() deal
127 * with it. At least we get the page state and
128 * mlock stats right. However, page is still on
129 * the noreclaim list. We'll fix that up when
130 * the page is eventually freed or we scan the
133 if (PageUnevictable(page
))
134 count_vm_event(UNEVICTABLE_PGSTRANDED
);
136 count_vm_event(UNEVICTABLE_PGMUNLOCKED
);
142 * __mlock_vma_pages_range() - mlock a range of pages in the vma.
144 * @start: start address
147 * This takes care of making the pages present too.
149 * return 0 on success, negative error code on error.
151 * vma->vm_mm->mmap_sem must be held for at least read.
153 static long __mlock_vma_pages_range(struct vm_area_struct
*vma
,
154 unsigned long start
, unsigned long end
)
156 struct mm_struct
*mm
= vma
->vm_mm
;
157 unsigned long addr
= start
;
158 struct page
*pages
[16]; /* 16 gives a reasonable batch */
159 int nr_pages
= (end
- start
) / PAGE_SIZE
;
163 VM_BUG_ON(start
& ~PAGE_MASK
);
164 VM_BUG_ON(end
& ~PAGE_MASK
);
165 VM_BUG_ON(start
< vma
->vm_start
);
166 VM_BUG_ON(end
> vma
->vm_end
);
167 VM_BUG_ON(!rwsem_is_locked(&mm
->mmap_sem
));
169 gup_flags
= FOLL_TOUCH
| FOLL_GET
;
170 if (vma
->vm_flags
& VM_WRITE
)
171 gup_flags
|= FOLL_WRITE
;
173 while (nr_pages
> 0) {
179 * get_user_pages makes pages present if we are
180 * setting mlock. and this extra reference count will
181 * disable migration of this page. However, page may
182 * still be truncated out from under us.
184 ret
= __get_user_pages(current
, mm
, addr
,
185 min_t(int, nr_pages
, ARRAY_SIZE(pages
)),
186 gup_flags
, pages
, NULL
);
188 * This can happen for, e.g., VM_NONLINEAR regions before
189 * a page has been allocated and mapped at a given offset,
190 * or for addresses that map beyond end of a file.
191 * We'll mlock the pages if/when they get faulted in.
196 lru_add_drain(); /* push cached pages to LRU */
198 for (i
= 0; i
< ret
; i
++) {
199 struct page
*page
= pages
[i
];
203 * That preliminary check is mainly to avoid
204 * the pointless overhead of lock_page on the
205 * ZERO_PAGE: which might bounce very badly if
206 * there is contention. However, we're still
207 * dirtying its cacheline with get/put_page:
208 * we'll add another __get_user_pages flag to
209 * avoid it if that case turns out to matter.
213 * Because we lock page here and migration is
214 * blocked by the elevated reference, we need
215 * only check for file-cache page truncation.
218 mlock_vma_page(page
);
221 put_page(page
); /* ref from get_user_pages() */
224 addr
+= ret
* PAGE_SIZE
;
229 return ret
; /* 0 or negative error code */
233 * convert get_user_pages() return value to posix mlock() error
235 static int __mlock_posix_error_return(long retval
)
237 if (retval
== -EFAULT
)
239 else if (retval
== -ENOMEM
)
245 * mlock_vma_pages_range() - mlock pages in specified vma range.
246 * @vma - the vma containing the specfied address range
247 * @start - starting address in @vma to mlock
248 * @end - end address [+1] in @vma to mlock
250 * For mmap()/mremap()/expansion of mlocked vma.
252 * return 0 on success for "normal" vmas.
254 * return number of pages [> 0] to be removed from locked_vm on success
257 long mlock_vma_pages_range(struct vm_area_struct
*vma
,
258 unsigned long start
, unsigned long end
)
260 int nr_pages
= (end
- start
) / PAGE_SIZE
;
261 BUG_ON(!(vma
->vm_flags
& VM_LOCKED
));
264 * filter unlockable vmas
266 if (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
))
269 if (!((vma
->vm_flags
& (VM_DONTEXPAND
| VM_RESERVED
)) ||
270 is_vm_hugetlb_page(vma
) ||
271 vma
== get_gate_vma(current
))) {
273 __mlock_vma_pages_range(vma
, start
, end
);
275 /* Hide errors from mmap() and other callers */
280 * User mapped kernel pages or huge pages:
281 * make these pages present to populate the ptes, but
282 * fall thru' to reset VM_LOCKED--no need to unlock, and
283 * return nr_pages so these don't get counted against task's
284 * locked limit. huge pages are already counted against
287 make_pages_present(start
, end
);
290 vma
->vm_flags
&= ~VM_LOCKED
; /* and don't come back! */
291 return nr_pages
; /* error or pages NOT mlocked */
295 * munlock_vma_pages_range() - munlock all pages in the vma range.'
296 * @vma - vma containing range to be munlock()ed.
297 * @start - start address in @vma of the range
298 * @end - end of range in @vma.
300 * For mremap(), munmap() and exit().
302 * Called with @vma VM_LOCKED.
304 * Returns with VM_LOCKED cleared. Callers must be prepared to
307 * We don't save and restore VM_LOCKED here because pages are
308 * still on lru. In unmap path, pages might be scanned by reclaim
309 * and re-mlocked by try_to_{munlock|unmap} before we unmap and
310 * free them. This will result in freeing mlocked pages.
312 void munlock_vma_pages_range(struct vm_area_struct
*vma
,
313 unsigned long start
, unsigned long end
)
318 vma
->vm_flags
&= ~VM_LOCKED
;
320 for (addr
= start
; addr
< end
; addr
+= PAGE_SIZE
) {
323 * Although FOLL_DUMP is intended for get_dump_page(),
324 * it just so happens that its special treatment of the
325 * ZERO_PAGE (returning an error instead of doing get_page)
326 * suits munlock very well (and if somehow an abnormal page
327 * has sneaked into the range, we won't oops here: great).
329 page
= follow_page(vma
, addr
, FOLL_GET
| FOLL_DUMP
);
330 if (page
&& !IS_ERR(page
)) {
333 * Like in __mlock_vma_pages_range(),
334 * because we lock page here and migration is
335 * blocked by the elevated reference, we need
336 * only check for file-cache page truncation.
339 munlock_vma_page(page
);
348 * mlock_fixup - handle mlock[all]/munlock[all] requests.
350 * Filters out "special" vmas -- VM_LOCKED never gets set for these, and
351 * munlock is a no-op. However, for some special vmas, we go ahead and
352 * populate the ptes via make_pages_present().
354 * For vmas that pass the filters, merge/split as appropriate.
356 static int mlock_fixup(struct vm_area_struct
*vma
, struct vm_area_struct
**prev
,
357 unsigned long start
, unsigned long end
, unsigned int newflags
)
359 struct mm_struct
*mm
= vma
->vm_mm
;
363 int lock
= newflags
& VM_LOCKED
;
365 if (newflags
== vma
->vm_flags
||
366 (vma
->vm_flags
& (VM_IO
| VM_PFNMAP
)))
367 goto out
; /* don't set VM_LOCKED, don't count */
369 if ((vma
->vm_flags
& (VM_DONTEXPAND
| VM_RESERVED
)) ||
370 is_vm_hugetlb_page(vma
) ||
371 vma
== get_gate_vma(current
)) {
373 make_pages_present(start
, end
);
374 goto out
; /* don't set VM_LOCKED, don't count */
377 pgoff
= vma
->vm_pgoff
+ ((start
- vma
->vm_start
) >> PAGE_SHIFT
);
378 *prev
= vma_merge(mm
, *prev
, start
, end
, newflags
, vma
->anon_vma
,
379 vma
->vm_file
, pgoff
, vma_policy(vma
));
385 if (start
!= vma
->vm_start
) {
386 ret
= split_vma(mm
, vma
, start
, 1);
391 if (end
!= vma
->vm_end
) {
392 ret
= split_vma(mm
, vma
, end
, 0);
399 * Keep track of amount of locked VM.
401 nr_pages
= (end
- start
) >> PAGE_SHIFT
;
403 nr_pages
= -nr_pages
;
404 mm
->locked_vm
+= nr_pages
;
407 * vm_flags is protected by the mmap_sem held in write mode.
408 * It's okay if try_to_unmap_one unmaps a page just after we
409 * set VM_LOCKED, __mlock_vma_pages_range will bring it back.
413 vma
->vm_flags
= newflags
;
414 ret
= __mlock_vma_pages_range(vma
, start
, end
);
416 ret
= __mlock_posix_error_return(ret
);
418 munlock_vma_pages_range(vma
, start
, end
);
426 static int do_mlock(unsigned long start
, size_t len
, int on
)
428 unsigned long nstart
, end
, tmp
;
429 struct vm_area_struct
* vma
, * prev
;
432 len
= PAGE_ALIGN(len
);
438 vma
= find_vma_prev(current
->mm
, start
, &prev
);
439 if (!vma
|| vma
->vm_start
> start
)
442 if (start
> vma
->vm_start
)
445 for (nstart
= start
; ; ) {
446 unsigned int newflags
;
448 /* Here we know that vma->vm_start <= nstart < vma->vm_end. */
450 newflags
= vma
->vm_flags
| VM_LOCKED
;
452 newflags
&= ~VM_LOCKED
;
457 error
= mlock_fixup(vma
, &prev
, nstart
, tmp
, newflags
);
461 if (nstart
< prev
->vm_end
)
462 nstart
= prev
->vm_end
;
467 if (!vma
|| vma
->vm_start
!= nstart
) {
475 SYSCALL_DEFINE2(mlock
, unsigned long, start
, size_t, len
)
477 unsigned long locked
;
478 unsigned long lock_limit
;
484 lru_add_drain_all(); /* flush pagevec */
486 down_write(¤t
->mm
->mmap_sem
);
487 len
= PAGE_ALIGN(len
+ (start
& ~PAGE_MASK
));
490 locked
= len
>> PAGE_SHIFT
;
491 locked
+= current
->mm
->locked_vm
;
493 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
494 lock_limit
>>= PAGE_SHIFT
;
496 /* check against resource limits */
497 if ((locked
<= lock_limit
) || capable(CAP_IPC_LOCK
))
498 error
= do_mlock(start
, len
, 1);
499 up_write(¤t
->mm
->mmap_sem
);
503 SYSCALL_DEFINE2(munlock
, unsigned long, start
, size_t, len
)
507 down_write(¤t
->mm
->mmap_sem
);
508 len
= PAGE_ALIGN(len
+ (start
& ~PAGE_MASK
));
510 ret
= do_mlock(start
, len
, 0);
511 up_write(¤t
->mm
->mmap_sem
);
515 static int do_mlockall(int flags
)
517 struct vm_area_struct
* vma
, * prev
= NULL
;
518 unsigned int def_flags
= 0;
520 if (flags
& MCL_FUTURE
)
521 def_flags
= VM_LOCKED
;
522 current
->mm
->def_flags
= def_flags
;
523 if (flags
== MCL_FUTURE
)
526 for (vma
= current
->mm
->mmap
; vma
; vma
= prev
->vm_next
) {
527 unsigned int newflags
;
529 newflags
= vma
->vm_flags
| VM_LOCKED
;
530 if (!(flags
& MCL_CURRENT
))
531 newflags
&= ~VM_LOCKED
;
534 mlock_fixup(vma
, &prev
, vma
->vm_start
, vma
->vm_end
, newflags
);
540 SYSCALL_DEFINE1(mlockall
, int, flags
)
542 unsigned long lock_limit
;
545 if (!flags
|| (flags
& ~(MCL_CURRENT
| MCL_FUTURE
)))
552 lru_add_drain_all(); /* flush pagevec */
554 down_write(¤t
->mm
->mmap_sem
);
556 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
557 lock_limit
>>= PAGE_SHIFT
;
560 if (!(flags
& MCL_CURRENT
) || (current
->mm
->total_vm
<= lock_limit
) ||
561 capable(CAP_IPC_LOCK
))
562 ret
= do_mlockall(flags
);
563 up_write(¤t
->mm
->mmap_sem
);
568 SYSCALL_DEFINE0(munlockall
)
572 down_write(¤t
->mm
->mmap_sem
);
573 ret
= do_mlockall(0);
574 up_write(¤t
->mm
->mmap_sem
);
579 * Objects with different lifetime than processes (SHM_LOCK and SHM_HUGETLB
580 * shm segments) get accounted against the user_struct instead.
582 static DEFINE_SPINLOCK(shmlock_user_lock
);
584 int user_shm_lock(size_t size
, struct user_struct
*user
)
586 unsigned long lock_limit
, locked
;
589 locked
= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
590 lock_limit
= current
->signal
->rlim
[RLIMIT_MEMLOCK
].rlim_cur
;
591 if (lock_limit
== RLIM_INFINITY
)
593 lock_limit
>>= PAGE_SHIFT
;
594 spin_lock(&shmlock_user_lock
);
596 locked
+ user
->locked_shm
> lock_limit
&& !capable(CAP_IPC_LOCK
))
599 user
->locked_shm
+= locked
;
602 spin_unlock(&shmlock_user_lock
);
606 void user_shm_unlock(size_t size
, struct user_struct
*user
)
608 spin_lock(&shmlock_user_lock
);
609 user
->locked_shm
-= (size
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
610 spin_unlock(&shmlock_user_lock
);
614 int account_locked_memory(struct mm_struct
*mm
, struct rlimit
*rlim
,
617 unsigned long lim
, vm
, pgsz
;
620 pgsz
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
622 down_write(&mm
->mmap_sem
);
624 lim
= rlim
[RLIMIT_AS
].rlim_cur
>> PAGE_SHIFT
;
625 vm
= mm
->total_vm
+ pgsz
;
629 lim
= rlim
[RLIMIT_MEMLOCK
].rlim_cur
>> PAGE_SHIFT
;
630 vm
= mm
->locked_vm
+ pgsz
;
634 mm
->total_vm
+= pgsz
;
635 mm
->locked_vm
+= pgsz
;
639 up_write(&mm
->mmap_sem
);
643 void refund_locked_memory(struct mm_struct
*mm
, size_t size
)
645 unsigned long pgsz
= PAGE_ALIGN(size
) >> PAGE_SHIFT
;
647 down_write(&mm
->mmap_sem
);
649 mm
->total_vm
-= pgsz
;
650 mm
->locked_vm
-= pgsz
;
652 up_write(&mm
->mmap_sem
);