firewire: fw-ohci: PPC PMac platform code
[linux-2.6/linux-2.6-openrd.git] / drivers / firewire / fw-ohci.c
blob182be8672dfd7021d4266ee82605242beb12d180
1 /*
2 * Driver for OHCI 1394 controllers
4 * Copyright (C) 2003-2006 Kristian Hoegsberg <krh@bitplanet.net>
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License as published by
8 * the Free Software Foundation; either version 2 of the License, or
9 * (at your option) any later version.
11 * This program is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 * GNU General Public License for more details.
16 * You should have received a copy of the GNU General Public License
17 * along with this program; if not, write to the Free Software Foundation,
18 * Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
21 #include <linux/compiler.h>
22 #include <linux/delay.h>
23 #include <linux/dma-mapping.h>
24 #include <linux/gfp.h>
25 #include <linux/init.h>
26 #include <linux/interrupt.h>
27 #include <linux/kernel.h>
28 #include <linux/mm.h>
29 #include <linux/module.h>
30 #include <linux/pci.h>
31 #include <linux/spinlock.h>
33 #include <asm/page.h>
34 #include <asm/system.h>
36 #ifdef CONFIG_PPC_PMAC
37 #include <asm/pmac_feature.h>
38 #endif
40 #include "fw-ohci.h"
41 #include "fw-transaction.h"
43 #define DESCRIPTOR_OUTPUT_MORE 0
44 #define DESCRIPTOR_OUTPUT_LAST (1 << 12)
45 #define DESCRIPTOR_INPUT_MORE (2 << 12)
46 #define DESCRIPTOR_INPUT_LAST (3 << 12)
47 #define DESCRIPTOR_STATUS (1 << 11)
48 #define DESCRIPTOR_KEY_IMMEDIATE (2 << 8)
49 #define DESCRIPTOR_PING (1 << 7)
50 #define DESCRIPTOR_YY (1 << 6)
51 #define DESCRIPTOR_NO_IRQ (0 << 4)
52 #define DESCRIPTOR_IRQ_ERROR (1 << 4)
53 #define DESCRIPTOR_IRQ_ALWAYS (3 << 4)
54 #define DESCRIPTOR_BRANCH_ALWAYS (3 << 2)
55 #define DESCRIPTOR_WAIT (3 << 0)
57 struct descriptor {
58 __le16 req_count;
59 __le16 control;
60 __le32 data_address;
61 __le32 branch_address;
62 __le16 res_count;
63 __le16 transfer_status;
64 } __attribute__((aligned(16)));
66 struct db_descriptor {
67 __le16 first_size;
68 __le16 control;
69 __le16 second_req_count;
70 __le16 first_req_count;
71 __le32 branch_address;
72 __le16 second_res_count;
73 __le16 first_res_count;
74 __le32 reserved0;
75 __le32 first_buffer;
76 __le32 second_buffer;
77 __le32 reserved1;
78 } __attribute__((aligned(16)));
80 #define CONTROL_SET(regs) (regs)
81 #define CONTROL_CLEAR(regs) ((regs) + 4)
82 #define COMMAND_PTR(regs) ((regs) + 12)
83 #define CONTEXT_MATCH(regs) ((regs) + 16)
85 struct ar_buffer {
86 struct descriptor descriptor;
87 struct ar_buffer *next;
88 __le32 data[0];
91 struct ar_context {
92 struct fw_ohci *ohci;
93 struct ar_buffer *current_buffer;
94 struct ar_buffer *last_buffer;
95 void *pointer;
96 u32 regs;
97 struct tasklet_struct tasklet;
100 struct context;
102 typedef int (*descriptor_callback_t)(struct context *ctx,
103 struct descriptor *d,
104 struct descriptor *last);
107 * A buffer that contains a block of DMA-able coherent memory used for
108 * storing a portion of a DMA descriptor program.
110 struct descriptor_buffer {
111 struct list_head list;
112 dma_addr_t buffer_bus;
113 size_t buffer_size;
114 size_t used;
115 struct descriptor buffer[0];
118 struct context {
119 struct fw_ohci *ohci;
120 u32 regs;
121 int total_allocation;
124 * List of page-sized buffers for storing DMA descriptors.
125 * Head of list contains buffers in use and tail of list contains
126 * free buffers.
128 struct list_head buffer_list;
131 * Pointer to a buffer inside buffer_list that contains the tail
132 * end of the current DMA program.
134 struct descriptor_buffer *buffer_tail;
137 * The descriptor containing the branch address of the first
138 * descriptor that has not yet been filled by the device.
140 struct descriptor *last;
143 * The last descriptor in the DMA program. It contains the branch
144 * address that must be updated upon appending a new descriptor.
146 struct descriptor *prev;
148 descriptor_callback_t callback;
150 struct tasklet_struct tasklet;
153 #define IT_HEADER_SY(v) ((v) << 0)
154 #define IT_HEADER_TCODE(v) ((v) << 4)
155 #define IT_HEADER_CHANNEL(v) ((v) << 8)
156 #define IT_HEADER_TAG(v) ((v) << 14)
157 #define IT_HEADER_SPEED(v) ((v) << 16)
158 #define IT_HEADER_DATA_LENGTH(v) ((v) << 16)
160 struct iso_context {
161 struct fw_iso_context base;
162 struct context context;
163 int excess_bytes;
164 void *header;
165 size_t header_length;
168 #define CONFIG_ROM_SIZE 1024
170 struct fw_ohci {
171 struct fw_card card;
173 u32 version;
174 __iomem char *registers;
175 dma_addr_t self_id_bus;
176 __le32 *self_id_cpu;
177 struct tasklet_struct bus_reset_tasklet;
178 int node_id;
179 int generation;
180 int request_generation;
181 u32 bus_seconds;
184 * Spinlock for accessing fw_ohci data. Never call out of
185 * this driver with this lock held.
187 spinlock_t lock;
188 u32 self_id_buffer[512];
190 /* Config rom buffers */
191 __be32 *config_rom;
192 dma_addr_t config_rom_bus;
193 __be32 *next_config_rom;
194 dma_addr_t next_config_rom_bus;
195 u32 next_header;
197 struct ar_context ar_request_ctx;
198 struct ar_context ar_response_ctx;
199 struct context at_request_ctx;
200 struct context at_response_ctx;
202 u32 it_context_mask;
203 struct iso_context *it_context_list;
204 u32 ir_context_mask;
205 struct iso_context *ir_context_list;
208 static inline struct fw_ohci *fw_ohci(struct fw_card *card)
210 return container_of(card, struct fw_ohci, card);
213 #define IT_CONTEXT_CYCLE_MATCH_ENABLE 0x80000000
214 #define IR_CONTEXT_BUFFER_FILL 0x80000000
215 #define IR_CONTEXT_ISOCH_HEADER 0x40000000
216 #define IR_CONTEXT_CYCLE_MATCH_ENABLE 0x20000000
217 #define IR_CONTEXT_MULTI_CHANNEL_MODE 0x10000000
218 #define IR_CONTEXT_DUAL_BUFFER_MODE 0x08000000
220 #define CONTEXT_RUN 0x8000
221 #define CONTEXT_WAKE 0x1000
222 #define CONTEXT_DEAD 0x0800
223 #define CONTEXT_ACTIVE 0x0400
225 #define OHCI1394_MAX_AT_REQ_RETRIES 0x2
226 #define OHCI1394_MAX_AT_RESP_RETRIES 0x2
227 #define OHCI1394_MAX_PHYS_RESP_RETRIES 0x8
229 #define FW_OHCI_MAJOR 240
230 #define OHCI1394_REGISTER_SIZE 0x800
231 #define OHCI_LOOP_COUNT 500
232 #define OHCI1394_PCI_HCI_Control 0x40
233 #define SELF_ID_BUF_SIZE 0x800
234 #define OHCI_TCODE_PHY_PACKET 0x0e
235 #define OHCI_VERSION_1_1 0x010010
237 static char ohci_driver_name[] = KBUILD_MODNAME;
239 static inline void reg_write(const struct fw_ohci *ohci, int offset, u32 data)
241 writel(data, ohci->registers + offset);
244 static inline u32 reg_read(const struct fw_ohci *ohci, int offset)
246 return readl(ohci->registers + offset);
249 static inline void flush_writes(const struct fw_ohci *ohci)
251 /* Do a dummy read to flush writes. */
252 reg_read(ohci, OHCI1394_Version);
255 static int
256 ohci_update_phy_reg(struct fw_card *card, int addr,
257 int clear_bits, int set_bits)
259 struct fw_ohci *ohci = fw_ohci(card);
260 u32 val, old;
262 reg_write(ohci, OHCI1394_PhyControl, OHCI1394_PhyControl_Read(addr));
263 flush_writes(ohci);
264 msleep(2);
265 val = reg_read(ohci, OHCI1394_PhyControl);
266 if ((val & OHCI1394_PhyControl_ReadDone) == 0) {
267 fw_error("failed to set phy reg bits.\n");
268 return -EBUSY;
271 old = OHCI1394_PhyControl_ReadData(val);
272 old = (old & ~clear_bits) | set_bits;
273 reg_write(ohci, OHCI1394_PhyControl,
274 OHCI1394_PhyControl_Write(addr, old));
276 return 0;
279 static int ar_context_add_page(struct ar_context *ctx)
281 struct device *dev = ctx->ohci->card.device;
282 struct ar_buffer *ab;
283 dma_addr_t ab_bus;
284 size_t offset;
286 ab = (struct ar_buffer *) __get_free_page(GFP_ATOMIC);
287 if (ab == NULL)
288 return -ENOMEM;
290 ab_bus = dma_map_single(dev, ab, PAGE_SIZE, DMA_BIDIRECTIONAL);
291 if (dma_mapping_error(ab_bus)) {
292 free_page((unsigned long) ab);
293 return -ENOMEM;
296 memset(&ab->descriptor, 0, sizeof(ab->descriptor));
297 ab->descriptor.control = cpu_to_le16(DESCRIPTOR_INPUT_MORE |
298 DESCRIPTOR_STATUS |
299 DESCRIPTOR_BRANCH_ALWAYS);
300 offset = offsetof(struct ar_buffer, data);
301 ab->descriptor.req_count = cpu_to_le16(PAGE_SIZE - offset);
302 ab->descriptor.data_address = cpu_to_le32(ab_bus + offset);
303 ab->descriptor.res_count = cpu_to_le16(PAGE_SIZE - offset);
304 ab->descriptor.branch_address = 0;
306 dma_sync_single_for_device(dev, ab_bus, PAGE_SIZE, DMA_BIDIRECTIONAL);
308 ctx->last_buffer->descriptor.branch_address = cpu_to_le32(ab_bus | 1);
309 ctx->last_buffer->next = ab;
310 ctx->last_buffer = ab;
312 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
313 flush_writes(ctx->ohci);
315 return 0;
318 static __le32 *handle_ar_packet(struct ar_context *ctx, __le32 *buffer)
320 struct fw_ohci *ohci = ctx->ohci;
321 struct fw_packet p;
322 u32 status, length, tcode;
324 p.header[0] = le32_to_cpu(buffer[0]);
325 p.header[1] = le32_to_cpu(buffer[1]);
326 p.header[2] = le32_to_cpu(buffer[2]);
328 tcode = (p.header[0] >> 4) & 0x0f;
329 switch (tcode) {
330 case TCODE_WRITE_QUADLET_REQUEST:
331 case TCODE_READ_QUADLET_RESPONSE:
332 p.header[3] = (__force __u32) buffer[3];
333 p.header_length = 16;
334 p.payload_length = 0;
335 break;
337 case TCODE_READ_BLOCK_REQUEST :
338 p.header[3] = le32_to_cpu(buffer[3]);
339 p.header_length = 16;
340 p.payload_length = 0;
341 break;
343 case TCODE_WRITE_BLOCK_REQUEST:
344 case TCODE_READ_BLOCK_RESPONSE:
345 case TCODE_LOCK_REQUEST:
346 case TCODE_LOCK_RESPONSE:
347 p.header[3] = le32_to_cpu(buffer[3]);
348 p.header_length = 16;
349 p.payload_length = p.header[3] >> 16;
350 break;
352 case TCODE_WRITE_RESPONSE:
353 case TCODE_READ_QUADLET_REQUEST:
354 case OHCI_TCODE_PHY_PACKET:
355 p.header_length = 12;
356 p.payload_length = 0;
357 break;
360 p.payload = (void *) buffer + p.header_length;
362 /* FIXME: What to do about evt_* errors? */
363 length = (p.header_length + p.payload_length + 3) / 4;
364 status = le32_to_cpu(buffer[length]);
366 p.ack = ((status >> 16) & 0x1f) - 16;
367 p.speed = (status >> 21) & 0x7;
368 p.timestamp = status & 0xffff;
369 p.generation = ohci->request_generation;
372 * The OHCI bus reset handler synthesizes a phy packet with
373 * the new generation number when a bus reset happens (see
374 * section 8.4.2.3). This helps us determine when a request
375 * was received and make sure we send the response in the same
376 * generation. We only need this for requests; for responses
377 * we use the unique tlabel for finding the matching
378 * request.
381 if (p.ack + 16 == 0x09)
382 ohci->request_generation = (p.header[2] >> 16) & 0xff;
383 else if (ctx == &ohci->ar_request_ctx)
384 fw_core_handle_request(&ohci->card, &p);
385 else
386 fw_core_handle_response(&ohci->card, &p);
388 return buffer + length + 1;
391 static void ar_context_tasklet(unsigned long data)
393 struct ar_context *ctx = (struct ar_context *)data;
394 struct fw_ohci *ohci = ctx->ohci;
395 struct ar_buffer *ab;
396 struct descriptor *d;
397 void *buffer, *end;
399 ab = ctx->current_buffer;
400 d = &ab->descriptor;
402 if (d->res_count == 0) {
403 size_t size, rest, offset;
406 * This descriptor is finished and we may have a
407 * packet split across this and the next buffer. We
408 * reuse the page for reassembling the split packet.
411 offset = offsetof(struct ar_buffer, data);
412 dma_unmap_single(ohci->card.device,
413 le32_to_cpu(ab->descriptor.data_address) - offset,
414 PAGE_SIZE, DMA_BIDIRECTIONAL);
416 buffer = ab;
417 ab = ab->next;
418 d = &ab->descriptor;
419 size = buffer + PAGE_SIZE - ctx->pointer;
420 rest = le16_to_cpu(d->req_count) - le16_to_cpu(d->res_count);
421 memmove(buffer, ctx->pointer, size);
422 memcpy(buffer + size, ab->data, rest);
423 ctx->current_buffer = ab;
424 ctx->pointer = (void *) ab->data + rest;
425 end = buffer + size + rest;
427 while (buffer < end)
428 buffer = handle_ar_packet(ctx, buffer);
430 free_page((unsigned long)buffer);
431 ar_context_add_page(ctx);
432 } else {
433 buffer = ctx->pointer;
434 ctx->pointer = end =
435 (void *) ab + PAGE_SIZE - le16_to_cpu(d->res_count);
437 while (buffer < end)
438 buffer = handle_ar_packet(ctx, buffer);
442 static int
443 ar_context_init(struct ar_context *ctx, struct fw_ohci *ohci, u32 regs)
445 struct ar_buffer ab;
447 ctx->regs = regs;
448 ctx->ohci = ohci;
449 ctx->last_buffer = &ab;
450 tasklet_init(&ctx->tasklet, ar_context_tasklet, (unsigned long)ctx);
452 ar_context_add_page(ctx);
453 ar_context_add_page(ctx);
454 ctx->current_buffer = ab.next;
455 ctx->pointer = ctx->current_buffer->data;
457 return 0;
460 static void ar_context_run(struct ar_context *ctx)
462 struct ar_buffer *ab = ctx->current_buffer;
463 dma_addr_t ab_bus;
464 size_t offset;
466 offset = offsetof(struct ar_buffer, data);
467 ab_bus = le32_to_cpu(ab->descriptor.data_address) - offset;
469 reg_write(ctx->ohci, COMMAND_PTR(ctx->regs), ab_bus | 1);
470 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN);
471 flush_writes(ctx->ohci);
474 static struct descriptor *
475 find_branch_descriptor(struct descriptor *d, int z)
477 int b, key;
479 b = (le16_to_cpu(d->control) & DESCRIPTOR_BRANCH_ALWAYS) >> 2;
480 key = (le16_to_cpu(d->control) & DESCRIPTOR_KEY_IMMEDIATE) >> 8;
482 /* figure out which descriptor the branch address goes in */
483 if (z == 2 && (b == 3 || key == 2))
484 return d;
485 else
486 return d + z - 1;
489 static void context_tasklet(unsigned long data)
491 struct context *ctx = (struct context *) data;
492 struct descriptor *d, *last;
493 u32 address;
494 int z;
495 struct descriptor_buffer *desc;
497 desc = list_entry(ctx->buffer_list.next,
498 struct descriptor_buffer, list);
499 last = ctx->last;
500 while (last->branch_address != 0) {
501 struct descriptor_buffer *old_desc = desc;
502 address = le32_to_cpu(last->branch_address);
503 z = address & 0xf;
504 address &= ~0xf;
506 /* If the branch address points to a buffer outside of the
507 * current buffer, advance to the next buffer. */
508 if (address < desc->buffer_bus ||
509 address >= desc->buffer_bus + desc->used)
510 desc = list_entry(desc->list.next,
511 struct descriptor_buffer, list);
512 d = desc->buffer + (address - desc->buffer_bus) / sizeof(*d);
513 last = find_branch_descriptor(d, z);
515 if (!ctx->callback(ctx, d, last))
516 break;
518 if (old_desc != desc) {
519 /* If we've advanced to the next buffer, move the
520 * previous buffer to the free list. */
521 unsigned long flags;
522 old_desc->used = 0;
523 spin_lock_irqsave(&ctx->ohci->lock, flags);
524 list_move_tail(&old_desc->list, &ctx->buffer_list);
525 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
527 ctx->last = last;
532 * Allocate a new buffer and add it to the list of free buffers for this
533 * context. Must be called with ohci->lock held.
535 static int
536 context_add_buffer(struct context *ctx)
538 struct descriptor_buffer *desc;
539 dma_addr_t bus_addr;
540 int offset;
543 * 16MB of descriptors should be far more than enough for any DMA
544 * program. This will catch run-away userspace or DoS attacks.
546 if (ctx->total_allocation >= 16*1024*1024)
547 return -ENOMEM;
549 desc = dma_alloc_coherent(ctx->ohci->card.device, PAGE_SIZE,
550 &bus_addr, GFP_ATOMIC);
551 if (!desc)
552 return -ENOMEM;
554 offset = (void *)&desc->buffer - (void *)desc;
555 desc->buffer_size = PAGE_SIZE - offset;
556 desc->buffer_bus = bus_addr + offset;
557 desc->used = 0;
559 list_add_tail(&desc->list, &ctx->buffer_list);
560 ctx->total_allocation += PAGE_SIZE;
562 return 0;
565 static int
566 context_init(struct context *ctx, struct fw_ohci *ohci,
567 u32 regs, descriptor_callback_t callback)
569 ctx->ohci = ohci;
570 ctx->regs = regs;
571 ctx->total_allocation = 0;
573 INIT_LIST_HEAD(&ctx->buffer_list);
574 if (context_add_buffer(ctx) < 0)
575 return -ENOMEM;
577 ctx->buffer_tail = list_entry(ctx->buffer_list.next,
578 struct descriptor_buffer, list);
580 tasklet_init(&ctx->tasklet, context_tasklet, (unsigned long)ctx);
581 ctx->callback = callback;
584 * We put a dummy descriptor in the buffer that has a NULL
585 * branch address and looks like it's been sent. That way we
586 * have a descriptor to append DMA programs to.
588 memset(ctx->buffer_tail->buffer, 0, sizeof(*ctx->buffer_tail->buffer));
589 ctx->buffer_tail->buffer->control = cpu_to_le16(DESCRIPTOR_OUTPUT_LAST);
590 ctx->buffer_tail->buffer->transfer_status = cpu_to_le16(0x8011);
591 ctx->buffer_tail->used += sizeof(*ctx->buffer_tail->buffer);
592 ctx->last = ctx->buffer_tail->buffer;
593 ctx->prev = ctx->buffer_tail->buffer;
595 return 0;
598 static void
599 context_release(struct context *ctx)
601 struct fw_card *card = &ctx->ohci->card;
602 struct descriptor_buffer *desc, *tmp;
604 list_for_each_entry_safe(desc, tmp, &ctx->buffer_list, list)
605 dma_free_coherent(card->device, PAGE_SIZE, desc,
606 desc->buffer_bus -
607 ((void *)&desc->buffer - (void *)desc));
610 /* Must be called with ohci->lock held */
611 static struct descriptor *
612 context_get_descriptors(struct context *ctx, int z, dma_addr_t *d_bus)
614 struct descriptor *d = NULL;
615 struct descriptor_buffer *desc = ctx->buffer_tail;
617 if (z * sizeof(*d) > desc->buffer_size)
618 return NULL;
620 if (z * sizeof(*d) > desc->buffer_size - desc->used) {
621 /* No room for the descriptor in this buffer, so advance to the
622 * next one. */
624 if (desc->list.next == &ctx->buffer_list) {
625 /* If there is no free buffer next in the list,
626 * allocate one. */
627 if (context_add_buffer(ctx) < 0)
628 return NULL;
630 desc = list_entry(desc->list.next,
631 struct descriptor_buffer, list);
632 ctx->buffer_tail = desc;
635 d = desc->buffer + desc->used / sizeof(*d);
636 memset(d, 0, z * sizeof(*d));
637 *d_bus = desc->buffer_bus + desc->used;
639 return d;
642 static void context_run(struct context *ctx, u32 extra)
644 struct fw_ohci *ohci = ctx->ohci;
646 reg_write(ohci, COMMAND_PTR(ctx->regs),
647 le32_to_cpu(ctx->last->branch_address));
648 reg_write(ohci, CONTROL_CLEAR(ctx->regs), ~0);
649 reg_write(ohci, CONTROL_SET(ctx->regs), CONTEXT_RUN | extra);
650 flush_writes(ohci);
653 static void context_append(struct context *ctx,
654 struct descriptor *d, int z, int extra)
656 dma_addr_t d_bus;
657 struct descriptor_buffer *desc = ctx->buffer_tail;
659 d_bus = desc->buffer_bus + (d - desc->buffer) * sizeof(*d);
661 desc->used += (z + extra) * sizeof(*d);
662 ctx->prev->branch_address = cpu_to_le32(d_bus | z);
663 ctx->prev = find_branch_descriptor(d, z);
665 reg_write(ctx->ohci, CONTROL_SET(ctx->regs), CONTEXT_WAKE);
666 flush_writes(ctx->ohci);
669 static void context_stop(struct context *ctx)
671 u32 reg;
672 int i;
674 reg_write(ctx->ohci, CONTROL_CLEAR(ctx->regs), CONTEXT_RUN);
675 flush_writes(ctx->ohci);
677 for (i = 0; i < 10; i++) {
678 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
679 if ((reg & CONTEXT_ACTIVE) == 0)
680 break;
682 fw_notify("context_stop: still active (0x%08x)\n", reg);
683 mdelay(1);
687 struct driver_data {
688 struct fw_packet *packet;
692 * This function apppends a packet to the DMA queue for transmission.
693 * Must always be called with the ochi->lock held to ensure proper
694 * generation handling and locking around packet queue manipulation.
696 static int
697 at_context_queue_packet(struct context *ctx, struct fw_packet *packet)
699 struct fw_ohci *ohci = ctx->ohci;
700 dma_addr_t d_bus, uninitialized_var(payload_bus);
701 struct driver_data *driver_data;
702 struct descriptor *d, *last;
703 __le32 *header;
704 int z, tcode;
705 u32 reg;
707 d = context_get_descriptors(ctx, 4, &d_bus);
708 if (d == NULL) {
709 packet->ack = RCODE_SEND_ERROR;
710 return -1;
713 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
714 d[0].res_count = cpu_to_le16(packet->timestamp);
717 * The DMA format for asyncronous link packets is different
718 * from the IEEE1394 layout, so shift the fields around
719 * accordingly. If header_length is 8, it's a PHY packet, to
720 * which we need to prepend an extra quadlet.
723 header = (__le32 *) &d[1];
724 if (packet->header_length > 8) {
725 header[0] = cpu_to_le32((packet->header[0] & 0xffff) |
726 (packet->speed << 16));
727 header[1] = cpu_to_le32((packet->header[1] & 0xffff) |
728 (packet->header[0] & 0xffff0000));
729 header[2] = cpu_to_le32(packet->header[2]);
731 tcode = (packet->header[0] >> 4) & 0x0f;
732 if (TCODE_IS_BLOCK_PACKET(tcode))
733 header[3] = cpu_to_le32(packet->header[3]);
734 else
735 header[3] = (__force __le32) packet->header[3];
737 d[0].req_count = cpu_to_le16(packet->header_length);
738 } else {
739 header[0] = cpu_to_le32((OHCI1394_phy_tcode << 4) |
740 (packet->speed << 16));
741 header[1] = cpu_to_le32(packet->header[0]);
742 header[2] = cpu_to_le32(packet->header[1]);
743 d[0].req_count = cpu_to_le16(12);
746 driver_data = (struct driver_data *) &d[3];
747 driver_data->packet = packet;
748 packet->driver_data = driver_data;
750 if (packet->payload_length > 0) {
751 payload_bus =
752 dma_map_single(ohci->card.device, packet->payload,
753 packet->payload_length, DMA_TO_DEVICE);
754 if (dma_mapping_error(payload_bus)) {
755 packet->ack = RCODE_SEND_ERROR;
756 return -1;
759 d[2].req_count = cpu_to_le16(packet->payload_length);
760 d[2].data_address = cpu_to_le32(payload_bus);
761 last = &d[2];
762 z = 3;
763 } else {
764 last = &d[0];
765 z = 2;
768 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
769 DESCRIPTOR_IRQ_ALWAYS |
770 DESCRIPTOR_BRANCH_ALWAYS);
772 /* FIXME: Document how the locking works. */
773 if (ohci->generation != packet->generation) {
774 if (packet->payload_length > 0)
775 dma_unmap_single(ohci->card.device, payload_bus,
776 packet->payload_length, DMA_TO_DEVICE);
777 packet->ack = RCODE_GENERATION;
778 return -1;
781 context_append(ctx, d, z, 4 - z);
783 /* If the context isn't already running, start it up. */
784 reg = reg_read(ctx->ohci, CONTROL_SET(ctx->regs));
785 if ((reg & CONTEXT_RUN) == 0)
786 context_run(ctx, 0);
788 return 0;
791 static int handle_at_packet(struct context *context,
792 struct descriptor *d,
793 struct descriptor *last)
795 struct driver_data *driver_data;
796 struct fw_packet *packet;
797 struct fw_ohci *ohci = context->ohci;
798 dma_addr_t payload_bus;
799 int evt;
801 if (last->transfer_status == 0)
802 /* This descriptor isn't done yet, stop iteration. */
803 return 0;
805 driver_data = (struct driver_data *) &d[3];
806 packet = driver_data->packet;
807 if (packet == NULL)
808 /* This packet was cancelled, just continue. */
809 return 1;
811 payload_bus = le32_to_cpu(last->data_address);
812 if (payload_bus != 0)
813 dma_unmap_single(ohci->card.device, payload_bus,
814 packet->payload_length, DMA_TO_DEVICE);
816 evt = le16_to_cpu(last->transfer_status) & 0x1f;
817 packet->timestamp = le16_to_cpu(last->res_count);
819 switch (evt) {
820 case OHCI1394_evt_timeout:
821 /* Async response transmit timed out. */
822 packet->ack = RCODE_CANCELLED;
823 break;
825 case OHCI1394_evt_flushed:
827 * The packet was flushed should give same error as
828 * when we try to use a stale generation count.
830 packet->ack = RCODE_GENERATION;
831 break;
833 case OHCI1394_evt_missing_ack:
835 * Using a valid (current) generation count, but the
836 * node is not on the bus or not sending acks.
838 packet->ack = RCODE_NO_ACK;
839 break;
841 case ACK_COMPLETE + 0x10:
842 case ACK_PENDING + 0x10:
843 case ACK_BUSY_X + 0x10:
844 case ACK_BUSY_A + 0x10:
845 case ACK_BUSY_B + 0x10:
846 case ACK_DATA_ERROR + 0x10:
847 case ACK_TYPE_ERROR + 0x10:
848 packet->ack = evt - 0x10;
849 break;
851 default:
852 packet->ack = RCODE_SEND_ERROR;
853 break;
856 packet->callback(packet, &ohci->card, packet->ack);
858 return 1;
861 #define HEADER_GET_DESTINATION(q) (((q) >> 16) & 0xffff)
862 #define HEADER_GET_TCODE(q) (((q) >> 4) & 0x0f)
863 #define HEADER_GET_OFFSET_HIGH(q) (((q) >> 0) & 0xffff)
864 #define HEADER_GET_DATA_LENGTH(q) (((q) >> 16) & 0xffff)
865 #define HEADER_GET_EXTENDED_TCODE(q) (((q) >> 0) & 0xffff)
867 static void
868 handle_local_rom(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
870 struct fw_packet response;
871 int tcode, length, i;
873 tcode = HEADER_GET_TCODE(packet->header[0]);
874 if (TCODE_IS_BLOCK_PACKET(tcode))
875 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
876 else
877 length = 4;
879 i = csr - CSR_CONFIG_ROM;
880 if (i + length > CONFIG_ROM_SIZE) {
881 fw_fill_response(&response, packet->header,
882 RCODE_ADDRESS_ERROR, NULL, 0);
883 } else if (!TCODE_IS_READ_REQUEST(tcode)) {
884 fw_fill_response(&response, packet->header,
885 RCODE_TYPE_ERROR, NULL, 0);
886 } else {
887 fw_fill_response(&response, packet->header, RCODE_COMPLETE,
888 (void *) ohci->config_rom + i, length);
891 fw_core_handle_response(&ohci->card, &response);
894 static void
895 handle_local_lock(struct fw_ohci *ohci, struct fw_packet *packet, u32 csr)
897 struct fw_packet response;
898 int tcode, length, ext_tcode, sel;
899 __be32 *payload, lock_old;
900 u32 lock_arg, lock_data;
902 tcode = HEADER_GET_TCODE(packet->header[0]);
903 length = HEADER_GET_DATA_LENGTH(packet->header[3]);
904 payload = packet->payload;
905 ext_tcode = HEADER_GET_EXTENDED_TCODE(packet->header[3]);
907 if (tcode == TCODE_LOCK_REQUEST &&
908 ext_tcode == EXTCODE_COMPARE_SWAP && length == 8) {
909 lock_arg = be32_to_cpu(payload[0]);
910 lock_data = be32_to_cpu(payload[1]);
911 } else if (tcode == TCODE_READ_QUADLET_REQUEST) {
912 lock_arg = 0;
913 lock_data = 0;
914 } else {
915 fw_fill_response(&response, packet->header,
916 RCODE_TYPE_ERROR, NULL, 0);
917 goto out;
920 sel = (csr - CSR_BUS_MANAGER_ID) / 4;
921 reg_write(ohci, OHCI1394_CSRData, lock_data);
922 reg_write(ohci, OHCI1394_CSRCompareData, lock_arg);
923 reg_write(ohci, OHCI1394_CSRControl, sel);
925 if (reg_read(ohci, OHCI1394_CSRControl) & 0x80000000)
926 lock_old = cpu_to_be32(reg_read(ohci, OHCI1394_CSRData));
927 else
928 fw_notify("swap not done yet\n");
930 fw_fill_response(&response, packet->header,
931 RCODE_COMPLETE, &lock_old, sizeof(lock_old));
932 out:
933 fw_core_handle_response(&ohci->card, &response);
936 static void
937 handle_local_request(struct context *ctx, struct fw_packet *packet)
939 u64 offset;
940 u32 csr;
942 if (ctx == &ctx->ohci->at_request_ctx) {
943 packet->ack = ACK_PENDING;
944 packet->callback(packet, &ctx->ohci->card, packet->ack);
947 offset =
948 ((unsigned long long)
949 HEADER_GET_OFFSET_HIGH(packet->header[1]) << 32) |
950 packet->header[2];
951 csr = offset - CSR_REGISTER_BASE;
953 /* Handle config rom reads. */
954 if (csr >= CSR_CONFIG_ROM && csr < CSR_CONFIG_ROM_END)
955 handle_local_rom(ctx->ohci, packet, csr);
956 else switch (csr) {
957 case CSR_BUS_MANAGER_ID:
958 case CSR_BANDWIDTH_AVAILABLE:
959 case CSR_CHANNELS_AVAILABLE_HI:
960 case CSR_CHANNELS_AVAILABLE_LO:
961 handle_local_lock(ctx->ohci, packet, csr);
962 break;
963 default:
964 if (ctx == &ctx->ohci->at_request_ctx)
965 fw_core_handle_request(&ctx->ohci->card, packet);
966 else
967 fw_core_handle_response(&ctx->ohci->card, packet);
968 break;
971 if (ctx == &ctx->ohci->at_response_ctx) {
972 packet->ack = ACK_COMPLETE;
973 packet->callback(packet, &ctx->ohci->card, packet->ack);
977 static void
978 at_context_transmit(struct context *ctx, struct fw_packet *packet)
980 unsigned long flags;
981 int retval;
983 spin_lock_irqsave(&ctx->ohci->lock, flags);
985 if (HEADER_GET_DESTINATION(packet->header[0]) == ctx->ohci->node_id &&
986 ctx->ohci->generation == packet->generation) {
987 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
988 handle_local_request(ctx, packet);
989 return;
992 retval = at_context_queue_packet(ctx, packet);
993 spin_unlock_irqrestore(&ctx->ohci->lock, flags);
995 if (retval < 0)
996 packet->callback(packet, &ctx->ohci->card, packet->ack);
1000 static void bus_reset_tasklet(unsigned long data)
1002 struct fw_ohci *ohci = (struct fw_ohci *)data;
1003 int self_id_count, i, j, reg;
1004 int generation, new_generation;
1005 unsigned long flags;
1006 void *free_rom = NULL;
1007 dma_addr_t free_rom_bus = 0;
1009 reg = reg_read(ohci, OHCI1394_NodeID);
1010 if (!(reg & OHCI1394_NodeID_idValid)) {
1011 fw_notify("node ID not valid, new bus reset in progress\n");
1012 return;
1014 if ((reg & OHCI1394_NodeID_nodeNumber) == 63) {
1015 fw_notify("malconfigured bus\n");
1016 return;
1018 ohci->node_id = reg & (OHCI1394_NodeID_busNumber |
1019 OHCI1394_NodeID_nodeNumber);
1022 * The count in the SelfIDCount register is the number of
1023 * bytes in the self ID receive buffer. Since we also receive
1024 * the inverted quadlets and a header quadlet, we shift one
1025 * bit extra to get the actual number of self IDs.
1028 self_id_count = (reg_read(ohci, OHCI1394_SelfIDCount) >> 3) & 0x3ff;
1029 generation = (le32_to_cpu(ohci->self_id_cpu[0]) >> 16) & 0xff;
1030 rmb();
1032 for (i = 1, j = 0; j < self_id_count; i += 2, j++) {
1033 if (ohci->self_id_cpu[i] != ~ohci->self_id_cpu[i + 1])
1034 fw_error("inconsistent self IDs\n");
1035 ohci->self_id_buffer[j] = le32_to_cpu(ohci->self_id_cpu[i]);
1037 rmb();
1040 * Check the consistency of the self IDs we just read. The
1041 * problem we face is that a new bus reset can start while we
1042 * read out the self IDs from the DMA buffer. If this happens,
1043 * the DMA buffer will be overwritten with new self IDs and we
1044 * will read out inconsistent data. The OHCI specification
1045 * (section 11.2) recommends a technique similar to
1046 * linux/seqlock.h, where we remember the generation of the
1047 * self IDs in the buffer before reading them out and compare
1048 * it to the current generation after reading them out. If
1049 * the two generations match we know we have a consistent set
1050 * of self IDs.
1053 new_generation = (reg_read(ohci, OHCI1394_SelfIDCount) >> 16) & 0xff;
1054 if (new_generation != generation) {
1055 fw_notify("recursive bus reset detected, "
1056 "discarding self ids\n");
1057 return;
1060 /* FIXME: Document how the locking works. */
1061 spin_lock_irqsave(&ohci->lock, flags);
1063 ohci->generation = generation;
1064 context_stop(&ohci->at_request_ctx);
1065 context_stop(&ohci->at_response_ctx);
1066 reg_write(ohci, OHCI1394_IntEventClear, OHCI1394_busReset);
1069 * This next bit is unrelated to the AT context stuff but we
1070 * have to do it under the spinlock also. If a new config rom
1071 * was set up before this reset, the old one is now no longer
1072 * in use and we can free it. Update the config rom pointers
1073 * to point to the current config rom and clear the
1074 * next_config_rom pointer so a new udpate can take place.
1077 if (ohci->next_config_rom != NULL) {
1078 if (ohci->next_config_rom != ohci->config_rom) {
1079 free_rom = ohci->config_rom;
1080 free_rom_bus = ohci->config_rom_bus;
1082 ohci->config_rom = ohci->next_config_rom;
1083 ohci->config_rom_bus = ohci->next_config_rom_bus;
1084 ohci->next_config_rom = NULL;
1087 * Restore config_rom image and manually update
1088 * config_rom registers. Writing the header quadlet
1089 * will indicate that the config rom is ready, so we
1090 * do that last.
1092 reg_write(ohci, OHCI1394_BusOptions,
1093 be32_to_cpu(ohci->config_rom[2]));
1094 ohci->config_rom[0] = cpu_to_be32(ohci->next_header);
1095 reg_write(ohci, OHCI1394_ConfigROMhdr, ohci->next_header);
1098 spin_unlock_irqrestore(&ohci->lock, flags);
1100 if (free_rom)
1101 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1102 free_rom, free_rom_bus);
1104 fw_core_handle_bus_reset(&ohci->card, ohci->node_id, generation,
1105 self_id_count, ohci->self_id_buffer);
1108 static irqreturn_t irq_handler(int irq, void *data)
1110 struct fw_ohci *ohci = data;
1111 u32 event, iso_event, cycle_time;
1112 int i;
1114 event = reg_read(ohci, OHCI1394_IntEventClear);
1116 if (!event || !~event)
1117 return IRQ_NONE;
1119 reg_write(ohci, OHCI1394_IntEventClear, event);
1121 if (event & OHCI1394_selfIDComplete)
1122 tasklet_schedule(&ohci->bus_reset_tasklet);
1124 if (event & OHCI1394_RQPkt)
1125 tasklet_schedule(&ohci->ar_request_ctx.tasklet);
1127 if (event & OHCI1394_RSPkt)
1128 tasklet_schedule(&ohci->ar_response_ctx.tasklet);
1130 if (event & OHCI1394_reqTxComplete)
1131 tasklet_schedule(&ohci->at_request_ctx.tasklet);
1133 if (event & OHCI1394_respTxComplete)
1134 tasklet_schedule(&ohci->at_response_ctx.tasklet);
1136 iso_event = reg_read(ohci, OHCI1394_IsoRecvIntEventClear);
1137 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, iso_event);
1139 while (iso_event) {
1140 i = ffs(iso_event) - 1;
1141 tasklet_schedule(&ohci->ir_context_list[i].context.tasklet);
1142 iso_event &= ~(1 << i);
1145 iso_event = reg_read(ohci, OHCI1394_IsoXmitIntEventClear);
1146 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, iso_event);
1148 while (iso_event) {
1149 i = ffs(iso_event) - 1;
1150 tasklet_schedule(&ohci->it_context_list[i].context.tasklet);
1151 iso_event &= ~(1 << i);
1154 if (unlikely(event & OHCI1394_postedWriteErr))
1155 fw_error("PCI posted write error\n");
1157 if (unlikely(event & OHCI1394_cycleTooLong)) {
1158 if (printk_ratelimit())
1159 fw_notify("isochronous cycle too long\n");
1160 reg_write(ohci, OHCI1394_LinkControlSet,
1161 OHCI1394_LinkControl_cycleMaster);
1164 if (event & OHCI1394_cycle64Seconds) {
1165 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1166 if ((cycle_time & 0x80000000) == 0)
1167 ohci->bus_seconds++;
1170 return IRQ_HANDLED;
1173 static int software_reset(struct fw_ohci *ohci)
1175 int i;
1177 reg_write(ohci, OHCI1394_HCControlSet, OHCI1394_HCControl_softReset);
1179 for (i = 0; i < OHCI_LOOP_COUNT; i++) {
1180 if ((reg_read(ohci, OHCI1394_HCControlSet) &
1181 OHCI1394_HCControl_softReset) == 0)
1182 return 0;
1183 msleep(1);
1186 return -EBUSY;
1189 static int ohci_enable(struct fw_card *card, u32 *config_rom, size_t length)
1191 struct fw_ohci *ohci = fw_ohci(card);
1192 struct pci_dev *dev = to_pci_dev(card->device);
1194 if (software_reset(ohci)) {
1195 fw_error("Failed to reset ohci card.\n");
1196 return -EBUSY;
1200 * Now enable LPS, which we need in order to start accessing
1201 * most of the registers. In fact, on some cards (ALI M5251),
1202 * accessing registers in the SClk domain without LPS enabled
1203 * will lock up the machine. Wait 50msec to make sure we have
1204 * full link enabled.
1206 reg_write(ohci, OHCI1394_HCControlSet,
1207 OHCI1394_HCControl_LPS |
1208 OHCI1394_HCControl_postedWriteEnable);
1209 flush_writes(ohci);
1210 msleep(50);
1212 reg_write(ohci, OHCI1394_HCControlClear,
1213 OHCI1394_HCControl_noByteSwapData);
1215 reg_write(ohci, OHCI1394_LinkControlSet,
1216 OHCI1394_LinkControl_rcvSelfID |
1217 OHCI1394_LinkControl_cycleTimerEnable |
1218 OHCI1394_LinkControl_cycleMaster);
1220 reg_write(ohci, OHCI1394_ATRetries,
1221 OHCI1394_MAX_AT_REQ_RETRIES |
1222 (OHCI1394_MAX_AT_RESP_RETRIES << 4) |
1223 (OHCI1394_MAX_PHYS_RESP_RETRIES << 8));
1225 ar_context_run(&ohci->ar_request_ctx);
1226 ar_context_run(&ohci->ar_response_ctx);
1228 reg_write(ohci, OHCI1394_SelfIDBuffer, ohci->self_id_bus);
1229 reg_write(ohci, OHCI1394_PhyUpperBound, 0x00010000);
1230 reg_write(ohci, OHCI1394_IntEventClear, ~0);
1231 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
1232 reg_write(ohci, OHCI1394_IntMaskSet,
1233 OHCI1394_selfIDComplete |
1234 OHCI1394_RQPkt | OHCI1394_RSPkt |
1235 OHCI1394_reqTxComplete | OHCI1394_respTxComplete |
1236 OHCI1394_isochRx | OHCI1394_isochTx |
1237 OHCI1394_postedWriteErr | OHCI1394_cycleTooLong |
1238 OHCI1394_cycle64Seconds | OHCI1394_masterIntEnable);
1240 /* Activate link_on bit and contender bit in our self ID packets.*/
1241 if (ohci_update_phy_reg(card, 4, 0,
1242 PHY_LINK_ACTIVE | PHY_CONTENDER) < 0)
1243 return -EIO;
1246 * When the link is not yet enabled, the atomic config rom
1247 * update mechanism described below in ohci_set_config_rom()
1248 * is not active. We have to update ConfigRomHeader and
1249 * BusOptions manually, and the write to ConfigROMmap takes
1250 * effect immediately. We tie this to the enabling of the
1251 * link, so we have a valid config rom before enabling - the
1252 * OHCI requires that ConfigROMhdr and BusOptions have valid
1253 * values before enabling.
1255 * However, when the ConfigROMmap is written, some controllers
1256 * always read back quadlets 0 and 2 from the config rom to
1257 * the ConfigRomHeader and BusOptions registers on bus reset.
1258 * They shouldn't do that in this initial case where the link
1259 * isn't enabled. This means we have to use the same
1260 * workaround here, setting the bus header to 0 and then write
1261 * the right values in the bus reset tasklet.
1264 if (config_rom) {
1265 ohci->next_config_rom =
1266 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1267 &ohci->next_config_rom_bus,
1268 GFP_KERNEL);
1269 if (ohci->next_config_rom == NULL)
1270 return -ENOMEM;
1272 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1273 fw_memcpy_to_be32(ohci->next_config_rom, config_rom, length * 4);
1274 } else {
1276 * In the suspend case, config_rom is NULL, which
1277 * means that we just reuse the old config rom.
1279 ohci->next_config_rom = ohci->config_rom;
1280 ohci->next_config_rom_bus = ohci->config_rom_bus;
1283 ohci->next_header = be32_to_cpu(ohci->next_config_rom[0]);
1284 ohci->next_config_rom[0] = 0;
1285 reg_write(ohci, OHCI1394_ConfigROMhdr, 0);
1286 reg_write(ohci, OHCI1394_BusOptions,
1287 be32_to_cpu(ohci->next_config_rom[2]));
1288 reg_write(ohci, OHCI1394_ConfigROMmap, ohci->next_config_rom_bus);
1290 reg_write(ohci, OHCI1394_AsReqFilterHiSet, 0x80000000);
1292 if (request_irq(dev->irq, irq_handler,
1293 IRQF_SHARED, ohci_driver_name, ohci)) {
1294 fw_error("Failed to allocate shared interrupt %d.\n",
1295 dev->irq);
1296 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1297 ohci->config_rom, ohci->config_rom_bus);
1298 return -EIO;
1301 reg_write(ohci, OHCI1394_HCControlSet,
1302 OHCI1394_HCControl_linkEnable |
1303 OHCI1394_HCControl_BIBimageValid);
1304 flush_writes(ohci);
1307 * We are ready to go, initiate bus reset to finish the
1308 * initialization.
1311 fw_core_initiate_bus_reset(&ohci->card, 1);
1313 return 0;
1316 static int
1317 ohci_set_config_rom(struct fw_card *card, u32 *config_rom, size_t length)
1319 struct fw_ohci *ohci;
1320 unsigned long flags;
1321 int retval = -EBUSY;
1322 __be32 *next_config_rom;
1323 dma_addr_t next_config_rom_bus;
1325 ohci = fw_ohci(card);
1328 * When the OHCI controller is enabled, the config rom update
1329 * mechanism is a bit tricky, but easy enough to use. See
1330 * section 5.5.6 in the OHCI specification.
1332 * The OHCI controller caches the new config rom address in a
1333 * shadow register (ConfigROMmapNext) and needs a bus reset
1334 * for the changes to take place. When the bus reset is
1335 * detected, the controller loads the new values for the
1336 * ConfigRomHeader and BusOptions registers from the specified
1337 * config rom and loads ConfigROMmap from the ConfigROMmapNext
1338 * shadow register. All automatically and atomically.
1340 * Now, there's a twist to this story. The automatic load of
1341 * ConfigRomHeader and BusOptions doesn't honor the
1342 * noByteSwapData bit, so with a be32 config rom, the
1343 * controller will load be32 values in to these registers
1344 * during the atomic update, even on litte endian
1345 * architectures. The workaround we use is to put a 0 in the
1346 * header quadlet; 0 is endian agnostic and means that the
1347 * config rom isn't ready yet. In the bus reset tasklet we
1348 * then set up the real values for the two registers.
1350 * We use ohci->lock to avoid racing with the code that sets
1351 * ohci->next_config_rom to NULL (see bus_reset_tasklet).
1354 next_config_rom =
1355 dma_alloc_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1356 &next_config_rom_bus, GFP_KERNEL);
1357 if (next_config_rom == NULL)
1358 return -ENOMEM;
1360 spin_lock_irqsave(&ohci->lock, flags);
1362 if (ohci->next_config_rom == NULL) {
1363 ohci->next_config_rom = next_config_rom;
1364 ohci->next_config_rom_bus = next_config_rom_bus;
1366 memset(ohci->next_config_rom, 0, CONFIG_ROM_SIZE);
1367 fw_memcpy_to_be32(ohci->next_config_rom, config_rom,
1368 length * 4);
1370 ohci->next_header = config_rom[0];
1371 ohci->next_config_rom[0] = 0;
1373 reg_write(ohci, OHCI1394_ConfigROMmap,
1374 ohci->next_config_rom_bus);
1375 retval = 0;
1378 spin_unlock_irqrestore(&ohci->lock, flags);
1381 * Now initiate a bus reset to have the changes take
1382 * effect. We clean up the old config rom memory and DMA
1383 * mappings in the bus reset tasklet, since the OHCI
1384 * controller could need to access it before the bus reset
1385 * takes effect.
1387 if (retval == 0)
1388 fw_core_initiate_bus_reset(&ohci->card, 1);
1389 else
1390 dma_free_coherent(ohci->card.device, CONFIG_ROM_SIZE,
1391 next_config_rom, next_config_rom_bus);
1393 return retval;
1396 static void ohci_send_request(struct fw_card *card, struct fw_packet *packet)
1398 struct fw_ohci *ohci = fw_ohci(card);
1400 at_context_transmit(&ohci->at_request_ctx, packet);
1403 static void ohci_send_response(struct fw_card *card, struct fw_packet *packet)
1405 struct fw_ohci *ohci = fw_ohci(card);
1407 at_context_transmit(&ohci->at_response_ctx, packet);
1410 static int ohci_cancel_packet(struct fw_card *card, struct fw_packet *packet)
1412 struct fw_ohci *ohci = fw_ohci(card);
1413 struct context *ctx = &ohci->at_request_ctx;
1414 struct driver_data *driver_data = packet->driver_data;
1415 int retval = -ENOENT;
1417 tasklet_disable(&ctx->tasklet);
1419 if (packet->ack != 0)
1420 goto out;
1422 driver_data->packet = NULL;
1423 packet->ack = RCODE_CANCELLED;
1424 packet->callback(packet, &ohci->card, packet->ack);
1425 retval = 0;
1427 out:
1428 tasklet_enable(&ctx->tasklet);
1430 return retval;
1433 static int
1434 ohci_enable_phys_dma(struct fw_card *card, int node_id, int generation)
1436 struct fw_ohci *ohci = fw_ohci(card);
1437 unsigned long flags;
1438 int n, retval = 0;
1441 * FIXME: Make sure this bitmask is cleared when we clear the busReset
1442 * interrupt bit. Clear physReqResourceAllBuses on bus reset.
1445 spin_lock_irqsave(&ohci->lock, flags);
1447 if (ohci->generation != generation) {
1448 retval = -ESTALE;
1449 goto out;
1453 * Note, if the node ID contains a non-local bus ID, physical DMA is
1454 * enabled for _all_ nodes on remote buses.
1457 n = (node_id & 0xffc0) == LOCAL_BUS ? node_id & 0x3f : 63;
1458 if (n < 32)
1459 reg_write(ohci, OHCI1394_PhyReqFilterLoSet, 1 << n);
1460 else
1461 reg_write(ohci, OHCI1394_PhyReqFilterHiSet, 1 << (n - 32));
1463 flush_writes(ohci);
1464 out:
1465 spin_unlock_irqrestore(&ohci->lock, flags);
1466 return retval;
1469 static u64
1470 ohci_get_bus_time(struct fw_card *card)
1472 struct fw_ohci *ohci = fw_ohci(card);
1473 u32 cycle_time;
1474 u64 bus_time;
1476 cycle_time = reg_read(ohci, OHCI1394_IsochronousCycleTimer);
1477 bus_time = ((u64) ohci->bus_seconds << 32) | cycle_time;
1479 return bus_time;
1482 static int handle_ir_dualbuffer_packet(struct context *context,
1483 struct descriptor *d,
1484 struct descriptor *last)
1486 struct iso_context *ctx =
1487 container_of(context, struct iso_context, context);
1488 struct db_descriptor *db = (struct db_descriptor *) d;
1489 __le32 *ir_header;
1490 size_t header_length;
1491 void *p, *end;
1492 int i;
1494 if (db->first_res_count != 0 && db->second_res_count != 0) {
1495 if (ctx->excess_bytes <= le16_to_cpu(db->second_req_count)) {
1496 /* This descriptor isn't done yet, stop iteration. */
1497 return 0;
1499 ctx->excess_bytes -= le16_to_cpu(db->second_req_count);
1502 header_length = le16_to_cpu(db->first_req_count) -
1503 le16_to_cpu(db->first_res_count);
1505 i = ctx->header_length;
1506 p = db + 1;
1507 end = p + header_length;
1508 while (p < end && i + ctx->base.header_size <= PAGE_SIZE) {
1510 * The iso header is byteswapped to little endian by
1511 * the controller, but the remaining header quadlets
1512 * are big endian. We want to present all the headers
1513 * as big endian, so we have to swap the first
1514 * quadlet.
1516 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1517 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1518 i += ctx->base.header_size;
1519 ctx->excess_bytes +=
1520 (le32_to_cpu(*(__le32 *)(p + 4)) >> 16) & 0xffff;
1521 p += ctx->base.header_size + 4;
1523 ctx->header_length = i;
1525 ctx->excess_bytes -= le16_to_cpu(db->second_req_count) -
1526 le16_to_cpu(db->second_res_count);
1528 if (le16_to_cpu(db->control) & DESCRIPTOR_IRQ_ALWAYS) {
1529 ir_header = (__le32 *) (db + 1);
1530 ctx->base.callback(&ctx->base,
1531 le32_to_cpu(ir_header[0]) & 0xffff,
1532 ctx->header_length, ctx->header,
1533 ctx->base.callback_data);
1534 ctx->header_length = 0;
1537 return 1;
1540 static int handle_ir_packet_per_buffer(struct context *context,
1541 struct descriptor *d,
1542 struct descriptor *last)
1544 struct iso_context *ctx =
1545 container_of(context, struct iso_context, context);
1546 struct descriptor *pd;
1547 __le32 *ir_header;
1548 void *p;
1549 int i;
1551 for (pd = d; pd <= last; pd++) {
1552 if (pd->transfer_status)
1553 break;
1555 if (pd > last)
1556 /* Descriptor(s) not done yet, stop iteration */
1557 return 0;
1559 i = ctx->header_length;
1560 p = last + 1;
1562 if (ctx->base.header_size > 0 &&
1563 i + ctx->base.header_size <= PAGE_SIZE) {
1565 * The iso header is byteswapped to little endian by
1566 * the controller, but the remaining header quadlets
1567 * are big endian. We want to present all the headers
1568 * as big endian, so we have to swap the first quadlet.
1570 *(u32 *) (ctx->header + i) = __swab32(*(u32 *) (p + 4));
1571 memcpy(ctx->header + i + 4, p + 8, ctx->base.header_size - 4);
1572 ctx->header_length += ctx->base.header_size;
1575 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS) {
1576 ir_header = (__le32 *) p;
1577 ctx->base.callback(&ctx->base,
1578 le32_to_cpu(ir_header[0]) & 0xffff,
1579 ctx->header_length, ctx->header,
1580 ctx->base.callback_data);
1581 ctx->header_length = 0;
1584 return 1;
1587 static int handle_it_packet(struct context *context,
1588 struct descriptor *d,
1589 struct descriptor *last)
1591 struct iso_context *ctx =
1592 container_of(context, struct iso_context, context);
1594 if (last->transfer_status == 0)
1595 /* This descriptor isn't done yet, stop iteration. */
1596 return 0;
1598 if (le16_to_cpu(last->control) & DESCRIPTOR_IRQ_ALWAYS)
1599 ctx->base.callback(&ctx->base, le16_to_cpu(last->res_count),
1600 0, NULL, ctx->base.callback_data);
1602 return 1;
1605 static struct fw_iso_context *
1606 ohci_allocate_iso_context(struct fw_card *card, int type, size_t header_size)
1608 struct fw_ohci *ohci = fw_ohci(card);
1609 struct iso_context *ctx, *list;
1610 descriptor_callback_t callback;
1611 u32 *mask, regs;
1612 unsigned long flags;
1613 int index, retval = -ENOMEM;
1615 if (type == FW_ISO_CONTEXT_TRANSMIT) {
1616 mask = &ohci->it_context_mask;
1617 list = ohci->it_context_list;
1618 callback = handle_it_packet;
1619 } else {
1620 mask = &ohci->ir_context_mask;
1621 list = ohci->ir_context_list;
1622 if (ohci->version >= OHCI_VERSION_1_1)
1623 callback = handle_ir_dualbuffer_packet;
1624 else
1625 callback = handle_ir_packet_per_buffer;
1628 spin_lock_irqsave(&ohci->lock, flags);
1629 index = ffs(*mask) - 1;
1630 if (index >= 0)
1631 *mask &= ~(1 << index);
1632 spin_unlock_irqrestore(&ohci->lock, flags);
1634 if (index < 0)
1635 return ERR_PTR(-EBUSY);
1637 if (type == FW_ISO_CONTEXT_TRANSMIT)
1638 regs = OHCI1394_IsoXmitContextBase(index);
1639 else
1640 regs = OHCI1394_IsoRcvContextBase(index);
1642 ctx = &list[index];
1643 memset(ctx, 0, sizeof(*ctx));
1644 ctx->header_length = 0;
1645 ctx->header = (void *) __get_free_page(GFP_KERNEL);
1646 if (ctx->header == NULL)
1647 goto out;
1649 retval = context_init(&ctx->context, ohci, regs, callback);
1650 if (retval < 0)
1651 goto out_with_header;
1653 return &ctx->base;
1655 out_with_header:
1656 free_page((unsigned long)ctx->header);
1657 out:
1658 spin_lock_irqsave(&ohci->lock, flags);
1659 *mask |= 1 << index;
1660 spin_unlock_irqrestore(&ohci->lock, flags);
1662 return ERR_PTR(retval);
1665 static int ohci_start_iso(struct fw_iso_context *base,
1666 s32 cycle, u32 sync, u32 tags)
1668 struct iso_context *ctx = container_of(base, struct iso_context, base);
1669 struct fw_ohci *ohci = ctx->context.ohci;
1670 u32 control, match;
1671 int index;
1673 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1674 index = ctx - ohci->it_context_list;
1675 match = 0;
1676 if (cycle >= 0)
1677 match = IT_CONTEXT_CYCLE_MATCH_ENABLE |
1678 (cycle & 0x7fff) << 16;
1680 reg_write(ohci, OHCI1394_IsoXmitIntEventClear, 1 << index);
1681 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, 1 << index);
1682 context_run(&ctx->context, match);
1683 } else {
1684 index = ctx - ohci->ir_context_list;
1685 control = IR_CONTEXT_ISOCH_HEADER;
1686 if (ohci->version >= OHCI_VERSION_1_1)
1687 control |= IR_CONTEXT_DUAL_BUFFER_MODE;
1688 match = (tags << 28) | (sync << 8) | ctx->base.channel;
1689 if (cycle >= 0) {
1690 match |= (cycle & 0x07fff) << 12;
1691 control |= IR_CONTEXT_CYCLE_MATCH_ENABLE;
1694 reg_write(ohci, OHCI1394_IsoRecvIntEventClear, 1 << index);
1695 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, 1 << index);
1696 reg_write(ohci, CONTEXT_MATCH(ctx->context.regs), match);
1697 context_run(&ctx->context, control);
1700 return 0;
1703 static int ohci_stop_iso(struct fw_iso_context *base)
1705 struct fw_ohci *ohci = fw_ohci(base->card);
1706 struct iso_context *ctx = container_of(base, struct iso_context, base);
1707 int index;
1709 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1710 index = ctx - ohci->it_context_list;
1711 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, 1 << index);
1712 } else {
1713 index = ctx - ohci->ir_context_list;
1714 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, 1 << index);
1716 flush_writes(ohci);
1717 context_stop(&ctx->context);
1719 return 0;
1722 static void ohci_free_iso_context(struct fw_iso_context *base)
1724 struct fw_ohci *ohci = fw_ohci(base->card);
1725 struct iso_context *ctx = container_of(base, struct iso_context, base);
1726 unsigned long flags;
1727 int index;
1729 ohci_stop_iso(base);
1730 context_release(&ctx->context);
1731 free_page((unsigned long)ctx->header);
1733 spin_lock_irqsave(&ohci->lock, flags);
1735 if (ctx->base.type == FW_ISO_CONTEXT_TRANSMIT) {
1736 index = ctx - ohci->it_context_list;
1737 ohci->it_context_mask |= 1 << index;
1738 } else {
1739 index = ctx - ohci->ir_context_list;
1740 ohci->ir_context_mask |= 1 << index;
1743 spin_unlock_irqrestore(&ohci->lock, flags);
1746 static int
1747 ohci_queue_iso_transmit(struct fw_iso_context *base,
1748 struct fw_iso_packet *packet,
1749 struct fw_iso_buffer *buffer,
1750 unsigned long payload)
1752 struct iso_context *ctx = container_of(base, struct iso_context, base);
1753 struct descriptor *d, *last, *pd;
1754 struct fw_iso_packet *p;
1755 __le32 *header;
1756 dma_addr_t d_bus, page_bus;
1757 u32 z, header_z, payload_z, irq;
1758 u32 payload_index, payload_end_index, next_page_index;
1759 int page, end_page, i, length, offset;
1762 * FIXME: Cycle lost behavior should be configurable: lose
1763 * packet, retransmit or terminate..
1766 p = packet;
1767 payload_index = payload;
1769 if (p->skip)
1770 z = 1;
1771 else
1772 z = 2;
1773 if (p->header_length > 0)
1774 z++;
1776 /* Determine the first page the payload isn't contained in. */
1777 end_page = PAGE_ALIGN(payload_index + p->payload_length) >> PAGE_SHIFT;
1778 if (p->payload_length > 0)
1779 payload_z = end_page - (payload_index >> PAGE_SHIFT);
1780 else
1781 payload_z = 0;
1783 z += payload_z;
1785 /* Get header size in number of descriptors. */
1786 header_z = DIV_ROUND_UP(p->header_length, sizeof(*d));
1788 d = context_get_descriptors(&ctx->context, z + header_z, &d_bus);
1789 if (d == NULL)
1790 return -ENOMEM;
1792 if (!p->skip) {
1793 d[0].control = cpu_to_le16(DESCRIPTOR_KEY_IMMEDIATE);
1794 d[0].req_count = cpu_to_le16(8);
1796 header = (__le32 *) &d[1];
1797 header[0] = cpu_to_le32(IT_HEADER_SY(p->sy) |
1798 IT_HEADER_TAG(p->tag) |
1799 IT_HEADER_TCODE(TCODE_STREAM_DATA) |
1800 IT_HEADER_CHANNEL(ctx->base.channel) |
1801 IT_HEADER_SPEED(ctx->base.speed));
1802 header[1] =
1803 cpu_to_le32(IT_HEADER_DATA_LENGTH(p->header_length +
1804 p->payload_length));
1807 if (p->header_length > 0) {
1808 d[2].req_count = cpu_to_le16(p->header_length);
1809 d[2].data_address = cpu_to_le32(d_bus + z * sizeof(*d));
1810 memcpy(&d[z], p->header, p->header_length);
1813 pd = d + z - payload_z;
1814 payload_end_index = payload_index + p->payload_length;
1815 for (i = 0; i < payload_z; i++) {
1816 page = payload_index >> PAGE_SHIFT;
1817 offset = payload_index & ~PAGE_MASK;
1818 next_page_index = (page + 1) << PAGE_SHIFT;
1819 length =
1820 min(next_page_index, payload_end_index) - payload_index;
1821 pd[i].req_count = cpu_to_le16(length);
1823 page_bus = page_private(buffer->pages[page]);
1824 pd[i].data_address = cpu_to_le32(page_bus + offset);
1826 payload_index += length;
1829 if (p->interrupt)
1830 irq = DESCRIPTOR_IRQ_ALWAYS;
1831 else
1832 irq = DESCRIPTOR_NO_IRQ;
1834 last = z == 2 ? d : d + z - 1;
1835 last->control |= cpu_to_le16(DESCRIPTOR_OUTPUT_LAST |
1836 DESCRIPTOR_STATUS |
1837 DESCRIPTOR_BRANCH_ALWAYS |
1838 irq);
1840 context_append(&ctx->context, d, z, header_z);
1842 return 0;
1845 static int
1846 ohci_queue_iso_receive_dualbuffer(struct fw_iso_context *base,
1847 struct fw_iso_packet *packet,
1848 struct fw_iso_buffer *buffer,
1849 unsigned long payload)
1851 struct iso_context *ctx = container_of(base, struct iso_context, base);
1852 struct db_descriptor *db = NULL;
1853 struct descriptor *d;
1854 struct fw_iso_packet *p;
1855 dma_addr_t d_bus, page_bus;
1856 u32 z, header_z, length, rest;
1857 int page, offset, packet_count, header_size;
1860 * FIXME: Cycle lost behavior should be configurable: lose
1861 * packet, retransmit or terminate..
1864 p = packet;
1865 z = 2;
1868 * The OHCI controller puts the status word in the header
1869 * buffer too, so we need 4 extra bytes per packet.
1871 packet_count = p->header_length / ctx->base.header_size;
1872 header_size = packet_count * (ctx->base.header_size + 4);
1874 /* Get header size in number of descriptors. */
1875 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1876 page = payload >> PAGE_SHIFT;
1877 offset = payload & ~PAGE_MASK;
1878 rest = p->payload_length;
1880 /* FIXME: make packet-per-buffer/dual-buffer a context option */
1881 while (rest > 0) {
1882 d = context_get_descriptors(&ctx->context,
1883 z + header_z, &d_bus);
1884 if (d == NULL)
1885 return -ENOMEM;
1887 db = (struct db_descriptor *) d;
1888 db->control = cpu_to_le16(DESCRIPTOR_STATUS |
1889 DESCRIPTOR_BRANCH_ALWAYS);
1890 db->first_size = cpu_to_le16(ctx->base.header_size + 4);
1891 if (p->skip && rest == p->payload_length) {
1892 db->control |= cpu_to_le16(DESCRIPTOR_WAIT);
1893 db->first_req_count = db->first_size;
1894 } else {
1895 db->first_req_count = cpu_to_le16(header_size);
1897 db->first_res_count = db->first_req_count;
1898 db->first_buffer = cpu_to_le32(d_bus + sizeof(*db));
1900 if (p->skip && rest == p->payload_length)
1901 length = 4;
1902 else if (offset + rest < PAGE_SIZE)
1903 length = rest;
1904 else
1905 length = PAGE_SIZE - offset;
1907 db->second_req_count = cpu_to_le16(length);
1908 db->second_res_count = db->second_req_count;
1909 page_bus = page_private(buffer->pages[page]);
1910 db->second_buffer = cpu_to_le32(page_bus + offset);
1912 if (p->interrupt && length == rest)
1913 db->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1915 context_append(&ctx->context, d, z, header_z);
1916 offset = (offset + length) & ~PAGE_MASK;
1917 rest -= length;
1918 if (offset == 0)
1919 page++;
1922 return 0;
1925 static int
1926 ohci_queue_iso_receive_packet_per_buffer(struct fw_iso_context *base,
1927 struct fw_iso_packet *packet,
1928 struct fw_iso_buffer *buffer,
1929 unsigned long payload)
1931 struct iso_context *ctx = container_of(base, struct iso_context, base);
1932 struct descriptor *d = NULL, *pd = NULL;
1933 struct fw_iso_packet *p = packet;
1934 dma_addr_t d_bus, page_bus;
1935 u32 z, header_z, rest;
1936 int i, j, length;
1937 int page, offset, packet_count, header_size, payload_per_buffer;
1940 * The OHCI controller puts the status word in the
1941 * buffer too, so we need 4 extra bytes per packet.
1943 packet_count = p->header_length / ctx->base.header_size;
1944 header_size = ctx->base.header_size + 4;
1946 /* Get header size in number of descriptors. */
1947 header_z = DIV_ROUND_UP(header_size, sizeof(*d));
1948 page = payload >> PAGE_SHIFT;
1949 offset = payload & ~PAGE_MASK;
1950 payload_per_buffer = p->payload_length / packet_count;
1952 for (i = 0; i < packet_count; i++) {
1953 /* d points to the header descriptor */
1954 z = DIV_ROUND_UP(payload_per_buffer + offset, PAGE_SIZE) + 1;
1955 d = context_get_descriptors(&ctx->context,
1956 z + header_z, &d_bus);
1957 if (d == NULL)
1958 return -ENOMEM;
1960 d->control = cpu_to_le16(DESCRIPTOR_STATUS |
1961 DESCRIPTOR_INPUT_MORE);
1962 if (p->skip && i == 0)
1963 d->control |= cpu_to_le16(DESCRIPTOR_WAIT);
1964 d->req_count = cpu_to_le16(header_size);
1965 d->res_count = d->req_count;
1966 d->transfer_status = 0;
1967 d->data_address = cpu_to_le32(d_bus + (z * sizeof(*d)));
1969 rest = payload_per_buffer;
1970 for (j = 1; j < z; j++) {
1971 pd = d + j;
1972 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
1973 DESCRIPTOR_INPUT_MORE);
1975 if (offset + rest < PAGE_SIZE)
1976 length = rest;
1977 else
1978 length = PAGE_SIZE - offset;
1979 pd->req_count = cpu_to_le16(length);
1980 pd->res_count = pd->req_count;
1981 pd->transfer_status = 0;
1983 page_bus = page_private(buffer->pages[page]);
1984 pd->data_address = cpu_to_le32(page_bus + offset);
1986 offset = (offset + length) & ~PAGE_MASK;
1987 rest -= length;
1988 if (offset == 0)
1989 page++;
1991 pd->control = cpu_to_le16(DESCRIPTOR_STATUS |
1992 DESCRIPTOR_INPUT_LAST |
1993 DESCRIPTOR_BRANCH_ALWAYS);
1994 if (p->interrupt && i == packet_count - 1)
1995 pd->control |= cpu_to_le16(DESCRIPTOR_IRQ_ALWAYS);
1997 context_append(&ctx->context, d, z, header_z);
2000 return 0;
2003 static int
2004 ohci_queue_iso(struct fw_iso_context *base,
2005 struct fw_iso_packet *packet,
2006 struct fw_iso_buffer *buffer,
2007 unsigned long payload)
2009 struct iso_context *ctx = container_of(base, struct iso_context, base);
2010 unsigned long flags;
2011 int retval;
2013 spin_lock_irqsave(&ctx->context.ohci->lock, flags);
2014 if (base->type == FW_ISO_CONTEXT_TRANSMIT)
2015 retval = ohci_queue_iso_transmit(base, packet, buffer, payload);
2016 else if (ctx->context.ohci->version >= OHCI_VERSION_1_1)
2017 retval = ohci_queue_iso_receive_dualbuffer(base, packet,
2018 buffer, payload);
2019 else
2020 retval = ohci_queue_iso_receive_packet_per_buffer(base, packet,
2021 buffer,
2022 payload);
2023 spin_unlock_irqrestore(&ctx->context.ohci->lock, flags);
2025 return retval;
2028 static const struct fw_card_driver ohci_driver = {
2029 .name = ohci_driver_name,
2030 .enable = ohci_enable,
2031 .update_phy_reg = ohci_update_phy_reg,
2032 .set_config_rom = ohci_set_config_rom,
2033 .send_request = ohci_send_request,
2034 .send_response = ohci_send_response,
2035 .cancel_packet = ohci_cancel_packet,
2036 .enable_phys_dma = ohci_enable_phys_dma,
2037 .get_bus_time = ohci_get_bus_time,
2039 .allocate_iso_context = ohci_allocate_iso_context,
2040 .free_iso_context = ohci_free_iso_context,
2041 .queue_iso = ohci_queue_iso,
2042 .start_iso = ohci_start_iso,
2043 .stop_iso = ohci_stop_iso,
2046 static int __devinit
2047 pci_probe(struct pci_dev *dev, const struct pci_device_id *ent)
2049 struct fw_ohci *ohci;
2050 u32 bus_options, max_receive, link_speed;
2051 u64 guid;
2052 int err;
2053 size_t size;
2055 #ifdef CONFIG_PPC_PMAC
2056 /* Necessary on some machines if fw-ohci was loaded/ unloaded before */
2057 if (machine_is(powermac)) {
2058 struct device_node *ofn = pci_device_to_OF_node(dev);
2060 if (ofn) {
2061 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 1);
2062 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2065 #endif /* CONFIG_PPC_PMAC */
2067 ohci = kzalloc(sizeof(*ohci), GFP_KERNEL);
2068 if (ohci == NULL) {
2069 fw_error("Could not malloc fw_ohci data.\n");
2070 return -ENOMEM;
2073 fw_card_initialize(&ohci->card, &ohci_driver, &dev->dev);
2075 err = pci_enable_device(dev);
2076 if (err) {
2077 fw_error("Failed to enable OHCI hardware.\n");
2078 goto fail_put_card;
2081 pci_set_master(dev);
2082 pci_write_config_dword(dev, OHCI1394_PCI_HCI_Control, 0);
2083 pci_set_drvdata(dev, ohci);
2085 spin_lock_init(&ohci->lock);
2087 tasklet_init(&ohci->bus_reset_tasklet,
2088 bus_reset_tasklet, (unsigned long)ohci);
2090 err = pci_request_region(dev, 0, ohci_driver_name);
2091 if (err) {
2092 fw_error("MMIO resource unavailable\n");
2093 goto fail_disable;
2096 ohci->registers = pci_iomap(dev, 0, OHCI1394_REGISTER_SIZE);
2097 if (ohci->registers == NULL) {
2098 fw_error("Failed to remap registers\n");
2099 err = -ENXIO;
2100 goto fail_iomem;
2103 ar_context_init(&ohci->ar_request_ctx, ohci,
2104 OHCI1394_AsReqRcvContextControlSet);
2106 ar_context_init(&ohci->ar_response_ctx, ohci,
2107 OHCI1394_AsRspRcvContextControlSet);
2109 context_init(&ohci->at_request_ctx, ohci,
2110 OHCI1394_AsReqTrContextControlSet, handle_at_packet);
2112 context_init(&ohci->at_response_ctx, ohci,
2113 OHCI1394_AsRspTrContextControlSet, handle_at_packet);
2115 reg_write(ohci, OHCI1394_IsoRecvIntMaskSet, ~0);
2116 ohci->it_context_mask = reg_read(ohci, OHCI1394_IsoRecvIntMaskSet);
2117 reg_write(ohci, OHCI1394_IsoRecvIntMaskClear, ~0);
2118 size = sizeof(struct iso_context) * hweight32(ohci->it_context_mask);
2119 ohci->it_context_list = kzalloc(size, GFP_KERNEL);
2121 reg_write(ohci, OHCI1394_IsoXmitIntMaskSet, ~0);
2122 ohci->ir_context_mask = reg_read(ohci, OHCI1394_IsoXmitIntMaskSet);
2123 reg_write(ohci, OHCI1394_IsoXmitIntMaskClear, ~0);
2124 size = sizeof(struct iso_context) * hweight32(ohci->ir_context_mask);
2125 ohci->ir_context_list = kzalloc(size, GFP_KERNEL);
2127 if (ohci->it_context_list == NULL || ohci->ir_context_list == NULL) {
2128 fw_error("Out of memory for it/ir contexts.\n");
2129 err = -ENOMEM;
2130 goto fail_registers;
2133 /* self-id dma buffer allocation */
2134 ohci->self_id_cpu = dma_alloc_coherent(ohci->card.device,
2135 SELF_ID_BUF_SIZE,
2136 &ohci->self_id_bus,
2137 GFP_KERNEL);
2138 if (ohci->self_id_cpu == NULL) {
2139 fw_error("Out of memory for self ID buffer.\n");
2140 err = -ENOMEM;
2141 goto fail_registers;
2144 bus_options = reg_read(ohci, OHCI1394_BusOptions);
2145 max_receive = (bus_options >> 12) & 0xf;
2146 link_speed = bus_options & 0x7;
2147 guid = ((u64) reg_read(ohci, OHCI1394_GUIDHi) << 32) |
2148 reg_read(ohci, OHCI1394_GUIDLo);
2150 err = fw_card_add(&ohci->card, max_receive, link_speed, guid);
2151 if (err < 0)
2152 goto fail_self_id;
2154 ohci->version = reg_read(ohci, OHCI1394_Version) & 0x00ff00ff;
2155 fw_notify("Added fw-ohci device %s, OHCI version %x.%x\n",
2156 dev->dev.bus_id, ohci->version >> 16, ohci->version & 0xff);
2157 return 0;
2159 fail_self_id:
2160 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2161 ohci->self_id_cpu, ohci->self_id_bus);
2162 fail_registers:
2163 kfree(ohci->it_context_list);
2164 kfree(ohci->ir_context_list);
2165 pci_iounmap(dev, ohci->registers);
2166 fail_iomem:
2167 pci_release_region(dev, 0);
2168 fail_disable:
2169 pci_disable_device(dev);
2170 fail_put_card:
2171 fw_card_put(&ohci->card);
2173 return err;
2176 static void pci_remove(struct pci_dev *dev)
2178 struct fw_ohci *ohci;
2180 ohci = pci_get_drvdata(dev);
2181 reg_write(ohci, OHCI1394_IntMaskClear, ~0);
2182 flush_writes(ohci);
2183 fw_core_remove_card(&ohci->card);
2186 * FIXME: Fail all pending packets here, now that the upper
2187 * layers can't queue any more.
2190 software_reset(ohci);
2191 free_irq(dev->irq, ohci);
2192 dma_free_coherent(ohci->card.device, SELF_ID_BUF_SIZE,
2193 ohci->self_id_cpu, ohci->self_id_bus);
2194 kfree(ohci->it_context_list);
2195 kfree(ohci->ir_context_list);
2196 pci_iounmap(dev, ohci->registers);
2197 pci_release_region(dev, 0);
2198 pci_disable_device(dev);
2199 fw_card_put(&ohci->card);
2201 #ifdef CONFIG_PPC_PMAC
2202 /* On UniNorth, power down the cable and turn off the chip clock
2203 * to save power on laptops */
2204 if (machine_is(powermac)) {
2205 struct device_node *ofn = pci_device_to_OF_node(dev);
2207 if (ofn) {
2208 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2209 pmac_call_feature(PMAC_FTR_1394_CABLE_POWER, ofn, 0, 0);
2212 #endif /* CONFIG_PPC_PMAC */
2214 fw_notify("Removed fw-ohci device.\n");
2217 #ifdef CONFIG_PM
2218 static int pci_suspend(struct pci_dev *pdev, pm_message_t state)
2220 struct fw_ohci *ohci = pci_get_drvdata(pdev);
2221 int err;
2223 software_reset(ohci);
2224 free_irq(pdev->irq, ohci);
2225 err = pci_save_state(pdev);
2226 if (err) {
2227 fw_error("pci_save_state failed\n");
2228 return err;
2230 err = pci_set_power_state(pdev, pci_choose_state(pdev, state));
2231 if (err)
2232 fw_error("pci_set_power_state failed with %d\n", err);
2234 /* PowerMac suspend code comes last */
2235 #ifdef CONFIG_PPC_PMAC
2236 if (machine_is(powermac)) {
2237 struct device_node *ofn = pci_device_to_OF_node(pdev);
2239 if (ofn)
2240 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 0);
2242 #endif /* CONFIG_PPC_PMAC */
2244 return 0;
2247 static int pci_resume(struct pci_dev *pdev)
2249 struct fw_ohci *ohci = pci_get_drvdata(pdev);
2250 int err;
2252 /* PowerMac resume code comes first */
2253 #ifdef CONFIG_PPC_PMAC
2254 if (machine_is(powermac)) {
2255 struct device_node *ofn = pci_device_to_OF_node(pdev);
2257 if (ofn)
2258 pmac_call_feature(PMAC_FTR_1394_ENABLE, ofn, 0, 1);
2260 #endif /* CONFIG_PPC_PMAC */
2262 pci_set_power_state(pdev, PCI_D0);
2263 pci_restore_state(pdev);
2264 err = pci_enable_device(pdev);
2265 if (err) {
2266 fw_error("pci_enable_device failed\n");
2267 return err;
2270 return ohci_enable(&ohci->card, NULL, 0);
2272 #endif
2274 static struct pci_device_id pci_table[] = {
2275 { PCI_DEVICE_CLASS(PCI_CLASS_SERIAL_FIREWIRE_OHCI, ~0) },
2279 MODULE_DEVICE_TABLE(pci, pci_table);
2281 static struct pci_driver fw_ohci_pci_driver = {
2282 .name = ohci_driver_name,
2283 .id_table = pci_table,
2284 .probe = pci_probe,
2285 .remove = pci_remove,
2286 #ifdef CONFIG_PM
2287 .resume = pci_resume,
2288 .suspend = pci_suspend,
2289 #endif
2292 MODULE_AUTHOR("Kristian Hoegsberg <krh@bitplanet.net>");
2293 MODULE_DESCRIPTION("Driver for PCI OHCI IEEE1394 controllers");
2294 MODULE_LICENSE("GPL");
2296 /* Provide a module alias so root-on-sbp2 initrds don't break. */
2297 #ifndef CONFIG_IEEE1394_OHCI1394_MODULE
2298 MODULE_ALIAS("ohci1394");
2299 #endif
2301 static int __init fw_ohci_init(void)
2303 return pci_register_driver(&fw_ohci_pci_driver);
2306 static void __exit fw_ohci_cleanup(void)
2308 pci_unregister_driver(&fw_ohci_pci_driver);
2311 module_init(fw_ohci_init);
2312 module_exit(fw_ohci_cleanup);