atl1: change tpd_avail function name
[linux-2.6/linux-2.6-openrd.git] / fs / udf / inode.c
blob0d2c41666cd28d877ce10f72e8782ecf0cbeaf81
1 /*
2 * inode.c
4 * PURPOSE
5 * Inode handling routines for the OSTA-UDF(tm) filesystem.
7 * COPYRIGHT
8 * This file is distributed under the terms of the GNU General Public
9 * License (GPL). Copies of the GPL can be obtained from:
10 * ftp://prep.ai.mit.edu/pub/gnu/GPL
11 * Each contributing author retains all rights to their own work.
13 * (C) 1998 Dave Boynton
14 * (C) 1998-2004 Ben Fennema
15 * (C) 1999-2000 Stelias Computing Inc
17 * HISTORY
19 * 10/04/98 dgb Added rudimentary directory functions
20 * 10/07/98 Fully working udf_block_map! It works!
21 * 11/25/98 bmap altered to better support extents
22 * 12/06/98 blf partition support in udf_iget, udf_block_map and udf_read_inode
23 * 12/12/98 rewrote udf_block_map to handle next extents and descs across
24 * block boundaries (which is not actually allowed)
25 * 12/20/98 added support for strategy 4096
26 * 03/07/99 rewrote udf_block_map (again)
27 * New funcs, inode_bmap, udf_next_aext
28 * 04/19/99 Support for writing device EA's for major/minor #
31 #include "udfdecl.h"
32 #include <linux/mm.h>
33 #include <linux/smp_lock.h>
34 #include <linux/module.h>
35 #include <linux/pagemap.h>
36 #include <linux/buffer_head.h>
37 #include <linux/writeback.h>
38 #include <linux/slab.h>
40 #include "udf_i.h"
41 #include "udf_sb.h"
43 MODULE_AUTHOR("Ben Fennema");
44 MODULE_DESCRIPTION("Universal Disk Format Filesystem");
45 MODULE_LICENSE("GPL");
47 #define EXTENT_MERGE_SIZE 5
49 static mode_t udf_convert_permissions(struct fileEntry *);
50 static int udf_update_inode(struct inode *, int);
51 static void udf_fill_inode(struct inode *, struct buffer_head *);
52 static int udf_alloc_i_data(struct inode *inode, size_t size);
53 static struct buffer_head *inode_getblk(struct inode *, sector_t, int *,
54 long *, int *);
55 static int8_t udf_insert_aext(struct inode *, struct extent_position,
56 kernel_lb_addr, uint32_t);
57 static void udf_split_extents(struct inode *, int *, int, int,
58 kernel_long_ad[EXTENT_MERGE_SIZE], int *);
59 static void udf_prealloc_extents(struct inode *, int, int,
60 kernel_long_ad[EXTENT_MERGE_SIZE], int *);
61 static void udf_merge_extents(struct inode *,
62 kernel_long_ad[EXTENT_MERGE_SIZE], int *);
63 static void udf_update_extents(struct inode *,
64 kernel_long_ad[EXTENT_MERGE_SIZE], int, int,
65 struct extent_position *);
66 static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
69 * udf_delete_inode
71 * PURPOSE
72 * Clean-up before the specified inode is destroyed.
74 * DESCRIPTION
75 * This routine is called when the kernel destroys an inode structure
76 * ie. when iput() finds i_count == 0.
78 * HISTORY
79 * July 1, 1997 - Andrew E. Mileski
80 * Written, tested, and released.
82 * Called at the last iput() if i_nlink is zero.
84 void udf_delete_inode(struct inode *inode)
86 truncate_inode_pages(&inode->i_data, 0);
88 if (is_bad_inode(inode))
89 goto no_delete;
91 inode->i_size = 0;
92 udf_truncate(inode);
93 lock_kernel();
95 udf_update_inode(inode, IS_SYNC(inode));
96 udf_free_inode(inode);
98 unlock_kernel();
99 return;
101 no_delete:
102 clear_inode(inode);
106 * If we are going to release inode from memory, we discard preallocation and
107 * truncate last inode extent to proper length. We could use drop_inode() but
108 * it's called under inode_lock and thus we cannot mark inode dirty there. We
109 * use clear_inode() but we have to make sure to write inode as it's not written
110 * automatically.
112 void udf_clear_inode(struct inode *inode)
114 if (!(inode->i_sb->s_flags & MS_RDONLY)) {
115 lock_kernel();
116 /* Discard preallocation for directories, symlinks, etc. */
117 udf_discard_prealloc(inode);
118 udf_truncate_tail_extent(inode);
119 unlock_kernel();
120 write_inode_now(inode, 1);
122 kfree(UDF_I_DATA(inode));
123 UDF_I_DATA(inode) = NULL;
126 static int udf_writepage(struct page *page, struct writeback_control *wbc)
128 return block_write_full_page(page, udf_get_block, wbc);
131 static int udf_readpage(struct file *file, struct page *page)
133 return block_read_full_page(page, udf_get_block);
136 static int udf_prepare_write(struct file *file, struct page *page,
137 unsigned from, unsigned to)
139 return block_prepare_write(page, from, to, udf_get_block);
142 static sector_t udf_bmap(struct address_space *mapping, sector_t block)
144 return generic_block_bmap(mapping, block, udf_get_block);
147 const struct address_space_operations udf_aops = {
148 .readpage = udf_readpage,
149 .writepage = udf_writepage,
150 .sync_page = block_sync_page,
151 .prepare_write = udf_prepare_write,
152 .commit_write = generic_commit_write,
153 .bmap = udf_bmap,
156 void udf_expand_file_adinicb(struct inode *inode, int newsize, int *err)
158 struct page *page;
159 char *kaddr;
160 struct writeback_control udf_wbc = {
161 .sync_mode = WB_SYNC_NONE,
162 .nr_to_write = 1,
165 /* from now on we have normal address_space methods */
166 inode->i_data.a_ops = &udf_aops;
168 if (!UDF_I_LENALLOC(inode)) {
169 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
170 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_SHORT;
171 else
172 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_LONG;
173 mark_inode_dirty(inode);
174 return;
177 page = grab_cache_page(inode->i_mapping, 0);
178 BUG_ON(!PageLocked(page));
180 if (!PageUptodate(page)) {
181 kaddr = kmap(page);
182 memset(kaddr + UDF_I_LENALLOC(inode), 0x00,
183 PAGE_CACHE_SIZE - UDF_I_LENALLOC(inode));
184 memcpy(kaddr, UDF_I_DATA(inode) + UDF_I_LENEATTR(inode),
185 UDF_I_LENALLOC(inode));
186 flush_dcache_page(page);
187 SetPageUptodate(page);
188 kunmap(page);
190 memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), 0x00,
191 UDF_I_LENALLOC(inode));
192 UDF_I_LENALLOC(inode) = 0;
193 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
194 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_SHORT;
195 else
196 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_LONG;
198 inode->i_data.a_ops->writepage(page, &udf_wbc);
199 page_cache_release(page);
201 mark_inode_dirty(inode);
204 struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, int *block,
205 int *err)
207 int newblock;
208 struct buffer_head *dbh = NULL;
209 kernel_lb_addr eloc;
210 uint32_t elen;
211 uint8_t alloctype;
212 struct extent_position epos;
214 struct udf_fileident_bh sfibh, dfibh;
215 loff_t f_pos = udf_ext0_offset(inode) >> 2;
216 int size = (udf_ext0_offset(inode) + inode->i_size) >> 2;
217 struct fileIdentDesc cfi, *sfi, *dfi;
219 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
220 alloctype = ICBTAG_FLAG_AD_SHORT;
221 else
222 alloctype = ICBTAG_FLAG_AD_LONG;
224 if (!inode->i_size) {
225 UDF_I_ALLOCTYPE(inode) = alloctype;
226 mark_inode_dirty(inode);
227 return NULL;
230 /* alloc block, and copy data to it */
231 *block = udf_new_block(inode->i_sb, inode,
232 UDF_I_LOCATION(inode).partitionReferenceNum,
233 UDF_I_LOCATION(inode).logicalBlockNum, err);
234 if (!(*block))
235 return NULL;
236 newblock = udf_get_pblock(inode->i_sb, *block,
237 UDF_I_LOCATION(inode).partitionReferenceNum, 0);
238 if (!newblock)
239 return NULL;
240 dbh = udf_tgetblk(inode->i_sb, newblock);
241 if (!dbh)
242 return NULL;
243 lock_buffer(dbh);
244 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
245 set_buffer_uptodate(dbh);
246 unlock_buffer(dbh);
247 mark_buffer_dirty_inode(dbh, inode);
249 sfibh.soffset = sfibh.eoffset = (f_pos & ((inode->i_sb->s_blocksize - 1) >> 2)) << 2;
250 sfibh.sbh = sfibh.ebh = NULL;
251 dfibh.soffset = dfibh.eoffset = 0;
252 dfibh.sbh = dfibh.ebh = dbh;
253 while ((f_pos < size)) {
254 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_IN_ICB;
255 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, NULL, NULL, NULL);
256 if (!sfi) {
257 brelse(dbh);
258 return NULL;
260 UDF_I_ALLOCTYPE(inode) = alloctype;
261 sfi->descTag.tagLocation = cpu_to_le32(*block);
262 dfibh.soffset = dfibh.eoffset;
263 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
264 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
265 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
266 sfi->fileIdent + le16_to_cpu(sfi->lengthOfImpUse))) {
267 UDF_I_ALLOCTYPE(inode) = ICBTAG_FLAG_AD_IN_ICB;
268 brelse(dbh);
269 return NULL;
272 mark_buffer_dirty_inode(dbh, inode);
274 memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode), 0, UDF_I_LENALLOC(inode));
275 UDF_I_LENALLOC(inode) = 0;
276 eloc.logicalBlockNum = *block;
277 eloc.partitionReferenceNum = UDF_I_LOCATION(inode).partitionReferenceNum;
278 elen = inode->i_size;
279 UDF_I_LENEXTENTS(inode) = elen;
280 epos.bh = NULL;
281 epos.block = UDF_I_LOCATION(inode);
282 epos.offset = udf_file_entry_alloc_offset(inode);
283 udf_add_aext(inode, &epos, eloc, elen, 0);
284 /* UniqueID stuff */
286 brelse(epos.bh);
287 mark_inode_dirty(inode);
288 return dbh;
291 static int udf_get_block(struct inode *inode, sector_t block,
292 struct buffer_head *bh_result, int create)
294 int err, new;
295 struct buffer_head *bh;
296 unsigned long phys;
298 if (!create) {
299 phys = udf_block_map(inode, block);
300 if (phys)
301 map_bh(bh_result, inode->i_sb, phys);
302 return 0;
305 err = -EIO;
306 new = 0;
307 bh = NULL;
309 lock_kernel();
311 if (block < 0)
312 goto abort_negative;
314 if (block == UDF_I_NEXT_ALLOC_BLOCK(inode) + 1) {
315 UDF_I_NEXT_ALLOC_BLOCK(inode)++;
316 UDF_I_NEXT_ALLOC_GOAL(inode)++;
319 err = 0;
321 bh = inode_getblk(inode, block, &err, &phys, &new);
322 BUG_ON(bh);
323 if (err)
324 goto abort;
325 BUG_ON(!phys);
327 if (new)
328 set_buffer_new(bh_result);
329 map_bh(bh_result, inode->i_sb, phys);
331 abort:
332 unlock_kernel();
333 return err;
335 abort_negative:
336 udf_warning(inode->i_sb, "udf_get_block", "block < 0");
337 goto abort;
340 static struct buffer_head *udf_getblk(struct inode *inode, long block,
341 int create, int *err)
343 struct buffer_head *bh;
344 struct buffer_head dummy;
346 dummy.b_state = 0;
347 dummy.b_blocknr = -1000;
348 *err = udf_get_block(inode, block, &dummy, create);
349 if (!*err && buffer_mapped(&dummy)) {
350 bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
351 if (buffer_new(&dummy)) {
352 lock_buffer(bh);
353 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
354 set_buffer_uptodate(bh);
355 unlock_buffer(bh);
356 mark_buffer_dirty_inode(bh, inode);
358 return bh;
361 return NULL;
364 /* Extend the file by 'blocks' blocks, return the number of extents added */
365 int udf_extend_file(struct inode *inode, struct extent_position *last_pos,
366 kernel_long_ad * last_ext, sector_t blocks)
368 sector_t add;
369 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
370 struct super_block *sb = inode->i_sb;
371 kernel_lb_addr prealloc_loc = {};
372 int prealloc_len = 0;
374 /* The previous extent is fake and we should not extend by anything
375 * - there's nothing to do... */
376 if (!blocks && fake)
377 return 0;
379 /* Round the last extent up to a multiple of block size */
380 if (last_ext->extLength & (sb->s_blocksize - 1)) {
381 last_ext->extLength =
382 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
383 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
384 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
385 UDF_I_LENEXTENTS(inode) =
386 (UDF_I_LENEXTENTS(inode) + sb->s_blocksize - 1) &
387 ~(sb->s_blocksize - 1);
390 /* Last extent are just preallocated blocks? */
391 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == EXT_NOT_RECORDED_ALLOCATED) {
392 /* Save the extent so that we can reattach it to the end */
393 prealloc_loc = last_ext->extLocation;
394 prealloc_len = last_ext->extLength;
395 /* Mark the extent as a hole */
396 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
397 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
398 last_ext->extLocation.logicalBlockNum = 0;
399 last_ext->extLocation.partitionReferenceNum = 0;
402 /* Can we merge with the previous extent? */
403 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == EXT_NOT_RECORDED_NOT_ALLOCATED) {
404 add = ((1 << 30) - sb->s_blocksize - (last_ext->extLength &
405 UDF_EXTENT_LENGTH_MASK)) >> sb->s_blocksize_bits;
406 if (add > blocks)
407 add = blocks;
408 blocks -= add;
409 last_ext->extLength += add << sb->s_blocksize_bits;
412 if (fake) {
413 udf_add_aext(inode, last_pos, last_ext->extLocation,
414 last_ext->extLength, 1);
415 count++;
416 } else {
417 udf_write_aext(inode, last_pos, last_ext->extLocation, last_ext->extLength, 1);
420 /* Managed to do everything necessary? */
421 if (!blocks)
422 goto out;
424 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
425 last_ext->extLocation.logicalBlockNum = 0;
426 last_ext->extLocation.partitionReferenceNum = 0;
427 add = (1 << (30-sb->s_blocksize_bits)) - 1;
428 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | (add << sb->s_blocksize_bits);
430 /* Create enough extents to cover the whole hole */
431 while (blocks > add) {
432 blocks -= add;
433 if (udf_add_aext(inode, last_pos, last_ext->extLocation,
434 last_ext->extLength, 1) == -1)
435 return -1;
436 count++;
438 if (blocks) {
439 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
440 (blocks << sb->s_blocksize_bits);
441 if (udf_add_aext(inode, last_pos, last_ext->extLocation,
442 last_ext->extLength, 1) == -1)
443 return -1;
444 count++;
447 out:
448 /* Do we have some preallocated blocks saved? */
449 if (prealloc_len) {
450 if (udf_add_aext(inode, last_pos, prealloc_loc, prealloc_len, 1) == -1)
451 return -1;
452 last_ext->extLocation = prealloc_loc;
453 last_ext->extLength = prealloc_len;
454 count++;
457 /* last_pos should point to the last written extent... */
458 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
459 last_pos->offset -= sizeof(short_ad);
460 else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
461 last_pos->offset -= sizeof(long_ad);
462 else
463 return -1;
465 return count;
468 static struct buffer_head *inode_getblk(struct inode *inode, sector_t block,
469 int *err, long *phys, int *new)
471 static sector_t last_block;
472 struct buffer_head *result = NULL;
473 kernel_long_ad laarr[EXTENT_MERGE_SIZE];
474 struct extent_position prev_epos, cur_epos, next_epos;
475 int count = 0, startnum = 0, endnum = 0;
476 uint32_t elen = 0, tmpelen;
477 kernel_lb_addr eloc, tmpeloc;
478 int c = 1;
479 loff_t lbcount = 0, b_off = 0;
480 uint32_t newblocknum, newblock;
481 sector_t offset = 0;
482 int8_t etype;
483 int goal = 0, pgoal = UDF_I_LOCATION(inode).logicalBlockNum;
484 int lastblock = 0;
486 prev_epos.offset = udf_file_entry_alloc_offset(inode);
487 prev_epos.block = UDF_I_LOCATION(inode);
488 prev_epos.bh = NULL;
489 cur_epos = next_epos = prev_epos;
490 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
492 /* find the extent which contains the block we are looking for.
493 alternate between laarr[0] and laarr[1] for locations of the
494 current extent, and the previous extent */
495 do {
496 if (prev_epos.bh != cur_epos.bh) {
497 brelse(prev_epos.bh);
498 get_bh(cur_epos.bh);
499 prev_epos.bh = cur_epos.bh;
501 if (cur_epos.bh != next_epos.bh) {
502 brelse(cur_epos.bh);
503 get_bh(next_epos.bh);
504 cur_epos.bh = next_epos.bh;
507 lbcount += elen;
509 prev_epos.block = cur_epos.block;
510 cur_epos.block = next_epos.block;
512 prev_epos.offset = cur_epos.offset;
513 cur_epos.offset = next_epos.offset;
515 if ((etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1)) == -1)
516 break;
518 c = !c;
520 laarr[c].extLength = (etype << 30) | elen;
521 laarr[c].extLocation = eloc;
523 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
524 pgoal = eloc.logicalBlockNum +
525 ((elen + inode->i_sb->s_blocksize - 1) >>
526 inode->i_sb->s_blocksize_bits);
528 count++;
529 } while (lbcount + elen <= b_off);
531 b_off -= lbcount;
532 offset = b_off >> inode->i_sb->s_blocksize_bits;
534 * Move prev_epos and cur_epos into indirect extent if we are at
535 * the pointer to it
537 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
538 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
540 /* if the extent is allocated and recorded, return the block
541 if the extent is not a multiple of the blocksize, round up */
543 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
544 if (elen & (inode->i_sb->s_blocksize - 1)) {
545 elen = EXT_RECORDED_ALLOCATED |
546 ((elen + inode->i_sb->s_blocksize - 1) &
547 ~(inode->i_sb->s_blocksize - 1));
548 etype = udf_write_aext(inode, &cur_epos, eloc, elen, 1);
550 brelse(prev_epos.bh);
551 brelse(cur_epos.bh);
552 brelse(next_epos.bh);
553 newblock = udf_get_lb_pblock(inode->i_sb, eloc, offset);
554 *phys = newblock;
555 return NULL;
558 last_block = block;
559 /* Are we beyond EOF? */
560 if (etype == -1) {
561 int ret;
563 if (count) {
564 if (c)
565 laarr[0] = laarr[1];
566 startnum = 1;
567 } else {
568 /* Create a fake extent when there's not one */
569 memset(&laarr[0].extLocation, 0x00, sizeof(kernel_lb_addr));
570 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
571 /* Will udf_extend_file() create real extent from a fake one? */
572 startnum = (offset > 0);
574 /* Create extents for the hole between EOF and offset */
575 ret = udf_extend_file(inode, &prev_epos, laarr, offset);
576 if (ret == -1) {
577 brelse(prev_epos.bh);
578 brelse(cur_epos.bh);
579 brelse(next_epos.bh);
580 /* We don't really know the error here so we just make
581 * something up */
582 *err = -ENOSPC;
583 return NULL;
585 c = 0;
586 offset = 0;
587 count += ret;
588 /* We are not covered by a preallocated extent? */
589 if ((laarr[0].extLength & UDF_EXTENT_FLAG_MASK) != EXT_NOT_RECORDED_ALLOCATED) {
590 /* Is there any real extent? - otherwise we overwrite
591 * the fake one... */
592 if (count)
593 c = !c;
594 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
595 inode->i_sb->s_blocksize;
596 memset(&laarr[c].extLocation, 0x00, sizeof(kernel_lb_addr));
597 count++;
598 endnum++;
600 endnum = c + 1;
601 lastblock = 1;
602 } else {
603 endnum = startnum = ((count > 2) ? 2 : count);
605 /* if the current extent is in position 0, swap it with the previous */
606 if (!c && count != 1) {
607 laarr[2] = laarr[0];
608 laarr[0] = laarr[1];
609 laarr[1] = laarr[2];
610 c = 1;
613 /* if the current block is located in an extent, read the next extent */
614 if ((etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0)) != -1) {
615 laarr[c + 1].extLength = (etype << 30) | elen;
616 laarr[c + 1].extLocation = eloc;
617 count++;
618 startnum++;
619 endnum++;
620 } else {
621 lastblock = 1;
625 /* if the current extent is not recorded but allocated, get the
626 * block in the extent corresponding to the requested block */
627 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
628 newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
629 } else { /* otherwise, allocate a new block */
630 if (UDF_I_NEXT_ALLOC_BLOCK(inode) == block)
631 goal = UDF_I_NEXT_ALLOC_GOAL(inode);
633 if (!goal) {
634 if (!(goal = pgoal))
635 goal = UDF_I_LOCATION(inode).logicalBlockNum + 1;
638 if (!(newblocknum = udf_new_block(inode->i_sb, inode,
639 UDF_I_LOCATION(inode).partitionReferenceNum,
640 goal, err))) {
641 brelse(prev_epos.bh);
642 *err = -ENOSPC;
643 return NULL;
645 UDF_I_LENEXTENTS(inode) += inode->i_sb->s_blocksize;
648 /* if the extent the requsted block is located in contains multiple blocks,
649 * split the extent into at most three extents. blocks prior to requested
650 * block, requested block, and blocks after requested block */
651 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
653 #ifdef UDF_PREALLOCATE
654 /* preallocate blocks */
655 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
656 #endif
658 /* merge any continuous blocks in laarr */
659 udf_merge_extents(inode, laarr, &endnum);
661 /* write back the new extents, inserting new extents if the new number
662 * of extents is greater than the old number, and deleting extents if
663 * the new number of extents is less than the old number */
664 udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
666 brelse(prev_epos.bh);
668 if (!(newblock = udf_get_pblock(inode->i_sb, newblocknum,
669 UDF_I_LOCATION(inode).partitionReferenceNum, 0))) {
670 return NULL;
672 *phys = newblock;
673 *err = 0;
674 *new = 1;
675 UDF_I_NEXT_ALLOC_BLOCK(inode) = block;
676 UDF_I_NEXT_ALLOC_GOAL(inode) = newblocknum;
677 inode->i_ctime = current_fs_time(inode->i_sb);
679 if (IS_SYNC(inode))
680 udf_sync_inode(inode);
681 else
682 mark_inode_dirty(inode);
684 return result;
687 static void udf_split_extents(struct inode *inode, int *c, int offset,
688 int newblocknum,
689 kernel_long_ad laarr[EXTENT_MERGE_SIZE],
690 int *endnum)
692 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
693 (laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
694 int curr = *c;
695 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
696 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits;
697 int8_t etype = (laarr[curr].extLength >> 30);
699 if (blen == 1) {
701 } else if (!offset || blen == offset + 1) {
702 laarr[curr + 2] = laarr[curr + 1];
703 laarr[curr + 1] = laarr[curr];
704 } else {
705 laarr[curr + 3] = laarr[curr + 1];
706 laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
709 if (offset) {
710 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
711 udf_free_blocks(inode->i_sb, inode, laarr[curr].extLocation, 0, offset);
712 laarr[curr].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
713 (offset << inode->i_sb->s_blocksize_bits);
714 laarr[curr].extLocation.logicalBlockNum = 0;
715 laarr[curr].extLocation.partitionReferenceNum = 0;
716 } else {
717 laarr[curr].extLength = (etype << 30) |
718 (offset << inode->i_sb->s_blocksize_bits);
720 curr++;
721 (*c)++;
722 (*endnum)++;
725 laarr[curr].extLocation.logicalBlockNum = newblocknum;
726 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
727 laarr[curr].extLocation.partitionReferenceNum =
728 UDF_I_LOCATION(inode).partitionReferenceNum;
729 laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
730 inode->i_sb->s_blocksize;
731 curr++;
733 if (blen != offset + 1) {
734 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
735 laarr[curr].extLocation.logicalBlockNum += (offset + 1);
736 laarr[curr].extLength = (etype << 30) |
737 ((blen - (offset + 1)) << inode->i_sb->s_blocksize_bits);
738 curr++;
739 (*endnum)++;
744 static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
745 kernel_long_ad laarr[EXTENT_MERGE_SIZE],
746 int *endnum)
748 int start, length = 0, currlength = 0, i;
750 if (*endnum >= (c + 1)) {
751 if (!lastblock)
752 return;
753 else
754 start = c;
755 } else {
756 if ((laarr[c + 1].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
757 start = c + 1;
758 length = currlength = (((laarr[c + 1].extLength & UDF_EXTENT_LENGTH_MASK) +
759 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
760 } else {
761 start = c;
765 for (i = start + 1; i <= *endnum; i++) {
766 if (i == *endnum) {
767 if (lastblock)
768 length += UDF_DEFAULT_PREALLOC_BLOCKS;
769 } else if ((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
770 length += (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
771 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
772 } else {
773 break;
777 if (length) {
778 int next = laarr[start].extLocation.logicalBlockNum +
779 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
780 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
781 int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
782 laarr[start].extLocation.partitionReferenceNum,
783 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? length :
784 UDF_DEFAULT_PREALLOC_BLOCKS) - currlength);
785 if (numalloc) {
786 if (start == (c + 1)) {
787 laarr[start].extLength +=
788 (numalloc << inode->i_sb->s_blocksize_bits);
789 } else {
790 memmove(&laarr[c + 2], &laarr[c + 1],
791 sizeof(long_ad) * (*endnum - (c + 1)));
792 (*endnum)++;
793 laarr[c + 1].extLocation.logicalBlockNum = next;
794 laarr[c + 1].extLocation.partitionReferenceNum =
795 laarr[c].extLocation.partitionReferenceNum;
796 laarr[c + 1].extLength = EXT_NOT_RECORDED_ALLOCATED |
797 (numalloc << inode->i_sb->s_blocksize_bits);
798 start = c + 1;
801 for (i = start + 1; numalloc && i < *endnum; i++) {
802 int elen = ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
803 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits;
805 if (elen > numalloc) {
806 laarr[i].extLength -=
807 (numalloc << inode->i_sb->s_blocksize_bits);
808 numalloc = 0;
809 } else {
810 numalloc -= elen;
811 if (*endnum > (i + 1))
812 memmove(&laarr[i], &laarr[i + 1],
813 sizeof(long_ad) * (*endnum - (i + 1)));
814 i--;
815 (*endnum)--;
818 UDF_I_LENEXTENTS(inode) += numalloc << inode->i_sb->s_blocksize_bits;
823 static void udf_merge_extents(struct inode *inode,
824 kernel_long_ad laarr[EXTENT_MERGE_SIZE],
825 int *endnum)
827 int i;
829 for (i = 0; i < (*endnum - 1); i++) {
830 if ((laarr[i].extLength >> 30) == (laarr[i + 1].extLength >> 30)) {
831 if (((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
832 ((laarr[i + 1].extLocation.logicalBlockNum - laarr[i].extLocation.logicalBlockNum) ==
833 (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
834 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits))) {
835 if (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
836 (laarr[i + 1].extLength & UDF_EXTENT_LENGTH_MASK) +
837 inode->i_sb->s_blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
838 laarr[i + 1].extLength = (laarr[i + 1].extLength -
839 (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
840 UDF_EXTENT_LENGTH_MASK) & ~(inode->i_sb->s_blocksize - 1);
841 laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_FLAG_MASK) +
842 (UDF_EXTENT_LENGTH_MASK + 1) - inode->i_sb->s_blocksize;
843 laarr[i + 1].extLocation.logicalBlockNum =
844 laarr[i].extLocation.logicalBlockNum +
845 ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) >>
846 inode->i_sb->s_blocksize_bits);
847 } else {
848 laarr[i].extLength = laarr[i + 1].extLength +
849 (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
850 inode->i_sb->s_blocksize - 1) & ~(inode->i_sb->s_blocksize - 1));
851 if (*endnum > (i + 2))
852 memmove(&laarr[i + 1], &laarr[i + 2],
853 sizeof(long_ad) * (*endnum - (i + 2)));
854 i--;
855 (*endnum)--;
858 } else if (((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
859 ((laarr[i + 1].extLength >> 30) == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
860 udf_free_blocks(inode->i_sb, inode, laarr[i].extLocation, 0,
861 ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
862 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
863 laarr[i].extLocation.logicalBlockNum = 0;
864 laarr[i].extLocation.partitionReferenceNum = 0;
866 if (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
867 (laarr[i + 1].extLength & UDF_EXTENT_LENGTH_MASK) +
868 inode->i_sb->s_blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
869 laarr[i + 1].extLength = (laarr[i + 1].extLength -
870 (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
871 UDF_EXTENT_LENGTH_MASK) & ~(inode->i_sb->s_blocksize - 1);
872 laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_FLAG_MASK) +
873 (UDF_EXTENT_LENGTH_MASK + 1) - inode->i_sb->s_blocksize;
874 } else {
875 laarr[i].extLength = laarr[i + 1].extLength +
876 (((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
877 inode->i_sb->s_blocksize - 1) & ~(inode->i_sb->s_blocksize - 1));
878 if (*endnum > (i + 2))
879 memmove(&laarr[i + 1], &laarr[i + 2],
880 sizeof(long_ad) * (*endnum - (i + 2)));
881 i--;
882 (*endnum)--;
884 } else if ((laarr[i].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
885 udf_free_blocks(inode->i_sb, inode, laarr[i].extLocation, 0,
886 ((laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) +
887 inode->i_sb->s_blocksize - 1) >> inode->i_sb->s_blocksize_bits);
888 laarr[i].extLocation.logicalBlockNum = 0;
889 laarr[i].extLocation.partitionReferenceNum = 0;
890 laarr[i].extLength = (laarr[i].extLength & UDF_EXTENT_LENGTH_MASK) |
891 EXT_NOT_RECORDED_NOT_ALLOCATED;
896 static void udf_update_extents(struct inode *inode,
897 kernel_long_ad laarr[EXTENT_MERGE_SIZE],
898 int startnum, int endnum,
899 struct extent_position *epos)
901 int start = 0, i;
902 kernel_lb_addr tmploc;
903 uint32_t tmplen;
905 if (startnum > endnum) {
906 for (i = 0; i < (startnum - endnum); i++)
907 udf_delete_aext(inode, *epos, laarr[i].extLocation,
908 laarr[i].extLength);
909 } else if (startnum < endnum) {
910 for (i = 0; i < (endnum - startnum); i++) {
911 udf_insert_aext(inode, *epos, laarr[i].extLocation,
912 laarr[i].extLength);
913 udf_next_aext(inode, epos, &laarr[i].extLocation,
914 &laarr[i].extLength, 1);
915 start++;
919 for (i = start; i < endnum; i++) {
920 udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
921 udf_write_aext(inode, epos, laarr[i].extLocation,
922 laarr[i].extLength, 1);
926 struct buffer_head *udf_bread(struct inode *inode, int block,
927 int create, int *err)
929 struct buffer_head *bh = NULL;
931 bh = udf_getblk(inode, block, create, err);
932 if (!bh)
933 return NULL;
935 if (buffer_uptodate(bh))
936 return bh;
938 ll_rw_block(READ, 1, &bh);
940 wait_on_buffer(bh);
941 if (buffer_uptodate(bh))
942 return bh;
944 brelse(bh);
945 *err = -EIO;
946 return NULL;
949 void udf_truncate(struct inode *inode)
951 int offset;
952 int err;
954 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
955 S_ISLNK(inode->i_mode)))
956 return;
957 if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
958 return;
960 lock_kernel();
961 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) {
962 if (inode->i_sb->s_blocksize < (udf_file_entry_alloc_offset(inode) +
963 inode->i_size)) {
964 udf_expand_file_adinicb(inode, inode->i_size, &err);
965 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB) {
966 inode->i_size = UDF_I_LENALLOC(inode);
967 unlock_kernel();
968 return;
969 } else {
970 udf_truncate_extents(inode);
972 } else {
973 offset = inode->i_size & (inode->i_sb->s_blocksize - 1);
974 memset(UDF_I_DATA(inode) + UDF_I_LENEATTR(inode) + offset, 0x00,
975 inode->i_sb->s_blocksize - offset - udf_file_entry_alloc_offset(inode));
976 UDF_I_LENALLOC(inode) = inode->i_size;
978 } else {
979 block_truncate_page(inode->i_mapping, inode->i_size, udf_get_block);
980 udf_truncate_extents(inode);
983 inode->i_mtime = inode->i_ctime = current_fs_time(inode->i_sb);
984 if (IS_SYNC(inode))
985 udf_sync_inode(inode);
986 else
987 mark_inode_dirty(inode);
988 unlock_kernel();
991 static void __udf_read_inode(struct inode *inode)
993 struct buffer_head *bh = NULL;
994 struct fileEntry *fe;
995 uint16_t ident;
998 * Set defaults, but the inode is still incomplete!
999 * Note: get_new_inode() sets the following on a new inode:
1000 * i_sb = sb
1001 * i_no = ino
1002 * i_flags = sb->s_flags
1003 * i_state = 0
1004 * clean_inode(): zero fills and sets
1005 * i_count = 1
1006 * i_nlink = 1
1007 * i_op = NULL;
1009 bh = udf_read_ptagged(inode->i_sb, UDF_I_LOCATION(inode), 0, &ident);
1010 if (!bh) {
1011 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed !bh\n",
1012 inode->i_ino);
1013 make_bad_inode(inode);
1014 return;
1017 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1018 ident != TAG_IDENT_USE) {
1019 printk(KERN_ERR "udf: udf_read_inode(ino %ld) failed ident=%d\n",
1020 inode->i_ino, ident);
1021 brelse(bh);
1022 make_bad_inode(inode);
1023 return;
1026 fe = (struct fileEntry *)bh->b_data;
1028 if (le16_to_cpu(fe->icbTag.strategyType) == 4096) {
1029 struct buffer_head *ibh = NULL, *nbh = NULL;
1030 struct indirectEntry *ie;
1032 ibh = udf_read_ptagged(inode->i_sb, UDF_I_LOCATION(inode), 1, &ident);
1033 if (ident == TAG_IDENT_IE) {
1034 if (ibh) {
1035 kernel_lb_addr loc;
1036 ie = (struct indirectEntry *)ibh->b_data;
1038 loc = lelb_to_cpu(ie->indirectICB.extLocation);
1040 if (ie->indirectICB.extLength &&
1041 (nbh = udf_read_ptagged(inode->i_sb, loc, 0, &ident))) {
1042 if (ident == TAG_IDENT_FE ||
1043 ident == TAG_IDENT_EFE) {
1044 memcpy(&UDF_I_LOCATION(inode), &loc,
1045 sizeof(kernel_lb_addr));
1046 brelse(bh);
1047 brelse(ibh);
1048 brelse(nbh);
1049 __udf_read_inode(inode);
1050 return;
1051 } else {
1052 brelse(nbh);
1053 brelse(ibh);
1055 } else {
1056 brelse(ibh);
1059 } else {
1060 brelse(ibh);
1062 } else if (le16_to_cpu(fe->icbTag.strategyType) != 4) {
1063 printk(KERN_ERR "udf: unsupported strategy type: %d\n",
1064 le16_to_cpu(fe->icbTag.strategyType));
1065 brelse(bh);
1066 make_bad_inode(inode);
1067 return;
1069 udf_fill_inode(inode, bh);
1071 brelse(bh);
1074 static void udf_fill_inode(struct inode *inode, struct buffer_head *bh)
1076 struct fileEntry *fe;
1077 struct extendedFileEntry *efe;
1078 time_t convtime;
1079 long convtime_usec;
1080 int offset;
1082 fe = (struct fileEntry *)bh->b_data;
1083 efe = (struct extendedFileEntry *)bh->b_data;
1085 if (le16_to_cpu(fe->icbTag.strategyType) == 4)
1086 UDF_I_STRAT4096(inode) = 0;
1087 else /* if (le16_to_cpu(fe->icbTag.strategyType) == 4096) */
1088 UDF_I_STRAT4096(inode) = 1;
1090 UDF_I_ALLOCTYPE(inode) = le16_to_cpu(fe->icbTag.flags) & ICBTAG_FLAG_AD_MASK;
1091 UDF_I_UNIQUE(inode) = 0;
1092 UDF_I_LENEATTR(inode) = 0;
1093 UDF_I_LENEXTENTS(inode) = 0;
1094 UDF_I_LENALLOC(inode) = 0;
1095 UDF_I_NEXT_ALLOC_BLOCK(inode) = 0;
1096 UDF_I_NEXT_ALLOC_GOAL(inode) = 0;
1097 if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_EFE) {
1098 UDF_I_EFE(inode) = 1;
1099 UDF_I_USE(inode) = 0;
1100 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry))) {
1101 make_bad_inode(inode);
1102 return;
1104 memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct extendedFileEntry),
1105 inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry));
1106 } else if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_FE) {
1107 UDF_I_EFE(inode) = 0;
1108 UDF_I_USE(inode) = 0;
1109 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct fileEntry))) {
1110 make_bad_inode(inode);
1111 return;
1113 memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct fileEntry),
1114 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1115 } else if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_USE) {
1116 UDF_I_EFE(inode) = 0;
1117 UDF_I_USE(inode) = 1;
1118 UDF_I_LENALLOC(inode) =
1119 le32_to_cpu(((struct unallocSpaceEntry *)bh->b_data)->lengthAllocDescs);
1120 if (udf_alloc_i_data(inode, inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry))) {
1121 make_bad_inode(inode);
1122 return;
1124 memcpy(UDF_I_DATA(inode), bh->b_data + sizeof(struct unallocSpaceEntry),
1125 inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry));
1126 return;
1129 inode->i_uid = le32_to_cpu(fe->uid);
1130 if (inode->i_uid == -1 || UDF_QUERY_FLAG(inode->i_sb,
1131 UDF_FLAG_UID_IGNORE))
1132 inode->i_uid = UDF_SB(inode->i_sb)->s_uid;
1134 inode->i_gid = le32_to_cpu(fe->gid);
1135 if (inode->i_gid == -1 || UDF_QUERY_FLAG(inode->i_sb,
1136 UDF_FLAG_GID_IGNORE))
1137 inode->i_gid = UDF_SB(inode->i_sb)->s_gid;
1139 inode->i_nlink = le16_to_cpu(fe->fileLinkCount);
1140 if (!inode->i_nlink)
1141 inode->i_nlink = 1;
1143 inode->i_size = le64_to_cpu(fe->informationLength);
1144 UDF_I_LENEXTENTS(inode) = inode->i_size;
1146 inode->i_mode = udf_convert_permissions(fe);
1147 inode->i_mode &= ~UDF_SB(inode->i_sb)->s_umask;
1149 if (UDF_I_EFE(inode) == 0) {
1150 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1151 (inode->i_sb->s_blocksize_bits - 9);
1153 if (udf_stamp_to_time(&convtime, &convtime_usec,
1154 lets_to_cpu(fe->accessTime))) {
1155 inode->i_atime.tv_sec = convtime;
1156 inode->i_atime.tv_nsec = convtime_usec * 1000;
1157 } else {
1158 inode->i_atime = UDF_SB_RECORDTIME(inode->i_sb);
1161 if (udf_stamp_to_time(&convtime, &convtime_usec,
1162 lets_to_cpu(fe->modificationTime))) {
1163 inode->i_mtime.tv_sec = convtime;
1164 inode->i_mtime.tv_nsec = convtime_usec * 1000;
1165 } else {
1166 inode->i_mtime = UDF_SB_RECORDTIME(inode->i_sb);
1169 if (udf_stamp_to_time(&convtime, &convtime_usec,
1170 lets_to_cpu(fe->attrTime))) {
1171 inode->i_ctime.tv_sec = convtime;
1172 inode->i_ctime.tv_nsec = convtime_usec * 1000;
1173 } else {
1174 inode->i_ctime = UDF_SB_RECORDTIME(inode->i_sb);
1177 UDF_I_UNIQUE(inode) = le64_to_cpu(fe->uniqueID);
1178 UDF_I_LENEATTR(inode) = le32_to_cpu(fe->lengthExtendedAttr);
1179 UDF_I_LENALLOC(inode) = le32_to_cpu(fe->lengthAllocDescs);
1180 offset = sizeof(struct fileEntry) + UDF_I_LENEATTR(inode);
1181 } else {
1182 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1183 (inode->i_sb->s_blocksize_bits - 9);
1185 if (udf_stamp_to_time(&convtime, &convtime_usec,
1186 lets_to_cpu(efe->accessTime))) {
1187 inode->i_atime.tv_sec = convtime;
1188 inode->i_atime.tv_nsec = convtime_usec * 1000;
1189 } else {
1190 inode->i_atime = UDF_SB_RECORDTIME(inode->i_sb);
1193 if (udf_stamp_to_time(&convtime, &convtime_usec,
1194 lets_to_cpu(efe->modificationTime))) {
1195 inode->i_mtime.tv_sec = convtime;
1196 inode->i_mtime.tv_nsec = convtime_usec * 1000;
1197 } else {
1198 inode->i_mtime = UDF_SB_RECORDTIME(inode->i_sb);
1201 if (udf_stamp_to_time(&convtime, &convtime_usec,
1202 lets_to_cpu(efe->createTime))) {
1203 UDF_I_CRTIME(inode).tv_sec = convtime;
1204 UDF_I_CRTIME(inode).tv_nsec = convtime_usec * 1000;
1205 } else {
1206 UDF_I_CRTIME(inode) = UDF_SB_RECORDTIME(inode->i_sb);
1209 if (udf_stamp_to_time(&convtime, &convtime_usec,
1210 lets_to_cpu(efe->attrTime))) {
1211 inode->i_ctime.tv_sec = convtime;
1212 inode->i_ctime.tv_nsec = convtime_usec * 1000;
1213 } else {
1214 inode->i_ctime = UDF_SB_RECORDTIME(inode->i_sb);
1217 UDF_I_UNIQUE(inode) = le64_to_cpu(efe->uniqueID);
1218 UDF_I_LENEATTR(inode) = le32_to_cpu(efe->lengthExtendedAttr);
1219 UDF_I_LENALLOC(inode) = le32_to_cpu(efe->lengthAllocDescs);
1220 offset = sizeof(struct extendedFileEntry) + UDF_I_LENEATTR(inode);
1223 switch (fe->icbTag.fileType) {
1224 case ICBTAG_FILE_TYPE_DIRECTORY:
1225 inode->i_op = &udf_dir_inode_operations;
1226 inode->i_fop = &udf_dir_operations;
1227 inode->i_mode |= S_IFDIR;
1228 inc_nlink(inode);
1229 break;
1230 case ICBTAG_FILE_TYPE_REALTIME:
1231 case ICBTAG_FILE_TYPE_REGULAR:
1232 case ICBTAG_FILE_TYPE_UNDEF:
1233 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_IN_ICB)
1234 inode->i_data.a_ops = &udf_adinicb_aops;
1235 else
1236 inode->i_data.a_ops = &udf_aops;
1237 inode->i_op = &udf_file_inode_operations;
1238 inode->i_fop = &udf_file_operations;
1239 inode->i_mode |= S_IFREG;
1240 break;
1241 case ICBTAG_FILE_TYPE_BLOCK:
1242 inode->i_mode |= S_IFBLK;
1243 break;
1244 case ICBTAG_FILE_TYPE_CHAR:
1245 inode->i_mode |= S_IFCHR;
1246 break;
1247 case ICBTAG_FILE_TYPE_FIFO:
1248 init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1249 break;
1250 case ICBTAG_FILE_TYPE_SOCKET:
1251 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1252 break;
1253 case ICBTAG_FILE_TYPE_SYMLINK:
1254 inode->i_data.a_ops = &udf_symlink_aops;
1255 inode->i_op = &page_symlink_inode_operations;
1256 inode->i_mode = S_IFLNK | S_IRWXUGO;
1257 break;
1258 default:
1259 printk(KERN_ERR "udf: udf_fill_inode(ino %ld) failed unknown file type=%d\n",
1260 inode->i_ino, fe->icbTag.fileType);
1261 make_bad_inode(inode);
1262 return;
1264 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1265 struct deviceSpec *dsea = (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1266 if (dsea) {
1267 init_special_inode(inode, inode->i_mode,
1268 MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1269 le32_to_cpu(dsea->minorDeviceIdent)));
1270 /* Developer ID ??? */
1271 } else {
1272 make_bad_inode(inode);
1277 static int udf_alloc_i_data(struct inode *inode, size_t size)
1279 UDF_I_DATA(inode) = kmalloc(size, GFP_KERNEL);
1281 if (!UDF_I_DATA(inode)) {
1282 printk(KERN_ERR "udf:udf_alloc_i_data (ino %ld) no free memory\n",
1283 inode->i_ino);
1284 return -ENOMEM;
1287 return 0;
1290 static mode_t udf_convert_permissions(struct fileEntry *fe)
1292 mode_t mode;
1293 uint32_t permissions;
1294 uint32_t flags;
1296 permissions = le32_to_cpu(fe->permissions);
1297 flags = le16_to_cpu(fe->icbTag.flags);
1299 mode = (( permissions ) & S_IRWXO) |
1300 (( permissions >> 2 ) & S_IRWXG) |
1301 (( permissions >> 4 ) & S_IRWXU) |
1302 (( flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1303 (( flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1304 (( flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1306 return mode;
1310 * udf_write_inode
1312 * PURPOSE
1313 * Write out the specified inode.
1315 * DESCRIPTION
1316 * This routine is called whenever an inode is synced.
1317 * Currently this routine is just a placeholder.
1319 * HISTORY
1320 * July 1, 1997 - Andrew E. Mileski
1321 * Written, tested, and released.
1324 int udf_write_inode(struct inode *inode, int sync)
1326 int ret;
1328 lock_kernel();
1329 ret = udf_update_inode(inode, sync);
1330 unlock_kernel();
1332 return ret;
1335 int udf_sync_inode(struct inode *inode)
1337 return udf_update_inode(inode, 1);
1340 static int udf_update_inode(struct inode *inode, int do_sync)
1342 struct buffer_head *bh = NULL;
1343 struct fileEntry *fe;
1344 struct extendedFileEntry *efe;
1345 uint32_t udfperms;
1346 uint16_t icbflags;
1347 uint16_t crclen;
1348 int i;
1349 kernel_timestamp cpu_time;
1350 int err = 0;
1352 bh = udf_tread(inode->i_sb, udf_get_lb_pblock(inode->i_sb, UDF_I_LOCATION(inode), 0));
1353 if (!bh) {
1354 udf_debug("bread failure\n");
1355 return -EIO;
1358 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
1360 fe = (struct fileEntry *)bh->b_data;
1361 efe = (struct extendedFileEntry *)bh->b_data;
1363 if (le16_to_cpu(fe->descTag.tagIdent) == TAG_IDENT_USE) {
1364 struct unallocSpaceEntry *use =
1365 (struct unallocSpaceEntry *)bh->b_data;
1367 use->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
1368 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), UDF_I_DATA(inode),
1369 inode->i_sb->s_blocksize - sizeof(struct unallocSpaceEntry));
1370 crclen = sizeof(struct unallocSpaceEntry) + UDF_I_LENALLOC(inode) - sizeof(tag);
1371 use->descTag.tagLocation = cpu_to_le32(UDF_I_LOCATION(inode).logicalBlockNum);
1372 use->descTag.descCRCLength = cpu_to_le16(crclen);
1373 use->descTag.descCRC = cpu_to_le16(udf_crc((char *)use + sizeof(tag), crclen, 0));
1375 use->descTag.tagChecksum = 0;
1376 for (i = 0; i < 16; i++) {
1377 if (i != 4)
1378 use->descTag.tagChecksum += ((uint8_t *)&(use->descTag))[i];
1381 mark_buffer_dirty(bh);
1382 brelse(bh);
1383 return err;
1386 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1387 fe->uid = cpu_to_le32(-1);
1388 else
1389 fe->uid = cpu_to_le32(inode->i_uid);
1391 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1392 fe->gid = cpu_to_le32(-1);
1393 else
1394 fe->gid = cpu_to_le32(inode->i_gid);
1396 udfperms = ((inode->i_mode & S_IRWXO) ) |
1397 ((inode->i_mode & S_IRWXG) << 2) |
1398 ((inode->i_mode & S_IRWXU) << 4);
1400 udfperms |= (le32_to_cpu(fe->permissions) &
1401 (FE_PERM_O_DELETE | FE_PERM_O_CHATTR |
1402 FE_PERM_G_DELETE | FE_PERM_G_CHATTR |
1403 FE_PERM_U_DELETE | FE_PERM_U_CHATTR));
1404 fe->permissions = cpu_to_le32(udfperms);
1406 if (S_ISDIR(inode->i_mode))
1407 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1408 else
1409 fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1411 fe->informationLength = cpu_to_le64(inode->i_size);
1413 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1414 regid *eid;
1415 struct deviceSpec *dsea =
1416 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1417 if (!dsea) {
1418 dsea = (struct deviceSpec *)
1419 udf_add_extendedattr(inode,
1420 sizeof(struct deviceSpec) +
1421 sizeof(regid), 12, 0x3);
1422 dsea->attrType = cpu_to_le32(12);
1423 dsea->attrSubtype = 1;
1424 dsea->attrLength = cpu_to_le32(sizeof(struct deviceSpec) +
1425 sizeof(regid));
1426 dsea->impUseLength = cpu_to_le32(sizeof(regid));
1428 eid = (regid *)dsea->impUse;
1429 memset(eid, 0, sizeof(regid));
1430 strcpy(eid->ident, UDF_ID_DEVELOPER);
1431 eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1432 eid->identSuffix[1] = UDF_OS_ID_LINUX;
1433 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1434 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1437 if (UDF_I_EFE(inode) == 0) {
1438 memcpy(bh->b_data + sizeof(struct fileEntry), UDF_I_DATA(inode),
1439 inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1440 fe->logicalBlocksRecorded = cpu_to_le64(
1441 (inode->i_blocks + (1 << (inode->i_sb->s_blocksize_bits - 9)) - 1) >>
1442 (inode->i_sb->s_blocksize_bits - 9));
1444 if (udf_time_to_stamp(&cpu_time, inode->i_atime))
1445 fe->accessTime = cpu_to_lets(cpu_time);
1446 if (udf_time_to_stamp(&cpu_time, inode->i_mtime))
1447 fe->modificationTime = cpu_to_lets(cpu_time);
1448 if (udf_time_to_stamp(&cpu_time, inode->i_ctime))
1449 fe->attrTime = cpu_to_lets(cpu_time);
1450 memset(&(fe->impIdent), 0, sizeof(regid));
1451 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1452 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1453 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1454 fe->uniqueID = cpu_to_le64(UDF_I_UNIQUE(inode));
1455 fe->lengthExtendedAttr = cpu_to_le32(UDF_I_LENEATTR(inode));
1456 fe->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
1457 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1458 crclen = sizeof(struct fileEntry);
1459 } else {
1460 memcpy(bh->b_data + sizeof(struct extendedFileEntry), UDF_I_DATA(inode),
1461 inode->i_sb->s_blocksize - sizeof(struct extendedFileEntry));
1462 efe->objectSize = cpu_to_le64(inode->i_size);
1463 efe->logicalBlocksRecorded = cpu_to_le64(
1464 (inode->i_blocks + (1 << (inode->i_sb->s_blocksize_bits - 9)) - 1) >>
1465 (inode->i_sb->s_blocksize_bits - 9));
1467 if (UDF_I_CRTIME(inode).tv_sec > inode->i_atime.tv_sec ||
1468 (UDF_I_CRTIME(inode).tv_sec == inode->i_atime.tv_sec &&
1469 UDF_I_CRTIME(inode).tv_nsec > inode->i_atime.tv_nsec)) {
1470 UDF_I_CRTIME(inode) = inode->i_atime;
1472 if (UDF_I_CRTIME(inode).tv_sec > inode->i_mtime.tv_sec ||
1473 (UDF_I_CRTIME(inode).tv_sec == inode->i_mtime.tv_sec &&
1474 UDF_I_CRTIME(inode).tv_nsec > inode->i_mtime.tv_nsec)) {
1475 UDF_I_CRTIME(inode) = inode->i_mtime;
1477 if (UDF_I_CRTIME(inode).tv_sec > inode->i_ctime.tv_sec ||
1478 (UDF_I_CRTIME(inode).tv_sec == inode->i_ctime.tv_sec &&
1479 UDF_I_CRTIME(inode).tv_nsec > inode->i_ctime.tv_nsec)) {
1480 UDF_I_CRTIME(inode) = inode->i_ctime;
1483 if (udf_time_to_stamp(&cpu_time, inode->i_atime))
1484 efe->accessTime = cpu_to_lets(cpu_time);
1485 if (udf_time_to_stamp(&cpu_time, inode->i_mtime))
1486 efe->modificationTime = cpu_to_lets(cpu_time);
1487 if (udf_time_to_stamp(&cpu_time, UDF_I_CRTIME(inode)))
1488 efe->createTime = cpu_to_lets(cpu_time);
1489 if (udf_time_to_stamp(&cpu_time, inode->i_ctime))
1490 efe->attrTime = cpu_to_lets(cpu_time);
1492 memset(&(efe->impIdent), 0, sizeof(regid));
1493 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1494 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1495 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1496 efe->uniqueID = cpu_to_le64(UDF_I_UNIQUE(inode));
1497 efe->lengthExtendedAttr = cpu_to_le32(UDF_I_LENEATTR(inode));
1498 efe->lengthAllocDescs = cpu_to_le32(UDF_I_LENALLOC(inode));
1499 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1500 crclen = sizeof(struct extendedFileEntry);
1502 if (UDF_I_STRAT4096(inode)) {
1503 fe->icbTag.strategyType = cpu_to_le16(4096);
1504 fe->icbTag.strategyParameter = cpu_to_le16(1);
1505 fe->icbTag.numEntries = cpu_to_le16(2);
1506 } else {
1507 fe->icbTag.strategyType = cpu_to_le16(4);
1508 fe->icbTag.numEntries = cpu_to_le16(1);
1511 if (S_ISDIR(inode->i_mode))
1512 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1513 else if (S_ISREG(inode->i_mode))
1514 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1515 else if (S_ISLNK(inode->i_mode))
1516 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1517 else if (S_ISBLK(inode->i_mode))
1518 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1519 else if (S_ISCHR(inode->i_mode))
1520 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1521 else if (S_ISFIFO(inode->i_mode))
1522 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1523 else if (S_ISSOCK(inode->i_mode))
1524 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1526 icbflags = UDF_I_ALLOCTYPE(inode) |
1527 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1528 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1529 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1530 (le16_to_cpu(fe->icbTag.flags) &
1531 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1532 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1534 fe->icbTag.flags = cpu_to_le16(icbflags);
1535 if (UDF_SB_UDFREV(inode->i_sb) >= 0x0200)
1536 fe->descTag.descVersion = cpu_to_le16(3);
1537 else
1538 fe->descTag.descVersion = cpu_to_le16(2);
1539 fe->descTag.tagSerialNum = cpu_to_le16(UDF_SB_SERIALNUM(inode->i_sb));
1540 fe->descTag.tagLocation = cpu_to_le32(UDF_I_LOCATION(inode).logicalBlockNum);
1541 crclen += UDF_I_LENEATTR(inode) + UDF_I_LENALLOC(inode) - sizeof(tag);
1542 fe->descTag.descCRCLength = cpu_to_le16(crclen);
1543 fe->descTag.descCRC = cpu_to_le16(udf_crc((char *)fe + sizeof(tag), crclen, 0));
1545 fe->descTag.tagChecksum = 0;
1546 for (i = 0; i < 16; i++) {
1547 if (i != 4)
1548 fe->descTag.tagChecksum += ((uint8_t *)&(fe->descTag))[i];
1551 /* write the data blocks */
1552 mark_buffer_dirty(bh);
1553 if (do_sync) {
1554 sync_dirty_buffer(bh);
1555 if (buffer_req(bh) && !buffer_uptodate(bh)) {
1556 printk("IO error syncing udf inode [%s:%08lx]\n",
1557 inode->i_sb->s_id, inode->i_ino);
1558 err = -EIO;
1561 brelse(bh);
1563 return err;
1566 struct inode *udf_iget(struct super_block *sb, kernel_lb_addr ino)
1568 unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1569 struct inode *inode = iget_locked(sb, block);
1571 if (!inode)
1572 return NULL;
1574 if (inode->i_state & I_NEW) {
1575 memcpy(&UDF_I_LOCATION(inode), &ino, sizeof(kernel_lb_addr));
1576 __udf_read_inode(inode);
1577 unlock_new_inode(inode);
1580 if (is_bad_inode(inode))
1581 goto out_iput;
1583 if (ino.logicalBlockNum >= UDF_SB_PARTLEN(sb, ino.partitionReferenceNum)) {
1584 udf_debug("block=%d, partition=%d out of range\n",
1585 ino.logicalBlockNum, ino.partitionReferenceNum);
1586 make_bad_inode(inode);
1587 goto out_iput;
1590 return inode;
1592 out_iput:
1593 iput(inode);
1594 return NULL;
1597 int8_t udf_add_aext(struct inode * inode, struct extent_position * epos,
1598 kernel_lb_addr eloc, uint32_t elen, int inc)
1600 int adsize;
1601 short_ad *sad = NULL;
1602 long_ad *lad = NULL;
1603 struct allocExtDesc *aed;
1604 int8_t etype;
1605 uint8_t *ptr;
1607 if (!epos->bh)
1608 ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode);
1609 else
1610 ptr = epos->bh->b_data + epos->offset;
1612 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
1613 adsize = sizeof(short_ad);
1614 else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
1615 adsize = sizeof(long_ad);
1616 else
1617 return -1;
1619 if (epos->offset + (2 * adsize) > inode->i_sb->s_blocksize) {
1620 char *sptr, *dptr;
1621 struct buffer_head *nbh;
1622 int err, loffset;
1623 kernel_lb_addr obloc = epos->block;
1625 if (!(epos->block.logicalBlockNum = udf_new_block(inode->i_sb, NULL,
1626 obloc.partitionReferenceNum,
1627 obloc.logicalBlockNum, &err))) {
1628 return -1;
1630 if (!(nbh = udf_tgetblk(inode->i_sb, udf_get_lb_pblock(inode->i_sb,
1631 epos->block, 0)))) {
1632 return -1;
1634 lock_buffer(nbh);
1635 memset(nbh->b_data, 0x00, inode->i_sb->s_blocksize);
1636 set_buffer_uptodate(nbh);
1637 unlock_buffer(nbh);
1638 mark_buffer_dirty_inode(nbh, inode);
1640 aed = (struct allocExtDesc *)(nbh->b_data);
1641 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT))
1642 aed->previousAllocExtLocation = cpu_to_le32(obloc.logicalBlockNum);
1643 if (epos->offset + adsize > inode->i_sb->s_blocksize) {
1644 loffset = epos->offset;
1645 aed->lengthAllocDescs = cpu_to_le32(adsize);
1646 sptr = ptr - adsize;
1647 dptr = nbh->b_data + sizeof(struct allocExtDesc);
1648 memcpy(dptr, sptr, adsize);
1649 epos->offset = sizeof(struct allocExtDesc) + adsize;
1650 } else {
1651 loffset = epos->offset + adsize;
1652 aed->lengthAllocDescs = cpu_to_le32(0);
1653 sptr = ptr;
1654 epos->offset = sizeof(struct allocExtDesc);
1656 if (epos->bh) {
1657 aed = (struct allocExtDesc *)epos->bh->b_data;
1658 aed->lengthAllocDescs =
1659 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
1660 } else {
1661 UDF_I_LENALLOC(inode) += adsize;
1662 mark_inode_dirty(inode);
1665 if (UDF_SB_UDFREV(inode->i_sb) >= 0x0200)
1666 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 3, 1,
1667 epos->block.logicalBlockNum, sizeof(tag));
1668 else
1669 udf_new_tag(nbh->b_data, TAG_IDENT_AED, 2, 1,
1670 epos->block.logicalBlockNum, sizeof(tag));
1671 switch (UDF_I_ALLOCTYPE(inode)) {
1672 case ICBTAG_FLAG_AD_SHORT:
1673 sad = (short_ad *)sptr;
1674 sad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1675 inode->i_sb->s_blocksize);
1676 sad->extPosition = cpu_to_le32(epos->block.logicalBlockNum);
1677 break;
1678 case ICBTAG_FLAG_AD_LONG:
1679 lad = (long_ad *)sptr;
1680 lad->extLength = cpu_to_le32(EXT_NEXT_EXTENT_ALLOCDECS |
1681 inode->i_sb->s_blocksize);
1682 lad->extLocation = cpu_to_lelb(epos->block);
1683 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1684 break;
1686 if (epos->bh) {
1687 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1688 UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
1689 udf_update_tag(epos->bh->b_data, loffset);
1690 else
1691 udf_update_tag(epos->bh->b_data, sizeof(struct allocExtDesc));
1692 mark_buffer_dirty_inode(epos->bh, inode);
1693 brelse(epos->bh);
1694 } else {
1695 mark_inode_dirty(inode);
1697 epos->bh = nbh;
1700 etype = udf_write_aext(inode, epos, eloc, elen, inc);
1702 if (!epos->bh) {
1703 UDF_I_LENALLOC(inode) += adsize;
1704 mark_inode_dirty(inode);
1705 } else {
1706 aed = (struct allocExtDesc *)epos->bh->b_data;
1707 aed->lengthAllocDescs =
1708 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) + adsize);
1709 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
1710 udf_update_tag(epos->bh->b_data, epos->offset + (inc ? 0 : adsize));
1711 else
1712 udf_update_tag(epos->bh->b_data, sizeof(struct allocExtDesc));
1713 mark_buffer_dirty_inode(epos->bh, inode);
1716 return etype;
1719 int8_t udf_write_aext(struct inode * inode, struct extent_position * epos,
1720 kernel_lb_addr eloc, uint32_t elen, int inc)
1722 int adsize;
1723 uint8_t *ptr;
1724 short_ad *sad;
1725 long_ad *lad;
1727 if (!epos->bh)
1728 ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode);
1729 else
1730 ptr = epos->bh->b_data + epos->offset;
1732 switch (UDF_I_ALLOCTYPE(inode)) {
1733 case ICBTAG_FLAG_AD_SHORT:
1734 sad = (short_ad *)ptr;
1735 sad->extLength = cpu_to_le32(elen);
1736 sad->extPosition = cpu_to_le32(eloc.logicalBlockNum);
1737 adsize = sizeof(short_ad);
1738 break;
1739 case ICBTAG_FLAG_AD_LONG:
1740 lad = (long_ad *)ptr;
1741 lad->extLength = cpu_to_le32(elen);
1742 lad->extLocation = cpu_to_lelb(eloc);
1743 memset(lad->impUse, 0x00, sizeof(lad->impUse));
1744 adsize = sizeof(long_ad);
1745 break;
1746 default:
1747 return -1;
1750 if (epos->bh) {
1751 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1752 UDF_SB_UDFREV(inode->i_sb) >= 0x0201) {
1753 struct allocExtDesc *aed = (struct allocExtDesc *)epos->bh->b_data;
1754 udf_update_tag(epos->bh->b_data,
1755 le32_to_cpu(aed->lengthAllocDescs) + sizeof(struct allocExtDesc));
1757 mark_buffer_dirty_inode(epos->bh, inode);
1758 } else {
1759 mark_inode_dirty(inode);
1762 if (inc)
1763 epos->offset += adsize;
1765 return (elen >> 30);
1768 int8_t udf_next_aext(struct inode * inode, struct extent_position * epos,
1769 kernel_lb_addr * eloc, uint32_t * elen, int inc)
1771 int8_t etype;
1773 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
1774 (EXT_NEXT_EXTENT_ALLOCDECS >> 30)) {
1775 epos->block = *eloc;
1776 epos->offset = sizeof(struct allocExtDesc);
1777 brelse(epos->bh);
1778 if (!(epos->bh = udf_tread(inode->i_sb, udf_get_lb_pblock(inode->i_sb, epos->block, 0)))) {
1779 udf_debug("reading block %d failed!\n",
1780 udf_get_lb_pblock(inode->i_sb, epos->block, 0));
1781 return -1;
1785 return etype;
1788 int8_t udf_current_aext(struct inode * inode, struct extent_position * epos,
1789 kernel_lb_addr * eloc, uint32_t * elen, int inc)
1791 int alen;
1792 int8_t etype;
1793 uint8_t *ptr;
1794 short_ad *sad;
1795 long_ad *lad;
1798 if (!epos->bh) {
1799 if (!epos->offset)
1800 epos->offset = udf_file_entry_alloc_offset(inode);
1801 ptr = UDF_I_DATA(inode) + epos->offset - udf_file_entry_alloc_offset(inode) + UDF_I_LENEATTR(inode);
1802 alen = udf_file_entry_alloc_offset(inode) + UDF_I_LENALLOC(inode);
1803 } else {
1804 if (!epos->offset)
1805 epos->offset = sizeof(struct allocExtDesc);
1806 ptr = epos->bh->b_data + epos->offset;
1807 alen = sizeof(struct allocExtDesc) +
1808 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->lengthAllocDescs);
1811 switch (UDF_I_ALLOCTYPE(inode)) {
1812 case ICBTAG_FLAG_AD_SHORT:
1813 if (!(sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc)))
1814 return -1;
1815 etype = le32_to_cpu(sad->extLength) >> 30;
1816 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
1817 eloc->partitionReferenceNum = UDF_I_LOCATION(inode).partitionReferenceNum;
1818 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
1819 break;
1820 case ICBTAG_FLAG_AD_LONG:
1821 if (!(lad = udf_get_filelongad(ptr, alen, &epos->offset, inc)))
1822 return -1;
1823 etype = le32_to_cpu(lad->extLength) >> 30;
1824 *eloc = lelb_to_cpu(lad->extLocation);
1825 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
1826 break;
1827 default:
1828 udf_debug("alloc_type = %d unsupported\n", UDF_I_ALLOCTYPE(inode));
1829 return -1;
1832 return etype;
1835 static int8_t udf_insert_aext(struct inode *inode, struct extent_position epos,
1836 kernel_lb_addr neloc, uint32_t nelen)
1838 kernel_lb_addr oeloc;
1839 uint32_t oelen;
1840 int8_t etype;
1842 if (epos.bh)
1843 get_bh(epos.bh);
1845 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
1846 udf_write_aext(inode, &epos, neloc, nelen, 1);
1847 neloc = oeloc;
1848 nelen = (etype << 30) | oelen;
1850 udf_add_aext(inode, &epos, neloc, nelen, 1);
1851 brelse(epos.bh);
1853 return (nelen >> 30);
1856 int8_t udf_delete_aext(struct inode * inode, struct extent_position epos,
1857 kernel_lb_addr eloc, uint32_t elen)
1859 struct extent_position oepos;
1860 int adsize;
1861 int8_t etype;
1862 struct allocExtDesc *aed;
1864 if (epos.bh) {
1865 get_bh(epos.bh);
1866 get_bh(epos.bh);
1869 if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_SHORT)
1870 adsize = sizeof(short_ad);
1871 else if (UDF_I_ALLOCTYPE(inode) == ICBTAG_FLAG_AD_LONG)
1872 adsize = sizeof(long_ad);
1873 else
1874 adsize = 0;
1876 oepos = epos;
1877 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
1878 return -1;
1880 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
1881 udf_write_aext(inode, &oepos, eloc, (etype << 30) | elen, 1);
1882 if (oepos.bh != epos.bh) {
1883 oepos.block = epos.block;
1884 brelse(oepos.bh);
1885 get_bh(epos.bh);
1886 oepos.bh = epos.bh;
1887 oepos.offset = epos.offset - adsize;
1890 memset(&eloc, 0x00, sizeof(kernel_lb_addr));
1891 elen = 0;
1893 if (epos.bh != oepos.bh) {
1894 udf_free_blocks(inode->i_sb, inode, epos.block, 0, 1);
1895 udf_write_aext(inode, &oepos, eloc, elen, 1);
1896 udf_write_aext(inode, &oepos, eloc, elen, 1);
1897 if (!oepos.bh) {
1898 UDF_I_LENALLOC(inode) -= (adsize * 2);
1899 mark_inode_dirty(inode);
1900 } else {
1901 aed = (struct allocExtDesc *)oepos.bh->b_data;
1902 aed->lengthAllocDescs =
1903 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) - (2 * adsize));
1904 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1905 UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
1906 udf_update_tag(oepos.bh->b_data, oepos.offset - (2 * adsize));
1907 else
1908 udf_update_tag(oepos.bh->b_data, sizeof(struct allocExtDesc));
1909 mark_buffer_dirty_inode(oepos.bh, inode);
1911 } else {
1912 udf_write_aext(inode, &oepos, eloc, elen, 1);
1913 if (!oepos.bh) {
1914 UDF_I_LENALLOC(inode) -= adsize;
1915 mark_inode_dirty(inode);
1916 } else {
1917 aed = (struct allocExtDesc *)oepos.bh->b_data;
1918 aed->lengthAllocDescs =
1919 cpu_to_le32(le32_to_cpu(aed->lengthAllocDescs) - adsize);
1920 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
1921 UDF_SB_UDFREV(inode->i_sb) >= 0x0201)
1922 udf_update_tag(oepos.bh->b_data, epos.offset - adsize);
1923 else
1924 udf_update_tag(oepos.bh->b_data, sizeof(struct allocExtDesc));
1925 mark_buffer_dirty_inode(oepos.bh, inode);
1929 brelse(epos.bh);
1930 brelse(oepos.bh);
1932 return (elen >> 30);
1935 int8_t inode_bmap(struct inode * inode, sector_t block,
1936 struct extent_position * pos, kernel_lb_addr * eloc,
1937 uint32_t * elen, sector_t * offset)
1939 loff_t lbcount = 0, bcount =
1940 (loff_t) block << inode->i_sb->s_blocksize_bits;
1941 int8_t etype;
1943 if (block < 0) {
1944 printk(KERN_ERR "udf: inode_bmap: block < 0\n");
1945 return -1;
1948 pos->offset = 0;
1949 pos->block = UDF_I_LOCATION(inode);
1950 pos->bh = NULL;
1951 *elen = 0;
1953 do {
1954 if ((etype = udf_next_aext(inode, pos, eloc, elen, 1)) == -1) {
1955 *offset = (bcount - lbcount) >> inode->i_sb->s_blocksize_bits;
1956 UDF_I_LENEXTENTS(inode) = lbcount;
1957 return -1;
1959 lbcount += *elen;
1960 } while (lbcount <= bcount);
1962 *offset = (bcount + *elen - lbcount) >> inode->i_sb->s_blocksize_bits;
1964 return etype;
1967 long udf_block_map(struct inode *inode, sector_t block)
1969 kernel_lb_addr eloc;
1970 uint32_t elen;
1971 sector_t offset;
1972 struct extent_position epos = {};
1973 int ret;
1975 lock_kernel();
1977 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == (EXT_RECORDED_ALLOCATED >> 30))
1978 ret = udf_get_lb_pblock(inode->i_sb, eloc, offset);
1979 else
1980 ret = 0;
1982 unlock_kernel();
1983 brelse(epos.bh);
1985 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
1986 return udf_fixed_to_variable(ret);
1987 else
1988 return ret;