2 * Implement CPU time clocks for the POSIX clock interface.
5 #include <linux/sched.h>
6 #include <linux/posix-timers.h>
7 #include <linux/errno.h>
8 #include <linux/math64.h>
9 #include <asm/uaccess.h>
10 #include <linux/kernel_stat.h>
13 * Called after updating RLIMIT_CPU to set timer expiration if necessary.
15 void update_rlimit_cpu(unsigned long rlim_new
)
19 cputime
= secs_to_cputime(rlim_new
);
20 if (cputime_eq(current
->signal
->it_prof_expires
, cputime_zero
) ||
21 cputime_lt(current
->signal
->it_prof_expires
, cputime
)) {
22 spin_lock_irq(¤t
->sighand
->siglock
);
23 set_process_cpu_timer(current
, CPUCLOCK_PROF
, &cputime
, NULL
);
24 spin_unlock_irq(¤t
->sighand
->siglock
);
28 static int check_clock(const clockid_t which_clock
)
31 struct task_struct
*p
;
32 const pid_t pid
= CPUCLOCK_PID(which_clock
);
34 if (CPUCLOCK_WHICH(which_clock
) >= CPUCLOCK_MAX
)
40 read_lock(&tasklist_lock
);
41 p
= find_task_by_vpid(pid
);
42 if (!p
|| !(CPUCLOCK_PERTHREAD(which_clock
) ?
43 same_thread_group(p
, current
) : thread_group_leader(p
))) {
46 read_unlock(&tasklist_lock
);
51 static inline union cpu_time_count
52 timespec_to_sample(const clockid_t which_clock
, const struct timespec
*tp
)
54 union cpu_time_count ret
;
55 ret
.sched
= 0; /* high half always zero when .cpu used */
56 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
57 ret
.sched
= (unsigned long long)tp
->tv_sec
* NSEC_PER_SEC
+ tp
->tv_nsec
;
59 ret
.cpu
= timespec_to_cputime(tp
);
64 static void sample_to_timespec(const clockid_t which_clock
,
65 union cpu_time_count cpu
,
68 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
)
69 *tp
= ns_to_timespec(cpu
.sched
);
71 cputime_to_timespec(cpu
.cpu
, tp
);
74 static inline int cpu_time_before(const clockid_t which_clock
,
75 union cpu_time_count now
,
76 union cpu_time_count then
)
78 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
79 return now
.sched
< then
.sched
;
81 return cputime_lt(now
.cpu
, then
.cpu
);
84 static inline void cpu_time_add(const clockid_t which_clock
,
85 union cpu_time_count
*acc
,
86 union cpu_time_count val
)
88 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
89 acc
->sched
+= val
.sched
;
91 acc
->cpu
= cputime_add(acc
->cpu
, val
.cpu
);
94 static inline union cpu_time_count
cpu_time_sub(const clockid_t which_clock
,
95 union cpu_time_count a
,
96 union cpu_time_count b
)
98 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
101 a
.cpu
= cputime_sub(a
.cpu
, b
.cpu
);
107 * Divide and limit the result to res >= 1
109 * This is necessary to prevent signal delivery starvation, when the result of
110 * the division would be rounded down to 0.
112 static inline cputime_t
cputime_div_non_zero(cputime_t time
, unsigned long div
)
114 cputime_t res
= cputime_div(time
, div
);
116 return max_t(cputime_t
, res
, 1);
120 * Update expiry time from increment, and increase overrun count,
121 * given the current clock sample.
123 static void bump_cpu_timer(struct k_itimer
*timer
,
124 union cpu_time_count now
)
128 if (timer
->it
.cpu
.incr
.sched
== 0)
131 if (CPUCLOCK_WHICH(timer
->it_clock
) == CPUCLOCK_SCHED
) {
132 unsigned long long delta
, incr
;
134 if (now
.sched
< timer
->it
.cpu
.expires
.sched
)
136 incr
= timer
->it
.cpu
.incr
.sched
;
137 delta
= now
.sched
+ incr
- timer
->it
.cpu
.expires
.sched
;
138 /* Don't use (incr*2 < delta), incr*2 might overflow. */
139 for (i
= 0; incr
< delta
- incr
; i
++)
141 for (; i
>= 0; incr
>>= 1, i
--) {
144 timer
->it
.cpu
.expires
.sched
+= incr
;
145 timer
->it_overrun
+= 1 << i
;
149 cputime_t delta
, incr
;
151 if (cputime_lt(now
.cpu
, timer
->it
.cpu
.expires
.cpu
))
153 incr
= timer
->it
.cpu
.incr
.cpu
;
154 delta
= cputime_sub(cputime_add(now
.cpu
, incr
),
155 timer
->it
.cpu
.expires
.cpu
);
156 /* Don't use (incr*2 < delta), incr*2 might overflow. */
157 for (i
= 0; cputime_lt(incr
, cputime_sub(delta
, incr
)); i
++)
158 incr
= cputime_add(incr
, incr
);
159 for (; i
>= 0; incr
= cputime_halve(incr
), i
--) {
160 if (cputime_lt(delta
, incr
))
162 timer
->it
.cpu
.expires
.cpu
=
163 cputime_add(timer
->it
.cpu
.expires
.cpu
, incr
);
164 timer
->it_overrun
+= 1 << i
;
165 delta
= cputime_sub(delta
, incr
);
170 static inline cputime_t
prof_ticks(struct task_struct
*p
)
172 return cputime_add(p
->utime
, p
->stime
);
174 static inline cputime_t
virt_ticks(struct task_struct
*p
)
179 int posix_cpu_clock_getres(const clockid_t which_clock
, struct timespec
*tp
)
181 int error
= check_clock(which_clock
);
184 tp
->tv_nsec
= ((NSEC_PER_SEC
+ HZ
- 1) / HZ
);
185 if (CPUCLOCK_WHICH(which_clock
) == CPUCLOCK_SCHED
) {
187 * If sched_clock is using a cycle counter, we
188 * don't have any idea of its true resolution
189 * exported, but it is much more than 1s/HZ.
197 int posix_cpu_clock_set(const clockid_t which_clock
, const struct timespec
*tp
)
200 * You can never reset a CPU clock, but we check for other errors
201 * in the call before failing with EPERM.
203 int error
= check_clock(which_clock
);
212 * Sample a per-thread clock for the given task.
214 static int cpu_clock_sample(const clockid_t which_clock
, struct task_struct
*p
,
215 union cpu_time_count
*cpu
)
217 switch (CPUCLOCK_WHICH(which_clock
)) {
221 cpu
->cpu
= prof_ticks(p
);
224 cpu
->cpu
= virt_ticks(p
);
227 cpu
->sched
= p
->se
.sum_exec_runtime
+ task_delta_exec(p
);
234 * Sample a process (thread group) clock for the given group_leader task.
235 * Must be called with tasklist_lock held for reading.
237 static int cpu_clock_sample_group(const clockid_t which_clock
,
238 struct task_struct
*p
,
239 union cpu_time_count
*cpu
)
241 struct task_cputime cputime
;
243 thread_group_cputime(p
, &cputime
);
244 switch (CPUCLOCK_WHICH(which_clock
)) {
248 cpu
->cpu
= cputime_add(cputime
.utime
, cputime
.stime
);
251 cpu
->cpu
= cputime
.utime
;
254 cpu
->sched
= cputime
.sum_exec_runtime
+ task_delta_exec(p
);
261 int posix_cpu_clock_get(const clockid_t which_clock
, struct timespec
*tp
)
263 const pid_t pid
= CPUCLOCK_PID(which_clock
);
265 union cpu_time_count rtn
;
269 * Special case constant value for our own clocks.
270 * We don't have to do any lookup to find ourselves.
272 if (CPUCLOCK_PERTHREAD(which_clock
)) {
274 * Sampling just ourselves we can do with no locking.
276 error
= cpu_clock_sample(which_clock
,
279 read_lock(&tasklist_lock
);
280 error
= cpu_clock_sample_group(which_clock
,
282 read_unlock(&tasklist_lock
);
286 * Find the given PID, and validate that the caller
287 * should be able to see it.
289 struct task_struct
*p
;
291 p
= find_task_by_vpid(pid
);
293 if (CPUCLOCK_PERTHREAD(which_clock
)) {
294 if (same_thread_group(p
, current
)) {
295 error
= cpu_clock_sample(which_clock
,
299 read_lock(&tasklist_lock
);
300 if (thread_group_leader(p
) && p
->signal
) {
302 cpu_clock_sample_group(which_clock
,
305 read_unlock(&tasklist_lock
);
313 sample_to_timespec(which_clock
, rtn
, tp
);
319 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
320 * This is called from sys_timer_create with the new timer already locked.
322 int posix_cpu_timer_create(struct k_itimer
*new_timer
)
325 const pid_t pid
= CPUCLOCK_PID(new_timer
->it_clock
);
326 struct task_struct
*p
;
328 if (CPUCLOCK_WHICH(new_timer
->it_clock
) >= CPUCLOCK_MAX
)
331 INIT_LIST_HEAD(&new_timer
->it
.cpu
.entry
);
332 new_timer
->it
.cpu
.incr
.sched
= 0;
333 new_timer
->it
.cpu
.expires
.sched
= 0;
335 read_lock(&tasklist_lock
);
336 if (CPUCLOCK_PERTHREAD(new_timer
->it_clock
)) {
340 p
= find_task_by_vpid(pid
);
341 if (p
&& !same_thread_group(p
, current
))
346 p
= current
->group_leader
;
348 p
= find_task_by_vpid(pid
);
349 if (p
&& !thread_group_leader(p
))
353 new_timer
->it
.cpu
.task
= p
;
359 read_unlock(&tasklist_lock
);
365 * Clean up a CPU-clock timer that is about to be destroyed.
366 * This is called from timer deletion with the timer already locked.
367 * If we return TIMER_RETRY, it's necessary to release the timer's lock
368 * and try again. (This happens when the timer is in the middle of firing.)
370 int posix_cpu_timer_del(struct k_itimer
*timer
)
372 struct task_struct
*p
= timer
->it
.cpu
.task
;
375 if (likely(p
!= NULL
)) {
376 read_lock(&tasklist_lock
);
377 if (unlikely(p
->signal
== NULL
)) {
379 * We raced with the reaping of the task.
380 * The deletion should have cleared us off the list.
382 BUG_ON(!list_empty(&timer
->it
.cpu
.entry
));
384 spin_lock(&p
->sighand
->siglock
);
385 if (timer
->it
.cpu
.firing
)
388 list_del(&timer
->it
.cpu
.entry
);
389 spin_unlock(&p
->sighand
->siglock
);
391 read_unlock(&tasklist_lock
);
401 * Clean out CPU timers still ticking when a thread exited. The task
402 * pointer is cleared, and the expiry time is replaced with the residual
403 * time for later timer_gettime calls to return.
404 * This must be called with the siglock held.
406 static void cleanup_timers(struct list_head
*head
,
407 cputime_t utime
, cputime_t stime
,
408 unsigned long long sum_exec_runtime
)
410 struct cpu_timer_list
*timer
, *next
;
411 cputime_t ptime
= cputime_add(utime
, stime
);
413 list_for_each_entry_safe(timer
, next
, head
, entry
) {
414 list_del_init(&timer
->entry
);
415 if (cputime_lt(timer
->expires
.cpu
, ptime
)) {
416 timer
->expires
.cpu
= cputime_zero
;
418 timer
->expires
.cpu
= cputime_sub(timer
->expires
.cpu
,
424 list_for_each_entry_safe(timer
, next
, head
, entry
) {
425 list_del_init(&timer
->entry
);
426 if (cputime_lt(timer
->expires
.cpu
, utime
)) {
427 timer
->expires
.cpu
= cputime_zero
;
429 timer
->expires
.cpu
= cputime_sub(timer
->expires
.cpu
,
435 list_for_each_entry_safe(timer
, next
, head
, entry
) {
436 list_del_init(&timer
->entry
);
437 if (timer
->expires
.sched
< sum_exec_runtime
) {
438 timer
->expires
.sched
= 0;
440 timer
->expires
.sched
-= sum_exec_runtime
;
446 * These are both called with the siglock held, when the current thread
447 * is being reaped. When the final (leader) thread in the group is reaped,
448 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
450 void posix_cpu_timers_exit(struct task_struct
*tsk
)
452 cleanup_timers(tsk
->cpu_timers
,
453 tsk
->utime
, tsk
->stime
, tsk
->se
.sum_exec_runtime
);
456 void posix_cpu_timers_exit_group(struct task_struct
*tsk
)
458 struct task_cputime cputime
;
460 thread_group_cputime(tsk
, &cputime
);
461 cleanup_timers(tsk
->signal
->cpu_timers
,
462 cputime
.utime
, cputime
.stime
, cputime
.sum_exec_runtime
);
465 static void clear_dead_task(struct k_itimer
*timer
, union cpu_time_count now
)
468 * That's all for this thread or process.
469 * We leave our residual in expires to be reported.
471 put_task_struct(timer
->it
.cpu
.task
);
472 timer
->it
.cpu
.task
= NULL
;
473 timer
->it
.cpu
.expires
= cpu_time_sub(timer
->it_clock
,
474 timer
->it
.cpu
.expires
,
479 * Insert the timer on the appropriate list before any timers that
480 * expire later. This must be called with the tasklist_lock held
481 * for reading, and interrupts disabled.
483 static void arm_timer(struct k_itimer
*timer
, union cpu_time_count now
)
485 struct task_struct
*p
= timer
->it
.cpu
.task
;
486 struct list_head
*head
, *listpos
;
487 struct cpu_timer_list
*const nt
= &timer
->it
.cpu
;
488 struct cpu_timer_list
*next
;
491 head
= (CPUCLOCK_PERTHREAD(timer
->it_clock
) ?
492 p
->cpu_timers
: p
->signal
->cpu_timers
);
493 head
+= CPUCLOCK_WHICH(timer
->it_clock
);
495 BUG_ON(!irqs_disabled());
496 spin_lock(&p
->sighand
->siglock
);
499 if (CPUCLOCK_WHICH(timer
->it_clock
) == CPUCLOCK_SCHED
) {
500 list_for_each_entry(next
, head
, entry
) {
501 if (next
->expires
.sched
> nt
->expires
.sched
)
503 listpos
= &next
->entry
;
506 list_for_each_entry(next
, head
, entry
) {
507 if (cputime_gt(next
->expires
.cpu
, nt
->expires
.cpu
))
509 listpos
= &next
->entry
;
512 list_add(&nt
->entry
, listpos
);
514 if (listpos
== head
) {
516 * We are the new earliest-expiring timer.
517 * If we are a thread timer, there can always
518 * be a process timer telling us to stop earlier.
521 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
522 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
526 if (cputime_eq(p
->cputime_expires
.prof_exp
,
528 cputime_gt(p
->cputime_expires
.prof_exp
,
530 p
->cputime_expires
.prof_exp
=
534 if (cputime_eq(p
->cputime_expires
.virt_exp
,
536 cputime_gt(p
->cputime_expires
.virt_exp
,
538 p
->cputime_expires
.virt_exp
=
542 if (p
->cputime_expires
.sched_exp
== 0 ||
543 p
->cputime_expires
.sched_exp
>
545 p
->cputime_expires
.sched_exp
=
551 * For a process timer, set the cached expiration time.
553 switch (CPUCLOCK_WHICH(timer
->it_clock
)) {
557 if (!cputime_eq(p
->signal
->it_virt_expires
,
559 cputime_lt(p
->signal
->it_virt_expires
,
560 timer
->it
.cpu
.expires
.cpu
))
562 p
->signal
->cputime_expires
.virt_exp
=
563 timer
->it
.cpu
.expires
.cpu
;
566 if (!cputime_eq(p
->signal
->it_prof_expires
,
568 cputime_lt(p
->signal
->it_prof_expires
,
569 timer
->it
.cpu
.expires
.cpu
))
571 i
= p
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
;
572 if (i
!= RLIM_INFINITY
&&
573 i
<= cputime_to_secs(timer
->it
.cpu
.expires
.cpu
))
575 p
->signal
->cputime_expires
.prof_exp
=
576 timer
->it
.cpu
.expires
.cpu
;
579 p
->signal
->cputime_expires
.sched_exp
=
580 timer
->it
.cpu
.expires
.sched
;
586 spin_unlock(&p
->sighand
->siglock
);
590 * The timer is locked, fire it and arrange for its reload.
592 static void cpu_timer_fire(struct k_itimer
*timer
)
594 if (unlikely(timer
->sigq
== NULL
)) {
596 * This a special case for clock_nanosleep,
597 * not a normal timer from sys_timer_create.
599 wake_up_process(timer
->it_process
);
600 timer
->it
.cpu
.expires
.sched
= 0;
601 } else if (timer
->it
.cpu
.incr
.sched
== 0) {
603 * One-shot timer. Clear it as soon as it's fired.
605 posix_timer_event(timer
, 0);
606 timer
->it
.cpu
.expires
.sched
= 0;
607 } else if (posix_timer_event(timer
, ++timer
->it_requeue_pending
)) {
609 * The signal did not get queued because the signal
610 * was ignored, so we won't get any callback to
611 * reload the timer. But we need to keep it
612 * ticking in case the signal is deliverable next time.
614 posix_cpu_timer_schedule(timer
);
619 * Guts of sys_timer_settime for CPU timers.
620 * This is called with the timer locked and interrupts disabled.
621 * If we return TIMER_RETRY, it's necessary to release the timer's lock
622 * and try again. (This happens when the timer is in the middle of firing.)
624 int posix_cpu_timer_set(struct k_itimer
*timer
, int flags
,
625 struct itimerspec
*new, struct itimerspec
*old
)
627 struct task_struct
*p
= timer
->it
.cpu
.task
;
628 union cpu_time_count old_expires
, new_expires
, val
;
631 if (unlikely(p
== NULL
)) {
633 * Timer refers to a dead task's clock.
638 new_expires
= timespec_to_sample(timer
->it_clock
, &new->it_value
);
640 read_lock(&tasklist_lock
);
642 * We need the tasklist_lock to protect against reaping that
643 * clears p->signal. If p has just been reaped, we can no
644 * longer get any information about it at all.
646 if (unlikely(p
->signal
== NULL
)) {
647 read_unlock(&tasklist_lock
);
649 timer
->it
.cpu
.task
= NULL
;
654 * Disarm any old timer after extracting its expiry time.
656 BUG_ON(!irqs_disabled());
659 spin_lock(&p
->sighand
->siglock
);
660 old_expires
= timer
->it
.cpu
.expires
;
661 if (unlikely(timer
->it
.cpu
.firing
)) {
662 timer
->it
.cpu
.firing
= -1;
665 list_del_init(&timer
->it
.cpu
.entry
);
666 spin_unlock(&p
->sighand
->siglock
);
669 * We need to sample the current value to convert the new
670 * value from to relative and absolute, and to convert the
671 * old value from absolute to relative. To set a process
672 * timer, we need a sample to balance the thread expiry
673 * times (in arm_timer). With an absolute time, we must
674 * check if it's already passed. In short, we need a sample.
676 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
677 cpu_clock_sample(timer
->it_clock
, p
, &val
);
679 cpu_clock_sample_group(timer
->it_clock
, p
, &val
);
683 if (old_expires
.sched
== 0) {
684 old
->it_value
.tv_sec
= 0;
685 old
->it_value
.tv_nsec
= 0;
688 * Update the timer in case it has
689 * overrun already. If it has,
690 * we'll report it as having overrun
691 * and with the next reloaded timer
692 * already ticking, though we are
693 * swallowing that pending
694 * notification here to install the
697 bump_cpu_timer(timer
, val
);
698 if (cpu_time_before(timer
->it_clock
, val
,
699 timer
->it
.cpu
.expires
)) {
700 old_expires
= cpu_time_sub(
702 timer
->it
.cpu
.expires
, val
);
703 sample_to_timespec(timer
->it_clock
,
707 old
->it_value
.tv_nsec
= 1;
708 old
->it_value
.tv_sec
= 0;
715 * We are colliding with the timer actually firing.
716 * Punt after filling in the timer's old value, and
717 * disable this firing since we are already reporting
718 * it as an overrun (thanks to bump_cpu_timer above).
720 read_unlock(&tasklist_lock
);
724 if (new_expires
.sched
!= 0 && !(flags
& TIMER_ABSTIME
)) {
725 cpu_time_add(timer
->it_clock
, &new_expires
, val
);
729 * Install the new expiry time (or zero).
730 * For a timer with no notification action, we don't actually
731 * arm the timer (we'll just fake it for timer_gettime).
733 timer
->it
.cpu
.expires
= new_expires
;
734 if (new_expires
.sched
!= 0 &&
735 (timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
&&
736 cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
737 arm_timer(timer
, val
);
740 read_unlock(&tasklist_lock
);
743 * Install the new reload setting, and
744 * set up the signal and overrun bookkeeping.
746 timer
->it
.cpu
.incr
= timespec_to_sample(timer
->it_clock
,
750 * This acts as a modification timestamp for the timer,
751 * so any automatic reload attempt will punt on seeing
752 * that we have reset the timer manually.
754 timer
->it_requeue_pending
= (timer
->it_requeue_pending
+ 2) &
756 timer
->it_overrun_last
= 0;
757 timer
->it_overrun
= -1;
759 if (new_expires
.sched
!= 0 &&
760 (timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) != SIGEV_NONE
&&
761 !cpu_time_before(timer
->it_clock
, val
, new_expires
)) {
763 * The designated time already passed, so we notify
764 * immediately, even if the thread never runs to
765 * accumulate more time on this clock.
767 cpu_timer_fire(timer
);
773 sample_to_timespec(timer
->it_clock
,
774 timer
->it
.cpu
.incr
, &old
->it_interval
);
779 void posix_cpu_timer_get(struct k_itimer
*timer
, struct itimerspec
*itp
)
781 union cpu_time_count now
;
782 struct task_struct
*p
= timer
->it
.cpu
.task
;
786 * Easy part: convert the reload time.
788 sample_to_timespec(timer
->it_clock
,
789 timer
->it
.cpu
.incr
, &itp
->it_interval
);
791 if (timer
->it
.cpu
.expires
.sched
== 0) { /* Timer not armed at all. */
792 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
796 if (unlikely(p
== NULL
)) {
798 * This task already died and the timer will never fire.
799 * In this case, expires is actually the dead value.
802 sample_to_timespec(timer
->it_clock
, timer
->it
.cpu
.expires
,
808 * Sample the clock to take the difference with the expiry time.
810 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
811 cpu_clock_sample(timer
->it_clock
, p
, &now
);
812 clear_dead
= p
->exit_state
;
814 read_lock(&tasklist_lock
);
815 if (unlikely(p
->signal
== NULL
)) {
817 * The process has been reaped.
818 * We can't even collect a sample any more.
819 * Call the timer disarmed, nothing else to do.
822 timer
->it
.cpu
.task
= NULL
;
823 timer
->it
.cpu
.expires
.sched
= 0;
824 read_unlock(&tasklist_lock
);
827 cpu_clock_sample_group(timer
->it_clock
, p
, &now
);
828 clear_dead
= (unlikely(p
->exit_state
) &&
829 thread_group_empty(p
));
831 read_unlock(&tasklist_lock
);
834 if ((timer
->it_sigev_notify
& ~SIGEV_THREAD_ID
) == SIGEV_NONE
) {
835 if (timer
->it
.cpu
.incr
.sched
== 0 &&
836 cpu_time_before(timer
->it_clock
,
837 timer
->it
.cpu
.expires
, now
)) {
839 * Do-nothing timer expired and has no reload,
840 * so it's as if it was never set.
842 timer
->it
.cpu
.expires
.sched
= 0;
843 itp
->it_value
.tv_sec
= itp
->it_value
.tv_nsec
= 0;
847 * Account for any expirations and reloads that should
850 bump_cpu_timer(timer
, now
);
853 if (unlikely(clear_dead
)) {
855 * We've noticed that the thread is dead, but
856 * not yet reaped. Take this opportunity to
859 clear_dead_task(timer
, now
);
863 if (cpu_time_before(timer
->it_clock
, now
, timer
->it
.cpu
.expires
)) {
864 sample_to_timespec(timer
->it_clock
,
865 cpu_time_sub(timer
->it_clock
,
866 timer
->it
.cpu
.expires
, now
),
870 * The timer should have expired already, but the firing
871 * hasn't taken place yet. Say it's just about to expire.
873 itp
->it_value
.tv_nsec
= 1;
874 itp
->it_value
.tv_sec
= 0;
879 * Check for any per-thread CPU timers that have fired and move them off
880 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
881 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
883 static void check_thread_timers(struct task_struct
*tsk
,
884 struct list_head
*firing
)
887 struct list_head
*timers
= tsk
->cpu_timers
;
888 struct signal_struct
*const sig
= tsk
->signal
;
891 tsk
->cputime_expires
.prof_exp
= cputime_zero
;
892 while (!list_empty(timers
)) {
893 struct cpu_timer_list
*t
= list_first_entry(timers
,
894 struct cpu_timer_list
,
896 if (!--maxfire
|| cputime_lt(prof_ticks(tsk
), t
->expires
.cpu
)) {
897 tsk
->cputime_expires
.prof_exp
= t
->expires
.cpu
;
901 list_move_tail(&t
->entry
, firing
);
906 tsk
->cputime_expires
.virt_exp
= cputime_zero
;
907 while (!list_empty(timers
)) {
908 struct cpu_timer_list
*t
= list_first_entry(timers
,
909 struct cpu_timer_list
,
911 if (!--maxfire
|| cputime_lt(virt_ticks(tsk
), t
->expires
.cpu
)) {
912 tsk
->cputime_expires
.virt_exp
= t
->expires
.cpu
;
916 list_move_tail(&t
->entry
, firing
);
921 tsk
->cputime_expires
.sched_exp
= 0;
922 while (!list_empty(timers
)) {
923 struct cpu_timer_list
*t
= list_first_entry(timers
,
924 struct cpu_timer_list
,
926 if (!--maxfire
|| tsk
->se
.sum_exec_runtime
< t
->expires
.sched
) {
927 tsk
->cputime_expires
.sched_exp
= t
->expires
.sched
;
931 list_move_tail(&t
->entry
, firing
);
935 * Check for the special case thread timers.
937 if (sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
!= RLIM_INFINITY
) {
938 unsigned long hard
= sig
->rlim
[RLIMIT_RTTIME
].rlim_max
;
939 unsigned long *soft
= &sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
;
941 if (hard
!= RLIM_INFINITY
&&
942 tsk
->rt
.timeout
> DIV_ROUND_UP(hard
, USEC_PER_SEC
/HZ
)) {
944 * At the hard limit, we just die.
945 * No need to calculate anything else now.
947 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
950 if (tsk
->rt
.timeout
> DIV_ROUND_UP(*soft
, USEC_PER_SEC
/HZ
)) {
952 * At the soft limit, send a SIGXCPU every second.
954 if (sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
955 < sig
->rlim
[RLIMIT_RTTIME
].rlim_max
) {
956 sig
->rlim
[RLIMIT_RTTIME
].rlim_cur
+=
960 "RT Watchdog Timeout: %s[%d]\n",
961 tsk
->comm
, task_pid_nr(tsk
));
962 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
968 * Check for any per-thread CPU timers that have fired and move them
969 * off the tsk->*_timers list onto the firing list. Per-thread timers
970 * have already been taken off.
972 static void check_process_timers(struct task_struct
*tsk
,
973 struct list_head
*firing
)
976 struct signal_struct
*const sig
= tsk
->signal
;
977 cputime_t utime
, ptime
, virt_expires
, prof_expires
;
978 unsigned long long sum_sched_runtime
, sched_expires
;
979 struct list_head
*timers
= sig
->cpu_timers
;
980 struct task_cputime cputime
;
983 * Don't sample the current process CPU clocks if there are no timers.
985 if (list_empty(&timers
[CPUCLOCK_PROF
]) &&
986 cputime_eq(sig
->it_prof_expires
, cputime_zero
) &&
987 sig
->rlim
[RLIMIT_CPU
].rlim_cur
== RLIM_INFINITY
&&
988 list_empty(&timers
[CPUCLOCK_VIRT
]) &&
989 cputime_eq(sig
->it_virt_expires
, cputime_zero
) &&
990 list_empty(&timers
[CPUCLOCK_SCHED
]))
994 * Collect the current process totals.
996 thread_group_cputime(tsk
, &cputime
);
997 utime
= cputime
.utime
;
998 ptime
= cputime_add(utime
, cputime
.stime
);
999 sum_sched_runtime
= cputime
.sum_exec_runtime
;
1001 prof_expires
= cputime_zero
;
1002 while (!list_empty(timers
)) {
1003 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1004 struct cpu_timer_list
,
1006 if (!--maxfire
|| cputime_lt(ptime
, tl
->expires
.cpu
)) {
1007 prof_expires
= tl
->expires
.cpu
;
1011 list_move_tail(&tl
->entry
, firing
);
1016 virt_expires
= cputime_zero
;
1017 while (!list_empty(timers
)) {
1018 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1019 struct cpu_timer_list
,
1021 if (!--maxfire
|| cputime_lt(utime
, tl
->expires
.cpu
)) {
1022 virt_expires
= tl
->expires
.cpu
;
1026 list_move_tail(&tl
->entry
, firing
);
1032 while (!list_empty(timers
)) {
1033 struct cpu_timer_list
*tl
= list_first_entry(timers
,
1034 struct cpu_timer_list
,
1036 if (!--maxfire
|| sum_sched_runtime
< tl
->expires
.sched
) {
1037 sched_expires
= tl
->expires
.sched
;
1041 list_move_tail(&tl
->entry
, firing
);
1045 * Check for the special case process timers.
1047 if (!cputime_eq(sig
->it_prof_expires
, cputime_zero
)) {
1048 if (cputime_ge(ptime
, sig
->it_prof_expires
)) {
1049 /* ITIMER_PROF fires and reloads. */
1050 sig
->it_prof_expires
= sig
->it_prof_incr
;
1051 if (!cputime_eq(sig
->it_prof_expires
, cputime_zero
)) {
1052 sig
->it_prof_expires
= cputime_add(
1053 sig
->it_prof_expires
, ptime
);
1055 __group_send_sig_info(SIGPROF
, SEND_SIG_PRIV
, tsk
);
1057 if (!cputime_eq(sig
->it_prof_expires
, cputime_zero
) &&
1058 (cputime_eq(prof_expires
, cputime_zero
) ||
1059 cputime_lt(sig
->it_prof_expires
, prof_expires
))) {
1060 prof_expires
= sig
->it_prof_expires
;
1063 if (!cputime_eq(sig
->it_virt_expires
, cputime_zero
)) {
1064 if (cputime_ge(utime
, sig
->it_virt_expires
)) {
1065 /* ITIMER_VIRTUAL fires and reloads. */
1066 sig
->it_virt_expires
= sig
->it_virt_incr
;
1067 if (!cputime_eq(sig
->it_virt_expires
, cputime_zero
)) {
1068 sig
->it_virt_expires
= cputime_add(
1069 sig
->it_virt_expires
, utime
);
1071 __group_send_sig_info(SIGVTALRM
, SEND_SIG_PRIV
, tsk
);
1073 if (!cputime_eq(sig
->it_virt_expires
, cputime_zero
) &&
1074 (cputime_eq(virt_expires
, cputime_zero
) ||
1075 cputime_lt(sig
->it_virt_expires
, virt_expires
))) {
1076 virt_expires
= sig
->it_virt_expires
;
1079 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
!= RLIM_INFINITY
) {
1080 unsigned long psecs
= cputime_to_secs(ptime
);
1082 if (psecs
>= sig
->rlim
[RLIMIT_CPU
].rlim_max
) {
1084 * At the hard limit, we just die.
1085 * No need to calculate anything else now.
1087 __group_send_sig_info(SIGKILL
, SEND_SIG_PRIV
, tsk
);
1090 if (psecs
>= sig
->rlim
[RLIMIT_CPU
].rlim_cur
) {
1092 * At the soft limit, send a SIGXCPU every second.
1094 __group_send_sig_info(SIGXCPU
, SEND_SIG_PRIV
, tsk
);
1095 if (sig
->rlim
[RLIMIT_CPU
].rlim_cur
1096 < sig
->rlim
[RLIMIT_CPU
].rlim_max
) {
1097 sig
->rlim
[RLIMIT_CPU
].rlim_cur
++;
1100 x
= secs_to_cputime(sig
->rlim
[RLIMIT_CPU
].rlim_cur
);
1101 if (cputime_eq(prof_expires
, cputime_zero
) ||
1102 cputime_lt(x
, prof_expires
)) {
1107 if (!cputime_eq(prof_expires
, cputime_zero
) &&
1108 (cputime_eq(sig
->cputime_expires
.prof_exp
, cputime_zero
) ||
1109 cputime_gt(sig
->cputime_expires
.prof_exp
, prof_expires
)))
1110 sig
->cputime_expires
.prof_exp
= prof_expires
;
1111 if (!cputime_eq(virt_expires
, cputime_zero
) &&
1112 (cputime_eq(sig
->cputime_expires
.virt_exp
, cputime_zero
) ||
1113 cputime_gt(sig
->cputime_expires
.virt_exp
, virt_expires
)))
1114 sig
->cputime_expires
.virt_exp
= virt_expires
;
1115 if (sched_expires
!= 0 &&
1116 (sig
->cputime_expires
.sched_exp
== 0 ||
1117 sig
->cputime_expires
.sched_exp
> sched_expires
))
1118 sig
->cputime_expires
.sched_exp
= sched_expires
;
1122 * This is called from the signal code (via do_schedule_next_timer)
1123 * when the last timer signal was delivered and we have to reload the timer.
1125 void posix_cpu_timer_schedule(struct k_itimer
*timer
)
1127 struct task_struct
*p
= timer
->it
.cpu
.task
;
1128 union cpu_time_count now
;
1130 if (unlikely(p
== NULL
))
1132 * The task was cleaned up already, no future firings.
1137 * Fetch the current sample and update the timer's expiry time.
1139 if (CPUCLOCK_PERTHREAD(timer
->it_clock
)) {
1140 cpu_clock_sample(timer
->it_clock
, p
, &now
);
1141 bump_cpu_timer(timer
, now
);
1142 if (unlikely(p
->exit_state
)) {
1143 clear_dead_task(timer
, now
);
1146 read_lock(&tasklist_lock
); /* arm_timer needs it. */
1148 read_lock(&tasklist_lock
);
1149 if (unlikely(p
->signal
== NULL
)) {
1151 * The process has been reaped.
1152 * We can't even collect a sample any more.
1155 timer
->it
.cpu
.task
= p
= NULL
;
1156 timer
->it
.cpu
.expires
.sched
= 0;
1158 } else if (unlikely(p
->exit_state
) && thread_group_empty(p
)) {
1160 * We've noticed that the thread is dead, but
1161 * not yet reaped. Take this opportunity to
1162 * drop our task ref.
1164 clear_dead_task(timer
, now
);
1167 cpu_clock_sample_group(timer
->it_clock
, p
, &now
);
1168 bump_cpu_timer(timer
, now
);
1169 /* Leave the tasklist_lock locked for the call below. */
1173 * Now re-arm for the new expiry time.
1175 arm_timer(timer
, now
);
1178 read_unlock(&tasklist_lock
);
1181 timer
->it_overrun_last
= timer
->it_overrun
;
1182 timer
->it_overrun
= -1;
1183 ++timer
->it_requeue_pending
;
1187 * task_cputime_zero - Check a task_cputime struct for all zero fields.
1189 * @cputime: The struct to compare.
1191 * Checks @cputime to see if all fields are zero. Returns true if all fields
1192 * are zero, false if any field is nonzero.
1194 static inline int task_cputime_zero(const struct task_cputime
*cputime
)
1196 if (cputime_eq(cputime
->utime
, cputime_zero
) &&
1197 cputime_eq(cputime
->stime
, cputime_zero
) &&
1198 cputime
->sum_exec_runtime
== 0)
1204 * task_cputime_expired - Compare two task_cputime entities.
1206 * @sample: The task_cputime structure to be checked for expiration.
1207 * @expires: Expiration times, against which @sample will be checked.
1209 * Checks @sample against @expires to see if any field of @sample has expired.
1210 * Returns true if any field of the former is greater than the corresponding
1211 * field of the latter if the latter field is set. Otherwise returns false.
1213 static inline int task_cputime_expired(const struct task_cputime
*sample
,
1214 const struct task_cputime
*expires
)
1216 if (!cputime_eq(expires
->utime
, cputime_zero
) &&
1217 cputime_ge(sample
->utime
, expires
->utime
))
1219 if (!cputime_eq(expires
->stime
, cputime_zero
) &&
1220 cputime_ge(cputime_add(sample
->utime
, sample
->stime
),
1223 if (expires
->sum_exec_runtime
!= 0 &&
1224 sample
->sum_exec_runtime
>= expires
->sum_exec_runtime
)
1230 * fastpath_timer_check - POSIX CPU timers fast path.
1232 * @tsk: The task (thread) being checked.
1234 * Check the task and thread group timers. If both are zero (there are no
1235 * timers set) return false. Otherwise snapshot the task and thread group
1236 * timers and compare them with the corresponding expiration times. Return
1237 * true if a timer has expired, else return false.
1239 static inline int fastpath_timer_check(struct task_struct
*tsk
)
1241 struct signal_struct
*sig
;
1243 /* tsk == current, ensure it is safe to use ->signal/sighand */
1244 if (unlikely(tsk
->exit_state
))
1247 if (!task_cputime_zero(&tsk
->cputime_expires
)) {
1248 struct task_cputime task_sample
= {
1249 .utime
= tsk
->utime
,
1250 .stime
= tsk
->stime
,
1251 .sum_exec_runtime
= tsk
->se
.sum_exec_runtime
1254 if (task_cputime_expired(&task_sample
, &tsk
->cputime_expires
))
1259 if (!task_cputime_zero(&sig
->cputime_expires
)) {
1260 struct task_cputime group_sample
;
1262 thread_group_cputime(tsk
, &group_sample
);
1263 if (task_cputime_expired(&group_sample
, &sig
->cputime_expires
))
1270 * This is called from the timer interrupt handler. The irq handler has
1271 * already updated our counts. We need to check if any timers fire now.
1272 * Interrupts are disabled.
1274 void run_posix_cpu_timers(struct task_struct
*tsk
)
1277 struct k_itimer
*timer
, *next
;
1279 BUG_ON(!irqs_disabled());
1282 * The fast path checks that there are no expired thread or thread
1283 * group timers. If that's so, just return.
1285 if (!fastpath_timer_check(tsk
))
1288 spin_lock(&tsk
->sighand
->siglock
);
1290 * Here we take off tsk->signal->cpu_timers[N] and
1291 * tsk->cpu_timers[N] all the timers that are firing, and
1292 * put them on the firing list.
1294 check_thread_timers(tsk
, &firing
);
1295 check_process_timers(tsk
, &firing
);
1298 * We must release these locks before taking any timer's lock.
1299 * There is a potential race with timer deletion here, as the
1300 * siglock now protects our private firing list. We have set
1301 * the firing flag in each timer, so that a deletion attempt
1302 * that gets the timer lock before we do will give it up and
1303 * spin until we've taken care of that timer below.
1305 spin_unlock(&tsk
->sighand
->siglock
);
1308 * Now that all the timers on our list have the firing flag,
1309 * noone will touch their list entries but us. We'll take
1310 * each timer's lock before clearing its firing flag, so no
1311 * timer call will interfere.
1313 list_for_each_entry_safe(timer
, next
, &firing
, it
.cpu
.entry
) {
1315 spin_lock(&timer
->it_lock
);
1316 list_del_init(&timer
->it
.cpu
.entry
);
1317 firing
= timer
->it
.cpu
.firing
;
1318 timer
->it
.cpu
.firing
= 0;
1320 * The firing flag is -1 if we collided with a reset
1321 * of the timer, which already reported this
1322 * almost-firing as an overrun. So don't generate an event.
1324 if (likely(firing
>= 0)) {
1325 cpu_timer_fire(timer
);
1327 spin_unlock(&timer
->it_lock
);
1332 * Set one of the process-wide special case CPU timers.
1333 * The tsk->sighand->siglock must be held by the caller.
1334 * The *newval argument is relative and we update it to be absolute, *oldval
1335 * is absolute and we update it to be relative.
1337 void set_process_cpu_timer(struct task_struct
*tsk
, unsigned int clock_idx
,
1338 cputime_t
*newval
, cputime_t
*oldval
)
1340 union cpu_time_count now
;
1341 struct list_head
*head
;
1343 BUG_ON(clock_idx
== CPUCLOCK_SCHED
);
1344 cpu_clock_sample_group(clock_idx
, tsk
, &now
);
1347 if (!cputime_eq(*oldval
, cputime_zero
)) {
1348 if (cputime_le(*oldval
, now
.cpu
)) {
1349 /* Just about to fire. */
1350 *oldval
= jiffies_to_cputime(1);
1352 *oldval
= cputime_sub(*oldval
, now
.cpu
);
1356 if (cputime_eq(*newval
, cputime_zero
))
1358 *newval
= cputime_add(*newval
, now
.cpu
);
1361 * If the RLIMIT_CPU timer will expire before the
1362 * ITIMER_PROF timer, we have nothing else to do.
1364 if (tsk
->signal
->rlim
[RLIMIT_CPU
].rlim_cur
1365 < cputime_to_secs(*newval
))
1370 * Check whether there are any process timers already set to fire
1371 * before this one. If so, we don't have anything more to do.
1373 head
= &tsk
->signal
->cpu_timers
[clock_idx
];
1374 if (list_empty(head
) ||
1375 cputime_ge(list_first_entry(head
,
1376 struct cpu_timer_list
, entry
)->expires
.cpu
,
1378 switch (clock_idx
) {
1380 tsk
->signal
->cputime_expires
.prof_exp
= *newval
;
1383 tsk
->signal
->cputime_expires
.virt_exp
= *newval
;
1389 static int do_cpu_nanosleep(const clockid_t which_clock
, int flags
,
1390 struct timespec
*rqtp
, struct itimerspec
*it
)
1392 struct k_itimer timer
;
1396 * Set up a temporary timer and then wait for it to go off.
1398 memset(&timer
, 0, sizeof timer
);
1399 spin_lock_init(&timer
.it_lock
);
1400 timer
.it_clock
= which_clock
;
1401 timer
.it_overrun
= -1;
1402 error
= posix_cpu_timer_create(&timer
);
1403 timer
.it_process
= current
;
1405 static struct itimerspec zero_it
;
1407 memset(it
, 0, sizeof *it
);
1408 it
->it_value
= *rqtp
;
1410 spin_lock_irq(&timer
.it_lock
);
1411 error
= posix_cpu_timer_set(&timer
, flags
, it
, NULL
);
1413 spin_unlock_irq(&timer
.it_lock
);
1417 while (!signal_pending(current
)) {
1418 if (timer
.it
.cpu
.expires
.sched
== 0) {
1420 * Our timer fired and was reset.
1422 spin_unlock_irq(&timer
.it_lock
);
1427 * Block until cpu_timer_fire (or a signal) wakes us.
1429 __set_current_state(TASK_INTERRUPTIBLE
);
1430 spin_unlock_irq(&timer
.it_lock
);
1432 spin_lock_irq(&timer
.it_lock
);
1436 * We were interrupted by a signal.
1438 sample_to_timespec(which_clock
, timer
.it
.cpu
.expires
, rqtp
);
1439 posix_cpu_timer_set(&timer
, 0, &zero_it
, it
);
1440 spin_unlock_irq(&timer
.it_lock
);
1442 if ((it
->it_value
.tv_sec
| it
->it_value
.tv_nsec
) == 0) {
1444 * It actually did fire already.
1449 error
= -ERESTART_RESTARTBLOCK
;
1455 int posix_cpu_nsleep(const clockid_t which_clock
, int flags
,
1456 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1458 struct restart_block
*restart_block
=
1459 ¤t_thread_info()->restart_block
;
1460 struct itimerspec it
;
1464 * Diagnose required errors first.
1466 if (CPUCLOCK_PERTHREAD(which_clock
) &&
1467 (CPUCLOCK_PID(which_clock
) == 0 ||
1468 CPUCLOCK_PID(which_clock
) == current
->pid
))
1471 error
= do_cpu_nanosleep(which_clock
, flags
, rqtp
, &it
);
1473 if (error
== -ERESTART_RESTARTBLOCK
) {
1475 if (flags
& TIMER_ABSTIME
)
1476 return -ERESTARTNOHAND
;
1478 * Report back to the user the time still remaining.
1480 if (rmtp
!= NULL
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1483 restart_block
->fn
= posix_cpu_nsleep_restart
;
1484 restart_block
->arg0
= which_clock
;
1485 restart_block
->arg1
= (unsigned long) rmtp
;
1486 restart_block
->arg2
= rqtp
->tv_sec
;
1487 restart_block
->arg3
= rqtp
->tv_nsec
;
1492 long posix_cpu_nsleep_restart(struct restart_block
*restart_block
)
1494 clockid_t which_clock
= restart_block
->arg0
;
1495 struct timespec __user
*rmtp
;
1497 struct itimerspec it
;
1500 rmtp
= (struct timespec __user
*) restart_block
->arg1
;
1501 t
.tv_sec
= restart_block
->arg2
;
1502 t
.tv_nsec
= restart_block
->arg3
;
1504 restart_block
->fn
= do_no_restart_syscall
;
1505 error
= do_cpu_nanosleep(which_clock
, TIMER_ABSTIME
, &t
, &it
);
1507 if (error
== -ERESTART_RESTARTBLOCK
) {
1509 * Report back to the user the time still remaining.
1511 if (rmtp
!= NULL
&& copy_to_user(rmtp
, &it
.it_value
, sizeof *rmtp
))
1514 restart_block
->fn
= posix_cpu_nsleep_restart
;
1515 restart_block
->arg0
= which_clock
;
1516 restart_block
->arg1
= (unsigned long) rmtp
;
1517 restart_block
->arg2
= t
.tv_sec
;
1518 restart_block
->arg3
= t
.tv_nsec
;
1525 #define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1526 #define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1528 static int process_cpu_clock_getres(const clockid_t which_clock
,
1529 struct timespec
*tp
)
1531 return posix_cpu_clock_getres(PROCESS_CLOCK
, tp
);
1533 static int process_cpu_clock_get(const clockid_t which_clock
,
1534 struct timespec
*tp
)
1536 return posix_cpu_clock_get(PROCESS_CLOCK
, tp
);
1538 static int process_cpu_timer_create(struct k_itimer
*timer
)
1540 timer
->it_clock
= PROCESS_CLOCK
;
1541 return posix_cpu_timer_create(timer
);
1543 static int process_cpu_nsleep(const clockid_t which_clock
, int flags
,
1544 struct timespec
*rqtp
,
1545 struct timespec __user
*rmtp
)
1547 return posix_cpu_nsleep(PROCESS_CLOCK
, flags
, rqtp
, rmtp
);
1549 static long process_cpu_nsleep_restart(struct restart_block
*restart_block
)
1553 static int thread_cpu_clock_getres(const clockid_t which_clock
,
1554 struct timespec
*tp
)
1556 return posix_cpu_clock_getres(THREAD_CLOCK
, tp
);
1558 static int thread_cpu_clock_get(const clockid_t which_clock
,
1559 struct timespec
*tp
)
1561 return posix_cpu_clock_get(THREAD_CLOCK
, tp
);
1563 static int thread_cpu_timer_create(struct k_itimer
*timer
)
1565 timer
->it_clock
= THREAD_CLOCK
;
1566 return posix_cpu_timer_create(timer
);
1568 static int thread_cpu_nsleep(const clockid_t which_clock
, int flags
,
1569 struct timespec
*rqtp
, struct timespec __user
*rmtp
)
1573 static long thread_cpu_nsleep_restart(struct restart_block
*restart_block
)
1578 static __init
int init_posix_cpu_timers(void)
1580 struct k_clock process
= {
1581 .clock_getres
= process_cpu_clock_getres
,
1582 .clock_get
= process_cpu_clock_get
,
1583 .clock_set
= do_posix_clock_nosettime
,
1584 .timer_create
= process_cpu_timer_create
,
1585 .nsleep
= process_cpu_nsleep
,
1586 .nsleep_restart
= process_cpu_nsleep_restart
,
1588 struct k_clock thread
= {
1589 .clock_getres
= thread_cpu_clock_getres
,
1590 .clock_get
= thread_cpu_clock_get
,
1591 .clock_set
= do_posix_clock_nosettime
,
1592 .timer_create
= thread_cpu_timer_create
,
1593 .nsleep
= thread_cpu_nsleep
,
1594 .nsleep_restart
= thread_cpu_nsleep_restart
,
1597 register_posix_clock(CLOCK_PROCESS_CPUTIME_ID
, &process
);
1598 register_posix_clock(CLOCK_THREAD_CPUTIME_ID
, &thread
);
1602 __initcall(init_posix_cpu_timers
);