2 * sata_mv.c - Marvell SATA support
4 * Copyright 2005: EMC Corporation, all rights reserved.
5 * Copyright 2005 Red Hat, Inc. All rights reserved.
7 * Please ALWAYS copy linux-ide@vger.kernel.org on emails.
9 * This program is free software; you can redistribute it and/or modify
10 * it under the terms of the GNU General Public License as published by
11 * the Free Software Foundation; version 2 of the License.
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
18 * You should have received a copy of the GNU General Public License
19 * along with this program; if not, write to the Free Software
20 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
24 #include <linux/kernel.h>
25 #include <linux/module.h>
26 #include <linux/pci.h>
27 #include <linux/init.h>
28 #include <linux/blkdev.h>
29 #include <linux/delay.h>
30 #include <linux/interrupt.h>
31 #include <linux/dma-mapping.h>
32 #include <linux/device.h>
33 #include <scsi/scsi_host.h>
34 #include <scsi/scsi_cmnd.h>
35 #include <linux/libata.h>
37 #define DRV_NAME "sata_mv"
38 #define DRV_VERSION "0.8"
41 /* BAR's are enumerated in terms of pci_resource_start() terms */
42 MV_PRIMARY_BAR
= 0, /* offset 0x10: memory space */
43 MV_IO_BAR
= 2, /* offset 0x18: IO space */
44 MV_MISC_BAR
= 3, /* offset 0x1c: FLASH, NVRAM, SRAM */
46 MV_MAJOR_REG_AREA_SZ
= 0x10000, /* 64KB */
47 MV_MINOR_REG_AREA_SZ
= 0x2000, /* 8KB */
50 MV_IRQ_COAL_REG_BASE
= 0x18000, /* 6xxx part only */
51 MV_IRQ_COAL_CAUSE
= (MV_IRQ_COAL_REG_BASE
+ 0x08),
52 MV_IRQ_COAL_CAUSE_LO
= (MV_IRQ_COAL_REG_BASE
+ 0x88),
53 MV_IRQ_COAL_CAUSE_HI
= (MV_IRQ_COAL_REG_BASE
+ 0x8c),
54 MV_IRQ_COAL_THRESHOLD
= (MV_IRQ_COAL_REG_BASE
+ 0xcc),
55 MV_IRQ_COAL_TIME_THRESHOLD
= (MV_IRQ_COAL_REG_BASE
+ 0xd0),
57 MV_SATAHC0_REG_BASE
= 0x20000,
58 MV_FLASH_CTL
= 0x1046c,
59 MV_GPIO_PORT_CTL
= 0x104f0,
60 MV_RESET_CFG
= 0x180d8,
62 MV_PCI_REG_SZ
= MV_MAJOR_REG_AREA_SZ
,
63 MV_SATAHC_REG_SZ
= MV_MAJOR_REG_AREA_SZ
,
64 MV_SATAHC_ARBTR_REG_SZ
= MV_MINOR_REG_AREA_SZ
, /* arbiter */
65 MV_PORT_REG_SZ
= MV_MINOR_REG_AREA_SZ
,
67 MV_USE_Q_DEPTH
= ATA_DEF_QUEUE
,
70 MV_MAX_Q_DEPTH_MASK
= MV_MAX_Q_DEPTH
- 1,
72 /* CRQB needs alignment on a 1KB boundary. Size == 1KB
73 * CRPB needs alignment on a 256B boundary. Size == 256B
74 * SG count of 176 leads to MV_PORT_PRIV_DMA_SZ == 4KB
75 * ePRD (SG) entries need alignment on a 16B boundary. Size == 16B
77 MV_CRQB_Q_SZ
= (32 * MV_MAX_Q_DEPTH
),
78 MV_CRPB_Q_SZ
= (8 * MV_MAX_Q_DEPTH
),
80 MV_SG_TBL_SZ
= (16 * MV_MAX_SG_CT
),
81 MV_PORT_PRIV_DMA_SZ
= (MV_CRQB_Q_SZ
+ MV_CRPB_Q_SZ
+ MV_SG_TBL_SZ
),
84 /* == (port / MV_PORTS_PER_HC) to determine HC from 0-7 port */
86 /* == (port % MV_PORTS_PER_HC) to determine hard port from 0-7 port */
90 MV_FLAG_DUAL_HC
= (1 << 30), /* two SATA Host Controllers */
91 MV_FLAG_IRQ_COALESCE
= (1 << 29), /* IRQ coalescing capability */
92 MV_COMMON_FLAGS
= (ATA_FLAG_SATA
| ATA_FLAG_NO_LEGACY
|
93 ATA_FLAG_SATA_RESET
| ATA_FLAG_MMIO
|
94 ATA_FLAG_NO_ATAPI
| ATA_FLAG_PIO_POLLING
),
95 MV_6XXX_FLAGS
= MV_FLAG_IRQ_COALESCE
,
97 CRQB_FLAG_READ
= (1 << 0),
99 CRQB_CMD_ADDR_SHIFT
= 8,
100 CRQB_CMD_CS
= (0x2 << 11),
101 CRQB_CMD_LAST
= (1 << 15),
103 CRPB_FLAG_STATUS_SHIFT
= 8,
105 EPRD_FLAG_END_OF_TBL
= (1 << 31),
107 /* PCI interface registers */
109 PCI_COMMAND_OFS
= 0xc00,
111 PCI_MAIN_CMD_STS_OFS
= 0xd30,
112 STOP_PCI_MASTER
= (1 << 2),
113 PCI_MASTER_EMPTY
= (1 << 3),
114 GLOB_SFT_RST
= (1 << 4),
117 MV_PCI_EXP_ROM_BAR_CTL
= 0xd2c,
118 MV_PCI_DISC_TIMER
= 0xd04,
119 MV_PCI_MSI_TRIGGER
= 0xc38,
120 MV_PCI_SERR_MASK
= 0xc28,
121 MV_PCI_XBAR_TMOUT
= 0x1d04,
122 MV_PCI_ERR_LOW_ADDRESS
= 0x1d40,
123 MV_PCI_ERR_HIGH_ADDRESS
= 0x1d44,
124 MV_PCI_ERR_ATTRIBUTE
= 0x1d48,
125 MV_PCI_ERR_COMMAND
= 0x1d50,
127 PCI_IRQ_CAUSE_OFS
= 0x1d58,
128 PCI_IRQ_MASK_OFS
= 0x1d5c,
129 PCI_UNMASK_ALL_IRQS
= 0x7fffff, /* bits 22-0 */
131 HC_MAIN_IRQ_CAUSE_OFS
= 0x1d60,
132 HC_MAIN_IRQ_MASK_OFS
= 0x1d64,
133 PORT0_ERR
= (1 << 0), /* shift by port # */
134 PORT0_DONE
= (1 << 1), /* shift by port # */
135 HC0_IRQ_PEND
= 0x1ff, /* bits 0-8 = HC0's ports */
136 HC_SHIFT
= 9, /* bits 9-17 = HC1's ports */
138 TRAN_LO_DONE
= (1 << 19), /* 6xxx: IRQ coalescing */
139 TRAN_HI_DONE
= (1 << 20), /* 6xxx: IRQ coalescing */
140 PORTS_0_3_COAL_DONE
= (1 << 8),
141 PORTS_4_7_COAL_DONE
= (1 << 17),
142 PORTS_0_7_COAL_DONE
= (1 << 21), /* 6xxx: IRQ coalescing */
143 GPIO_INT
= (1 << 22),
144 SELF_INT
= (1 << 23),
145 TWSI_INT
= (1 << 24),
146 HC_MAIN_RSVD
= (0x7f << 25), /* bits 31-25 */
147 HC_MAIN_RSVD_5
= (0x1fff << 19), /* bits 31-19 */
148 HC_MAIN_MASKED_IRQS
= (TRAN_LO_DONE
| TRAN_HI_DONE
|
149 PORTS_0_7_COAL_DONE
| GPIO_INT
| TWSI_INT
|
151 HC_MAIN_MASKED_IRQS_5
= (PORTS_0_3_COAL_DONE
| PORTS_4_7_COAL_DONE
|
154 /* SATAHC registers */
157 HC_IRQ_CAUSE_OFS
= 0x14,
158 CRPB_DMA_DONE
= (1 << 0), /* shift by port # */
159 HC_IRQ_COAL
= (1 << 4), /* IRQ coalescing */
160 DEV_IRQ
= (1 << 8), /* shift by port # */
162 /* Shadow block registers */
164 SHD_CTL_AST_OFS
= 0x20, /* ofs from SHD_BLK_OFS */
167 SATA_STATUS_OFS
= 0x300, /* ctrl, err regs follow status */
168 SATA_ACTIVE_OFS
= 0x350,
175 SATA_INTERFACE_CTL
= 0x050,
177 MV_M2_PREAMP_MASK
= 0x7e0,
181 EDMA_CFG_Q_DEPTH
= 0, /* queueing disabled */
182 EDMA_CFG_NCQ
= (1 << 5),
183 EDMA_CFG_NCQ_GO_ON_ERR
= (1 << 14), /* continue on error */
184 EDMA_CFG_RD_BRST_EXT
= (1 << 11), /* read burst 512B */
185 EDMA_CFG_WR_BUFF_LEN
= (1 << 13), /* write buffer 512B */
187 EDMA_ERR_IRQ_CAUSE_OFS
= 0x8,
188 EDMA_ERR_IRQ_MASK_OFS
= 0xc,
189 EDMA_ERR_D_PAR
= (1 << 0),
190 EDMA_ERR_PRD_PAR
= (1 << 1),
191 EDMA_ERR_DEV
= (1 << 2),
192 EDMA_ERR_DEV_DCON
= (1 << 3),
193 EDMA_ERR_DEV_CON
= (1 << 4),
194 EDMA_ERR_SERR
= (1 << 5),
195 EDMA_ERR_SELF_DIS
= (1 << 7),
196 EDMA_ERR_BIST_ASYNC
= (1 << 8),
197 EDMA_ERR_CRBQ_PAR
= (1 << 9),
198 EDMA_ERR_CRPB_PAR
= (1 << 10),
199 EDMA_ERR_INTRL_PAR
= (1 << 11),
200 EDMA_ERR_IORDY
= (1 << 12),
201 EDMA_ERR_LNK_CTRL_RX
= (0xf << 13),
202 EDMA_ERR_LNK_CTRL_RX_2
= (1 << 15),
203 EDMA_ERR_LNK_DATA_RX
= (0xf << 17),
204 EDMA_ERR_LNK_CTRL_TX
= (0x1f << 21),
205 EDMA_ERR_LNK_DATA_TX
= (0x1f << 26),
206 EDMA_ERR_TRANS_PROTO
= (1 << 31),
207 EDMA_ERR_FATAL
= (EDMA_ERR_D_PAR
| EDMA_ERR_PRD_PAR
|
208 EDMA_ERR_DEV_DCON
| EDMA_ERR_CRBQ_PAR
|
209 EDMA_ERR_CRPB_PAR
| EDMA_ERR_INTRL_PAR
|
210 EDMA_ERR_IORDY
| EDMA_ERR_LNK_CTRL_RX_2
|
211 EDMA_ERR_LNK_DATA_RX
|
212 EDMA_ERR_LNK_DATA_TX
|
213 EDMA_ERR_TRANS_PROTO
),
215 EDMA_REQ_Q_BASE_HI_OFS
= 0x10,
216 EDMA_REQ_Q_IN_PTR_OFS
= 0x14, /* also contains BASE_LO */
218 EDMA_REQ_Q_OUT_PTR_OFS
= 0x18,
219 EDMA_REQ_Q_PTR_SHIFT
= 5,
221 EDMA_RSP_Q_BASE_HI_OFS
= 0x1c,
222 EDMA_RSP_Q_IN_PTR_OFS
= 0x20,
223 EDMA_RSP_Q_OUT_PTR_OFS
= 0x24, /* also contains BASE_LO */
224 EDMA_RSP_Q_PTR_SHIFT
= 3,
231 EDMA_IORDY_TMOUT
= 0x34,
234 /* Host private flags (hp_flags) */
235 MV_HP_FLAG_MSI
= (1 << 0),
236 MV_HP_ERRATA_50XXB0
= (1 << 1),
237 MV_HP_ERRATA_50XXB2
= (1 << 2),
238 MV_HP_ERRATA_60X1B2
= (1 << 3),
239 MV_HP_ERRATA_60X1C0
= (1 << 4),
240 MV_HP_ERRATA_XX42A0
= (1 << 5),
241 MV_HP_50XX
= (1 << 6),
242 MV_HP_GEN_IIE
= (1 << 7),
244 /* Port private flags (pp_flags) */
245 MV_PP_FLAG_EDMA_EN
= (1 << 0),
246 MV_PP_FLAG_EDMA_DS_ACT
= (1 << 1),
249 #define IS_50XX(hpriv) ((hpriv)->hp_flags & MV_HP_50XX)
250 #define IS_60XX(hpriv) (((hpriv)->hp_flags & MV_HP_50XX) == 0)
251 #define IS_GEN_I(hpriv) IS_50XX(hpriv)
252 #define IS_GEN_II(hpriv) IS_60XX(hpriv)
253 #define IS_GEN_IIE(hpriv) ((hpriv)->hp_flags & MV_HP_GEN_IIE)
256 /* Our DMA boundary is determined by an ePRD being unable to handle
257 * anything larger than 64KB
259 MV_DMA_BOUNDARY
= 0xffffU
,
261 EDMA_REQ_Q_BASE_LO_MASK
= 0xfffffc00U
,
263 EDMA_RSP_Q_BASE_LO_MASK
= 0xffffff00U
,
276 /* Command ReQuest Block: 32B */
292 /* Command ResPonse Block: 8B */
299 /* EDMA Physical Region Descriptor (ePRD); A.K.A. SG */
307 struct mv_port_priv
{
308 struct mv_crqb
*crqb
;
310 struct mv_crpb
*crpb
;
312 struct mv_sg
*sg_tbl
;
313 dma_addr_t sg_tbl_dma
;
317 struct mv_port_signal
{
324 void (*phy_errata
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
326 void (*enable_leds
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
327 void (*read_preamp
)(struct mv_host_priv
*hpriv
, int idx
,
329 int (*reset_hc
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
331 void (*reset_flash
)(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
332 void (*reset_bus
)(struct pci_dev
*pdev
, void __iomem
*mmio
);
335 struct mv_host_priv
{
337 struct mv_port_signal signal
[8];
338 const struct mv_hw_ops
*ops
;
341 static void mv_irq_clear(struct ata_port
*ap
);
342 static u32
mv_scr_read(struct ata_port
*ap
, unsigned int sc_reg_in
);
343 static void mv_scr_write(struct ata_port
*ap
, unsigned int sc_reg_in
, u32 val
);
344 static u32
mv5_scr_read(struct ata_port
*ap
, unsigned int sc_reg_in
);
345 static void mv5_scr_write(struct ata_port
*ap
, unsigned int sc_reg_in
, u32 val
);
346 static void mv_phy_reset(struct ata_port
*ap
);
347 static void __mv_phy_reset(struct ata_port
*ap
, int can_sleep
);
348 static int mv_port_start(struct ata_port
*ap
);
349 static void mv_port_stop(struct ata_port
*ap
);
350 static void mv_qc_prep(struct ata_queued_cmd
*qc
);
351 static void mv_qc_prep_iie(struct ata_queued_cmd
*qc
);
352 static unsigned int mv_qc_issue(struct ata_queued_cmd
*qc
);
353 static irqreturn_t
mv_interrupt(int irq
, void *dev_instance
);
354 static void mv_eng_timeout(struct ata_port
*ap
);
355 static int mv_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
);
357 static void mv5_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
359 static void mv5_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
360 static void mv5_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
362 static int mv5_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
364 static void mv5_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
365 static void mv5_reset_bus(struct pci_dev
*pdev
, void __iomem
*mmio
);
367 static void mv6_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
369 static void mv6_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
370 static void mv6_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
372 static int mv6_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
374 static void mv6_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
);
375 static void mv_reset_pci_bus(struct pci_dev
*pdev
, void __iomem
*mmio
);
376 static void mv_channel_reset(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
377 unsigned int port_no
);
378 static void mv_stop_and_reset(struct ata_port
*ap
);
380 static struct scsi_host_template mv_sht
= {
381 .module
= THIS_MODULE
,
383 .ioctl
= ata_scsi_ioctl
,
384 .queuecommand
= ata_scsi_queuecmd
,
385 .can_queue
= MV_USE_Q_DEPTH
,
386 .this_id
= ATA_SHT_THIS_ID
,
387 .sg_tablesize
= MV_MAX_SG_CT
/ 2,
388 .cmd_per_lun
= ATA_SHT_CMD_PER_LUN
,
389 .emulated
= ATA_SHT_EMULATED
,
390 .use_clustering
= ATA_SHT_USE_CLUSTERING
,
391 .proc_name
= DRV_NAME
,
392 .dma_boundary
= MV_DMA_BOUNDARY
,
393 .slave_configure
= ata_scsi_slave_config
,
394 .slave_destroy
= ata_scsi_slave_destroy
,
395 .bios_param
= ata_std_bios_param
,
398 static const struct ata_port_operations mv5_ops
= {
399 .port_disable
= ata_port_disable
,
401 .tf_load
= ata_tf_load
,
402 .tf_read
= ata_tf_read
,
403 .check_status
= ata_check_status
,
404 .exec_command
= ata_exec_command
,
405 .dev_select
= ata_std_dev_select
,
407 .phy_reset
= mv_phy_reset
,
409 .qc_prep
= mv_qc_prep
,
410 .qc_issue
= mv_qc_issue
,
411 .data_xfer
= ata_data_xfer
,
413 .eng_timeout
= mv_eng_timeout
,
415 .irq_handler
= mv_interrupt
,
416 .irq_clear
= mv_irq_clear
,
417 .irq_on
= ata_irq_on
,
418 .irq_ack
= ata_irq_ack
,
420 .scr_read
= mv5_scr_read
,
421 .scr_write
= mv5_scr_write
,
423 .port_start
= mv_port_start
,
424 .port_stop
= mv_port_stop
,
427 static const struct ata_port_operations mv6_ops
= {
428 .port_disable
= ata_port_disable
,
430 .tf_load
= ata_tf_load
,
431 .tf_read
= ata_tf_read
,
432 .check_status
= ata_check_status
,
433 .exec_command
= ata_exec_command
,
434 .dev_select
= ata_std_dev_select
,
436 .phy_reset
= mv_phy_reset
,
438 .qc_prep
= mv_qc_prep
,
439 .qc_issue
= mv_qc_issue
,
440 .data_xfer
= ata_data_xfer
,
442 .eng_timeout
= mv_eng_timeout
,
444 .irq_handler
= mv_interrupt
,
445 .irq_clear
= mv_irq_clear
,
446 .irq_on
= ata_irq_on
,
447 .irq_ack
= ata_irq_ack
,
449 .scr_read
= mv_scr_read
,
450 .scr_write
= mv_scr_write
,
452 .port_start
= mv_port_start
,
453 .port_stop
= mv_port_stop
,
456 static const struct ata_port_operations mv_iie_ops
= {
457 .port_disable
= ata_port_disable
,
459 .tf_load
= ata_tf_load
,
460 .tf_read
= ata_tf_read
,
461 .check_status
= ata_check_status
,
462 .exec_command
= ata_exec_command
,
463 .dev_select
= ata_std_dev_select
,
465 .phy_reset
= mv_phy_reset
,
467 .qc_prep
= mv_qc_prep_iie
,
468 .qc_issue
= mv_qc_issue
,
469 .data_xfer
= ata_data_xfer
,
471 .eng_timeout
= mv_eng_timeout
,
473 .irq_handler
= mv_interrupt
,
474 .irq_clear
= mv_irq_clear
,
475 .irq_on
= ata_irq_on
,
476 .irq_ack
= ata_irq_ack
,
478 .scr_read
= mv_scr_read
,
479 .scr_write
= mv_scr_write
,
481 .port_start
= mv_port_start
,
482 .port_stop
= mv_port_stop
,
485 static const struct ata_port_info mv_port_info
[] = {
488 .flags
= MV_COMMON_FLAGS
,
489 .pio_mask
= 0x1f, /* pio0-4 */
490 .udma_mask
= 0x7f, /* udma0-6 */
491 .port_ops
= &mv5_ops
,
495 .flags
= (MV_COMMON_FLAGS
| MV_FLAG_DUAL_HC
),
496 .pio_mask
= 0x1f, /* pio0-4 */
497 .udma_mask
= 0x7f, /* udma0-6 */
498 .port_ops
= &mv5_ops
,
502 .flags
= (MV_COMMON_FLAGS
| MV_FLAG_DUAL_HC
),
503 .pio_mask
= 0x1f, /* pio0-4 */
504 .udma_mask
= 0x7f, /* udma0-6 */
505 .port_ops
= &mv5_ops
,
509 .flags
= (MV_COMMON_FLAGS
| MV_6XXX_FLAGS
),
510 .pio_mask
= 0x1f, /* pio0-4 */
511 .udma_mask
= 0x7f, /* udma0-6 */
512 .port_ops
= &mv6_ops
,
516 .flags
= (MV_COMMON_FLAGS
| MV_6XXX_FLAGS
|
518 .pio_mask
= 0x1f, /* pio0-4 */
519 .udma_mask
= 0x7f, /* udma0-6 */
520 .port_ops
= &mv6_ops
,
524 .flags
= (MV_COMMON_FLAGS
| MV_6XXX_FLAGS
),
525 .pio_mask
= 0x1f, /* pio0-4 */
526 .udma_mask
= 0x7f, /* udma0-6 */
527 .port_ops
= &mv_iie_ops
,
531 .flags
= (MV_COMMON_FLAGS
| MV_6XXX_FLAGS
),
532 .pio_mask
= 0x1f, /* pio0-4 */
533 .udma_mask
= 0x7f, /* udma0-6 */
534 .port_ops
= &mv_iie_ops
,
538 static const struct pci_device_id mv_pci_tbl
[] = {
539 { PCI_VDEVICE(MARVELL
, 0x5040), chip_504x
},
540 { PCI_VDEVICE(MARVELL
, 0x5041), chip_504x
},
541 { PCI_VDEVICE(MARVELL
, 0x5080), chip_5080
},
542 { PCI_VDEVICE(MARVELL
, 0x5081), chip_508x
},
544 { PCI_VDEVICE(MARVELL
, 0x6040), chip_604x
},
545 { PCI_VDEVICE(MARVELL
, 0x6041), chip_604x
},
546 { PCI_VDEVICE(MARVELL
, 0x6042), chip_6042
},
547 { PCI_VDEVICE(MARVELL
, 0x6080), chip_608x
},
548 { PCI_VDEVICE(MARVELL
, 0x6081), chip_608x
},
550 { PCI_VDEVICE(ADAPTEC2
, 0x0241), chip_604x
},
552 { PCI_VDEVICE(TTI
, 0x2310), chip_7042
},
554 { } /* terminate list */
557 static struct pci_driver mv_pci_driver
= {
559 .id_table
= mv_pci_tbl
,
560 .probe
= mv_init_one
,
561 .remove
= ata_pci_remove_one
,
564 static const struct mv_hw_ops mv5xxx_ops
= {
565 .phy_errata
= mv5_phy_errata
,
566 .enable_leds
= mv5_enable_leds
,
567 .read_preamp
= mv5_read_preamp
,
568 .reset_hc
= mv5_reset_hc
,
569 .reset_flash
= mv5_reset_flash
,
570 .reset_bus
= mv5_reset_bus
,
573 static const struct mv_hw_ops mv6xxx_ops
= {
574 .phy_errata
= mv6_phy_errata
,
575 .enable_leds
= mv6_enable_leds
,
576 .read_preamp
= mv6_read_preamp
,
577 .reset_hc
= mv6_reset_hc
,
578 .reset_flash
= mv6_reset_flash
,
579 .reset_bus
= mv_reset_pci_bus
,
585 static int msi
; /* Use PCI msi; either zero (off, default) or non-zero */
592 static inline void writelfl(unsigned long data
, void __iomem
*addr
)
595 (void) readl(addr
); /* flush to avoid PCI posted write */
598 static inline void __iomem
*mv_hc_base(void __iomem
*base
, unsigned int hc
)
600 return (base
+ MV_SATAHC0_REG_BASE
+ (hc
* MV_SATAHC_REG_SZ
));
603 static inline unsigned int mv_hc_from_port(unsigned int port
)
605 return port
>> MV_PORT_HC_SHIFT
;
608 static inline unsigned int mv_hardport_from_port(unsigned int port
)
610 return port
& MV_PORT_MASK
;
613 static inline void __iomem
*mv_hc_base_from_port(void __iomem
*base
,
616 return mv_hc_base(base
, mv_hc_from_port(port
));
619 static inline void __iomem
*mv_port_base(void __iomem
*base
, unsigned int port
)
621 return mv_hc_base_from_port(base
, port
) +
622 MV_SATAHC_ARBTR_REG_SZ
+
623 (mv_hardport_from_port(port
) * MV_PORT_REG_SZ
);
626 static inline void __iomem
*mv_ap_base(struct ata_port
*ap
)
628 return mv_port_base(ap
->host
->iomap
[MV_PRIMARY_BAR
], ap
->port_no
);
631 static inline int mv_get_hc_count(unsigned long port_flags
)
633 return ((port_flags
& MV_FLAG_DUAL_HC
) ? 2 : 1);
636 static void mv_irq_clear(struct ata_port
*ap
)
641 * mv_start_dma - Enable eDMA engine
642 * @base: port base address
643 * @pp: port private data
645 * Verify the local cache of the eDMA state is accurate with a
649 * Inherited from caller.
651 static void mv_start_dma(void __iomem
*base
, struct mv_port_priv
*pp
)
653 if (!(MV_PP_FLAG_EDMA_EN
& pp
->pp_flags
)) {
654 writelfl(EDMA_EN
, base
+ EDMA_CMD_OFS
);
655 pp
->pp_flags
|= MV_PP_FLAG_EDMA_EN
;
657 WARN_ON(!(EDMA_EN
& readl(base
+ EDMA_CMD_OFS
)));
661 * mv_stop_dma - Disable eDMA engine
662 * @ap: ATA channel to manipulate
664 * Verify the local cache of the eDMA state is accurate with a
668 * Inherited from caller.
670 static void mv_stop_dma(struct ata_port
*ap
)
672 void __iomem
*port_mmio
= mv_ap_base(ap
);
673 struct mv_port_priv
*pp
= ap
->private_data
;
677 if (MV_PP_FLAG_EDMA_EN
& pp
->pp_flags
) {
678 /* Disable EDMA if active. The disable bit auto clears.
680 writelfl(EDMA_DS
, port_mmio
+ EDMA_CMD_OFS
);
681 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
683 WARN_ON(EDMA_EN
& readl(port_mmio
+ EDMA_CMD_OFS
));
686 /* now properly wait for the eDMA to stop */
687 for (i
= 1000; i
> 0; i
--) {
688 reg
= readl(port_mmio
+ EDMA_CMD_OFS
);
689 if (!(EDMA_EN
& reg
)) {
696 ata_port_printk(ap
, KERN_ERR
, "Unable to stop eDMA\n");
697 /* FIXME: Consider doing a reset here to recover */
702 static void mv_dump_mem(void __iomem
*start
, unsigned bytes
)
705 for (b
= 0; b
< bytes
; ) {
706 DPRINTK("%p: ", start
+ b
);
707 for (w
= 0; b
< bytes
&& w
< 4; w
++) {
708 printk("%08x ",readl(start
+ b
));
716 static void mv_dump_pci_cfg(struct pci_dev
*pdev
, unsigned bytes
)
721 for (b
= 0; b
< bytes
; ) {
722 DPRINTK("%02x: ", b
);
723 for (w
= 0; b
< bytes
&& w
< 4; w
++) {
724 (void) pci_read_config_dword(pdev
,b
,&dw
);
732 static void mv_dump_all_regs(void __iomem
*mmio_base
, int port
,
733 struct pci_dev
*pdev
)
736 void __iomem
*hc_base
= mv_hc_base(mmio_base
,
737 port
>> MV_PORT_HC_SHIFT
);
738 void __iomem
*port_base
;
739 int start_port
, num_ports
, p
, start_hc
, num_hcs
, hc
;
742 start_hc
= start_port
= 0;
743 num_ports
= 8; /* shld be benign for 4 port devs */
746 start_hc
= port
>> MV_PORT_HC_SHIFT
;
748 num_ports
= num_hcs
= 1;
750 DPRINTK("All registers for port(s) %u-%u:\n", start_port
,
751 num_ports
> 1 ? num_ports
- 1 : start_port
);
754 DPRINTK("PCI config space regs:\n");
755 mv_dump_pci_cfg(pdev
, 0x68);
757 DPRINTK("PCI regs:\n");
758 mv_dump_mem(mmio_base
+0xc00, 0x3c);
759 mv_dump_mem(mmio_base
+0xd00, 0x34);
760 mv_dump_mem(mmio_base
+0xf00, 0x4);
761 mv_dump_mem(mmio_base
+0x1d00, 0x6c);
762 for (hc
= start_hc
; hc
< start_hc
+ num_hcs
; hc
++) {
763 hc_base
= mv_hc_base(mmio_base
, hc
);
764 DPRINTK("HC regs (HC %i):\n", hc
);
765 mv_dump_mem(hc_base
, 0x1c);
767 for (p
= start_port
; p
< start_port
+ num_ports
; p
++) {
768 port_base
= mv_port_base(mmio_base
, p
);
769 DPRINTK("EDMA regs (port %i):\n",p
);
770 mv_dump_mem(port_base
, 0x54);
771 DPRINTK("SATA regs (port %i):\n",p
);
772 mv_dump_mem(port_base
+0x300, 0x60);
777 static unsigned int mv_scr_offset(unsigned int sc_reg_in
)
785 ofs
= SATA_STATUS_OFS
+ (sc_reg_in
* sizeof(u32
));
788 ofs
= SATA_ACTIVE_OFS
; /* active is not with the others */
797 static u32
mv_scr_read(struct ata_port
*ap
, unsigned int sc_reg_in
)
799 unsigned int ofs
= mv_scr_offset(sc_reg_in
);
801 if (0xffffffffU
!= ofs
) {
802 return readl(mv_ap_base(ap
) + ofs
);
808 static void mv_scr_write(struct ata_port
*ap
, unsigned int sc_reg_in
, u32 val
)
810 unsigned int ofs
= mv_scr_offset(sc_reg_in
);
812 if (0xffffffffU
!= ofs
) {
813 writelfl(val
, mv_ap_base(ap
) + ofs
);
817 static void mv_edma_cfg(struct mv_host_priv
*hpriv
, void __iomem
*port_mmio
)
819 u32 cfg
= readl(port_mmio
+ EDMA_CFG_OFS
);
821 /* set up non-NCQ EDMA configuration */
822 cfg
&= ~(1 << 9); /* disable equeue */
824 if (IS_GEN_I(hpriv
)) {
825 cfg
&= ~0x1f; /* clear queue depth */
826 cfg
|= (1 << 8); /* enab config burst size mask */
829 else if (IS_GEN_II(hpriv
)) {
830 cfg
&= ~0x1f; /* clear queue depth */
831 cfg
|= EDMA_CFG_RD_BRST_EXT
| EDMA_CFG_WR_BUFF_LEN
;
832 cfg
&= ~(EDMA_CFG_NCQ
| EDMA_CFG_NCQ_GO_ON_ERR
); /* clear NCQ */
835 else if (IS_GEN_IIE(hpriv
)) {
836 cfg
|= (1 << 23); /* do not mask PM field in rx'd FIS */
837 cfg
|= (1 << 22); /* enab 4-entry host queue cache */
838 cfg
&= ~(1 << 19); /* dis 128-entry queue (for now?) */
839 cfg
|= (1 << 18); /* enab early completion */
840 cfg
|= (1 << 17); /* enab cut-through (dis stor&forwrd) */
841 cfg
&= ~(1 << 16); /* dis FIS-based switching (for now) */
842 cfg
&= ~(EDMA_CFG_NCQ
| EDMA_CFG_NCQ_GO_ON_ERR
); /* clear NCQ */
845 writelfl(cfg
, port_mmio
+ EDMA_CFG_OFS
);
849 * mv_port_start - Port specific init/start routine.
850 * @ap: ATA channel to manipulate
852 * Allocate and point to DMA memory, init port private memory,
856 * Inherited from caller.
858 static int mv_port_start(struct ata_port
*ap
)
860 struct device
*dev
= ap
->host
->dev
;
861 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
862 struct mv_port_priv
*pp
;
863 void __iomem
*port_mmio
= mv_ap_base(ap
);
868 pp
= devm_kzalloc(dev
, sizeof(*pp
), GFP_KERNEL
);
872 mem
= dmam_alloc_coherent(dev
, MV_PORT_PRIV_DMA_SZ
, &mem_dma
,
876 memset(mem
, 0, MV_PORT_PRIV_DMA_SZ
);
878 rc
= ata_pad_alloc(ap
, dev
);
882 /* First item in chunk of DMA memory:
883 * 32-slot command request table (CRQB), 32 bytes each in size
886 pp
->crqb_dma
= mem_dma
;
888 mem_dma
+= MV_CRQB_Q_SZ
;
891 * 32-slot command response table (CRPB), 8 bytes each in size
894 pp
->crpb_dma
= mem_dma
;
896 mem_dma
+= MV_CRPB_Q_SZ
;
899 * Table of scatter-gather descriptors (ePRD), 16 bytes each
902 pp
->sg_tbl_dma
= mem_dma
;
904 mv_edma_cfg(hpriv
, port_mmio
);
906 writel((pp
->crqb_dma
>> 16) >> 16, port_mmio
+ EDMA_REQ_Q_BASE_HI_OFS
);
907 writelfl(pp
->crqb_dma
& EDMA_REQ_Q_BASE_LO_MASK
,
908 port_mmio
+ EDMA_REQ_Q_IN_PTR_OFS
);
910 if (hpriv
->hp_flags
& MV_HP_ERRATA_XX42A0
)
911 writelfl(pp
->crqb_dma
& 0xffffffff,
912 port_mmio
+ EDMA_REQ_Q_OUT_PTR_OFS
);
914 writelfl(0, port_mmio
+ EDMA_REQ_Q_OUT_PTR_OFS
);
916 writel((pp
->crpb_dma
>> 16) >> 16, port_mmio
+ EDMA_RSP_Q_BASE_HI_OFS
);
918 if (hpriv
->hp_flags
& MV_HP_ERRATA_XX42A0
)
919 writelfl(pp
->crpb_dma
& 0xffffffff,
920 port_mmio
+ EDMA_RSP_Q_IN_PTR_OFS
);
922 writelfl(0, port_mmio
+ EDMA_RSP_Q_IN_PTR_OFS
);
924 writelfl(pp
->crpb_dma
& EDMA_RSP_Q_BASE_LO_MASK
,
925 port_mmio
+ EDMA_RSP_Q_OUT_PTR_OFS
);
927 /* Don't turn on EDMA here...do it before DMA commands only. Else
928 * we'll be unable to send non-data, PIO, etc due to restricted access
931 ap
->private_data
= pp
;
936 * mv_port_stop - Port specific cleanup/stop routine.
937 * @ap: ATA channel to manipulate
939 * Stop DMA, cleanup port memory.
942 * This routine uses the host lock to protect the DMA stop.
944 static void mv_port_stop(struct ata_port
*ap
)
948 spin_lock_irqsave(&ap
->host
->lock
, flags
);
950 spin_unlock_irqrestore(&ap
->host
->lock
, flags
);
954 * mv_fill_sg - Fill out the Marvell ePRD (scatter gather) entries
955 * @qc: queued command whose SG list to source from
957 * Populate the SG list and mark the last entry.
960 * Inherited from caller.
962 static void mv_fill_sg(struct ata_queued_cmd
*qc
)
964 struct mv_port_priv
*pp
= qc
->ap
->private_data
;
966 struct scatterlist
*sg
;
968 ata_for_each_sg(sg
, qc
) {
970 u32 sg_len
, len
, offset
;
972 addr
= sg_dma_address(sg
);
973 sg_len
= sg_dma_len(sg
);
976 offset
= addr
& MV_DMA_BOUNDARY
;
978 if ((offset
+ sg_len
) > 0x10000)
979 len
= 0x10000 - offset
;
981 pp
->sg_tbl
[i
].addr
= cpu_to_le32(addr
& 0xffffffff);
982 pp
->sg_tbl
[i
].addr_hi
= cpu_to_le32((addr
>> 16) >> 16);
983 pp
->sg_tbl
[i
].flags_size
= cpu_to_le32(len
& 0xffff);
988 if (!sg_len
&& ata_sg_is_last(sg
, qc
))
989 pp
->sg_tbl
[i
].flags_size
|= cpu_to_le32(EPRD_FLAG_END_OF_TBL
);
996 static inline unsigned mv_inc_q_index(unsigned index
)
998 return (index
+ 1) & MV_MAX_Q_DEPTH_MASK
;
1001 static inline void mv_crqb_pack_cmd(__le16
*cmdw
, u8 data
, u8 addr
, unsigned last
)
1003 u16 tmp
= data
| (addr
<< CRQB_CMD_ADDR_SHIFT
) | CRQB_CMD_CS
|
1004 (last
? CRQB_CMD_LAST
: 0);
1005 *cmdw
= cpu_to_le16(tmp
);
1009 * mv_qc_prep - Host specific command preparation.
1010 * @qc: queued command to prepare
1012 * This routine simply redirects to the general purpose routine
1013 * if command is not DMA. Else, it handles prep of the CRQB
1014 * (command request block), does some sanity checking, and calls
1015 * the SG load routine.
1018 * Inherited from caller.
1020 static void mv_qc_prep(struct ata_queued_cmd
*qc
)
1022 struct ata_port
*ap
= qc
->ap
;
1023 struct mv_port_priv
*pp
= ap
->private_data
;
1025 struct ata_taskfile
*tf
;
1029 if (ATA_PROT_DMA
!= qc
->tf
.protocol
)
1032 /* Fill in command request block
1034 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
1035 flags
|= CRQB_FLAG_READ
;
1036 WARN_ON(MV_MAX_Q_DEPTH
<= qc
->tag
);
1037 flags
|= qc
->tag
<< CRQB_TAG_SHIFT
;
1039 /* get current queue index from hardware */
1040 in_index
= (readl(mv_ap_base(ap
) + EDMA_REQ_Q_IN_PTR_OFS
)
1041 >> EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
1043 pp
->crqb
[in_index
].sg_addr
=
1044 cpu_to_le32(pp
->sg_tbl_dma
& 0xffffffff);
1045 pp
->crqb
[in_index
].sg_addr_hi
=
1046 cpu_to_le32((pp
->sg_tbl_dma
>> 16) >> 16);
1047 pp
->crqb
[in_index
].ctrl_flags
= cpu_to_le16(flags
);
1049 cw
= &pp
->crqb
[in_index
].ata_cmd
[0];
1052 /* Sadly, the CRQB cannot accomodate all registers--there are
1053 * only 11 bytes...so we must pick and choose required
1054 * registers based on the command. So, we drop feature and
1055 * hob_feature for [RW] DMA commands, but they are needed for
1056 * NCQ. NCQ will drop hob_nsect.
1058 switch (tf
->command
) {
1060 case ATA_CMD_READ_EXT
:
1062 case ATA_CMD_WRITE_EXT
:
1063 case ATA_CMD_WRITE_FUA_EXT
:
1064 mv_crqb_pack_cmd(cw
++, tf
->hob_nsect
, ATA_REG_NSECT
, 0);
1066 #ifdef LIBATA_NCQ /* FIXME: remove this line when NCQ added */
1067 case ATA_CMD_FPDMA_READ
:
1068 case ATA_CMD_FPDMA_WRITE
:
1069 mv_crqb_pack_cmd(cw
++, tf
->hob_feature
, ATA_REG_FEATURE
, 0);
1070 mv_crqb_pack_cmd(cw
++, tf
->feature
, ATA_REG_FEATURE
, 0);
1072 #endif /* FIXME: remove this line when NCQ added */
1074 /* The only other commands EDMA supports in non-queued and
1075 * non-NCQ mode are: [RW] STREAM DMA and W DMA FUA EXT, none
1076 * of which are defined/used by Linux. If we get here, this
1077 * driver needs work.
1079 * FIXME: modify libata to give qc_prep a return value and
1080 * return error here.
1082 BUG_ON(tf
->command
);
1085 mv_crqb_pack_cmd(cw
++, tf
->nsect
, ATA_REG_NSECT
, 0);
1086 mv_crqb_pack_cmd(cw
++, tf
->hob_lbal
, ATA_REG_LBAL
, 0);
1087 mv_crqb_pack_cmd(cw
++, tf
->lbal
, ATA_REG_LBAL
, 0);
1088 mv_crqb_pack_cmd(cw
++, tf
->hob_lbam
, ATA_REG_LBAM
, 0);
1089 mv_crqb_pack_cmd(cw
++, tf
->lbam
, ATA_REG_LBAM
, 0);
1090 mv_crqb_pack_cmd(cw
++, tf
->hob_lbah
, ATA_REG_LBAH
, 0);
1091 mv_crqb_pack_cmd(cw
++, tf
->lbah
, ATA_REG_LBAH
, 0);
1092 mv_crqb_pack_cmd(cw
++, tf
->device
, ATA_REG_DEVICE
, 0);
1093 mv_crqb_pack_cmd(cw
++, tf
->command
, ATA_REG_CMD
, 1); /* last */
1095 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
1101 * mv_qc_prep_iie - Host specific command preparation.
1102 * @qc: queued command to prepare
1104 * This routine simply redirects to the general purpose routine
1105 * if command is not DMA. Else, it handles prep of the CRQB
1106 * (command request block), does some sanity checking, and calls
1107 * the SG load routine.
1110 * Inherited from caller.
1112 static void mv_qc_prep_iie(struct ata_queued_cmd
*qc
)
1114 struct ata_port
*ap
= qc
->ap
;
1115 struct mv_port_priv
*pp
= ap
->private_data
;
1116 struct mv_crqb_iie
*crqb
;
1117 struct ata_taskfile
*tf
;
1121 if (ATA_PROT_DMA
!= qc
->tf
.protocol
)
1124 /* Fill in Gen IIE command request block
1126 if (!(qc
->tf
.flags
& ATA_TFLAG_WRITE
))
1127 flags
|= CRQB_FLAG_READ
;
1129 WARN_ON(MV_MAX_Q_DEPTH
<= qc
->tag
);
1130 flags
|= qc
->tag
<< CRQB_TAG_SHIFT
;
1132 /* get current queue index from hardware */
1133 in_index
= (readl(mv_ap_base(ap
) + EDMA_REQ_Q_IN_PTR_OFS
)
1134 >> EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
1136 crqb
= (struct mv_crqb_iie
*) &pp
->crqb
[in_index
];
1137 crqb
->addr
= cpu_to_le32(pp
->sg_tbl_dma
& 0xffffffff);
1138 crqb
->addr_hi
= cpu_to_le32((pp
->sg_tbl_dma
>> 16) >> 16);
1139 crqb
->flags
= cpu_to_le32(flags
);
1142 crqb
->ata_cmd
[0] = cpu_to_le32(
1143 (tf
->command
<< 16) |
1146 crqb
->ata_cmd
[1] = cpu_to_le32(
1152 crqb
->ata_cmd
[2] = cpu_to_le32(
1153 (tf
->hob_lbal
<< 0) |
1154 (tf
->hob_lbam
<< 8) |
1155 (tf
->hob_lbah
<< 16) |
1156 (tf
->hob_feature
<< 24)
1158 crqb
->ata_cmd
[3] = cpu_to_le32(
1160 (tf
->hob_nsect
<< 8)
1163 if (!(qc
->flags
& ATA_QCFLAG_DMAMAP
))
1169 * mv_qc_issue - Initiate a command to the host
1170 * @qc: queued command to start
1172 * This routine simply redirects to the general purpose routine
1173 * if command is not DMA. Else, it sanity checks our local
1174 * caches of the request producer/consumer indices then enables
1175 * DMA and bumps the request producer index.
1178 * Inherited from caller.
1180 static unsigned int mv_qc_issue(struct ata_queued_cmd
*qc
)
1182 void __iomem
*port_mmio
= mv_ap_base(qc
->ap
);
1183 struct mv_port_priv
*pp
= qc
->ap
->private_data
;
1187 if (ATA_PROT_DMA
!= qc
->tf
.protocol
) {
1188 /* We're about to send a non-EDMA capable command to the
1189 * port. Turn off EDMA so there won't be problems accessing
1190 * shadow block, etc registers.
1192 mv_stop_dma(qc
->ap
);
1193 return ata_qc_issue_prot(qc
);
1196 in_ptr
= readl(port_mmio
+ EDMA_REQ_Q_IN_PTR_OFS
);
1197 in_index
= (in_ptr
>> EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
1199 /* until we do queuing, the queue should be empty at this point */
1200 WARN_ON(in_index
!= ((readl(port_mmio
+ EDMA_REQ_Q_OUT_PTR_OFS
)
1201 >> EDMA_REQ_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
));
1203 in_index
= mv_inc_q_index(in_index
); /* now incr producer index */
1205 mv_start_dma(port_mmio
, pp
);
1207 /* and write the request in pointer to kick the EDMA to life */
1208 in_ptr
&= EDMA_REQ_Q_BASE_LO_MASK
;
1209 in_ptr
|= in_index
<< EDMA_REQ_Q_PTR_SHIFT
;
1210 writelfl(in_ptr
, port_mmio
+ EDMA_REQ_Q_IN_PTR_OFS
);
1216 * mv_get_crpb_status - get status from most recently completed cmd
1217 * @ap: ATA channel to manipulate
1219 * This routine is for use when the port is in DMA mode, when it
1220 * will be using the CRPB (command response block) method of
1221 * returning command completion information. We check indices
1222 * are good, grab status, and bump the response consumer index to
1223 * prove that we're up to date.
1226 * Inherited from caller.
1228 static u8
mv_get_crpb_status(struct ata_port
*ap
)
1230 void __iomem
*port_mmio
= mv_ap_base(ap
);
1231 struct mv_port_priv
*pp
= ap
->private_data
;
1236 out_ptr
= readl(port_mmio
+ EDMA_RSP_Q_OUT_PTR_OFS
);
1237 out_index
= (out_ptr
>> EDMA_RSP_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
;
1239 ata_status
= le16_to_cpu(pp
->crpb
[out_index
].flags
)
1240 >> CRPB_FLAG_STATUS_SHIFT
;
1242 /* increment our consumer index... */
1243 out_index
= mv_inc_q_index(out_index
);
1245 /* and, until we do NCQ, there should only be 1 CRPB waiting */
1246 WARN_ON(out_index
!= ((readl(port_mmio
+ EDMA_RSP_Q_IN_PTR_OFS
)
1247 >> EDMA_RSP_Q_PTR_SHIFT
) & MV_MAX_Q_DEPTH_MASK
));
1249 /* write out our inc'd consumer index so EDMA knows we're caught up */
1250 out_ptr
&= EDMA_RSP_Q_BASE_LO_MASK
;
1251 out_ptr
|= out_index
<< EDMA_RSP_Q_PTR_SHIFT
;
1252 writelfl(out_ptr
, port_mmio
+ EDMA_RSP_Q_OUT_PTR_OFS
);
1254 /* Return ATA status register for completed CRPB */
1259 * mv_err_intr - Handle error interrupts on the port
1260 * @ap: ATA channel to manipulate
1261 * @reset_allowed: bool: 0 == don't trigger from reset here
1263 * In most cases, just clear the interrupt and move on. However,
1264 * some cases require an eDMA reset, which is done right before
1265 * the COMRESET in mv_phy_reset(). The SERR case requires a
1266 * clear of pending errors in the SATA SERROR register. Finally,
1267 * if the port disabled DMA, update our cached copy to match.
1270 * Inherited from caller.
1272 static void mv_err_intr(struct ata_port
*ap
, int reset_allowed
)
1274 void __iomem
*port_mmio
= mv_ap_base(ap
);
1275 u32 edma_err_cause
, serr
= 0;
1277 edma_err_cause
= readl(port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
1279 if (EDMA_ERR_SERR
& edma_err_cause
) {
1280 sata_scr_read(ap
, SCR_ERROR
, &serr
);
1281 sata_scr_write_flush(ap
, SCR_ERROR
, serr
);
1283 if (EDMA_ERR_SELF_DIS
& edma_err_cause
) {
1284 struct mv_port_priv
*pp
= ap
->private_data
;
1285 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
1287 DPRINTK(KERN_ERR
"ata%u: port error; EDMA err cause: 0x%08x "
1288 "SERR: 0x%08x\n", ap
->print_id
, edma_err_cause
, serr
);
1290 /* Clear EDMA now that SERR cleanup done */
1291 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
1293 /* check for fatal here and recover if needed */
1294 if (reset_allowed
&& (EDMA_ERR_FATAL
& edma_err_cause
))
1295 mv_stop_and_reset(ap
);
1299 * mv_host_intr - Handle all interrupts on the given host controller
1300 * @host: host specific structure
1301 * @relevant: port error bits relevant to this host controller
1302 * @hc: which host controller we're to look at
1304 * Read then write clear the HC interrupt status then walk each
1305 * port connected to the HC and see if it needs servicing. Port
1306 * success ints are reported in the HC interrupt status reg, the
1307 * port error ints are reported in the higher level main
1308 * interrupt status register and thus are passed in via the
1309 * 'relevant' argument.
1312 * Inherited from caller.
1314 static void mv_host_intr(struct ata_host
*host
, u32 relevant
, unsigned int hc
)
1316 void __iomem
*mmio
= host
->iomap
[MV_PRIMARY_BAR
];
1317 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
1318 struct ata_queued_cmd
*qc
;
1320 int shift
, port
, port0
, hard_port
, handled
;
1321 unsigned int err_mask
;
1326 port0
= MV_PORTS_PER_HC
;
1329 /* we'll need the HC success int register in most cases */
1330 hc_irq_cause
= readl(hc_mmio
+ HC_IRQ_CAUSE_OFS
);
1332 writelfl(~hc_irq_cause
, hc_mmio
+ HC_IRQ_CAUSE_OFS
);
1335 VPRINTK("ENTER, hc%u relevant=0x%08x HC IRQ cause=0x%08x\n",
1336 hc
,relevant
,hc_irq_cause
);
1338 for (port
= port0
; port
< port0
+ MV_PORTS_PER_HC
; port
++) {
1340 struct ata_port
*ap
= host
->ports
[port
];
1341 struct mv_port_priv
*pp
= ap
->private_data
;
1343 hard_port
= mv_hardport_from_port(port
); /* range 0..3 */
1344 handled
= 0; /* ensure ata_status is set if handled++ */
1346 /* Note that DEV_IRQ might happen spuriously during EDMA,
1347 * and should be ignored in such cases.
1348 * The cause of this is still under investigation.
1350 if (pp
->pp_flags
& MV_PP_FLAG_EDMA_EN
) {
1351 /* EDMA: check for response queue interrupt */
1352 if ((CRPB_DMA_DONE
<< hard_port
) & hc_irq_cause
) {
1353 ata_status
= mv_get_crpb_status(ap
);
1357 /* PIO: check for device (drive) interrupt */
1358 if ((DEV_IRQ
<< hard_port
) & hc_irq_cause
) {
1359 ata_status
= readb(ap
->ioaddr
.status_addr
);
1361 /* ignore spurious intr if drive still BUSY */
1362 if (ata_status
& ATA_BUSY
) {
1369 if (ap
&& (ap
->flags
& ATA_FLAG_DISABLED
))
1372 err_mask
= ac_err_mask(ata_status
);
1374 shift
= port
<< 1; /* (port * 2) */
1375 if (port
>= MV_PORTS_PER_HC
) {
1376 shift
++; /* skip bit 8 in the HC Main IRQ reg */
1378 if ((PORT0_ERR
<< shift
) & relevant
) {
1380 err_mask
|= AC_ERR_OTHER
;
1385 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
1386 if (qc
&& (qc
->flags
& ATA_QCFLAG_ACTIVE
)) {
1387 VPRINTK("port %u IRQ found for qc, "
1388 "ata_status 0x%x\n", port
,ata_status
);
1389 /* mark qc status appropriately */
1390 if (!(qc
->tf
.flags
& ATA_TFLAG_POLLING
)) {
1391 qc
->err_mask
|= err_mask
;
1392 ata_qc_complete(qc
);
1403 * @dev_instance: private data; in this case the host structure
1406 * Read the read only register to determine if any host
1407 * controllers have pending interrupts. If so, call lower level
1408 * routine to handle. Also check for PCI errors which are only
1412 * This routine holds the host lock while processing pending
1415 static irqreturn_t
mv_interrupt(int irq
, void *dev_instance
)
1417 struct ata_host
*host
= dev_instance
;
1418 unsigned int hc
, handled
= 0, n_hcs
;
1419 void __iomem
*mmio
= host
->iomap
[MV_PRIMARY_BAR
];
1420 struct mv_host_priv
*hpriv
;
1423 irq_stat
= readl(mmio
+ HC_MAIN_IRQ_CAUSE_OFS
);
1425 /* check the cases where we either have nothing pending or have read
1426 * a bogus register value which can indicate HW removal or PCI fault
1428 if (!irq_stat
|| (0xffffffffU
== irq_stat
)) {
1432 n_hcs
= mv_get_hc_count(host
->ports
[0]->flags
);
1433 spin_lock(&host
->lock
);
1435 for (hc
= 0; hc
< n_hcs
; hc
++) {
1436 u32 relevant
= irq_stat
& (HC0_IRQ_PEND
<< (hc
* HC_SHIFT
));
1438 mv_host_intr(host
, relevant
, hc
);
1443 hpriv
= host
->private_data
;
1444 if (IS_60XX(hpriv
)) {
1445 /* deal with the interrupt coalescing bits */
1446 if (irq_stat
& (TRAN_LO_DONE
| TRAN_HI_DONE
| PORTS_0_7_COAL_DONE
)) {
1447 writelfl(0, mmio
+ MV_IRQ_COAL_CAUSE_LO
);
1448 writelfl(0, mmio
+ MV_IRQ_COAL_CAUSE_HI
);
1449 writelfl(0, mmio
+ MV_IRQ_COAL_CAUSE
);
1453 if (PCI_ERR
& irq_stat
) {
1454 printk(KERN_ERR DRV_NAME
": PCI ERROR; PCI IRQ cause=0x%08x\n",
1455 readl(mmio
+ PCI_IRQ_CAUSE_OFS
));
1457 DPRINTK("All regs @ PCI error\n");
1458 mv_dump_all_regs(mmio
, -1, to_pci_dev(host
->dev
));
1460 writelfl(0, mmio
+ PCI_IRQ_CAUSE_OFS
);
1463 spin_unlock(&host
->lock
);
1465 return IRQ_RETVAL(handled
);
1468 static void __iomem
*mv5_phy_base(void __iomem
*mmio
, unsigned int port
)
1470 void __iomem
*hc_mmio
= mv_hc_base_from_port(mmio
, port
);
1471 unsigned long ofs
= (mv_hardport_from_port(port
) + 1) * 0x100UL
;
1473 return hc_mmio
+ ofs
;
1476 static unsigned int mv5_scr_offset(unsigned int sc_reg_in
)
1480 switch (sc_reg_in
) {
1484 ofs
= sc_reg_in
* sizeof(u32
);
1493 static u32
mv5_scr_read(struct ata_port
*ap
, unsigned int sc_reg_in
)
1495 void __iomem
*mmio
= ap
->host
->iomap
[MV_PRIMARY_BAR
];
1496 void __iomem
*addr
= mv5_phy_base(mmio
, ap
->port_no
);
1497 unsigned int ofs
= mv5_scr_offset(sc_reg_in
);
1499 if (ofs
!= 0xffffffffU
)
1500 return readl(addr
+ ofs
);
1505 static void mv5_scr_write(struct ata_port
*ap
, unsigned int sc_reg_in
, u32 val
)
1507 void __iomem
*mmio
= ap
->host
->iomap
[MV_PRIMARY_BAR
];
1508 void __iomem
*addr
= mv5_phy_base(mmio
, ap
->port_no
);
1509 unsigned int ofs
= mv5_scr_offset(sc_reg_in
);
1511 if (ofs
!= 0xffffffffU
)
1512 writelfl(val
, addr
+ ofs
);
1515 static void mv5_reset_bus(struct pci_dev
*pdev
, void __iomem
*mmio
)
1520 pci_read_config_byte(pdev
, PCI_REVISION_ID
, &rev_id
);
1522 early_5080
= (pdev
->device
== 0x5080) && (rev_id
== 0);
1525 u32 tmp
= readl(mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
1527 writel(tmp
, mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
1530 mv_reset_pci_bus(pdev
, mmio
);
1533 static void mv5_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
1535 writel(0x0fcfffff, mmio
+ MV_FLASH_CTL
);
1538 static void mv5_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
1541 void __iomem
*phy_mmio
= mv5_phy_base(mmio
, idx
);
1544 tmp
= readl(phy_mmio
+ MV5_PHY_MODE
);
1546 hpriv
->signal
[idx
].pre
= tmp
& 0x1800; /* bits 12:11 */
1547 hpriv
->signal
[idx
].amps
= tmp
& 0xe0; /* bits 7:5 */
1550 static void mv5_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
1554 writel(0, mmio
+ MV_GPIO_PORT_CTL
);
1556 /* FIXME: handle MV_HP_ERRATA_50XXB2 errata */
1558 tmp
= readl(mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
1560 writel(tmp
, mmio
+ MV_PCI_EXP_ROM_BAR_CTL
);
1563 static void mv5_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
1566 void __iomem
*phy_mmio
= mv5_phy_base(mmio
, port
);
1567 const u32 mask
= (1<<12) | (1<<11) | (1<<7) | (1<<6) | (1<<5);
1569 int fix_apm_sq
= (hpriv
->hp_flags
& MV_HP_ERRATA_50XXB0
);
1572 tmp
= readl(phy_mmio
+ MV5_LT_MODE
);
1574 writel(tmp
, phy_mmio
+ MV5_LT_MODE
);
1576 tmp
= readl(phy_mmio
+ MV5_PHY_CTL
);
1579 writel(tmp
, phy_mmio
+ MV5_PHY_CTL
);
1582 tmp
= readl(phy_mmio
+ MV5_PHY_MODE
);
1584 tmp
|= hpriv
->signal
[port
].pre
;
1585 tmp
|= hpriv
->signal
[port
].amps
;
1586 writel(tmp
, phy_mmio
+ MV5_PHY_MODE
);
1591 #define ZERO(reg) writel(0, port_mmio + (reg))
1592 static void mv5_reset_hc_port(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
1595 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
1597 writelfl(EDMA_DS
, port_mmio
+ EDMA_CMD_OFS
);
1599 mv_channel_reset(hpriv
, mmio
, port
);
1601 ZERO(0x028); /* command */
1602 writel(0x11f, port_mmio
+ EDMA_CFG_OFS
);
1603 ZERO(0x004); /* timer */
1604 ZERO(0x008); /* irq err cause */
1605 ZERO(0x00c); /* irq err mask */
1606 ZERO(0x010); /* rq bah */
1607 ZERO(0x014); /* rq inp */
1608 ZERO(0x018); /* rq outp */
1609 ZERO(0x01c); /* respq bah */
1610 ZERO(0x024); /* respq outp */
1611 ZERO(0x020); /* respq inp */
1612 ZERO(0x02c); /* test control */
1613 writel(0xbc, port_mmio
+ EDMA_IORDY_TMOUT
);
1617 #define ZERO(reg) writel(0, hc_mmio + (reg))
1618 static void mv5_reset_one_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
1621 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
1629 tmp
= readl(hc_mmio
+ 0x20);
1632 writel(tmp
, hc_mmio
+ 0x20);
1636 static int mv5_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
1639 unsigned int hc
, port
;
1641 for (hc
= 0; hc
< n_hc
; hc
++) {
1642 for (port
= 0; port
< MV_PORTS_PER_HC
; port
++)
1643 mv5_reset_hc_port(hpriv
, mmio
,
1644 (hc
* MV_PORTS_PER_HC
) + port
);
1646 mv5_reset_one_hc(hpriv
, mmio
, hc
);
1653 #define ZERO(reg) writel(0, mmio + (reg))
1654 static void mv_reset_pci_bus(struct pci_dev
*pdev
, void __iomem
*mmio
)
1658 tmp
= readl(mmio
+ MV_PCI_MODE
);
1660 writel(tmp
, mmio
+ MV_PCI_MODE
);
1662 ZERO(MV_PCI_DISC_TIMER
);
1663 ZERO(MV_PCI_MSI_TRIGGER
);
1664 writel(0x000100ff, mmio
+ MV_PCI_XBAR_TMOUT
);
1665 ZERO(HC_MAIN_IRQ_MASK_OFS
);
1666 ZERO(MV_PCI_SERR_MASK
);
1667 ZERO(PCI_IRQ_CAUSE_OFS
);
1668 ZERO(PCI_IRQ_MASK_OFS
);
1669 ZERO(MV_PCI_ERR_LOW_ADDRESS
);
1670 ZERO(MV_PCI_ERR_HIGH_ADDRESS
);
1671 ZERO(MV_PCI_ERR_ATTRIBUTE
);
1672 ZERO(MV_PCI_ERR_COMMAND
);
1676 static void mv6_reset_flash(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
1680 mv5_reset_flash(hpriv
, mmio
);
1682 tmp
= readl(mmio
+ MV_GPIO_PORT_CTL
);
1684 tmp
|= (1 << 5) | (1 << 6);
1685 writel(tmp
, mmio
+ MV_GPIO_PORT_CTL
);
1689 * mv6_reset_hc - Perform the 6xxx global soft reset
1690 * @mmio: base address of the HBA
1692 * This routine only applies to 6xxx parts.
1695 * Inherited from caller.
1697 static int mv6_reset_hc(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
1700 void __iomem
*reg
= mmio
+ PCI_MAIN_CMD_STS_OFS
;
1704 /* Following procedure defined in PCI "main command and status
1708 writel(t
| STOP_PCI_MASTER
, reg
);
1710 for (i
= 0; i
< 1000; i
++) {
1713 if (PCI_MASTER_EMPTY
& t
) {
1717 if (!(PCI_MASTER_EMPTY
& t
)) {
1718 printk(KERN_ERR DRV_NAME
": PCI master won't flush\n");
1726 writel(t
| GLOB_SFT_RST
, reg
);
1729 } while (!(GLOB_SFT_RST
& t
) && (i
-- > 0));
1731 if (!(GLOB_SFT_RST
& t
)) {
1732 printk(KERN_ERR DRV_NAME
": can't set global reset\n");
1737 /* clear reset and *reenable the PCI master* (not mentioned in spec) */
1740 writel(t
& ~(GLOB_SFT_RST
| STOP_PCI_MASTER
), reg
);
1743 } while ((GLOB_SFT_RST
& t
) && (i
-- > 0));
1745 if (GLOB_SFT_RST
& t
) {
1746 printk(KERN_ERR DRV_NAME
": can't clear global reset\n");
1753 static void mv6_read_preamp(struct mv_host_priv
*hpriv
, int idx
,
1756 void __iomem
*port_mmio
;
1759 tmp
= readl(mmio
+ MV_RESET_CFG
);
1760 if ((tmp
& (1 << 0)) == 0) {
1761 hpriv
->signal
[idx
].amps
= 0x7 << 8;
1762 hpriv
->signal
[idx
].pre
= 0x1 << 5;
1766 port_mmio
= mv_port_base(mmio
, idx
);
1767 tmp
= readl(port_mmio
+ PHY_MODE2
);
1769 hpriv
->signal
[idx
].amps
= tmp
& 0x700; /* bits 10:8 */
1770 hpriv
->signal
[idx
].pre
= tmp
& 0xe0; /* bits 7:5 */
1773 static void mv6_enable_leds(struct mv_host_priv
*hpriv
, void __iomem
*mmio
)
1775 writel(0x00000060, mmio
+ MV_GPIO_PORT_CTL
);
1778 static void mv6_phy_errata(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
1781 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
1783 u32 hp_flags
= hpriv
->hp_flags
;
1785 hp_flags
& (MV_HP_ERRATA_60X1B2
| MV_HP_ERRATA_60X1C0
);
1787 hp_flags
& (MV_HP_ERRATA_60X1B2
| MV_HP_ERRATA_60X1C0
);
1790 if (fix_phy_mode2
) {
1791 m2
= readl(port_mmio
+ PHY_MODE2
);
1794 writel(m2
, port_mmio
+ PHY_MODE2
);
1798 m2
= readl(port_mmio
+ PHY_MODE2
);
1799 m2
&= ~((1 << 16) | (1 << 31));
1800 writel(m2
, port_mmio
+ PHY_MODE2
);
1805 /* who knows what this magic does */
1806 tmp
= readl(port_mmio
+ PHY_MODE3
);
1809 writel(tmp
, port_mmio
+ PHY_MODE3
);
1811 if (fix_phy_mode4
) {
1814 m4
= readl(port_mmio
+ PHY_MODE4
);
1816 if (hp_flags
& MV_HP_ERRATA_60X1B2
)
1817 tmp
= readl(port_mmio
+ 0x310);
1819 m4
= (m4
& ~(1 << 1)) | (1 << 0);
1821 writel(m4
, port_mmio
+ PHY_MODE4
);
1823 if (hp_flags
& MV_HP_ERRATA_60X1B2
)
1824 writel(tmp
, port_mmio
+ 0x310);
1827 /* Revert values of pre-emphasis and signal amps to the saved ones */
1828 m2
= readl(port_mmio
+ PHY_MODE2
);
1830 m2
&= ~MV_M2_PREAMP_MASK
;
1831 m2
|= hpriv
->signal
[port
].amps
;
1832 m2
|= hpriv
->signal
[port
].pre
;
1835 /* according to mvSata 3.6.1, some IIE values are fixed */
1836 if (IS_GEN_IIE(hpriv
)) {
1841 writel(m2
, port_mmio
+ PHY_MODE2
);
1844 static void mv_channel_reset(struct mv_host_priv
*hpriv
, void __iomem
*mmio
,
1845 unsigned int port_no
)
1847 void __iomem
*port_mmio
= mv_port_base(mmio
, port_no
);
1849 writelfl(ATA_RST
, port_mmio
+ EDMA_CMD_OFS
);
1851 if (IS_60XX(hpriv
)) {
1852 u32 ifctl
= readl(port_mmio
+ SATA_INTERFACE_CTL
);
1853 ifctl
|= (1 << 7); /* enable gen2i speed */
1854 ifctl
= (ifctl
& 0xfff) | 0x9b1000; /* from chip spec */
1855 writelfl(ifctl
, port_mmio
+ SATA_INTERFACE_CTL
);
1858 udelay(25); /* allow reset propagation */
1860 /* Spec never mentions clearing the bit. Marvell's driver does
1861 * clear the bit, however.
1863 writelfl(0, port_mmio
+ EDMA_CMD_OFS
);
1865 hpriv
->ops
->phy_errata(hpriv
, mmio
, port_no
);
1871 static void mv_stop_and_reset(struct ata_port
*ap
)
1873 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1874 void __iomem
*mmio
= ap
->host
->iomap
[MV_PRIMARY_BAR
];
1878 mv_channel_reset(hpriv
, mmio
, ap
->port_no
);
1880 __mv_phy_reset(ap
, 0);
1883 static inline void __msleep(unsigned int msec
, int can_sleep
)
1892 * __mv_phy_reset - Perform eDMA reset followed by COMRESET
1893 * @ap: ATA channel to manipulate
1895 * Part of this is taken from __sata_phy_reset and modified to
1896 * not sleep since this routine gets called from interrupt level.
1899 * Inherited from caller. This is coded to safe to call at
1900 * interrupt level, i.e. it does not sleep.
1902 static void __mv_phy_reset(struct ata_port
*ap
, int can_sleep
)
1904 struct mv_port_priv
*pp
= ap
->private_data
;
1905 struct mv_host_priv
*hpriv
= ap
->host
->private_data
;
1906 void __iomem
*port_mmio
= mv_ap_base(ap
);
1907 struct ata_taskfile tf
;
1908 struct ata_device
*dev
= &ap
->device
[0];
1909 unsigned long timeout
;
1913 VPRINTK("ENTER, port %u, mmio 0x%p\n", ap
->port_no
, port_mmio
);
1915 DPRINTK("S-regs after ATA_RST: SStat 0x%08x SErr 0x%08x "
1916 "SCtrl 0x%08x\n", mv_scr_read(ap
, SCR_STATUS
),
1917 mv_scr_read(ap
, SCR_ERROR
), mv_scr_read(ap
, SCR_CONTROL
));
1919 /* Issue COMRESET via SControl */
1921 sata_scr_write_flush(ap
, SCR_CONTROL
, 0x301);
1922 __msleep(1, can_sleep
);
1924 sata_scr_write_flush(ap
, SCR_CONTROL
, 0x300);
1925 __msleep(20, can_sleep
);
1927 timeout
= jiffies
+ msecs_to_jiffies(200);
1929 sata_scr_read(ap
, SCR_STATUS
, &sstatus
);
1930 if (((sstatus
& 0x3) == 3) || ((sstatus
& 0x3) == 0))
1933 __msleep(1, can_sleep
);
1934 } while (time_before(jiffies
, timeout
));
1936 /* work around errata */
1937 if (IS_60XX(hpriv
) &&
1938 (sstatus
!= 0x0) && (sstatus
!= 0x113) && (sstatus
!= 0x123) &&
1940 goto comreset_retry
;
1942 DPRINTK("S-regs after PHY wake: SStat 0x%08x SErr 0x%08x "
1943 "SCtrl 0x%08x\n", mv_scr_read(ap
, SCR_STATUS
),
1944 mv_scr_read(ap
, SCR_ERROR
), mv_scr_read(ap
, SCR_CONTROL
));
1946 if (ata_port_online(ap
)) {
1949 sata_scr_read(ap
, SCR_STATUS
, &sstatus
);
1950 ata_port_printk(ap
, KERN_INFO
,
1951 "no device found (phy stat %08x)\n", sstatus
);
1952 ata_port_disable(ap
);
1955 ap
->cbl
= ATA_CBL_SATA
;
1957 /* even after SStatus reflects that device is ready,
1958 * it seems to take a while for link to be fully
1959 * established (and thus Status no longer 0x80/0x7F),
1960 * so we poll a bit for that, here.
1964 u8 drv_stat
= ata_check_status(ap
);
1965 if ((drv_stat
!= 0x80) && (drv_stat
!= 0x7f))
1967 __msleep(500, can_sleep
);
1972 tf
.lbah
= readb(ap
->ioaddr
.lbah_addr
);
1973 tf
.lbam
= readb(ap
->ioaddr
.lbam_addr
);
1974 tf
.lbal
= readb(ap
->ioaddr
.lbal_addr
);
1975 tf
.nsect
= readb(ap
->ioaddr
.nsect_addr
);
1977 dev
->class = ata_dev_classify(&tf
);
1978 if (!ata_dev_enabled(dev
)) {
1979 VPRINTK("Port disabled post-sig: No device present.\n");
1980 ata_port_disable(ap
);
1983 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
1985 pp
->pp_flags
&= ~MV_PP_FLAG_EDMA_EN
;
1990 static void mv_phy_reset(struct ata_port
*ap
)
1992 __mv_phy_reset(ap
, 1);
1996 * mv_eng_timeout - Routine called by libata when SCSI times out I/O
1997 * @ap: ATA channel to manipulate
1999 * Intent is to clear all pending error conditions, reset the
2000 * chip/bus, fail the command, and move on.
2003 * This routine holds the host lock while failing the command.
2005 static void mv_eng_timeout(struct ata_port
*ap
)
2007 void __iomem
*mmio
= ap
->host
->iomap
[MV_PRIMARY_BAR
];
2008 struct ata_queued_cmd
*qc
;
2009 unsigned long flags
;
2011 ata_port_printk(ap
, KERN_ERR
, "Entering mv_eng_timeout\n");
2012 DPRINTK("All regs @ start of eng_timeout\n");
2013 mv_dump_all_regs(mmio
, ap
->port_no
, to_pci_dev(ap
->host
->dev
));
2015 qc
= ata_qc_from_tag(ap
, ap
->active_tag
);
2016 printk(KERN_ERR
"mmio_base %p ap %p qc %p scsi_cmnd %p &cmnd %p\n",
2017 mmio
, ap
, qc
, qc
->scsicmd
, &qc
->scsicmd
->cmnd
);
2019 spin_lock_irqsave(&ap
->host
->lock
, flags
);
2021 mv_stop_and_reset(ap
);
2022 spin_unlock_irqrestore(&ap
->host
->lock
, flags
);
2024 WARN_ON(!(qc
->flags
& ATA_QCFLAG_ACTIVE
));
2025 if (qc
->flags
& ATA_QCFLAG_ACTIVE
) {
2026 qc
->err_mask
|= AC_ERR_TIMEOUT
;
2027 ata_eh_qc_complete(qc
);
2032 * mv_port_init - Perform some early initialization on a single port.
2033 * @port: libata data structure storing shadow register addresses
2034 * @port_mmio: base address of the port
2036 * Initialize shadow register mmio addresses, clear outstanding
2037 * interrupts on the port, and unmask interrupts for the future
2038 * start of the port.
2041 * Inherited from caller.
2043 static void mv_port_init(struct ata_ioports
*port
, void __iomem
*port_mmio
)
2045 void __iomem
*shd_base
= port_mmio
+ SHD_BLK_OFS
;
2048 /* PIO related setup
2050 port
->data_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_DATA
);
2052 port
->feature_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_ERR
);
2053 port
->nsect_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_NSECT
);
2054 port
->lbal_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAL
);
2055 port
->lbam_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAM
);
2056 port
->lbah_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_LBAH
);
2057 port
->device_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_DEVICE
);
2059 port
->command_addr
= shd_base
+ (sizeof(u32
) * ATA_REG_STATUS
);
2060 /* special case: control/altstatus doesn't have ATA_REG_ address */
2061 port
->altstatus_addr
= port
->ctl_addr
= shd_base
+ SHD_CTL_AST_OFS
;
2064 port
->cmd_addr
= port
->bmdma_addr
= port
->scr_addr
= NULL
;
2066 /* Clear any currently outstanding port interrupt conditions */
2067 serr_ofs
= mv_scr_offset(SCR_ERROR
);
2068 writelfl(readl(port_mmio
+ serr_ofs
), port_mmio
+ serr_ofs
);
2069 writelfl(0, port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
);
2071 /* unmask all EDMA error interrupts */
2072 writelfl(~0, port_mmio
+ EDMA_ERR_IRQ_MASK_OFS
);
2074 VPRINTK("EDMA cfg=0x%08x EDMA IRQ err cause/mask=0x%08x/0x%08x\n",
2075 readl(port_mmio
+ EDMA_CFG_OFS
),
2076 readl(port_mmio
+ EDMA_ERR_IRQ_CAUSE_OFS
),
2077 readl(port_mmio
+ EDMA_ERR_IRQ_MASK_OFS
));
2080 static int mv_chip_id(struct pci_dev
*pdev
, struct mv_host_priv
*hpriv
,
2081 unsigned int board_idx
)
2084 u32 hp_flags
= hpriv
->hp_flags
;
2086 pci_read_config_byte(pdev
, PCI_REVISION_ID
, &rev_id
);
2090 hpriv
->ops
= &mv5xxx_ops
;
2091 hp_flags
|= MV_HP_50XX
;
2095 hp_flags
|= MV_HP_ERRATA_50XXB0
;
2098 hp_flags
|= MV_HP_ERRATA_50XXB2
;
2101 dev_printk(KERN_WARNING
, &pdev
->dev
,
2102 "Applying 50XXB2 workarounds to unknown rev\n");
2103 hp_flags
|= MV_HP_ERRATA_50XXB2
;
2110 hpriv
->ops
= &mv5xxx_ops
;
2111 hp_flags
|= MV_HP_50XX
;
2115 hp_flags
|= MV_HP_ERRATA_50XXB0
;
2118 hp_flags
|= MV_HP_ERRATA_50XXB2
;
2121 dev_printk(KERN_WARNING
, &pdev
->dev
,
2122 "Applying B2 workarounds to unknown rev\n");
2123 hp_flags
|= MV_HP_ERRATA_50XXB2
;
2130 hpriv
->ops
= &mv6xxx_ops
;
2134 hp_flags
|= MV_HP_ERRATA_60X1B2
;
2137 hp_flags
|= MV_HP_ERRATA_60X1C0
;
2140 dev_printk(KERN_WARNING
, &pdev
->dev
,
2141 "Applying B2 workarounds to unknown rev\n");
2142 hp_flags
|= MV_HP_ERRATA_60X1B2
;
2149 hpriv
->ops
= &mv6xxx_ops
;
2151 hp_flags
|= MV_HP_GEN_IIE
;
2155 hp_flags
|= MV_HP_ERRATA_XX42A0
;
2158 hp_flags
|= MV_HP_ERRATA_60X1C0
;
2161 dev_printk(KERN_WARNING
, &pdev
->dev
,
2162 "Applying 60X1C0 workarounds to unknown rev\n");
2163 hp_flags
|= MV_HP_ERRATA_60X1C0
;
2169 printk(KERN_ERR DRV_NAME
": BUG: invalid board index %u\n", board_idx
);
2173 hpriv
->hp_flags
= hp_flags
;
2179 * mv_init_host - Perform some early initialization of the host.
2180 * @pdev: host PCI device
2181 * @probe_ent: early data struct representing the host
2183 * If possible, do an early global reset of the host. Then do
2184 * our port init and clear/unmask all/relevant host interrupts.
2187 * Inherited from caller.
2189 static int mv_init_host(struct pci_dev
*pdev
, struct ata_probe_ent
*probe_ent
,
2190 unsigned int board_idx
)
2192 int rc
= 0, n_hc
, port
, hc
;
2193 void __iomem
*mmio
= probe_ent
->iomap
[MV_PRIMARY_BAR
];
2194 struct mv_host_priv
*hpriv
= probe_ent
->private_data
;
2196 /* global interrupt mask */
2197 writel(0, mmio
+ HC_MAIN_IRQ_MASK_OFS
);
2199 rc
= mv_chip_id(pdev
, hpriv
, board_idx
);
2203 n_hc
= mv_get_hc_count(probe_ent
->port_flags
);
2204 probe_ent
->n_ports
= MV_PORTS_PER_HC
* n_hc
;
2206 for (port
= 0; port
< probe_ent
->n_ports
; port
++)
2207 hpriv
->ops
->read_preamp(hpriv
, port
, mmio
);
2209 rc
= hpriv
->ops
->reset_hc(hpriv
, mmio
, n_hc
);
2213 hpriv
->ops
->reset_flash(hpriv
, mmio
);
2214 hpriv
->ops
->reset_bus(pdev
, mmio
);
2215 hpriv
->ops
->enable_leds(hpriv
, mmio
);
2217 for (port
= 0; port
< probe_ent
->n_ports
; port
++) {
2218 if (IS_60XX(hpriv
)) {
2219 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
2221 u32 ifctl
= readl(port_mmio
+ SATA_INTERFACE_CTL
);
2222 ifctl
|= (1 << 7); /* enable gen2i speed */
2223 ifctl
= (ifctl
& 0xfff) | 0x9b1000; /* from chip spec */
2224 writelfl(ifctl
, port_mmio
+ SATA_INTERFACE_CTL
);
2227 hpriv
->ops
->phy_errata(hpriv
, mmio
, port
);
2230 for (port
= 0; port
< probe_ent
->n_ports
; port
++) {
2231 void __iomem
*port_mmio
= mv_port_base(mmio
, port
);
2232 mv_port_init(&probe_ent
->port
[port
], port_mmio
);
2235 for (hc
= 0; hc
< n_hc
; hc
++) {
2236 void __iomem
*hc_mmio
= mv_hc_base(mmio
, hc
);
2238 VPRINTK("HC%i: HC config=0x%08x HC IRQ cause "
2239 "(before clear)=0x%08x\n", hc
,
2240 readl(hc_mmio
+ HC_CFG_OFS
),
2241 readl(hc_mmio
+ HC_IRQ_CAUSE_OFS
));
2243 /* Clear any currently outstanding hc interrupt conditions */
2244 writelfl(0, hc_mmio
+ HC_IRQ_CAUSE_OFS
);
2247 /* Clear any currently outstanding host interrupt conditions */
2248 writelfl(0, mmio
+ PCI_IRQ_CAUSE_OFS
);
2250 /* and unmask interrupt generation for host regs */
2251 writelfl(PCI_UNMASK_ALL_IRQS
, mmio
+ PCI_IRQ_MASK_OFS
);
2254 writelfl(~HC_MAIN_MASKED_IRQS_5
, mmio
+ HC_MAIN_IRQ_MASK_OFS
);
2256 writelfl(~HC_MAIN_MASKED_IRQS
, mmio
+ HC_MAIN_IRQ_MASK_OFS
);
2258 VPRINTK("HC MAIN IRQ cause/mask=0x%08x/0x%08x "
2259 "PCI int cause/mask=0x%08x/0x%08x\n",
2260 readl(mmio
+ HC_MAIN_IRQ_CAUSE_OFS
),
2261 readl(mmio
+ HC_MAIN_IRQ_MASK_OFS
),
2262 readl(mmio
+ PCI_IRQ_CAUSE_OFS
),
2263 readl(mmio
+ PCI_IRQ_MASK_OFS
));
2270 * mv_print_info - Dump key info to kernel log for perusal.
2271 * @probe_ent: early data struct representing the host
2273 * FIXME: complete this.
2276 * Inherited from caller.
2278 static void mv_print_info(struct ata_probe_ent
*probe_ent
)
2280 struct pci_dev
*pdev
= to_pci_dev(probe_ent
->dev
);
2281 struct mv_host_priv
*hpriv
= probe_ent
->private_data
;
2285 /* Use this to determine the HW stepping of the chip so we know
2286 * what errata to workaround
2288 pci_read_config_byte(pdev
, PCI_REVISION_ID
, &rev_id
);
2290 pci_read_config_byte(pdev
, PCI_CLASS_DEVICE
, &scc
);
2293 else if (scc
== 0x01)
2298 dev_printk(KERN_INFO
, &pdev
->dev
,
2299 "%u slots %u ports %s mode IRQ via %s\n",
2300 (unsigned)MV_MAX_Q_DEPTH
, probe_ent
->n_ports
,
2301 scc_s
, (MV_HP_FLAG_MSI
& hpriv
->hp_flags
) ? "MSI" : "INTx");
2305 * mv_init_one - handle a positive probe of a Marvell host
2306 * @pdev: PCI device found
2307 * @ent: PCI device ID entry for the matched host
2310 * Inherited from caller.
2312 static int mv_init_one(struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
2314 static int printed_version
= 0;
2315 struct device
*dev
= &pdev
->dev
;
2316 struct ata_probe_ent
*probe_ent
;
2317 struct mv_host_priv
*hpriv
;
2318 unsigned int board_idx
= (unsigned int)ent
->driver_data
;
2321 if (!printed_version
++)
2322 dev_printk(KERN_INFO
, &pdev
->dev
, "version " DRV_VERSION
"\n");
2324 rc
= pcim_enable_device(pdev
);
2327 pci_set_master(pdev
);
2329 rc
= pcim_iomap_regions(pdev
, 1 << MV_PRIMARY_BAR
, DRV_NAME
);
2331 pcim_pin_device(pdev
);
2335 probe_ent
= devm_kzalloc(dev
, sizeof(*probe_ent
), GFP_KERNEL
);
2336 if (probe_ent
== NULL
)
2339 probe_ent
->dev
= pci_dev_to_dev(pdev
);
2340 INIT_LIST_HEAD(&probe_ent
->node
);
2342 hpriv
= devm_kzalloc(dev
, sizeof(*hpriv
), GFP_KERNEL
);
2346 probe_ent
->sht
= mv_port_info
[board_idx
].sht
;
2347 probe_ent
->port_flags
= mv_port_info
[board_idx
].flags
;
2348 probe_ent
->pio_mask
= mv_port_info
[board_idx
].pio_mask
;
2349 probe_ent
->udma_mask
= mv_port_info
[board_idx
].udma_mask
;
2350 probe_ent
->port_ops
= mv_port_info
[board_idx
].port_ops
;
2352 probe_ent
->irq
= pdev
->irq
;
2353 probe_ent
->irq_flags
= IRQF_SHARED
;
2354 probe_ent
->iomap
= pcim_iomap_table(pdev
);
2355 probe_ent
->private_data
= hpriv
;
2357 /* initialize adapter */
2358 rc
= mv_init_host(pdev
, probe_ent
, board_idx
);
2362 /* Enable interrupts */
2363 if (msi
&& pci_enable_msi(pdev
))
2366 mv_dump_pci_cfg(pdev
, 0x68);
2367 mv_print_info(probe_ent
);
2369 if (ata_device_add(probe_ent
) == 0)
2372 devm_kfree(dev
, probe_ent
);
2376 static int __init
mv_init(void)
2378 return pci_register_driver(&mv_pci_driver
);
2381 static void __exit
mv_exit(void)
2383 pci_unregister_driver(&mv_pci_driver
);
2386 MODULE_AUTHOR("Brett Russ");
2387 MODULE_DESCRIPTION("SCSI low-level driver for Marvell SATA controllers");
2388 MODULE_LICENSE("GPL");
2389 MODULE_DEVICE_TABLE(pci
, mv_pci_tbl
);
2390 MODULE_VERSION(DRV_VERSION
);
2392 module_param(msi
, int, 0444);
2393 MODULE_PARM_DESC(msi
, "Enable use of PCI MSI (0=off, 1=on)");
2395 module_init(mv_init
);
2396 module_exit(mv_exit
);