2 * New driver for Marvell Yukon chipset and SysKonnect Gigabit
3 * Ethernet adapters. Based on earlier sk98lin, e100 and
4 * FreeBSD if_sk drivers.
6 * This driver intentionally does not support all the features
7 * of the original driver such as link fail-over and link management because
8 * those should be done at higher levels.
10 * Copyright (C) 2004, 2005 Stephen Hemminger <shemminger@osdl.org>
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2 of the License.
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
21 * You should have received a copy of the GNU General Public License
22 * along with this program; if not, write to the Free Software
23 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 #include <linux/kernel.h>
28 #include <linux/module.h>
29 #include <linux/moduleparam.h>
30 #include <linux/netdevice.h>
31 #include <linux/etherdevice.h>
32 #include <linux/ethtool.h>
33 #include <linux/pci.h>
34 #include <linux/if_vlan.h>
36 #include <linux/delay.h>
37 #include <linux/crc32.h>
38 #include <linux/dma-mapping.h>
39 #include <linux/debugfs.h>
40 #include <linux/sched.h>
41 #include <linux/seq_file.h>
42 #include <linux/mii.h>
47 #define DRV_NAME "skge"
48 #define DRV_VERSION "1.13"
49 #define PFX DRV_NAME " "
51 #define DEFAULT_TX_RING_SIZE 128
52 #define DEFAULT_RX_RING_SIZE 512
53 #define MAX_TX_RING_SIZE 1024
54 #define TX_LOW_WATER (MAX_SKB_FRAGS + 1)
55 #define MAX_RX_RING_SIZE 4096
56 #define RX_COPY_THRESHOLD 128
57 #define RX_BUF_SIZE 1536
58 #define PHY_RETRIES 1000
59 #define ETH_JUMBO_MTU 9000
60 #define TX_WATCHDOG (5 * HZ)
61 #define NAPI_WEIGHT 64
65 #define SKGE_EEPROM_MAGIC 0x9933aabb
68 MODULE_DESCRIPTION("SysKonnect Gigabit Ethernet driver");
69 MODULE_AUTHOR("Stephen Hemminger <shemminger@linux-foundation.org>");
70 MODULE_LICENSE("GPL");
71 MODULE_VERSION(DRV_VERSION
);
73 static const u32 default_msg
74 = NETIF_MSG_DRV
| NETIF_MSG_PROBE
| NETIF_MSG_LINK
75 | NETIF_MSG_IFUP
| NETIF_MSG_IFDOWN
;
77 static int debug
= -1; /* defaults above */
78 module_param(debug
, int, 0);
79 MODULE_PARM_DESC(debug
, "Debug level (0=none,...,16=all)");
81 static const struct pci_device_id skge_id_table
[] = {
82 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940
) },
83 { PCI_DEVICE(PCI_VENDOR_ID_3COM
, PCI_DEVICE_ID_3COM_3C940B
) },
84 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_GE
) },
85 { PCI_DEVICE(PCI_VENDOR_ID_SYSKONNECT
, PCI_DEVICE_ID_SYSKONNECT_YU
) },
86 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, PCI_DEVICE_ID_DLINK_DGE510T
) },
87 { PCI_DEVICE(PCI_VENDOR_ID_DLINK
, 0x4b01) }, /* DGE-530T */
88 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x4320) },
89 { PCI_DEVICE(PCI_VENDOR_ID_MARVELL
, 0x5005) }, /* Belkin */
90 { PCI_DEVICE(PCI_VENDOR_ID_CNET
, PCI_DEVICE_ID_CNET_GIGACARD
) },
91 { PCI_DEVICE(PCI_VENDOR_ID_LINKSYS
, PCI_DEVICE_ID_LINKSYS_EG1064
) },
92 { PCI_VENDOR_ID_LINKSYS
, 0x1032, PCI_ANY_ID
, 0x0015 },
95 MODULE_DEVICE_TABLE(pci
, skge_id_table
);
97 static int skge_up(struct net_device
*dev
);
98 static int skge_down(struct net_device
*dev
);
99 static void skge_phy_reset(struct skge_port
*skge
);
100 static void skge_tx_clean(struct net_device
*dev
);
101 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
102 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
);
103 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
);
104 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
);
105 static void yukon_init(struct skge_hw
*hw
, int port
);
106 static void genesis_mac_init(struct skge_hw
*hw
, int port
);
107 static void genesis_link_up(struct skge_port
*skge
);
108 static void skge_set_multicast(struct net_device
*dev
);
110 /* Avoid conditionals by using array */
111 static const int txqaddr
[] = { Q_XA1
, Q_XA2
};
112 static const int rxqaddr
[] = { Q_R1
, Q_R2
};
113 static const u32 rxirqmask
[] = { IS_R1_F
, IS_R2_F
};
114 static const u32 txirqmask
[] = { IS_XA1_F
, IS_XA2_F
};
115 static const u32 napimask
[] = { IS_R1_F
|IS_XA1_F
, IS_R2_F
|IS_XA2_F
};
116 static const u32 portmask
[] = { IS_PORT_1
, IS_PORT_2
};
118 static int skge_get_regs_len(struct net_device
*dev
)
124 * Returns copy of whole control register region
125 * Note: skip RAM address register because accessing it will
128 static void skge_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
131 const struct skge_port
*skge
= netdev_priv(dev
);
132 const void __iomem
*io
= skge
->hw
->regs
;
135 memset(p
, 0, regs
->len
);
136 memcpy_fromio(p
, io
, B3_RAM_ADDR
);
138 memcpy_fromio(p
+ B3_RI_WTO_R1
, io
+ B3_RI_WTO_R1
,
139 regs
->len
- B3_RI_WTO_R1
);
142 /* Wake on Lan only supported on Yukon chips with rev 1 or above */
143 static u32
wol_supported(const struct skge_hw
*hw
)
145 if (hw
->chip_id
== CHIP_ID_GENESIS
)
148 if (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
151 return WAKE_MAGIC
| WAKE_PHY
;
154 static void skge_wol_init(struct skge_port
*skge
)
156 struct skge_hw
*hw
= skge
->hw
;
157 int port
= skge
->port
;
160 skge_write16(hw
, B0_CTST
, CS_RST_CLR
);
161 skge_write16(hw
, SK_REG(port
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
164 skge_write8(hw
, B0_POWER_CTRL
,
165 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_ON
| PC_VCC_OFF
);
167 /* WA code for COMA mode -- clear PHY reset */
168 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
169 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
170 u32 reg
= skge_read32(hw
, B2_GP_IO
);
173 skge_write32(hw
, B2_GP_IO
, reg
);
176 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
178 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
179 GPC_ANEG_1
| GPC_RST_SET
);
181 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
),
183 GPC_HWCFG_M_3
| GPC_HWCFG_M_2
| GPC_HWCFG_M_1
| GPC_HWCFG_M_0
|
184 GPC_ANEG_1
| GPC_RST_CLR
);
186 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_CLR
);
188 /* Force to 10/100 skge_reset will re-enable on resume */
189 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
,
190 PHY_AN_100FULL
| PHY_AN_100HALF
|
191 PHY_AN_10FULL
| PHY_AN_10HALF
| PHY_AN_CSMA
);
193 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, 0);
194 gm_phy_write(hw
, port
, PHY_MARV_CTRL
,
195 PHY_CT_RESET
| PHY_CT_SPS_LSB
| PHY_CT_ANE
|
196 PHY_CT_RE_CFG
| PHY_CT_DUP_MD
);
199 /* Set GMAC to no flow control and auto update for speed/duplex */
200 gma_write16(hw
, port
, GM_GP_CTRL
,
201 GM_GPCR_FC_TX_DIS
|GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
|
202 GM_GPCR_DUP_FULL
|GM_GPCR_FC_RX_DIS
|GM_GPCR_AU_FCT_DIS
);
204 /* Set WOL address */
205 memcpy_toio(hw
->regs
+ WOL_REGS(port
, WOL_MAC_ADDR
),
206 skge
->netdev
->dev_addr
, ETH_ALEN
);
208 /* Turn on appropriate WOL control bits */
209 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), WOL_CTL_CLEAR_RESULT
);
211 if (skge
->wol
& WAKE_PHY
)
212 ctrl
|= WOL_CTL_ENA_PME_ON_LINK_CHG
|WOL_CTL_ENA_LINK_CHG_UNIT
;
214 ctrl
|= WOL_CTL_DIS_PME_ON_LINK_CHG
|WOL_CTL_DIS_LINK_CHG_UNIT
;
216 if (skge
->wol
& WAKE_MAGIC
)
217 ctrl
|= WOL_CTL_ENA_PME_ON_MAGIC_PKT
|WOL_CTL_ENA_MAGIC_PKT_UNIT
;
219 ctrl
|= WOL_CTL_DIS_PME_ON_MAGIC_PKT
|WOL_CTL_DIS_MAGIC_PKT_UNIT
;
221 ctrl
|= WOL_CTL_DIS_PME_ON_PATTERN
|WOL_CTL_DIS_PATTERN_UNIT
;
222 skge_write16(hw
, WOL_REGS(port
, WOL_CTRL_STAT
), ctrl
);
225 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
228 static void skge_get_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
230 struct skge_port
*skge
= netdev_priv(dev
);
232 wol
->supported
= wol_supported(skge
->hw
);
233 wol
->wolopts
= skge
->wol
;
236 static int skge_set_wol(struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
238 struct skge_port
*skge
= netdev_priv(dev
);
239 struct skge_hw
*hw
= skge
->hw
;
241 if ((wol
->wolopts
& ~wol_supported(hw
))
242 || !device_can_wakeup(&hw
->pdev
->dev
))
245 skge
->wol
= wol
->wolopts
;
247 device_set_wakeup_enable(&hw
->pdev
->dev
, skge
->wol
);
252 /* Determine supported/advertised modes based on hardware.
253 * Note: ethtool ADVERTISED_xxx == SUPPORTED_xxx
255 static u32
skge_supported_modes(const struct skge_hw
*hw
)
260 supported
= SUPPORTED_10baseT_Half
261 | SUPPORTED_10baseT_Full
262 | SUPPORTED_100baseT_Half
263 | SUPPORTED_100baseT_Full
264 | SUPPORTED_1000baseT_Half
265 | SUPPORTED_1000baseT_Full
266 | SUPPORTED_Autoneg
| SUPPORTED_TP
;
268 if (hw
->chip_id
== CHIP_ID_GENESIS
)
269 supported
&= ~(SUPPORTED_10baseT_Half
270 | SUPPORTED_10baseT_Full
271 | SUPPORTED_100baseT_Half
272 | SUPPORTED_100baseT_Full
);
274 else if (hw
->chip_id
== CHIP_ID_YUKON
)
275 supported
&= ~SUPPORTED_1000baseT_Half
;
277 supported
= SUPPORTED_1000baseT_Full
| SUPPORTED_1000baseT_Half
278 | SUPPORTED_FIBRE
| SUPPORTED_Autoneg
;
283 static int skge_get_settings(struct net_device
*dev
,
284 struct ethtool_cmd
*ecmd
)
286 struct skge_port
*skge
= netdev_priv(dev
);
287 struct skge_hw
*hw
= skge
->hw
;
289 ecmd
->transceiver
= XCVR_INTERNAL
;
290 ecmd
->supported
= skge_supported_modes(hw
);
293 ecmd
->port
= PORT_TP
;
294 ecmd
->phy_address
= hw
->phy_addr
;
296 ecmd
->port
= PORT_FIBRE
;
298 ecmd
->advertising
= skge
->advertising
;
299 ecmd
->autoneg
= skge
->autoneg
;
300 ecmd
->speed
= skge
->speed
;
301 ecmd
->duplex
= skge
->duplex
;
305 static int skge_set_settings(struct net_device
*dev
, struct ethtool_cmd
*ecmd
)
307 struct skge_port
*skge
= netdev_priv(dev
);
308 const struct skge_hw
*hw
= skge
->hw
;
309 u32 supported
= skge_supported_modes(hw
);
312 if (ecmd
->autoneg
== AUTONEG_ENABLE
) {
313 ecmd
->advertising
= supported
;
319 switch (ecmd
->speed
) {
321 if (ecmd
->duplex
== DUPLEX_FULL
)
322 setting
= SUPPORTED_1000baseT_Full
;
323 else if (ecmd
->duplex
== DUPLEX_HALF
)
324 setting
= SUPPORTED_1000baseT_Half
;
329 if (ecmd
->duplex
== DUPLEX_FULL
)
330 setting
= SUPPORTED_100baseT_Full
;
331 else if (ecmd
->duplex
== DUPLEX_HALF
)
332 setting
= SUPPORTED_100baseT_Half
;
338 if (ecmd
->duplex
== DUPLEX_FULL
)
339 setting
= SUPPORTED_10baseT_Full
;
340 else if (ecmd
->duplex
== DUPLEX_HALF
)
341 setting
= SUPPORTED_10baseT_Half
;
349 if ((setting
& supported
) == 0)
352 skge
->speed
= ecmd
->speed
;
353 skge
->duplex
= ecmd
->duplex
;
356 skge
->autoneg
= ecmd
->autoneg
;
357 skge
->advertising
= ecmd
->advertising
;
359 if (netif_running(dev
)) {
371 static void skge_get_drvinfo(struct net_device
*dev
,
372 struct ethtool_drvinfo
*info
)
374 struct skge_port
*skge
= netdev_priv(dev
);
376 strcpy(info
->driver
, DRV_NAME
);
377 strcpy(info
->version
, DRV_VERSION
);
378 strcpy(info
->fw_version
, "N/A");
379 strcpy(info
->bus_info
, pci_name(skge
->hw
->pdev
));
382 static const struct skge_stat
{
383 char name
[ETH_GSTRING_LEN
];
387 { "tx_bytes", XM_TXO_OK_HI
, GM_TXO_OK_HI
},
388 { "rx_bytes", XM_RXO_OK_HI
, GM_RXO_OK_HI
},
390 { "tx_broadcast", XM_TXF_BC_OK
, GM_TXF_BC_OK
},
391 { "rx_broadcast", XM_RXF_BC_OK
, GM_RXF_BC_OK
},
392 { "tx_multicast", XM_TXF_MC_OK
, GM_TXF_MC_OK
},
393 { "rx_multicast", XM_RXF_MC_OK
, GM_RXF_MC_OK
},
394 { "tx_unicast", XM_TXF_UC_OK
, GM_TXF_UC_OK
},
395 { "rx_unicast", XM_RXF_UC_OK
, GM_RXF_UC_OK
},
396 { "tx_mac_pause", XM_TXF_MPAUSE
, GM_TXF_MPAUSE
},
397 { "rx_mac_pause", XM_RXF_MPAUSE
, GM_RXF_MPAUSE
},
399 { "collisions", XM_TXF_SNG_COL
, GM_TXF_SNG_COL
},
400 { "multi_collisions", XM_TXF_MUL_COL
, GM_TXF_MUL_COL
},
401 { "aborted", XM_TXF_ABO_COL
, GM_TXF_ABO_COL
},
402 { "late_collision", XM_TXF_LAT_COL
, GM_TXF_LAT_COL
},
403 { "fifo_underrun", XM_TXE_FIFO_UR
, GM_TXE_FIFO_UR
},
404 { "fifo_overflow", XM_RXE_FIFO_OV
, GM_RXE_FIFO_OV
},
406 { "rx_toolong", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
407 { "rx_jabber", XM_RXF_JAB_PKT
, GM_RXF_JAB_PKT
},
408 { "rx_runt", XM_RXE_RUNT
, GM_RXE_FRAG
},
409 { "rx_too_long", XM_RXF_LNG_ERR
, GM_RXF_LNG_ERR
},
410 { "rx_fcs_error", XM_RXF_FCS_ERR
, GM_RXF_FCS_ERR
},
413 static int skge_get_sset_count(struct net_device
*dev
, int sset
)
417 return ARRAY_SIZE(skge_stats
);
423 static void skge_get_ethtool_stats(struct net_device
*dev
,
424 struct ethtool_stats
*stats
, u64
*data
)
426 struct skge_port
*skge
= netdev_priv(dev
);
428 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
429 genesis_get_stats(skge
, data
);
431 yukon_get_stats(skge
, data
);
434 /* Use hardware MIB variables for critical path statistics and
435 * transmit feedback not reported at interrupt.
436 * Other errors are accounted for in interrupt handler.
438 static struct net_device_stats
*skge_get_stats(struct net_device
*dev
)
440 struct skge_port
*skge
= netdev_priv(dev
);
441 u64 data
[ARRAY_SIZE(skge_stats
)];
443 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
)
444 genesis_get_stats(skge
, data
);
446 yukon_get_stats(skge
, data
);
448 dev
->stats
.tx_bytes
= data
[0];
449 dev
->stats
.rx_bytes
= data
[1];
450 dev
->stats
.tx_packets
= data
[2] + data
[4] + data
[6];
451 dev
->stats
.rx_packets
= data
[3] + data
[5] + data
[7];
452 dev
->stats
.multicast
= data
[3] + data
[5];
453 dev
->stats
.collisions
= data
[10];
454 dev
->stats
.tx_aborted_errors
= data
[12];
459 static void skge_get_strings(struct net_device
*dev
, u32 stringset
, u8
*data
)
465 for (i
= 0; i
< ARRAY_SIZE(skge_stats
); i
++)
466 memcpy(data
+ i
* ETH_GSTRING_LEN
,
467 skge_stats
[i
].name
, ETH_GSTRING_LEN
);
472 static void skge_get_ring_param(struct net_device
*dev
,
473 struct ethtool_ringparam
*p
)
475 struct skge_port
*skge
= netdev_priv(dev
);
477 p
->rx_max_pending
= MAX_RX_RING_SIZE
;
478 p
->tx_max_pending
= MAX_TX_RING_SIZE
;
479 p
->rx_mini_max_pending
= 0;
480 p
->rx_jumbo_max_pending
= 0;
482 p
->rx_pending
= skge
->rx_ring
.count
;
483 p
->tx_pending
= skge
->tx_ring
.count
;
484 p
->rx_mini_pending
= 0;
485 p
->rx_jumbo_pending
= 0;
488 static int skge_set_ring_param(struct net_device
*dev
,
489 struct ethtool_ringparam
*p
)
491 struct skge_port
*skge
= netdev_priv(dev
);
494 if (p
->rx_pending
== 0 || p
->rx_pending
> MAX_RX_RING_SIZE
||
495 p
->tx_pending
< TX_LOW_WATER
|| p
->tx_pending
> MAX_TX_RING_SIZE
)
498 skge
->rx_ring
.count
= p
->rx_pending
;
499 skge
->tx_ring
.count
= p
->tx_pending
;
501 if (netif_running(dev
)) {
511 static u32
skge_get_msglevel(struct net_device
*netdev
)
513 struct skge_port
*skge
= netdev_priv(netdev
);
514 return skge
->msg_enable
;
517 static void skge_set_msglevel(struct net_device
*netdev
, u32 value
)
519 struct skge_port
*skge
= netdev_priv(netdev
);
520 skge
->msg_enable
= value
;
523 static int skge_nway_reset(struct net_device
*dev
)
525 struct skge_port
*skge
= netdev_priv(dev
);
527 if (skge
->autoneg
!= AUTONEG_ENABLE
|| !netif_running(dev
))
530 skge_phy_reset(skge
);
534 static int skge_set_sg(struct net_device
*dev
, u32 data
)
536 struct skge_port
*skge
= netdev_priv(dev
);
537 struct skge_hw
*hw
= skge
->hw
;
539 if (hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
541 return ethtool_op_set_sg(dev
, data
);
544 static int skge_set_tx_csum(struct net_device
*dev
, u32 data
)
546 struct skge_port
*skge
= netdev_priv(dev
);
547 struct skge_hw
*hw
= skge
->hw
;
549 if (hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
552 return ethtool_op_set_tx_csum(dev
, data
);
555 static u32
skge_get_rx_csum(struct net_device
*dev
)
557 struct skge_port
*skge
= netdev_priv(dev
);
559 return skge
->rx_csum
;
562 /* Only Yukon supports checksum offload. */
563 static int skge_set_rx_csum(struct net_device
*dev
, u32 data
)
565 struct skge_port
*skge
= netdev_priv(dev
);
567 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
&& data
)
570 skge
->rx_csum
= data
;
574 static void skge_get_pauseparam(struct net_device
*dev
,
575 struct ethtool_pauseparam
*ecmd
)
577 struct skge_port
*skge
= netdev_priv(dev
);
579 ecmd
->rx_pause
= (skge
->flow_control
== FLOW_MODE_SYMMETRIC
)
580 || (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
);
581 ecmd
->tx_pause
= ecmd
->rx_pause
|| (skge
->flow_control
== FLOW_MODE_LOC_SEND
);
583 ecmd
->autoneg
= ecmd
->rx_pause
|| ecmd
->tx_pause
;
586 static int skge_set_pauseparam(struct net_device
*dev
,
587 struct ethtool_pauseparam
*ecmd
)
589 struct skge_port
*skge
= netdev_priv(dev
);
590 struct ethtool_pauseparam old
;
593 skge_get_pauseparam(dev
, &old
);
595 if (ecmd
->autoneg
!= old
.autoneg
)
596 skge
->flow_control
= ecmd
->autoneg
? FLOW_MODE_NONE
: FLOW_MODE_SYMMETRIC
;
598 if (ecmd
->rx_pause
&& ecmd
->tx_pause
)
599 skge
->flow_control
= FLOW_MODE_SYMMETRIC
;
600 else if (ecmd
->rx_pause
&& !ecmd
->tx_pause
)
601 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
602 else if (!ecmd
->rx_pause
&& ecmd
->tx_pause
)
603 skge
->flow_control
= FLOW_MODE_LOC_SEND
;
605 skge
->flow_control
= FLOW_MODE_NONE
;
608 if (netif_running(dev
)) {
620 /* Chip internal frequency for clock calculations */
621 static inline u32
hwkhz(const struct skge_hw
*hw
)
623 return (hw
->chip_id
== CHIP_ID_GENESIS
) ? 53125 : 78125;
626 /* Chip HZ to microseconds */
627 static inline u32
skge_clk2usec(const struct skge_hw
*hw
, u32 ticks
)
629 return (ticks
* 1000) / hwkhz(hw
);
632 /* Microseconds to chip HZ */
633 static inline u32
skge_usecs2clk(const struct skge_hw
*hw
, u32 usec
)
635 return hwkhz(hw
) * usec
/ 1000;
638 static int skge_get_coalesce(struct net_device
*dev
,
639 struct ethtool_coalesce
*ecmd
)
641 struct skge_port
*skge
= netdev_priv(dev
);
642 struct skge_hw
*hw
= skge
->hw
;
643 int port
= skge
->port
;
645 ecmd
->rx_coalesce_usecs
= 0;
646 ecmd
->tx_coalesce_usecs
= 0;
648 if (skge_read32(hw
, B2_IRQM_CTRL
) & TIM_START
) {
649 u32 delay
= skge_clk2usec(hw
, skge_read32(hw
, B2_IRQM_INI
));
650 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
652 if (msk
& rxirqmask
[port
])
653 ecmd
->rx_coalesce_usecs
= delay
;
654 if (msk
& txirqmask
[port
])
655 ecmd
->tx_coalesce_usecs
= delay
;
661 /* Note: interrupt timer is per board, but can turn on/off per port */
662 static int skge_set_coalesce(struct net_device
*dev
,
663 struct ethtool_coalesce
*ecmd
)
665 struct skge_port
*skge
= netdev_priv(dev
);
666 struct skge_hw
*hw
= skge
->hw
;
667 int port
= skge
->port
;
668 u32 msk
= skge_read32(hw
, B2_IRQM_MSK
);
671 if (ecmd
->rx_coalesce_usecs
== 0)
672 msk
&= ~rxirqmask
[port
];
673 else if (ecmd
->rx_coalesce_usecs
< 25 ||
674 ecmd
->rx_coalesce_usecs
> 33333)
677 msk
|= rxirqmask
[port
];
678 delay
= ecmd
->rx_coalesce_usecs
;
681 if (ecmd
->tx_coalesce_usecs
== 0)
682 msk
&= ~txirqmask
[port
];
683 else if (ecmd
->tx_coalesce_usecs
< 25 ||
684 ecmd
->tx_coalesce_usecs
> 33333)
687 msk
|= txirqmask
[port
];
688 delay
= min(delay
, ecmd
->rx_coalesce_usecs
);
691 skge_write32(hw
, B2_IRQM_MSK
, msk
);
693 skge_write32(hw
, B2_IRQM_CTRL
, TIM_STOP
);
695 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, delay
));
696 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
701 enum led_mode
{ LED_MODE_OFF
, LED_MODE_ON
, LED_MODE_TST
};
702 static void skge_led(struct skge_port
*skge
, enum led_mode mode
)
704 struct skge_hw
*hw
= skge
->hw
;
705 int port
= skge
->port
;
707 spin_lock_bh(&hw
->phy_lock
);
708 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
711 if (hw
->phy_type
== SK_PHY_BCOM
)
712 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_OFF
);
714 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 0);
715 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_T_OFF
);
717 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_OFF
);
718 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 0);
719 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_T_OFF
);
723 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_ON
);
724 skge_write8(hw
, SK_REG(port
, LNK_LED_REG
), LINKLED_LINKSYNC_ON
);
726 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
727 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
732 skge_write8(hw
, SK_REG(port
, RX_LED_TST
), LED_T_ON
);
733 skge_write32(hw
, SK_REG(port
, RX_LED_VAL
), 100);
734 skge_write8(hw
, SK_REG(port
, RX_LED_CTRL
), LED_START
);
736 if (hw
->phy_type
== SK_PHY_BCOM
)
737 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, PHY_B_PEC_LED_ON
);
739 skge_write8(hw
, SK_REG(port
, TX_LED_TST
), LED_T_ON
);
740 skge_write32(hw
, SK_REG(port
, TX_LED_VAL
), 100);
741 skge_write8(hw
, SK_REG(port
, TX_LED_CTRL
), LED_START
);
748 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
749 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
750 PHY_M_LED_MO_DUP(MO_LED_OFF
) |
751 PHY_M_LED_MO_10(MO_LED_OFF
) |
752 PHY_M_LED_MO_100(MO_LED_OFF
) |
753 PHY_M_LED_MO_1000(MO_LED_OFF
) |
754 PHY_M_LED_MO_RX(MO_LED_OFF
));
757 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
,
758 PHY_M_LED_PULS_DUR(PULS_170MS
) |
759 PHY_M_LED_BLINK_RT(BLINK_84MS
) |
763 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
764 PHY_M_LED_MO_RX(MO_LED_OFF
) |
765 (skge
->speed
== SPEED_100
?
766 PHY_M_LED_MO_100(MO_LED_ON
) : 0));
769 gm_phy_write(hw
, port
, PHY_MARV_LED_CTRL
, 0);
770 gm_phy_write(hw
, port
, PHY_MARV_LED_OVER
,
771 PHY_M_LED_MO_DUP(MO_LED_ON
) |
772 PHY_M_LED_MO_10(MO_LED_ON
) |
773 PHY_M_LED_MO_100(MO_LED_ON
) |
774 PHY_M_LED_MO_1000(MO_LED_ON
) |
775 PHY_M_LED_MO_RX(MO_LED_ON
));
778 spin_unlock_bh(&hw
->phy_lock
);
781 /* blink LED's for finding board */
782 static int skge_phys_id(struct net_device
*dev
, u32 data
)
784 struct skge_port
*skge
= netdev_priv(dev
);
786 enum led_mode mode
= LED_MODE_TST
;
788 if (!data
|| data
> (u32
)(MAX_SCHEDULE_TIMEOUT
/ HZ
))
789 ms
= jiffies_to_msecs(MAX_SCHEDULE_TIMEOUT
/ HZ
) * 1000;
794 skge_led(skge
, mode
);
795 mode
^= LED_MODE_TST
;
797 if (msleep_interruptible(BLINK_MS
))
802 /* back to regular LED state */
803 skge_led(skge
, netif_running(dev
) ? LED_MODE_ON
: LED_MODE_OFF
);
808 static int skge_get_eeprom_len(struct net_device
*dev
)
810 struct skge_port
*skge
= netdev_priv(dev
);
813 pci_read_config_dword(skge
->hw
->pdev
, PCI_DEV_REG2
, ®2
);
814 return 1 << ( ((reg2
& PCI_VPD_ROM_SZ
) >> 14) + 8);
817 static u32
skge_vpd_read(struct pci_dev
*pdev
, int cap
, u16 offset
)
821 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
, offset
);
824 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
825 } while (!(offset
& PCI_VPD_ADDR_F
));
827 pci_read_config_dword(pdev
, cap
+ PCI_VPD_DATA
, &val
);
831 static void skge_vpd_write(struct pci_dev
*pdev
, int cap
, u16 offset
, u32 val
)
833 pci_write_config_dword(pdev
, cap
+ PCI_VPD_DATA
, val
);
834 pci_write_config_word(pdev
, cap
+ PCI_VPD_ADDR
,
835 offset
| PCI_VPD_ADDR_F
);
838 pci_read_config_word(pdev
, cap
+ PCI_VPD_ADDR
, &offset
);
839 } while (offset
& PCI_VPD_ADDR_F
);
842 static int skge_get_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
845 struct skge_port
*skge
= netdev_priv(dev
);
846 struct pci_dev
*pdev
= skge
->hw
->pdev
;
847 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
848 int length
= eeprom
->len
;
849 u16 offset
= eeprom
->offset
;
854 eeprom
->magic
= SKGE_EEPROM_MAGIC
;
857 u32 val
= skge_vpd_read(pdev
, cap
, offset
);
858 int n
= min_t(int, length
, sizeof(val
));
860 memcpy(data
, &val
, n
);
868 static int skge_set_eeprom(struct net_device
*dev
, struct ethtool_eeprom
*eeprom
,
871 struct skge_port
*skge
= netdev_priv(dev
);
872 struct pci_dev
*pdev
= skge
->hw
->pdev
;
873 int cap
= pci_find_capability(pdev
, PCI_CAP_ID_VPD
);
874 int length
= eeprom
->len
;
875 u16 offset
= eeprom
->offset
;
880 if (eeprom
->magic
!= SKGE_EEPROM_MAGIC
)
885 int n
= min_t(int, length
, sizeof(val
));
888 val
= skge_vpd_read(pdev
, cap
, offset
);
889 memcpy(&val
, data
, n
);
891 skge_vpd_write(pdev
, cap
, offset
, val
);
900 static const struct ethtool_ops skge_ethtool_ops
= {
901 .get_settings
= skge_get_settings
,
902 .set_settings
= skge_set_settings
,
903 .get_drvinfo
= skge_get_drvinfo
,
904 .get_regs_len
= skge_get_regs_len
,
905 .get_regs
= skge_get_regs
,
906 .get_wol
= skge_get_wol
,
907 .set_wol
= skge_set_wol
,
908 .get_msglevel
= skge_get_msglevel
,
909 .set_msglevel
= skge_set_msglevel
,
910 .nway_reset
= skge_nway_reset
,
911 .get_link
= ethtool_op_get_link
,
912 .get_eeprom_len
= skge_get_eeprom_len
,
913 .get_eeprom
= skge_get_eeprom
,
914 .set_eeprom
= skge_set_eeprom
,
915 .get_ringparam
= skge_get_ring_param
,
916 .set_ringparam
= skge_set_ring_param
,
917 .get_pauseparam
= skge_get_pauseparam
,
918 .set_pauseparam
= skge_set_pauseparam
,
919 .get_coalesce
= skge_get_coalesce
,
920 .set_coalesce
= skge_set_coalesce
,
921 .set_sg
= skge_set_sg
,
922 .set_tx_csum
= skge_set_tx_csum
,
923 .get_rx_csum
= skge_get_rx_csum
,
924 .set_rx_csum
= skge_set_rx_csum
,
925 .get_strings
= skge_get_strings
,
926 .phys_id
= skge_phys_id
,
927 .get_sset_count
= skge_get_sset_count
,
928 .get_ethtool_stats
= skge_get_ethtool_stats
,
932 * Allocate ring elements and chain them together
933 * One-to-one association of board descriptors with ring elements
935 static int skge_ring_alloc(struct skge_ring
*ring
, void *vaddr
, u32 base
)
937 struct skge_tx_desc
*d
;
938 struct skge_element
*e
;
941 ring
->start
= kcalloc(ring
->count
, sizeof(*e
), GFP_KERNEL
);
945 for (i
= 0, e
= ring
->start
, d
= vaddr
; i
< ring
->count
; i
++, e
++, d
++) {
947 if (i
== ring
->count
- 1) {
948 e
->next
= ring
->start
;
949 d
->next_offset
= base
;
952 d
->next_offset
= base
+ (i
+1) * sizeof(*d
);
955 ring
->to_use
= ring
->to_clean
= ring
->start
;
960 /* Allocate and setup a new buffer for receiving */
961 static void skge_rx_setup(struct skge_port
*skge
, struct skge_element
*e
,
962 struct sk_buff
*skb
, unsigned int bufsize
)
964 struct skge_rx_desc
*rd
= e
->desc
;
967 map
= pci_map_single(skge
->hw
->pdev
, skb
->data
, bufsize
,
971 rd
->dma_hi
= map
>> 32;
973 rd
->csum1_start
= ETH_HLEN
;
974 rd
->csum2_start
= ETH_HLEN
;
980 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| bufsize
;
981 pci_unmap_addr_set(e
, mapaddr
, map
);
982 pci_unmap_len_set(e
, maplen
, bufsize
);
985 /* Resume receiving using existing skb,
986 * Note: DMA address is not changed by chip.
987 * MTU not changed while receiver active.
989 static inline void skge_rx_reuse(struct skge_element
*e
, unsigned int size
)
991 struct skge_rx_desc
*rd
= e
->desc
;
994 rd
->csum2_start
= ETH_HLEN
;
998 rd
->control
= BMU_OWN
| BMU_STF
| BMU_IRQ_EOF
| BMU_TCP_CHECK
| size
;
1002 /* Free all buffers in receive ring, assumes receiver stopped */
1003 static void skge_rx_clean(struct skge_port
*skge
)
1005 struct skge_hw
*hw
= skge
->hw
;
1006 struct skge_ring
*ring
= &skge
->rx_ring
;
1007 struct skge_element
*e
;
1011 struct skge_rx_desc
*rd
= e
->desc
;
1014 pci_unmap_single(hw
->pdev
,
1015 pci_unmap_addr(e
, mapaddr
),
1016 pci_unmap_len(e
, maplen
),
1017 PCI_DMA_FROMDEVICE
);
1018 dev_kfree_skb(e
->skb
);
1021 } while ((e
= e
->next
) != ring
->start
);
1025 /* Allocate buffers for receive ring
1026 * For receive: to_clean is next received frame.
1028 static int skge_rx_fill(struct net_device
*dev
)
1030 struct skge_port
*skge
= netdev_priv(dev
);
1031 struct skge_ring
*ring
= &skge
->rx_ring
;
1032 struct skge_element
*e
;
1036 struct sk_buff
*skb
;
1038 skb
= __netdev_alloc_skb(dev
, skge
->rx_buf_size
+ NET_IP_ALIGN
,
1043 skb_reserve(skb
, NET_IP_ALIGN
);
1044 skge_rx_setup(skge
, e
, skb
, skge
->rx_buf_size
);
1045 } while ( (e
= e
->next
) != ring
->start
);
1047 ring
->to_clean
= ring
->start
;
1051 static const char *skge_pause(enum pause_status status
)
1054 case FLOW_STAT_NONE
:
1056 case FLOW_STAT_REM_SEND
:
1058 case FLOW_STAT_LOC_SEND
:
1060 case FLOW_STAT_SYMMETRIC
: /* Both station may send PAUSE */
1063 return "indeterminated";
1068 static void skge_link_up(struct skge_port
*skge
)
1070 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
),
1071 LED_BLK_OFF
|LED_SYNC_OFF
|LED_ON
);
1073 netif_carrier_on(skge
->netdev
);
1074 netif_wake_queue(skge
->netdev
);
1076 if (netif_msg_link(skge
)) {
1077 printk(KERN_INFO PFX
1078 "%s: Link is up at %d Mbps, %s duplex, flow control %s\n",
1079 skge
->netdev
->name
, skge
->speed
,
1080 skge
->duplex
== DUPLEX_FULL
? "full" : "half",
1081 skge_pause(skge
->flow_status
));
1085 static void skge_link_down(struct skge_port
*skge
)
1087 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
1088 netif_carrier_off(skge
->netdev
);
1089 netif_stop_queue(skge
->netdev
);
1091 if (netif_msg_link(skge
))
1092 printk(KERN_INFO PFX
"%s: Link is down.\n", skge
->netdev
->name
);
1096 static void xm_link_down(struct skge_hw
*hw
, int port
)
1098 struct net_device
*dev
= hw
->dev
[port
];
1099 struct skge_port
*skge
= netdev_priv(dev
);
1101 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1103 if (netif_carrier_ok(dev
))
1104 skge_link_down(skge
);
1107 static int __xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1111 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1112 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1114 if (hw
->phy_type
== SK_PHY_XMAC
)
1117 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1118 if (xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_RDY
)
1125 *val
= xm_read16(hw
, port
, XM_PHY_DATA
);
1130 static u16
xm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1133 if (__xm_phy_read(hw
, port
, reg
, &v
))
1134 printk(KERN_WARNING PFX
"%s: phy read timed out\n",
1135 hw
->dev
[port
]->name
);
1139 static int xm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1143 xm_write16(hw
, port
, XM_PHY_ADDR
, reg
| hw
->phy_addr
);
1144 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1145 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1152 xm_write16(hw
, port
, XM_PHY_DATA
, val
);
1153 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1154 if (!(xm_read16(hw
, port
, XM_MMU_CMD
) & XM_MMU_PHY_BUSY
))
1161 static void genesis_init(struct skge_hw
*hw
)
1163 /* set blink source counter */
1164 skge_write32(hw
, B2_BSC_INI
, (SK_BLK_DUR
* SK_FACT_53
) / 100);
1165 skge_write8(hw
, B2_BSC_CTRL
, BSC_START
);
1167 /* configure mac arbiter */
1168 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1170 /* configure mac arbiter timeout values */
1171 skge_write8(hw
, B3_MA_TOINI_RX1
, SK_MAC_TO_53
);
1172 skge_write8(hw
, B3_MA_TOINI_RX2
, SK_MAC_TO_53
);
1173 skge_write8(hw
, B3_MA_TOINI_TX1
, SK_MAC_TO_53
);
1174 skge_write8(hw
, B3_MA_TOINI_TX2
, SK_MAC_TO_53
);
1176 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1177 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1178 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1179 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1181 /* configure packet arbiter timeout */
1182 skge_write16(hw
, B3_PA_CTRL
, PA_RST_CLR
);
1183 skge_write16(hw
, B3_PA_TOINI_RX1
, SK_PKT_TO_MAX
);
1184 skge_write16(hw
, B3_PA_TOINI_TX1
, SK_PKT_TO_MAX
);
1185 skge_write16(hw
, B3_PA_TOINI_RX2
, SK_PKT_TO_MAX
);
1186 skge_write16(hw
, B3_PA_TOINI_TX2
, SK_PKT_TO_MAX
);
1189 static void genesis_reset(struct skge_hw
*hw
, int port
)
1191 const u8 zero
[8] = { 0 };
1194 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
1196 /* reset the statistics module */
1197 xm_write32(hw
, port
, XM_GP_PORT
, XM_GP_RES_STAT
);
1198 xm_write16(hw
, port
, XM_IMSK
, XM_IMSK_DISABLE
);
1199 xm_write32(hw
, port
, XM_MODE
, 0); /* clear Mode Reg */
1200 xm_write16(hw
, port
, XM_TX_CMD
, 0); /* reset TX CMD Reg */
1201 xm_write16(hw
, port
, XM_RX_CMD
, 0); /* reset RX CMD Reg */
1203 /* disable Broadcom PHY IRQ */
1204 if (hw
->phy_type
== SK_PHY_BCOM
)
1205 xm_write16(hw
, port
, PHY_BCOM_INT_MASK
, 0xffff);
1207 xm_outhash(hw
, port
, XM_HSM
, zero
);
1209 /* Flush TX and RX fifo */
1210 reg
= xm_read32(hw
, port
, XM_MODE
);
1211 xm_write32(hw
, port
, XM_MODE
, reg
| XM_MD_FTF
);
1212 xm_write32(hw
, port
, XM_MODE
, reg
| XM_MD_FRF
);
1216 /* Convert mode to MII values */
1217 static const u16 phy_pause_map
[] = {
1218 [FLOW_MODE_NONE
] = 0,
1219 [FLOW_MODE_LOC_SEND
] = PHY_AN_PAUSE_ASYM
,
1220 [FLOW_MODE_SYMMETRIC
] = PHY_AN_PAUSE_CAP
,
1221 [FLOW_MODE_SYM_OR_REM
] = PHY_AN_PAUSE_CAP
| PHY_AN_PAUSE_ASYM
,
1224 /* special defines for FIBER (88E1011S only) */
1225 static const u16 fiber_pause_map
[] = {
1226 [FLOW_MODE_NONE
] = PHY_X_P_NO_PAUSE
,
1227 [FLOW_MODE_LOC_SEND
] = PHY_X_P_ASYM_MD
,
1228 [FLOW_MODE_SYMMETRIC
] = PHY_X_P_SYM_MD
,
1229 [FLOW_MODE_SYM_OR_REM
] = PHY_X_P_BOTH_MD
,
1233 /* Check status of Broadcom phy link */
1234 static void bcom_check_link(struct skge_hw
*hw
, int port
)
1236 struct net_device
*dev
= hw
->dev
[port
];
1237 struct skge_port
*skge
= netdev_priv(dev
);
1240 /* read twice because of latch */
1241 xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1242 status
= xm_phy_read(hw
, port
, PHY_BCOM_STAT
);
1244 if ((status
& PHY_ST_LSYNC
) == 0) {
1245 xm_link_down(hw
, port
);
1249 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1252 if (!(status
& PHY_ST_AN_OVER
))
1255 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1256 if (lpa
& PHY_B_AN_RF
) {
1257 printk(KERN_NOTICE PFX
"%s: remote fault\n",
1262 aux
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_STAT
);
1264 /* Check Duplex mismatch */
1265 switch (aux
& PHY_B_AS_AN_RES_MSK
) {
1266 case PHY_B_RES_1000FD
:
1267 skge
->duplex
= DUPLEX_FULL
;
1269 case PHY_B_RES_1000HD
:
1270 skge
->duplex
= DUPLEX_HALF
;
1273 printk(KERN_NOTICE PFX
"%s: duplex mismatch\n",
1278 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1279 switch (aux
& PHY_B_AS_PAUSE_MSK
) {
1280 case PHY_B_AS_PAUSE_MSK
:
1281 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1284 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1287 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1290 skge
->flow_status
= FLOW_STAT_NONE
;
1292 skge
->speed
= SPEED_1000
;
1295 if (!netif_carrier_ok(dev
))
1296 genesis_link_up(skge
);
1299 /* Broadcom 5400 only supports giagabit! SysKonnect did not put an additional
1300 * Phy on for 100 or 10Mbit operation
1302 static void bcom_phy_init(struct skge_port
*skge
)
1304 struct skge_hw
*hw
= skge
->hw
;
1305 int port
= skge
->port
;
1307 u16 id1
, r
, ext
, ctl
;
1309 /* magic workaround patterns for Broadcom */
1310 static const struct {
1314 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1104 },
1315 { 0x17, 0x0013 }, { 0x15, 0x0404 }, { 0x17, 0x8006 },
1316 { 0x15, 0x0132 }, { 0x17, 0x8006 }, { 0x15, 0x0232 },
1317 { 0x17, 0x800D }, { 0x15, 0x000F }, { 0x18, 0x0420 },
1319 { 0x18, 0x0c20 }, { 0x17, 0x0012 }, { 0x15, 0x1204 },
1320 { 0x17, 0x0013 }, { 0x15, 0x0A04 }, { 0x18, 0x0420 },
1323 /* read Id from external PHY (all have the same address) */
1324 id1
= xm_phy_read(hw
, port
, PHY_XMAC_ID1
);
1326 /* Optimize MDIO transfer by suppressing preamble. */
1327 r
= xm_read16(hw
, port
, XM_MMU_CMD
);
1329 xm_write16(hw
, port
, XM_MMU_CMD
,r
);
1332 case PHY_BCOM_ID1_C0
:
1334 * Workaround BCOM Errata for the C0 type.
1335 * Write magic patterns to reserved registers.
1337 for (i
= 0; i
< ARRAY_SIZE(C0hack
); i
++)
1338 xm_phy_write(hw
, port
,
1339 C0hack
[i
].reg
, C0hack
[i
].val
);
1342 case PHY_BCOM_ID1_A1
:
1344 * Workaround BCOM Errata for the A1 type.
1345 * Write magic patterns to reserved registers.
1347 for (i
= 0; i
< ARRAY_SIZE(A1hack
); i
++)
1348 xm_phy_write(hw
, port
,
1349 A1hack
[i
].reg
, A1hack
[i
].val
);
1354 * Workaround BCOM Errata (#10523) for all BCom PHYs.
1355 * Disable Power Management after reset.
1357 r
= xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
);
1358 r
|= PHY_B_AC_DIS_PM
;
1359 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
, r
);
1362 xm_read16(hw
, port
, XM_ISRC
);
1364 ext
= PHY_B_PEC_EN_LTR
; /* enable tx led */
1365 ctl
= PHY_CT_SP1000
; /* always 1000mbit */
1367 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1369 * Workaround BCOM Errata #1 for the C5 type.
1370 * 1000Base-T Link Acquisition Failure in Slave Mode
1371 * Set Repeater/DTE bit 10 of the 1000Base-T Control Register
1373 u16 adv
= PHY_B_1000C_RD
;
1374 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1375 adv
|= PHY_B_1000C_AHD
;
1376 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1377 adv
|= PHY_B_1000C_AFD
;
1378 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, adv
);
1380 ctl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1382 if (skge
->duplex
== DUPLEX_FULL
)
1383 ctl
|= PHY_CT_DUP_MD
;
1384 /* Force to slave */
1385 xm_phy_write(hw
, port
, PHY_BCOM_1000T_CTRL
, PHY_B_1000C_MSE
);
1388 /* Set autonegotiation pause parameters */
1389 xm_phy_write(hw
, port
, PHY_BCOM_AUNE_ADV
,
1390 phy_pause_map
[skge
->flow_control
] | PHY_AN_CSMA
);
1392 /* Handle Jumbo frames */
1393 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
) {
1394 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1395 PHY_B_AC_TX_TST
| PHY_B_AC_LONG_PACK
);
1397 ext
|= PHY_B_PEC_HIGH_LA
;
1401 xm_phy_write(hw
, port
, PHY_BCOM_P_EXT_CTRL
, ext
);
1402 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
, ctl
);
1404 /* Use link status change interrupt */
1405 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1408 static void xm_phy_init(struct skge_port
*skge
)
1410 struct skge_hw
*hw
= skge
->hw
;
1411 int port
= skge
->port
;
1414 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1415 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
1416 ctrl
|= PHY_X_AN_HD
;
1417 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
1418 ctrl
|= PHY_X_AN_FD
;
1420 ctrl
|= fiber_pause_map
[skge
->flow_control
];
1422 xm_phy_write(hw
, port
, PHY_XMAC_AUNE_ADV
, ctrl
);
1424 /* Restart Auto-negotiation */
1425 ctrl
= PHY_CT_ANE
| PHY_CT_RE_CFG
;
1427 /* Set DuplexMode in Config register */
1428 if (skge
->duplex
== DUPLEX_FULL
)
1429 ctrl
|= PHY_CT_DUP_MD
;
1431 * Do NOT enable Auto-negotiation here. This would hold
1432 * the link down because no IDLEs are transmitted
1436 xm_phy_write(hw
, port
, PHY_XMAC_CTRL
, ctrl
);
1438 /* Poll PHY for status changes */
1439 mod_timer(&skge
->link_timer
, jiffies
+ LINK_HZ
);
1442 static int xm_check_link(struct net_device
*dev
)
1444 struct skge_port
*skge
= netdev_priv(dev
);
1445 struct skge_hw
*hw
= skge
->hw
;
1446 int port
= skge
->port
;
1449 /* read twice because of latch */
1450 xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1451 status
= xm_phy_read(hw
, port
, PHY_XMAC_STAT
);
1453 if ((status
& PHY_ST_LSYNC
) == 0) {
1454 xm_link_down(hw
, port
);
1458 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1461 if (!(status
& PHY_ST_AN_OVER
))
1464 lpa
= xm_phy_read(hw
, port
, PHY_XMAC_AUNE_LP
);
1465 if (lpa
& PHY_B_AN_RF
) {
1466 printk(KERN_NOTICE PFX
"%s: remote fault\n",
1471 res
= xm_phy_read(hw
, port
, PHY_XMAC_RES_ABI
);
1473 /* Check Duplex mismatch */
1474 switch (res
& (PHY_X_RS_HD
| PHY_X_RS_FD
)) {
1476 skge
->duplex
= DUPLEX_FULL
;
1479 skge
->duplex
= DUPLEX_HALF
;
1482 printk(KERN_NOTICE PFX
"%s: duplex mismatch\n",
1487 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
1488 if ((skge
->flow_control
== FLOW_MODE_SYMMETRIC
||
1489 skge
->flow_control
== FLOW_MODE_SYM_OR_REM
) &&
1490 (lpa
& PHY_X_P_SYM_MD
))
1491 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
1492 else if (skge
->flow_control
== FLOW_MODE_SYM_OR_REM
&&
1493 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_ASYM_MD
)
1494 /* Enable PAUSE receive, disable PAUSE transmit */
1495 skge
->flow_status
= FLOW_STAT_REM_SEND
;
1496 else if (skge
->flow_control
== FLOW_MODE_LOC_SEND
&&
1497 (lpa
& PHY_X_RS_PAUSE
) == PHY_X_P_BOTH_MD
)
1498 /* Disable PAUSE receive, enable PAUSE transmit */
1499 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
1501 skge
->flow_status
= FLOW_STAT_NONE
;
1503 skge
->speed
= SPEED_1000
;
1506 if (!netif_carrier_ok(dev
))
1507 genesis_link_up(skge
);
1511 /* Poll to check for link coming up.
1513 * Since internal PHY is wired to a level triggered pin, can't
1514 * get an interrupt when carrier is detected, need to poll for
1517 static void xm_link_timer(unsigned long arg
)
1519 struct skge_port
*skge
= (struct skge_port
*) arg
;
1520 struct net_device
*dev
= skge
->netdev
;
1521 struct skge_hw
*hw
= skge
->hw
;
1522 int port
= skge
->port
;
1524 unsigned long flags
;
1526 if (!netif_running(dev
))
1529 spin_lock_irqsave(&hw
->phy_lock
, flags
);
1532 * Verify that the link by checking GPIO register three times.
1533 * This pin has the signal from the link_sync pin connected to it.
1535 for (i
= 0; i
< 3; i
++) {
1536 if (xm_read16(hw
, port
, XM_GP_PORT
) & XM_GP_INP_ASS
)
1540 /* Re-enable interrupt to detect link down */
1541 if (xm_check_link(dev
)) {
1542 u16 msk
= xm_read16(hw
, port
, XM_IMSK
);
1543 msk
&= ~XM_IS_INP_ASS
;
1544 xm_write16(hw
, port
, XM_IMSK
, msk
);
1545 xm_read16(hw
, port
, XM_ISRC
);
1548 mod_timer(&skge
->link_timer
,
1549 round_jiffies(jiffies
+ LINK_HZ
));
1551 spin_unlock_irqrestore(&hw
->phy_lock
, flags
);
1554 static void genesis_mac_init(struct skge_hw
*hw
, int port
)
1556 struct net_device
*dev
= hw
->dev
[port
];
1557 struct skge_port
*skge
= netdev_priv(dev
);
1558 int jumbo
= hw
->dev
[port
]->mtu
> ETH_DATA_LEN
;
1561 const u8 zero
[6] = { 0 };
1563 for (i
= 0; i
< 10; i
++) {
1564 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
1566 if (skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
)
1571 printk(KERN_WARNING PFX
"%s: genesis reset failed\n", dev
->name
);
1574 /* Unreset the XMAC. */
1575 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1578 * Perform additional initialization for external PHYs,
1579 * namely for the 1000baseTX cards that use the XMAC's
1582 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1583 /* Take external Phy out of reset */
1584 r
= skge_read32(hw
, B2_GP_IO
);
1586 r
|= GP_DIR_0
|GP_IO_0
;
1588 r
|= GP_DIR_2
|GP_IO_2
;
1590 skge_write32(hw
, B2_GP_IO
, r
);
1592 /* Enable GMII interface */
1593 xm_write16(hw
, port
, XM_HW_CFG
, XM_HW_GMII_MD
);
1597 switch(hw
->phy_type
) {
1602 bcom_phy_init(skge
);
1603 bcom_check_link(hw
, port
);
1606 /* Set Station Address */
1607 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
1609 /* We don't use match addresses so clear */
1610 for (i
= 1; i
< 16; i
++)
1611 xm_outaddr(hw
, port
, XM_EXM(i
), zero
);
1613 /* Clear MIB counters */
1614 xm_write16(hw
, port
, XM_STAT_CMD
,
1615 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1616 /* Clear two times according to Errata #3 */
1617 xm_write16(hw
, port
, XM_STAT_CMD
,
1618 XM_SC_CLR_RXC
| XM_SC_CLR_TXC
);
1620 /* configure Rx High Water Mark (XM_RX_HI_WM) */
1621 xm_write16(hw
, port
, XM_RX_HI_WM
, 1450);
1623 /* We don't need the FCS appended to the packet. */
1624 r
= XM_RX_LENERR_OK
| XM_RX_STRIP_FCS
;
1626 r
|= XM_RX_BIG_PK_OK
;
1628 if (skge
->duplex
== DUPLEX_HALF
) {
1630 * If in manual half duplex mode the other side might be in
1631 * full duplex mode, so ignore if a carrier extension is not seen
1632 * on frames received
1634 r
|= XM_RX_DIS_CEXT
;
1636 xm_write16(hw
, port
, XM_RX_CMD
, r
);
1638 /* We want short frames padded to 60 bytes. */
1639 xm_write16(hw
, port
, XM_TX_CMD
, XM_TX_AUTO_PAD
);
1641 /* Increase threshold for jumbo frames on dual port */
1642 if (hw
->ports
> 1 && jumbo
)
1643 xm_write16(hw
, port
, XM_TX_THR
, 1020);
1645 xm_write16(hw
, port
, XM_TX_THR
, 512);
1648 * Enable the reception of all error frames. This is is
1649 * a necessary evil due to the design of the XMAC. The
1650 * XMAC's receive FIFO is only 8K in size, however jumbo
1651 * frames can be up to 9000 bytes in length. When bad
1652 * frame filtering is enabled, the XMAC's RX FIFO operates
1653 * in 'store and forward' mode. For this to work, the
1654 * entire frame has to fit into the FIFO, but that means
1655 * that jumbo frames larger than 8192 bytes will be
1656 * truncated. Disabling all bad frame filtering causes
1657 * the RX FIFO to operate in streaming mode, in which
1658 * case the XMAC will start transferring frames out of the
1659 * RX FIFO as soon as the FIFO threshold is reached.
1661 xm_write32(hw
, port
, XM_MODE
, XM_DEF_MODE
);
1665 * Initialize the Receive Counter Event Mask (XM_RX_EV_MSK)
1666 * - Enable all bits excepting 'Octets Rx OK Low CntOv'
1667 * and 'Octets Rx OK Hi Cnt Ov'.
1669 xm_write32(hw
, port
, XM_RX_EV_MSK
, XMR_DEF_MSK
);
1672 * Initialize the Transmit Counter Event Mask (XM_TX_EV_MSK)
1673 * - Enable all bits excepting 'Octets Tx OK Low CntOv'
1674 * and 'Octets Tx OK Hi Cnt Ov'.
1676 xm_write32(hw
, port
, XM_TX_EV_MSK
, XMT_DEF_MSK
);
1678 /* Configure MAC arbiter */
1679 skge_write16(hw
, B3_MA_TO_CTRL
, MA_RST_CLR
);
1681 /* configure timeout values */
1682 skge_write8(hw
, B3_MA_TOINI_RX1
, 72);
1683 skge_write8(hw
, B3_MA_TOINI_RX2
, 72);
1684 skge_write8(hw
, B3_MA_TOINI_TX1
, 72);
1685 skge_write8(hw
, B3_MA_TOINI_TX2
, 72);
1687 skge_write8(hw
, B3_MA_RCINI_RX1
, 0);
1688 skge_write8(hw
, B3_MA_RCINI_RX2
, 0);
1689 skge_write8(hw
, B3_MA_RCINI_TX1
, 0);
1690 skge_write8(hw
, B3_MA_RCINI_TX2
, 0);
1692 /* Configure Rx MAC FIFO */
1693 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_CLR
);
1694 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_TIM_PAT
);
1695 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1697 /* Configure Tx MAC FIFO */
1698 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_CLR
);
1699 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_TX_CTRL_DEF
);
1700 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_ENA_OP_MD
);
1703 /* Enable frame flushing if jumbo frames used */
1704 skge_write16(hw
, SK_REG(port
,RX_MFF_CTRL1
), MFF_ENA_FLUSH
);
1706 /* enable timeout timers if normal frames */
1707 skge_write16(hw
, B3_PA_CTRL
,
1708 (port
== 0) ? PA_ENA_TO_TX1
: PA_ENA_TO_TX2
);
1712 static void genesis_stop(struct skge_port
*skge
)
1714 struct skge_hw
*hw
= skge
->hw
;
1715 int port
= skge
->port
;
1716 unsigned retries
= 1000;
1719 /* Disable Tx and Rx */
1720 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1721 cmd
&= ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1722 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1724 genesis_reset(hw
, port
);
1726 /* Clear Tx packet arbiter timeout IRQ */
1727 skge_write16(hw
, B3_PA_CTRL
,
1728 port
== 0 ? PA_CLR_TO_TX1
: PA_CLR_TO_TX2
);
1731 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_CLR_MAC_RST
);
1733 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
), MFF_SET_MAC_RST
);
1734 if (!(skge_read16(hw
, SK_REG(port
, TX_MFF_CTRL1
)) & MFF_SET_MAC_RST
))
1736 } while (--retries
> 0);
1738 /* For external PHYs there must be special handling */
1739 if (hw
->phy_type
!= SK_PHY_XMAC
) {
1740 u32 reg
= skge_read32(hw
, B2_GP_IO
);
1748 skge_write32(hw
, B2_GP_IO
, reg
);
1749 skge_read32(hw
, B2_GP_IO
);
1752 xm_write16(hw
, port
, XM_MMU_CMD
,
1753 xm_read16(hw
, port
, XM_MMU_CMD
)
1754 & ~(XM_MMU_ENA_RX
| XM_MMU_ENA_TX
));
1756 xm_read16(hw
, port
, XM_MMU_CMD
);
1760 static void genesis_get_stats(struct skge_port
*skge
, u64
*data
)
1762 struct skge_hw
*hw
= skge
->hw
;
1763 int port
= skge
->port
;
1765 unsigned long timeout
= jiffies
+ HZ
;
1767 xm_write16(hw
, port
,
1768 XM_STAT_CMD
, XM_SC_SNP_TXC
| XM_SC_SNP_RXC
);
1770 /* wait for update to complete */
1771 while (xm_read16(hw
, port
, XM_STAT_CMD
)
1772 & (XM_SC_SNP_TXC
| XM_SC_SNP_RXC
)) {
1773 if (time_after(jiffies
, timeout
))
1778 /* special case for 64 bit octet counter */
1779 data
[0] = (u64
) xm_read32(hw
, port
, XM_TXO_OK_HI
) << 32
1780 | xm_read32(hw
, port
, XM_TXO_OK_LO
);
1781 data
[1] = (u64
) xm_read32(hw
, port
, XM_RXO_OK_HI
) << 32
1782 | xm_read32(hw
, port
, XM_RXO_OK_LO
);
1784 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
1785 data
[i
] = xm_read32(hw
, port
, skge_stats
[i
].xmac_offset
);
1788 static void genesis_mac_intr(struct skge_hw
*hw
, int port
)
1790 struct net_device
*dev
= hw
->dev
[port
];
1791 struct skge_port
*skge
= netdev_priv(dev
);
1792 u16 status
= xm_read16(hw
, port
, XM_ISRC
);
1794 if (netif_msg_intr(skge
))
1795 printk(KERN_DEBUG PFX
"%s: mac interrupt status 0x%x\n",
1798 if (hw
->phy_type
== SK_PHY_XMAC
&& (status
& XM_IS_INP_ASS
)) {
1799 xm_link_down(hw
, port
);
1800 mod_timer(&skge
->link_timer
, jiffies
+ 1);
1803 if (status
& XM_IS_TXF_UR
) {
1804 xm_write32(hw
, port
, XM_MODE
, XM_MD_FTF
);
1805 ++dev
->stats
.tx_fifo_errors
;
1809 static void genesis_link_up(struct skge_port
*skge
)
1811 struct skge_hw
*hw
= skge
->hw
;
1812 int port
= skge
->port
;
1816 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1819 * enabling pause frame reception is required for 1000BT
1820 * because the XMAC is not reset if the link is going down
1822 if (skge
->flow_status
== FLOW_STAT_NONE
||
1823 skge
->flow_status
== FLOW_STAT_LOC_SEND
)
1824 /* Disable Pause Frame Reception */
1825 cmd
|= XM_MMU_IGN_PF
;
1827 /* Enable Pause Frame Reception */
1828 cmd
&= ~XM_MMU_IGN_PF
;
1830 xm_write16(hw
, port
, XM_MMU_CMD
, cmd
);
1832 mode
= xm_read32(hw
, port
, XM_MODE
);
1833 if (skge
->flow_status
== FLOW_STAT_SYMMETRIC
||
1834 skge
->flow_status
== FLOW_STAT_LOC_SEND
) {
1836 * Configure Pause Frame Generation
1837 * Use internal and external Pause Frame Generation.
1838 * Sending pause frames is edge triggered.
1839 * Send a Pause frame with the maximum pause time if
1840 * internal oder external FIFO full condition occurs.
1841 * Send a zero pause time frame to re-start transmission.
1843 /* XM_PAUSE_DA = '010000C28001' (default) */
1844 /* XM_MAC_PTIME = 0xffff (maximum) */
1845 /* remember this value is defined in big endian (!) */
1846 xm_write16(hw
, port
, XM_MAC_PTIME
, 0xffff);
1848 mode
|= XM_PAUSE_MODE
;
1849 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_ENA_PAUSE
);
1852 * disable pause frame generation is required for 1000BT
1853 * because the XMAC is not reset if the link is going down
1855 /* Disable Pause Mode in Mode Register */
1856 mode
&= ~XM_PAUSE_MODE
;
1858 skge_write16(hw
, SK_REG(port
, RX_MFF_CTRL1
), MFF_DIS_PAUSE
);
1861 xm_write32(hw
, port
, XM_MODE
, mode
);
1863 /* Turn on detection of Tx underrun */
1864 msk
= xm_read16(hw
, port
, XM_IMSK
);
1865 msk
&= ~XM_IS_TXF_UR
;
1866 xm_write16(hw
, port
, XM_IMSK
, msk
);
1868 xm_read16(hw
, port
, XM_ISRC
);
1870 /* get MMU Command Reg. */
1871 cmd
= xm_read16(hw
, port
, XM_MMU_CMD
);
1872 if (hw
->phy_type
!= SK_PHY_XMAC
&& skge
->duplex
== DUPLEX_FULL
)
1873 cmd
|= XM_MMU_GMII_FD
;
1876 * Workaround BCOM Errata (#10523) for all BCom Phys
1877 * Enable Power Management after link up
1879 if (hw
->phy_type
== SK_PHY_BCOM
) {
1880 xm_phy_write(hw
, port
, PHY_BCOM_AUX_CTRL
,
1881 xm_phy_read(hw
, port
, PHY_BCOM_AUX_CTRL
)
1882 & ~PHY_B_AC_DIS_PM
);
1883 xm_phy_write(hw
, port
, PHY_BCOM_INT_MASK
, PHY_B_DEF_MSK
);
1887 xm_write16(hw
, port
, XM_MMU_CMD
,
1888 cmd
| XM_MMU_ENA_RX
| XM_MMU_ENA_TX
);
1893 static inline void bcom_phy_intr(struct skge_port
*skge
)
1895 struct skge_hw
*hw
= skge
->hw
;
1896 int port
= skge
->port
;
1899 isrc
= xm_phy_read(hw
, port
, PHY_BCOM_INT_STAT
);
1900 if (netif_msg_intr(skge
))
1901 printk(KERN_DEBUG PFX
"%s: phy interrupt status 0x%x\n",
1902 skge
->netdev
->name
, isrc
);
1904 if (isrc
& PHY_B_IS_PSE
)
1905 printk(KERN_ERR PFX
"%s: uncorrectable pair swap error\n",
1906 hw
->dev
[port
]->name
);
1908 /* Workaround BCom Errata:
1909 * enable and disable loopback mode if "NO HCD" occurs.
1911 if (isrc
& PHY_B_IS_NO_HDCL
) {
1912 u16 ctrl
= xm_phy_read(hw
, port
, PHY_BCOM_CTRL
);
1913 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1914 ctrl
| PHY_CT_LOOP
);
1915 xm_phy_write(hw
, port
, PHY_BCOM_CTRL
,
1916 ctrl
& ~PHY_CT_LOOP
);
1919 if (isrc
& (PHY_B_IS_AN_PR
| PHY_B_IS_LST_CHANGE
))
1920 bcom_check_link(hw
, port
);
1924 static int gm_phy_write(struct skge_hw
*hw
, int port
, u16 reg
, u16 val
)
1928 gma_write16(hw
, port
, GM_SMI_DATA
, val
);
1929 gma_write16(hw
, port
, GM_SMI_CTRL
,
1930 GM_SMI_CT_PHY_AD(hw
->phy_addr
) | GM_SMI_CT_REG_AD(reg
));
1931 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1934 if (!(gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_BUSY
))
1938 printk(KERN_WARNING PFX
"%s: phy write timeout\n",
1939 hw
->dev
[port
]->name
);
1943 static int __gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
, u16
*val
)
1947 gma_write16(hw
, port
, GM_SMI_CTRL
,
1948 GM_SMI_CT_PHY_AD(hw
->phy_addr
)
1949 | GM_SMI_CT_REG_AD(reg
) | GM_SMI_CT_OP_RD
);
1951 for (i
= 0; i
< PHY_RETRIES
; i
++) {
1953 if (gma_read16(hw
, port
, GM_SMI_CTRL
) & GM_SMI_CT_RD_VAL
)
1959 *val
= gma_read16(hw
, port
, GM_SMI_DATA
);
1963 static u16
gm_phy_read(struct skge_hw
*hw
, int port
, u16 reg
)
1966 if (__gm_phy_read(hw
, port
, reg
, &v
))
1967 printk(KERN_WARNING PFX
"%s: phy read timeout\n",
1968 hw
->dev
[port
]->name
);
1972 /* Marvell Phy Initialization */
1973 static void yukon_init(struct skge_hw
*hw
, int port
)
1975 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
1976 u16 ctrl
, ct1000
, adv
;
1978 if (skge
->autoneg
== AUTONEG_ENABLE
) {
1979 u16 ectrl
= gm_phy_read(hw
, port
, PHY_MARV_EXT_CTRL
);
1981 ectrl
&= ~(PHY_M_EC_M_DSC_MSK
| PHY_M_EC_S_DSC_MSK
|
1982 PHY_M_EC_MAC_S_MSK
);
1983 ectrl
|= PHY_M_EC_MAC_S(MAC_TX_CLK_25_MHZ
);
1985 ectrl
|= PHY_M_EC_M_DSC(0) | PHY_M_EC_S_DSC(1);
1987 gm_phy_write(hw
, port
, PHY_MARV_EXT_CTRL
, ectrl
);
1990 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
1991 if (skge
->autoneg
== AUTONEG_DISABLE
)
1992 ctrl
&= ~PHY_CT_ANE
;
1994 ctrl
|= PHY_CT_RESET
;
1995 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2001 if (skge
->autoneg
== AUTONEG_ENABLE
) {
2003 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
2004 ct1000
|= PHY_M_1000C_AFD
;
2005 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
2006 ct1000
|= PHY_M_1000C_AHD
;
2007 if (skge
->advertising
& ADVERTISED_100baseT_Full
)
2008 adv
|= PHY_M_AN_100_FD
;
2009 if (skge
->advertising
& ADVERTISED_100baseT_Half
)
2010 adv
|= PHY_M_AN_100_HD
;
2011 if (skge
->advertising
& ADVERTISED_10baseT_Full
)
2012 adv
|= PHY_M_AN_10_FD
;
2013 if (skge
->advertising
& ADVERTISED_10baseT_Half
)
2014 adv
|= PHY_M_AN_10_HD
;
2016 /* Set Flow-control capabilities */
2017 adv
|= phy_pause_map
[skge
->flow_control
];
2019 if (skge
->advertising
& ADVERTISED_1000baseT_Full
)
2020 adv
|= PHY_M_AN_1000X_AFD
;
2021 if (skge
->advertising
& ADVERTISED_1000baseT_Half
)
2022 adv
|= PHY_M_AN_1000X_AHD
;
2024 adv
|= fiber_pause_map
[skge
->flow_control
];
2027 /* Restart Auto-negotiation */
2028 ctrl
|= PHY_CT_ANE
| PHY_CT_RE_CFG
;
2030 /* forced speed/duplex settings */
2031 ct1000
= PHY_M_1000C_MSE
;
2033 if (skge
->duplex
== DUPLEX_FULL
)
2034 ctrl
|= PHY_CT_DUP_MD
;
2036 switch (skge
->speed
) {
2038 ctrl
|= PHY_CT_SP1000
;
2041 ctrl
|= PHY_CT_SP100
;
2045 ctrl
|= PHY_CT_RESET
;
2048 gm_phy_write(hw
, port
, PHY_MARV_1000T_CTRL
, ct1000
);
2050 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, adv
);
2051 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2053 /* Enable phy interrupt on autonegotiation complete (or link up) */
2054 if (skge
->autoneg
== AUTONEG_ENABLE
)
2055 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_AN_MSK
);
2057 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2060 static void yukon_reset(struct skge_hw
*hw
, int port
)
2062 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, 0);/* disable PHY IRQs */
2063 gma_write16(hw
, port
, GM_MC_ADDR_H1
, 0); /* clear MC hash */
2064 gma_write16(hw
, port
, GM_MC_ADDR_H2
, 0);
2065 gma_write16(hw
, port
, GM_MC_ADDR_H3
, 0);
2066 gma_write16(hw
, port
, GM_MC_ADDR_H4
, 0);
2068 gma_write16(hw
, port
, GM_RX_CTRL
,
2069 gma_read16(hw
, port
, GM_RX_CTRL
)
2070 | GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2073 /* Apparently, early versions of Yukon-Lite had wrong chip_id? */
2074 static int is_yukon_lite_a0(struct skge_hw
*hw
)
2079 if (hw
->chip_id
!= CHIP_ID_YUKON
)
2082 reg
= skge_read32(hw
, B2_FAR
);
2083 skge_write8(hw
, B2_FAR
+ 3, 0xff);
2084 ret
= (skge_read8(hw
, B2_FAR
+ 3) != 0);
2085 skge_write32(hw
, B2_FAR
, reg
);
2089 static void yukon_mac_init(struct skge_hw
*hw
, int port
)
2091 struct skge_port
*skge
= netdev_priv(hw
->dev
[port
]);
2094 const u8
*addr
= hw
->dev
[port
]->dev_addr
;
2096 /* WA code for COMA mode -- set PHY reset */
2097 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2098 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2099 reg
= skge_read32(hw
, B2_GP_IO
);
2100 reg
|= GP_DIR_9
| GP_IO_9
;
2101 skge_write32(hw
, B2_GP_IO
, reg
);
2105 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2106 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2108 /* WA code for COMA mode -- clear PHY reset */
2109 if (hw
->chip_id
== CHIP_ID_YUKON_LITE
&&
2110 hw
->chip_rev
>= CHIP_REV_YU_LITE_A3
) {
2111 reg
= skge_read32(hw
, B2_GP_IO
);
2114 skge_write32(hw
, B2_GP_IO
, reg
);
2117 /* Set hardware config mode */
2118 reg
= GPC_INT_POL_HI
| GPC_DIS_FC
| GPC_DIS_SLEEP
|
2119 GPC_ENA_XC
| GPC_ANEG_ADV_ALL_M
| GPC_ENA_PAUSE
;
2120 reg
|= hw
->copper
? GPC_HWCFG_GMII_COP
: GPC_HWCFG_GMII_FIB
;
2122 /* Clear GMC reset */
2123 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_SET
);
2124 skge_write32(hw
, SK_REG(port
, GPHY_CTRL
), reg
| GPC_RST_CLR
);
2125 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
| GMC_RST_CLR
);
2127 if (skge
->autoneg
== AUTONEG_DISABLE
) {
2128 reg
= GM_GPCR_AU_ALL_DIS
;
2129 gma_write16(hw
, port
, GM_GP_CTRL
,
2130 gma_read16(hw
, port
, GM_GP_CTRL
) | reg
);
2132 switch (skge
->speed
) {
2134 reg
&= ~GM_GPCR_SPEED_100
;
2135 reg
|= GM_GPCR_SPEED_1000
;
2138 reg
&= ~GM_GPCR_SPEED_1000
;
2139 reg
|= GM_GPCR_SPEED_100
;
2142 reg
&= ~(GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
);
2146 if (skge
->duplex
== DUPLEX_FULL
)
2147 reg
|= GM_GPCR_DUP_FULL
;
2149 reg
= GM_GPCR_SPEED_1000
| GM_GPCR_SPEED_100
| GM_GPCR_DUP_FULL
;
2151 switch (skge
->flow_control
) {
2152 case FLOW_MODE_NONE
:
2153 skge_write32(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2154 reg
|= GM_GPCR_FC_TX_DIS
| GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2156 case FLOW_MODE_LOC_SEND
:
2157 /* disable Rx flow-control */
2158 reg
|= GM_GPCR_FC_RX_DIS
| GM_GPCR_AU_FCT_DIS
;
2160 case FLOW_MODE_SYMMETRIC
:
2161 case FLOW_MODE_SYM_OR_REM
:
2162 /* enable Tx & Rx flow-control */
2166 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2167 skge_read16(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2169 yukon_init(hw
, port
);
2172 reg
= gma_read16(hw
, port
, GM_PHY_ADDR
);
2173 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
| GM_PAR_MIB_CLR
);
2175 for (i
= 0; i
< GM_MIB_CNT_SIZE
; i
++)
2176 gma_read16(hw
, port
, GM_MIB_CNT_BASE
+ 8*i
);
2177 gma_write16(hw
, port
, GM_PHY_ADDR
, reg
);
2179 /* transmit control */
2180 gma_write16(hw
, port
, GM_TX_CTRL
, TX_COL_THR(TX_COL_DEF
));
2182 /* receive control reg: unicast + multicast + no FCS */
2183 gma_write16(hw
, port
, GM_RX_CTRL
,
2184 GM_RXCR_UCF_ENA
| GM_RXCR_CRC_DIS
| GM_RXCR_MCF_ENA
);
2186 /* transmit flow control */
2187 gma_write16(hw
, port
, GM_TX_FLOW_CTRL
, 0xffff);
2189 /* transmit parameter */
2190 gma_write16(hw
, port
, GM_TX_PARAM
,
2191 TX_JAM_LEN_VAL(TX_JAM_LEN_DEF
) |
2192 TX_JAM_IPG_VAL(TX_JAM_IPG_DEF
) |
2193 TX_IPG_JAM_DATA(TX_IPG_JAM_DEF
));
2195 /* configure the Serial Mode Register */
2196 reg
= DATA_BLIND_VAL(DATA_BLIND_DEF
)
2198 | IPG_DATA_VAL(IPG_DATA_DEF
);
2200 if (hw
->dev
[port
]->mtu
> ETH_DATA_LEN
)
2201 reg
|= GM_SMOD_JUMBO_ENA
;
2203 gma_write16(hw
, port
, GM_SERIAL_MODE
, reg
);
2205 /* physical address: used for pause frames */
2206 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, addr
);
2207 /* virtual address for data */
2208 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, addr
);
2210 /* enable interrupt mask for counter overflows */
2211 gma_write16(hw
, port
, GM_TX_IRQ_MSK
, 0);
2212 gma_write16(hw
, port
, GM_RX_IRQ_MSK
, 0);
2213 gma_write16(hw
, port
, GM_TR_IRQ_MSK
, 0);
2215 /* Initialize Mac Fifo */
2217 /* Configure Rx MAC FIFO */
2218 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_MSK
), RX_FF_FL_DEF_MSK
);
2219 reg
= GMF_OPER_ON
| GMF_RX_F_FL_ON
;
2221 /* disable Rx GMAC FIFO Flush for YUKON-Lite Rev. A0 only */
2222 if (is_yukon_lite_a0(hw
))
2223 reg
&= ~GMF_RX_F_FL_ON
;
2225 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_CLR
);
2226 skge_write16(hw
, SK_REG(port
, RX_GMF_CTRL_T
), reg
);
2228 * because Pause Packet Truncation in GMAC is not working
2229 * we have to increase the Flush Threshold to 64 bytes
2230 * in order to flush pause packets in Rx FIFO on Yukon-1
2232 skge_write16(hw
, SK_REG(port
, RX_GMF_FL_THR
), RX_GMF_FL_THR_DEF
+1);
2234 /* Configure Tx MAC FIFO */
2235 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_CLR
);
2236 skge_write16(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_OPER_ON
);
2239 /* Go into power down mode */
2240 static void yukon_suspend(struct skge_hw
*hw
, int port
)
2244 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_PHY_CTRL
);
2245 ctrl
|= PHY_M_PC_POL_R_DIS
;
2246 gm_phy_write(hw
, port
, PHY_MARV_PHY_CTRL
, ctrl
);
2248 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2249 ctrl
|= PHY_CT_RESET
;
2250 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2252 /* switch IEEE compatible power down mode on */
2253 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_CTRL
);
2254 ctrl
|= PHY_CT_PDOWN
;
2255 gm_phy_write(hw
, port
, PHY_MARV_CTRL
, ctrl
);
2258 static void yukon_stop(struct skge_port
*skge
)
2260 struct skge_hw
*hw
= skge
->hw
;
2261 int port
= skge
->port
;
2263 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), 0);
2264 yukon_reset(hw
, port
);
2266 gma_write16(hw
, port
, GM_GP_CTRL
,
2267 gma_read16(hw
, port
, GM_GP_CTRL
)
2268 & ~(GM_GPCR_TX_ENA
|GM_GPCR_RX_ENA
));
2269 gma_read16(hw
, port
, GM_GP_CTRL
);
2271 yukon_suspend(hw
, port
);
2273 /* set GPHY Control reset */
2274 skge_write8(hw
, SK_REG(port
, GPHY_CTRL
), GPC_RST_SET
);
2275 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_RST_SET
);
2278 static void yukon_get_stats(struct skge_port
*skge
, u64
*data
)
2280 struct skge_hw
*hw
= skge
->hw
;
2281 int port
= skge
->port
;
2284 data
[0] = (u64
) gma_read32(hw
, port
, GM_TXO_OK_HI
) << 32
2285 | gma_read32(hw
, port
, GM_TXO_OK_LO
);
2286 data
[1] = (u64
) gma_read32(hw
, port
, GM_RXO_OK_HI
) << 32
2287 | gma_read32(hw
, port
, GM_RXO_OK_LO
);
2289 for (i
= 2; i
< ARRAY_SIZE(skge_stats
); i
++)
2290 data
[i
] = gma_read32(hw
, port
,
2291 skge_stats
[i
].gma_offset
);
2294 static void yukon_mac_intr(struct skge_hw
*hw
, int port
)
2296 struct net_device
*dev
= hw
->dev
[port
];
2297 struct skge_port
*skge
= netdev_priv(dev
);
2298 u8 status
= skge_read8(hw
, SK_REG(port
, GMAC_IRQ_SRC
));
2300 if (netif_msg_intr(skge
))
2301 printk(KERN_DEBUG PFX
"%s: mac interrupt status 0x%x\n",
2304 if (status
& GM_IS_RX_FF_OR
) {
2305 ++dev
->stats
.rx_fifo_errors
;
2306 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_CLI_RX_FO
);
2309 if (status
& GM_IS_TX_FF_UR
) {
2310 ++dev
->stats
.tx_fifo_errors
;
2311 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_CLI_TX_FU
);
2316 static u16
yukon_speed(const struct skge_hw
*hw
, u16 aux
)
2318 switch (aux
& PHY_M_PS_SPEED_MSK
) {
2319 case PHY_M_PS_SPEED_1000
:
2321 case PHY_M_PS_SPEED_100
:
2328 static void yukon_link_up(struct skge_port
*skge
)
2330 struct skge_hw
*hw
= skge
->hw
;
2331 int port
= skge
->port
;
2334 /* Enable Transmit FIFO Underrun */
2335 skge_write8(hw
, SK_REG(port
, GMAC_IRQ_MSK
), GMAC_DEF_MSK
);
2337 reg
= gma_read16(hw
, port
, GM_GP_CTRL
);
2338 if (skge
->duplex
== DUPLEX_FULL
|| skge
->autoneg
== AUTONEG_ENABLE
)
2339 reg
|= GM_GPCR_DUP_FULL
;
2342 reg
|= GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
;
2343 gma_write16(hw
, port
, GM_GP_CTRL
, reg
);
2345 gm_phy_write(hw
, port
, PHY_MARV_INT_MASK
, PHY_M_IS_DEF_MSK
);
2349 static void yukon_link_down(struct skge_port
*skge
)
2351 struct skge_hw
*hw
= skge
->hw
;
2352 int port
= skge
->port
;
2355 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
2356 ctrl
&= ~(GM_GPCR_RX_ENA
| GM_GPCR_TX_ENA
);
2357 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
2359 if (skge
->flow_status
== FLOW_STAT_REM_SEND
) {
2360 ctrl
= gm_phy_read(hw
, port
, PHY_MARV_AUNE_ADV
);
2361 ctrl
|= PHY_M_AN_ASP
;
2362 /* restore Asymmetric Pause bit */
2363 gm_phy_write(hw
, port
, PHY_MARV_AUNE_ADV
, ctrl
);
2366 skge_link_down(skge
);
2368 yukon_init(hw
, port
);
2371 static void yukon_phy_intr(struct skge_port
*skge
)
2373 struct skge_hw
*hw
= skge
->hw
;
2374 int port
= skge
->port
;
2375 const char *reason
= NULL
;
2376 u16 istatus
, phystat
;
2378 istatus
= gm_phy_read(hw
, port
, PHY_MARV_INT_STAT
);
2379 phystat
= gm_phy_read(hw
, port
, PHY_MARV_PHY_STAT
);
2381 if (netif_msg_intr(skge
))
2382 printk(KERN_DEBUG PFX
"%s: phy interrupt status 0x%x 0x%x\n",
2383 skge
->netdev
->name
, istatus
, phystat
);
2385 if (istatus
& PHY_M_IS_AN_COMPL
) {
2386 if (gm_phy_read(hw
, port
, PHY_MARV_AUNE_LP
)
2388 reason
= "remote fault";
2392 if (gm_phy_read(hw
, port
, PHY_MARV_1000T_STAT
) & PHY_B_1000S_MSF
) {
2393 reason
= "master/slave fault";
2397 if (!(phystat
& PHY_M_PS_SPDUP_RES
)) {
2398 reason
= "speed/duplex";
2402 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
)
2403 ? DUPLEX_FULL
: DUPLEX_HALF
;
2404 skge
->speed
= yukon_speed(hw
, phystat
);
2406 /* We are using IEEE 802.3z/D5.0 Table 37-4 */
2407 switch (phystat
& PHY_M_PS_PAUSE_MSK
) {
2408 case PHY_M_PS_PAUSE_MSK
:
2409 skge
->flow_status
= FLOW_STAT_SYMMETRIC
;
2411 case PHY_M_PS_RX_P_EN
:
2412 skge
->flow_status
= FLOW_STAT_REM_SEND
;
2414 case PHY_M_PS_TX_P_EN
:
2415 skge
->flow_status
= FLOW_STAT_LOC_SEND
;
2418 skge
->flow_status
= FLOW_STAT_NONE
;
2421 if (skge
->flow_status
== FLOW_STAT_NONE
||
2422 (skge
->speed
< SPEED_1000
&& skge
->duplex
== DUPLEX_HALF
))
2423 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_OFF
);
2425 skge_write8(hw
, SK_REG(port
, GMAC_CTRL
), GMC_PAUSE_ON
);
2426 yukon_link_up(skge
);
2430 if (istatus
& PHY_M_IS_LSP_CHANGE
)
2431 skge
->speed
= yukon_speed(hw
, phystat
);
2433 if (istatus
& PHY_M_IS_DUP_CHANGE
)
2434 skge
->duplex
= (phystat
& PHY_M_PS_FULL_DUP
) ? DUPLEX_FULL
: DUPLEX_HALF
;
2435 if (istatus
& PHY_M_IS_LST_CHANGE
) {
2436 if (phystat
& PHY_M_PS_LINK_UP
)
2437 yukon_link_up(skge
);
2439 yukon_link_down(skge
);
2443 printk(KERN_ERR PFX
"%s: autonegotiation failed (%s)\n",
2444 skge
->netdev
->name
, reason
);
2446 /* XXX restart autonegotiation? */
2449 static void skge_phy_reset(struct skge_port
*skge
)
2451 struct skge_hw
*hw
= skge
->hw
;
2452 int port
= skge
->port
;
2453 struct net_device
*dev
= hw
->dev
[port
];
2455 netif_stop_queue(skge
->netdev
);
2456 netif_carrier_off(skge
->netdev
);
2458 spin_lock_bh(&hw
->phy_lock
);
2459 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2460 genesis_reset(hw
, port
);
2461 genesis_mac_init(hw
, port
);
2463 yukon_reset(hw
, port
);
2464 yukon_init(hw
, port
);
2466 spin_unlock_bh(&hw
->phy_lock
);
2468 skge_set_multicast(dev
);
2471 /* Basic MII support */
2472 static int skge_ioctl(struct net_device
*dev
, struct ifreq
*ifr
, int cmd
)
2474 struct mii_ioctl_data
*data
= if_mii(ifr
);
2475 struct skge_port
*skge
= netdev_priv(dev
);
2476 struct skge_hw
*hw
= skge
->hw
;
2477 int err
= -EOPNOTSUPP
;
2479 if (!netif_running(dev
))
2480 return -ENODEV
; /* Phy still in reset */
2484 data
->phy_id
= hw
->phy_addr
;
2489 spin_lock_bh(&hw
->phy_lock
);
2490 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2491 err
= __xm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2493 err
= __gm_phy_read(hw
, skge
->port
, data
->reg_num
& 0x1f, &val
);
2494 spin_unlock_bh(&hw
->phy_lock
);
2495 data
->val_out
= val
;
2500 spin_lock_bh(&hw
->phy_lock
);
2501 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2502 err
= xm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2505 err
= gm_phy_write(hw
, skge
->port
, data
->reg_num
& 0x1f,
2507 spin_unlock_bh(&hw
->phy_lock
);
2513 static void skge_ramset(struct skge_hw
*hw
, u16 q
, u32 start
, size_t len
)
2519 end
= start
+ len
- 1;
2521 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_RST_CLR
);
2522 skge_write32(hw
, RB_ADDR(q
, RB_START
), start
);
2523 skge_write32(hw
, RB_ADDR(q
, RB_WP
), start
);
2524 skge_write32(hw
, RB_ADDR(q
, RB_RP
), start
);
2525 skge_write32(hw
, RB_ADDR(q
, RB_END
), end
);
2527 if (q
== Q_R1
|| q
== Q_R2
) {
2528 /* Set thresholds on receive queue's */
2529 skge_write32(hw
, RB_ADDR(q
, RB_RX_UTPP
),
2531 skge_write32(hw
, RB_ADDR(q
, RB_RX_LTPP
),
2534 /* Enable store & forward on Tx queue's because
2535 * Tx FIFO is only 4K on Genesis and 1K on Yukon
2537 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_STFWD
);
2540 skge_write8(hw
, RB_ADDR(q
, RB_CTRL
), RB_ENA_OP_MD
);
2543 /* Setup Bus Memory Interface */
2544 static void skge_qset(struct skge_port
*skge
, u16 q
,
2545 const struct skge_element
*e
)
2547 struct skge_hw
*hw
= skge
->hw
;
2548 u32 watermark
= 0x600;
2549 u64 base
= skge
->dma
+ (e
->desc
- skge
->mem
);
2551 /* optimization to reduce window on 32bit/33mhz */
2552 if ((skge_read16(hw
, B0_CTST
) & (CS_BUS_CLOCK
| CS_BUS_SLOT_SZ
)) == 0)
2555 skge_write32(hw
, Q_ADDR(q
, Q_CSR
), CSR_CLR_RESET
);
2556 skge_write32(hw
, Q_ADDR(q
, Q_F
), watermark
);
2557 skge_write32(hw
, Q_ADDR(q
, Q_DA_H
), (u32
)(base
>> 32));
2558 skge_write32(hw
, Q_ADDR(q
, Q_DA_L
), (u32
)base
);
2561 static int skge_up(struct net_device
*dev
)
2563 struct skge_port
*skge
= netdev_priv(dev
);
2564 struct skge_hw
*hw
= skge
->hw
;
2565 int port
= skge
->port
;
2566 u32 chunk
, ram_addr
;
2567 size_t rx_size
, tx_size
;
2570 if (!is_valid_ether_addr(dev
->dev_addr
))
2573 if (netif_msg_ifup(skge
))
2574 printk(KERN_INFO PFX
"%s: enabling interface\n", dev
->name
);
2576 if (dev
->mtu
> RX_BUF_SIZE
)
2577 skge
->rx_buf_size
= dev
->mtu
+ ETH_HLEN
;
2579 skge
->rx_buf_size
= RX_BUF_SIZE
;
2582 rx_size
= skge
->rx_ring
.count
* sizeof(struct skge_rx_desc
);
2583 tx_size
= skge
->tx_ring
.count
* sizeof(struct skge_tx_desc
);
2584 skge
->mem_size
= tx_size
+ rx_size
;
2585 skge
->mem
= pci_alloc_consistent(hw
->pdev
, skge
->mem_size
, &skge
->dma
);
2589 BUG_ON(skge
->dma
& 7);
2591 if ((u64
)skge
->dma
>> 32 != ((u64
) skge
->dma
+ skge
->mem_size
) >> 32) {
2592 dev_err(&hw
->pdev
->dev
, "pci_alloc_consistent region crosses 4G boundary\n");
2597 memset(skge
->mem
, 0, skge
->mem_size
);
2599 err
= skge_ring_alloc(&skge
->rx_ring
, skge
->mem
, skge
->dma
);
2603 err
= skge_rx_fill(dev
);
2607 err
= skge_ring_alloc(&skge
->tx_ring
, skge
->mem
+ rx_size
,
2608 skge
->dma
+ rx_size
);
2612 /* Initialize MAC */
2613 spin_lock_bh(&hw
->phy_lock
);
2614 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2615 genesis_mac_init(hw
, port
);
2617 yukon_mac_init(hw
, port
);
2618 spin_unlock_bh(&hw
->phy_lock
);
2620 /* Configure RAMbuffers - equally between ports and tx/rx */
2621 chunk
= (hw
->ram_size
- hw
->ram_offset
) / (hw
->ports
* 2);
2622 ram_addr
= hw
->ram_offset
+ 2 * chunk
* port
;
2624 skge_ramset(hw
, rxqaddr
[port
], ram_addr
, chunk
);
2625 skge_qset(skge
, rxqaddr
[port
], skge
->rx_ring
.to_clean
);
2627 BUG_ON(skge
->tx_ring
.to_use
!= skge
->tx_ring
.to_clean
);
2628 skge_ramset(hw
, txqaddr
[port
], ram_addr
+chunk
, chunk
);
2629 skge_qset(skge
, txqaddr
[port
], skge
->tx_ring
.to_use
);
2631 /* Start receiver BMU */
2633 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_START
| CSR_IRQ_CL_F
);
2634 skge_led(skge
, LED_MODE_ON
);
2636 spin_lock_irq(&hw
->hw_lock
);
2637 hw
->intr_mask
|= portmask
[port
];
2638 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2639 spin_unlock_irq(&hw
->hw_lock
);
2641 napi_enable(&skge
->napi
);
2645 skge_rx_clean(skge
);
2646 kfree(skge
->rx_ring
.start
);
2648 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2655 static void skge_rx_stop(struct skge_hw
*hw
, int port
)
2657 skge_write8(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_STOP
);
2658 skge_write32(hw
, RB_ADDR(port
? Q_R2
: Q_R1
, RB_CTRL
),
2659 RB_RST_SET
|RB_DIS_OP_MD
);
2660 skge_write32(hw
, Q_ADDR(rxqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2663 static int skge_down(struct net_device
*dev
)
2665 struct skge_port
*skge
= netdev_priv(dev
);
2666 struct skge_hw
*hw
= skge
->hw
;
2667 int port
= skge
->port
;
2669 if (skge
->mem
== NULL
)
2672 if (netif_msg_ifdown(skge
))
2673 printk(KERN_INFO PFX
"%s: disabling interface\n", dev
->name
);
2675 netif_tx_disable(dev
);
2677 if (hw
->chip_id
== CHIP_ID_GENESIS
&& hw
->phy_type
== SK_PHY_XMAC
)
2678 del_timer_sync(&skge
->link_timer
);
2680 napi_disable(&skge
->napi
);
2681 netif_carrier_off(dev
);
2683 spin_lock_irq(&hw
->hw_lock
);
2684 hw
->intr_mask
&= ~portmask
[port
];
2685 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
2686 spin_unlock_irq(&hw
->hw_lock
);
2688 skge_write8(skge
->hw
, SK_REG(skge
->port
, LNK_LED_REG
), LED_OFF
);
2689 if (hw
->chip_id
== CHIP_ID_GENESIS
)
2694 /* Stop transmitter */
2695 skge_write8(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_STOP
);
2696 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
),
2697 RB_RST_SET
|RB_DIS_OP_MD
);
2700 /* Disable Force Sync bit and Enable Alloc bit */
2701 skge_write8(hw
, SK_REG(port
, TXA_CTRL
),
2702 TXA_DIS_FSYNC
| TXA_DIS_ALLOC
| TXA_STOP_RC
);
2704 /* Stop Interval Timer and Limit Counter of Tx Arbiter */
2705 skge_write32(hw
, SK_REG(port
, TXA_ITI_INI
), 0L);
2706 skge_write32(hw
, SK_REG(port
, TXA_LIM_INI
), 0L);
2708 /* Reset PCI FIFO */
2709 skge_write32(hw
, Q_ADDR(txqaddr
[port
], Q_CSR
), CSR_SET_RESET
);
2710 skge_write32(hw
, RB_ADDR(txqaddr
[port
], RB_CTRL
), RB_RST_SET
);
2712 /* Reset the RAM Buffer async Tx queue */
2713 skge_write8(hw
, RB_ADDR(port
== 0 ? Q_XA1
: Q_XA2
, RB_CTRL
), RB_RST_SET
);
2715 skge_rx_stop(hw
, port
);
2717 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
2718 skge_write8(hw
, SK_REG(port
, TX_MFF_CTRL2
), MFF_RST_SET
);
2719 skge_write8(hw
, SK_REG(port
, RX_MFF_CTRL2
), MFF_RST_SET
);
2721 skge_write8(hw
, SK_REG(port
, RX_GMF_CTRL_T
), GMF_RST_SET
);
2722 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
), GMF_RST_SET
);
2725 skge_led(skge
, LED_MODE_OFF
);
2727 netif_tx_lock_bh(dev
);
2729 netif_tx_unlock_bh(dev
);
2731 skge_rx_clean(skge
);
2733 kfree(skge
->rx_ring
.start
);
2734 kfree(skge
->tx_ring
.start
);
2735 pci_free_consistent(hw
->pdev
, skge
->mem_size
, skge
->mem
, skge
->dma
);
2740 static inline int skge_avail(const struct skge_ring
*ring
)
2743 return ((ring
->to_clean
> ring
->to_use
) ? 0 : ring
->count
)
2744 + (ring
->to_clean
- ring
->to_use
) - 1;
2747 static netdev_tx_t
skge_xmit_frame(struct sk_buff
*skb
,
2748 struct net_device
*dev
)
2750 struct skge_port
*skge
= netdev_priv(dev
);
2751 struct skge_hw
*hw
= skge
->hw
;
2752 struct skge_element
*e
;
2753 struct skge_tx_desc
*td
;
2758 if (skb_padto(skb
, ETH_ZLEN
))
2759 return NETDEV_TX_OK
;
2761 if (unlikely(skge_avail(&skge
->tx_ring
) < skb_shinfo(skb
)->nr_frags
+ 1))
2762 return NETDEV_TX_BUSY
;
2764 e
= skge
->tx_ring
.to_use
;
2766 BUG_ON(td
->control
& BMU_OWN
);
2768 len
= skb_headlen(skb
);
2769 map
= pci_map_single(hw
->pdev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
2770 pci_unmap_addr_set(e
, mapaddr
, map
);
2771 pci_unmap_len_set(e
, maplen
, len
);
2774 td
->dma_hi
= map
>> 32;
2776 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
2777 const int offset
= skb_transport_offset(skb
);
2779 /* This seems backwards, but it is what the sk98lin
2780 * does. Looks like hardware is wrong?
2782 if (ipip_hdr(skb
)->protocol
== IPPROTO_UDP
2783 && hw
->chip_rev
== 0 && hw
->chip_id
== CHIP_ID_YUKON
)
2784 control
= BMU_TCP_CHECK
;
2786 control
= BMU_UDP_CHECK
;
2789 td
->csum_start
= offset
;
2790 td
->csum_write
= offset
+ skb
->csum_offset
;
2792 control
= BMU_CHECK
;
2794 if (!skb_shinfo(skb
)->nr_frags
) /* single buffer i.e. no fragments */
2795 control
|= BMU_EOF
| BMU_IRQ_EOF
;
2797 struct skge_tx_desc
*tf
= td
;
2799 control
|= BMU_STFWD
;
2800 for (i
= 0; i
< skb_shinfo(skb
)->nr_frags
; i
++) {
2801 skb_frag_t
*frag
= &skb_shinfo(skb
)->frags
[i
];
2803 map
= pci_map_page(hw
->pdev
, frag
->page
, frag
->page_offset
,
2804 frag
->size
, PCI_DMA_TODEVICE
);
2809 BUG_ON(tf
->control
& BMU_OWN
);
2812 tf
->dma_hi
= (u64
) map
>> 32;
2813 pci_unmap_addr_set(e
, mapaddr
, map
);
2814 pci_unmap_len_set(e
, maplen
, frag
->size
);
2816 tf
->control
= BMU_OWN
| BMU_SW
| control
| frag
->size
;
2818 tf
->control
|= BMU_EOF
| BMU_IRQ_EOF
;
2820 /* Make sure all the descriptors written */
2822 td
->control
= BMU_OWN
| BMU_SW
| BMU_STF
| control
| len
;
2825 skge_write8(hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_START
);
2827 if (unlikely(netif_msg_tx_queued(skge
)))
2828 printk(KERN_DEBUG
"%s: tx queued, slot %td, len %d\n",
2829 dev
->name
, e
- skge
->tx_ring
.start
, skb
->len
);
2831 skge
->tx_ring
.to_use
= e
->next
;
2834 if (skge_avail(&skge
->tx_ring
) <= TX_LOW_WATER
) {
2835 pr_debug("%s: transmit queue full\n", dev
->name
);
2836 netif_stop_queue(dev
);
2839 return NETDEV_TX_OK
;
2843 /* Free resources associated with this reing element */
2844 static void skge_tx_free(struct skge_port
*skge
, struct skge_element
*e
,
2847 struct pci_dev
*pdev
= skge
->hw
->pdev
;
2849 /* skb header vs. fragment */
2850 if (control
& BMU_STF
)
2851 pci_unmap_single(pdev
, pci_unmap_addr(e
, mapaddr
),
2852 pci_unmap_len(e
, maplen
),
2855 pci_unmap_page(pdev
, pci_unmap_addr(e
, mapaddr
),
2856 pci_unmap_len(e
, maplen
),
2859 if (control
& BMU_EOF
) {
2860 if (unlikely(netif_msg_tx_done(skge
)))
2861 printk(KERN_DEBUG PFX
"%s: tx done slot %td\n",
2862 skge
->netdev
->name
, e
- skge
->tx_ring
.start
);
2864 dev_kfree_skb(e
->skb
);
2868 /* Free all buffers in transmit ring */
2869 static void skge_tx_clean(struct net_device
*dev
)
2871 struct skge_port
*skge
= netdev_priv(dev
);
2872 struct skge_element
*e
;
2874 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
2875 struct skge_tx_desc
*td
= e
->desc
;
2876 skge_tx_free(skge
, e
, td
->control
);
2880 skge
->tx_ring
.to_clean
= e
;
2883 static void skge_tx_timeout(struct net_device
*dev
)
2885 struct skge_port
*skge
= netdev_priv(dev
);
2887 if (netif_msg_timer(skge
))
2888 printk(KERN_DEBUG PFX
"%s: tx timeout\n", dev
->name
);
2890 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_STOP
);
2892 netif_wake_queue(dev
);
2895 static int skge_change_mtu(struct net_device
*dev
, int new_mtu
)
2899 if (new_mtu
< ETH_ZLEN
|| new_mtu
> ETH_JUMBO_MTU
)
2902 if (!netif_running(dev
)) {
2918 static const u8 pause_mc_addr
[ETH_ALEN
] = { 0x1, 0x80, 0xc2, 0x0, 0x0, 0x1 };
2920 static void genesis_add_filter(u8 filter
[8], const u8
*addr
)
2924 crc
= ether_crc_le(ETH_ALEN
, addr
);
2926 filter
[bit
/8] |= 1 << (bit
%8);
2929 static void genesis_set_multicast(struct net_device
*dev
)
2931 struct skge_port
*skge
= netdev_priv(dev
);
2932 struct skge_hw
*hw
= skge
->hw
;
2933 int port
= skge
->port
;
2934 int i
, count
= dev
->mc_count
;
2935 struct dev_mc_list
*list
= dev
->mc_list
;
2939 mode
= xm_read32(hw
, port
, XM_MODE
);
2940 mode
|= XM_MD_ENA_HASH
;
2941 if (dev
->flags
& IFF_PROMISC
)
2942 mode
|= XM_MD_ENA_PROM
;
2944 mode
&= ~XM_MD_ENA_PROM
;
2946 if (dev
->flags
& IFF_ALLMULTI
)
2947 memset(filter
, 0xff, sizeof(filter
));
2949 memset(filter
, 0, sizeof(filter
));
2951 if (skge
->flow_status
== FLOW_STAT_REM_SEND
2952 || skge
->flow_status
== FLOW_STAT_SYMMETRIC
)
2953 genesis_add_filter(filter
, pause_mc_addr
);
2955 for (i
= 0; list
&& i
< count
; i
++, list
= list
->next
)
2956 genesis_add_filter(filter
, list
->dmi_addr
);
2959 xm_write32(hw
, port
, XM_MODE
, mode
);
2960 xm_outhash(hw
, port
, XM_HSM
, filter
);
2963 static void yukon_add_filter(u8 filter
[8], const u8
*addr
)
2965 u32 bit
= ether_crc(ETH_ALEN
, addr
) & 0x3f;
2966 filter
[bit
/8] |= 1 << (bit
%8);
2969 static void yukon_set_multicast(struct net_device
*dev
)
2971 struct skge_port
*skge
= netdev_priv(dev
);
2972 struct skge_hw
*hw
= skge
->hw
;
2973 int port
= skge
->port
;
2974 struct dev_mc_list
*list
= dev
->mc_list
;
2975 int rx_pause
= (skge
->flow_status
== FLOW_STAT_REM_SEND
2976 || skge
->flow_status
== FLOW_STAT_SYMMETRIC
);
2980 memset(filter
, 0, sizeof(filter
));
2982 reg
= gma_read16(hw
, port
, GM_RX_CTRL
);
2983 reg
|= GM_RXCR_UCF_ENA
;
2985 if (dev
->flags
& IFF_PROMISC
) /* promiscuous */
2986 reg
&= ~(GM_RXCR_UCF_ENA
| GM_RXCR_MCF_ENA
);
2987 else if (dev
->flags
& IFF_ALLMULTI
) /* all multicast */
2988 memset(filter
, 0xff, sizeof(filter
));
2989 else if (dev
->mc_count
== 0 && !rx_pause
)/* no multicast */
2990 reg
&= ~GM_RXCR_MCF_ENA
;
2993 reg
|= GM_RXCR_MCF_ENA
;
2996 yukon_add_filter(filter
, pause_mc_addr
);
2998 for (i
= 0; list
&& i
< dev
->mc_count
; i
++, list
= list
->next
)
2999 yukon_add_filter(filter
, list
->dmi_addr
);
3003 gma_write16(hw
, port
, GM_MC_ADDR_H1
,
3004 (u16
)filter
[0] | ((u16
)filter
[1] << 8));
3005 gma_write16(hw
, port
, GM_MC_ADDR_H2
,
3006 (u16
)filter
[2] | ((u16
)filter
[3] << 8));
3007 gma_write16(hw
, port
, GM_MC_ADDR_H3
,
3008 (u16
)filter
[4] | ((u16
)filter
[5] << 8));
3009 gma_write16(hw
, port
, GM_MC_ADDR_H4
,
3010 (u16
)filter
[6] | ((u16
)filter
[7] << 8));
3012 gma_write16(hw
, port
, GM_RX_CTRL
, reg
);
3015 static inline u16
phy_length(const struct skge_hw
*hw
, u32 status
)
3017 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3018 return status
>> XMR_FS_LEN_SHIFT
;
3020 return status
>> GMR_FS_LEN_SHIFT
;
3023 static inline int bad_phy_status(const struct skge_hw
*hw
, u32 status
)
3025 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3026 return (status
& (XMR_FS_ERR
| XMR_FS_2L_VLAN
)) != 0;
3028 return (status
& GMR_FS_ANY_ERR
) ||
3029 (status
& GMR_FS_RX_OK
) == 0;
3032 static void skge_set_multicast(struct net_device
*dev
)
3034 struct skge_port
*skge
= netdev_priv(dev
);
3035 struct skge_hw
*hw
= skge
->hw
;
3037 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3038 genesis_set_multicast(dev
);
3040 yukon_set_multicast(dev
);
3045 /* Get receive buffer from descriptor.
3046 * Handles copy of small buffers and reallocation failures
3048 static struct sk_buff
*skge_rx_get(struct net_device
*dev
,
3049 struct skge_element
*e
,
3050 u32 control
, u32 status
, u16 csum
)
3052 struct skge_port
*skge
= netdev_priv(dev
);
3053 struct sk_buff
*skb
;
3054 u16 len
= control
& BMU_BBC
;
3056 if (unlikely(netif_msg_rx_status(skge
)))
3057 printk(KERN_DEBUG PFX
"%s: rx slot %td status 0x%x len %d\n",
3058 dev
->name
, e
- skge
->rx_ring
.start
,
3061 if (len
> skge
->rx_buf_size
)
3064 if ((control
& (BMU_EOF
|BMU_STF
)) != (BMU_STF
|BMU_EOF
))
3067 if (bad_phy_status(skge
->hw
, status
))
3070 if (phy_length(skge
->hw
, status
) != len
)
3073 if (len
< RX_COPY_THRESHOLD
) {
3074 skb
= netdev_alloc_skb(dev
, len
+ 2);
3078 skb_reserve(skb
, 2);
3079 pci_dma_sync_single_for_cpu(skge
->hw
->pdev
,
3080 pci_unmap_addr(e
, mapaddr
),
3081 len
, PCI_DMA_FROMDEVICE
);
3082 skb_copy_from_linear_data(e
->skb
, skb
->data
, len
);
3083 pci_dma_sync_single_for_device(skge
->hw
->pdev
,
3084 pci_unmap_addr(e
, mapaddr
),
3085 len
, PCI_DMA_FROMDEVICE
);
3086 skge_rx_reuse(e
, skge
->rx_buf_size
);
3088 struct sk_buff
*nskb
;
3089 nskb
= netdev_alloc_skb(dev
, skge
->rx_buf_size
+ NET_IP_ALIGN
);
3093 skb_reserve(nskb
, NET_IP_ALIGN
);
3094 pci_unmap_single(skge
->hw
->pdev
,
3095 pci_unmap_addr(e
, mapaddr
),
3096 pci_unmap_len(e
, maplen
),
3097 PCI_DMA_FROMDEVICE
);
3099 prefetch(skb
->data
);
3100 skge_rx_setup(skge
, e
, nskb
, skge
->rx_buf_size
);
3104 if (skge
->rx_csum
) {
3106 skb
->ip_summed
= CHECKSUM_COMPLETE
;
3109 skb
->protocol
= eth_type_trans(skb
, dev
);
3114 if (netif_msg_rx_err(skge
))
3115 printk(KERN_DEBUG PFX
"%s: rx err, slot %td control 0x%x status 0x%x\n",
3116 dev
->name
, e
- skge
->rx_ring
.start
,
3119 if (skge
->hw
->chip_id
== CHIP_ID_GENESIS
) {
3120 if (status
& (XMR_FS_RUNT
|XMR_FS_LNG_ERR
))
3121 dev
->stats
.rx_length_errors
++;
3122 if (status
& XMR_FS_FRA_ERR
)
3123 dev
->stats
.rx_frame_errors
++;
3124 if (status
& XMR_FS_FCS_ERR
)
3125 dev
->stats
.rx_crc_errors
++;
3127 if (status
& (GMR_FS_LONG_ERR
|GMR_FS_UN_SIZE
))
3128 dev
->stats
.rx_length_errors
++;
3129 if (status
& GMR_FS_FRAGMENT
)
3130 dev
->stats
.rx_frame_errors
++;
3131 if (status
& GMR_FS_CRC_ERR
)
3132 dev
->stats
.rx_crc_errors
++;
3136 skge_rx_reuse(e
, skge
->rx_buf_size
);
3140 /* Free all buffers in Tx ring which are no longer owned by device */
3141 static void skge_tx_done(struct net_device
*dev
)
3143 struct skge_port
*skge
= netdev_priv(dev
);
3144 struct skge_ring
*ring
= &skge
->tx_ring
;
3145 struct skge_element
*e
;
3147 skge_write8(skge
->hw
, Q_ADDR(txqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3149 for (e
= ring
->to_clean
; e
!= ring
->to_use
; e
= e
->next
) {
3150 u32 control
= ((const struct skge_tx_desc
*) e
->desc
)->control
;
3152 if (control
& BMU_OWN
)
3155 skge_tx_free(skge
, e
, control
);
3157 skge
->tx_ring
.to_clean
= e
;
3159 /* Can run lockless until we need to synchronize to restart queue. */
3162 if (unlikely(netif_queue_stopped(dev
) &&
3163 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3165 if (unlikely(netif_queue_stopped(dev
) &&
3166 skge_avail(&skge
->tx_ring
) > TX_LOW_WATER
)) {
3167 netif_wake_queue(dev
);
3170 netif_tx_unlock(dev
);
3174 static int skge_poll(struct napi_struct
*napi
, int to_do
)
3176 struct skge_port
*skge
= container_of(napi
, struct skge_port
, napi
);
3177 struct net_device
*dev
= skge
->netdev
;
3178 struct skge_hw
*hw
= skge
->hw
;
3179 struct skge_ring
*ring
= &skge
->rx_ring
;
3180 struct skge_element
*e
;
3185 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_IRQ_CL_F
);
3187 for (e
= ring
->to_clean
; prefetch(e
->next
), work_done
< to_do
; e
= e
->next
) {
3188 struct skge_rx_desc
*rd
= e
->desc
;
3189 struct sk_buff
*skb
;
3193 control
= rd
->control
;
3194 if (control
& BMU_OWN
)
3197 skb
= skge_rx_get(dev
, e
, control
, rd
->status
, rd
->csum2
);
3199 netif_receive_skb(skb
);
3206 /* restart receiver */
3208 skge_write8(hw
, Q_ADDR(rxqaddr
[skge
->port
], Q_CSR
), CSR_START
);
3210 if (work_done
< to_do
) {
3211 unsigned long flags
;
3213 spin_lock_irqsave(&hw
->hw_lock
, flags
);
3214 __napi_complete(napi
);
3215 hw
->intr_mask
|= napimask
[skge
->port
];
3216 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3217 skge_read32(hw
, B0_IMSK
);
3218 spin_unlock_irqrestore(&hw
->hw_lock
, flags
);
3224 /* Parity errors seem to happen when Genesis is connected to a switch
3225 * with no other ports present. Heartbeat error??
3227 static void skge_mac_parity(struct skge_hw
*hw
, int port
)
3229 struct net_device
*dev
= hw
->dev
[port
];
3231 ++dev
->stats
.tx_heartbeat_errors
;
3233 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3234 skge_write16(hw
, SK_REG(port
, TX_MFF_CTRL1
),
3237 /* HW-Bug #8: cleared by GMF_CLI_TX_FC instead of GMF_CLI_TX_PE */
3238 skge_write8(hw
, SK_REG(port
, TX_GMF_CTRL_T
),
3239 (hw
->chip_id
== CHIP_ID_YUKON
&& hw
->chip_rev
== 0)
3240 ? GMF_CLI_TX_FC
: GMF_CLI_TX_PE
);
3243 static void skge_mac_intr(struct skge_hw
*hw
, int port
)
3245 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3246 genesis_mac_intr(hw
, port
);
3248 yukon_mac_intr(hw
, port
);
3251 /* Handle device specific framing and timeout interrupts */
3252 static void skge_error_irq(struct skge_hw
*hw
)
3254 struct pci_dev
*pdev
= hw
->pdev
;
3255 u32 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3257 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
3258 /* clear xmac errors */
3259 if (hwstatus
& (IS_NO_STAT_M1
|IS_NO_TIST_M1
))
3260 skge_write16(hw
, RX_MFF_CTRL1
, MFF_CLR_INSTAT
);
3261 if (hwstatus
& (IS_NO_STAT_M2
|IS_NO_TIST_M2
))
3262 skge_write16(hw
, RX_MFF_CTRL2
, MFF_CLR_INSTAT
);
3264 /* Timestamp (unused) overflow */
3265 if (hwstatus
& IS_IRQ_TIST_OV
)
3266 skge_write8(hw
, GMAC_TI_ST_CTRL
, GMT_ST_CLR_IRQ
);
3269 if (hwstatus
& IS_RAM_RD_PAR
) {
3270 dev_err(&pdev
->dev
, "Ram read data parity error\n");
3271 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_RD_PERR
);
3274 if (hwstatus
& IS_RAM_WR_PAR
) {
3275 dev_err(&pdev
->dev
, "Ram write data parity error\n");
3276 skge_write16(hw
, B3_RI_CTRL
, RI_CLR_WR_PERR
);
3279 if (hwstatus
& IS_M1_PAR_ERR
)
3280 skge_mac_parity(hw
, 0);
3282 if (hwstatus
& IS_M2_PAR_ERR
)
3283 skge_mac_parity(hw
, 1);
3285 if (hwstatus
& IS_R1_PAR_ERR
) {
3286 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3288 skge_write32(hw
, B0_R1_CSR
, CSR_IRQ_CL_P
);
3291 if (hwstatus
& IS_R2_PAR_ERR
) {
3292 dev_err(&pdev
->dev
, "%s: receive queue parity error\n",
3294 skge_write32(hw
, B0_R2_CSR
, CSR_IRQ_CL_P
);
3297 if (hwstatus
& (IS_IRQ_MST_ERR
|IS_IRQ_STAT
)) {
3298 u16 pci_status
, pci_cmd
;
3300 pci_read_config_word(pdev
, PCI_COMMAND
, &pci_cmd
);
3301 pci_read_config_word(pdev
, PCI_STATUS
, &pci_status
);
3303 dev_err(&pdev
->dev
, "PCI error cmd=%#x status=%#x\n",
3304 pci_cmd
, pci_status
);
3306 /* Write the error bits back to clear them. */
3307 pci_status
&= PCI_STATUS_ERROR_BITS
;
3308 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3309 pci_write_config_word(pdev
, PCI_COMMAND
,
3310 pci_cmd
| PCI_COMMAND_SERR
| PCI_COMMAND_PARITY
);
3311 pci_write_config_word(pdev
, PCI_STATUS
, pci_status
);
3312 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3314 /* if error still set then just ignore it */
3315 hwstatus
= skge_read32(hw
, B0_HWE_ISRC
);
3316 if (hwstatus
& IS_IRQ_STAT
) {
3317 dev_warn(&hw
->pdev
->dev
, "unable to clear error (so ignoring them)\n");
3318 hw
->intr_mask
&= ~IS_HW_ERR
;
3324 * Interrupt from PHY are handled in tasklet (softirq)
3325 * because accessing phy registers requires spin wait which might
3326 * cause excess interrupt latency.
3328 static void skge_extirq(unsigned long arg
)
3330 struct skge_hw
*hw
= (struct skge_hw
*) arg
;
3333 for (port
= 0; port
< hw
->ports
; port
++) {
3334 struct net_device
*dev
= hw
->dev
[port
];
3336 if (netif_running(dev
)) {
3337 struct skge_port
*skge
= netdev_priv(dev
);
3339 spin_lock(&hw
->phy_lock
);
3340 if (hw
->chip_id
!= CHIP_ID_GENESIS
)
3341 yukon_phy_intr(skge
);
3342 else if (hw
->phy_type
== SK_PHY_BCOM
)
3343 bcom_phy_intr(skge
);
3344 spin_unlock(&hw
->phy_lock
);
3348 spin_lock_irq(&hw
->hw_lock
);
3349 hw
->intr_mask
|= IS_EXT_REG
;
3350 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3351 skge_read32(hw
, B0_IMSK
);
3352 spin_unlock_irq(&hw
->hw_lock
);
3355 static irqreturn_t
skge_intr(int irq
, void *dev_id
)
3357 struct skge_hw
*hw
= dev_id
;
3361 spin_lock(&hw
->hw_lock
);
3362 /* Reading this register masks IRQ */
3363 status
= skge_read32(hw
, B0_SP_ISRC
);
3364 if (status
== 0 || status
== ~0)
3368 status
&= hw
->intr_mask
;
3369 if (status
& IS_EXT_REG
) {
3370 hw
->intr_mask
&= ~IS_EXT_REG
;
3371 tasklet_schedule(&hw
->phy_task
);
3374 if (status
& (IS_XA1_F
|IS_R1_F
)) {
3375 struct skge_port
*skge
= netdev_priv(hw
->dev
[0]);
3376 hw
->intr_mask
&= ~(IS_XA1_F
|IS_R1_F
);
3377 napi_schedule(&skge
->napi
);
3380 if (status
& IS_PA_TO_TX1
)
3381 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX1
);
3383 if (status
& IS_PA_TO_RX1
) {
3384 ++hw
->dev
[0]->stats
.rx_over_errors
;
3385 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX1
);
3389 if (status
& IS_MAC1
)
3390 skge_mac_intr(hw
, 0);
3393 struct skge_port
*skge
= netdev_priv(hw
->dev
[1]);
3395 if (status
& (IS_XA2_F
|IS_R2_F
)) {
3396 hw
->intr_mask
&= ~(IS_XA2_F
|IS_R2_F
);
3397 napi_schedule(&skge
->napi
);
3400 if (status
& IS_PA_TO_RX2
) {
3401 ++hw
->dev
[1]->stats
.rx_over_errors
;
3402 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_RX2
);
3405 if (status
& IS_PA_TO_TX2
)
3406 skge_write16(hw
, B3_PA_CTRL
, PA_CLR_TO_TX2
);
3408 if (status
& IS_MAC2
)
3409 skge_mac_intr(hw
, 1);
3412 if (status
& IS_HW_ERR
)
3415 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3416 skge_read32(hw
, B0_IMSK
);
3418 spin_unlock(&hw
->hw_lock
);
3420 return IRQ_RETVAL(handled
);
3423 #ifdef CONFIG_NET_POLL_CONTROLLER
3424 static void skge_netpoll(struct net_device
*dev
)
3426 struct skge_port
*skge
= netdev_priv(dev
);
3428 disable_irq(dev
->irq
);
3429 skge_intr(dev
->irq
, skge
->hw
);
3430 enable_irq(dev
->irq
);
3434 static int skge_set_mac_address(struct net_device
*dev
, void *p
)
3436 struct skge_port
*skge
= netdev_priv(dev
);
3437 struct skge_hw
*hw
= skge
->hw
;
3438 unsigned port
= skge
->port
;
3439 const struct sockaddr
*addr
= p
;
3442 if (!is_valid_ether_addr(addr
->sa_data
))
3443 return -EADDRNOTAVAIL
;
3445 memcpy(dev
->dev_addr
, addr
->sa_data
, ETH_ALEN
);
3447 if (!netif_running(dev
)) {
3448 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3449 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3452 spin_lock_bh(&hw
->phy_lock
);
3453 ctrl
= gma_read16(hw
, port
, GM_GP_CTRL
);
3454 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
& ~GM_GPCR_RX_ENA
);
3456 memcpy_toio(hw
->regs
+ B2_MAC_1
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3457 memcpy_toio(hw
->regs
+ B2_MAC_2
+ port
*8, dev
->dev_addr
, ETH_ALEN
);
3459 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3460 xm_outaddr(hw
, port
, XM_SA
, dev
->dev_addr
);
3462 gma_set_addr(hw
, port
, GM_SRC_ADDR_1L
, dev
->dev_addr
);
3463 gma_set_addr(hw
, port
, GM_SRC_ADDR_2L
, dev
->dev_addr
);
3466 gma_write16(hw
, port
, GM_GP_CTRL
, ctrl
);
3467 spin_unlock_bh(&hw
->phy_lock
);
3473 static const struct {
3477 { CHIP_ID_GENESIS
, "Genesis" },
3478 { CHIP_ID_YUKON
, "Yukon" },
3479 { CHIP_ID_YUKON_LITE
, "Yukon-Lite"},
3480 { CHIP_ID_YUKON_LP
, "Yukon-LP"},
3483 static const char *skge_board_name(const struct skge_hw
*hw
)
3486 static char buf
[16];
3488 for (i
= 0; i
< ARRAY_SIZE(skge_chips
); i
++)
3489 if (skge_chips
[i
].id
== hw
->chip_id
)
3490 return skge_chips
[i
].name
;
3492 snprintf(buf
, sizeof buf
, "chipid 0x%x", hw
->chip_id
);
3498 * Setup the board data structure, but don't bring up
3501 static int skge_reset(struct skge_hw
*hw
)
3504 u16 ctst
, pci_status
;
3505 u8 t8
, mac_cfg
, pmd_type
;
3508 ctst
= skge_read16(hw
, B0_CTST
);
3511 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
3512 skge_write8(hw
, B0_CTST
, CS_RST_CLR
);
3514 /* clear PCI errors, if any */
3515 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3516 skge_write8(hw
, B2_TST_CTRL2
, 0);
3518 pci_read_config_word(hw
->pdev
, PCI_STATUS
, &pci_status
);
3519 pci_write_config_word(hw
->pdev
, PCI_STATUS
,
3520 pci_status
| PCI_STATUS_ERROR_BITS
);
3521 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3522 skge_write8(hw
, B0_CTST
, CS_MRST_CLR
);
3524 /* restore CLK_RUN bits (for Yukon-Lite) */
3525 skge_write16(hw
, B0_CTST
,
3526 ctst
& (CS_CLK_RUN_HOT
|CS_CLK_RUN_RST
|CS_CLK_RUN_ENA
));
3528 hw
->chip_id
= skge_read8(hw
, B2_CHIP_ID
);
3529 hw
->phy_type
= skge_read8(hw
, B2_E_1
) & 0xf;
3530 pmd_type
= skge_read8(hw
, B2_PMD_TYP
);
3531 hw
->copper
= (pmd_type
== 'T' || pmd_type
== '1');
3533 switch (hw
->chip_id
) {
3534 case CHIP_ID_GENESIS
:
3535 switch (hw
->phy_type
) {
3537 hw
->phy_addr
= PHY_ADDR_XMAC
;
3540 hw
->phy_addr
= PHY_ADDR_BCOM
;
3543 dev_err(&hw
->pdev
->dev
, "unsupported phy type 0x%x\n",
3550 case CHIP_ID_YUKON_LITE
:
3551 case CHIP_ID_YUKON_LP
:
3552 if (hw
->phy_type
< SK_PHY_MARV_COPPER
&& pmd_type
!= 'S')
3555 hw
->phy_addr
= PHY_ADDR_MARV
;
3559 dev_err(&hw
->pdev
->dev
, "unsupported chip type 0x%x\n",
3564 mac_cfg
= skge_read8(hw
, B2_MAC_CFG
);
3565 hw
->ports
= (mac_cfg
& CFG_SNG_MAC
) ? 1 : 2;
3566 hw
->chip_rev
= (mac_cfg
& CFG_CHIP_R_MSK
) >> 4;
3568 /* read the adapters RAM size */
3569 t8
= skge_read8(hw
, B2_E_0
);
3570 if (hw
->chip_id
== CHIP_ID_GENESIS
) {
3572 /* special case: 4 x 64k x 36, offset = 0x80000 */
3573 hw
->ram_size
= 0x100000;
3574 hw
->ram_offset
= 0x80000;
3576 hw
->ram_size
= t8
* 512;
3579 hw
->ram_size
= 0x20000;
3581 hw
->ram_size
= t8
* 4096;
3583 hw
->intr_mask
= IS_HW_ERR
;
3585 /* Use PHY IRQ for all but fiber based Genesis board */
3586 if (!(hw
->chip_id
== CHIP_ID_GENESIS
&& hw
->phy_type
== SK_PHY_XMAC
))
3587 hw
->intr_mask
|= IS_EXT_REG
;
3589 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3592 /* switch power to VCC (WA for VAUX problem) */
3593 skge_write8(hw
, B0_POWER_CTRL
,
3594 PC_VAUX_ENA
| PC_VCC_ENA
| PC_VAUX_OFF
| PC_VCC_ON
);
3596 /* avoid boards with stuck Hardware error bits */
3597 if ((skge_read32(hw
, B0_ISRC
) & IS_HW_ERR
) &&
3598 (skge_read32(hw
, B0_HWE_ISRC
) & IS_IRQ_SENSOR
)) {
3599 dev_warn(&hw
->pdev
->dev
, "stuck hardware sensor bit\n");
3600 hw
->intr_mask
&= ~IS_HW_ERR
;
3603 /* Clear PHY COMA */
3604 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_ON
);
3605 pci_read_config_dword(hw
->pdev
, PCI_DEV_REG1
, ®
);
3606 reg
&= ~PCI_PHY_COMA
;
3607 pci_write_config_dword(hw
->pdev
, PCI_DEV_REG1
, reg
);
3608 skge_write8(hw
, B2_TST_CTRL1
, TST_CFG_WRITE_OFF
);
3611 for (i
= 0; i
< hw
->ports
; i
++) {
3612 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_SET
);
3613 skge_write16(hw
, SK_REG(i
, GMAC_LINK_CTRL
), GMLC_RST_CLR
);
3617 /* turn off hardware timer (unused) */
3618 skge_write8(hw
, B2_TI_CTRL
, TIM_STOP
);
3619 skge_write8(hw
, B2_TI_CTRL
, TIM_CLR_IRQ
);
3620 skge_write8(hw
, B0_LED
, LED_STAT_ON
);
3622 /* enable the Tx Arbiters */
3623 for (i
= 0; i
< hw
->ports
; i
++)
3624 skge_write8(hw
, SK_REG(i
, TXA_CTRL
), TXA_ENA_ARB
);
3626 /* Initialize ram interface */
3627 skge_write16(hw
, B3_RI_CTRL
, RI_RST_CLR
);
3629 skge_write8(hw
, B3_RI_WTO_R1
, SK_RI_TO_53
);
3630 skge_write8(hw
, B3_RI_WTO_XA1
, SK_RI_TO_53
);
3631 skge_write8(hw
, B3_RI_WTO_XS1
, SK_RI_TO_53
);
3632 skge_write8(hw
, B3_RI_RTO_R1
, SK_RI_TO_53
);
3633 skge_write8(hw
, B3_RI_RTO_XA1
, SK_RI_TO_53
);
3634 skge_write8(hw
, B3_RI_RTO_XS1
, SK_RI_TO_53
);
3635 skge_write8(hw
, B3_RI_WTO_R2
, SK_RI_TO_53
);
3636 skge_write8(hw
, B3_RI_WTO_XA2
, SK_RI_TO_53
);
3637 skge_write8(hw
, B3_RI_WTO_XS2
, SK_RI_TO_53
);
3638 skge_write8(hw
, B3_RI_RTO_R2
, SK_RI_TO_53
);
3639 skge_write8(hw
, B3_RI_RTO_XA2
, SK_RI_TO_53
);
3640 skge_write8(hw
, B3_RI_RTO_XS2
, SK_RI_TO_53
);
3642 skge_write32(hw
, B0_HWE_IMSK
, IS_ERR_MSK
);
3644 /* Set interrupt moderation for Transmit only
3645 * Receive interrupts avoided by NAPI
3647 skge_write32(hw
, B2_IRQM_MSK
, IS_XA1_F
|IS_XA2_F
);
3648 skge_write32(hw
, B2_IRQM_INI
, skge_usecs2clk(hw
, 100));
3649 skge_write32(hw
, B2_IRQM_CTRL
, TIM_START
);
3651 skge_write32(hw
, B0_IMSK
, hw
->intr_mask
);
3653 for (i
= 0; i
< hw
->ports
; i
++) {
3654 if (hw
->chip_id
== CHIP_ID_GENESIS
)
3655 genesis_reset(hw
, i
);
3664 #ifdef CONFIG_SKGE_DEBUG
3666 static struct dentry
*skge_debug
;
3668 static int skge_debug_show(struct seq_file
*seq
, void *v
)
3670 struct net_device
*dev
= seq
->private;
3671 const struct skge_port
*skge
= netdev_priv(dev
);
3672 const struct skge_hw
*hw
= skge
->hw
;
3673 const struct skge_element
*e
;
3675 if (!netif_running(dev
))
3678 seq_printf(seq
, "IRQ src=%x mask=%x\n", skge_read32(hw
, B0_ISRC
),
3679 skge_read32(hw
, B0_IMSK
));
3681 seq_printf(seq
, "Tx Ring: (%d)\n", skge_avail(&skge
->tx_ring
));
3682 for (e
= skge
->tx_ring
.to_clean
; e
!= skge
->tx_ring
.to_use
; e
= e
->next
) {
3683 const struct skge_tx_desc
*t
= e
->desc
;
3684 seq_printf(seq
, "%#x dma=%#x%08x %#x csum=%#x/%x/%x\n",
3685 t
->control
, t
->dma_hi
, t
->dma_lo
, t
->status
,
3686 t
->csum_offs
, t
->csum_write
, t
->csum_start
);
3689 seq_printf(seq
, "\nRx Ring: \n");
3690 for (e
= skge
->rx_ring
.to_clean
; ; e
= e
->next
) {
3691 const struct skge_rx_desc
*r
= e
->desc
;
3693 if (r
->control
& BMU_OWN
)
3696 seq_printf(seq
, "%#x dma=%#x%08x %#x %#x csum=%#x/%x\n",
3697 r
->control
, r
->dma_hi
, r
->dma_lo
, r
->status
,
3698 r
->timestamp
, r
->csum1
, r
->csum1_start
);
3704 static int skge_debug_open(struct inode
*inode
, struct file
*file
)
3706 return single_open(file
, skge_debug_show
, inode
->i_private
);
3709 static const struct file_operations skge_debug_fops
= {
3710 .owner
= THIS_MODULE
,
3711 .open
= skge_debug_open
,
3713 .llseek
= seq_lseek
,
3714 .release
= single_release
,
3718 * Use network device events to create/remove/rename
3719 * debugfs file entries
3721 static int skge_device_event(struct notifier_block
*unused
,
3722 unsigned long event
, void *ptr
)
3724 struct net_device
*dev
= ptr
;
3725 struct skge_port
*skge
;
3728 if (dev
->netdev_ops
->ndo_open
!= &skge_up
|| !skge_debug
)
3731 skge
= netdev_priv(dev
);
3733 case NETDEV_CHANGENAME
:
3734 if (skge
->debugfs
) {
3735 d
= debugfs_rename(skge_debug
, skge
->debugfs
,
3736 skge_debug
, dev
->name
);
3740 pr_info(PFX
"%s: rename failed\n", dev
->name
);
3741 debugfs_remove(skge
->debugfs
);
3746 case NETDEV_GOING_DOWN
:
3747 if (skge
->debugfs
) {
3748 debugfs_remove(skge
->debugfs
);
3749 skge
->debugfs
= NULL
;
3754 d
= debugfs_create_file(dev
->name
, S_IRUGO
,
3757 if (!d
|| IS_ERR(d
))
3758 pr_info(PFX
"%s: debugfs create failed\n",
3769 static struct notifier_block skge_notifier
= {
3770 .notifier_call
= skge_device_event
,
3774 static __init
void skge_debug_init(void)
3778 ent
= debugfs_create_dir("skge", NULL
);
3779 if (!ent
|| IS_ERR(ent
)) {
3780 pr_info(PFX
"debugfs create directory failed\n");
3785 register_netdevice_notifier(&skge_notifier
);
3788 static __exit
void skge_debug_cleanup(void)
3791 unregister_netdevice_notifier(&skge_notifier
);
3792 debugfs_remove(skge_debug
);
3798 #define skge_debug_init()
3799 #define skge_debug_cleanup()
3802 static const struct net_device_ops skge_netdev_ops
= {
3803 .ndo_open
= skge_up
,
3804 .ndo_stop
= skge_down
,
3805 .ndo_start_xmit
= skge_xmit_frame
,
3806 .ndo_do_ioctl
= skge_ioctl
,
3807 .ndo_get_stats
= skge_get_stats
,
3808 .ndo_tx_timeout
= skge_tx_timeout
,
3809 .ndo_change_mtu
= skge_change_mtu
,
3810 .ndo_validate_addr
= eth_validate_addr
,
3811 .ndo_set_multicast_list
= skge_set_multicast
,
3812 .ndo_set_mac_address
= skge_set_mac_address
,
3813 #ifdef CONFIG_NET_POLL_CONTROLLER
3814 .ndo_poll_controller
= skge_netpoll
,
3819 /* Initialize network device */
3820 static struct net_device
*skge_devinit(struct skge_hw
*hw
, int port
,
3823 struct skge_port
*skge
;
3824 struct net_device
*dev
= alloc_etherdev(sizeof(*skge
));
3827 dev_err(&hw
->pdev
->dev
, "etherdev alloc failed\n");
3831 SET_NETDEV_DEV(dev
, &hw
->pdev
->dev
);
3832 dev
->netdev_ops
= &skge_netdev_ops
;
3833 dev
->ethtool_ops
= &skge_ethtool_ops
;
3834 dev
->watchdog_timeo
= TX_WATCHDOG
;
3835 dev
->irq
= hw
->pdev
->irq
;
3838 dev
->features
|= NETIF_F_HIGHDMA
;
3840 skge
= netdev_priv(dev
);
3841 netif_napi_add(dev
, &skge
->napi
, skge_poll
, NAPI_WEIGHT
);
3844 skge
->msg_enable
= netif_msg_init(debug
, default_msg
);
3846 skge
->tx_ring
.count
= DEFAULT_TX_RING_SIZE
;
3847 skge
->rx_ring
.count
= DEFAULT_RX_RING_SIZE
;
3849 /* Auto speed and flow control */
3850 skge
->autoneg
= AUTONEG_ENABLE
;
3851 skge
->flow_control
= FLOW_MODE_SYM_OR_REM
;
3854 skge
->advertising
= skge_supported_modes(hw
);
3856 if (device_can_wakeup(&hw
->pdev
->dev
)) {
3857 skge
->wol
= wol_supported(hw
) & WAKE_MAGIC
;
3858 device_set_wakeup_enable(&hw
->pdev
->dev
, skge
->wol
);
3861 hw
->dev
[port
] = dev
;
3865 /* Only used for Genesis XMAC */
3866 setup_timer(&skge
->link_timer
, xm_link_timer
, (unsigned long) skge
);
3868 if (hw
->chip_id
!= CHIP_ID_GENESIS
) {
3869 dev
->features
|= NETIF_F_IP_CSUM
| NETIF_F_SG
;
3873 /* read the mac address */
3874 memcpy_fromio(dev
->dev_addr
, hw
->regs
+ B2_MAC_1
+ port
*8, ETH_ALEN
);
3875 memcpy(dev
->perm_addr
, dev
->dev_addr
, dev
->addr_len
);
3877 /* device is off until link detection */
3878 netif_carrier_off(dev
);
3879 netif_stop_queue(dev
);
3884 static void __devinit
skge_show_addr(struct net_device
*dev
)
3886 const struct skge_port
*skge
= netdev_priv(dev
);
3888 if (netif_msg_probe(skge
))
3889 printk(KERN_INFO PFX
"%s: addr %pM\n",
3890 dev
->name
, dev
->dev_addr
);
3893 static int __devinit
skge_probe(struct pci_dev
*pdev
,
3894 const struct pci_device_id
*ent
)
3896 struct net_device
*dev
, *dev1
;
3898 int err
, using_dac
= 0;
3900 err
= pci_enable_device(pdev
);
3902 dev_err(&pdev
->dev
, "cannot enable PCI device\n");
3906 err
= pci_request_regions(pdev
, DRV_NAME
);
3908 dev_err(&pdev
->dev
, "cannot obtain PCI resources\n");
3909 goto err_out_disable_pdev
;
3912 pci_set_master(pdev
);
3914 if (!pci_set_dma_mask(pdev
, DMA_BIT_MASK(64))) {
3916 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(64));
3917 } else if (!(err
= pci_set_dma_mask(pdev
, DMA_BIT_MASK(32)))) {
3919 err
= pci_set_consistent_dma_mask(pdev
, DMA_BIT_MASK(32));
3923 dev_err(&pdev
->dev
, "no usable DMA configuration\n");
3924 goto err_out_free_regions
;
3928 /* byte swap descriptors in hardware */
3932 pci_read_config_dword(pdev
, PCI_DEV_REG2
, ®
);
3933 reg
|= PCI_REV_DESC
;
3934 pci_write_config_dword(pdev
, PCI_DEV_REG2
, reg
);
3939 /* space for skge@pci:0000:04:00.0 */
3940 hw
= kzalloc(sizeof(*hw
) + strlen(DRV_NAME
"@pci:" )
3941 + strlen(pci_name(pdev
)) + 1, GFP_KERNEL
);
3943 dev_err(&pdev
->dev
, "cannot allocate hardware struct\n");
3944 goto err_out_free_regions
;
3946 sprintf(hw
->irq_name
, DRV_NAME
"@pci:%s", pci_name(pdev
));
3949 spin_lock_init(&hw
->hw_lock
);
3950 spin_lock_init(&hw
->phy_lock
);
3951 tasklet_init(&hw
->phy_task
, &skge_extirq
, (unsigned long) hw
);
3953 hw
->regs
= ioremap_nocache(pci_resource_start(pdev
, 0), 0x4000);
3955 dev_err(&pdev
->dev
, "cannot map device registers\n");
3956 goto err_out_free_hw
;
3959 err
= skge_reset(hw
);
3961 goto err_out_iounmap
;
3963 printk(KERN_INFO PFX DRV_VERSION
" addr 0x%llx irq %d chip %s rev %d\n",
3964 (unsigned long long)pci_resource_start(pdev
, 0), pdev
->irq
,
3965 skge_board_name(hw
), hw
->chip_rev
);
3967 dev
= skge_devinit(hw
, 0, using_dac
);
3969 goto err_out_led_off
;
3971 /* Some motherboards are broken and has zero in ROM. */
3972 if (!is_valid_ether_addr(dev
->dev_addr
))
3973 dev_warn(&pdev
->dev
, "bad (zero?) ethernet address in rom\n");
3975 err
= register_netdev(dev
);
3977 dev_err(&pdev
->dev
, "cannot register net device\n");
3978 goto err_out_free_netdev
;
3981 err
= request_irq(pdev
->irq
, skge_intr
, IRQF_SHARED
, hw
->irq_name
, hw
);
3983 dev_err(&pdev
->dev
, "%s: cannot assign irq %d\n",
3984 dev
->name
, pdev
->irq
);
3985 goto err_out_unregister
;
3987 skge_show_addr(dev
);
3989 if (hw
->ports
> 1) {
3990 dev1
= skge_devinit(hw
, 1, using_dac
);
3991 if (dev1
&& register_netdev(dev1
) == 0)
3992 skge_show_addr(dev1
);
3994 /* Failure to register second port need not be fatal */
3995 dev_warn(&pdev
->dev
, "register of second port failed\n");
4002 pci_set_drvdata(pdev
, hw
);
4007 unregister_netdev(dev
);
4008 err_out_free_netdev
:
4011 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
4016 err_out_free_regions
:
4017 pci_release_regions(pdev
);
4018 err_out_disable_pdev
:
4019 pci_disable_device(pdev
);
4020 pci_set_drvdata(pdev
, NULL
);
4025 static void __devexit
skge_remove(struct pci_dev
*pdev
)
4027 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4028 struct net_device
*dev0
, *dev1
;
4033 flush_scheduled_work();
4035 if ((dev1
= hw
->dev
[1]))
4036 unregister_netdev(dev1
);
4038 unregister_netdev(dev0
);
4040 tasklet_disable(&hw
->phy_task
);
4042 spin_lock_irq(&hw
->hw_lock
);
4044 skge_write32(hw
, B0_IMSK
, 0);
4045 skge_read32(hw
, B0_IMSK
);
4046 spin_unlock_irq(&hw
->hw_lock
);
4048 skge_write16(hw
, B0_LED
, LED_STAT_OFF
);
4049 skge_write8(hw
, B0_CTST
, CS_RST_SET
);
4051 free_irq(pdev
->irq
, hw
);
4052 pci_release_regions(pdev
);
4053 pci_disable_device(pdev
);
4060 pci_set_drvdata(pdev
, NULL
);
4064 static int skge_suspend(struct pci_dev
*pdev
, pm_message_t state
)
4066 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4067 int i
, err
, wol
= 0;
4072 err
= pci_save_state(pdev
);
4076 for (i
= 0; i
< hw
->ports
; i
++) {
4077 struct net_device
*dev
= hw
->dev
[i
];
4078 struct skge_port
*skge
= netdev_priv(dev
);
4080 if (netif_running(dev
))
4083 skge_wol_init(skge
);
4088 skge_write32(hw
, B0_IMSK
, 0);
4090 pci_prepare_to_sleep(pdev
);
4095 static int skge_resume(struct pci_dev
*pdev
)
4097 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4103 err
= pci_back_from_sleep(pdev
);
4107 err
= pci_restore_state(pdev
);
4111 err
= skge_reset(hw
);
4115 for (i
= 0; i
< hw
->ports
; i
++) {
4116 struct net_device
*dev
= hw
->dev
[i
];
4118 if (netif_running(dev
)) {
4122 printk(KERN_ERR PFX
"%s: could not up: %d\n",
4134 static void skge_shutdown(struct pci_dev
*pdev
)
4136 struct skge_hw
*hw
= pci_get_drvdata(pdev
);
4142 for (i
= 0; i
< hw
->ports
; i
++) {
4143 struct net_device
*dev
= hw
->dev
[i
];
4144 struct skge_port
*skge
= netdev_priv(dev
);
4147 skge_wol_init(skge
);
4151 if (pci_enable_wake(pdev
, PCI_D3cold
, wol
))
4152 pci_enable_wake(pdev
, PCI_D3hot
, wol
);
4154 pci_disable_device(pdev
);
4155 pci_set_power_state(pdev
, PCI_D3hot
);
4159 static struct pci_driver skge_driver
= {
4161 .id_table
= skge_id_table
,
4162 .probe
= skge_probe
,
4163 .remove
= __devexit_p(skge_remove
),
4165 .suspend
= skge_suspend
,
4166 .resume
= skge_resume
,
4168 .shutdown
= skge_shutdown
,
4171 static int __init
skge_init_module(void)
4174 return pci_register_driver(&skge_driver
);
4177 static void __exit
skge_cleanup_module(void)
4179 pci_unregister_driver(&skge_driver
);
4180 skge_debug_cleanup();
4183 module_init(skge_init_module
);
4184 module_exit(skge_cleanup_module
);