ntp: correct inconsistent interval/tick_length usage
[linux-2.6/linux-2.6-openrd.git] / kernel / time / ntp.c
blobc88b5910e7abb9c630106fcbf21b6b7a0d363faf
1 /*
2 * linux/kernel/time/ntp.c
4 * NTP state machine interfaces and logic.
6 * This code was mainly moved from kernel/timer.c and kernel/time.c
7 * Please see those files for relevant copyright info and historical
8 * changelogs.
9 */
11 #include <linux/mm.h>
12 #include <linux/time.h>
13 #include <linux/timer.h>
14 #include <linux/timex.h>
15 #include <linux/jiffies.h>
16 #include <linux/hrtimer.h>
17 #include <linux/capability.h>
18 #include <asm/div64.h>
19 #include <asm/timex.h>
22 * Timekeeping variables
24 unsigned long tick_usec = TICK_USEC; /* USER_HZ period (usec) */
25 unsigned long tick_nsec; /* ACTHZ period (nsec) */
26 static u64 tick_length, tick_length_base;
28 #define MAX_TICKADJ 500 /* microsecs */
29 #define MAX_TICKADJ_SCALED (((u64)(MAX_TICKADJ * NSEC_PER_USEC) << \
30 TICK_LENGTH_SHIFT) / NTP_INTERVAL_FREQ)
33 * phase-lock loop variables
35 /* TIME_ERROR prevents overwriting the CMOS clock */
36 static int time_state = TIME_OK; /* clock synchronization status */
37 int time_status = STA_UNSYNC; /* clock status bits */
38 static s64 time_offset; /* time adjustment (ns) */
39 static long time_constant = 2; /* pll time constant */
40 long time_maxerror = NTP_PHASE_LIMIT; /* maximum error (us) */
41 long time_esterror = NTP_PHASE_LIMIT; /* estimated error (us) */
42 long time_freq; /* frequency offset (scaled ppm)*/
43 static long time_reftime; /* time at last adjustment (s) */
44 long time_adjust;
46 static void ntp_update_frequency(void)
48 u64 second_length = (u64)(tick_usec * NSEC_PER_USEC * USER_HZ)
49 << TICK_LENGTH_SHIFT;
50 second_length += (s64)CLOCK_TICK_ADJUST << TICK_LENGTH_SHIFT;
51 second_length += (s64)time_freq << (TICK_LENGTH_SHIFT - SHIFT_NSEC);
53 tick_length_base = second_length;
55 do_div(second_length, HZ);
56 tick_nsec = second_length >> TICK_LENGTH_SHIFT;
58 do_div(tick_length_base, NTP_INTERVAL_FREQ);
61 /**
62 * ntp_clear - Clears the NTP state variables
64 * Must be called while holding a write on the xtime_lock
66 void ntp_clear(void)
68 time_adjust = 0; /* stop active adjtime() */
69 time_status |= STA_UNSYNC;
70 time_maxerror = NTP_PHASE_LIMIT;
71 time_esterror = NTP_PHASE_LIMIT;
73 ntp_update_frequency();
75 tick_length = tick_length_base;
76 time_offset = 0;
80 * this routine handles the overflow of the microsecond field
82 * The tricky bits of code to handle the accurate clock support
83 * were provided by Dave Mills (Mills@UDEL.EDU) of NTP fame.
84 * They were originally developed for SUN and DEC kernels.
85 * All the kudos should go to Dave for this stuff.
87 void second_overflow(void)
89 long time_adj;
91 /* Bump the maxerror field */
92 time_maxerror += MAXFREQ >> SHIFT_USEC;
93 if (time_maxerror > NTP_PHASE_LIMIT) {
94 time_maxerror = NTP_PHASE_LIMIT;
95 time_status |= STA_UNSYNC;
99 * Leap second processing. If in leap-insert state at the end of the
100 * day, the system clock is set back one second; if in leap-delete
101 * state, the system clock is set ahead one second. The microtime()
102 * routine or external clock driver will insure that reported time is
103 * always monotonic. The ugly divides should be replaced.
105 switch (time_state) {
106 case TIME_OK:
107 if (time_status & STA_INS)
108 time_state = TIME_INS;
109 else if (time_status & STA_DEL)
110 time_state = TIME_DEL;
111 break;
112 case TIME_INS:
113 if (xtime.tv_sec % 86400 == 0) {
114 xtime.tv_sec--;
115 wall_to_monotonic.tv_sec++;
116 time_state = TIME_OOP;
117 printk(KERN_NOTICE "Clock: inserting leap second "
118 "23:59:60 UTC\n");
120 break;
121 case TIME_DEL:
122 if ((xtime.tv_sec + 1) % 86400 == 0) {
123 xtime.tv_sec++;
124 wall_to_monotonic.tv_sec--;
125 time_state = TIME_WAIT;
126 printk(KERN_NOTICE "Clock: deleting leap second "
127 "23:59:59 UTC\n");
129 break;
130 case TIME_OOP:
131 time_state = TIME_WAIT;
132 break;
133 case TIME_WAIT:
134 if (!(time_status & (STA_INS | STA_DEL)))
135 time_state = TIME_OK;
139 * Compute the phase adjustment for the next second. The offset is
140 * reduced by a fixed factor times the time constant.
142 tick_length = tick_length_base;
143 time_adj = shift_right(time_offset, SHIFT_PLL + time_constant);
144 time_offset -= time_adj;
145 tick_length += (s64)time_adj << (TICK_LENGTH_SHIFT - SHIFT_UPDATE);
147 if (unlikely(time_adjust)) {
148 if (time_adjust > MAX_TICKADJ) {
149 time_adjust -= MAX_TICKADJ;
150 tick_length += MAX_TICKADJ_SCALED;
151 } else if (time_adjust < -MAX_TICKADJ) {
152 time_adjust += MAX_TICKADJ;
153 tick_length -= MAX_TICKADJ_SCALED;
154 } else {
155 tick_length += (s64)(time_adjust * NSEC_PER_USEC /
156 NTP_INTERVAL_FREQ) << TICK_LENGTH_SHIFT;
157 time_adjust = 0;
163 * Return how long ticks are at the moment, that is, how much time
164 * update_wall_time_one_tick will add to xtime next time we call it
165 * (assuming no calls to do_adjtimex in the meantime).
166 * The return value is in fixed-point nanoseconds shifted by the
167 * specified number of bits to the right of the binary point.
168 * This function has no side-effects.
170 u64 current_tick_length(void)
172 return tick_length;
175 #ifdef CONFIG_GENERIC_CMOS_UPDATE
177 /* Disable the cmos update - used by virtualization and embedded */
178 int no_sync_cmos_clock __read_mostly;
180 static void sync_cmos_clock(unsigned long dummy);
182 static DEFINE_TIMER(sync_cmos_timer, sync_cmos_clock, 0, 0);
184 static void sync_cmos_clock(unsigned long dummy)
186 struct timespec now, next;
187 int fail = 1;
190 * If we have an externally synchronized Linux clock, then update
191 * CMOS clock accordingly every ~11 minutes. Set_rtc_mmss() has to be
192 * called as close as possible to 500 ms before the new second starts.
193 * This code is run on a timer. If the clock is set, that timer
194 * may not expire at the correct time. Thus, we adjust...
196 if (!ntp_synced())
198 * Not synced, exit, do not restart a timer (if one is
199 * running, let it run out).
201 return;
203 getnstimeofday(&now);
204 if (abs(now.tv_nsec - (NSEC_PER_SEC / 2)) <= tick_nsec / 2)
205 fail = update_persistent_clock(now);
207 next.tv_nsec = (NSEC_PER_SEC / 2) - now.tv_nsec;
208 if (next.tv_nsec <= 0)
209 next.tv_nsec += NSEC_PER_SEC;
211 if (!fail)
212 next.tv_sec = 659;
213 else
214 next.tv_sec = 0;
216 if (next.tv_nsec >= NSEC_PER_SEC) {
217 next.tv_sec++;
218 next.tv_nsec -= NSEC_PER_SEC;
220 mod_timer(&sync_cmos_timer, jiffies + timespec_to_jiffies(&next));
223 static void notify_cmos_timer(void)
225 if (!no_sync_cmos_clock)
226 mod_timer(&sync_cmos_timer, jiffies + 1);
229 #else
230 static inline void notify_cmos_timer(void) { }
231 #endif
233 /* adjtimex mainly allows reading (and writing, if superuser) of
234 * kernel time-keeping variables. used by xntpd.
236 int do_adjtimex(struct timex *txc)
238 long mtemp, save_adjust, rem;
239 s64 freq_adj, temp64;
240 int result;
242 /* In order to modify anything, you gotta be super-user! */
243 if (txc->modes && !capable(CAP_SYS_TIME))
244 return -EPERM;
246 /* Now we validate the data before disabling interrupts */
248 if ((txc->modes & ADJ_OFFSET_SINGLESHOT) == ADJ_OFFSET_SINGLESHOT) {
249 /* singleshot must not be used with any other mode bits */
250 if (txc->modes != ADJ_OFFSET_SINGLESHOT &&
251 txc->modes != ADJ_OFFSET_SS_READ)
252 return -EINVAL;
255 if (txc->modes != ADJ_OFFSET_SINGLESHOT && (txc->modes & ADJ_OFFSET))
256 /* adjustment Offset limited to +- .512 seconds */
257 if (txc->offset <= - MAXPHASE || txc->offset >= MAXPHASE )
258 return -EINVAL;
260 /* if the quartz is off by more than 10% something is VERY wrong ! */
261 if (txc->modes & ADJ_TICK)
262 if (txc->tick < 900000/USER_HZ ||
263 txc->tick > 1100000/USER_HZ)
264 return -EINVAL;
266 write_seqlock_irq(&xtime_lock);
267 result = time_state; /* mostly `TIME_OK' */
269 /* Save for later - semantics of adjtime is to return old value */
270 save_adjust = time_adjust;
272 #if 0 /* STA_CLOCKERR is never set yet */
273 time_status &= ~STA_CLOCKERR; /* reset STA_CLOCKERR */
274 #endif
275 /* If there are input parameters, then process them */
276 if (txc->modes)
278 if (txc->modes & ADJ_STATUS) /* only set allowed bits */
279 time_status = (txc->status & ~STA_RONLY) |
280 (time_status & STA_RONLY);
282 if (txc->modes & ADJ_FREQUENCY) { /* p. 22 */
283 if (txc->freq > MAXFREQ || txc->freq < -MAXFREQ) {
284 result = -EINVAL;
285 goto leave;
287 time_freq = ((s64)txc->freq * NSEC_PER_USEC)
288 >> (SHIFT_USEC - SHIFT_NSEC);
291 if (txc->modes & ADJ_MAXERROR) {
292 if (txc->maxerror < 0 || txc->maxerror >= NTP_PHASE_LIMIT) {
293 result = -EINVAL;
294 goto leave;
296 time_maxerror = txc->maxerror;
299 if (txc->modes & ADJ_ESTERROR) {
300 if (txc->esterror < 0 || txc->esterror >= NTP_PHASE_LIMIT) {
301 result = -EINVAL;
302 goto leave;
304 time_esterror = txc->esterror;
307 if (txc->modes & ADJ_TIMECONST) { /* p. 24 */
308 if (txc->constant < 0) { /* NTP v4 uses values > 6 */
309 result = -EINVAL;
310 goto leave;
312 time_constant = min(txc->constant + 4, (long)MAXTC);
315 if (txc->modes & ADJ_OFFSET) { /* values checked earlier */
316 if (txc->modes == ADJ_OFFSET_SINGLESHOT) {
317 /* adjtime() is independent from ntp_adjtime() */
318 time_adjust = txc->offset;
320 else if (time_status & STA_PLL) {
321 time_offset = txc->offset * NSEC_PER_USEC;
324 * Scale the phase adjustment and
325 * clamp to the operating range.
327 time_offset = min(time_offset, (s64)MAXPHASE * NSEC_PER_USEC);
328 time_offset = max(time_offset, (s64)-MAXPHASE * NSEC_PER_USEC);
331 * Select whether the frequency is to be controlled
332 * and in which mode (PLL or FLL). Clamp to the operating
333 * range. Ugly multiply/divide should be replaced someday.
336 if (time_status & STA_FREQHOLD || time_reftime == 0)
337 time_reftime = xtime.tv_sec;
338 mtemp = xtime.tv_sec - time_reftime;
339 time_reftime = xtime.tv_sec;
341 freq_adj = time_offset * mtemp;
342 freq_adj = shift_right(freq_adj, time_constant * 2 +
343 (SHIFT_PLL + 2) * 2 - SHIFT_NSEC);
344 if (mtemp >= MINSEC && (time_status & STA_FLL || mtemp > MAXSEC)) {
345 temp64 = time_offset << (SHIFT_NSEC - SHIFT_FLL);
346 if (time_offset < 0) {
347 temp64 = -temp64;
348 do_div(temp64, mtemp);
349 freq_adj -= temp64;
350 } else {
351 do_div(temp64, mtemp);
352 freq_adj += temp64;
355 freq_adj += time_freq;
356 freq_adj = min(freq_adj, (s64)MAXFREQ_NSEC);
357 time_freq = max(freq_adj, (s64)-MAXFREQ_NSEC);
358 time_offset = div_long_long_rem_signed(time_offset,
359 NTP_INTERVAL_FREQ,
360 &rem);
361 time_offset <<= SHIFT_UPDATE;
362 } /* STA_PLL */
363 } /* txc->modes & ADJ_OFFSET */
364 if (txc->modes & ADJ_TICK)
365 tick_usec = txc->tick;
367 if (txc->modes & (ADJ_TICK|ADJ_FREQUENCY|ADJ_OFFSET))
368 ntp_update_frequency();
369 } /* txc->modes */
370 leave: if ((time_status & (STA_UNSYNC|STA_CLOCKERR)) != 0)
371 result = TIME_ERROR;
373 if ((txc->modes == ADJ_OFFSET_SINGLESHOT) ||
374 (txc->modes == ADJ_OFFSET_SS_READ))
375 txc->offset = save_adjust;
376 else
377 txc->offset = ((long)shift_right(time_offset, SHIFT_UPDATE)) *
378 NTP_INTERVAL_FREQ / 1000;
379 txc->freq = (time_freq / NSEC_PER_USEC) <<
380 (SHIFT_USEC - SHIFT_NSEC);
381 txc->maxerror = time_maxerror;
382 txc->esterror = time_esterror;
383 txc->status = time_status;
384 txc->constant = time_constant;
385 txc->precision = 1;
386 txc->tolerance = MAXFREQ;
387 txc->tick = tick_usec;
389 /* PPS is not implemented, so these are zero */
390 txc->ppsfreq = 0;
391 txc->jitter = 0;
392 txc->shift = 0;
393 txc->stabil = 0;
394 txc->jitcnt = 0;
395 txc->calcnt = 0;
396 txc->errcnt = 0;
397 txc->stbcnt = 0;
398 write_sequnlock_irq(&xtime_lock);
399 do_gettimeofday(&txc->time);
400 notify_cmos_timer();
401 return(result);