1 /* 8139cp.c: A Linux PCI Ethernet driver for the RealTek 8139C+ chips. */
3 Copyright 2001-2004 Jeff Garzik <jgarzik@pobox.com>
5 Copyright (C) 2001, 2002 David S. Miller (davem@redhat.com) [tg3.c]
6 Copyright (C) 2000, 2001 David S. Miller (davem@redhat.com) [sungem.c]
7 Copyright 2001 Manfred Spraul [natsemi.c]
8 Copyright 1999-2001 by Donald Becker. [natsemi.c]
9 Written 1997-2001 by Donald Becker. [8139too.c]
10 Copyright 1998-2001 by Jes Sorensen, <jes@trained-monkey.org>. [acenic.c]
12 This software may be used and distributed according to the terms of
13 the GNU General Public License (GPL), incorporated herein by reference.
14 Drivers based on or derived from this code fall under the GPL and must
15 retain the authorship, copyright and license notice. This file is not
16 a complete program and may only be used when the entire operating
17 system is licensed under the GPL.
19 See the file COPYING in this distribution for more information.
23 Wake-on-LAN support - Felipe Damasio <felipewd@terra.com.br>
24 PCI suspend/resume - Felipe Damasio <felipewd@terra.com.br>
25 LinkChg interrupt - Felipe Damasio <felipewd@terra.com.br>
28 * Test Tx checksumming thoroughly
31 * Complete reset on PciErr
32 * Consider Rx interrupt mitigation using TimerIntr
33 * Investigate using skb->priority with h/w VLAN priority
34 * Investigate using High Priority Tx Queue with skb->priority
35 * Adjust Rx FIFO threshold and Max Rx DMA burst on Rx FIFO error
36 * Adjust Tx FIFO threshold and Max Tx DMA burst on Tx FIFO error
37 * Implement Tx software interrupt mitigation via
39 * The real minimum of CP_MIN_MTU is 4 bytes. However,
40 for this to be supported, one must(?) turn on packet padding.
41 * Support external MII transceivers (patch available)
44 * TX checksumming is considered experimental. It is off by
45 default, use ethtool to turn it on.
49 #define DRV_NAME "8139cp"
50 #define DRV_VERSION "1.3"
51 #define DRV_RELDATE "Mar 22, 2004"
54 #include <linux/module.h>
55 #include <linux/moduleparam.h>
56 #include <linux/kernel.h>
57 #include <linux/compiler.h>
58 #include <linux/netdevice.h>
59 #include <linux/etherdevice.h>
60 #include <linux/init.h>
61 #include <linux/pci.h>
62 #include <linux/dma-mapping.h>
63 #include <linux/delay.h>
64 #include <linux/ethtool.h>
65 #include <linux/mii.h>
66 #include <linux/if_vlan.h>
67 #include <linux/crc32.h>
70 #include <linux/tcp.h>
71 #include <linux/udp.h>
72 #include <linux/cache.h>
75 #include <asm/uaccess.h>
77 /* VLAN tagging feature enable/disable */
78 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
79 #define CP_VLAN_TAG_USED 1
80 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
81 do { (tx_desc)->opts2 = cpu_to_le32(vlan_tag_value); } while (0)
83 #define CP_VLAN_TAG_USED 0
84 #define CP_VLAN_TX_TAG(tx_desc,vlan_tag_value) \
85 do { (tx_desc)->opts2 = 0; } while (0)
88 /* These identify the driver base version and may not be removed. */
89 static char version
[] =
90 KERN_INFO DRV_NAME
": 10/100 PCI Ethernet driver v" DRV_VERSION
" (" DRV_RELDATE
")\n";
92 MODULE_AUTHOR("Jeff Garzik <jgarzik@pobox.com>");
93 MODULE_DESCRIPTION("RealTek RTL-8139C+ series 10/100 PCI Ethernet driver");
94 MODULE_VERSION(DRV_VERSION
);
95 MODULE_LICENSE("GPL");
97 static int debug
= -1;
98 module_param(debug
, int, 0);
99 MODULE_PARM_DESC (debug
, "8139cp: bitmapped message enable number");
101 /* Maximum number of multicast addresses to filter (vs. Rx-all-multicast).
102 The RTL chips use a 64 element hash table based on the Ethernet CRC. */
103 static int multicast_filter_limit
= 32;
104 module_param(multicast_filter_limit
, int, 0);
105 MODULE_PARM_DESC (multicast_filter_limit
, "8139cp: maximum number of filtered multicast addresses");
107 #define PFX DRV_NAME ": "
109 #define CP_DEF_MSG_ENABLE (NETIF_MSG_DRV | \
112 #define CP_NUM_STATS 14 /* struct cp_dma_stats, plus one */
113 #define CP_STATS_SIZE 64 /* size in bytes of DMA stats block */
114 #define CP_REGS_SIZE (0xff + 1)
115 #define CP_REGS_VER 1 /* version 1 */
116 #define CP_RX_RING_SIZE 64
117 #define CP_TX_RING_SIZE 64
118 #define CP_RING_BYTES \
119 ((sizeof(struct cp_desc) * CP_RX_RING_SIZE) + \
120 (sizeof(struct cp_desc) * CP_TX_RING_SIZE) + \
122 #define NEXT_TX(N) (((N) + 1) & (CP_TX_RING_SIZE - 1))
123 #define NEXT_RX(N) (((N) + 1) & (CP_RX_RING_SIZE - 1))
124 #define TX_BUFFS_AVAIL(CP) \
125 (((CP)->tx_tail <= (CP)->tx_head) ? \
126 (CP)->tx_tail + (CP_TX_RING_SIZE - 1) - (CP)->tx_head : \
127 (CP)->tx_tail - (CP)->tx_head - 1)
129 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/
130 #define CP_INTERNAL_PHY 32
132 /* The following settings are log_2(bytes)-4: 0 == 16 bytes .. 6==1024, 7==end of packet. */
133 #define RX_FIFO_THRESH 5 /* Rx buffer level before first PCI xfer. */
134 #define RX_DMA_BURST 4 /* Maximum PCI burst, '4' is 256 */
135 #define TX_DMA_BURST 6 /* Maximum PCI burst, '6' is 1024 */
136 #define TX_EARLY_THRESH 256 /* Early Tx threshold, in bytes */
138 /* Time in jiffies before concluding the transmitter is hung. */
139 #define TX_TIMEOUT (6*HZ)
141 /* hardware minimum and maximum for a single frame's data payload */
142 #define CP_MIN_MTU 60 /* TODO: allow lower, but pad */
143 #define CP_MAX_MTU 4096
146 /* NIC register offsets */
147 MAC0
= 0x00, /* Ethernet hardware address. */
148 MAR0
= 0x08, /* Multicast filter. */
149 StatsAddr
= 0x10, /* 64-bit start addr of 64-byte DMA stats blk */
150 TxRingAddr
= 0x20, /* 64-bit start addr of Tx ring */
151 HiTxRingAddr
= 0x28, /* 64-bit start addr of high priority Tx ring */
152 Cmd
= 0x37, /* Command register */
153 IntrMask
= 0x3C, /* Interrupt mask */
154 IntrStatus
= 0x3E, /* Interrupt status */
155 TxConfig
= 0x40, /* Tx configuration */
156 ChipVersion
= 0x43, /* 8-bit chip version, inside TxConfig */
157 RxConfig
= 0x44, /* Rx configuration */
158 RxMissed
= 0x4C, /* 24 bits valid, write clears */
159 Cfg9346
= 0x50, /* EEPROM select/control; Cfg reg [un]lock */
160 Config1
= 0x52, /* Config1 */
161 Config3
= 0x59, /* Config3 */
162 Config4
= 0x5A, /* Config4 */
163 MultiIntr
= 0x5C, /* Multiple interrupt select */
164 BasicModeCtrl
= 0x62, /* MII BMCR */
165 BasicModeStatus
= 0x64, /* MII BMSR */
166 NWayAdvert
= 0x66, /* MII ADVERTISE */
167 NWayLPAR
= 0x68, /* MII LPA */
168 NWayExpansion
= 0x6A, /* MII Expansion */
169 Config5
= 0xD8, /* Config5 */
170 TxPoll
= 0xD9, /* Tell chip to check Tx descriptors for work */
171 RxMaxSize
= 0xDA, /* Max size of an Rx packet (8169 only) */
172 CpCmd
= 0xE0, /* C+ Command register (C+ mode only) */
173 IntrMitigate
= 0xE2, /* rx/tx interrupt mitigation control */
174 RxRingAddr
= 0xE4, /* 64-bit start addr of Rx ring */
175 TxThresh
= 0xEC, /* Early Tx threshold */
176 OldRxBufAddr
= 0x30, /* DMA address of Rx ring buffer (C mode) */
177 OldTSD0
= 0x10, /* DMA address of first Tx desc (C mode) */
179 /* Tx and Rx status descriptors */
180 DescOwn
= (1 << 31), /* Descriptor is owned by NIC */
181 RingEnd
= (1 << 30), /* End of descriptor ring */
182 FirstFrag
= (1 << 29), /* First segment of a packet */
183 LastFrag
= (1 << 28), /* Final segment of a packet */
184 LargeSend
= (1 << 27), /* TCP Large Send Offload (TSO) */
185 MSSShift
= 16, /* MSS value position */
186 MSSMask
= 0xfff, /* MSS value: 11 bits */
187 TxError
= (1 << 23), /* Tx error summary */
188 RxError
= (1 << 20), /* Rx error summary */
189 IPCS
= (1 << 18), /* Calculate IP checksum */
190 UDPCS
= (1 << 17), /* Calculate UDP/IP checksum */
191 TCPCS
= (1 << 16), /* Calculate TCP/IP checksum */
192 TxVlanTag
= (1 << 17), /* Add VLAN tag */
193 RxVlanTagged
= (1 << 16), /* Rx VLAN tag available */
194 IPFail
= (1 << 15), /* IP checksum failed */
195 UDPFail
= (1 << 14), /* UDP/IP checksum failed */
196 TCPFail
= (1 << 13), /* TCP/IP checksum failed */
197 NormalTxPoll
= (1 << 6), /* One or more normal Tx packets to send */
198 PID1
= (1 << 17), /* 2 protocol id bits: 0==non-IP, */
199 PID0
= (1 << 16), /* 1==UDP/IP, 2==TCP/IP, 3==IP */
203 TxFIFOUnder
= (1 << 25), /* Tx FIFO underrun */
204 TxOWC
= (1 << 22), /* Tx Out-of-window collision */
205 TxLinkFail
= (1 << 21), /* Link failed during Tx of packet */
206 TxMaxCol
= (1 << 20), /* Tx aborted due to excessive collisions */
207 TxColCntShift
= 16, /* Shift, to get 4-bit Tx collision cnt */
208 TxColCntMask
= 0x01 | 0x02 | 0x04 | 0x08, /* 4-bit collision count */
209 RxErrFrame
= (1 << 27), /* Rx frame alignment error */
210 RxMcast
= (1 << 26), /* Rx multicast packet rcv'd */
211 RxErrCRC
= (1 << 18), /* Rx CRC error */
212 RxErrRunt
= (1 << 19), /* Rx error, packet < 64 bytes */
213 RxErrLong
= (1 << 21), /* Rx error, packet > 4096 bytes */
214 RxErrFIFO
= (1 << 22), /* Rx error, FIFO overflowed, pkt bad */
216 /* StatsAddr register */
217 DumpStats
= (1 << 3), /* Begin stats dump */
219 /* RxConfig register */
220 RxCfgFIFOShift
= 13, /* Shift, to get Rx FIFO thresh value */
221 RxCfgDMAShift
= 8, /* Shift, to get Rx Max DMA value */
222 AcceptErr
= 0x20, /* Accept packets with CRC errors */
223 AcceptRunt
= 0x10, /* Accept runt (<64 bytes) packets */
224 AcceptBroadcast
= 0x08, /* Accept broadcast packets */
225 AcceptMulticast
= 0x04, /* Accept multicast packets */
226 AcceptMyPhys
= 0x02, /* Accept pkts with our MAC as dest */
227 AcceptAllPhys
= 0x01, /* Accept all pkts w/ physical dest */
229 /* IntrMask / IntrStatus registers */
230 PciErr
= (1 << 15), /* System error on the PCI bus */
231 TimerIntr
= (1 << 14), /* Asserted when TCTR reaches TimerInt value */
232 LenChg
= (1 << 13), /* Cable length change */
233 SWInt
= (1 << 8), /* Software-requested interrupt */
234 TxEmpty
= (1 << 7), /* No Tx descriptors available */
235 RxFIFOOvr
= (1 << 6), /* Rx FIFO Overflow */
236 LinkChg
= (1 << 5), /* Packet underrun, or link change */
237 RxEmpty
= (1 << 4), /* No Rx descriptors available */
238 TxErr
= (1 << 3), /* Tx error */
239 TxOK
= (1 << 2), /* Tx packet sent */
240 RxErr
= (1 << 1), /* Rx error */
241 RxOK
= (1 << 0), /* Rx packet received */
242 IntrResvd
= (1 << 10), /* reserved, according to RealTek engineers,
243 but hardware likes to raise it */
245 IntrAll
= PciErr
| TimerIntr
| LenChg
| SWInt
| TxEmpty
|
246 RxFIFOOvr
| LinkChg
| RxEmpty
| TxErr
| TxOK
|
247 RxErr
| RxOK
| IntrResvd
,
249 /* C mode command register */
250 CmdReset
= (1 << 4), /* Enable to reset; self-clearing */
251 RxOn
= (1 << 3), /* Rx mode enable */
252 TxOn
= (1 << 2), /* Tx mode enable */
254 /* C+ mode command register */
255 RxVlanOn
= (1 << 6), /* Rx VLAN de-tagging enable */
256 RxChkSum
= (1 << 5), /* Rx checksum offload enable */
257 PCIDAC
= (1 << 4), /* PCI Dual Address Cycle (64-bit PCI) */
258 PCIMulRW
= (1 << 3), /* Enable PCI read/write multiple */
259 CpRxOn
= (1 << 1), /* Rx mode enable */
260 CpTxOn
= (1 << 0), /* Tx mode enable */
262 /* Cfg9436 EEPROM control register */
263 Cfg9346_Lock
= 0x00, /* Lock ConfigX/MII register access */
264 Cfg9346_Unlock
= 0xC0, /* Unlock ConfigX/MII register access */
266 /* TxConfig register */
267 IFG
= (1 << 25) | (1 << 24), /* standard IEEE interframe gap */
268 TxDMAShift
= 8, /* DMA burst value (0-7) is shift this many bits */
270 /* Early Tx Threshold register */
271 TxThreshMask
= 0x3f, /* Mask bits 5-0 */
272 TxThreshMax
= 2048, /* Max early Tx threshold */
274 /* Config1 register */
275 DriverLoaded
= (1 << 5), /* Software marker, driver is loaded */
276 LWACT
= (1 << 4), /* LWAKE active mode */
277 PMEnable
= (1 << 0), /* Enable various PM features of chip */
279 /* Config3 register */
280 PARMEnable
= (1 << 6), /* Enable auto-loading of PHY parms */
281 MagicPacket
= (1 << 5), /* Wake up when receives a Magic Packet */
282 LinkUp
= (1 << 4), /* Wake up when the cable connection is re-established */
284 /* Config4 register */
285 LWPTN
= (1 << 1), /* LWAKE Pattern */
286 LWPME
= (1 << 4), /* LANWAKE vs PMEB */
288 /* Config5 register */
289 BWF
= (1 << 6), /* Accept Broadcast wakeup frame */
290 MWF
= (1 << 5), /* Accept Multicast wakeup frame */
291 UWF
= (1 << 4), /* Accept Unicast wakeup frame */
292 LANWake
= (1 << 1), /* Enable LANWake signal */
293 PMEStatus
= (1 << 0), /* PME status can be reset by PCI RST# */
295 cp_norx_intr_mask
= PciErr
| LinkChg
| TxOK
| TxErr
| TxEmpty
,
296 cp_rx_intr_mask
= RxOK
| RxErr
| RxEmpty
| RxFIFOOvr
,
297 cp_intr_mask
= cp_rx_intr_mask
| cp_norx_intr_mask
,
300 static const unsigned int cp_rx_config
=
301 (RX_FIFO_THRESH
<< RxCfgFIFOShift
) |
302 (RX_DMA_BURST
<< RxCfgDMAShift
);
310 struct cp_dma_stats
{
324 } __attribute__((packed
));
326 struct cp_extra_stats
{
327 unsigned long rx_frags
;
332 struct net_device
*dev
;
336 struct napi_struct napi
;
338 struct pci_dev
*pdev
;
342 struct cp_extra_stats cp_stats
;
344 unsigned rx_head ____cacheline_aligned
;
346 struct cp_desc
*rx_ring
;
347 struct sk_buff
*rx_skb
[CP_RX_RING_SIZE
];
349 unsigned tx_head ____cacheline_aligned
;
351 struct cp_desc
*tx_ring
;
352 struct sk_buff
*tx_skb
[CP_TX_RING_SIZE
];
355 unsigned wol_enabled
: 1; /* Is Wake-on-LAN enabled? */
358 struct vlan_group
*vlgrp
;
362 struct mii_if_info mii_if
;
365 #define cpr8(reg) readb(cp->regs + (reg))
366 #define cpr16(reg) readw(cp->regs + (reg))
367 #define cpr32(reg) readl(cp->regs + (reg))
368 #define cpw8(reg,val) writeb((val), cp->regs + (reg))
369 #define cpw16(reg,val) writew((val), cp->regs + (reg))
370 #define cpw32(reg,val) writel((val), cp->regs + (reg))
371 #define cpw8_f(reg,val) do { \
372 writeb((val), cp->regs + (reg)); \
373 readb(cp->regs + (reg)); \
375 #define cpw16_f(reg,val) do { \
376 writew((val), cp->regs + (reg)); \
377 readw(cp->regs + (reg)); \
379 #define cpw32_f(reg,val) do { \
380 writel((val), cp->regs + (reg)); \
381 readl(cp->regs + (reg)); \
385 static void __cp_set_rx_mode (struct net_device
*dev
);
386 static void cp_tx (struct cp_private
*cp
);
387 static void cp_clean_rings (struct cp_private
*cp
);
388 #ifdef CONFIG_NET_POLL_CONTROLLER
389 static void cp_poll_controller(struct net_device
*dev
);
391 static int cp_get_eeprom_len(struct net_device
*dev
);
392 static int cp_get_eeprom(struct net_device
*dev
,
393 struct ethtool_eeprom
*eeprom
, u8
*data
);
394 static int cp_set_eeprom(struct net_device
*dev
,
395 struct ethtool_eeprom
*eeprom
, u8
*data
);
397 static struct pci_device_id cp_pci_tbl
[] = {
398 { PCI_DEVICE(PCI_VENDOR_ID_REALTEK
, PCI_DEVICE_ID_REALTEK_8139
), },
399 { PCI_DEVICE(PCI_VENDOR_ID_TTTECH
, PCI_DEVICE_ID_TTTECH_MC322
), },
402 MODULE_DEVICE_TABLE(pci
, cp_pci_tbl
);
405 const char str
[ETH_GSTRING_LEN
];
406 } ethtool_stats_keys
[] = {
425 static void cp_vlan_rx_register(struct net_device
*dev
, struct vlan_group
*grp
)
427 struct cp_private
*cp
= netdev_priv(dev
);
430 spin_lock_irqsave(&cp
->lock
, flags
);
433 cp
->cpcmd
|= RxVlanOn
;
435 cp
->cpcmd
&= ~RxVlanOn
;
437 cpw16(CpCmd
, cp
->cpcmd
);
438 spin_unlock_irqrestore(&cp
->lock
, flags
);
440 #endif /* CP_VLAN_TAG_USED */
442 static inline void cp_set_rxbufsize (struct cp_private
*cp
)
444 unsigned int mtu
= cp
->dev
->mtu
;
446 if (mtu
> ETH_DATA_LEN
)
447 /* MTU + ethernet header + FCS + optional VLAN tag */
448 cp
->rx_buf_sz
= mtu
+ ETH_HLEN
+ 8;
450 cp
->rx_buf_sz
= PKT_BUF_SZ
;
453 static inline void cp_rx_skb (struct cp_private
*cp
, struct sk_buff
*skb
,
454 struct cp_desc
*desc
)
456 skb
->protocol
= eth_type_trans (skb
, cp
->dev
);
458 cp
->dev
->stats
.rx_packets
++;
459 cp
->dev
->stats
.rx_bytes
+= skb
->len
;
460 cp
->dev
->last_rx
= jiffies
;
463 if (cp
->vlgrp
&& (desc
->opts2
& cpu_to_le32(RxVlanTagged
))) {
464 vlan_hwaccel_receive_skb(skb
, cp
->vlgrp
,
465 swab16(le32_to_cpu(desc
->opts2
) & 0xffff));
468 netif_receive_skb(skb
);
471 static void cp_rx_err_acct (struct cp_private
*cp
, unsigned rx_tail
,
474 if (netif_msg_rx_err (cp
))
476 "%s: rx err, slot %d status 0x%x len %d\n",
477 cp
->dev
->name
, rx_tail
, status
, len
);
478 cp
->dev
->stats
.rx_errors
++;
479 if (status
& RxErrFrame
)
480 cp
->dev
->stats
.rx_frame_errors
++;
481 if (status
& RxErrCRC
)
482 cp
->dev
->stats
.rx_crc_errors
++;
483 if ((status
& RxErrRunt
) || (status
& RxErrLong
))
484 cp
->dev
->stats
.rx_length_errors
++;
485 if ((status
& (FirstFrag
| LastFrag
)) != (FirstFrag
| LastFrag
))
486 cp
->dev
->stats
.rx_length_errors
++;
487 if (status
& RxErrFIFO
)
488 cp
->dev
->stats
.rx_fifo_errors
++;
491 static inline unsigned int cp_rx_csum_ok (u32 status
)
493 unsigned int protocol
= (status
>> 16) & 0x3;
495 if (likely((protocol
== RxProtoTCP
) && (!(status
& TCPFail
))))
497 else if ((protocol
== RxProtoUDP
) && (!(status
& UDPFail
)))
499 else if ((protocol
== RxProtoIP
) && (!(status
& IPFail
)))
504 static int cp_rx_poll(struct napi_struct
*napi
, int budget
)
506 struct cp_private
*cp
= container_of(napi
, struct cp_private
, napi
);
507 struct net_device
*dev
= cp
->dev
;
508 unsigned int rx_tail
= cp
->rx_tail
;
513 cpw16(IntrStatus
, cp_rx_intr_mask
);
518 struct sk_buff
*skb
, *new_skb
;
519 struct cp_desc
*desc
;
522 skb
= cp
->rx_skb
[rx_tail
];
525 desc
= &cp
->rx_ring
[rx_tail
];
526 status
= le32_to_cpu(desc
->opts1
);
527 if (status
& DescOwn
)
530 len
= (status
& 0x1fff) - 4;
531 mapping
= le64_to_cpu(desc
->addr
);
533 if ((status
& (FirstFrag
| LastFrag
)) != (FirstFrag
| LastFrag
)) {
534 /* we don't support incoming fragmented frames.
535 * instead, we attempt to ensure that the
536 * pre-allocated RX skbs are properly sized such
537 * that RX fragments are never encountered
539 cp_rx_err_acct(cp
, rx_tail
, status
, len
);
540 dev
->stats
.rx_dropped
++;
541 cp
->cp_stats
.rx_frags
++;
545 if (status
& (RxError
| RxErrFIFO
)) {
546 cp_rx_err_acct(cp
, rx_tail
, status
, len
);
550 if (netif_msg_rx_status(cp
))
551 printk(KERN_DEBUG
"%s: rx slot %d status 0x%x len %d\n",
552 dev
->name
, rx_tail
, status
, len
);
554 buflen
= cp
->rx_buf_sz
+ NET_IP_ALIGN
;
555 new_skb
= netdev_alloc_skb(dev
, buflen
);
557 dev
->stats
.rx_dropped
++;
561 skb_reserve(new_skb
, NET_IP_ALIGN
);
563 dma_unmap_single(&cp
->pdev
->dev
, mapping
,
564 buflen
, PCI_DMA_FROMDEVICE
);
566 /* Handle checksum offloading for incoming packets. */
567 if (cp_rx_csum_ok(status
))
568 skb
->ip_summed
= CHECKSUM_UNNECESSARY
;
570 skb
->ip_summed
= CHECKSUM_NONE
;
574 mapping
= dma_map_single(&cp
->pdev
->dev
, new_skb
->data
, buflen
,
576 cp
->rx_skb
[rx_tail
] = new_skb
;
578 cp_rx_skb(cp
, skb
, desc
);
582 cp
->rx_ring
[rx_tail
].opts2
= 0;
583 cp
->rx_ring
[rx_tail
].addr
= cpu_to_le64(mapping
);
584 if (rx_tail
== (CP_RX_RING_SIZE
- 1))
585 desc
->opts1
= cpu_to_le32(DescOwn
| RingEnd
|
588 desc
->opts1
= cpu_to_le32(DescOwn
| cp
->rx_buf_sz
);
589 rx_tail
= NEXT_RX(rx_tail
);
595 cp
->rx_tail
= rx_tail
;
597 /* if we did not reach work limit, then we're done with
598 * this round of polling
603 if (cpr16(IntrStatus
) & cp_rx_intr_mask
)
606 spin_lock_irqsave(&cp
->lock
, flags
);
607 cpw16_f(IntrMask
, cp_intr_mask
);
608 __netif_rx_complete(dev
, napi
);
609 spin_unlock_irqrestore(&cp
->lock
, flags
);
615 static irqreturn_t
cp_interrupt (int irq
, void *dev_instance
)
617 struct net_device
*dev
= dev_instance
;
618 struct cp_private
*cp
;
621 if (unlikely(dev
== NULL
))
623 cp
= netdev_priv(dev
);
625 status
= cpr16(IntrStatus
);
626 if (!status
|| (status
== 0xFFFF))
629 if (netif_msg_intr(cp
))
630 printk(KERN_DEBUG
"%s: intr, status %04x cmd %02x cpcmd %04x\n",
631 dev
->name
, status
, cpr8(Cmd
), cpr16(CpCmd
));
633 cpw16(IntrStatus
, status
& ~cp_rx_intr_mask
);
635 spin_lock(&cp
->lock
);
637 /* close possible race's with dev_close */
638 if (unlikely(!netif_running(dev
))) {
640 spin_unlock(&cp
->lock
);
644 if (status
& (RxOK
| RxErr
| RxEmpty
| RxFIFOOvr
))
645 if (netif_rx_schedule_prep(dev
, &cp
->napi
)) {
646 cpw16_f(IntrMask
, cp_norx_intr_mask
);
647 __netif_rx_schedule(dev
, &cp
->napi
);
650 if (status
& (TxOK
| TxErr
| TxEmpty
| SWInt
))
652 if (status
& LinkChg
)
653 mii_check_media(&cp
->mii_if
, netif_msg_link(cp
), false);
655 spin_unlock(&cp
->lock
);
657 if (status
& PciErr
) {
660 pci_read_config_word(cp
->pdev
, PCI_STATUS
, &pci_status
);
661 pci_write_config_word(cp
->pdev
, PCI_STATUS
, pci_status
);
662 printk(KERN_ERR
"%s: PCI bus error, status=%04x, PCI status=%04x\n",
663 dev
->name
, status
, pci_status
);
665 /* TODO: reset hardware */
671 #ifdef CONFIG_NET_POLL_CONTROLLER
673 * Polling receive - used by netconsole and other diagnostic tools
674 * to allow network i/o with interrupts disabled.
676 static void cp_poll_controller(struct net_device
*dev
)
678 disable_irq(dev
->irq
);
679 cp_interrupt(dev
->irq
, dev
);
680 enable_irq(dev
->irq
);
684 static void cp_tx (struct cp_private
*cp
)
686 unsigned tx_head
= cp
->tx_head
;
687 unsigned tx_tail
= cp
->tx_tail
;
689 while (tx_tail
!= tx_head
) {
690 struct cp_desc
*txd
= cp
->tx_ring
+ tx_tail
;
695 status
= le32_to_cpu(txd
->opts1
);
696 if (status
& DescOwn
)
699 skb
= cp
->tx_skb
[tx_tail
];
702 dma_unmap_single(&cp
->pdev
->dev
, le64_to_cpu(txd
->addr
),
703 le32_to_cpu(txd
->opts1
) & 0xffff,
706 if (status
& LastFrag
) {
707 if (status
& (TxError
| TxFIFOUnder
)) {
708 if (netif_msg_tx_err(cp
))
709 printk(KERN_DEBUG
"%s: tx err, status 0x%x\n",
710 cp
->dev
->name
, status
);
711 cp
->dev
->stats
.tx_errors
++;
713 cp
->dev
->stats
.tx_window_errors
++;
714 if (status
& TxMaxCol
)
715 cp
->dev
->stats
.tx_aborted_errors
++;
716 if (status
& TxLinkFail
)
717 cp
->dev
->stats
.tx_carrier_errors
++;
718 if (status
& TxFIFOUnder
)
719 cp
->dev
->stats
.tx_fifo_errors
++;
721 cp
->dev
->stats
.collisions
+=
722 ((status
>> TxColCntShift
) & TxColCntMask
);
723 cp
->dev
->stats
.tx_packets
++;
724 cp
->dev
->stats
.tx_bytes
+= skb
->len
;
725 if (netif_msg_tx_done(cp
))
726 printk(KERN_DEBUG
"%s: tx done, slot %d\n", cp
->dev
->name
, tx_tail
);
728 dev_kfree_skb_irq(skb
);
731 cp
->tx_skb
[tx_tail
] = NULL
;
733 tx_tail
= NEXT_TX(tx_tail
);
736 cp
->tx_tail
= tx_tail
;
738 if (TX_BUFFS_AVAIL(cp
) > (MAX_SKB_FRAGS
+ 1))
739 netif_wake_queue(cp
->dev
);
742 static int cp_start_xmit (struct sk_buff
*skb
, struct net_device
*dev
)
744 struct cp_private
*cp
= netdev_priv(dev
);
747 unsigned long intr_flags
;
753 spin_lock_irqsave(&cp
->lock
, intr_flags
);
755 /* This is a hard error, log it. */
756 if (TX_BUFFS_AVAIL(cp
) <= (skb_shinfo(skb
)->nr_frags
+ 1)) {
757 netif_stop_queue(dev
);
758 spin_unlock_irqrestore(&cp
->lock
, intr_flags
);
759 printk(KERN_ERR PFX
"%s: BUG! Tx Ring full when queue awake!\n",
765 if (cp
->vlgrp
&& vlan_tx_tag_present(skb
))
766 vlan_tag
= TxVlanTag
| swab16(vlan_tx_tag_get(skb
));
770 eor
= (entry
== (CP_TX_RING_SIZE
- 1)) ? RingEnd
: 0;
771 if (dev
->features
& NETIF_F_TSO
)
772 mss
= skb_shinfo(skb
)->gso_size
;
774 if (skb_shinfo(skb
)->nr_frags
== 0) {
775 struct cp_desc
*txd
= &cp
->tx_ring
[entry
];
780 mapping
= dma_map_single(&cp
->pdev
->dev
, skb
->data
, len
, PCI_DMA_TODEVICE
);
781 CP_VLAN_TX_TAG(txd
, vlan_tag
);
782 txd
->addr
= cpu_to_le64(mapping
);
785 flags
= eor
| len
| DescOwn
| FirstFrag
| LastFrag
;
788 flags
|= LargeSend
| ((mss
& MSSMask
) << MSSShift
);
789 else if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
790 const struct iphdr
*ip
= ip_hdr(skb
);
791 if (ip
->protocol
== IPPROTO_TCP
)
792 flags
|= IPCS
| TCPCS
;
793 else if (ip
->protocol
== IPPROTO_UDP
)
794 flags
|= IPCS
| UDPCS
;
796 WARN_ON(1); /* we need a WARN() */
799 txd
->opts1
= cpu_to_le32(flags
);
802 cp
->tx_skb
[entry
] = skb
;
803 entry
= NEXT_TX(entry
);
806 u32 first_len
, first_eor
;
807 dma_addr_t first_mapping
;
808 int frag
, first_entry
= entry
;
809 const struct iphdr
*ip
= ip_hdr(skb
);
811 /* We must give this initial chunk to the device last.
812 * Otherwise we could race with the device.
815 first_len
= skb_headlen(skb
);
816 first_mapping
= dma_map_single(&cp
->pdev
->dev
, skb
->data
,
817 first_len
, PCI_DMA_TODEVICE
);
818 cp
->tx_skb
[entry
] = skb
;
819 entry
= NEXT_TX(entry
);
821 for (frag
= 0; frag
< skb_shinfo(skb
)->nr_frags
; frag
++) {
822 skb_frag_t
*this_frag
= &skb_shinfo(skb
)->frags
[frag
];
827 len
= this_frag
->size
;
828 mapping
= dma_map_single(&cp
->pdev
->dev
,
829 ((void *) page_address(this_frag
->page
) +
830 this_frag
->page_offset
),
831 len
, PCI_DMA_TODEVICE
);
832 eor
= (entry
== (CP_TX_RING_SIZE
- 1)) ? RingEnd
: 0;
834 ctrl
= eor
| len
| DescOwn
;
838 ((mss
& MSSMask
) << MSSShift
);
839 else if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
840 if (ip
->protocol
== IPPROTO_TCP
)
841 ctrl
|= IPCS
| TCPCS
;
842 else if (ip
->protocol
== IPPROTO_UDP
)
843 ctrl
|= IPCS
| UDPCS
;
848 if (frag
== skb_shinfo(skb
)->nr_frags
- 1)
851 txd
= &cp
->tx_ring
[entry
];
852 CP_VLAN_TX_TAG(txd
, vlan_tag
);
853 txd
->addr
= cpu_to_le64(mapping
);
856 txd
->opts1
= cpu_to_le32(ctrl
);
859 cp
->tx_skb
[entry
] = skb
;
860 entry
= NEXT_TX(entry
);
863 txd
= &cp
->tx_ring
[first_entry
];
864 CP_VLAN_TX_TAG(txd
, vlan_tag
);
865 txd
->addr
= cpu_to_le64(first_mapping
);
868 if (skb
->ip_summed
== CHECKSUM_PARTIAL
) {
869 if (ip
->protocol
== IPPROTO_TCP
)
870 txd
->opts1
= cpu_to_le32(first_eor
| first_len
|
871 FirstFrag
| DescOwn
|
873 else if (ip
->protocol
== IPPROTO_UDP
)
874 txd
->opts1
= cpu_to_le32(first_eor
| first_len
|
875 FirstFrag
| DescOwn
|
880 txd
->opts1
= cpu_to_le32(first_eor
| first_len
|
881 FirstFrag
| DescOwn
);
885 if (netif_msg_tx_queued(cp
))
886 printk(KERN_DEBUG
"%s: tx queued, slot %d, skblen %d\n",
887 dev
->name
, entry
, skb
->len
);
888 if (TX_BUFFS_AVAIL(cp
) <= (MAX_SKB_FRAGS
+ 1))
889 netif_stop_queue(dev
);
891 spin_unlock_irqrestore(&cp
->lock
, intr_flags
);
893 cpw8(TxPoll
, NormalTxPoll
);
894 dev
->trans_start
= jiffies
;
899 /* Set or clear the multicast filter for this adaptor.
900 This routine is not state sensitive and need not be SMP locked. */
902 static void __cp_set_rx_mode (struct net_device
*dev
)
904 struct cp_private
*cp
= netdev_priv(dev
);
905 u32 mc_filter
[2]; /* Multicast hash filter */
909 /* Note: do not reorder, GCC is clever about common statements. */
910 if (dev
->flags
& IFF_PROMISC
) {
911 /* Unconditionally log net taps. */
913 AcceptBroadcast
| AcceptMulticast
| AcceptMyPhys
|
915 mc_filter
[1] = mc_filter
[0] = 0xffffffff;
916 } else if ((dev
->mc_count
> multicast_filter_limit
)
917 || (dev
->flags
& IFF_ALLMULTI
)) {
918 /* Too many to filter perfectly -- accept all multicasts. */
919 rx_mode
= AcceptBroadcast
| AcceptMulticast
| AcceptMyPhys
;
920 mc_filter
[1] = mc_filter
[0] = 0xffffffff;
922 struct dev_mc_list
*mclist
;
923 rx_mode
= AcceptBroadcast
| AcceptMyPhys
;
924 mc_filter
[1] = mc_filter
[0] = 0;
925 for (i
= 0, mclist
= dev
->mc_list
; mclist
&& i
< dev
->mc_count
;
926 i
++, mclist
= mclist
->next
) {
927 int bit_nr
= ether_crc(ETH_ALEN
, mclist
->dmi_addr
) >> 26;
929 mc_filter
[bit_nr
>> 5] |= 1 << (bit_nr
& 31);
930 rx_mode
|= AcceptMulticast
;
934 /* We can safely update without stopping the chip. */
935 tmp
= cp_rx_config
| rx_mode
;
936 if (cp
->rx_config
!= tmp
) {
937 cpw32_f (RxConfig
, tmp
);
940 cpw32_f (MAR0
+ 0, mc_filter
[0]);
941 cpw32_f (MAR0
+ 4, mc_filter
[1]);
944 static void cp_set_rx_mode (struct net_device
*dev
)
947 struct cp_private
*cp
= netdev_priv(dev
);
949 spin_lock_irqsave (&cp
->lock
, flags
);
950 __cp_set_rx_mode(dev
);
951 spin_unlock_irqrestore (&cp
->lock
, flags
);
954 static void __cp_get_stats(struct cp_private
*cp
)
956 /* only lower 24 bits valid; write any value to clear */
957 cp
->dev
->stats
.rx_missed_errors
+= (cpr32 (RxMissed
) & 0xffffff);
961 static struct net_device_stats
*cp_get_stats(struct net_device
*dev
)
963 struct cp_private
*cp
= netdev_priv(dev
);
966 /* The chip only need report frame silently dropped. */
967 spin_lock_irqsave(&cp
->lock
, flags
);
968 if (netif_running(dev
) && netif_device_present(dev
))
970 spin_unlock_irqrestore(&cp
->lock
, flags
);
975 static void cp_stop_hw (struct cp_private
*cp
)
977 cpw16(IntrStatus
, ~(cpr16(IntrStatus
)));
978 cpw16_f(IntrMask
, 0);
981 cpw16_f(IntrStatus
, ~(cpr16(IntrStatus
)));
984 cp
->tx_head
= cp
->tx_tail
= 0;
987 static void cp_reset_hw (struct cp_private
*cp
)
989 unsigned work
= 1000;
994 if (!(cpr8(Cmd
) & CmdReset
))
997 schedule_timeout_uninterruptible(10);
1000 printk(KERN_ERR
"%s: hardware reset timeout\n", cp
->dev
->name
);
1003 static inline void cp_start_hw (struct cp_private
*cp
)
1005 cpw16(CpCmd
, cp
->cpcmd
);
1006 cpw8(Cmd
, RxOn
| TxOn
);
1009 static void cp_init_hw (struct cp_private
*cp
)
1011 struct net_device
*dev
= cp
->dev
;
1012 dma_addr_t ring_dma
;
1016 cpw8_f (Cfg9346
, Cfg9346_Unlock
);
1018 /* Restore our idea of the MAC address. */
1019 cpw32_f (MAC0
+ 0, le32_to_cpu (*(__le32
*) (dev
->dev_addr
+ 0)));
1020 cpw32_f (MAC0
+ 4, le32_to_cpu (*(__le32
*) (dev
->dev_addr
+ 4)));
1023 cpw8(TxThresh
, 0x06); /* XXX convert magic num to a constant */
1025 __cp_set_rx_mode(dev
);
1026 cpw32_f (TxConfig
, IFG
| (TX_DMA_BURST
<< TxDMAShift
));
1028 cpw8(Config1
, cpr8(Config1
) | DriverLoaded
| PMEnable
);
1029 /* Disable Wake-on-LAN. Can be turned on with ETHTOOL_SWOL */
1030 cpw8(Config3
, PARMEnable
);
1031 cp
->wol_enabled
= 0;
1033 cpw8(Config5
, cpr8(Config5
) & PMEStatus
);
1035 cpw32_f(HiTxRingAddr
, 0);
1036 cpw32_f(HiTxRingAddr
+ 4, 0);
1038 ring_dma
= cp
->ring_dma
;
1039 cpw32_f(RxRingAddr
, ring_dma
& 0xffffffff);
1040 cpw32_f(RxRingAddr
+ 4, (ring_dma
>> 16) >> 16);
1042 ring_dma
+= sizeof(struct cp_desc
) * CP_RX_RING_SIZE
;
1043 cpw32_f(TxRingAddr
, ring_dma
& 0xffffffff);
1044 cpw32_f(TxRingAddr
+ 4, (ring_dma
>> 16) >> 16);
1046 cpw16(MultiIntr
, 0);
1048 cpw16_f(IntrMask
, cp_intr_mask
);
1050 cpw8_f(Cfg9346
, Cfg9346_Lock
);
1053 static int cp_refill_rx(struct cp_private
*cp
)
1055 struct net_device
*dev
= cp
->dev
;
1058 for (i
= 0; i
< CP_RX_RING_SIZE
; i
++) {
1059 struct sk_buff
*skb
;
1062 skb
= netdev_alloc_skb(dev
, cp
->rx_buf_sz
+ NET_IP_ALIGN
);
1066 skb_reserve(skb
, NET_IP_ALIGN
);
1068 mapping
= dma_map_single(&cp
->pdev
->dev
, skb
->data
,
1069 cp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1070 cp
->rx_skb
[i
] = skb
;
1072 cp
->rx_ring
[i
].opts2
= 0;
1073 cp
->rx_ring
[i
].addr
= cpu_to_le64(mapping
);
1074 if (i
== (CP_RX_RING_SIZE
- 1))
1075 cp
->rx_ring
[i
].opts1
=
1076 cpu_to_le32(DescOwn
| RingEnd
| cp
->rx_buf_sz
);
1078 cp
->rx_ring
[i
].opts1
=
1079 cpu_to_le32(DescOwn
| cp
->rx_buf_sz
);
1089 static void cp_init_rings_index (struct cp_private
*cp
)
1092 cp
->tx_head
= cp
->tx_tail
= 0;
1095 static int cp_init_rings (struct cp_private
*cp
)
1097 memset(cp
->tx_ring
, 0, sizeof(struct cp_desc
) * CP_TX_RING_SIZE
);
1098 cp
->tx_ring
[CP_TX_RING_SIZE
- 1].opts1
= cpu_to_le32(RingEnd
);
1100 cp_init_rings_index(cp
);
1102 return cp_refill_rx (cp
);
1105 static int cp_alloc_rings (struct cp_private
*cp
)
1109 mem
= dma_alloc_coherent(&cp
->pdev
->dev
, CP_RING_BYTES
,
1110 &cp
->ring_dma
, GFP_KERNEL
);
1115 cp
->tx_ring
= &cp
->rx_ring
[CP_RX_RING_SIZE
];
1117 return cp_init_rings(cp
);
1120 static void cp_clean_rings (struct cp_private
*cp
)
1122 struct cp_desc
*desc
;
1125 for (i
= 0; i
< CP_RX_RING_SIZE
; i
++) {
1126 if (cp
->rx_skb
[i
]) {
1127 desc
= cp
->rx_ring
+ i
;
1128 dma_unmap_single(&cp
->pdev
->dev
,le64_to_cpu(desc
->addr
),
1129 cp
->rx_buf_sz
, PCI_DMA_FROMDEVICE
);
1130 dev_kfree_skb(cp
->rx_skb
[i
]);
1134 for (i
= 0; i
< CP_TX_RING_SIZE
; i
++) {
1135 if (cp
->tx_skb
[i
]) {
1136 struct sk_buff
*skb
= cp
->tx_skb
[i
];
1138 desc
= cp
->tx_ring
+ i
;
1139 dma_unmap_single(&cp
->pdev
->dev
,le64_to_cpu(desc
->addr
),
1140 le32_to_cpu(desc
->opts1
) & 0xffff,
1142 if (le32_to_cpu(desc
->opts1
) & LastFrag
)
1144 cp
->dev
->stats
.tx_dropped
++;
1148 memset(cp
->rx_ring
, 0, sizeof(struct cp_desc
) * CP_RX_RING_SIZE
);
1149 memset(cp
->tx_ring
, 0, sizeof(struct cp_desc
) * CP_TX_RING_SIZE
);
1151 memset(cp
->rx_skb
, 0, sizeof(struct sk_buff
*) * CP_RX_RING_SIZE
);
1152 memset(cp
->tx_skb
, 0, sizeof(struct sk_buff
*) * CP_TX_RING_SIZE
);
1155 static void cp_free_rings (struct cp_private
*cp
)
1158 dma_free_coherent(&cp
->pdev
->dev
, CP_RING_BYTES
, cp
->rx_ring
,
1164 static int cp_open (struct net_device
*dev
)
1166 struct cp_private
*cp
= netdev_priv(dev
);
1169 if (netif_msg_ifup(cp
))
1170 printk(KERN_DEBUG
"%s: enabling interface\n", dev
->name
);
1172 rc
= cp_alloc_rings(cp
);
1176 napi_enable(&cp
->napi
);
1180 rc
= request_irq(dev
->irq
, cp_interrupt
, IRQF_SHARED
, dev
->name
, dev
);
1184 netif_carrier_off(dev
);
1185 mii_check_media(&cp
->mii_if
, netif_msg_link(cp
), true);
1186 netif_start_queue(dev
);
1191 napi_disable(&cp
->napi
);
1197 static int cp_close (struct net_device
*dev
)
1199 struct cp_private
*cp
= netdev_priv(dev
);
1200 unsigned long flags
;
1202 napi_disable(&cp
->napi
);
1204 if (netif_msg_ifdown(cp
))
1205 printk(KERN_DEBUG
"%s: disabling interface\n", dev
->name
);
1207 spin_lock_irqsave(&cp
->lock
, flags
);
1209 netif_stop_queue(dev
);
1210 netif_carrier_off(dev
);
1214 spin_unlock_irqrestore(&cp
->lock
, flags
);
1216 free_irq(dev
->irq
, dev
);
1222 static void cp_tx_timeout(struct net_device
*dev
)
1224 struct cp_private
*cp
= netdev_priv(dev
);
1225 unsigned long flags
;
1228 printk(KERN_WARNING
"%s: Transmit timeout, status %2x %4x %4x %4x\n",
1229 dev
->name
, cpr8(Cmd
), cpr16(CpCmd
),
1230 cpr16(IntrStatus
), cpr16(IntrMask
));
1232 spin_lock_irqsave(&cp
->lock
, flags
);
1236 rc
= cp_init_rings(cp
);
1239 netif_wake_queue(dev
);
1241 spin_unlock_irqrestore(&cp
->lock
, flags
);
1247 static int cp_change_mtu(struct net_device
*dev
, int new_mtu
)
1249 struct cp_private
*cp
= netdev_priv(dev
);
1251 unsigned long flags
;
1253 /* check for invalid MTU, according to hardware limits */
1254 if (new_mtu
< CP_MIN_MTU
|| new_mtu
> CP_MAX_MTU
)
1257 /* if network interface not up, no need for complexity */
1258 if (!netif_running(dev
)) {
1260 cp_set_rxbufsize(cp
); /* set new rx buf size */
1264 spin_lock_irqsave(&cp
->lock
, flags
);
1266 cp_stop_hw(cp
); /* stop h/w and free rings */
1270 cp_set_rxbufsize(cp
); /* set new rx buf size */
1272 rc
= cp_init_rings(cp
); /* realloc and restart h/w */
1275 spin_unlock_irqrestore(&cp
->lock
, flags
);
1281 static const char mii_2_8139_map
[8] = {
1292 static int mdio_read(struct net_device
*dev
, int phy_id
, int location
)
1294 struct cp_private
*cp
= netdev_priv(dev
);
1296 return location
< 8 && mii_2_8139_map
[location
] ?
1297 readw(cp
->regs
+ mii_2_8139_map
[location
]) : 0;
1301 static void mdio_write(struct net_device
*dev
, int phy_id
, int location
,
1304 struct cp_private
*cp
= netdev_priv(dev
);
1306 if (location
== 0) {
1307 cpw8(Cfg9346
, Cfg9346_Unlock
);
1308 cpw16(BasicModeCtrl
, value
);
1309 cpw8(Cfg9346
, Cfg9346_Lock
);
1310 } else if (location
< 8 && mii_2_8139_map
[location
])
1311 cpw16(mii_2_8139_map
[location
], value
);
1314 /* Set the ethtool Wake-on-LAN settings */
1315 static int netdev_set_wol (struct cp_private
*cp
,
1316 const struct ethtool_wolinfo
*wol
)
1320 options
= cpr8 (Config3
) & ~(LinkUp
| MagicPacket
);
1321 /* If WOL is being disabled, no need for complexity */
1323 if (wol
->wolopts
& WAKE_PHY
) options
|= LinkUp
;
1324 if (wol
->wolopts
& WAKE_MAGIC
) options
|= MagicPacket
;
1327 cpw8 (Cfg9346
, Cfg9346_Unlock
);
1328 cpw8 (Config3
, options
);
1329 cpw8 (Cfg9346
, Cfg9346_Lock
);
1331 options
= 0; /* Paranoia setting */
1332 options
= cpr8 (Config5
) & ~(UWF
| MWF
| BWF
);
1333 /* If WOL is being disabled, no need for complexity */
1335 if (wol
->wolopts
& WAKE_UCAST
) options
|= UWF
;
1336 if (wol
->wolopts
& WAKE_BCAST
) options
|= BWF
;
1337 if (wol
->wolopts
& WAKE_MCAST
) options
|= MWF
;
1340 cpw8 (Config5
, options
);
1342 cp
->wol_enabled
= (wol
->wolopts
) ? 1 : 0;
1347 /* Get the ethtool Wake-on-LAN settings */
1348 static void netdev_get_wol (struct cp_private
*cp
,
1349 struct ethtool_wolinfo
*wol
)
1353 wol
->wolopts
= 0; /* Start from scratch */
1354 wol
->supported
= WAKE_PHY
| WAKE_BCAST
| WAKE_MAGIC
|
1355 WAKE_MCAST
| WAKE_UCAST
;
1356 /* We don't need to go on if WOL is disabled */
1357 if (!cp
->wol_enabled
) return;
1359 options
= cpr8 (Config3
);
1360 if (options
& LinkUp
) wol
->wolopts
|= WAKE_PHY
;
1361 if (options
& MagicPacket
) wol
->wolopts
|= WAKE_MAGIC
;
1363 options
= 0; /* Paranoia setting */
1364 options
= cpr8 (Config5
);
1365 if (options
& UWF
) wol
->wolopts
|= WAKE_UCAST
;
1366 if (options
& BWF
) wol
->wolopts
|= WAKE_BCAST
;
1367 if (options
& MWF
) wol
->wolopts
|= WAKE_MCAST
;
1370 static void cp_get_drvinfo (struct net_device
*dev
, struct ethtool_drvinfo
*info
)
1372 struct cp_private
*cp
= netdev_priv(dev
);
1374 strcpy (info
->driver
, DRV_NAME
);
1375 strcpy (info
->version
, DRV_VERSION
);
1376 strcpy (info
->bus_info
, pci_name(cp
->pdev
));
1379 static int cp_get_regs_len(struct net_device
*dev
)
1381 return CP_REGS_SIZE
;
1384 static int cp_get_sset_count (struct net_device
*dev
, int sset
)
1388 return CP_NUM_STATS
;
1394 static int cp_get_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1396 struct cp_private
*cp
= netdev_priv(dev
);
1398 unsigned long flags
;
1400 spin_lock_irqsave(&cp
->lock
, flags
);
1401 rc
= mii_ethtool_gset(&cp
->mii_if
, cmd
);
1402 spin_unlock_irqrestore(&cp
->lock
, flags
);
1407 static int cp_set_settings(struct net_device
*dev
, struct ethtool_cmd
*cmd
)
1409 struct cp_private
*cp
= netdev_priv(dev
);
1411 unsigned long flags
;
1413 spin_lock_irqsave(&cp
->lock
, flags
);
1414 rc
= mii_ethtool_sset(&cp
->mii_if
, cmd
);
1415 spin_unlock_irqrestore(&cp
->lock
, flags
);
1420 static int cp_nway_reset(struct net_device
*dev
)
1422 struct cp_private
*cp
= netdev_priv(dev
);
1423 return mii_nway_restart(&cp
->mii_if
);
1426 static u32
cp_get_msglevel(struct net_device
*dev
)
1428 struct cp_private
*cp
= netdev_priv(dev
);
1429 return cp
->msg_enable
;
1432 static void cp_set_msglevel(struct net_device
*dev
, u32 value
)
1434 struct cp_private
*cp
= netdev_priv(dev
);
1435 cp
->msg_enable
= value
;
1438 static u32
cp_get_rx_csum(struct net_device
*dev
)
1440 struct cp_private
*cp
= netdev_priv(dev
);
1441 return (cpr16(CpCmd
) & RxChkSum
) ? 1 : 0;
1444 static int cp_set_rx_csum(struct net_device
*dev
, u32 data
)
1446 struct cp_private
*cp
= netdev_priv(dev
);
1447 u16 cmd
= cp
->cpcmd
, newcmd
;
1454 newcmd
&= ~RxChkSum
;
1456 if (newcmd
!= cmd
) {
1457 unsigned long flags
;
1459 spin_lock_irqsave(&cp
->lock
, flags
);
1461 cpw16_f(CpCmd
, newcmd
);
1462 spin_unlock_irqrestore(&cp
->lock
, flags
);
1468 static void cp_get_regs(struct net_device
*dev
, struct ethtool_regs
*regs
,
1471 struct cp_private
*cp
= netdev_priv(dev
);
1472 unsigned long flags
;
1474 if (regs
->len
< CP_REGS_SIZE
)
1475 return /* -EINVAL */;
1477 regs
->version
= CP_REGS_VER
;
1479 spin_lock_irqsave(&cp
->lock
, flags
);
1480 memcpy_fromio(p
, cp
->regs
, CP_REGS_SIZE
);
1481 spin_unlock_irqrestore(&cp
->lock
, flags
);
1484 static void cp_get_wol (struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
1486 struct cp_private
*cp
= netdev_priv(dev
);
1487 unsigned long flags
;
1489 spin_lock_irqsave (&cp
->lock
, flags
);
1490 netdev_get_wol (cp
, wol
);
1491 spin_unlock_irqrestore (&cp
->lock
, flags
);
1494 static int cp_set_wol (struct net_device
*dev
, struct ethtool_wolinfo
*wol
)
1496 struct cp_private
*cp
= netdev_priv(dev
);
1497 unsigned long flags
;
1500 spin_lock_irqsave (&cp
->lock
, flags
);
1501 rc
= netdev_set_wol (cp
, wol
);
1502 spin_unlock_irqrestore (&cp
->lock
, flags
);
1507 static void cp_get_strings (struct net_device
*dev
, u32 stringset
, u8
*buf
)
1509 switch (stringset
) {
1511 memcpy(buf
, ðtool_stats_keys
, sizeof(ethtool_stats_keys
));
1519 static void cp_get_ethtool_stats (struct net_device
*dev
,
1520 struct ethtool_stats
*estats
, u64
*tmp_stats
)
1522 struct cp_private
*cp
= netdev_priv(dev
);
1523 struct cp_dma_stats
*nic_stats
;
1527 nic_stats
= dma_alloc_coherent(&cp
->pdev
->dev
, sizeof(*nic_stats
),
1532 /* begin NIC statistics dump */
1533 cpw32(StatsAddr
+ 4, (u64
)dma
>> 32);
1534 cpw32(StatsAddr
, ((u64
)dma
& DMA_32BIT_MASK
) | DumpStats
);
1537 for (i
= 0; i
< 1000; i
++) {
1538 if ((cpr32(StatsAddr
) & DumpStats
) == 0)
1542 cpw32(StatsAddr
, 0);
1543 cpw32(StatsAddr
+ 4, 0);
1547 tmp_stats
[i
++] = le64_to_cpu(nic_stats
->tx_ok
);
1548 tmp_stats
[i
++] = le64_to_cpu(nic_stats
->rx_ok
);
1549 tmp_stats
[i
++] = le64_to_cpu(nic_stats
->tx_err
);
1550 tmp_stats
[i
++] = le32_to_cpu(nic_stats
->rx_err
);
1551 tmp_stats
[i
++] = le16_to_cpu(nic_stats
->rx_fifo
);
1552 tmp_stats
[i
++] = le16_to_cpu(nic_stats
->frame_align
);
1553 tmp_stats
[i
++] = le32_to_cpu(nic_stats
->tx_ok_1col
);
1554 tmp_stats
[i
++] = le32_to_cpu(nic_stats
->tx_ok_mcol
);
1555 tmp_stats
[i
++] = le64_to_cpu(nic_stats
->rx_ok_phys
);
1556 tmp_stats
[i
++] = le64_to_cpu(nic_stats
->rx_ok_bcast
);
1557 tmp_stats
[i
++] = le32_to_cpu(nic_stats
->rx_ok_mcast
);
1558 tmp_stats
[i
++] = le16_to_cpu(nic_stats
->tx_abort
);
1559 tmp_stats
[i
++] = le16_to_cpu(nic_stats
->tx_underrun
);
1560 tmp_stats
[i
++] = cp
->cp_stats
.rx_frags
;
1561 BUG_ON(i
!= CP_NUM_STATS
);
1563 dma_free_coherent(&cp
->pdev
->dev
, sizeof(*nic_stats
), nic_stats
, dma
);
1566 static const struct ethtool_ops cp_ethtool_ops
= {
1567 .get_drvinfo
= cp_get_drvinfo
,
1568 .get_regs_len
= cp_get_regs_len
,
1569 .get_sset_count
= cp_get_sset_count
,
1570 .get_settings
= cp_get_settings
,
1571 .set_settings
= cp_set_settings
,
1572 .nway_reset
= cp_nway_reset
,
1573 .get_link
= ethtool_op_get_link
,
1574 .get_msglevel
= cp_get_msglevel
,
1575 .set_msglevel
= cp_set_msglevel
,
1576 .get_rx_csum
= cp_get_rx_csum
,
1577 .set_rx_csum
= cp_set_rx_csum
,
1578 .set_tx_csum
= ethtool_op_set_tx_csum
, /* local! */
1579 .set_sg
= ethtool_op_set_sg
,
1580 .set_tso
= ethtool_op_set_tso
,
1581 .get_regs
= cp_get_regs
,
1582 .get_wol
= cp_get_wol
,
1583 .set_wol
= cp_set_wol
,
1584 .get_strings
= cp_get_strings
,
1585 .get_ethtool_stats
= cp_get_ethtool_stats
,
1586 .get_eeprom_len
= cp_get_eeprom_len
,
1587 .get_eeprom
= cp_get_eeprom
,
1588 .set_eeprom
= cp_set_eeprom
,
1591 static int cp_ioctl (struct net_device
*dev
, struct ifreq
*rq
, int cmd
)
1593 struct cp_private
*cp
= netdev_priv(dev
);
1595 unsigned long flags
;
1597 if (!netif_running(dev
))
1600 spin_lock_irqsave(&cp
->lock
, flags
);
1601 rc
= generic_mii_ioctl(&cp
->mii_if
, if_mii(rq
), cmd
, NULL
);
1602 spin_unlock_irqrestore(&cp
->lock
, flags
);
1606 /* Serial EEPROM section. */
1608 /* EEPROM_Ctrl bits. */
1609 #define EE_SHIFT_CLK 0x04 /* EEPROM shift clock. */
1610 #define EE_CS 0x08 /* EEPROM chip select. */
1611 #define EE_DATA_WRITE 0x02 /* EEPROM chip data in. */
1612 #define EE_WRITE_0 0x00
1613 #define EE_WRITE_1 0x02
1614 #define EE_DATA_READ 0x01 /* EEPROM chip data out. */
1615 #define EE_ENB (0x80 | EE_CS)
1617 /* Delay between EEPROM clock transitions.
1618 No extra delay is needed with 33Mhz PCI, but 66Mhz may change this.
1621 #define eeprom_delay() readl(ee_addr)
1623 /* The EEPROM commands include the alway-set leading bit. */
1624 #define EE_EXTEND_CMD (4)
1625 #define EE_WRITE_CMD (5)
1626 #define EE_READ_CMD (6)
1627 #define EE_ERASE_CMD (7)
1629 #define EE_EWDS_ADDR (0)
1630 #define EE_WRAL_ADDR (1)
1631 #define EE_ERAL_ADDR (2)
1632 #define EE_EWEN_ADDR (3)
1634 #define CP_EEPROM_MAGIC PCI_DEVICE_ID_REALTEK_8139
1636 static void eeprom_cmd_start(void __iomem
*ee_addr
)
1638 writeb (EE_ENB
& ~EE_CS
, ee_addr
);
1639 writeb (EE_ENB
, ee_addr
);
1643 static void eeprom_cmd(void __iomem
*ee_addr
, int cmd
, int cmd_len
)
1647 /* Shift the command bits out. */
1648 for (i
= cmd_len
- 1; i
>= 0; i
--) {
1649 int dataval
= (cmd
& (1 << i
)) ? EE_DATA_WRITE
: 0;
1650 writeb (EE_ENB
| dataval
, ee_addr
);
1652 writeb (EE_ENB
| dataval
| EE_SHIFT_CLK
, ee_addr
);
1655 writeb (EE_ENB
, ee_addr
);
1659 static void eeprom_cmd_end(void __iomem
*ee_addr
)
1661 writeb (~EE_CS
, ee_addr
);
1665 static void eeprom_extend_cmd(void __iomem
*ee_addr
, int extend_cmd
,
1668 int cmd
= (EE_EXTEND_CMD
<< addr_len
) | (extend_cmd
<< (addr_len
- 2));
1670 eeprom_cmd_start(ee_addr
);
1671 eeprom_cmd(ee_addr
, cmd
, 3 + addr_len
);
1672 eeprom_cmd_end(ee_addr
);
1675 static u16
read_eeprom (void __iomem
*ioaddr
, int location
, int addr_len
)
1679 void __iomem
*ee_addr
= ioaddr
+ Cfg9346
;
1680 int read_cmd
= location
| (EE_READ_CMD
<< addr_len
);
1682 eeprom_cmd_start(ee_addr
);
1683 eeprom_cmd(ee_addr
, read_cmd
, 3 + addr_len
);
1685 for (i
= 16; i
> 0; i
--) {
1686 writeb (EE_ENB
| EE_SHIFT_CLK
, ee_addr
);
1689 (retval
<< 1) | ((readb (ee_addr
) & EE_DATA_READ
) ? 1 :
1691 writeb (EE_ENB
, ee_addr
);
1695 eeprom_cmd_end(ee_addr
);
1700 static void write_eeprom(void __iomem
*ioaddr
, int location
, u16 val
,
1704 void __iomem
*ee_addr
= ioaddr
+ Cfg9346
;
1705 int write_cmd
= location
| (EE_WRITE_CMD
<< addr_len
);
1707 eeprom_extend_cmd(ee_addr
, EE_EWEN_ADDR
, addr_len
);
1709 eeprom_cmd_start(ee_addr
);
1710 eeprom_cmd(ee_addr
, write_cmd
, 3 + addr_len
);
1711 eeprom_cmd(ee_addr
, val
, 16);
1712 eeprom_cmd_end(ee_addr
);
1714 eeprom_cmd_start(ee_addr
);
1715 for (i
= 0; i
< 20000; i
++)
1716 if (readb(ee_addr
) & EE_DATA_READ
)
1718 eeprom_cmd_end(ee_addr
);
1720 eeprom_extend_cmd(ee_addr
, EE_EWDS_ADDR
, addr_len
);
1723 static int cp_get_eeprom_len(struct net_device
*dev
)
1725 struct cp_private
*cp
= netdev_priv(dev
);
1728 spin_lock_irq(&cp
->lock
);
1729 size
= read_eeprom(cp
->regs
, 0, 8) == 0x8129 ? 256 : 128;
1730 spin_unlock_irq(&cp
->lock
);
1735 static int cp_get_eeprom(struct net_device
*dev
,
1736 struct ethtool_eeprom
*eeprom
, u8
*data
)
1738 struct cp_private
*cp
= netdev_priv(dev
);
1739 unsigned int addr_len
;
1741 u32 offset
= eeprom
->offset
>> 1;
1742 u32 len
= eeprom
->len
;
1745 eeprom
->magic
= CP_EEPROM_MAGIC
;
1747 spin_lock_irq(&cp
->lock
);
1749 addr_len
= read_eeprom(cp
->regs
, 0, 8) == 0x8129 ? 8 : 6;
1751 if (eeprom
->offset
& 1) {
1752 val
= read_eeprom(cp
->regs
, offset
, addr_len
);
1753 data
[i
++] = (u8
)(val
>> 8);
1757 while (i
< len
- 1) {
1758 val
= read_eeprom(cp
->regs
, offset
, addr_len
);
1759 data
[i
++] = (u8
)val
;
1760 data
[i
++] = (u8
)(val
>> 8);
1765 val
= read_eeprom(cp
->regs
, offset
, addr_len
);
1769 spin_unlock_irq(&cp
->lock
);
1773 static int cp_set_eeprom(struct net_device
*dev
,
1774 struct ethtool_eeprom
*eeprom
, u8
*data
)
1776 struct cp_private
*cp
= netdev_priv(dev
);
1777 unsigned int addr_len
;
1779 u32 offset
= eeprom
->offset
>> 1;
1780 u32 len
= eeprom
->len
;
1783 if (eeprom
->magic
!= CP_EEPROM_MAGIC
)
1786 spin_lock_irq(&cp
->lock
);
1788 addr_len
= read_eeprom(cp
->regs
, 0, 8) == 0x8129 ? 8 : 6;
1790 if (eeprom
->offset
& 1) {
1791 val
= read_eeprom(cp
->regs
, offset
, addr_len
) & 0xff;
1792 val
|= (u16
)data
[i
++] << 8;
1793 write_eeprom(cp
->regs
, offset
, val
, addr_len
);
1797 while (i
< len
- 1) {
1798 val
= (u16
)data
[i
++];
1799 val
|= (u16
)data
[i
++] << 8;
1800 write_eeprom(cp
->regs
, offset
, val
, addr_len
);
1805 val
= read_eeprom(cp
->regs
, offset
, addr_len
) & 0xff00;
1806 val
|= (u16
)data
[i
];
1807 write_eeprom(cp
->regs
, offset
, val
, addr_len
);
1810 spin_unlock_irq(&cp
->lock
);
1814 /* Put the board into D3cold state and wait for WakeUp signal */
1815 static void cp_set_d3_state (struct cp_private
*cp
)
1817 pci_enable_wake (cp
->pdev
, 0, 1); /* Enable PME# generation */
1818 pci_set_power_state (cp
->pdev
, PCI_D3hot
);
1821 static int cp_init_one (struct pci_dev
*pdev
, const struct pci_device_id
*ent
)
1823 struct net_device
*dev
;
1824 struct cp_private
*cp
;
1827 resource_size_t pciaddr
;
1828 unsigned int addr_len
, i
, pci_using_dac
;
1829 DECLARE_MAC_BUF(mac
);
1832 static int version_printed
;
1833 if (version_printed
++ == 0)
1834 printk("%s", version
);
1837 if (pdev
->vendor
== PCI_VENDOR_ID_REALTEK
&&
1838 pdev
->device
== PCI_DEVICE_ID_REALTEK_8139
&& pdev
->revision
< 0x20) {
1839 dev_info(&pdev
->dev
,
1840 "This (id %04x:%04x rev %02x) is not an 8139C+ compatible chip, use 8139too\n",
1841 pdev
->vendor
, pdev
->device
, pdev
->revision
);
1845 dev
= alloc_etherdev(sizeof(struct cp_private
));
1848 SET_NETDEV_DEV(dev
, &pdev
->dev
);
1850 cp
= netdev_priv(dev
);
1853 cp
->msg_enable
= (debug
< 0 ? CP_DEF_MSG_ENABLE
: debug
);
1854 spin_lock_init (&cp
->lock
);
1855 cp
->mii_if
.dev
= dev
;
1856 cp
->mii_if
.mdio_read
= mdio_read
;
1857 cp
->mii_if
.mdio_write
= mdio_write
;
1858 cp
->mii_if
.phy_id
= CP_INTERNAL_PHY
;
1859 cp
->mii_if
.phy_id_mask
= 0x1f;
1860 cp
->mii_if
.reg_num_mask
= 0x1f;
1861 cp_set_rxbufsize(cp
);
1863 rc
= pci_enable_device(pdev
);
1867 rc
= pci_set_mwi(pdev
);
1869 goto err_out_disable
;
1871 rc
= pci_request_regions(pdev
, DRV_NAME
);
1875 pciaddr
= pci_resource_start(pdev
, 1);
1878 dev_err(&pdev
->dev
, "no MMIO resource\n");
1881 if (pci_resource_len(pdev
, 1) < CP_REGS_SIZE
) {
1883 dev_err(&pdev
->dev
, "MMIO resource (%llx) too small\n",
1884 (unsigned long long)pci_resource_len(pdev
, 1));
1888 /* Configure DMA attributes. */
1889 if ((sizeof(dma_addr_t
) > 4) &&
1890 !pci_set_consistent_dma_mask(pdev
, DMA_64BIT_MASK
) &&
1891 !pci_set_dma_mask(pdev
, DMA_64BIT_MASK
)) {
1896 rc
= pci_set_dma_mask(pdev
, DMA_32BIT_MASK
);
1899 "No usable DMA configuration, aborting.\n");
1902 rc
= pci_set_consistent_dma_mask(pdev
, DMA_32BIT_MASK
);
1905 "No usable consistent DMA configuration, "
1911 cp
->cpcmd
= (pci_using_dac
? PCIDAC
: 0) |
1912 PCIMulRW
| RxChkSum
| CpRxOn
| CpTxOn
;
1914 regs
= ioremap(pciaddr
, CP_REGS_SIZE
);
1917 dev_err(&pdev
->dev
, "Cannot map PCI MMIO (%Lx@%Lx)\n",
1918 (unsigned long long)pci_resource_len(pdev
, 1),
1919 (unsigned long long)pciaddr
);
1922 dev
->base_addr
= (unsigned long) regs
;
1927 /* read MAC address from EEPROM */
1928 addr_len
= read_eeprom (regs
, 0, 8) == 0x8129 ? 8 : 6;
1929 for (i
= 0; i
< 3; i
++)
1930 ((__le16
*) (dev
->dev_addr
))[i
] =
1931 cpu_to_le16(read_eeprom (regs
, i
+ 7, addr_len
));
1932 memcpy(dev
->perm_addr
, dev
->dev_addr
, dev
->addr_len
);
1934 dev
->open
= cp_open
;
1935 dev
->stop
= cp_close
;
1936 dev
->set_multicast_list
= cp_set_rx_mode
;
1937 dev
->hard_start_xmit
= cp_start_xmit
;
1938 dev
->get_stats
= cp_get_stats
;
1939 dev
->do_ioctl
= cp_ioctl
;
1940 #ifdef CONFIG_NET_POLL_CONTROLLER
1941 dev
->poll_controller
= cp_poll_controller
;
1943 netif_napi_add(dev
, &cp
->napi
, cp_rx_poll
, 16);
1945 dev
->change_mtu
= cp_change_mtu
;
1947 dev
->ethtool_ops
= &cp_ethtool_ops
;
1948 dev
->tx_timeout
= cp_tx_timeout
;
1949 dev
->watchdog_timeo
= TX_TIMEOUT
;
1951 #if CP_VLAN_TAG_USED
1952 dev
->features
|= NETIF_F_HW_VLAN_TX
| NETIF_F_HW_VLAN_RX
;
1953 dev
->vlan_rx_register
= cp_vlan_rx_register
;
1957 dev
->features
|= NETIF_F_HIGHDMA
;
1959 #if 0 /* disabled by default until verified */
1960 dev
->features
|= NETIF_F_TSO
;
1963 dev
->irq
= pdev
->irq
;
1965 rc
= register_netdev(dev
);
1969 printk (KERN_INFO
"%s: RTL-8139C+ at 0x%lx, "
1973 print_mac(mac
, dev
->dev_addr
),
1976 pci_set_drvdata(pdev
, dev
);
1978 /* enable busmastering and memory-write-invalidate */
1979 pci_set_master(pdev
);
1981 if (cp
->wol_enabled
)
1982 cp_set_d3_state (cp
);
1989 pci_release_regions(pdev
);
1991 pci_clear_mwi(pdev
);
1993 pci_disable_device(pdev
);
1999 static void cp_remove_one (struct pci_dev
*pdev
)
2001 struct net_device
*dev
= pci_get_drvdata(pdev
);
2002 struct cp_private
*cp
= netdev_priv(dev
);
2004 unregister_netdev(dev
);
2006 if (cp
->wol_enabled
)
2007 pci_set_power_state (pdev
, PCI_D0
);
2008 pci_release_regions(pdev
);
2009 pci_clear_mwi(pdev
);
2010 pci_disable_device(pdev
);
2011 pci_set_drvdata(pdev
, NULL
);
2016 static int cp_suspend (struct pci_dev
*pdev
, pm_message_t state
)
2018 struct net_device
*dev
= pci_get_drvdata(pdev
);
2019 struct cp_private
*cp
= netdev_priv(dev
);
2020 unsigned long flags
;
2022 if (!netif_running(dev
))
2025 netif_device_detach (dev
);
2026 netif_stop_queue (dev
);
2028 spin_lock_irqsave (&cp
->lock
, flags
);
2030 /* Disable Rx and Tx */
2031 cpw16 (IntrMask
, 0);
2032 cpw8 (Cmd
, cpr8 (Cmd
) & (~RxOn
| ~TxOn
));
2034 spin_unlock_irqrestore (&cp
->lock
, flags
);
2036 pci_save_state(pdev
);
2037 pci_enable_wake(pdev
, pci_choose_state(pdev
, state
), cp
->wol_enabled
);
2038 pci_set_power_state(pdev
, pci_choose_state(pdev
, state
));
2043 static int cp_resume (struct pci_dev
*pdev
)
2045 struct net_device
*dev
= pci_get_drvdata (pdev
);
2046 struct cp_private
*cp
= netdev_priv(dev
);
2047 unsigned long flags
;
2049 if (!netif_running(dev
))
2052 netif_device_attach (dev
);
2054 pci_set_power_state(pdev
, PCI_D0
);
2055 pci_restore_state(pdev
);
2056 pci_enable_wake(pdev
, PCI_D0
, 0);
2058 /* FIXME: sh*t may happen if the Rx ring buffer is depleted */
2059 cp_init_rings_index (cp
);
2061 netif_start_queue (dev
);
2063 spin_lock_irqsave (&cp
->lock
, flags
);
2065 mii_check_media(&cp
->mii_if
, netif_msg_link(cp
), false);
2067 spin_unlock_irqrestore (&cp
->lock
, flags
);
2071 #endif /* CONFIG_PM */
2073 static struct pci_driver cp_driver
= {
2075 .id_table
= cp_pci_tbl
,
2076 .probe
= cp_init_one
,
2077 .remove
= cp_remove_one
,
2079 .resume
= cp_resume
,
2080 .suspend
= cp_suspend
,
2084 static int __init
cp_init (void)
2087 printk("%s", version
);
2089 return pci_register_driver(&cp_driver
);
2092 static void __exit
cp_exit (void)
2094 pci_unregister_driver (&cp_driver
);
2097 module_init(cp_init
);
2098 module_exit(cp_exit
);