m68knommu: convert to asm-generic/hardirq.h
[linux-2.6/linux-2.6-openrd.git] / drivers / ata / libata-core.c
blob072ba5ea138f8363a4b108091d0295353792e09a
1 /*
2 * libata-core.c - helper library for ATA
4 * Maintained by: Jeff Garzik <jgarzik@pobox.com>
5 * Please ALWAYS copy linux-ide@vger.kernel.org
6 * on emails.
8 * Copyright 2003-2004 Red Hat, Inc. All rights reserved.
9 * Copyright 2003-2004 Jeff Garzik
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License as published by
14 * the Free Software Foundation; either version 2, or (at your option)
15 * any later version.
17 * This program is distributed in the hope that it will be useful,
18 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 * GNU General Public License for more details.
22 * You should have received a copy of the GNU General Public License
23 * along with this program; see the file COPYING. If not, write to
24 * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
27 * libata documentation is available via 'make {ps|pdf}docs',
28 * as Documentation/DocBook/libata.*
30 * Hardware documentation available from http://www.t13.org/ and
31 * http://www.sata-io.org/
33 * Standards documents from:
34 * http://www.t13.org (ATA standards, PCI DMA IDE spec)
35 * http://www.t10.org (SCSI MMC - for ATAPI MMC)
36 * http://www.sata-io.org (SATA)
37 * http://www.compactflash.org (CF)
38 * http://www.qic.org (QIC157 - Tape and DSC)
39 * http://www.ce-ata.org (CE-ATA: not supported)
43 #include <linux/kernel.h>
44 #include <linux/module.h>
45 #include <linux/pci.h>
46 #include <linux/init.h>
47 #include <linux/list.h>
48 #include <linux/mm.h>
49 #include <linux/spinlock.h>
50 #include <linux/blkdev.h>
51 #include <linux/delay.h>
52 #include <linux/timer.h>
53 #include <linux/interrupt.h>
54 #include <linux/completion.h>
55 #include <linux/suspend.h>
56 #include <linux/workqueue.h>
57 #include <linux/scatterlist.h>
58 #include <linux/io.h>
59 #include <linux/async.h>
60 #include <linux/log2.h>
61 #include <scsi/scsi.h>
62 #include <scsi/scsi_cmnd.h>
63 #include <scsi/scsi_host.h>
64 #include <linux/libata.h>
65 #include <asm/byteorder.h>
66 #include <linux/cdrom.h>
68 #include "libata.h"
71 /* debounce timing parameters in msecs { interval, duration, timeout } */
72 const unsigned long sata_deb_timing_normal[] = { 5, 100, 2000 };
73 const unsigned long sata_deb_timing_hotplug[] = { 25, 500, 2000 };
74 const unsigned long sata_deb_timing_long[] = { 100, 2000, 5000 };
76 const struct ata_port_operations ata_base_port_ops = {
77 .prereset = ata_std_prereset,
78 .postreset = ata_std_postreset,
79 .error_handler = ata_std_error_handler,
82 const struct ata_port_operations sata_port_ops = {
83 .inherits = &ata_base_port_ops,
85 .qc_defer = ata_std_qc_defer,
86 .hardreset = sata_std_hardreset,
89 static unsigned int ata_dev_init_params(struct ata_device *dev,
90 u16 heads, u16 sectors);
91 static unsigned int ata_dev_set_xfermode(struct ata_device *dev);
92 static unsigned int ata_dev_set_feature(struct ata_device *dev,
93 u8 enable, u8 feature);
94 static void ata_dev_xfermask(struct ata_device *dev);
95 static unsigned long ata_dev_blacklisted(const struct ata_device *dev);
97 unsigned int ata_print_id = 1;
98 static struct workqueue_struct *ata_wq;
100 struct workqueue_struct *ata_aux_wq;
102 struct ata_force_param {
103 const char *name;
104 unsigned int cbl;
105 int spd_limit;
106 unsigned long xfer_mask;
107 unsigned int horkage_on;
108 unsigned int horkage_off;
109 unsigned int lflags;
112 struct ata_force_ent {
113 int port;
114 int device;
115 struct ata_force_param param;
118 static struct ata_force_ent *ata_force_tbl;
119 static int ata_force_tbl_size;
121 static char ata_force_param_buf[PAGE_SIZE] __initdata;
122 /* param_buf is thrown away after initialization, disallow read */
123 module_param_string(force, ata_force_param_buf, sizeof(ata_force_param_buf), 0);
124 MODULE_PARM_DESC(force, "Force ATA configurations including cable type, link speed and transfer mode (see Documentation/kernel-parameters.txt for details)");
126 static int atapi_enabled = 1;
127 module_param(atapi_enabled, int, 0444);
128 MODULE_PARM_DESC(atapi_enabled, "Enable discovery of ATAPI devices (0=off, 1=on [default])");
130 static int atapi_dmadir = 0;
131 module_param(atapi_dmadir, int, 0444);
132 MODULE_PARM_DESC(atapi_dmadir, "Enable ATAPI DMADIR bridge support (0=off [default], 1=on)");
134 int atapi_passthru16 = 1;
135 module_param(atapi_passthru16, int, 0444);
136 MODULE_PARM_DESC(atapi_passthru16, "Enable ATA_16 passthru for ATAPI devices (0=off, 1=on [default])");
138 int libata_fua = 0;
139 module_param_named(fua, libata_fua, int, 0444);
140 MODULE_PARM_DESC(fua, "FUA support (0=off [default], 1=on)");
142 static int ata_ignore_hpa;
143 module_param_named(ignore_hpa, ata_ignore_hpa, int, 0644);
144 MODULE_PARM_DESC(ignore_hpa, "Ignore HPA limit (0=keep BIOS limits, 1=ignore limits, using full disk)");
146 static int libata_dma_mask = ATA_DMA_MASK_ATA|ATA_DMA_MASK_ATAPI|ATA_DMA_MASK_CFA;
147 module_param_named(dma, libata_dma_mask, int, 0444);
148 MODULE_PARM_DESC(dma, "DMA enable/disable (0x1==ATA, 0x2==ATAPI, 0x4==CF)");
150 static int ata_probe_timeout;
151 module_param(ata_probe_timeout, int, 0444);
152 MODULE_PARM_DESC(ata_probe_timeout, "Set ATA probing timeout (seconds)");
154 int libata_noacpi = 0;
155 module_param_named(noacpi, libata_noacpi, int, 0444);
156 MODULE_PARM_DESC(noacpi, "Disable the use of ACPI in probe/suspend/resume (0=off [default], 1=on)");
158 int libata_allow_tpm = 0;
159 module_param_named(allow_tpm, libata_allow_tpm, int, 0444);
160 MODULE_PARM_DESC(allow_tpm, "Permit the use of TPM commands (0=off [default], 1=on)");
162 MODULE_AUTHOR("Jeff Garzik");
163 MODULE_DESCRIPTION("Library module for ATA devices");
164 MODULE_LICENSE("GPL");
165 MODULE_VERSION(DRV_VERSION);
168 static bool ata_sstatus_online(u32 sstatus)
170 return (sstatus & 0xf) == 0x3;
174 * ata_link_next - link iteration helper
175 * @link: the previous link, NULL to start
176 * @ap: ATA port containing links to iterate
177 * @mode: iteration mode, one of ATA_LITER_*
179 * LOCKING:
180 * Host lock or EH context.
182 * RETURNS:
183 * Pointer to the next link.
185 struct ata_link *ata_link_next(struct ata_link *link, struct ata_port *ap,
186 enum ata_link_iter_mode mode)
188 BUG_ON(mode != ATA_LITER_EDGE &&
189 mode != ATA_LITER_PMP_FIRST && mode != ATA_LITER_HOST_FIRST);
191 /* NULL link indicates start of iteration */
192 if (!link)
193 switch (mode) {
194 case ATA_LITER_EDGE:
195 case ATA_LITER_PMP_FIRST:
196 if (sata_pmp_attached(ap))
197 return ap->pmp_link;
198 /* fall through */
199 case ATA_LITER_HOST_FIRST:
200 return &ap->link;
203 /* we just iterated over the host link, what's next? */
204 if (link == &ap->link)
205 switch (mode) {
206 case ATA_LITER_HOST_FIRST:
207 if (sata_pmp_attached(ap))
208 return ap->pmp_link;
209 /* fall through */
210 case ATA_LITER_PMP_FIRST:
211 if (unlikely(ap->slave_link))
212 return ap->slave_link;
213 /* fall through */
214 case ATA_LITER_EDGE:
215 return NULL;
218 /* slave_link excludes PMP */
219 if (unlikely(link == ap->slave_link))
220 return NULL;
222 /* we were over a PMP link */
223 if (++link < ap->pmp_link + ap->nr_pmp_links)
224 return link;
226 if (mode == ATA_LITER_PMP_FIRST)
227 return &ap->link;
229 return NULL;
233 * ata_dev_next - device iteration helper
234 * @dev: the previous device, NULL to start
235 * @link: ATA link containing devices to iterate
236 * @mode: iteration mode, one of ATA_DITER_*
238 * LOCKING:
239 * Host lock or EH context.
241 * RETURNS:
242 * Pointer to the next device.
244 struct ata_device *ata_dev_next(struct ata_device *dev, struct ata_link *link,
245 enum ata_dev_iter_mode mode)
247 BUG_ON(mode != ATA_DITER_ENABLED && mode != ATA_DITER_ENABLED_REVERSE &&
248 mode != ATA_DITER_ALL && mode != ATA_DITER_ALL_REVERSE);
250 /* NULL dev indicates start of iteration */
251 if (!dev)
252 switch (mode) {
253 case ATA_DITER_ENABLED:
254 case ATA_DITER_ALL:
255 dev = link->device;
256 goto check;
257 case ATA_DITER_ENABLED_REVERSE:
258 case ATA_DITER_ALL_REVERSE:
259 dev = link->device + ata_link_max_devices(link) - 1;
260 goto check;
263 next:
264 /* move to the next one */
265 switch (mode) {
266 case ATA_DITER_ENABLED:
267 case ATA_DITER_ALL:
268 if (++dev < link->device + ata_link_max_devices(link))
269 goto check;
270 return NULL;
271 case ATA_DITER_ENABLED_REVERSE:
272 case ATA_DITER_ALL_REVERSE:
273 if (--dev >= link->device)
274 goto check;
275 return NULL;
278 check:
279 if ((mode == ATA_DITER_ENABLED || mode == ATA_DITER_ENABLED_REVERSE) &&
280 !ata_dev_enabled(dev))
281 goto next;
282 return dev;
286 * ata_dev_phys_link - find physical link for a device
287 * @dev: ATA device to look up physical link for
289 * Look up physical link which @dev is attached to. Note that
290 * this is different from @dev->link only when @dev is on slave
291 * link. For all other cases, it's the same as @dev->link.
293 * LOCKING:
294 * Don't care.
296 * RETURNS:
297 * Pointer to the found physical link.
299 struct ata_link *ata_dev_phys_link(struct ata_device *dev)
301 struct ata_port *ap = dev->link->ap;
303 if (!ap->slave_link)
304 return dev->link;
305 if (!dev->devno)
306 return &ap->link;
307 return ap->slave_link;
311 * ata_force_cbl - force cable type according to libata.force
312 * @ap: ATA port of interest
314 * Force cable type according to libata.force and whine about it.
315 * The last entry which has matching port number is used, so it
316 * can be specified as part of device force parameters. For
317 * example, both "a:40c,1.00:udma4" and "1.00:40c,udma4" have the
318 * same effect.
320 * LOCKING:
321 * EH context.
323 void ata_force_cbl(struct ata_port *ap)
325 int i;
327 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
328 const struct ata_force_ent *fe = &ata_force_tbl[i];
330 if (fe->port != -1 && fe->port != ap->print_id)
331 continue;
333 if (fe->param.cbl == ATA_CBL_NONE)
334 continue;
336 ap->cbl = fe->param.cbl;
337 ata_port_printk(ap, KERN_NOTICE,
338 "FORCE: cable set to %s\n", fe->param.name);
339 return;
344 * ata_force_link_limits - force link limits according to libata.force
345 * @link: ATA link of interest
347 * Force link flags and SATA spd limit according to libata.force
348 * and whine about it. When only the port part is specified
349 * (e.g. 1:), the limit applies to all links connected to both
350 * the host link and all fan-out ports connected via PMP. If the
351 * device part is specified as 0 (e.g. 1.00:), it specifies the
352 * first fan-out link not the host link. Device number 15 always
353 * points to the host link whether PMP is attached or not. If the
354 * controller has slave link, device number 16 points to it.
356 * LOCKING:
357 * EH context.
359 static void ata_force_link_limits(struct ata_link *link)
361 bool did_spd = false;
362 int linkno = link->pmp;
363 int i;
365 if (ata_is_host_link(link))
366 linkno += 15;
368 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
369 const struct ata_force_ent *fe = &ata_force_tbl[i];
371 if (fe->port != -1 && fe->port != link->ap->print_id)
372 continue;
374 if (fe->device != -1 && fe->device != linkno)
375 continue;
377 /* only honor the first spd limit */
378 if (!did_spd && fe->param.spd_limit) {
379 link->hw_sata_spd_limit = (1 << fe->param.spd_limit) - 1;
380 ata_link_printk(link, KERN_NOTICE,
381 "FORCE: PHY spd limit set to %s\n",
382 fe->param.name);
383 did_spd = true;
386 /* let lflags stack */
387 if (fe->param.lflags) {
388 link->flags |= fe->param.lflags;
389 ata_link_printk(link, KERN_NOTICE,
390 "FORCE: link flag 0x%x forced -> 0x%x\n",
391 fe->param.lflags, link->flags);
397 * ata_force_xfermask - force xfermask according to libata.force
398 * @dev: ATA device of interest
400 * Force xfer_mask according to libata.force and whine about it.
401 * For consistency with link selection, device number 15 selects
402 * the first device connected to the host link.
404 * LOCKING:
405 * EH context.
407 static void ata_force_xfermask(struct ata_device *dev)
409 int devno = dev->link->pmp + dev->devno;
410 int alt_devno = devno;
411 int i;
413 /* allow n.15/16 for devices attached to host port */
414 if (ata_is_host_link(dev->link))
415 alt_devno += 15;
417 for (i = ata_force_tbl_size - 1; i >= 0; i--) {
418 const struct ata_force_ent *fe = &ata_force_tbl[i];
419 unsigned long pio_mask, mwdma_mask, udma_mask;
421 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
422 continue;
424 if (fe->device != -1 && fe->device != devno &&
425 fe->device != alt_devno)
426 continue;
428 if (!fe->param.xfer_mask)
429 continue;
431 ata_unpack_xfermask(fe->param.xfer_mask,
432 &pio_mask, &mwdma_mask, &udma_mask);
433 if (udma_mask)
434 dev->udma_mask = udma_mask;
435 else if (mwdma_mask) {
436 dev->udma_mask = 0;
437 dev->mwdma_mask = mwdma_mask;
438 } else {
439 dev->udma_mask = 0;
440 dev->mwdma_mask = 0;
441 dev->pio_mask = pio_mask;
444 ata_dev_printk(dev, KERN_NOTICE,
445 "FORCE: xfer_mask set to %s\n", fe->param.name);
446 return;
451 * ata_force_horkage - force horkage according to libata.force
452 * @dev: ATA device of interest
454 * Force horkage according to libata.force and whine about it.
455 * For consistency with link selection, device number 15 selects
456 * the first device connected to the host link.
458 * LOCKING:
459 * EH context.
461 static void ata_force_horkage(struct ata_device *dev)
463 int devno = dev->link->pmp + dev->devno;
464 int alt_devno = devno;
465 int i;
467 /* allow n.15/16 for devices attached to host port */
468 if (ata_is_host_link(dev->link))
469 alt_devno += 15;
471 for (i = 0; i < ata_force_tbl_size; i++) {
472 const struct ata_force_ent *fe = &ata_force_tbl[i];
474 if (fe->port != -1 && fe->port != dev->link->ap->print_id)
475 continue;
477 if (fe->device != -1 && fe->device != devno &&
478 fe->device != alt_devno)
479 continue;
481 if (!(~dev->horkage & fe->param.horkage_on) &&
482 !(dev->horkage & fe->param.horkage_off))
483 continue;
485 dev->horkage |= fe->param.horkage_on;
486 dev->horkage &= ~fe->param.horkage_off;
488 ata_dev_printk(dev, KERN_NOTICE,
489 "FORCE: horkage modified (%s)\n", fe->param.name);
494 * atapi_cmd_type - Determine ATAPI command type from SCSI opcode
495 * @opcode: SCSI opcode
497 * Determine ATAPI command type from @opcode.
499 * LOCKING:
500 * None.
502 * RETURNS:
503 * ATAPI_{READ|WRITE|READ_CD|PASS_THRU|MISC}
505 int atapi_cmd_type(u8 opcode)
507 switch (opcode) {
508 case GPCMD_READ_10:
509 case GPCMD_READ_12:
510 return ATAPI_READ;
512 case GPCMD_WRITE_10:
513 case GPCMD_WRITE_12:
514 case GPCMD_WRITE_AND_VERIFY_10:
515 return ATAPI_WRITE;
517 case GPCMD_READ_CD:
518 case GPCMD_READ_CD_MSF:
519 return ATAPI_READ_CD;
521 case ATA_16:
522 case ATA_12:
523 if (atapi_passthru16)
524 return ATAPI_PASS_THRU;
525 /* fall thru */
526 default:
527 return ATAPI_MISC;
532 * ata_tf_to_fis - Convert ATA taskfile to SATA FIS structure
533 * @tf: Taskfile to convert
534 * @pmp: Port multiplier port
535 * @is_cmd: This FIS is for command
536 * @fis: Buffer into which data will output
538 * Converts a standard ATA taskfile to a Serial ATA
539 * FIS structure (Register - Host to Device).
541 * LOCKING:
542 * Inherited from caller.
544 void ata_tf_to_fis(const struct ata_taskfile *tf, u8 pmp, int is_cmd, u8 *fis)
546 fis[0] = 0x27; /* Register - Host to Device FIS */
547 fis[1] = pmp & 0xf; /* Port multiplier number*/
548 if (is_cmd)
549 fis[1] |= (1 << 7); /* bit 7 indicates Command FIS */
551 fis[2] = tf->command;
552 fis[3] = tf->feature;
554 fis[4] = tf->lbal;
555 fis[5] = tf->lbam;
556 fis[6] = tf->lbah;
557 fis[7] = tf->device;
559 fis[8] = tf->hob_lbal;
560 fis[9] = tf->hob_lbam;
561 fis[10] = tf->hob_lbah;
562 fis[11] = tf->hob_feature;
564 fis[12] = tf->nsect;
565 fis[13] = tf->hob_nsect;
566 fis[14] = 0;
567 fis[15] = tf->ctl;
569 fis[16] = 0;
570 fis[17] = 0;
571 fis[18] = 0;
572 fis[19] = 0;
576 * ata_tf_from_fis - Convert SATA FIS to ATA taskfile
577 * @fis: Buffer from which data will be input
578 * @tf: Taskfile to output
580 * Converts a serial ATA FIS structure to a standard ATA taskfile.
582 * LOCKING:
583 * Inherited from caller.
586 void ata_tf_from_fis(const u8 *fis, struct ata_taskfile *tf)
588 tf->command = fis[2]; /* status */
589 tf->feature = fis[3]; /* error */
591 tf->lbal = fis[4];
592 tf->lbam = fis[5];
593 tf->lbah = fis[6];
594 tf->device = fis[7];
596 tf->hob_lbal = fis[8];
597 tf->hob_lbam = fis[9];
598 tf->hob_lbah = fis[10];
600 tf->nsect = fis[12];
601 tf->hob_nsect = fis[13];
604 static const u8 ata_rw_cmds[] = {
605 /* pio multi */
606 ATA_CMD_READ_MULTI,
607 ATA_CMD_WRITE_MULTI,
608 ATA_CMD_READ_MULTI_EXT,
609 ATA_CMD_WRITE_MULTI_EXT,
613 ATA_CMD_WRITE_MULTI_FUA_EXT,
614 /* pio */
615 ATA_CMD_PIO_READ,
616 ATA_CMD_PIO_WRITE,
617 ATA_CMD_PIO_READ_EXT,
618 ATA_CMD_PIO_WRITE_EXT,
623 /* dma */
624 ATA_CMD_READ,
625 ATA_CMD_WRITE,
626 ATA_CMD_READ_EXT,
627 ATA_CMD_WRITE_EXT,
631 ATA_CMD_WRITE_FUA_EXT
635 * ata_rwcmd_protocol - set taskfile r/w commands and protocol
636 * @tf: command to examine and configure
637 * @dev: device tf belongs to
639 * Examine the device configuration and tf->flags to calculate
640 * the proper read/write commands and protocol to use.
642 * LOCKING:
643 * caller.
645 static int ata_rwcmd_protocol(struct ata_taskfile *tf, struct ata_device *dev)
647 u8 cmd;
649 int index, fua, lba48, write;
651 fua = (tf->flags & ATA_TFLAG_FUA) ? 4 : 0;
652 lba48 = (tf->flags & ATA_TFLAG_LBA48) ? 2 : 0;
653 write = (tf->flags & ATA_TFLAG_WRITE) ? 1 : 0;
655 if (dev->flags & ATA_DFLAG_PIO) {
656 tf->protocol = ATA_PROT_PIO;
657 index = dev->multi_count ? 0 : 8;
658 } else if (lba48 && (dev->link->ap->flags & ATA_FLAG_PIO_LBA48)) {
659 /* Unable to use DMA due to host limitation */
660 tf->protocol = ATA_PROT_PIO;
661 index = dev->multi_count ? 0 : 8;
662 } else {
663 tf->protocol = ATA_PROT_DMA;
664 index = 16;
667 cmd = ata_rw_cmds[index + fua + lba48 + write];
668 if (cmd) {
669 tf->command = cmd;
670 return 0;
672 return -1;
676 * ata_tf_read_block - Read block address from ATA taskfile
677 * @tf: ATA taskfile of interest
678 * @dev: ATA device @tf belongs to
680 * LOCKING:
681 * None.
683 * Read block address from @tf. This function can handle all
684 * three address formats - LBA, LBA48 and CHS. tf->protocol and
685 * flags select the address format to use.
687 * RETURNS:
688 * Block address read from @tf.
690 u64 ata_tf_read_block(struct ata_taskfile *tf, struct ata_device *dev)
692 u64 block = 0;
694 if (tf->flags & ATA_TFLAG_LBA) {
695 if (tf->flags & ATA_TFLAG_LBA48) {
696 block |= (u64)tf->hob_lbah << 40;
697 block |= (u64)tf->hob_lbam << 32;
698 block |= (u64)tf->hob_lbal << 24;
699 } else
700 block |= (tf->device & 0xf) << 24;
702 block |= tf->lbah << 16;
703 block |= tf->lbam << 8;
704 block |= tf->lbal;
705 } else {
706 u32 cyl, head, sect;
708 cyl = tf->lbam | (tf->lbah << 8);
709 head = tf->device & 0xf;
710 sect = tf->lbal;
712 block = (cyl * dev->heads + head) * dev->sectors + sect;
715 return block;
719 * ata_build_rw_tf - Build ATA taskfile for given read/write request
720 * @tf: Target ATA taskfile
721 * @dev: ATA device @tf belongs to
722 * @block: Block address
723 * @n_block: Number of blocks
724 * @tf_flags: RW/FUA etc...
725 * @tag: tag
727 * LOCKING:
728 * None.
730 * Build ATA taskfile @tf for read/write request described by
731 * @block, @n_block, @tf_flags and @tag on @dev.
733 * RETURNS:
735 * 0 on success, -ERANGE if the request is too large for @dev,
736 * -EINVAL if the request is invalid.
738 int ata_build_rw_tf(struct ata_taskfile *tf, struct ata_device *dev,
739 u64 block, u32 n_block, unsigned int tf_flags,
740 unsigned int tag)
742 tf->flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
743 tf->flags |= tf_flags;
745 if (ata_ncq_enabled(dev) && likely(tag != ATA_TAG_INTERNAL)) {
746 /* yay, NCQ */
747 if (!lba_48_ok(block, n_block))
748 return -ERANGE;
750 tf->protocol = ATA_PROT_NCQ;
751 tf->flags |= ATA_TFLAG_LBA | ATA_TFLAG_LBA48;
753 if (tf->flags & ATA_TFLAG_WRITE)
754 tf->command = ATA_CMD_FPDMA_WRITE;
755 else
756 tf->command = ATA_CMD_FPDMA_READ;
758 tf->nsect = tag << 3;
759 tf->hob_feature = (n_block >> 8) & 0xff;
760 tf->feature = n_block & 0xff;
762 tf->hob_lbah = (block >> 40) & 0xff;
763 tf->hob_lbam = (block >> 32) & 0xff;
764 tf->hob_lbal = (block >> 24) & 0xff;
765 tf->lbah = (block >> 16) & 0xff;
766 tf->lbam = (block >> 8) & 0xff;
767 tf->lbal = block & 0xff;
769 tf->device = 1 << 6;
770 if (tf->flags & ATA_TFLAG_FUA)
771 tf->device |= 1 << 7;
772 } else if (dev->flags & ATA_DFLAG_LBA) {
773 tf->flags |= ATA_TFLAG_LBA;
775 if (lba_28_ok(block, n_block)) {
776 /* use LBA28 */
777 tf->device |= (block >> 24) & 0xf;
778 } else if (lba_48_ok(block, n_block)) {
779 if (!(dev->flags & ATA_DFLAG_LBA48))
780 return -ERANGE;
782 /* use LBA48 */
783 tf->flags |= ATA_TFLAG_LBA48;
785 tf->hob_nsect = (n_block >> 8) & 0xff;
787 tf->hob_lbah = (block >> 40) & 0xff;
788 tf->hob_lbam = (block >> 32) & 0xff;
789 tf->hob_lbal = (block >> 24) & 0xff;
790 } else
791 /* request too large even for LBA48 */
792 return -ERANGE;
794 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
795 return -EINVAL;
797 tf->nsect = n_block & 0xff;
799 tf->lbah = (block >> 16) & 0xff;
800 tf->lbam = (block >> 8) & 0xff;
801 tf->lbal = block & 0xff;
803 tf->device |= ATA_LBA;
804 } else {
805 /* CHS */
806 u32 sect, head, cyl, track;
808 /* The request -may- be too large for CHS addressing. */
809 if (!lba_28_ok(block, n_block))
810 return -ERANGE;
812 if (unlikely(ata_rwcmd_protocol(tf, dev) < 0))
813 return -EINVAL;
815 /* Convert LBA to CHS */
816 track = (u32)block / dev->sectors;
817 cyl = track / dev->heads;
818 head = track % dev->heads;
819 sect = (u32)block % dev->sectors + 1;
821 DPRINTK("block %u track %u cyl %u head %u sect %u\n",
822 (u32)block, track, cyl, head, sect);
824 /* Check whether the converted CHS can fit.
825 Cylinder: 0-65535
826 Head: 0-15
827 Sector: 1-255*/
828 if ((cyl >> 16) || (head >> 4) || (sect >> 8) || (!sect))
829 return -ERANGE;
831 tf->nsect = n_block & 0xff; /* Sector count 0 means 256 sectors */
832 tf->lbal = sect;
833 tf->lbam = cyl;
834 tf->lbah = cyl >> 8;
835 tf->device |= head;
838 return 0;
842 * ata_pack_xfermask - Pack pio, mwdma and udma masks into xfer_mask
843 * @pio_mask: pio_mask
844 * @mwdma_mask: mwdma_mask
845 * @udma_mask: udma_mask
847 * Pack @pio_mask, @mwdma_mask and @udma_mask into a single
848 * unsigned int xfer_mask.
850 * LOCKING:
851 * None.
853 * RETURNS:
854 * Packed xfer_mask.
856 unsigned long ata_pack_xfermask(unsigned long pio_mask,
857 unsigned long mwdma_mask,
858 unsigned long udma_mask)
860 return ((pio_mask << ATA_SHIFT_PIO) & ATA_MASK_PIO) |
861 ((mwdma_mask << ATA_SHIFT_MWDMA) & ATA_MASK_MWDMA) |
862 ((udma_mask << ATA_SHIFT_UDMA) & ATA_MASK_UDMA);
866 * ata_unpack_xfermask - Unpack xfer_mask into pio, mwdma and udma masks
867 * @xfer_mask: xfer_mask to unpack
868 * @pio_mask: resulting pio_mask
869 * @mwdma_mask: resulting mwdma_mask
870 * @udma_mask: resulting udma_mask
872 * Unpack @xfer_mask into @pio_mask, @mwdma_mask and @udma_mask.
873 * Any NULL distination masks will be ignored.
875 void ata_unpack_xfermask(unsigned long xfer_mask, unsigned long *pio_mask,
876 unsigned long *mwdma_mask, unsigned long *udma_mask)
878 if (pio_mask)
879 *pio_mask = (xfer_mask & ATA_MASK_PIO) >> ATA_SHIFT_PIO;
880 if (mwdma_mask)
881 *mwdma_mask = (xfer_mask & ATA_MASK_MWDMA) >> ATA_SHIFT_MWDMA;
882 if (udma_mask)
883 *udma_mask = (xfer_mask & ATA_MASK_UDMA) >> ATA_SHIFT_UDMA;
886 static const struct ata_xfer_ent {
887 int shift, bits;
888 u8 base;
889 } ata_xfer_tbl[] = {
890 { ATA_SHIFT_PIO, ATA_NR_PIO_MODES, XFER_PIO_0 },
891 { ATA_SHIFT_MWDMA, ATA_NR_MWDMA_MODES, XFER_MW_DMA_0 },
892 { ATA_SHIFT_UDMA, ATA_NR_UDMA_MODES, XFER_UDMA_0 },
893 { -1, },
897 * ata_xfer_mask2mode - Find matching XFER_* for the given xfer_mask
898 * @xfer_mask: xfer_mask of interest
900 * Return matching XFER_* value for @xfer_mask. Only the highest
901 * bit of @xfer_mask is considered.
903 * LOCKING:
904 * None.
906 * RETURNS:
907 * Matching XFER_* value, 0xff if no match found.
909 u8 ata_xfer_mask2mode(unsigned long xfer_mask)
911 int highbit = fls(xfer_mask) - 1;
912 const struct ata_xfer_ent *ent;
914 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
915 if (highbit >= ent->shift && highbit < ent->shift + ent->bits)
916 return ent->base + highbit - ent->shift;
917 return 0xff;
921 * ata_xfer_mode2mask - Find matching xfer_mask for XFER_*
922 * @xfer_mode: XFER_* of interest
924 * Return matching xfer_mask for @xfer_mode.
926 * LOCKING:
927 * None.
929 * RETURNS:
930 * Matching xfer_mask, 0 if no match found.
932 unsigned long ata_xfer_mode2mask(u8 xfer_mode)
934 const struct ata_xfer_ent *ent;
936 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
937 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
938 return ((2 << (ent->shift + xfer_mode - ent->base)) - 1)
939 & ~((1 << ent->shift) - 1);
940 return 0;
944 * ata_xfer_mode2shift - Find matching xfer_shift for XFER_*
945 * @xfer_mode: XFER_* of interest
947 * Return matching xfer_shift for @xfer_mode.
949 * LOCKING:
950 * None.
952 * RETURNS:
953 * Matching xfer_shift, -1 if no match found.
955 int ata_xfer_mode2shift(unsigned long xfer_mode)
957 const struct ata_xfer_ent *ent;
959 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
960 if (xfer_mode >= ent->base && xfer_mode < ent->base + ent->bits)
961 return ent->shift;
962 return -1;
966 * ata_mode_string - convert xfer_mask to string
967 * @xfer_mask: mask of bits supported; only highest bit counts.
969 * Determine string which represents the highest speed
970 * (highest bit in @modemask).
972 * LOCKING:
973 * None.
975 * RETURNS:
976 * Constant C string representing highest speed listed in
977 * @mode_mask, or the constant C string "<n/a>".
979 const char *ata_mode_string(unsigned long xfer_mask)
981 static const char * const xfer_mode_str[] = {
982 "PIO0",
983 "PIO1",
984 "PIO2",
985 "PIO3",
986 "PIO4",
987 "PIO5",
988 "PIO6",
989 "MWDMA0",
990 "MWDMA1",
991 "MWDMA2",
992 "MWDMA3",
993 "MWDMA4",
994 "UDMA/16",
995 "UDMA/25",
996 "UDMA/33",
997 "UDMA/44",
998 "UDMA/66",
999 "UDMA/100",
1000 "UDMA/133",
1001 "UDMA7",
1003 int highbit;
1005 highbit = fls(xfer_mask) - 1;
1006 if (highbit >= 0 && highbit < ARRAY_SIZE(xfer_mode_str))
1007 return xfer_mode_str[highbit];
1008 return "<n/a>";
1011 static const char *sata_spd_string(unsigned int spd)
1013 static const char * const spd_str[] = {
1014 "1.5 Gbps",
1015 "3.0 Gbps",
1016 "6.0 Gbps",
1019 if (spd == 0 || (spd - 1) >= ARRAY_SIZE(spd_str))
1020 return "<unknown>";
1021 return spd_str[spd - 1];
1024 static int ata_dev_set_dipm(struct ata_device *dev, enum link_pm policy)
1026 struct ata_link *link = dev->link;
1027 struct ata_port *ap = link->ap;
1028 u32 scontrol;
1029 unsigned int err_mask;
1030 int rc;
1033 * disallow DIPM for drivers which haven't set
1034 * ATA_FLAG_IPM. This is because when DIPM is enabled,
1035 * phy ready will be set in the interrupt status on
1036 * state changes, which will cause some drivers to
1037 * think there are errors - additionally drivers will
1038 * need to disable hot plug.
1040 if (!(ap->flags & ATA_FLAG_IPM) || !ata_dev_enabled(dev)) {
1041 ap->pm_policy = NOT_AVAILABLE;
1042 return -EINVAL;
1046 * For DIPM, we will only enable it for the
1047 * min_power setting.
1049 * Why? Because Disks are too stupid to know that
1050 * If the host rejects a request to go to SLUMBER
1051 * they should retry at PARTIAL, and instead it
1052 * just would give up. So, for medium_power to
1053 * work at all, we need to only allow HIPM.
1055 rc = sata_scr_read(link, SCR_CONTROL, &scontrol);
1056 if (rc)
1057 return rc;
1059 switch (policy) {
1060 case MIN_POWER:
1061 /* no restrictions on IPM transitions */
1062 scontrol &= ~(0x3 << 8);
1063 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1064 if (rc)
1065 return rc;
1067 /* enable DIPM */
1068 if (dev->flags & ATA_DFLAG_DIPM)
1069 err_mask = ata_dev_set_feature(dev,
1070 SETFEATURES_SATA_ENABLE, SATA_DIPM);
1071 break;
1072 case MEDIUM_POWER:
1073 /* allow IPM to PARTIAL */
1074 scontrol &= ~(0x1 << 8);
1075 scontrol |= (0x2 << 8);
1076 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1077 if (rc)
1078 return rc;
1081 * we don't have to disable DIPM since IPM flags
1082 * disallow transitions to SLUMBER, which effectively
1083 * disable DIPM if it does not support PARTIAL
1085 break;
1086 case NOT_AVAILABLE:
1087 case MAX_PERFORMANCE:
1088 /* disable all IPM transitions */
1089 scontrol |= (0x3 << 8);
1090 rc = sata_scr_write(link, SCR_CONTROL, scontrol);
1091 if (rc)
1092 return rc;
1095 * we don't have to disable DIPM since IPM flags
1096 * disallow all transitions which effectively
1097 * disable DIPM anyway.
1099 break;
1102 /* FIXME: handle SET FEATURES failure */
1103 (void) err_mask;
1105 return 0;
1109 * ata_dev_enable_pm - enable SATA interface power management
1110 * @dev: device to enable power management
1111 * @policy: the link power management policy
1113 * Enable SATA Interface power management. This will enable
1114 * Device Interface Power Management (DIPM) for min_power
1115 * policy, and then call driver specific callbacks for
1116 * enabling Host Initiated Power management.
1118 * Locking: Caller.
1119 * Returns: -EINVAL if IPM is not supported, 0 otherwise.
1121 void ata_dev_enable_pm(struct ata_device *dev, enum link_pm policy)
1123 int rc = 0;
1124 struct ata_port *ap = dev->link->ap;
1126 /* set HIPM first, then DIPM */
1127 if (ap->ops->enable_pm)
1128 rc = ap->ops->enable_pm(ap, policy);
1129 if (rc)
1130 goto enable_pm_out;
1131 rc = ata_dev_set_dipm(dev, policy);
1133 enable_pm_out:
1134 if (rc)
1135 ap->pm_policy = MAX_PERFORMANCE;
1136 else
1137 ap->pm_policy = policy;
1138 return /* rc */; /* hopefully we can use 'rc' eventually */
1141 #ifdef CONFIG_PM
1143 * ata_dev_disable_pm - disable SATA interface power management
1144 * @dev: device to disable power management
1146 * Disable SATA Interface power management. This will disable
1147 * Device Interface Power Management (DIPM) without changing
1148 * policy, call driver specific callbacks for disabling Host
1149 * Initiated Power management.
1151 * Locking: Caller.
1152 * Returns: void
1154 static void ata_dev_disable_pm(struct ata_device *dev)
1156 struct ata_port *ap = dev->link->ap;
1158 ata_dev_set_dipm(dev, MAX_PERFORMANCE);
1159 if (ap->ops->disable_pm)
1160 ap->ops->disable_pm(ap);
1162 #endif /* CONFIG_PM */
1164 void ata_lpm_schedule(struct ata_port *ap, enum link_pm policy)
1166 ap->pm_policy = policy;
1167 ap->link.eh_info.action |= ATA_EH_LPM;
1168 ap->link.eh_info.flags |= ATA_EHI_NO_AUTOPSY;
1169 ata_port_schedule_eh(ap);
1172 #ifdef CONFIG_PM
1173 static void ata_lpm_enable(struct ata_host *host)
1175 struct ata_link *link;
1176 struct ata_port *ap;
1177 struct ata_device *dev;
1178 int i;
1180 for (i = 0; i < host->n_ports; i++) {
1181 ap = host->ports[i];
1182 ata_for_each_link(link, ap, EDGE) {
1183 ata_for_each_dev(dev, link, ALL)
1184 ata_dev_disable_pm(dev);
1189 static void ata_lpm_disable(struct ata_host *host)
1191 int i;
1193 for (i = 0; i < host->n_ports; i++) {
1194 struct ata_port *ap = host->ports[i];
1195 ata_lpm_schedule(ap, ap->pm_policy);
1198 #endif /* CONFIG_PM */
1201 * ata_dev_classify - determine device type based on ATA-spec signature
1202 * @tf: ATA taskfile register set for device to be identified
1204 * Determine from taskfile register contents whether a device is
1205 * ATA or ATAPI, as per "Signature and persistence" section
1206 * of ATA/PI spec (volume 1, sect 5.14).
1208 * LOCKING:
1209 * None.
1211 * RETURNS:
1212 * Device type, %ATA_DEV_ATA, %ATA_DEV_ATAPI, %ATA_DEV_PMP or
1213 * %ATA_DEV_UNKNOWN the event of failure.
1215 unsigned int ata_dev_classify(const struct ata_taskfile *tf)
1217 /* Apple's open source Darwin code hints that some devices only
1218 * put a proper signature into the LBA mid/high registers,
1219 * So, we only check those. It's sufficient for uniqueness.
1221 * ATA/ATAPI-7 (d1532v1r1: Feb. 19, 2003) specified separate
1222 * signatures for ATA and ATAPI devices attached on SerialATA,
1223 * 0x3c/0xc3 and 0x69/0x96 respectively. However, SerialATA
1224 * spec has never mentioned about using different signatures
1225 * for ATA/ATAPI devices. Then, Serial ATA II: Port
1226 * Multiplier specification began to use 0x69/0x96 to identify
1227 * port multpliers and 0x3c/0xc3 to identify SEMB device.
1228 * ATA/ATAPI-7 dropped descriptions about 0x3c/0xc3 and
1229 * 0x69/0x96 shortly and described them as reserved for
1230 * SerialATA.
1232 * We follow the current spec and consider that 0x69/0x96
1233 * identifies a port multiplier and 0x3c/0xc3 a SEMB device.
1234 * Unfortunately, WDC WD1600JS-62MHB5 (a hard drive) reports
1235 * SEMB signature. This is worked around in
1236 * ata_dev_read_id().
1238 if ((tf->lbam == 0) && (tf->lbah == 0)) {
1239 DPRINTK("found ATA device by sig\n");
1240 return ATA_DEV_ATA;
1243 if ((tf->lbam == 0x14) && (tf->lbah == 0xeb)) {
1244 DPRINTK("found ATAPI device by sig\n");
1245 return ATA_DEV_ATAPI;
1248 if ((tf->lbam == 0x69) && (tf->lbah == 0x96)) {
1249 DPRINTK("found PMP device by sig\n");
1250 return ATA_DEV_PMP;
1253 if ((tf->lbam == 0x3c) && (tf->lbah == 0xc3)) {
1254 DPRINTK("found SEMB device by sig (could be ATA device)\n");
1255 return ATA_DEV_SEMB;
1258 DPRINTK("unknown device\n");
1259 return ATA_DEV_UNKNOWN;
1263 * ata_id_string - Convert IDENTIFY DEVICE page into string
1264 * @id: IDENTIFY DEVICE results we will examine
1265 * @s: string into which data is output
1266 * @ofs: offset into identify device page
1267 * @len: length of string to return. must be an even number.
1269 * The strings in the IDENTIFY DEVICE page are broken up into
1270 * 16-bit chunks. Run through the string, and output each
1271 * 8-bit chunk linearly, regardless of platform.
1273 * LOCKING:
1274 * caller.
1277 void ata_id_string(const u16 *id, unsigned char *s,
1278 unsigned int ofs, unsigned int len)
1280 unsigned int c;
1282 BUG_ON(len & 1);
1284 while (len > 0) {
1285 c = id[ofs] >> 8;
1286 *s = c;
1287 s++;
1289 c = id[ofs] & 0xff;
1290 *s = c;
1291 s++;
1293 ofs++;
1294 len -= 2;
1299 * ata_id_c_string - Convert IDENTIFY DEVICE page into C string
1300 * @id: IDENTIFY DEVICE results we will examine
1301 * @s: string into which data is output
1302 * @ofs: offset into identify device page
1303 * @len: length of string to return. must be an odd number.
1305 * This function is identical to ata_id_string except that it
1306 * trims trailing spaces and terminates the resulting string with
1307 * null. @len must be actual maximum length (even number) + 1.
1309 * LOCKING:
1310 * caller.
1312 void ata_id_c_string(const u16 *id, unsigned char *s,
1313 unsigned int ofs, unsigned int len)
1315 unsigned char *p;
1317 ata_id_string(id, s, ofs, len - 1);
1319 p = s + strnlen(s, len - 1);
1320 while (p > s && p[-1] == ' ')
1321 p--;
1322 *p = '\0';
1325 static u64 ata_id_n_sectors(const u16 *id)
1327 if (ata_id_has_lba(id)) {
1328 if (ata_id_has_lba48(id))
1329 return ata_id_u64(id, ATA_ID_LBA_CAPACITY_2);
1330 else
1331 return ata_id_u32(id, ATA_ID_LBA_CAPACITY);
1332 } else {
1333 if (ata_id_current_chs_valid(id))
1334 return id[ATA_ID_CUR_CYLS] * id[ATA_ID_CUR_HEADS] *
1335 id[ATA_ID_CUR_SECTORS];
1336 else
1337 return id[ATA_ID_CYLS] * id[ATA_ID_HEADS] *
1338 id[ATA_ID_SECTORS];
1342 u64 ata_tf_to_lba48(const struct ata_taskfile *tf)
1344 u64 sectors = 0;
1346 sectors |= ((u64)(tf->hob_lbah & 0xff)) << 40;
1347 sectors |= ((u64)(tf->hob_lbam & 0xff)) << 32;
1348 sectors |= ((u64)(tf->hob_lbal & 0xff)) << 24;
1349 sectors |= (tf->lbah & 0xff) << 16;
1350 sectors |= (tf->lbam & 0xff) << 8;
1351 sectors |= (tf->lbal & 0xff);
1353 return sectors;
1356 u64 ata_tf_to_lba(const struct ata_taskfile *tf)
1358 u64 sectors = 0;
1360 sectors |= (tf->device & 0x0f) << 24;
1361 sectors |= (tf->lbah & 0xff) << 16;
1362 sectors |= (tf->lbam & 0xff) << 8;
1363 sectors |= (tf->lbal & 0xff);
1365 return sectors;
1369 * ata_read_native_max_address - Read native max address
1370 * @dev: target device
1371 * @max_sectors: out parameter for the result native max address
1373 * Perform an LBA48 or LBA28 native size query upon the device in
1374 * question.
1376 * RETURNS:
1377 * 0 on success, -EACCES if command is aborted by the drive.
1378 * -EIO on other errors.
1380 static int ata_read_native_max_address(struct ata_device *dev, u64 *max_sectors)
1382 unsigned int err_mask;
1383 struct ata_taskfile tf;
1384 int lba48 = ata_id_has_lba48(dev->id);
1386 ata_tf_init(dev, &tf);
1388 /* always clear all address registers */
1389 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1391 if (lba48) {
1392 tf.command = ATA_CMD_READ_NATIVE_MAX_EXT;
1393 tf.flags |= ATA_TFLAG_LBA48;
1394 } else
1395 tf.command = ATA_CMD_READ_NATIVE_MAX;
1397 tf.protocol |= ATA_PROT_NODATA;
1398 tf.device |= ATA_LBA;
1400 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1401 if (err_mask) {
1402 ata_dev_printk(dev, KERN_WARNING, "failed to read native "
1403 "max address (err_mask=0x%x)\n", err_mask);
1404 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
1405 return -EACCES;
1406 return -EIO;
1409 if (lba48)
1410 *max_sectors = ata_tf_to_lba48(&tf) + 1;
1411 else
1412 *max_sectors = ata_tf_to_lba(&tf) + 1;
1413 if (dev->horkage & ATA_HORKAGE_HPA_SIZE)
1414 (*max_sectors)--;
1415 return 0;
1419 * ata_set_max_sectors - Set max sectors
1420 * @dev: target device
1421 * @new_sectors: new max sectors value to set for the device
1423 * Set max sectors of @dev to @new_sectors.
1425 * RETURNS:
1426 * 0 on success, -EACCES if command is aborted or denied (due to
1427 * previous non-volatile SET_MAX) by the drive. -EIO on other
1428 * errors.
1430 static int ata_set_max_sectors(struct ata_device *dev, u64 new_sectors)
1432 unsigned int err_mask;
1433 struct ata_taskfile tf;
1434 int lba48 = ata_id_has_lba48(dev->id);
1436 new_sectors--;
1438 ata_tf_init(dev, &tf);
1440 tf.flags |= ATA_TFLAG_DEVICE | ATA_TFLAG_ISADDR;
1442 if (lba48) {
1443 tf.command = ATA_CMD_SET_MAX_EXT;
1444 tf.flags |= ATA_TFLAG_LBA48;
1446 tf.hob_lbal = (new_sectors >> 24) & 0xff;
1447 tf.hob_lbam = (new_sectors >> 32) & 0xff;
1448 tf.hob_lbah = (new_sectors >> 40) & 0xff;
1449 } else {
1450 tf.command = ATA_CMD_SET_MAX;
1452 tf.device |= (new_sectors >> 24) & 0xf;
1455 tf.protocol |= ATA_PROT_NODATA;
1456 tf.device |= ATA_LBA;
1458 tf.lbal = (new_sectors >> 0) & 0xff;
1459 tf.lbam = (new_sectors >> 8) & 0xff;
1460 tf.lbah = (new_sectors >> 16) & 0xff;
1462 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1463 if (err_mask) {
1464 ata_dev_printk(dev, KERN_WARNING, "failed to set "
1465 "max address (err_mask=0x%x)\n", err_mask);
1466 if (err_mask == AC_ERR_DEV &&
1467 (tf.feature & (ATA_ABORTED | ATA_IDNF)))
1468 return -EACCES;
1469 return -EIO;
1472 return 0;
1476 * ata_hpa_resize - Resize a device with an HPA set
1477 * @dev: Device to resize
1479 * Read the size of an LBA28 or LBA48 disk with HPA features and resize
1480 * it if required to the full size of the media. The caller must check
1481 * the drive has the HPA feature set enabled.
1483 * RETURNS:
1484 * 0 on success, -errno on failure.
1486 static int ata_hpa_resize(struct ata_device *dev)
1488 struct ata_eh_context *ehc = &dev->link->eh_context;
1489 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
1490 u64 sectors = ata_id_n_sectors(dev->id);
1491 u64 native_sectors;
1492 int rc;
1494 /* do we need to do it? */
1495 if (dev->class != ATA_DEV_ATA ||
1496 !ata_id_has_lba(dev->id) || !ata_id_hpa_enabled(dev->id) ||
1497 (dev->horkage & ATA_HORKAGE_BROKEN_HPA))
1498 return 0;
1500 /* read native max address */
1501 rc = ata_read_native_max_address(dev, &native_sectors);
1502 if (rc) {
1503 /* If device aborted the command or HPA isn't going to
1504 * be unlocked, skip HPA resizing.
1506 if (rc == -EACCES || !ata_ignore_hpa) {
1507 ata_dev_printk(dev, KERN_WARNING, "HPA support seems "
1508 "broken, skipping HPA handling\n");
1509 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1511 /* we can continue if device aborted the command */
1512 if (rc == -EACCES)
1513 rc = 0;
1516 return rc;
1518 dev->n_native_sectors = native_sectors;
1520 /* nothing to do? */
1521 if (native_sectors <= sectors || !ata_ignore_hpa) {
1522 if (!print_info || native_sectors == sectors)
1523 return 0;
1525 if (native_sectors > sectors)
1526 ata_dev_printk(dev, KERN_INFO,
1527 "HPA detected: current %llu, native %llu\n",
1528 (unsigned long long)sectors,
1529 (unsigned long long)native_sectors);
1530 else if (native_sectors < sectors)
1531 ata_dev_printk(dev, KERN_WARNING,
1532 "native sectors (%llu) is smaller than "
1533 "sectors (%llu)\n",
1534 (unsigned long long)native_sectors,
1535 (unsigned long long)sectors);
1536 return 0;
1539 /* let's unlock HPA */
1540 rc = ata_set_max_sectors(dev, native_sectors);
1541 if (rc == -EACCES) {
1542 /* if device aborted the command, skip HPA resizing */
1543 ata_dev_printk(dev, KERN_WARNING, "device aborted resize "
1544 "(%llu -> %llu), skipping HPA handling\n",
1545 (unsigned long long)sectors,
1546 (unsigned long long)native_sectors);
1547 dev->horkage |= ATA_HORKAGE_BROKEN_HPA;
1548 return 0;
1549 } else if (rc)
1550 return rc;
1552 /* re-read IDENTIFY data */
1553 rc = ata_dev_reread_id(dev, 0);
1554 if (rc) {
1555 ata_dev_printk(dev, KERN_ERR, "failed to re-read IDENTIFY "
1556 "data after HPA resizing\n");
1557 return rc;
1560 if (print_info) {
1561 u64 new_sectors = ata_id_n_sectors(dev->id);
1562 ata_dev_printk(dev, KERN_INFO,
1563 "HPA unlocked: %llu -> %llu, native %llu\n",
1564 (unsigned long long)sectors,
1565 (unsigned long long)new_sectors,
1566 (unsigned long long)native_sectors);
1569 return 0;
1573 * ata_dump_id - IDENTIFY DEVICE info debugging output
1574 * @id: IDENTIFY DEVICE page to dump
1576 * Dump selected 16-bit words from the given IDENTIFY DEVICE
1577 * page.
1579 * LOCKING:
1580 * caller.
1583 static inline void ata_dump_id(const u16 *id)
1585 DPRINTK("49==0x%04x "
1586 "53==0x%04x "
1587 "63==0x%04x "
1588 "64==0x%04x "
1589 "75==0x%04x \n",
1590 id[49],
1591 id[53],
1592 id[63],
1593 id[64],
1594 id[75]);
1595 DPRINTK("80==0x%04x "
1596 "81==0x%04x "
1597 "82==0x%04x "
1598 "83==0x%04x "
1599 "84==0x%04x \n",
1600 id[80],
1601 id[81],
1602 id[82],
1603 id[83],
1604 id[84]);
1605 DPRINTK("88==0x%04x "
1606 "93==0x%04x\n",
1607 id[88],
1608 id[93]);
1612 * ata_id_xfermask - Compute xfermask from the given IDENTIFY data
1613 * @id: IDENTIFY data to compute xfer mask from
1615 * Compute the xfermask for this device. This is not as trivial
1616 * as it seems if we must consider early devices correctly.
1618 * FIXME: pre IDE drive timing (do we care ?).
1620 * LOCKING:
1621 * None.
1623 * RETURNS:
1624 * Computed xfermask
1626 unsigned long ata_id_xfermask(const u16 *id)
1628 unsigned long pio_mask, mwdma_mask, udma_mask;
1630 /* Usual case. Word 53 indicates word 64 is valid */
1631 if (id[ATA_ID_FIELD_VALID] & (1 << 1)) {
1632 pio_mask = id[ATA_ID_PIO_MODES] & 0x03;
1633 pio_mask <<= 3;
1634 pio_mask |= 0x7;
1635 } else {
1636 /* If word 64 isn't valid then Word 51 high byte holds
1637 * the PIO timing number for the maximum. Turn it into
1638 * a mask.
1640 u8 mode = (id[ATA_ID_OLD_PIO_MODES] >> 8) & 0xFF;
1641 if (mode < 5) /* Valid PIO range */
1642 pio_mask = (2 << mode) - 1;
1643 else
1644 pio_mask = 1;
1646 /* But wait.. there's more. Design your standards by
1647 * committee and you too can get a free iordy field to
1648 * process. However its the speeds not the modes that
1649 * are supported... Note drivers using the timing API
1650 * will get this right anyway
1654 mwdma_mask = id[ATA_ID_MWDMA_MODES] & 0x07;
1656 if (ata_id_is_cfa(id)) {
1658 * Process compact flash extended modes
1660 int pio = (id[ATA_ID_CFA_MODES] >> 0) & 0x7;
1661 int dma = (id[ATA_ID_CFA_MODES] >> 3) & 0x7;
1663 if (pio)
1664 pio_mask |= (1 << 5);
1665 if (pio > 1)
1666 pio_mask |= (1 << 6);
1667 if (dma)
1668 mwdma_mask |= (1 << 3);
1669 if (dma > 1)
1670 mwdma_mask |= (1 << 4);
1673 udma_mask = 0;
1674 if (id[ATA_ID_FIELD_VALID] & (1 << 2))
1675 udma_mask = id[ATA_ID_UDMA_MODES] & 0xff;
1677 return ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
1681 * ata_pio_queue_task - Queue port_task
1682 * @ap: The ata_port to queue port_task for
1683 * @data: data for @fn to use
1684 * @delay: delay time in msecs for workqueue function
1686 * Schedule @fn(@data) for execution after @delay jiffies using
1687 * port_task. There is one port_task per port and it's the
1688 * user(low level driver)'s responsibility to make sure that only
1689 * one task is active at any given time.
1691 * libata core layer takes care of synchronization between
1692 * port_task and EH. ata_pio_queue_task() may be ignored for EH
1693 * synchronization.
1695 * LOCKING:
1696 * Inherited from caller.
1698 void ata_pio_queue_task(struct ata_port *ap, void *data, unsigned long delay)
1700 ap->port_task_data = data;
1702 /* may fail if ata_port_flush_task() in progress */
1703 queue_delayed_work(ata_wq, &ap->port_task, msecs_to_jiffies(delay));
1707 * ata_port_flush_task - Flush port_task
1708 * @ap: The ata_port to flush port_task for
1710 * After this function completes, port_task is guranteed not to
1711 * be running or scheduled.
1713 * LOCKING:
1714 * Kernel thread context (may sleep)
1716 void ata_port_flush_task(struct ata_port *ap)
1718 DPRINTK("ENTER\n");
1720 cancel_rearming_delayed_work(&ap->port_task);
1722 if (ata_msg_ctl(ap))
1723 ata_port_printk(ap, KERN_DEBUG, "%s: EXIT\n", __func__);
1726 static void ata_qc_complete_internal(struct ata_queued_cmd *qc)
1728 struct completion *waiting = qc->private_data;
1730 complete(waiting);
1734 * ata_exec_internal_sg - execute libata internal command
1735 * @dev: Device to which the command is sent
1736 * @tf: Taskfile registers for the command and the result
1737 * @cdb: CDB for packet command
1738 * @dma_dir: Data tranfer direction of the command
1739 * @sgl: sg list for the data buffer of the command
1740 * @n_elem: Number of sg entries
1741 * @timeout: Timeout in msecs (0 for default)
1743 * Executes libata internal command with timeout. @tf contains
1744 * command on entry and result on return. Timeout and error
1745 * conditions are reported via return value. No recovery action
1746 * is taken after a command times out. It's caller's duty to
1747 * clean up after timeout.
1749 * LOCKING:
1750 * None. Should be called with kernel context, might sleep.
1752 * RETURNS:
1753 * Zero on success, AC_ERR_* mask on failure
1755 unsigned ata_exec_internal_sg(struct ata_device *dev,
1756 struct ata_taskfile *tf, const u8 *cdb,
1757 int dma_dir, struct scatterlist *sgl,
1758 unsigned int n_elem, unsigned long timeout)
1760 struct ata_link *link = dev->link;
1761 struct ata_port *ap = link->ap;
1762 u8 command = tf->command;
1763 int auto_timeout = 0;
1764 struct ata_queued_cmd *qc;
1765 unsigned int tag, preempted_tag;
1766 u32 preempted_sactive, preempted_qc_active;
1767 int preempted_nr_active_links;
1768 DECLARE_COMPLETION_ONSTACK(wait);
1769 unsigned long flags;
1770 unsigned int err_mask;
1771 int rc;
1773 spin_lock_irqsave(ap->lock, flags);
1775 /* no internal command while frozen */
1776 if (ap->pflags & ATA_PFLAG_FROZEN) {
1777 spin_unlock_irqrestore(ap->lock, flags);
1778 return AC_ERR_SYSTEM;
1781 /* initialize internal qc */
1783 /* XXX: Tag 0 is used for drivers with legacy EH as some
1784 * drivers choke if any other tag is given. This breaks
1785 * ata_tag_internal() test for those drivers. Don't use new
1786 * EH stuff without converting to it.
1788 if (ap->ops->error_handler)
1789 tag = ATA_TAG_INTERNAL;
1790 else
1791 tag = 0;
1793 if (test_and_set_bit(tag, &ap->qc_allocated))
1794 BUG();
1795 qc = __ata_qc_from_tag(ap, tag);
1797 qc->tag = tag;
1798 qc->scsicmd = NULL;
1799 qc->ap = ap;
1800 qc->dev = dev;
1801 ata_qc_reinit(qc);
1803 preempted_tag = link->active_tag;
1804 preempted_sactive = link->sactive;
1805 preempted_qc_active = ap->qc_active;
1806 preempted_nr_active_links = ap->nr_active_links;
1807 link->active_tag = ATA_TAG_POISON;
1808 link->sactive = 0;
1809 ap->qc_active = 0;
1810 ap->nr_active_links = 0;
1812 /* prepare & issue qc */
1813 qc->tf = *tf;
1814 if (cdb)
1815 memcpy(qc->cdb, cdb, ATAPI_CDB_LEN);
1816 qc->flags |= ATA_QCFLAG_RESULT_TF;
1817 qc->dma_dir = dma_dir;
1818 if (dma_dir != DMA_NONE) {
1819 unsigned int i, buflen = 0;
1820 struct scatterlist *sg;
1822 for_each_sg(sgl, sg, n_elem, i)
1823 buflen += sg->length;
1825 ata_sg_init(qc, sgl, n_elem);
1826 qc->nbytes = buflen;
1829 qc->private_data = &wait;
1830 qc->complete_fn = ata_qc_complete_internal;
1832 ata_qc_issue(qc);
1834 spin_unlock_irqrestore(ap->lock, flags);
1836 if (!timeout) {
1837 if (ata_probe_timeout)
1838 timeout = ata_probe_timeout * 1000;
1839 else {
1840 timeout = ata_internal_cmd_timeout(dev, command);
1841 auto_timeout = 1;
1845 rc = wait_for_completion_timeout(&wait, msecs_to_jiffies(timeout));
1847 ata_port_flush_task(ap);
1849 if (!rc) {
1850 spin_lock_irqsave(ap->lock, flags);
1852 /* We're racing with irq here. If we lose, the
1853 * following test prevents us from completing the qc
1854 * twice. If we win, the port is frozen and will be
1855 * cleaned up by ->post_internal_cmd().
1857 if (qc->flags & ATA_QCFLAG_ACTIVE) {
1858 qc->err_mask |= AC_ERR_TIMEOUT;
1860 if (ap->ops->error_handler)
1861 ata_port_freeze(ap);
1862 else
1863 ata_qc_complete(qc);
1865 if (ata_msg_warn(ap))
1866 ata_dev_printk(dev, KERN_WARNING,
1867 "qc timeout (cmd 0x%x)\n", command);
1870 spin_unlock_irqrestore(ap->lock, flags);
1873 /* do post_internal_cmd */
1874 if (ap->ops->post_internal_cmd)
1875 ap->ops->post_internal_cmd(qc);
1877 /* perform minimal error analysis */
1878 if (qc->flags & ATA_QCFLAG_FAILED) {
1879 if (qc->result_tf.command & (ATA_ERR | ATA_DF))
1880 qc->err_mask |= AC_ERR_DEV;
1882 if (!qc->err_mask)
1883 qc->err_mask |= AC_ERR_OTHER;
1885 if (qc->err_mask & ~AC_ERR_OTHER)
1886 qc->err_mask &= ~AC_ERR_OTHER;
1889 /* finish up */
1890 spin_lock_irqsave(ap->lock, flags);
1892 *tf = qc->result_tf;
1893 err_mask = qc->err_mask;
1895 ata_qc_free(qc);
1896 link->active_tag = preempted_tag;
1897 link->sactive = preempted_sactive;
1898 ap->qc_active = preempted_qc_active;
1899 ap->nr_active_links = preempted_nr_active_links;
1901 /* XXX - Some LLDDs (sata_mv) disable port on command failure.
1902 * Until those drivers are fixed, we detect the condition
1903 * here, fail the command with AC_ERR_SYSTEM and reenable the
1904 * port.
1906 * Note that this doesn't change any behavior as internal
1907 * command failure results in disabling the device in the
1908 * higher layer for LLDDs without new reset/EH callbacks.
1910 * Kill the following code as soon as those drivers are fixed.
1912 if (ap->flags & ATA_FLAG_DISABLED) {
1913 err_mask |= AC_ERR_SYSTEM;
1914 ata_port_probe(ap);
1917 spin_unlock_irqrestore(ap->lock, flags);
1919 if ((err_mask & AC_ERR_TIMEOUT) && auto_timeout)
1920 ata_internal_cmd_timed_out(dev, command);
1922 return err_mask;
1926 * ata_exec_internal - execute libata internal command
1927 * @dev: Device to which the command is sent
1928 * @tf: Taskfile registers for the command and the result
1929 * @cdb: CDB for packet command
1930 * @dma_dir: Data tranfer direction of the command
1931 * @buf: Data buffer of the command
1932 * @buflen: Length of data buffer
1933 * @timeout: Timeout in msecs (0 for default)
1935 * Wrapper around ata_exec_internal_sg() which takes simple
1936 * buffer instead of sg list.
1938 * LOCKING:
1939 * None. Should be called with kernel context, might sleep.
1941 * RETURNS:
1942 * Zero on success, AC_ERR_* mask on failure
1944 unsigned ata_exec_internal(struct ata_device *dev,
1945 struct ata_taskfile *tf, const u8 *cdb,
1946 int dma_dir, void *buf, unsigned int buflen,
1947 unsigned long timeout)
1949 struct scatterlist *psg = NULL, sg;
1950 unsigned int n_elem = 0;
1952 if (dma_dir != DMA_NONE) {
1953 WARN_ON(!buf);
1954 sg_init_one(&sg, buf, buflen);
1955 psg = &sg;
1956 n_elem++;
1959 return ata_exec_internal_sg(dev, tf, cdb, dma_dir, psg, n_elem,
1960 timeout);
1964 * ata_do_simple_cmd - execute simple internal command
1965 * @dev: Device to which the command is sent
1966 * @cmd: Opcode to execute
1968 * Execute a 'simple' command, that only consists of the opcode
1969 * 'cmd' itself, without filling any other registers
1971 * LOCKING:
1972 * Kernel thread context (may sleep).
1974 * RETURNS:
1975 * Zero on success, AC_ERR_* mask on failure
1977 unsigned int ata_do_simple_cmd(struct ata_device *dev, u8 cmd)
1979 struct ata_taskfile tf;
1981 ata_tf_init(dev, &tf);
1983 tf.command = cmd;
1984 tf.flags |= ATA_TFLAG_DEVICE;
1985 tf.protocol = ATA_PROT_NODATA;
1987 return ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
1991 * ata_pio_need_iordy - check if iordy needed
1992 * @adev: ATA device
1994 * Check if the current speed of the device requires IORDY. Used
1995 * by various controllers for chip configuration.
1997 unsigned int ata_pio_need_iordy(const struct ata_device *adev)
1999 /* Don't set IORDY if we're preparing for reset. IORDY may
2000 * lead to controller lock up on certain controllers if the
2001 * port is not occupied. See bko#11703 for details.
2003 if (adev->link->ap->pflags & ATA_PFLAG_RESETTING)
2004 return 0;
2005 /* Controller doesn't support IORDY. Probably a pointless
2006 * check as the caller should know this.
2008 if (adev->link->ap->flags & ATA_FLAG_NO_IORDY)
2009 return 0;
2010 /* CF spec. r4.1 Table 22 says no iordy on PIO5 and PIO6. */
2011 if (ata_id_is_cfa(adev->id)
2012 && (adev->pio_mode == XFER_PIO_5 || adev->pio_mode == XFER_PIO_6))
2013 return 0;
2014 /* PIO3 and higher it is mandatory */
2015 if (adev->pio_mode > XFER_PIO_2)
2016 return 1;
2017 /* We turn it on when possible */
2018 if (ata_id_has_iordy(adev->id))
2019 return 1;
2020 return 0;
2024 * ata_pio_mask_no_iordy - Return the non IORDY mask
2025 * @adev: ATA device
2027 * Compute the highest mode possible if we are not using iordy. Return
2028 * -1 if no iordy mode is available.
2030 static u32 ata_pio_mask_no_iordy(const struct ata_device *adev)
2032 /* If we have no drive specific rule, then PIO 2 is non IORDY */
2033 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE */
2034 u16 pio = adev->id[ATA_ID_EIDE_PIO];
2035 /* Is the speed faster than the drive allows non IORDY ? */
2036 if (pio) {
2037 /* This is cycle times not frequency - watch the logic! */
2038 if (pio > 240) /* PIO2 is 240nS per cycle */
2039 return 3 << ATA_SHIFT_PIO;
2040 return 7 << ATA_SHIFT_PIO;
2043 return 3 << ATA_SHIFT_PIO;
2047 * ata_do_dev_read_id - default ID read method
2048 * @dev: device
2049 * @tf: proposed taskfile
2050 * @id: data buffer
2052 * Issue the identify taskfile and hand back the buffer containing
2053 * identify data. For some RAID controllers and for pre ATA devices
2054 * this function is wrapped or replaced by the driver
2056 unsigned int ata_do_dev_read_id(struct ata_device *dev,
2057 struct ata_taskfile *tf, u16 *id)
2059 return ata_exec_internal(dev, tf, NULL, DMA_FROM_DEVICE,
2060 id, sizeof(id[0]) * ATA_ID_WORDS, 0);
2064 * ata_dev_read_id - Read ID data from the specified device
2065 * @dev: target device
2066 * @p_class: pointer to class of the target device (may be changed)
2067 * @flags: ATA_READID_* flags
2068 * @id: buffer to read IDENTIFY data into
2070 * Read ID data from the specified device. ATA_CMD_ID_ATA is
2071 * performed on ATA devices and ATA_CMD_ID_ATAPI on ATAPI
2072 * devices. This function also issues ATA_CMD_INIT_DEV_PARAMS
2073 * for pre-ATA4 drives.
2075 * FIXME: ATA_CMD_ID_ATA is optional for early drives and right
2076 * now we abort if we hit that case.
2078 * LOCKING:
2079 * Kernel thread context (may sleep)
2081 * RETURNS:
2082 * 0 on success, -errno otherwise.
2084 int ata_dev_read_id(struct ata_device *dev, unsigned int *p_class,
2085 unsigned int flags, u16 *id)
2087 struct ata_port *ap = dev->link->ap;
2088 unsigned int class = *p_class;
2089 struct ata_taskfile tf;
2090 unsigned int err_mask = 0;
2091 const char *reason;
2092 bool is_semb = class == ATA_DEV_SEMB;
2093 int may_fallback = 1, tried_spinup = 0;
2094 int rc;
2096 if (ata_msg_ctl(ap))
2097 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2099 retry:
2100 ata_tf_init(dev, &tf);
2102 switch (class) {
2103 case ATA_DEV_SEMB:
2104 class = ATA_DEV_ATA; /* some hard drives report SEMB sig */
2105 case ATA_DEV_ATA:
2106 tf.command = ATA_CMD_ID_ATA;
2107 break;
2108 case ATA_DEV_ATAPI:
2109 tf.command = ATA_CMD_ID_ATAPI;
2110 break;
2111 default:
2112 rc = -ENODEV;
2113 reason = "unsupported class";
2114 goto err_out;
2117 tf.protocol = ATA_PROT_PIO;
2119 /* Some devices choke if TF registers contain garbage. Make
2120 * sure those are properly initialized.
2122 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
2124 /* Device presence detection is unreliable on some
2125 * controllers. Always poll IDENTIFY if available.
2127 tf.flags |= ATA_TFLAG_POLLING;
2129 if (ap->ops->read_id)
2130 err_mask = ap->ops->read_id(dev, &tf, id);
2131 else
2132 err_mask = ata_do_dev_read_id(dev, &tf, id);
2134 if (err_mask) {
2135 if (err_mask & AC_ERR_NODEV_HINT) {
2136 ata_dev_printk(dev, KERN_DEBUG,
2137 "NODEV after polling detection\n");
2138 return -ENOENT;
2141 if (is_semb) {
2142 ata_dev_printk(dev, KERN_INFO, "IDENTIFY failed on "
2143 "device w/ SEMB sig, disabled\n");
2144 /* SEMB is not supported yet */
2145 *p_class = ATA_DEV_SEMB_UNSUP;
2146 return 0;
2149 if ((err_mask == AC_ERR_DEV) && (tf.feature & ATA_ABORTED)) {
2150 /* Device or controller might have reported
2151 * the wrong device class. Give a shot at the
2152 * other IDENTIFY if the current one is
2153 * aborted by the device.
2155 if (may_fallback) {
2156 may_fallback = 0;
2158 if (class == ATA_DEV_ATA)
2159 class = ATA_DEV_ATAPI;
2160 else
2161 class = ATA_DEV_ATA;
2162 goto retry;
2165 /* Control reaches here iff the device aborted
2166 * both flavors of IDENTIFYs which happens
2167 * sometimes with phantom devices.
2169 ata_dev_printk(dev, KERN_DEBUG,
2170 "both IDENTIFYs aborted, assuming NODEV\n");
2171 return -ENOENT;
2174 rc = -EIO;
2175 reason = "I/O error";
2176 goto err_out;
2179 /* Falling back doesn't make sense if ID data was read
2180 * successfully at least once.
2182 may_fallback = 0;
2184 swap_buf_le16(id, ATA_ID_WORDS);
2186 /* sanity check */
2187 rc = -EINVAL;
2188 reason = "device reports invalid type";
2190 if (class == ATA_DEV_ATA) {
2191 if (!ata_id_is_ata(id) && !ata_id_is_cfa(id))
2192 goto err_out;
2193 } else {
2194 if (ata_id_is_ata(id))
2195 goto err_out;
2198 if (!tried_spinup && (id[2] == 0x37c8 || id[2] == 0x738c)) {
2199 tried_spinup = 1;
2201 * Drive powered-up in standby mode, and requires a specific
2202 * SET_FEATURES spin-up subcommand before it will accept
2203 * anything other than the original IDENTIFY command.
2205 err_mask = ata_dev_set_feature(dev, SETFEATURES_SPINUP, 0);
2206 if (err_mask && id[2] != 0x738c) {
2207 rc = -EIO;
2208 reason = "SPINUP failed";
2209 goto err_out;
2212 * If the drive initially returned incomplete IDENTIFY info,
2213 * we now must reissue the IDENTIFY command.
2215 if (id[2] == 0x37c8)
2216 goto retry;
2219 if ((flags & ATA_READID_POSTRESET) && class == ATA_DEV_ATA) {
2221 * The exact sequence expected by certain pre-ATA4 drives is:
2222 * SRST RESET
2223 * IDENTIFY (optional in early ATA)
2224 * INITIALIZE DEVICE PARAMETERS (later IDE and ATA)
2225 * anything else..
2226 * Some drives were very specific about that exact sequence.
2228 * Note that ATA4 says lba is mandatory so the second check
2229 * shoud never trigger.
2231 if (ata_id_major_version(id) < 4 || !ata_id_has_lba(id)) {
2232 err_mask = ata_dev_init_params(dev, id[3], id[6]);
2233 if (err_mask) {
2234 rc = -EIO;
2235 reason = "INIT_DEV_PARAMS failed";
2236 goto err_out;
2239 /* current CHS translation info (id[53-58]) might be
2240 * changed. reread the identify device info.
2242 flags &= ~ATA_READID_POSTRESET;
2243 goto retry;
2247 *p_class = class;
2249 return 0;
2251 err_out:
2252 if (ata_msg_warn(ap))
2253 ata_dev_printk(dev, KERN_WARNING, "failed to IDENTIFY "
2254 "(%s, err_mask=0x%x)\n", reason, err_mask);
2255 return rc;
2258 static int ata_do_link_spd_horkage(struct ata_device *dev)
2260 struct ata_link *plink = ata_dev_phys_link(dev);
2261 u32 target, target_limit;
2263 if (!sata_scr_valid(plink))
2264 return 0;
2266 if (dev->horkage & ATA_HORKAGE_1_5_GBPS)
2267 target = 1;
2268 else
2269 return 0;
2271 target_limit = (1 << target) - 1;
2273 /* if already on stricter limit, no need to push further */
2274 if (plink->sata_spd_limit <= target_limit)
2275 return 0;
2277 plink->sata_spd_limit = target_limit;
2279 /* Request another EH round by returning -EAGAIN if link is
2280 * going faster than the target speed. Forward progress is
2281 * guaranteed by setting sata_spd_limit to target_limit above.
2283 if (plink->sata_spd > target) {
2284 ata_dev_printk(dev, KERN_INFO,
2285 "applying link speed limit horkage to %s\n",
2286 sata_spd_string(target));
2287 return -EAGAIN;
2289 return 0;
2292 static inline u8 ata_dev_knobble(struct ata_device *dev)
2294 struct ata_port *ap = dev->link->ap;
2296 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_BRIDGE_OK)
2297 return 0;
2299 return ((ap->cbl == ATA_CBL_SATA) && (!ata_id_is_sata(dev->id)));
2302 static void ata_dev_config_ncq(struct ata_device *dev,
2303 char *desc, size_t desc_sz)
2305 struct ata_port *ap = dev->link->ap;
2306 int hdepth = 0, ddepth = ata_id_queue_depth(dev->id);
2308 if (!ata_id_has_ncq(dev->id)) {
2309 desc[0] = '\0';
2310 return;
2312 if (dev->horkage & ATA_HORKAGE_NONCQ) {
2313 snprintf(desc, desc_sz, "NCQ (not used)");
2314 return;
2316 if (ap->flags & ATA_FLAG_NCQ) {
2317 hdepth = min(ap->scsi_host->can_queue, ATA_MAX_QUEUE - 1);
2318 dev->flags |= ATA_DFLAG_NCQ;
2321 if (hdepth >= ddepth)
2322 snprintf(desc, desc_sz, "NCQ (depth %d)", ddepth);
2323 else
2324 snprintf(desc, desc_sz, "NCQ (depth %d/%d)", hdepth, ddepth);
2328 * ata_dev_configure - Configure the specified ATA/ATAPI device
2329 * @dev: Target device to configure
2331 * Configure @dev according to @dev->id. Generic and low-level
2332 * driver specific fixups are also applied.
2334 * LOCKING:
2335 * Kernel thread context (may sleep)
2337 * RETURNS:
2338 * 0 on success, -errno otherwise
2340 int ata_dev_configure(struct ata_device *dev)
2342 struct ata_port *ap = dev->link->ap;
2343 struct ata_eh_context *ehc = &dev->link->eh_context;
2344 int print_info = ehc->i.flags & ATA_EHI_PRINTINFO;
2345 const u16 *id = dev->id;
2346 unsigned long xfer_mask;
2347 char revbuf[7]; /* XYZ-99\0 */
2348 char fwrevbuf[ATA_ID_FW_REV_LEN+1];
2349 char modelbuf[ATA_ID_PROD_LEN+1];
2350 int rc;
2352 if (!ata_dev_enabled(dev) && ata_msg_info(ap)) {
2353 ata_dev_printk(dev, KERN_INFO, "%s: ENTER/EXIT -- nodev\n",
2354 __func__);
2355 return 0;
2358 if (ata_msg_probe(ap))
2359 ata_dev_printk(dev, KERN_DEBUG, "%s: ENTER\n", __func__);
2361 /* set horkage */
2362 dev->horkage |= ata_dev_blacklisted(dev);
2363 ata_force_horkage(dev);
2365 if (dev->horkage & ATA_HORKAGE_DISABLE) {
2366 ata_dev_printk(dev, KERN_INFO,
2367 "unsupported device, disabling\n");
2368 ata_dev_disable(dev);
2369 return 0;
2372 if ((!atapi_enabled || (ap->flags & ATA_FLAG_NO_ATAPI)) &&
2373 dev->class == ATA_DEV_ATAPI) {
2374 ata_dev_printk(dev, KERN_WARNING,
2375 "WARNING: ATAPI is %s, device ignored.\n",
2376 atapi_enabled ? "not supported with this driver"
2377 : "disabled");
2378 ata_dev_disable(dev);
2379 return 0;
2382 rc = ata_do_link_spd_horkage(dev);
2383 if (rc)
2384 return rc;
2386 /* let ACPI work its magic */
2387 rc = ata_acpi_on_devcfg(dev);
2388 if (rc)
2389 return rc;
2391 /* massage HPA, do it early as it might change IDENTIFY data */
2392 rc = ata_hpa_resize(dev);
2393 if (rc)
2394 return rc;
2396 /* print device capabilities */
2397 if (ata_msg_probe(ap))
2398 ata_dev_printk(dev, KERN_DEBUG,
2399 "%s: cfg 49:%04x 82:%04x 83:%04x 84:%04x "
2400 "85:%04x 86:%04x 87:%04x 88:%04x\n",
2401 __func__,
2402 id[49], id[82], id[83], id[84],
2403 id[85], id[86], id[87], id[88]);
2405 /* initialize to-be-configured parameters */
2406 dev->flags &= ~ATA_DFLAG_CFG_MASK;
2407 dev->max_sectors = 0;
2408 dev->cdb_len = 0;
2409 dev->n_sectors = 0;
2410 dev->cylinders = 0;
2411 dev->heads = 0;
2412 dev->sectors = 0;
2413 dev->multi_count = 0;
2416 * common ATA, ATAPI feature tests
2419 /* find max transfer mode; for printk only */
2420 xfer_mask = ata_id_xfermask(id);
2422 if (ata_msg_probe(ap))
2423 ata_dump_id(id);
2425 /* SCSI only uses 4-char revisions, dump full 8 chars from ATA */
2426 ata_id_c_string(dev->id, fwrevbuf, ATA_ID_FW_REV,
2427 sizeof(fwrevbuf));
2429 ata_id_c_string(dev->id, modelbuf, ATA_ID_PROD,
2430 sizeof(modelbuf));
2432 /* ATA-specific feature tests */
2433 if (dev->class == ATA_DEV_ATA) {
2434 if (ata_id_is_cfa(id)) {
2435 /* CPRM may make this media unusable */
2436 if (id[ATA_ID_CFA_KEY_MGMT] & 1)
2437 ata_dev_printk(dev, KERN_WARNING,
2438 "supports DRM functions and may "
2439 "not be fully accessable.\n");
2440 snprintf(revbuf, 7, "CFA");
2441 } else {
2442 snprintf(revbuf, 7, "ATA-%d", ata_id_major_version(id));
2443 /* Warn the user if the device has TPM extensions */
2444 if (ata_id_has_tpm(id))
2445 ata_dev_printk(dev, KERN_WARNING,
2446 "supports DRM functions and may "
2447 "not be fully accessable.\n");
2450 dev->n_sectors = ata_id_n_sectors(id);
2452 /* get current R/W Multiple count setting */
2453 if ((dev->id[47] >> 8) == 0x80 && (dev->id[59] & 0x100)) {
2454 unsigned int max = dev->id[47] & 0xff;
2455 unsigned int cnt = dev->id[59] & 0xff;
2456 /* only recognize/allow powers of two here */
2457 if (is_power_of_2(max) && is_power_of_2(cnt))
2458 if (cnt <= max)
2459 dev->multi_count = cnt;
2462 if (ata_id_has_lba(id)) {
2463 const char *lba_desc;
2464 char ncq_desc[20];
2466 lba_desc = "LBA";
2467 dev->flags |= ATA_DFLAG_LBA;
2468 if (ata_id_has_lba48(id)) {
2469 dev->flags |= ATA_DFLAG_LBA48;
2470 lba_desc = "LBA48";
2472 if (dev->n_sectors >= (1UL << 28) &&
2473 ata_id_has_flush_ext(id))
2474 dev->flags |= ATA_DFLAG_FLUSH_EXT;
2477 /* config NCQ */
2478 ata_dev_config_ncq(dev, ncq_desc, sizeof(ncq_desc));
2480 /* print device info to dmesg */
2481 if (ata_msg_drv(ap) && print_info) {
2482 ata_dev_printk(dev, KERN_INFO,
2483 "%s: %s, %s, max %s\n",
2484 revbuf, modelbuf, fwrevbuf,
2485 ata_mode_string(xfer_mask));
2486 ata_dev_printk(dev, KERN_INFO,
2487 "%Lu sectors, multi %u: %s %s\n",
2488 (unsigned long long)dev->n_sectors,
2489 dev->multi_count, lba_desc, ncq_desc);
2491 } else {
2492 /* CHS */
2494 /* Default translation */
2495 dev->cylinders = id[1];
2496 dev->heads = id[3];
2497 dev->sectors = id[6];
2499 if (ata_id_current_chs_valid(id)) {
2500 /* Current CHS translation is valid. */
2501 dev->cylinders = id[54];
2502 dev->heads = id[55];
2503 dev->sectors = id[56];
2506 /* print device info to dmesg */
2507 if (ata_msg_drv(ap) && print_info) {
2508 ata_dev_printk(dev, KERN_INFO,
2509 "%s: %s, %s, max %s\n",
2510 revbuf, modelbuf, fwrevbuf,
2511 ata_mode_string(xfer_mask));
2512 ata_dev_printk(dev, KERN_INFO,
2513 "%Lu sectors, multi %u, CHS %u/%u/%u\n",
2514 (unsigned long long)dev->n_sectors,
2515 dev->multi_count, dev->cylinders,
2516 dev->heads, dev->sectors);
2520 dev->cdb_len = 16;
2523 /* ATAPI-specific feature tests */
2524 else if (dev->class == ATA_DEV_ATAPI) {
2525 const char *cdb_intr_string = "";
2526 const char *atapi_an_string = "";
2527 const char *dma_dir_string = "";
2528 u32 sntf;
2530 rc = atapi_cdb_len(id);
2531 if ((rc < 12) || (rc > ATAPI_CDB_LEN)) {
2532 if (ata_msg_warn(ap))
2533 ata_dev_printk(dev, KERN_WARNING,
2534 "unsupported CDB len\n");
2535 rc = -EINVAL;
2536 goto err_out_nosup;
2538 dev->cdb_len = (unsigned int) rc;
2540 /* Enable ATAPI AN if both the host and device have
2541 * the support. If PMP is attached, SNTF is required
2542 * to enable ATAPI AN to discern between PHY status
2543 * changed notifications and ATAPI ANs.
2545 if ((ap->flags & ATA_FLAG_AN) && ata_id_has_atapi_AN(id) &&
2546 (!sata_pmp_attached(ap) ||
2547 sata_scr_read(&ap->link, SCR_NOTIFICATION, &sntf) == 0)) {
2548 unsigned int err_mask;
2550 /* issue SET feature command to turn this on */
2551 err_mask = ata_dev_set_feature(dev,
2552 SETFEATURES_SATA_ENABLE, SATA_AN);
2553 if (err_mask)
2554 ata_dev_printk(dev, KERN_ERR,
2555 "failed to enable ATAPI AN "
2556 "(err_mask=0x%x)\n", err_mask);
2557 else {
2558 dev->flags |= ATA_DFLAG_AN;
2559 atapi_an_string = ", ATAPI AN";
2563 if (ata_id_cdb_intr(dev->id)) {
2564 dev->flags |= ATA_DFLAG_CDB_INTR;
2565 cdb_intr_string = ", CDB intr";
2568 if (atapi_dmadir || atapi_id_dmadir(dev->id)) {
2569 dev->flags |= ATA_DFLAG_DMADIR;
2570 dma_dir_string = ", DMADIR";
2573 /* print device info to dmesg */
2574 if (ata_msg_drv(ap) && print_info)
2575 ata_dev_printk(dev, KERN_INFO,
2576 "ATAPI: %s, %s, max %s%s%s%s\n",
2577 modelbuf, fwrevbuf,
2578 ata_mode_string(xfer_mask),
2579 cdb_intr_string, atapi_an_string,
2580 dma_dir_string);
2583 /* determine max_sectors */
2584 dev->max_sectors = ATA_MAX_SECTORS;
2585 if (dev->flags & ATA_DFLAG_LBA48)
2586 dev->max_sectors = ATA_MAX_SECTORS_LBA48;
2588 if (!(dev->horkage & ATA_HORKAGE_IPM)) {
2589 if (ata_id_has_hipm(dev->id))
2590 dev->flags |= ATA_DFLAG_HIPM;
2591 if (ata_id_has_dipm(dev->id))
2592 dev->flags |= ATA_DFLAG_DIPM;
2595 /* Limit PATA drive on SATA cable bridge transfers to udma5,
2596 200 sectors */
2597 if (ata_dev_knobble(dev)) {
2598 if (ata_msg_drv(ap) && print_info)
2599 ata_dev_printk(dev, KERN_INFO,
2600 "applying bridge limits\n");
2601 dev->udma_mask &= ATA_UDMA5;
2602 dev->max_sectors = ATA_MAX_SECTORS;
2605 if ((dev->class == ATA_DEV_ATAPI) &&
2606 (atapi_command_packet_set(id) == TYPE_TAPE)) {
2607 dev->max_sectors = ATA_MAX_SECTORS_TAPE;
2608 dev->horkage |= ATA_HORKAGE_STUCK_ERR;
2611 if (dev->horkage & ATA_HORKAGE_MAX_SEC_128)
2612 dev->max_sectors = min_t(unsigned int, ATA_MAX_SECTORS_128,
2613 dev->max_sectors);
2615 if (ata_dev_blacklisted(dev) & ATA_HORKAGE_IPM) {
2616 dev->horkage |= ATA_HORKAGE_IPM;
2618 /* reset link pm_policy for this port to no pm */
2619 ap->pm_policy = MAX_PERFORMANCE;
2622 if (ap->ops->dev_config)
2623 ap->ops->dev_config(dev);
2625 if (dev->horkage & ATA_HORKAGE_DIAGNOSTIC) {
2626 /* Let the user know. We don't want to disallow opens for
2627 rescue purposes, or in case the vendor is just a blithering
2628 idiot. Do this after the dev_config call as some controllers
2629 with buggy firmware may want to avoid reporting false device
2630 bugs */
2632 if (print_info) {
2633 ata_dev_printk(dev, KERN_WARNING,
2634 "Drive reports diagnostics failure. This may indicate a drive\n");
2635 ata_dev_printk(dev, KERN_WARNING,
2636 "fault or invalid emulation. Contact drive vendor for information.\n");
2640 if ((dev->horkage & ATA_HORKAGE_FIRMWARE_WARN) && print_info) {
2641 ata_dev_printk(dev, KERN_WARNING, "WARNING: device requires "
2642 "firmware update to be fully functional.\n");
2643 ata_dev_printk(dev, KERN_WARNING, " contact the vendor "
2644 "or visit http://ata.wiki.kernel.org.\n");
2647 return 0;
2649 err_out_nosup:
2650 if (ata_msg_probe(ap))
2651 ata_dev_printk(dev, KERN_DEBUG,
2652 "%s: EXIT, err\n", __func__);
2653 return rc;
2657 * ata_cable_40wire - return 40 wire cable type
2658 * @ap: port
2660 * Helper method for drivers which want to hardwire 40 wire cable
2661 * detection.
2664 int ata_cable_40wire(struct ata_port *ap)
2666 return ATA_CBL_PATA40;
2670 * ata_cable_80wire - return 80 wire cable type
2671 * @ap: port
2673 * Helper method for drivers which want to hardwire 80 wire cable
2674 * detection.
2677 int ata_cable_80wire(struct ata_port *ap)
2679 return ATA_CBL_PATA80;
2683 * ata_cable_unknown - return unknown PATA cable.
2684 * @ap: port
2686 * Helper method for drivers which have no PATA cable detection.
2689 int ata_cable_unknown(struct ata_port *ap)
2691 return ATA_CBL_PATA_UNK;
2695 * ata_cable_ignore - return ignored PATA cable.
2696 * @ap: port
2698 * Helper method for drivers which don't use cable type to limit
2699 * transfer mode.
2701 int ata_cable_ignore(struct ata_port *ap)
2703 return ATA_CBL_PATA_IGN;
2707 * ata_cable_sata - return SATA cable type
2708 * @ap: port
2710 * Helper method for drivers which have SATA cables
2713 int ata_cable_sata(struct ata_port *ap)
2715 return ATA_CBL_SATA;
2719 * ata_bus_probe - Reset and probe ATA bus
2720 * @ap: Bus to probe
2722 * Master ATA bus probing function. Initiates a hardware-dependent
2723 * bus reset, then attempts to identify any devices found on
2724 * the bus.
2726 * LOCKING:
2727 * PCI/etc. bus probe sem.
2729 * RETURNS:
2730 * Zero on success, negative errno otherwise.
2733 int ata_bus_probe(struct ata_port *ap)
2735 unsigned int classes[ATA_MAX_DEVICES];
2736 int tries[ATA_MAX_DEVICES];
2737 int rc;
2738 struct ata_device *dev;
2740 ata_port_probe(ap);
2742 ata_for_each_dev(dev, &ap->link, ALL)
2743 tries[dev->devno] = ATA_PROBE_MAX_TRIES;
2745 retry:
2746 ata_for_each_dev(dev, &ap->link, ALL) {
2747 /* If we issue an SRST then an ATA drive (not ATAPI)
2748 * may change configuration and be in PIO0 timing. If
2749 * we do a hard reset (or are coming from power on)
2750 * this is true for ATA or ATAPI. Until we've set a
2751 * suitable controller mode we should not touch the
2752 * bus as we may be talking too fast.
2754 dev->pio_mode = XFER_PIO_0;
2756 /* If the controller has a pio mode setup function
2757 * then use it to set the chipset to rights. Don't
2758 * touch the DMA setup as that will be dealt with when
2759 * configuring devices.
2761 if (ap->ops->set_piomode)
2762 ap->ops->set_piomode(ap, dev);
2765 /* reset and determine device classes */
2766 ap->ops->phy_reset(ap);
2768 ata_for_each_dev(dev, &ap->link, ALL) {
2769 if (!(ap->flags & ATA_FLAG_DISABLED) &&
2770 dev->class != ATA_DEV_UNKNOWN)
2771 classes[dev->devno] = dev->class;
2772 else
2773 classes[dev->devno] = ATA_DEV_NONE;
2775 dev->class = ATA_DEV_UNKNOWN;
2778 ata_port_probe(ap);
2780 /* read IDENTIFY page and configure devices. We have to do the identify
2781 specific sequence bass-ackwards so that PDIAG- is released by
2782 the slave device */
2784 ata_for_each_dev(dev, &ap->link, ALL_REVERSE) {
2785 if (tries[dev->devno])
2786 dev->class = classes[dev->devno];
2788 if (!ata_dev_enabled(dev))
2789 continue;
2791 rc = ata_dev_read_id(dev, &dev->class, ATA_READID_POSTRESET,
2792 dev->id);
2793 if (rc)
2794 goto fail;
2797 /* Now ask for the cable type as PDIAG- should have been released */
2798 if (ap->ops->cable_detect)
2799 ap->cbl = ap->ops->cable_detect(ap);
2801 /* We may have SATA bridge glue hiding here irrespective of
2802 * the reported cable types and sensed types. When SATA
2803 * drives indicate we have a bridge, we don't know which end
2804 * of the link the bridge is which is a problem.
2806 ata_for_each_dev(dev, &ap->link, ENABLED)
2807 if (ata_id_is_sata(dev->id))
2808 ap->cbl = ATA_CBL_SATA;
2810 /* After the identify sequence we can now set up the devices. We do
2811 this in the normal order so that the user doesn't get confused */
2813 ata_for_each_dev(dev, &ap->link, ENABLED) {
2814 ap->link.eh_context.i.flags |= ATA_EHI_PRINTINFO;
2815 rc = ata_dev_configure(dev);
2816 ap->link.eh_context.i.flags &= ~ATA_EHI_PRINTINFO;
2817 if (rc)
2818 goto fail;
2821 /* configure transfer mode */
2822 rc = ata_set_mode(&ap->link, &dev);
2823 if (rc)
2824 goto fail;
2826 ata_for_each_dev(dev, &ap->link, ENABLED)
2827 return 0;
2829 /* no device present, disable port */
2830 ata_port_disable(ap);
2831 return -ENODEV;
2833 fail:
2834 tries[dev->devno]--;
2836 switch (rc) {
2837 case -EINVAL:
2838 /* eeek, something went very wrong, give up */
2839 tries[dev->devno] = 0;
2840 break;
2842 case -ENODEV:
2843 /* give it just one more chance */
2844 tries[dev->devno] = min(tries[dev->devno], 1);
2845 case -EIO:
2846 if (tries[dev->devno] == 1) {
2847 /* This is the last chance, better to slow
2848 * down than lose it.
2850 sata_down_spd_limit(&ap->link, 0);
2851 ata_down_xfermask_limit(dev, ATA_DNXFER_PIO);
2855 if (!tries[dev->devno])
2856 ata_dev_disable(dev);
2858 goto retry;
2862 * ata_port_probe - Mark port as enabled
2863 * @ap: Port for which we indicate enablement
2865 * Modify @ap data structure such that the system
2866 * thinks that the entire port is enabled.
2868 * LOCKING: host lock, or some other form of
2869 * serialization.
2872 void ata_port_probe(struct ata_port *ap)
2874 ap->flags &= ~ATA_FLAG_DISABLED;
2878 * sata_print_link_status - Print SATA link status
2879 * @link: SATA link to printk link status about
2881 * This function prints link speed and status of a SATA link.
2883 * LOCKING:
2884 * None.
2886 static void sata_print_link_status(struct ata_link *link)
2888 u32 sstatus, scontrol, tmp;
2890 if (sata_scr_read(link, SCR_STATUS, &sstatus))
2891 return;
2892 sata_scr_read(link, SCR_CONTROL, &scontrol);
2894 if (ata_phys_link_online(link)) {
2895 tmp = (sstatus >> 4) & 0xf;
2896 ata_link_printk(link, KERN_INFO,
2897 "SATA link up %s (SStatus %X SControl %X)\n",
2898 sata_spd_string(tmp), sstatus, scontrol);
2899 } else {
2900 ata_link_printk(link, KERN_INFO,
2901 "SATA link down (SStatus %X SControl %X)\n",
2902 sstatus, scontrol);
2907 * ata_dev_pair - return other device on cable
2908 * @adev: device
2910 * Obtain the other device on the same cable, or if none is
2911 * present NULL is returned
2914 struct ata_device *ata_dev_pair(struct ata_device *adev)
2916 struct ata_link *link = adev->link;
2917 struct ata_device *pair = &link->device[1 - adev->devno];
2918 if (!ata_dev_enabled(pair))
2919 return NULL;
2920 return pair;
2924 * ata_port_disable - Disable port.
2925 * @ap: Port to be disabled.
2927 * Modify @ap data structure such that the system
2928 * thinks that the entire port is disabled, and should
2929 * never attempt to probe or communicate with devices
2930 * on this port.
2932 * LOCKING: host lock, or some other form of
2933 * serialization.
2936 void ata_port_disable(struct ata_port *ap)
2938 ap->link.device[0].class = ATA_DEV_NONE;
2939 ap->link.device[1].class = ATA_DEV_NONE;
2940 ap->flags |= ATA_FLAG_DISABLED;
2944 * sata_down_spd_limit - adjust SATA spd limit downward
2945 * @link: Link to adjust SATA spd limit for
2946 * @spd_limit: Additional limit
2948 * Adjust SATA spd limit of @link downward. Note that this
2949 * function only adjusts the limit. The change must be applied
2950 * using sata_set_spd().
2952 * If @spd_limit is non-zero, the speed is limited to equal to or
2953 * lower than @spd_limit if such speed is supported. If
2954 * @spd_limit is slower than any supported speed, only the lowest
2955 * supported speed is allowed.
2957 * LOCKING:
2958 * Inherited from caller.
2960 * RETURNS:
2961 * 0 on success, negative errno on failure
2963 int sata_down_spd_limit(struct ata_link *link, u32 spd_limit)
2965 u32 sstatus, spd, mask;
2966 int rc, bit;
2968 if (!sata_scr_valid(link))
2969 return -EOPNOTSUPP;
2971 /* If SCR can be read, use it to determine the current SPD.
2972 * If not, use cached value in link->sata_spd.
2974 rc = sata_scr_read(link, SCR_STATUS, &sstatus);
2975 if (rc == 0 && ata_sstatus_online(sstatus))
2976 spd = (sstatus >> 4) & 0xf;
2977 else
2978 spd = link->sata_spd;
2980 mask = link->sata_spd_limit;
2981 if (mask <= 1)
2982 return -EINVAL;
2984 /* unconditionally mask off the highest bit */
2985 bit = fls(mask) - 1;
2986 mask &= ~(1 << bit);
2988 /* Mask off all speeds higher than or equal to the current
2989 * one. Force 1.5Gbps if current SPD is not available.
2991 if (spd > 1)
2992 mask &= (1 << (spd - 1)) - 1;
2993 else
2994 mask &= 1;
2996 /* were we already at the bottom? */
2997 if (!mask)
2998 return -EINVAL;
3000 if (spd_limit) {
3001 if (mask & ((1 << spd_limit) - 1))
3002 mask &= (1 << spd_limit) - 1;
3003 else {
3004 bit = ffs(mask) - 1;
3005 mask = 1 << bit;
3009 link->sata_spd_limit = mask;
3011 ata_link_printk(link, KERN_WARNING, "limiting SATA link speed to %s\n",
3012 sata_spd_string(fls(mask)));
3014 return 0;
3017 static int __sata_set_spd_needed(struct ata_link *link, u32 *scontrol)
3019 struct ata_link *host_link = &link->ap->link;
3020 u32 limit, target, spd;
3022 limit = link->sata_spd_limit;
3024 /* Don't configure downstream link faster than upstream link.
3025 * It doesn't speed up anything and some PMPs choke on such
3026 * configuration.
3028 if (!ata_is_host_link(link) && host_link->sata_spd)
3029 limit &= (1 << host_link->sata_spd) - 1;
3031 if (limit == UINT_MAX)
3032 target = 0;
3033 else
3034 target = fls(limit);
3036 spd = (*scontrol >> 4) & 0xf;
3037 *scontrol = (*scontrol & ~0xf0) | ((target & 0xf) << 4);
3039 return spd != target;
3043 * sata_set_spd_needed - is SATA spd configuration needed
3044 * @link: Link in question
3046 * Test whether the spd limit in SControl matches
3047 * @link->sata_spd_limit. This function is used to determine
3048 * whether hardreset is necessary to apply SATA spd
3049 * configuration.
3051 * LOCKING:
3052 * Inherited from caller.
3054 * RETURNS:
3055 * 1 if SATA spd configuration is needed, 0 otherwise.
3057 static int sata_set_spd_needed(struct ata_link *link)
3059 u32 scontrol;
3061 if (sata_scr_read(link, SCR_CONTROL, &scontrol))
3062 return 1;
3064 return __sata_set_spd_needed(link, &scontrol);
3068 * sata_set_spd - set SATA spd according to spd limit
3069 * @link: Link to set SATA spd for
3071 * Set SATA spd of @link according to sata_spd_limit.
3073 * LOCKING:
3074 * Inherited from caller.
3076 * RETURNS:
3077 * 0 if spd doesn't need to be changed, 1 if spd has been
3078 * changed. Negative errno if SCR registers are inaccessible.
3080 int sata_set_spd(struct ata_link *link)
3082 u32 scontrol;
3083 int rc;
3085 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3086 return rc;
3088 if (!__sata_set_spd_needed(link, &scontrol))
3089 return 0;
3091 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3092 return rc;
3094 return 1;
3098 * This mode timing computation functionality is ported over from
3099 * drivers/ide/ide-timing.h and was originally written by Vojtech Pavlik
3102 * PIO 0-4, MWDMA 0-2 and UDMA 0-6 timings (in nanoseconds).
3103 * These were taken from ATA/ATAPI-6 standard, rev 0a, except
3104 * for UDMA6, which is currently supported only by Maxtor drives.
3106 * For PIO 5/6 MWDMA 3/4 see the CFA specification 3.0.
3109 static const struct ata_timing ata_timing[] = {
3110 /* { XFER_PIO_SLOW, 120, 290, 240, 960, 290, 240, 0, 960, 0 }, */
3111 { XFER_PIO_0, 70, 290, 240, 600, 165, 150, 0, 600, 0 },
3112 { XFER_PIO_1, 50, 290, 93, 383, 125, 100, 0, 383, 0 },
3113 { XFER_PIO_2, 30, 290, 40, 330, 100, 90, 0, 240, 0 },
3114 { XFER_PIO_3, 30, 80, 70, 180, 80, 70, 0, 180, 0 },
3115 { XFER_PIO_4, 25, 70, 25, 120, 70, 25, 0, 120, 0 },
3116 { XFER_PIO_5, 15, 65, 25, 100, 65, 25, 0, 100, 0 },
3117 { XFER_PIO_6, 10, 55, 20, 80, 55, 20, 0, 80, 0 },
3119 { XFER_SW_DMA_0, 120, 0, 0, 0, 480, 480, 50, 960, 0 },
3120 { XFER_SW_DMA_1, 90, 0, 0, 0, 240, 240, 30, 480, 0 },
3121 { XFER_SW_DMA_2, 60, 0, 0, 0, 120, 120, 20, 240, 0 },
3123 { XFER_MW_DMA_0, 60, 0, 0, 0, 215, 215, 20, 480, 0 },
3124 { XFER_MW_DMA_1, 45, 0, 0, 0, 80, 50, 5, 150, 0 },
3125 { XFER_MW_DMA_2, 25, 0, 0, 0, 70, 25, 5, 120, 0 },
3126 { XFER_MW_DMA_3, 25, 0, 0, 0, 65, 25, 5, 100, 0 },
3127 { XFER_MW_DMA_4, 25, 0, 0, 0, 55, 20, 5, 80, 0 },
3129 /* { XFER_UDMA_SLOW, 0, 0, 0, 0, 0, 0, 0, 0, 150 }, */
3130 { XFER_UDMA_0, 0, 0, 0, 0, 0, 0, 0, 0, 120 },
3131 { XFER_UDMA_1, 0, 0, 0, 0, 0, 0, 0, 0, 80 },
3132 { XFER_UDMA_2, 0, 0, 0, 0, 0, 0, 0, 0, 60 },
3133 { XFER_UDMA_3, 0, 0, 0, 0, 0, 0, 0, 0, 45 },
3134 { XFER_UDMA_4, 0, 0, 0, 0, 0, 0, 0, 0, 30 },
3135 { XFER_UDMA_5, 0, 0, 0, 0, 0, 0, 0, 0, 20 },
3136 { XFER_UDMA_6, 0, 0, 0, 0, 0, 0, 0, 0, 15 },
3138 { 0xFF }
3141 #define ENOUGH(v, unit) (((v)-1)/(unit)+1)
3142 #define EZ(v, unit) ((v)?ENOUGH(v, unit):0)
3144 static void ata_timing_quantize(const struct ata_timing *t, struct ata_timing *q, int T, int UT)
3146 q->setup = EZ(t->setup * 1000, T);
3147 q->act8b = EZ(t->act8b * 1000, T);
3148 q->rec8b = EZ(t->rec8b * 1000, T);
3149 q->cyc8b = EZ(t->cyc8b * 1000, T);
3150 q->active = EZ(t->active * 1000, T);
3151 q->recover = EZ(t->recover * 1000, T);
3152 q->dmack_hold = EZ(t->dmack_hold * 1000, T);
3153 q->cycle = EZ(t->cycle * 1000, T);
3154 q->udma = EZ(t->udma * 1000, UT);
3157 void ata_timing_merge(const struct ata_timing *a, const struct ata_timing *b,
3158 struct ata_timing *m, unsigned int what)
3160 if (what & ATA_TIMING_SETUP ) m->setup = max(a->setup, b->setup);
3161 if (what & ATA_TIMING_ACT8B ) m->act8b = max(a->act8b, b->act8b);
3162 if (what & ATA_TIMING_REC8B ) m->rec8b = max(a->rec8b, b->rec8b);
3163 if (what & ATA_TIMING_CYC8B ) m->cyc8b = max(a->cyc8b, b->cyc8b);
3164 if (what & ATA_TIMING_ACTIVE ) m->active = max(a->active, b->active);
3165 if (what & ATA_TIMING_RECOVER) m->recover = max(a->recover, b->recover);
3166 if (what & ATA_TIMING_DMACK_HOLD) m->dmack_hold = max(a->dmack_hold, b->dmack_hold);
3167 if (what & ATA_TIMING_CYCLE ) m->cycle = max(a->cycle, b->cycle);
3168 if (what & ATA_TIMING_UDMA ) m->udma = max(a->udma, b->udma);
3171 const struct ata_timing *ata_timing_find_mode(u8 xfer_mode)
3173 const struct ata_timing *t = ata_timing;
3175 while (xfer_mode > t->mode)
3176 t++;
3178 if (xfer_mode == t->mode)
3179 return t;
3180 return NULL;
3183 int ata_timing_compute(struct ata_device *adev, unsigned short speed,
3184 struct ata_timing *t, int T, int UT)
3186 const struct ata_timing *s;
3187 struct ata_timing p;
3190 * Find the mode.
3193 if (!(s = ata_timing_find_mode(speed)))
3194 return -EINVAL;
3196 memcpy(t, s, sizeof(*s));
3199 * If the drive is an EIDE drive, it can tell us it needs extended
3200 * PIO/MW_DMA cycle timing.
3203 if (adev->id[ATA_ID_FIELD_VALID] & 2) { /* EIDE drive */
3204 memset(&p, 0, sizeof(p));
3205 if (speed >= XFER_PIO_0 && speed <= XFER_SW_DMA_0) {
3206 if (speed <= XFER_PIO_2) p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO];
3207 else p.cycle = p.cyc8b = adev->id[ATA_ID_EIDE_PIO_IORDY];
3208 } else if (speed >= XFER_MW_DMA_0 && speed <= XFER_MW_DMA_2) {
3209 p.cycle = adev->id[ATA_ID_EIDE_DMA_MIN];
3211 ata_timing_merge(&p, t, t, ATA_TIMING_CYCLE | ATA_TIMING_CYC8B);
3215 * Convert the timing to bus clock counts.
3218 ata_timing_quantize(t, t, T, UT);
3221 * Even in DMA/UDMA modes we still use PIO access for IDENTIFY,
3222 * S.M.A.R.T * and some other commands. We have to ensure that the
3223 * DMA cycle timing is slower/equal than the fastest PIO timing.
3226 if (speed > XFER_PIO_6) {
3227 ata_timing_compute(adev, adev->pio_mode, &p, T, UT);
3228 ata_timing_merge(&p, t, t, ATA_TIMING_ALL);
3232 * Lengthen active & recovery time so that cycle time is correct.
3235 if (t->act8b + t->rec8b < t->cyc8b) {
3236 t->act8b += (t->cyc8b - (t->act8b + t->rec8b)) / 2;
3237 t->rec8b = t->cyc8b - t->act8b;
3240 if (t->active + t->recover < t->cycle) {
3241 t->active += (t->cycle - (t->active + t->recover)) / 2;
3242 t->recover = t->cycle - t->active;
3245 /* In a few cases quantisation may produce enough errors to
3246 leave t->cycle too low for the sum of active and recovery
3247 if so we must correct this */
3248 if (t->active + t->recover > t->cycle)
3249 t->cycle = t->active + t->recover;
3251 return 0;
3255 * ata_timing_cycle2mode - find xfer mode for the specified cycle duration
3256 * @xfer_shift: ATA_SHIFT_* value for transfer type to examine.
3257 * @cycle: cycle duration in ns
3259 * Return matching xfer mode for @cycle. The returned mode is of
3260 * the transfer type specified by @xfer_shift. If @cycle is too
3261 * slow for @xfer_shift, 0xff is returned. If @cycle is faster
3262 * than the fastest known mode, the fasted mode is returned.
3264 * LOCKING:
3265 * None.
3267 * RETURNS:
3268 * Matching xfer_mode, 0xff if no match found.
3270 u8 ata_timing_cycle2mode(unsigned int xfer_shift, int cycle)
3272 u8 base_mode = 0xff, last_mode = 0xff;
3273 const struct ata_xfer_ent *ent;
3274 const struct ata_timing *t;
3276 for (ent = ata_xfer_tbl; ent->shift >= 0; ent++)
3277 if (ent->shift == xfer_shift)
3278 base_mode = ent->base;
3280 for (t = ata_timing_find_mode(base_mode);
3281 t && ata_xfer_mode2shift(t->mode) == xfer_shift; t++) {
3282 unsigned short this_cycle;
3284 switch (xfer_shift) {
3285 case ATA_SHIFT_PIO:
3286 case ATA_SHIFT_MWDMA:
3287 this_cycle = t->cycle;
3288 break;
3289 case ATA_SHIFT_UDMA:
3290 this_cycle = t->udma;
3291 break;
3292 default:
3293 return 0xff;
3296 if (cycle > this_cycle)
3297 break;
3299 last_mode = t->mode;
3302 return last_mode;
3306 * ata_down_xfermask_limit - adjust dev xfer masks downward
3307 * @dev: Device to adjust xfer masks
3308 * @sel: ATA_DNXFER_* selector
3310 * Adjust xfer masks of @dev downward. Note that this function
3311 * does not apply the change. Invoking ata_set_mode() afterwards
3312 * will apply the limit.
3314 * LOCKING:
3315 * Inherited from caller.
3317 * RETURNS:
3318 * 0 on success, negative errno on failure
3320 int ata_down_xfermask_limit(struct ata_device *dev, unsigned int sel)
3322 char buf[32];
3323 unsigned long orig_mask, xfer_mask;
3324 unsigned long pio_mask, mwdma_mask, udma_mask;
3325 int quiet, highbit;
3327 quiet = !!(sel & ATA_DNXFER_QUIET);
3328 sel &= ~ATA_DNXFER_QUIET;
3330 xfer_mask = orig_mask = ata_pack_xfermask(dev->pio_mask,
3331 dev->mwdma_mask,
3332 dev->udma_mask);
3333 ata_unpack_xfermask(xfer_mask, &pio_mask, &mwdma_mask, &udma_mask);
3335 switch (sel) {
3336 case ATA_DNXFER_PIO:
3337 highbit = fls(pio_mask) - 1;
3338 pio_mask &= ~(1 << highbit);
3339 break;
3341 case ATA_DNXFER_DMA:
3342 if (udma_mask) {
3343 highbit = fls(udma_mask) - 1;
3344 udma_mask &= ~(1 << highbit);
3345 if (!udma_mask)
3346 return -ENOENT;
3347 } else if (mwdma_mask) {
3348 highbit = fls(mwdma_mask) - 1;
3349 mwdma_mask &= ~(1 << highbit);
3350 if (!mwdma_mask)
3351 return -ENOENT;
3353 break;
3355 case ATA_DNXFER_40C:
3356 udma_mask &= ATA_UDMA_MASK_40C;
3357 break;
3359 case ATA_DNXFER_FORCE_PIO0:
3360 pio_mask &= 1;
3361 case ATA_DNXFER_FORCE_PIO:
3362 mwdma_mask = 0;
3363 udma_mask = 0;
3364 break;
3366 default:
3367 BUG();
3370 xfer_mask &= ata_pack_xfermask(pio_mask, mwdma_mask, udma_mask);
3372 if (!(xfer_mask & ATA_MASK_PIO) || xfer_mask == orig_mask)
3373 return -ENOENT;
3375 if (!quiet) {
3376 if (xfer_mask & (ATA_MASK_MWDMA | ATA_MASK_UDMA))
3377 snprintf(buf, sizeof(buf), "%s:%s",
3378 ata_mode_string(xfer_mask),
3379 ata_mode_string(xfer_mask & ATA_MASK_PIO));
3380 else
3381 snprintf(buf, sizeof(buf), "%s",
3382 ata_mode_string(xfer_mask));
3384 ata_dev_printk(dev, KERN_WARNING,
3385 "limiting speed to %s\n", buf);
3388 ata_unpack_xfermask(xfer_mask, &dev->pio_mask, &dev->mwdma_mask,
3389 &dev->udma_mask);
3391 return 0;
3394 static int ata_dev_set_mode(struct ata_device *dev)
3396 struct ata_port *ap = dev->link->ap;
3397 struct ata_eh_context *ehc = &dev->link->eh_context;
3398 const bool nosetxfer = dev->horkage & ATA_HORKAGE_NOSETXFER;
3399 const char *dev_err_whine = "";
3400 int ign_dev_err = 0;
3401 unsigned int err_mask = 0;
3402 int rc;
3404 dev->flags &= ~ATA_DFLAG_PIO;
3405 if (dev->xfer_shift == ATA_SHIFT_PIO)
3406 dev->flags |= ATA_DFLAG_PIO;
3408 if (nosetxfer && ap->flags & ATA_FLAG_SATA && ata_id_is_sata(dev->id))
3409 dev_err_whine = " (SET_XFERMODE skipped)";
3410 else {
3411 if (nosetxfer)
3412 ata_dev_printk(dev, KERN_WARNING,
3413 "NOSETXFER but PATA detected - can't "
3414 "skip SETXFER, might malfunction\n");
3415 err_mask = ata_dev_set_xfermode(dev);
3418 if (err_mask & ~AC_ERR_DEV)
3419 goto fail;
3421 /* revalidate */
3422 ehc->i.flags |= ATA_EHI_POST_SETMODE;
3423 rc = ata_dev_revalidate(dev, ATA_DEV_UNKNOWN, 0);
3424 ehc->i.flags &= ~ATA_EHI_POST_SETMODE;
3425 if (rc)
3426 return rc;
3428 if (dev->xfer_shift == ATA_SHIFT_PIO) {
3429 /* Old CFA may refuse this command, which is just fine */
3430 if (ata_id_is_cfa(dev->id))
3431 ign_dev_err = 1;
3432 /* Catch several broken garbage emulations plus some pre
3433 ATA devices */
3434 if (ata_id_major_version(dev->id) == 0 &&
3435 dev->pio_mode <= XFER_PIO_2)
3436 ign_dev_err = 1;
3437 /* Some very old devices and some bad newer ones fail
3438 any kind of SET_XFERMODE request but support PIO0-2
3439 timings and no IORDY */
3440 if (!ata_id_has_iordy(dev->id) && dev->pio_mode <= XFER_PIO_2)
3441 ign_dev_err = 1;
3443 /* Early MWDMA devices do DMA but don't allow DMA mode setting.
3444 Don't fail an MWDMA0 set IFF the device indicates it is in MWDMA0 */
3445 if (dev->xfer_shift == ATA_SHIFT_MWDMA &&
3446 dev->dma_mode == XFER_MW_DMA_0 &&
3447 (dev->id[63] >> 8) & 1)
3448 ign_dev_err = 1;
3450 /* if the device is actually configured correctly, ignore dev err */
3451 if (dev->xfer_mode == ata_xfer_mask2mode(ata_id_xfermask(dev->id)))
3452 ign_dev_err = 1;
3454 if (err_mask & AC_ERR_DEV) {
3455 if (!ign_dev_err)
3456 goto fail;
3457 else
3458 dev_err_whine = " (device error ignored)";
3461 DPRINTK("xfer_shift=%u, xfer_mode=0x%x\n",
3462 dev->xfer_shift, (int)dev->xfer_mode);
3464 ata_dev_printk(dev, KERN_INFO, "configured for %s%s\n",
3465 ata_mode_string(ata_xfer_mode2mask(dev->xfer_mode)),
3466 dev_err_whine);
3468 return 0;
3470 fail:
3471 ata_dev_printk(dev, KERN_ERR, "failed to set xfermode "
3472 "(err_mask=0x%x)\n", err_mask);
3473 return -EIO;
3477 * ata_do_set_mode - Program timings and issue SET FEATURES - XFER
3478 * @link: link on which timings will be programmed
3479 * @r_failed_dev: out parameter for failed device
3481 * Standard implementation of the function used to tune and set
3482 * ATA device disk transfer mode (PIO3, UDMA6, etc.). If
3483 * ata_dev_set_mode() fails, pointer to the failing device is
3484 * returned in @r_failed_dev.
3486 * LOCKING:
3487 * PCI/etc. bus probe sem.
3489 * RETURNS:
3490 * 0 on success, negative errno otherwise
3493 int ata_do_set_mode(struct ata_link *link, struct ata_device **r_failed_dev)
3495 struct ata_port *ap = link->ap;
3496 struct ata_device *dev;
3497 int rc = 0, used_dma = 0, found = 0;
3499 /* step 1: calculate xfer_mask */
3500 ata_for_each_dev(dev, link, ENABLED) {
3501 unsigned long pio_mask, dma_mask;
3502 unsigned int mode_mask;
3504 mode_mask = ATA_DMA_MASK_ATA;
3505 if (dev->class == ATA_DEV_ATAPI)
3506 mode_mask = ATA_DMA_MASK_ATAPI;
3507 else if (ata_id_is_cfa(dev->id))
3508 mode_mask = ATA_DMA_MASK_CFA;
3510 ata_dev_xfermask(dev);
3511 ata_force_xfermask(dev);
3513 pio_mask = ata_pack_xfermask(dev->pio_mask, 0, 0);
3514 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3516 if (libata_dma_mask & mode_mask)
3517 dma_mask = ata_pack_xfermask(0, dev->mwdma_mask, dev->udma_mask);
3518 else
3519 dma_mask = 0;
3521 dev->pio_mode = ata_xfer_mask2mode(pio_mask);
3522 dev->dma_mode = ata_xfer_mask2mode(dma_mask);
3524 found = 1;
3525 if (ata_dma_enabled(dev))
3526 used_dma = 1;
3528 if (!found)
3529 goto out;
3531 /* step 2: always set host PIO timings */
3532 ata_for_each_dev(dev, link, ENABLED) {
3533 if (dev->pio_mode == 0xff) {
3534 ata_dev_printk(dev, KERN_WARNING, "no PIO support\n");
3535 rc = -EINVAL;
3536 goto out;
3539 dev->xfer_mode = dev->pio_mode;
3540 dev->xfer_shift = ATA_SHIFT_PIO;
3541 if (ap->ops->set_piomode)
3542 ap->ops->set_piomode(ap, dev);
3545 /* step 3: set host DMA timings */
3546 ata_for_each_dev(dev, link, ENABLED) {
3547 if (!ata_dma_enabled(dev))
3548 continue;
3550 dev->xfer_mode = dev->dma_mode;
3551 dev->xfer_shift = ata_xfer_mode2shift(dev->dma_mode);
3552 if (ap->ops->set_dmamode)
3553 ap->ops->set_dmamode(ap, dev);
3556 /* step 4: update devices' xfer mode */
3557 ata_for_each_dev(dev, link, ENABLED) {
3558 rc = ata_dev_set_mode(dev);
3559 if (rc)
3560 goto out;
3563 /* Record simplex status. If we selected DMA then the other
3564 * host channels are not permitted to do so.
3566 if (used_dma && (ap->host->flags & ATA_HOST_SIMPLEX))
3567 ap->host->simplex_claimed = ap;
3569 out:
3570 if (rc)
3571 *r_failed_dev = dev;
3572 return rc;
3576 * ata_wait_ready - wait for link to become ready
3577 * @link: link to be waited on
3578 * @deadline: deadline jiffies for the operation
3579 * @check_ready: callback to check link readiness
3581 * Wait for @link to become ready. @check_ready should return
3582 * positive number if @link is ready, 0 if it isn't, -ENODEV if
3583 * link doesn't seem to be occupied, other errno for other error
3584 * conditions.
3586 * Transient -ENODEV conditions are allowed for
3587 * ATA_TMOUT_FF_WAIT.
3589 * LOCKING:
3590 * EH context.
3592 * RETURNS:
3593 * 0 if @linke is ready before @deadline; otherwise, -errno.
3595 int ata_wait_ready(struct ata_link *link, unsigned long deadline,
3596 int (*check_ready)(struct ata_link *link))
3598 unsigned long start = jiffies;
3599 unsigned long nodev_deadline = ata_deadline(start, ATA_TMOUT_FF_WAIT);
3600 int warned = 0;
3602 /* Slave readiness can't be tested separately from master. On
3603 * M/S emulation configuration, this function should be called
3604 * only on the master and it will handle both master and slave.
3606 WARN_ON(link == link->ap->slave_link);
3608 if (time_after(nodev_deadline, deadline))
3609 nodev_deadline = deadline;
3611 while (1) {
3612 unsigned long now = jiffies;
3613 int ready, tmp;
3615 ready = tmp = check_ready(link);
3616 if (ready > 0)
3617 return 0;
3619 /* -ENODEV could be transient. Ignore -ENODEV if link
3620 * is online. Also, some SATA devices take a long
3621 * time to clear 0xff after reset. For example,
3622 * HHD424020F7SV00 iVDR needs >= 800ms while Quantum
3623 * GoVault needs even more than that. Wait for
3624 * ATA_TMOUT_FF_WAIT on -ENODEV if link isn't offline.
3626 * Note that some PATA controllers (pata_ali) explode
3627 * if status register is read more than once when
3628 * there's no device attached.
3630 if (ready == -ENODEV) {
3631 if (ata_link_online(link))
3632 ready = 0;
3633 else if ((link->ap->flags & ATA_FLAG_SATA) &&
3634 !ata_link_offline(link) &&
3635 time_before(now, nodev_deadline))
3636 ready = 0;
3639 if (ready)
3640 return ready;
3641 if (time_after(now, deadline))
3642 return -EBUSY;
3644 if (!warned && time_after(now, start + 5 * HZ) &&
3645 (deadline - now > 3 * HZ)) {
3646 ata_link_printk(link, KERN_WARNING,
3647 "link is slow to respond, please be patient "
3648 "(ready=%d)\n", tmp);
3649 warned = 1;
3652 msleep(50);
3657 * ata_wait_after_reset - wait for link to become ready after reset
3658 * @link: link to be waited on
3659 * @deadline: deadline jiffies for the operation
3660 * @check_ready: callback to check link readiness
3662 * Wait for @link to become ready after reset.
3664 * LOCKING:
3665 * EH context.
3667 * RETURNS:
3668 * 0 if @linke is ready before @deadline; otherwise, -errno.
3670 int ata_wait_after_reset(struct ata_link *link, unsigned long deadline,
3671 int (*check_ready)(struct ata_link *link))
3673 msleep(ATA_WAIT_AFTER_RESET);
3675 return ata_wait_ready(link, deadline, check_ready);
3679 * sata_link_debounce - debounce SATA phy status
3680 * @link: ATA link to debounce SATA phy status for
3681 * @params: timing parameters { interval, duratinon, timeout } in msec
3682 * @deadline: deadline jiffies for the operation
3684 * Make sure SStatus of @link reaches stable state, determined by
3685 * holding the same value where DET is not 1 for @duration polled
3686 * every @interval, before @timeout. Timeout constraints the
3687 * beginning of the stable state. Because DET gets stuck at 1 on
3688 * some controllers after hot unplugging, this functions waits
3689 * until timeout then returns 0 if DET is stable at 1.
3691 * @timeout is further limited by @deadline. The sooner of the
3692 * two is used.
3694 * LOCKING:
3695 * Kernel thread context (may sleep)
3697 * RETURNS:
3698 * 0 on success, -errno on failure.
3700 int sata_link_debounce(struct ata_link *link, const unsigned long *params,
3701 unsigned long deadline)
3703 unsigned long interval = params[0];
3704 unsigned long duration = params[1];
3705 unsigned long last_jiffies, t;
3706 u32 last, cur;
3707 int rc;
3709 t = ata_deadline(jiffies, params[2]);
3710 if (time_before(t, deadline))
3711 deadline = t;
3713 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3714 return rc;
3715 cur &= 0xf;
3717 last = cur;
3718 last_jiffies = jiffies;
3720 while (1) {
3721 msleep(interval);
3722 if ((rc = sata_scr_read(link, SCR_STATUS, &cur)))
3723 return rc;
3724 cur &= 0xf;
3726 /* DET stable? */
3727 if (cur == last) {
3728 if (cur == 1 && time_before(jiffies, deadline))
3729 continue;
3730 if (time_after(jiffies,
3731 ata_deadline(last_jiffies, duration)))
3732 return 0;
3733 continue;
3736 /* unstable, start over */
3737 last = cur;
3738 last_jiffies = jiffies;
3740 /* Check deadline. If debouncing failed, return
3741 * -EPIPE to tell upper layer to lower link speed.
3743 if (time_after(jiffies, deadline))
3744 return -EPIPE;
3749 * sata_link_resume - resume SATA link
3750 * @link: ATA link to resume SATA
3751 * @params: timing parameters { interval, duratinon, timeout } in msec
3752 * @deadline: deadline jiffies for the operation
3754 * Resume SATA phy @link and debounce it.
3756 * LOCKING:
3757 * Kernel thread context (may sleep)
3759 * RETURNS:
3760 * 0 on success, -errno on failure.
3762 int sata_link_resume(struct ata_link *link, const unsigned long *params,
3763 unsigned long deadline)
3765 u32 scontrol, serror;
3766 int rc;
3768 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3769 return rc;
3771 scontrol = (scontrol & 0x0f0) | 0x300;
3773 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3774 return rc;
3776 /* Some PHYs react badly if SStatus is pounded immediately
3777 * after resuming. Delay 200ms before debouncing.
3779 msleep(200);
3781 if ((rc = sata_link_debounce(link, params, deadline)))
3782 return rc;
3784 /* clear SError, some PHYs require this even for SRST to work */
3785 if (!(rc = sata_scr_read(link, SCR_ERROR, &serror)))
3786 rc = sata_scr_write(link, SCR_ERROR, serror);
3788 return rc != -EINVAL ? rc : 0;
3792 * ata_std_prereset - prepare for reset
3793 * @link: ATA link to be reset
3794 * @deadline: deadline jiffies for the operation
3796 * @link is about to be reset. Initialize it. Failure from
3797 * prereset makes libata abort whole reset sequence and give up
3798 * that port, so prereset should be best-effort. It does its
3799 * best to prepare for reset sequence but if things go wrong, it
3800 * should just whine, not fail.
3802 * LOCKING:
3803 * Kernel thread context (may sleep)
3805 * RETURNS:
3806 * 0 on success, -errno otherwise.
3808 int ata_std_prereset(struct ata_link *link, unsigned long deadline)
3810 struct ata_port *ap = link->ap;
3811 struct ata_eh_context *ehc = &link->eh_context;
3812 const unsigned long *timing = sata_ehc_deb_timing(ehc);
3813 int rc;
3815 /* if we're about to do hardreset, nothing more to do */
3816 if (ehc->i.action & ATA_EH_HARDRESET)
3817 return 0;
3819 /* if SATA, resume link */
3820 if (ap->flags & ATA_FLAG_SATA) {
3821 rc = sata_link_resume(link, timing, deadline);
3822 /* whine about phy resume failure but proceed */
3823 if (rc && rc != -EOPNOTSUPP)
3824 ata_link_printk(link, KERN_WARNING, "failed to resume "
3825 "link for reset (errno=%d)\n", rc);
3828 /* no point in trying softreset on offline link */
3829 if (ata_phys_link_offline(link))
3830 ehc->i.action &= ~ATA_EH_SOFTRESET;
3832 return 0;
3836 * sata_link_hardreset - reset link via SATA phy reset
3837 * @link: link to reset
3838 * @timing: timing parameters { interval, duratinon, timeout } in msec
3839 * @deadline: deadline jiffies for the operation
3840 * @online: optional out parameter indicating link onlineness
3841 * @check_ready: optional callback to check link readiness
3843 * SATA phy-reset @link using DET bits of SControl register.
3844 * After hardreset, link readiness is waited upon using
3845 * ata_wait_ready() if @check_ready is specified. LLDs are
3846 * allowed to not specify @check_ready and wait itself after this
3847 * function returns. Device classification is LLD's
3848 * responsibility.
3850 * *@online is set to one iff reset succeeded and @link is online
3851 * after reset.
3853 * LOCKING:
3854 * Kernel thread context (may sleep)
3856 * RETURNS:
3857 * 0 on success, -errno otherwise.
3859 int sata_link_hardreset(struct ata_link *link, const unsigned long *timing,
3860 unsigned long deadline,
3861 bool *online, int (*check_ready)(struct ata_link *))
3863 u32 scontrol;
3864 int rc;
3866 DPRINTK("ENTER\n");
3868 if (online)
3869 *online = false;
3871 if (sata_set_spd_needed(link)) {
3872 /* SATA spec says nothing about how to reconfigure
3873 * spd. To be on the safe side, turn off phy during
3874 * reconfiguration. This works for at least ICH7 AHCI
3875 * and Sil3124.
3877 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3878 goto out;
3880 scontrol = (scontrol & 0x0f0) | 0x304;
3882 if ((rc = sata_scr_write(link, SCR_CONTROL, scontrol)))
3883 goto out;
3885 sata_set_spd(link);
3888 /* issue phy wake/reset */
3889 if ((rc = sata_scr_read(link, SCR_CONTROL, &scontrol)))
3890 goto out;
3892 scontrol = (scontrol & 0x0f0) | 0x301;
3894 if ((rc = sata_scr_write_flush(link, SCR_CONTROL, scontrol)))
3895 goto out;
3897 /* Couldn't find anything in SATA I/II specs, but AHCI-1.1
3898 * 10.4.2 says at least 1 ms.
3900 msleep(1);
3902 /* bring link back */
3903 rc = sata_link_resume(link, timing, deadline);
3904 if (rc)
3905 goto out;
3906 /* if link is offline nothing more to do */
3907 if (ata_phys_link_offline(link))
3908 goto out;
3910 /* Link is online. From this point, -ENODEV too is an error. */
3911 if (online)
3912 *online = true;
3914 if (sata_pmp_supported(link->ap) && ata_is_host_link(link)) {
3915 /* If PMP is supported, we have to do follow-up SRST.
3916 * Some PMPs don't send D2H Reg FIS after hardreset if
3917 * the first port is empty. Wait only for
3918 * ATA_TMOUT_PMP_SRST_WAIT.
3920 if (check_ready) {
3921 unsigned long pmp_deadline;
3923 pmp_deadline = ata_deadline(jiffies,
3924 ATA_TMOUT_PMP_SRST_WAIT);
3925 if (time_after(pmp_deadline, deadline))
3926 pmp_deadline = deadline;
3927 ata_wait_ready(link, pmp_deadline, check_ready);
3929 rc = -EAGAIN;
3930 goto out;
3933 rc = 0;
3934 if (check_ready)
3935 rc = ata_wait_ready(link, deadline, check_ready);
3936 out:
3937 if (rc && rc != -EAGAIN) {
3938 /* online is set iff link is online && reset succeeded */
3939 if (online)
3940 *online = false;
3941 ata_link_printk(link, KERN_ERR,
3942 "COMRESET failed (errno=%d)\n", rc);
3944 DPRINTK("EXIT, rc=%d\n", rc);
3945 return rc;
3949 * sata_std_hardreset - COMRESET w/o waiting or classification
3950 * @link: link to reset
3951 * @class: resulting class of attached device
3952 * @deadline: deadline jiffies for the operation
3954 * Standard SATA COMRESET w/o waiting or classification.
3956 * LOCKING:
3957 * Kernel thread context (may sleep)
3959 * RETURNS:
3960 * 0 if link offline, -EAGAIN if link online, -errno on errors.
3962 int sata_std_hardreset(struct ata_link *link, unsigned int *class,
3963 unsigned long deadline)
3965 const unsigned long *timing = sata_ehc_deb_timing(&link->eh_context);
3966 bool online;
3967 int rc;
3969 /* do hardreset */
3970 rc = sata_link_hardreset(link, timing, deadline, &online, NULL);
3971 return online ? -EAGAIN : rc;
3975 * ata_std_postreset - standard postreset callback
3976 * @link: the target ata_link
3977 * @classes: classes of attached devices
3979 * This function is invoked after a successful reset. Note that
3980 * the device might have been reset more than once using
3981 * different reset methods before postreset is invoked.
3983 * LOCKING:
3984 * Kernel thread context (may sleep)
3986 void ata_std_postreset(struct ata_link *link, unsigned int *classes)
3988 u32 serror;
3990 DPRINTK("ENTER\n");
3992 /* reset complete, clear SError */
3993 if (!sata_scr_read(link, SCR_ERROR, &serror))
3994 sata_scr_write(link, SCR_ERROR, serror);
3996 /* print link status */
3997 sata_print_link_status(link);
3999 DPRINTK("EXIT\n");
4003 * ata_dev_same_device - Determine whether new ID matches configured device
4004 * @dev: device to compare against
4005 * @new_class: class of the new device
4006 * @new_id: IDENTIFY page of the new device
4008 * Compare @new_class and @new_id against @dev and determine
4009 * whether @dev is the device indicated by @new_class and
4010 * @new_id.
4012 * LOCKING:
4013 * None.
4015 * RETURNS:
4016 * 1 if @dev matches @new_class and @new_id, 0 otherwise.
4018 static int ata_dev_same_device(struct ata_device *dev, unsigned int new_class,
4019 const u16 *new_id)
4021 const u16 *old_id = dev->id;
4022 unsigned char model[2][ATA_ID_PROD_LEN + 1];
4023 unsigned char serial[2][ATA_ID_SERNO_LEN + 1];
4025 if (dev->class != new_class) {
4026 ata_dev_printk(dev, KERN_INFO, "class mismatch %d != %d\n",
4027 dev->class, new_class);
4028 return 0;
4031 ata_id_c_string(old_id, model[0], ATA_ID_PROD, sizeof(model[0]));
4032 ata_id_c_string(new_id, model[1], ATA_ID_PROD, sizeof(model[1]));
4033 ata_id_c_string(old_id, serial[0], ATA_ID_SERNO, sizeof(serial[0]));
4034 ata_id_c_string(new_id, serial[1], ATA_ID_SERNO, sizeof(serial[1]));
4036 if (strcmp(model[0], model[1])) {
4037 ata_dev_printk(dev, KERN_INFO, "model number mismatch "
4038 "'%s' != '%s'\n", model[0], model[1]);
4039 return 0;
4042 if (strcmp(serial[0], serial[1])) {
4043 ata_dev_printk(dev, KERN_INFO, "serial number mismatch "
4044 "'%s' != '%s'\n", serial[0], serial[1]);
4045 return 0;
4048 return 1;
4052 * ata_dev_reread_id - Re-read IDENTIFY data
4053 * @dev: target ATA device
4054 * @readid_flags: read ID flags
4056 * Re-read IDENTIFY page and make sure @dev is still attached to
4057 * the port.
4059 * LOCKING:
4060 * Kernel thread context (may sleep)
4062 * RETURNS:
4063 * 0 on success, negative errno otherwise
4065 int ata_dev_reread_id(struct ata_device *dev, unsigned int readid_flags)
4067 unsigned int class = dev->class;
4068 u16 *id = (void *)dev->link->ap->sector_buf;
4069 int rc;
4071 /* read ID data */
4072 rc = ata_dev_read_id(dev, &class, readid_flags, id);
4073 if (rc)
4074 return rc;
4076 /* is the device still there? */
4077 if (!ata_dev_same_device(dev, class, id))
4078 return -ENODEV;
4080 memcpy(dev->id, id, sizeof(id[0]) * ATA_ID_WORDS);
4081 return 0;
4085 * ata_dev_revalidate - Revalidate ATA device
4086 * @dev: device to revalidate
4087 * @new_class: new class code
4088 * @readid_flags: read ID flags
4090 * Re-read IDENTIFY page, make sure @dev is still attached to the
4091 * port and reconfigure it according to the new IDENTIFY page.
4093 * LOCKING:
4094 * Kernel thread context (may sleep)
4096 * RETURNS:
4097 * 0 on success, negative errno otherwise
4099 int ata_dev_revalidate(struct ata_device *dev, unsigned int new_class,
4100 unsigned int readid_flags)
4102 u64 n_sectors = dev->n_sectors;
4103 u64 n_native_sectors = dev->n_native_sectors;
4104 int rc;
4106 if (!ata_dev_enabled(dev))
4107 return -ENODEV;
4109 /* fail early if !ATA && !ATAPI to avoid issuing [P]IDENTIFY to PMP */
4110 if (ata_class_enabled(new_class) &&
4111 new_class != ATA_DEV_ATA &&
4112 new_class != ATA_DEV_ATAPI &&
4113 new_class != ATA_DEV_SEMB) {
4114 ata_dev_printk(dev, KERN_INFO, "class mismatch %u != %u\n",
4115 dev->class, new_class);
4116 rc = -ENODEV;
4117 goto fail;
4120 /* re-read ID */
4121 rc = ata_dev_reread_id(dev, readid_flags);
4122 if (rc)
4123 goto fail;
4125 /* configure device according to the new ID */
4126 rc = ata_dev_configure(dev);
4127 if (rc)
4128 goto fail;
4130 /* verify n_sectors hasn't changed */
4131 if (dev->class == ATA_DEV_ATA && n_sectors &&
4132 dev->n_sectors != n_sectors) {
4133 ata_dev_printk(dev, KERN_WARNING, "n_sectors mismatch "
4134 "%llu != %llu\n",
4135 (unsigned long long)n_sectors,
4136 (unsigned long long)dev->n_sectors);
4138 * Something could have caused HPA to be unlocked
4139 * involuntarily. If n_native_sectors hasn't changed
4140 * and the new size matches it, keep the device.
4142 if (dev->n_native_sectors == n_native_sectors &&
4143 dev->n_sectors > n_sectors &&
4144 dev->n_sectors == n_native_sectors) {
4145 ata_dev_printk(dev, KERN_WARNING,
4146 "new n_sectors matches native, probably "
4147 "late HPA unlock, continuing\n");
4148 /* keep using the old n_sectors */
4149 dev->n_sectors = n_sectors;
4150 } else {
4151 /* restore original n_[native]_sectors and fail */
4152 dev->n_native_sectors = n_native_sectors;
4153 dev->n_sectors = n_sectors;
4154 rc = -ENODEV;
4155 goto fail;
4159 return 0;
4161 fail:
4162 ata_dev_printk(dev, KERN_ERR, "revalidation failed (errno=%d)\n", rc);
4163 return rc;
4166 struct ata_blacklist_entry {
4167 const char *model_num;
4168 const char *model_rev;
4169 unsigned long horkage;
4172 static const struct ata_blacklist_entry ata_device_blacklist [] = {
4173 /* Devices with DMA related problems under Linux */
4174 { "WDC AC11000H", NULL, ATA_HORKAGE_NODMA },
4175 { "WDC AC22100H", NULL, ATA_HORKAGE_NODMA },
4176 { "WDC AC32500H", NULL, ATA_HORKAGE_NODMA },
4177 { "WDC AC33100H", NULL, ATA_HORKAGE_NODMA },
4178 { "WDC AC31600H", NULL, ATA_HORKAGE_NODMA },
4179 { "WDC AC32100H", "24.09P07", ATA_HORKAGE_NODMA },
4180 { "WDC AC23200L", "21.10N21", ATA_HORKAGE_NODMA },
4181 { "Compaq CRD-8241B", NULL, ATA_HORKAGE_NODMA },
4182 { "CRD-8400B", NULL, ATA_HORKAGE_NODMA },
4183 { "CRD-8480B", NULL, ATA_HORKAGE_NODMA },
4184 { "CRD-8482B", NULL, ATA_HORKAGE_NODMA },
4185 { "CRD-84", NULL, ATA_HORKAGE_NODMA },
4186 { "SanDisk SDP3B", NULL, ATA_HORKAGE_NODMA },
4187 { "SanDisk SDP3B-64", NULL, ATA_HORKAGE_NODMA },
4188 { "SANYO CD-ROM CRD", NULL, ATA_HORKAGE_NODMA },
4189 { "HITACHI CDR-8", NULL, ATA_HORKAGE_NODMA },
4190 { "HITACHI CDR-8335", NULL, ATA_HORKAGE_NODMA },
4191 { "HITACHI CDR-8435", NULL, ATA_HORKAGE_NODMA },
4192 { "Toshiba CD-ROM XM-6202B", NULL, ATA_HORKAGE_NODMA },
4193 { "TOSHIBA CD-ROM XM-1702BC", NULL, ATA_HORKAGE_NODMA },
4194 { "CD-532E-A", NULL, ATA_HORKAGE_NODMA },
4195 { "E-IDE CD-ROM CR-840",NULL, ATA_HORKAGE_NODMA },
4196 { "CD-ROM Drive/F5A", NULL, ATA_HORKAGE_NODMA },
4197 { "WPI CDD-820", NULL, ATA_HORKAGE_NODMA },
4198 { "SAMSUNG CD-ROM SC-148C", NULL, ATA_HORKAGE_NODMA },
4199 { "SAMSUNG CD-ROM SC", NULL, ATA_HORKAGE_NODMA },
4200 { "ATAPI CD-ROM DRIVE 40X MAXIMUM",NULL,ATA_HORKAGE_NODMA },
4201 { "_NEC DV5800A", NULL, ATA_HORKAGE_NODMA },
4202 { "SAMSUNG CD-ROM SN-124", "N001", ATA_HORKAGE_NODMA },
4203 { "Seagate STT20000A", NULL, ATA_HORKAGE_NODMA },
4204 /* Odd clown on sil3726/4726 PMPs */
4205 { "Config Disk", NULL, ATA_HORKAGE_DISABLE },
4207 /* Weird ATAPI devices */
4208 { "TORiSAN DVD-ROM DRD-N216", NULL, ATA_HORKAGE_MAX_SEC_128 },
4209 { "QUANTUM DAT DAT72-000", NULL, ATA_HORKAGE_ATAPI_MOD16_DMA },
4211 /* Devices we expect to fail diagnostics */
4213 /* Devices where NCQ should be avoided */
4214 /* NCQ is slow */
4215 { "WDC WD740ADFD-00", NULL, ATA_HORKAGE_NONCQ },
4216 { "WDC WD740ADFD-00NLR1", NULL, ATA_HORKAGE_NONCQ, },
4217 /* http://thread.gmane.org/gmane.linux.ide/14907 */
4218 { "FUJITSU MHT2060BH", NULL, ATA_HORKAGE_NONCQ },
4219 /* NCQ is broken */
4220 { "Maxtor *", "BANC*", ATA_HORKAGE_NONCQ },
4221 { "Maxtor 7V300F0", "VA111630", ATA_HORKAGE_NONCQ },
4222 { "ST380817AS", "3.42", ATA_HORKAGE_NONCQ },
4223 { "ST3160023AS", "3.42", ATA_HORKAGE_NONCQ },
4224 { "OCZ CORE_SSD", "02.10104", ATA_HORKAGE_NONCQ },
4226 /* Seagate NCQ + FLUSH CACHE firmware bug */
4227 { "ST31500341AS", "SD15", ATA_HORKAGE_NONCQ |
4228 ATA_HORKAGE_FIRMWARE_WARN },
4229 { "ST31500341AS", "SD16", ATA_HORKAGE_NONCQ |
4230 ATA_HORKAGE_FIRMWARE_WARN },
4231 { "ST31500341AS", "SD17", ATA_HORKAGE_NONCQ |
4232 ATA_HORKAGE_FIRMWARE_WARN },
4233 { "ST31500341AS", "SD18", ATA_HORKAGE_NONCQ |
4234 ATA_HORKAGE_FIRMWARE_WARN },
4235 { "ST31500341AS", "SD19", ATA_HORKAGE_NONCQ |
4236 ATA_HORKAGE_FIRMWARE_WARN },
4238 { "ST31000333AS", "SD15", ATA_HORKAGE_NONCQ |
4239 ATA_HORKAGE_FIRMWARE_WARN },
4240 { "ST31000333AS", "SD16", ATA_HORKAGE_NONCQ |
4241 ATA_HORKAGE_FIRMWARE_WARN },
4242 { "ST31000333AS", "SD17", ATA_HORKAGE_NONCQ |
4243 ATA_HORKAGE_FIRMWARE_WARN },
4244 { "ST31000333AS", "SD18", ATA_HORKAGE_NONCQ |
4245 ATA_HORKAGE_FIRMWARE_WARN },
4246 { "ST31000333AS", "SD19", ATA_HORKAGE_NONCQ |
4247 ATA_HORKAGE_FIRMWARE_WARN },
4249 { "ST3640623AS", "SD15", ATA_HORKAGE_NONCQ |
4250 ATA_HORKAGE_FIRMWARE_WARN },
4251 { "ST3640623AS", "SD16", ATA_HORKAGE_NONCQ |
4252 ATA_HORKAGE_FIRMWARE_WARN },
4253 { "ST3640623AS", "SD17", ATA_HORKAGE_NONCQ |
4254 ATA_HORKAGE_FIRMWARE_WARN },
4255 { "ST3640623AS", "SD18", ATA_HORKAGE_NONCQ |
4256 ATA_HORKAGE_FIRMWARE_WARN },
4257 { "ST3640623AS", "SD19", ATA_HORKAGE_NONCQ |
4258 ATA_HORKAGE_FIRMWARE_WARN },
4260 { "ST3640323AS", "SD15", ATA_HORKAGE_NONCQ |
4261 ATA_HORKAGE_FIRMWARE_WARN },
4262 { "ST3640323AS", "SD16", ATA_HORKAGE_NONCQ |
4263 ATA_HORKAGE_FIRMWARE_WARN },
4264 { "ST3640323AS", "SD17", ATA_HORKAGE_NONCQ |
4265 ATA_HORKAGE_FIRMWARE_WARN },
4266 { "ST3640323AS", "SD18", ATA_HORKAGE_NONCQ |
4267 ATA_HORKAGE_FIRMWARE_WARN },
4268 { "ST3640323AS", "SD19", ATA_HORKAGE_NONCQ |
4269 ATA_HORKAGE_FIRMWARE_WARN },
4271 { "ST3320813AS", "SD15", ATA_HORKAGE_NONCQ |
4272 ATA_HORKAGE_FIRMWARE_WARN },
4273 { "ST3320813AS", "SD16", ATA_HORKAGE_NONCQ |
4274 ATA_HORKAGE_FIRMWARE_WARN },
4275 { "ST3320813AS", "SD17", ATA_HORKAGE_NONCQ |
4276 ATA_HORKAGE_FIRMWARE_WARN },
4277 { "ST3320813AS", "SD18", ATA_HORKAGE_NONCQ |
4278 ATA_HORKAGE_FIRMWARE_WARN },
4279 { "ST3320813AS", "SD19", ATA_HORKAGE_NONCQ |
4280 ATA_HORKAGE_FIRMWARE_WARN },
4282 { "ST3320613AS", "SD15", ATA_HORKAGE_NONCQ |
4283 ATA_HORKAGE_FIRMWARE_WARN },
4284 { "ST3320613AS", "SD16", ATA_HORKAGE_NONCQ |
4285 ATA_HORKAGE_FIRMWARE_WARN },
4286 { "ST3320613AS", "SD17", ATA_HORKAGE_NONCQ |
4287 ATA_HORKAGE_FIRMWARE_WARN },
4288 { "ST3320613AS", "SD18", ATA_HORKAGE_NONCQ |
4289 ATA_HORKAGE_FIRMWARE_WARN },
4290 { "ST3320613AS", "SD19", ATA_HORKAGE_NONCQ |
4291 ATA_HORKAGE_FIRMWARE_WARN },
4293 /* Blacklist entries taken from Silicon Image 3124/3132
4294 Windows driver .inf file - also several Linux problem reports */
4295 { "HTS541060G9SA00", "MB3OC60D", ATA_HORKAGE_NONCQ, },
4296 { "HTS541080G9SA00", "MB4OC60D", ATA_HORKAGE_NONCQ, },
4297 { "HTS541010G9SA00", "MBZOC60D", ATA_HORKAGE_NONCQ, },
4299 /* devices which puke on READ_NATIVE_MAX */
4300 { "HDS724040KLSA80", "KFAOA20N", ATA_HORKAGE_BROKEN_HPA, },
4301 { "WDC WD3200JD-00KLB0", "WD-WCAMR1130137", ATA_HORKAGE_BROKEN_HPA },
4302 { "WDC WD2500JD-00HBB0", "WD-WMAL71490727", ATA_HORKAGE_BROKEN_HPA },
4303 { "MAXTOR 6L080L4", "A93.0500", ATA_HORKAGE_BROKEN_HPA },
4305 /* this one allows HPA unlocking but fails IOs on the area */
4306 { "OCZ-VERTEX", "1.30", ATA_HORKAGE_BROKEN_HPA },
4308 /* Devices which report 1 sector over size HPA */
4309 { "ST340823A", NULL, ATA_HORKAGE_HPA_SIZE, },
4310 { "ST320413A", NULL, ATA_HORKAGE_HPA_SIZE, },
4311 { "ST310211A", NULL, ATA_HORKAGE_HPA_SIZE, },
4313 /* Devices which get the IVB wrong */
4314 { "QUANTUM FIREBALLlct10 05", "A03.0900", ATA_HORKAGE_IVB, },
4315 /* Maybe we should just blacklist TSSTcorp... */
4316 { "TSSTcorp CDDVDW SH-S202H", "SB00", ATA_HORKAGE_IVB, },
4317 { "TSSTcorp CDDVDW SH-S202H", "SB01", ATA_HORKAGE_IVB, },
4318 { "TSSTcorp CDDVDW SH-S202J", "SB00", ATA_HORKAGE_IVB, },
4319 { "TSSTcorp CDDVDW SH-S202J", "SB01", ATA_HORKAGE_IVB, },
4320 { "TSSTcorp CDDVDW SH-S202N", "SB00", ATA_HORKAGE_IVB, },
4321 { "TSSTcorp CDDVDW SH-S202N", "SB01", ATA_HORKAGE_IVB, },
4323 /* Devices that do not need bridging limits applied */
4324 { "MTRON MSP-SATA*", NULL, ATA_HORKAGE_BRIDGE_OK, },
4326 /* Devices which aren't very happy with higher link speeds */
4327 { "WD My Book", NULL, ATA_HORKAGE_1_5_GBPS, },
4330 * Devices which choke on SETXFER. Applies only if both the
4331 * device and controller are SATA.
4333 { "PIONEER DVD-RW DVRTD08", "1.00", ATA_HORKAGE_NOSETXFER },
4335 /* End Marker */
4339 static int strn_pattern_cmp(const char *patt, const char *name, int wildchar)
4341 const char *p;
4342 int len;
4345 * check for trailing wildcard: *\0
4347 p = strchr(patt, wildchar);
4348 if (p && ((*(p + 1)) == 0))
4349 len = p - patt;
4350 else {
4351 len = strlen(name);
4352 if (!len) {
4353 if (!*patt)
4354 return 0;
4355 return -1;
4359 return strncmp(patt, name, len);
4362 static unsigned long ata_dev_blacklisted(const struct ata_device *dev)
4364 unsigned char model_num[ATA_ID_PROD_LEN + 1];
4365 unsigned char model_rev[ATA_ID_FW_REV_LEN + 1];
4366 const struct ata_blacklist_entry *ad = ata_device_blacklist;
4368 ata_id_c_string(dev->id, model_num, ATA_ID_PROD, sizeof(model_num));
4369 ata_id_c_string(dev->id, model_rev, ATA_ID_FW_REV, sizeof(model_rev));
4371 while (ad->model_num) {
4372 if (!strn_pattern_cmp(ad->model_num, model_num, '*')) {
4373 if (ad->model_rev == NULL)
4374 return ad->horkage;
4375 if (!strn_pattern_cmp(ad->model_rev, model_rev, '*'))
4376 return ad->horkage;
4378 ad++;
4380 return 0;
4383 static int ata_dma_blacklisted(const struct ata_device *dev)
4385 /* We don't support polling DMA.
4386 * DMA blacklist those ATAPI devices with CDB-intr (and use PIO)
4387 * if the LLDD handles only interrupts in the HSM_ST_LAST state.
4389 if ((dev->link->ap->flags & ATA_FLAG_PIO_POLLING) &&
4390 (dev->flags & ATA_DFLAG_CDB_INTR))
4391 return 1;
4392 return (dev->horkage & ATA_HORKAGE_NODMA) ? 1 : 0;
4396 * ata_is_40wire - check drive side detection
4397 * @dev: device
4399 * Perform drive side detection decoding, allowing for device vendors
4400 * who can't follow the documentation.
4403 static int ata_is_40wire(struct ata_device *dev)
4405 if (dev->horkage & ATA_HORKAGE_IVB)
4406 return ata_drive_40wire_relaxed(dev->id);
4407 return ata_drive_40wire(dev->id);
4411 * cable_is_40wire - 40/80/SATA decider
4412 * @ap: port to consider
4414 * This function encapsulates the policy for speed management
4415 * in one place. At the moment we don't cache the result but
4416 * there is a good case for setting ap->cbl to the result when
4417 * we are called with unknown cables (and figuring out if it
4418 * impacts hotplug at all).
4420 * Return 1 if the cable appears to be 40 wire.
4423 static int cable_is_40wire(struct ata_port *ap)
4425 struct ata_link *link;
4426 struct ata_device *dev;
4428 /* If the controller thinks we are 40 wire, we are. */
4429 if (ap->cbl == ATA_CBL_PATA40)
4430 return 1;
4432 /* If the controller thinks we are 80 wire, we are. */
4433 if (ap->cbl == ATA_CBL_PATA80 || ap->cbl == ATA_CBL_SATA)
4434 return 0;
4436 /* If the system is known to be 40 wire short cable (eg
4437 * laptop), then we allow 80 wire modes even if the drive
4438 * isn't sure.
4440 if (ap->cbl == ATA_CBL_PATA40_SHORT)
4441 return 0;
4443 /* If the controller doesn't know, we scan.
4445 * Note: We look for all 40 wire detects at this point. Any
4446 * 80 wire detect is taken to be 80 wire cable because
4447 * - in many setups only the one drive (slave if present) will
4448 * give a valid detect
4449 * - if you have a non detect capable drive you don't want it
4450 * to colour the choice
4452 ata_for_each_link(link, ap, EDGE) {
4453 ata_for_each_dev(dev, link, ENABLED) {
4454 if (!ata_is_40wire(dev))
4455 return 0;
4458 return 1;
4462 * ata_dev_xfermask - Compute supported xfermask of the given device
4463 * @dev: Device to compute xfermask for
4465 * Compute supported xfermask of @dev and store it in
4466 * dev->*_mask. This function is responsible for applying all
4467 * known limits including host controller limits, device
4468 * blacklist, etc...
4470 * LOCKING:
4471 * None.
4473 static void ata_dev_xfermask(struct ata_device *dev)
4475 struct ata_link *link = dev->link;
4476 struct ata_port *ap = link->ap;
4477 struct ata_host *host = ap->host;
4478 unsigned long xfer_mask;
4480 /* controller modes available */
4481 xfer_mask = ata_pack_xfermask(ap->pio_mask,
4482 ap->mwdma_mask, ap->udma_mask);
4484 /* drive modes available */
4485 xfer_mask &= ata_pack_xfermask(dev->pio_mask,
4486 dev->mwdma_mask, dev->udma_mask);
4487 xfer_mask &= ata_id_xfermask(dev->id);
4490 * CFA Advanced TrueIDE timings are not allowed on a shared
4491 * cable
4493 if (ata_dev_pair(dev)) {
4494 /* No PIO5 or PIO6 */
4495 xfer_mask &= ~(0x03 << (ATA_SHIFT_PIO + 5));
4496 /* No MWDMA3 or MWDMA 4 */
4497 xfer_mask &= ~(0x03 << (ATA_SHIFT_MWDMA + 3));
4500 if (ata_dma_blacklisted(dev)) {
4501 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4502 ata_dev_printk(dev, KERN_WARNING,
4503 "device is on DMA blacklist, disabling DMA\n");
4506 if ((host->flags & ATA_HOST_SIMPLEX) &&
4507 host->simplex_claimed && host->simplex_claimed != ap) {
4508 xfer_mask &= ~(ATA_MASK_MWDMA | ATA_MASK_UDMA);
4509 ata_dev_printk(dev, KERN_WARNING, "simplex DMA is claimed by "
4510 "other device, disabling DMA\n");
4513 if (ap->flags & ATA_FLAG_NO_IORDY)
4514 xfer_mask &= ata_pio_mask_no_iordy(dev);
4516 if (ap->ops->mode_filter)
4517 xfer_mask = ap->ops->mode_filter(dev, xfer_mask);
4519 /* Apply cable rule here. Don't apply it early because when
4520 * we handle hot plug the cable type can itself change.
4521 * Check this last so that we know if the transfer rate was
4522 * solely limited by the cable.
4523 * Unknown or 80 wire cables reported host side are checked
4524 * drive side as well. Cases where we know a 40wire cable
4525 * is used safely for 80 are not checked here.
4527 if (xfer_mask & (0xF8 << ATA_SHIFT_UDMA))
4528 /* UDMA/44 or higher would be available */
4529 if (cable_is_40wire(ap)) {
4530 ata_dev_printk(dev, KERN_WARNING,
4531 "limited to UDMA/33 due to 40-wire cable\n");
4532 xfer_mask &= ~(0xF8 << ATA_SHIFT_UDMA);
4535 ata_unpack_xfermask(xfer_mask, &dev->pio_mask,
4536 &dev->mwdma_mask, &dev->udma_mask);
4540 * ata_dev_set_xfermode - Issue SET FEATURES - XFER MODE command
4541 * @dev: Device to which command will be sent
4543 * Issue SET FEATURES - XFER MODE command to device @dev
4544 * on port @ap.
4546 * LOCKING:
4547 * PCI/etc. bus probe sem.
4549 * RETURNS:
4550 * 0 on success, AC_ERR_* mask otherwise.
4553 static unsigned int ata_dev_set_xfermode(struct ata_device *dev)
4555 struct ata_taskfile tf;
4556 unsigned int err_mask;
4558 /* set up set-features taskfile */
4559 DPRINTK("set features - xfer mode\n");
4561 /* Some controllers and ATAPI devices show flaky interrupt
4562 * behavior after setting xfer mode. Use polling instead.
4564 ata_tf_init(dev, &tf);
4565 tf.command = ATA_CMD_SET_FEATURES;
4566 tf.feature = SETFEATURES_XFER;
4567 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE | ATA_TFLAG_POLLING;
4568 tf.protocol = ATA_PROT_NODATA;
4569 /* If we are using IORDY we must send the mode setting command */
4570 if (ata_pio_need_iordy(dev))
4571 tf.nsect = dev->xfer_mode;
4572 /* If the device has IORDY and the controller does not - turn it off */
4573 else if (ata_id_has_iordy(dev->id))
4574 tf.nsect = 0x01;
4575 else /* In the ancient relic department - skip all of this */
4576 return 0;
4578 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4580 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4581 return err_mask;
4584 * ata_dev_set_feature - Issue SET FEATURES - SATA FEATURES
4585 * @dev: Device to which command will be sent
4586 * @enable: Whether to enable or disable the feature
4587 * @feature: The sector count represents the feature to set
4589 * Issue SET FEATURES - SATA FEATURES command to device @dev
4590 * on port @ap with sector count
4592 * LOCKING:
4593 * PCI/etc. bus probe sem.
4595 * RETURNS:
4596 * 0 on success, AC_ERR_* mask otherwise.
4598 static unsigned int ata_dev_set_feature(struct ata_device *dev, u8 enable,
4599 u8 feature)
4601 struct ata_taskfile tf;
4602 unsigned int err_mask;
4604 /* set up set-features taskfile */
4605 DPRINTK("set features - SATA features\n");
4607 ata_tf_init(dev, &tf);
4608 tf.command = ATA_CMD_SET_FEATURES;
4609 tf.feature = enable;
4610 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4611 tf.protocol = ATA_PROT_NODATA;
4612 tf.nsect = feature;
4614 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4616 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4617 return err_mask;
4621 * ata_dev_init_params - Issue INIT DEV PARAMS command
4622 * @dev: Device to which command will be sent
4623 * @heads: Number of heads (taskfile parameter)
4624 * @sectors: Number of sectors (taskfile parameter)
4626 * LOCKING:
4627 * Kernel thread context (may sleep)
4629 * RETURNS:
4630 * 0 on success, AC_ERR_* mask otherwise.
4632 static unsigned int ata_dev_init_params(struct ata_device *dev,
4633 u16 heads, u16 sectors)
4635 struct ata_taskfile tf;
4636 unsigned int err_mask;
4638 /* Number of sectors per track 1-255. Number of heads 1-16 */
4639 if (sectors < 1 || sectors > 255 || heads < 1 || heads > 16)
4640 return AC_ERR_INVALID;
4642 /* set up init dev params taskfile */
4643 DPRINTK("init dev params \n");
4645 ata_tf_init(dev, &tf);
4646 tf.command = ATA_CMD_INIT_DEV_PARAMS;
4647 tf.flags |= ATA_TFLAG_ISADDR | ATA_TFLAG_DEVICE;
4648 tf.protocol = ATA_PROT_NODATA;
4649 tf.nsect = sectors;
4650 tf.device |= (heads - 1) & 0x0f; /* max head = num. of heads - 1 */
4652 err_mask = ata_exec_internal(dev, &tf, NULL, DMA_NONE, NULL, 0, 0);
4653 /* A clean abort indicates an original or just out of spec drive
4654 and we should continue as we issue the setup based on the
4655 drive reported working geometry */
4656 if (err_mask == AC_ERR_DEV && (tf.feature & ATA_ABORTED))
4657 err_mask = 0;
4659 DPRINTK("EXIT, err_mask=%x\n", err_mask);
4660 return err_mask;
4664 * ata_sg_clean - Unmap DMA memory associated with command
4665 * @qc: Command containing DMA memory to be released
4667 * Unmap all mapped DMA memory associated with this command.
4669 * LOCKING:
4670 * spin_lock_irqsave(host lock)
4672 void ata_sg_clean(struct ata_queued_cmd *qc)
4674 struct ata_port *ap = qc->ap;
4675 struct scatterlist *sg = qc->sg;
4676 int dir = qc->dma_dir;
4678 WARN_ON_ONCE(sg == NULL);
4680 VPRINTK("unmapping %u sg elements\n", qc->n_elem);
4682 if (qc->n_elem)
4683 dma_unmap_sg(ap->dev, sg, qc->orig_n_elem, dir);
4685 qc->flags &= ~ATA_QCFLAG_DMAMAP;
4686 qc->sg = NULL;
4690 * atapi_check_dma - Check whether ATAPI DMA can be supported
4691 * @qc: Metadata associated with taskfile to check
4693 * Allow low-level driver to filter ATA PACKET commands, returning
4694 * a status indicating whether or not it is OK to use DMA for the
4695 * supplied PACKET command.
4697 * LOCKING:
4698 * spin_lock_irqsave(host lock)
4700 * RETURNS: 0 when ATAPI DMA can be used
4701 * nonzero otherwise
4703 int atapi_check_dma(struct ata_queued_cmd *qc)
4705 struct ata_port *ap = qc->ap;
4707 /* Don't allow DMA if it isn't multiple of 16 bytes. Quite a
4708 * few ATAPI devices choke on such DMA requests.
4710 if (!(qc->dev->horkage & ATA_HORKAGE_ATAPI_MOD16_DMA) &&
4711 unlikely(qc->nbytes & 15))
4712 return 1;
4714 if (ap->ops->check_atapi_dma)
4715 return ap->ops->check_atapi_dma(qc);
4717 return 0;
4721 * ata_std_qc_defer - Check whether a qc needs to be deferred
4722 * @qc: ATA command in question
4724 * Non-NCQ commands cannot run with any other command, NCQ or
4725 * not. As upper layer only knows the queue depth, we are
4726 * responsible for maintaining exclusion. This function checks
4727 * whether a new command @qc can be issued.
4729 * LOCKING:
4730 * spin_lock_irqsave(host lock)
4732 * RETURNS:
4733 * ATA_DEFER_* if deferring is needed, 0 otherwise.
4735 int ata_std_qc_defer(struct ata_queued_cmd *qc)
4737 struct ata_link *link = qc->dev->link;
4739 if (qc->tf.protocol == ATA_PROT_NCQ) {
4740 if (!ata_tag_valid(link->active_tag))
4741 return 0;
4742 } else {
4743 if (!ata_tag_valid(link->active_tag) && !link->sactive)
4744 return 0;
4747 return ATA_DEFER_LINK;
4750 void ata_noop_qc_prep(struct ata_queued_cmd *qc) { }
4753 * ata_sg_init - Associate command with scatter-gather table.
4754 * @qc: Command to be associated
4755 * @sg: Scatter-gather table.
4756 * @n_elem: Number of elements in s/g table.
4758 * Initialize the data-related elements of queued_cmd @qc
4759 * to point to a scatter-gather table @sg, containing @n_elem
4760 * elements.
4762 * LOCKING:
4763 * spin_lock_irqsave(host lock)
4765 void ata_sg_init(struct ata_queued_cmd *qc, struct scatterlist *sg,
4766 unsigned int n_elem)
4768 qc->sg = sg;
4769 qc->n_elem = n_elem;
4770 qc->cursg = qc->sg;
4774 * ata_sg_setup - DMA-map the scatter-gather table associated with a command.
4775 * @qc: Command with scatter-gather table to be mapped.
4777 * DMA-map the scatter-gather table associated with queued_cmd @qc.
4779 * LOCKING:
4780 * spin_lock_irqsave(host lock)
4782 * RETURNS:
4783 * Zero on success, negative on error.
4786 static int ata_sg_setup(struct ata_queued_cmd *qc)
4788 struct ata_port *ap = qc->ap;
4789 unsigned int n_elem;
4791 VPRINTK("ENTER, ata%u\n", ap->print_id);
4793 n_elem = dma_map_sg(ap->dev, qc->sg, qc->n_elem, qc->dma_dir);
4794 if (n_elem < 1)
4795 return -1;
4797 DPRINTK("%d sg elements mapped\n", n_elem);
4798 qc->orig_n_elem = qc->n_elem;
4799 qc->n_elem = n_elem;
4800 qc->flags |= ATA_QCFLAG_DMAMAP;
4802 return 0;
4806 * swap_buf_le16 - swap halves of 16-bit words in place
4807 * @buf: Buffer to swap
4808 * @buf_words: Number of 16-bit words in buffer.
4810 * Swap halves of 16-bit words if needed to convert from
4811 * little-endian byte order to native cpu byte order, or
4812 * vice-versa.
4814 * LOCKING:
4815 * Inherited from caller.
4817 void swap_buf_le16(u16 *buf, unsigned int buf_words)
4819 #ifdef __BIG_ENDIAN
4820 unsigned int i;
4822 for (i = 0; i < buf_words; i++)
4823 buf[i] = le16_to_cpu(buf[i]);
4824 #endif /* __BIG_ENDIAN */
4828 * ata_qc_new - Request an available ATA command, for queueing
4829 * @ap: target port
4831 * LOCKING:
4832 * None.
4835 static struct ata_queued_cmd *ata_qc_new(struct ata_port *ap)
4837 struct ata_queued_cmd *qc = NULL;
4838 unsigned int i;
4840 /* no command while frozen */
4841 if (unlikely(ap->pflags & ATA_PFLAG_FROZEN))
4842 return NULL;
4844 /* the last tag is reserved for internal command. */
4845 for (i = 0; i < ATA_MAX_QUEUE - 1; i++)
4846 if (!test_and_set_bit(i, &ap->qc_allocated)) {
4847 qc = __ata_qc_from_tag(ap, i);
4848 break;
4851 if (qc)
4852 qc->tag = i;
4854 return qc;
4858 * ata_qc_new_init - Request an available ATA command, and initialize it
4859 * @dev: Device from whom we request an available command structure
4861 * LOCKING:
4862 * None.
4865 struct ata_queued_cmd *ata_qc_new_init(struct ata_device *dev)
4867 struct ata_port *ap = dev->link->ap;
4868 struct ata_queued_cmd *qc;
4870 qc = ata_qc_new(ap);
4871 if (qc) {
4872 qc->scsicmd = NULL;
4873 qc->ap = ap;
4874 qc->dev = dev;
4876 ata_qc_reinit(qc);
4879 return qc;
4883 * ata_qc_free - free unused ata_queued_cmd
4884 * @qc: Command to complete
4886 * Designed to free unused ata_queued_cmd object
4887 * in case something prevents using it.
4889 * LOCKING:
4890 * spin_lock_irqsave(host lock)
4892 void ata_qc_free(struct ata_queued_cmd *qc)
4894 struct ata_port *ap = qc->ap;
4895 unsigned int tag;
4897 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4899 qc->flags = 0;
4900 tag = qc->tag;
4901 if (likely(ata_tag_valid(tag))) {
4902 qc->tag = ATA_TAG_POISON;
4903 clear_bit(tag, &ap->qc_allocated);
4907 void __ata_qc_complete(struct ata_queued_cmd *qc)
4909 struct ata_port *ap = qc->ap;
4910 struct ata_link *link = qc->dev->link;
4912 WARN_ON_ONCE(qc == NULL); /* ata_qc_from_tag _might_ return NULL */
4913 WARN_ON_ONCE(!(qc->flags & ATA_QCFLAG_ACTIVE));
4915 if (likely(qc->flags & ATA_QCFLAG_DMAMAP))
4916 ata_sg_clean(qc);
4918 /* command should be marked inactive atomically with qc completion */
4919 if (qc->tf.protocol == ATA_PROT_NCQ) {
4920 link->sactive &= ~(1 << qc->tag);
4921 if (!link->sactive)
4922 ap->nr_active_links--;
4923 } else {
4924 link->active_tag = ATA_TAG_POISON;
4925 ap->nr_active_links--;
4928 /* clear exclusive status */
4929 if (unlikely(qc->flags & ATA_QCFLAG_CLEAR_EXCL &&
4930 ap->excl_link == link))
4931 ap->excl_link = NULL;
4933 /* atapi: mark qc as inactive to prevent the interrupt handler
4934 * from completing the command twice later, before the error handler
4935 * is called. (when rc != 0 and atapi request sense is needed)
4937 qc->flags &= ~ATA_QCFLAG_ACTIVE;
4938 ap->qc_active &= ~(1 << qc->tag);
4940 /* call completion callback */
4941 qc->complete_fn(qc);
4944 static void fill_result_tf(struct ata_queued_cmd *qc)
4946 struct ata_port *ap = qc->ap;
4948 qc->result_tf.flags = qc->tf.flags;
4949 ap->ops->qc_fill_rtf(qc);
4952 static void ata_verify_xfer(struct ata_queued_cmd *qc)
4954 struct ata_device *dev = qc->dev;
4956 if (ata_tag_internal(qc->tag))
4957 return;
4959 if (ata_is_nodata(qc->tf.protocol))
4960 return;
4962 if ((dev->mwdma_mask || dev->udma_mask) && ata_is_pio(qc->tf.protocol))
4963 return;
4965 dev->flags &= ~ATA_DFLAG_DUBIOUS_XFER;
4969 * ata_qc_complete - Complete an active ATA command
4970 * @qc: Command to complete
4972 * Indicate to the mid and upper layers that an ATA
4973 * command has completed, with either an ok or not-ok status.
4975 * LOCKING:
4976 * spin_lock_irqsave(host lock)
4978 void ata_qc_complete(struct ata_queued_cmd *qc)
4980 struct ata_port *ap = qc->ap;
4982 /* XXX: New EH and old EH use different mechanisms to
4983 * synchronize EH with regular execution path.
4985 * In new EH, a failed qc is marked with ATA_QCFLAG_FAILED.
4986 * Normal execution path is responsible for not accessing a
4987 * failed qc. libata core enforces the rule by returning NULL
4988 * from ata_qc_from_tag() for failed qcs.
4990 * Old EH depends on ata_qc_complete() nullifying completion
4991 * requests if ATA_QCFLAG_EH_SCHEDULED is set. Old EH does
4992 * not synchronize with interrupt handler. Only PIO task is
4993 * taken care of.
4995 if (ap->ops->error_handler) {
4996 struct ata_device *dev = qc->dev;
4997 struct ata_eh_info *ehi = &dev->link->eh_info;
4999 WARN_ON_ONCE(ap->pflags & ATA_PFLAG_FROZEN);
5001 if (unlikely(qc->err_mask))
5002 qc->flags |= ATA_QCFLAG_FAILED;
5004 if (unlikely(qc->flags & ATA_QCFLAG_FAILED)) {
5005 if (!ata_tag_internal(qc->tag)) {
5006 /* always fill result TF for failed qc */
5007 fill_result_tf(qc);
5008 ata_qc_schedule_eh(qc);
5009 return;
5013 /* read result TF if requested */
5014 if (qc->flags & ATA_QCFLAG_RESULT_TF)
5015 fill_result_tf(qc);
5017 /* Some commands need post-processing after successful
5018 * completion.
5020 switch (qc->tf.command) {
5021 case ATA_CMD_SET_FEATURES:
5022 if (qc->tf.feature != SETFEATURES_WC_ON &&
5023 qc->tf.feature != SETFEATURES_WC_OFF)
5024 break;
5025 /* fall through */
5026 case ATA_CMD_INIT_DEV_PARAMS: /* CHS translation changed */
5027 case ATA_CMD_SET_MULTI: /* multi_count changed */
5028 /* revalidate device */
5029 ehi->dev_action[dev->devno] |= ATA_EH_REVALIDATE;
5030 ata_port_schedule_eh(ap);
5031 break;
5033 case ATA_CMD_SLEEP:
5034 dev->flags |= ATA_DFLAG_SLEEPING;
5035 break;
5038 if (unlikely(dev->flags & ATA_DFLAG_DUBIOUS_XFER))
5039 ata_verify_xfer(qc);
5041 __ata_qc_complete(qc);
5042 } else {
5043 if (qc->flags & ATA_QCFLAG_EH_SCHEDULED)
5044 return;
5046 /* read result TF if failed or requested */
5047 if (qc->err_mask || qc->flags & ATA_QCFLAG_RESULT_TF)
5048 fill_result_tf(qc);
5050 __ata_qc_complete(qc);
5055 * ata_qc_complete_multiple - Complete multiple qcs successfully
5056 * @ap: port in question
5057 * @qc_active: new qc_active mask
5059 * Complete in-flight commands. This functions is meant to be
5060 * called from low-level driver's interrupt routine to complete
5061 * requests normally. ap->qc_active and @qc_active is compared
5062 * and commands are completed accordingly.
5064 * LOCKING:
5065 * spin_lock_irqsave(host lock)
5067 * RETURNS:
5068 * Number of completed commands on success, -errno otherwise.
5070 int ata_qc_complete_multiple(struct ata_port *ap, u32 qc_active)
5072 int nr_done = 0;
5073 u32 done_mask;
5075 done_mask = ap->qc_active ^ qc_active;
5077 if (unlikely(done_mask & qc_active)) {
5078 ata_port_printk(ap, KERN_ERR, "illegal qc_active transition "
5079 "(%08x->%08x)\n", ap->qc_active, qc_active);
5080 return -EINVAL;
5083 while (done_mask) {
5084 struct ata_queued_cmd *qc;
5085 unsigned int tag = __ffs(done_mask);
5087 qc = ata_qc_from_tag(ap, tag);
5088 if (qc) {
5089 ata_qc_complete(qc);
5090 nr_done++;
5092 done_mask &= ~(1 << tag);
5095 return nr_done;
5099 * ata_qc_issue - issue taskfile to device
5100 * @qc: command to issue to device
5102 * Prepare an ATA command to submission to device.
5103 * This includes mapping the data into a DMA-able
5104 * area, filling in the S/G table, and finally
5105 * writing the taskfile to hardware, starting the command.
5107 * LOCKING:
5108 * spin_lock_irqsave(host lock)
5110 void ata_qc_issue(struct ata_queued_cmd *qc)
5112 struct ata_port *ap = qc->ap;
5113 struct ata_link *link = qc->dev->link;
5114 u8 prot = qc->tf.protocol;
5116 /* Make sure only one non-NCQ command is outstanding. The
5117 * check is skipped for old EH because it reuses active qc to
5118 * request ATAPI sense.
5120 WARN_ON_ONCE(ap->ops->error_handler && ata_tag_valid(link->active_tag));
5122 if (ata_is_ncq(prot)) {
5123 WARN_ON_ONCE(link->sactive & (1 << qc->tag));
5125 if (!link->sactive)
5126 ap->nr_active_links++;
5127 link->sactive |= 1 << qc->tag;
5128 } else {
5129 WARN_ON_ONCE(link->sactive);
5131 ap->nr_active_links++;
5132 link->active_tag = qc->tag;
5135 qc->flags |= ATA_QCFLAG_ACTIVE;
5136 ap->qc_active |= 1 << qc->tag;
5138 /* We guarantee to LLDs that they will have at least one
5139 * non-zero sg if the command is a data command.
5141 BUG_ON(ata_is_data(prot) && (!qc->sg || !qc->n_elem || !qc->nbytes));
5143 if (ata_is_dma(prot) || (ata_is_pio(prot) &&
5144 (ap->flags & ATA_FLAG_PIO_DMA)))
5145 if (ata_sg_setup(qc))
5146 goto sg_err;
5148 /* if device is sleeping, schedule reset and abort the link */
5149 if (unlikely(qc->dev->flags & ATA_DFLAG_SLEEPING)) {
5150 link->eh_info.action |= ATA_EH_RESET;
5151 ata_ehi_push_desc(&link->eh_info, "waking up from sleep");
5152 ata_link_abort(link);
5153 return;
5156 ap->ops->qc_prep(qc);
5158 qc->err_mask |= ap->ops->qc_issue(qc);
5159 if (unlikely(qc->err_mask))
5160 goto err;
5161 return;
5163 sg_err:
5164 qc->err_mask |= AC_ERR_SYSTEM;
5165 err:
5166 ata_qc_complete(qc);
5170 * sata_scr_valid - test whether SCRs are accessible
5171 * @link: ATA link to test SCR accessibility for
5173 * Test whether SCRs are accessible for @link.
5175 * LOCKING:
5176 * None.
5178 * RETURNS:
5179 * 1 if SCRs are accessible, 0 otherwise.
5181 int sata_scr_valid(struct ata_link *link)
5183 struct ata_port *ap = link->ap;
5185 return (ap->flags & ATA_FLAG_SATA) && ap->ops->scr_read;
5189 * sata_scr_read - read SCR register of the specified port
5190 * @link: ATA link to read SCR for
5191 * @reg: SCR to read
5192 * @val: Place to store read value
5194 * Read SCR register @reg of @link into *@val. This function is
5195 * guaranteed to succeed if @link is ap->link, the cable type of
5196 * the port is SATA and the port implements ->scr_read.
5198 * LOCKING:
5199 * None if @link is ap->link. Kernel thread context otherwise.
5201 * RETURNS:
5202 * 0 on success, negative errno on failure.
5204 int sata_scr_read(struct ata_link *link, int reg, u32 *val)
5206 if (ata_is_host_link(link)) {
5207 if (sata_scr_valid(link))
5208 return link->ap->ops->scr_read(link, reg, val);
5209 return -EOPNOTSUPP;
5212 return sata_pmp_scr_read(link, reg, val);
5216 * sata_scr_write - write SCR register of the specified port
5217 * @link: ATA link to write SCR for
5218 * @reg: SCR to write
5219 * @val: value to write
5221 * Write @val to SCR register @reg of @link. This function is
5222 * guaranteed to succeed if @link is ap->link, the cable type of
5223 * the port is SATA and the port implements ->scr_read.
5225 * LOCKING:
5226 * None if @link is ap->link. Kernel thread context otherwise.
5228 * RETURNS:
5229 * 0 on success, negative errno on failure.
5231 int sata_scr_write(struct ata_link *link, int reg, u32 val)
5233 if (ata_is_host_link(link)) {
5234 if (sata_scr_valid(link))
5235 return link->ap->ops->scr_write(link, reg, val);
5236 return -EOPNOTSUPP;
5239 return sata_pmp_scr_write(link, reg, val);
5243 * sata_scr_write_flush - write SCR register of the specified port and flush
5244 * @link: ATA link to write SCR for
5245 * @reg: SCR to write
5246 * @val: value to write
5248 * This function is identical to sata_scr_write() except that this
5249 * function performs flush after writing to the register.
5251 * LOCKING:
5252 * None if @link is ap->link. Kernel thread context otherwise.
5254 * RETURNS:
5255 * 0 on success, negative errno on failure.
5257 int sata_scr_write_flush(struct ata_link *link, int reg, u32 val)
5259 if (ata_is_host_link(link)) {
5260 int rc;
5262 if (sata_scr_valid(link)) {
5263 rc = link->ap->ops->scr_write(link, reg, val);
5264 if (rc == 0)
5265 rc = link->ap->ops->scr_read(link, reg, &val);
5266 return rc;
5268 return -EOPNOTSUPP;
5271 return sata_pmp_scr_write(link, reg, val);
5275 * ata_phys_link_online - test whether the given link is online
5276 * @link: ATA link to test
5278 * Test whether @link is online. Note that this function returns
5279 * 0 if online status of @link cannot be obtained, so
5280 * ata_link_online(link) != !ata_link_offline(link).
5282 * LOCKING:
5283 * None.
5285 * RETURNS:
5286 * True if the port online status is available and online.
5288 bool ata_phys_link_online(struct ata_link *link)
5290 u32 sstatus;
5292 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5293 ata_sstatus_online(sstatus))
5294 return true;
5295 return false;
5299 * ata_phys_link_offline - test whether the given link is offline
5300 * @link: ATA link to test
5302 * Test whether @link is offline. Note that this function
5303 * returns 0 if offline status of @link cannot be obtained, so
5304 * ata_link_online(link) != !ata_link_offline(link).
5306 * LOCKING:
5307 * None.
5309 * RETURNS:
5310 * True if the port offline status is available and offline.
5312 bool ata_phys_link_offline(struct ata_link *link)
5314 u32 sstatus;
5316 if (sata_scr_read(link, SCR_STATUS, &sstatus) == 0 &&
5317 !ata_sstatus_online(sstatus))
5318 return true;
5319 return false;
5323 * ata_link_online - test whether the given link is online
5324 * @link: ATA link to test
5326 * Test whether @link is online. This is identical to
5327 * ata_phys_link_online() when there's no slave link. When
5328 * there's a slave link, this function should only be called on
5329 * the master link and will return true if any of M/S links is
5330 * online.
5332 * LOCKING:
5333 * None.
5335 * RETURNS:
5336 * True if the port online status is available and online.
5338 bool ata_link_online(struct ata_link *link)
5340 struct ata_link *slave = link->ap->slave_link;
5342 WARN_ON(link == slave); /* shouldn't be called on slave link */
5344 return ata_phys_link_online(link) ||
5345 (slave && ata_phys_link_online(slave));
5349 * ata_link_offline - test whether the given link is offline
5350 * @link: ATA link to test
5352 * Test whether @link is offline. This is identical to
5353 * ata_phys_link_offline() when there's no slave link. When
5354 * there's a slave link, this function should only be called on
5355 * the master link and will return true if both M/S links are
5356 * offline.
5358 * LOCKING:
5359 * None.
5361 * RETURNS:
5362 * True if the port offline status is available and offline.
5364 bool ata_link_offline(struct ata_link *link)
5366 struct ata_link *slave = link->ap->slave_link;
5368 WARN_ON(link == slave); /* shouldn't be called on slave link */
5370 return ata_phys_link_offline(link) &&
5371 (!slave || ata_phys_link_offline(slave));
5374 #ifdef CONFIG_PM
5375 static int ata_host_request_pm(struct ata_host *host, pm_message_t mesg,
5376 unsigned int action, unsigned int ehi_flags,
5377 int wait)
5379 unsigned long flags;
5380 int i, rc;
5382 for (i = 0; i < host->n_ports; i++) {
5383 struct ata_port *ap = host->ports[i];
5384 struct ata_link *link;
5386 /* Previous resume operation might still be in
5387 * progress. Wait for PM_PENDING to clear.
5389 if (ap->pflags & ATA_PFLAG_PM_PENDING) {
5390 ata_port_wait_eh(ap);
5391 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5394 /* request PM ops to EH */
5395 spin_lock_irqsave(ap->lock, flags);
5397 ap->pm_mesg = mesg;
5398 if (wait) {
5399 rc = 0;
5400 ap->pm_result = &rc;
5403 ap->pflags |= ATA_PFLAG_PM_PENDING;
5404 ata_for_each_link(link, ap, HOST_FIRST) {
5405 link->eh_info.action |= action;
5406 link->eh_info.flags |= ehi_flags;
5409 ata_port_schedule_eh(ap);
5411 spin_unlock_irqrestore(ap->lock, flags);
5413 /* wait and check result */
5414 if (wait) {
5415 ata_port_wait_eh(ap);
5416 WARN_ON(ap->pflags & ATA_PFLAG_PM_PENDING);
5417 if (rc)
5418 return rc;
5422 return 0;
5426 * ata_host_suspend - suspend host
5427 * @host: host to suspend
5428 * @mesg: PM message
5430 * Suspend @host. Actual operation is performed by EH. This
5431 * function requests EH to perform PM operations and waits for EH
5432 * to finish.
5434 * LOCKING:
5435 * Kernel thread context (may sleep).
5437 * RETURNS:
5438 * 0 on success, -errno on failure.
5440 int ata_host_suspend(struct ata_host *host, pm_message_t mesg)
5442 int rc;
5445 * disable link pm on all ports before requesting
5446 * any pm activity
5448 ata_lpm_enable(host);
5450 rc = ata_host_request_pm(host, mesg, 0, ATA_EHI_QUIET, 1);
5451 if (rc == 0)
5452 host->dev->power.power_state = mesg;
5453 return rc;
5457 * ata_host_resume - resume host
5458 * @host: host to resume
5460 * Resume @host. Actual operation is performed by EH. This
5461 * function requests EH to perform PM operations and returns.
5462 * Note that all resume operations are performed parallely.
5464 * LOCKING:
5465 * Kernel thread context (may sleep).
5467 void ata_host_resume(struct ata_host *host)
5469 ata_host_request_pm(host, PMSG_ON, ATA_EH_RESET,
5470 ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET, 0);
5471 host->dev->power.power_state = PMSG_ON;
5473 /* reenable link pm */
5474 ata_lpm_disable(host);
5476 #endif
5479 * ata_port_start - Set port up for dma.
5480 * @ap: Port to initialize
5482 * Called just after data structures for each port are
5483 * initialized. Allocates space for PRD table.
5485 * May be used as the port_start() entry in ata_port_operations.
5487 * LOCKING:
5488 * Inherited from caller.
5490 int ata_port_start(struct ata_port *ap)
5492 struct device *dev = ap->dev;
5494 ap->prd = dmam_alloc_coherent(dev, ATA_PRD_TBL_SZ, &ap->prd_dma,
5495 GFP_KERNEL);
5496 if (!ap->prd)
5497 return -ENOMEM;
5499 return 0;
5503 * ata_dev_init - Initialize an ata_device structure
5504 * @dev: Device structure to initialize
5506 * Initialize @dev in preparation for probing.
5508 * LOCKING:
5509 * Inherited from caller.
5511 void ata_dev_init(struct ata_device *dev)
5513 struct ata_link *link = ata_dev_phys_link(dev);
5514 struct ata_port *ap = link->ap;
5515 unsigned long flags;
5517 /* SATA spd limit is bound to the attached device, reset together */
5518 link->sata_spd_limit = link->hw_sata_spd_limit;
5519 link->sata_spd = 0;
5521 /* High bits of dev->flags are used to record warm plug
5522 * requests which occur asynchronously. Synchronize using
5523 * host lock.
5525 spin_lock_irqsave(ap->lock, flags);
5526 dev->flags &= ~ATA_DFLAG_INIT_MASK;
5527 dev->horkage = 0;
5528 spin_unlock_irqrestore(ap->lock, flags);
5530 memset((void *)dev + ATA_DEVICE_CLEAR_BEGIN, 0,
5531 ATA_DEVICE_CLEAR_END - ATA_DEVICE_CLEAR_BEGIN);
5532 dev->pio_mask = UINT_MAX;
5533 dev->mwdma_mask = UINT_MAX;
5534 dev->udma_mask = UINT_MAX;
5538 * ata_link_init - Initialize an ata_link structure
5539 * @ap: ATA port link is attached to
5540 * @link: Link structure to initialize
5541 * @pmp: Port multiplier port number
5543 * Initialize @link.
5545 * LOCKING:
5546 * Kernel thread context (may sleep)
5548 void ata_link_init(struct ata_port *ap, struct ata_link *link, int pmp)
5550 int i;
5552 /* clear everything except for devices */
5553 memset(link, 0, offsetof(struct ata_link, device[0]));
5555 link->ap = ap;
5556 link->pmp = pmp;
5557 link->active_tag = ATA_TAG_POISON;
5558 link->hw_sata_spd_limit = UINT_MAX;
5560 /* can't use iterator, ap isn't initialized yet */
5561 for (i = 0; i < ATA_MAX_DEVICES; i++) {
5562 struct ata_device *dev = &link->device[i];
5564 dev->link = link;
5565 dev->devno = dev - link->device;
5566 ata_dev_init(dev);
5571 * sata_link_init_spd - Initialize link->sata_spd_limit
5572 * @link: Link to configure sata_spd_limit for
5574 * Initialize @link->[hw_]sata_spd_limit to the currently
5575 * configured value.
5577 * LOCKING:
5578 * Kernel thread context (may sleep).
5580 * RETURNS:
5581 * 0 on success, -errno on failure.
5583 int sata_link_init_spd(struct ata_link *link)
5585 u8 spd;
5586 int rc;
5588 rc = sata_scr_read(link, SCR_CONTROL, &link->saved_scontrol);
5589 if (rc)
5590 return rc;
5592 spd = (link->saved_scontrol >> 4) & 0xf;
5593 if (spd)
5594 link->hw_sata_spd_limit &= (1 << spd) - 1;
5596 ata_force_link_limits(link);
5598 link->sata_spd_limit = link->hw_sata_spd_limit;
5600 return 0;
5604 * ata_port_alloc - allocate and initialize basic ATA port resources
5605 * @host: ATA host this allocated port belongs to
5607 * Allocate and initialize basic ATA port resources.
5609 * RETURNS:
5610 * Allocate ATA port on success, NULL on failure.
5612 * LOCKING:
5613 * Inherited from calling layer (may sleep).
5615 struct ata_port *ata_port_alloc(struct ata_host *host)
5617 struct ata_port *ap;
5619 DPRINTK("ENTER\n");
5621 ap = kzalloc(sizeof(*ap), GFP_KERNEL);
5622 if (!ap)
5623 return NULL;
5625 ap->pflags |= ATA_PFLAG_INITIALIZING;
5626 ap->lock = &host->lock;
5627 ap->flags = ATA_FLAG_DISABLED;
5628 ap->print_id = -1;
5629 ap->ctl = ATA_DEVCTL_OBS;
5630 ap->host = host;
5631 ap->dev = host->dev;
5632 ap->last_ctl = 0xFF;
5634 #if defined(ATA_VERBOSE_DEBUG)
5635 /* turn on all debugging levels */
5636 ap->msg_enable = 0x00FF;
5637 #elif defined(ATA_DEBUG)
5638 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_INFO | ATA_MSG_CTL | ATA_MSG_WARN | ATA_MSG_ERR;
5639 #else
5640 ap->msg_enable = ATA_MSG_DRV | ATA_MSG_ERR | ATA_MSG_WARN;
5641 #endif
5643 #ifdef CONFIG_ATA_SFF
5644 INIT_DELAYED_WORK(&ap->port_task, ata_pio_task);
5645 #else
5646 INIT_DELAYED_WORK(&ap->port_task, NULL);
5647 #endif
5648 INIT_DELAYED_WORK(&ap->hotplug_task, ata_scsi_hotplug);
5649 INIT_WORK(&ap->scsi_rescan_task, ata_scsi_dev_rescan);
5650 INIT_LIST_HEAD(&ap->eh_done_q);
5651 init_waitqueue_head(&ap->eh_wait_q);
5652 init_completion(&ap->park_req_pending);
5653 init_timer_deferrable(&ap->fastdrain_timer);
5654 ap->fastdrain_timer.function = ata_eh_fastdrain_timerfn;
5655 ap->fastdrain_timer.data = (unsigned long)ap;
5657 ap->cbl = ATA_CBL_NONE;
5659 ata_link_init(ap, &ap->link, 0);
5661 #ifdef ATA_IRQ_TRAP
5662 ap->stats.unhandled_irq = 1;
5663 ap->stats.idle_irq = 1;
5664 #endif
5665 return ap;
5668 static void ata_host_release(struct device *gendev, void *res)
5670 struct ata_host *host = dev_get_drvdata(gendev);
5671 int i;
5673 for (i = 0; i < host->n_ports; i++) {
5674 struct ata_port *ap = host->ports[i];
5676 if (!ap)
5677 continue;
5679 if (ap->scsi_host)
5680 scsi_host_put(ap->scsi_host);
5682 kfree(ap->pmp_link);
5683 kfree(ap->slave_link);
5684 kfree(ap);
5685 host->ports[i] = NULL;
5688 dev_set_drvdata(gendev, NULL);
5692 * ata_host_alloc - allocate and init basic ATA host resources
5693 * @dev: generic device this host is associated with
5694 * @max_ports: maximum number of ATA ports associated with this host
5696 * Allocate and initialize basic ATA host resources. LLD calls
5697 * this function to allocate a host, initializes it fully and
5698 * attaches it using ata_host_register().
5700 * @max_ports ports are allocated and host->n_ports is
5701 * initialized to @max_ports. The caller is allowed to decrease
5702 * host->n_ports before calling ata_host_register(). The unused
5703 * ports will be automatically freed on registration.
5705 * RETURNS:
5706 * Allocate ATA host on success, NULL on failure.
5708 * LOCKING:
5709 * Inherited from calling layer (may sleep).
5711 struct ata_host *ata_host_alloc(struct device *dev, int max_ports)
5713 struct ata_host *host;
5714 size_t sz;
5715 int i;
5717 DPRINTK("ENTER\n");
5719 if (!devres_open_group(dev, NULL, GFP_KERNEL))
5720 return NULL;
5722 /* alloc a container for our list of ATA ports (buses) */
5723 sz = sizeof(struct ata_host) + (max_ports + 1) * sizeof(void *);
5724 /* alloc a container for our list of ATA ports (buses) */
5725 host = devres_alloc(ata_host_release, sz, GFP_KERNEL);
5726 if (!host)
5727 goto err_out;
5729 devres_add(dev, host);
5730 dev_set_drvdata(dev, host);
5732 spin_lock_init(&host->lock);
5733 host->dev = dev;
5734 host->n_ports = max_ports;
5736 /* allocate ports bound to this host */
5737 for (i = 0; i < max_ports; i++) {
5738 struct ata_port *ap;
5740 ap = ata_port_alloc(host);
5741 if (!ap)
5742 goto err_out;
5744 ap->port_no = i;
5745 host->ports[i] = ap;
5748 devres_remove_group(dev, NULL);
5749 return host;
5751 err_out:
5752 devres_release_group(dev, NULL);
5753 return NULL;
5757 * ata_host_alloc_pinfo - alloc host and init with port_info array
5758 * @dev: generic device this host is associated with
5759 * @ppi: array of ATA port_info to initialize host with
5760 * @n_ports: number of ATA ports attached to this host
5762 * Allocate ATA host and initialize with info from @ppi. If NULL
5763 * terminated, @ppi may contain fewer entries than @n_ports. The
5764 * last entry will be used for the remaining ports.
5766 * RETURNS:
5767 * Allocate ATA host on success, NULL on failure.
5769 * LOCKING:
5770 * Inherited from calling layer (may sleep).
5772 struct ata_host *ata_host_alloc_pinfo(struct device *dev,
5773 const struct ata_port_info * const * ppi,
5774 int n_ports)
5776 const struct ata_port_info *pi;
5777 struct ata_host *host;
5778 int i, j;
5780 host = ata_host_alloc(dev, n_ports);
5781 if (!host)
5782 return NULL;
5784 for (i = 0, j = 0, pi = NULL; i < host->n_ports; i++) {
5785 struct ata_port *ap = host->ports[i];
5787 if (ppi[j])
5788 pi = ppi[j++];
5790 ap->pio_mask = pi->pio_mask;
5791 ap->mwdma_mask = pi->mwdma_mask;
5792 ap->udma_mask = pi->udma_mask;
5793 ap->flags |= pi->flags;
5794 ap->link.flags |= pi->link_flags;
5795 ap->ops = pi->port_ops;
5797 if (!host->ops && (pi->port_ops != &ata_dummy_port_ops))
5798 host->ops = pi->port_ops;
5801 return host;
5805 * ata_slave_link_init - initialize slave link
5806 * @ap: port to initialize slave link for
5808 * Create and initialize slave link for @ap. This enables slave
5809 * link handling on the port.
5811 * In libata, a port contains links and a link contains devices.
5812 * There is single host link but if a PMP is attached to it,
5813 * there can be multiple fan-out links. On SATA, there's usually
5814 * a single device connected to a link but PATA and SATA
5815 * controllers emulating TF based interface can have two - master
5816 * and slave.
5818 * However, there are a few controllers which don't fit into this
5819 * abstraction too well - SATA controllers which emulate TF
5820 * interface with both master and slave devices but also have
5821 * separate SCR register sets for each device. These controllers
5822 * need separate links for physical link handling
5823 * (e.g. onlineness, link speed) but should be treated like a
5824 * traditional M/S controller for everything else (e.g. command
5825 * issue, softreset).
5827 * slave_link is libata's way of handling this class of
5828 * controllers without impacting core layer too much. For
5829 * anything other than physical link handling, the default host
5830 * link is used for both master and slave. For physical link
5831 * handling, separate @ap->slave_link is used. All dirty details
5832 * are implemented inside libata core layer. From LLD's POV, the
5833 * only difference is that prereset, hardreset and postreset are
5834 * called once more for the slave link, so the reset sequence
5835 * looks like the following.
5837 * prereset(M) -> prereset(S) -> hardreset(M) -> hardreset(S) ->
5838 * softreset(M) -> postreset(M) -> postreset(S)
5840 * Note that softreset is called only for the master. Softreset
5841 * resets both M/S by definition, so SRST on master should handle
5842 * both (the standard method will work just fine).
5844 * LOCKING:
5845 * Should be called before host is registered.
5847 * RETURNS:
5848 * 0 on success, -errno on failure.
5850 int ata_slave_link_init(struct ata_port *ap)
5852 struct ata_link *link;
5854 WARN_ON(ap->slave_link);
5855 WARN_ON(ap->flags & ATA_FLAG_PMP);
5857 link = kzalloc(sizeof(*link), GFP_KERNEL);
5858 if (!link)
5859 return -ENOMEM;
5861 ata_link_init(ap, link, 1);
5862 ap->slave_link = link;
5863 return 0;
5866 static void ata_host_stop(struct device *gendev, void *res)
5868 struct ata_host *host = dev_get_drvdata(gendev);
5869 int i;
5871 WARN_ON(!(host->flags & ATA_HOST_STARTED));
5873 for (i = 0; i < host->n_ports; i++) {
5874 struct ata_port *ap = host->ports[i];
5876 if (ap->ops->port_stop)
5877 ap->ops->port_stop(ap);
5880 if (host->ops->host_stop)
5881 host->ops->host_stop(host);
5885 * ata_finalize_port_ops - finalize ata_port_operations
5886 * @ops: ata_port_operations to finalize
5888 * An ata_port_operations can inherit from another ops and that
5889 * ops can again inherit from another. This can go on as many
5890 * times as necessary as long as there is no loop in the
5891 * inheritance chain.
5893 * Ops tables are finalized when the host is started. NULL or
5894 * unspecified entries are inherited from the closet ancestor
5895 * which has the method and the entry is populated with it.
5896 * After finalization, the ops table directly points to all the
5897 * methods and ->inherits is no longer necessary and cleared.
5899 * Using ATA_OP_NULL, inheriting ops can force a method to NULL.
5901 * LOCKING:
5902 * None.
5904 static void ata_finalize_port_ops(struct ata_port_operations *ops)
5906 static DEFINE_SPINLOCK(lock);
5907 const struct ata_port_operations *cur;
5908 void **begin = (void **)ops;
5909 void **end = (void **)&ops->inherits;
5910 void **pp;
5912 if (!ops || !ops->inherits)
5913 return;
5915 spin_lock(&lock);
5917 for (cur = ops->inherits; cur; cur = cur->inherits) {
5918 void **inherit = (void **)cur;
5920 for (pp = begin; pp < end; pp++, inherit++)
5921 if (!*pp)
5922 *pp = *inherit;
5925 for (pp = begin; pp < end; pp++)
5926 if (IS_ERR(*pp))
5927 *pp = NULL;
5929 ops->inherits = NULL;
5931 spin_unlock(&lock);
5935 * ata_host_start - start and freeze ports of an ATA host
5936 * @host: ATA host to start ports for
5938 * Start and then freeze ports of @host. Started status is
5939 * recorded in host->flags, so this function can be called
5940 * multiple times. Ports are guaranteed to get started only
5941 * once. If host->ops isn't initialized yet, its set to the
5942 * first non-dummy port ops.
5944 * LOCKING:
5945 * Inherited from calling layer (may sleep).
5947 * RETURNS:
5948 * 0 if all ports are started successfully, -errno otherwise.
5950 int ata_host_start(struct ata_host *host)
5952 int have_stop = 0;
5953 void *start_dr = NULL;
5954 int i, rc;
5956 if (host->flags & ATA_HOST_STARTED)
5957 return 0;
5959 ata_finalize_port_ops(host->ops);
5961 for (i = 0; i < host->n_ports; i++) {
5962 struct ata_port *ap = host->ports[i];
5964 ata_finalize_port_ops(ap->ops);
5966 if (!host->ops && !ata_port_is_dummy(ap))
5967 host->ops = ap->ops;
5969 if (ap->ops->port_stop)
5970 have_stop = 1;
5973 if (host->ops->host_stop)
5974 have_stop = 1;
5976 if (have_stop) {
5977 start_dr = devres_alloc(ata_host_stop, 0, GFP_KERNEL);
5978 if (!start_dr)
5979 return -ENOMEM;
5982 for (i = 0; i < host->n_ports; i++) {
5983 struct ata_port *ap = host->ports[i];
5985 if (ap->ops->port_start) {
5986 rc = ap->ops->port_start(ap);
5987 if (rc) {
5988 if (rc != -ENODEV)
5989 dev_printk(KERN_ERR, host->dev,
5990 "failed to start port %d "
5991 "(errno=%d)\n", i, rc);
5992 goto err_out;
5995 ata_eh_freeze_port(ap);
5998 if (start_dr)
5999 devres_add(host->dev, start_dr);
6000 host->flags |= ATA_HOST_STARTED;
6001 return 0;
6003 err_out:
6004 while (--i >= 0) {
6005 struct ata_port *ap = host->ports[i];
6007 if (ap->ops->port_stop)
6008 ap->ops->port_stop(ap);
6010 devres_free(start_dr);
6011 return rc;
6015 * ata_sas_host_init - Initialize a host struct
6016 * @host: host to initialize
6017 * @dev: device host is attached to
6018 * @flags: host flags
6019 * @ops: port_ops
6021 * LOCKING:
6022 * PCI/etc. bus probe sem.
6025 /* KILLME - the only user left is ipr */
6026 void ata_host_init(struct ata_host *host, struct device *dev,
6027 unsigned long flags, struct ata_port_operations *ops)
6029 spin_lock_init(&host->lock);
6030 host->dev = dev;
6031 host->flags = flags;
6032 host->ops = ops;
6036 static void async_port_probe(void *data, async_cookie_t cookie)
6038 int rc;
6039 struct ata_port *ap = data;
6042 * If we're not allowed to scan this host in parallel,
6043 * we need to wait until all previous scans have completed
6044 * before going further.
6045 * Jeff Garzik says this is only within a controller, so we
6046 * don't need to wait for port 0, only for later ports.
6048 if (!(ap->host->flags & ATA_HOST_PARALLEL_SCAN) && ap->port_no != 0)
6049 async_synchronize_cookie(cookie);
6051 /* probe */
6052 if (ap->ops->error_handler) {
6053 struct ata_eh_info *ehi = &ap->link.eh_info;
6054 unsigned long flags;
6056 ata_port_probe(ap);
6058 /* kick EH for boot probing */
6059 spin_lock_irqsave(ap->lock, flags);
6061 ehi->probe_mask |= ATA_ALL_DEVICES;
6062 ehi->action |= ATA_EH_RESET | ATA_EH_LPM;
6063 ehi->flags |= ATA_EHI_NO_AUTOPSY | ATA_EHI_QUIET;
6065 ap->pflags &= ~ATA_PFLAG_INITIALIZING;
6066 ap->pflags |= ATA_PFLAG_LOADING;
6067 ata_port_schedule_eh(ap);
6069 spin_unlock_irqrestore(ap->lock, flags);
6071 /* wait for EH to finish */
6072 ata_port_wait_eh(ap);
6073 } else {
6074 DPRINTK("ata%u: bus probe begin\n", ap->print_id);
6075 rc = ata_bus_probe(ap);
6076 DPRINTK("ata%u: bus probe end\n", ap->print_id);
6078 if (rc) {
6079 /* FIXME: do something useful here?
6080 * Current libata behavior will
6081 * tear down everything when
6082 * the module is removed
6083 * or the h/w is unplugged.
6088 /* in order to keep device order, we need to synchronize at this point */
6089 async_synchronize_cookie(cookie);
6091 ata_scsi_scan_host(ap, 1);
6095 * ata_host_register - register initialized ATA host
6096 * @host: ATA host to register
6097 * @sht: template for SCSI host
6099 * Register initialized ATA host. @host is allocated using
6100 * ata_host_alloc() and fully initialized by LLD. This function
6101 * starts ports, registers @host with ATA and SCSI layers and
6102 * probe registered devices.
6104 * LOCKING:
6105 * Inherited from calling layer (may sleep).
6107 * RETURNS:
6108 * 0 on success, -errno otherwise.
6110 int ata_host_register(struct ata_host *host, struct scsi_host_template *sht)
6112 int i, rc;
6114 /* host must have been started */
6115 if (!(host->flags & ATA_HOST_STARTED)) {
6116 dev_printk(KERN_ERR, host->dev,
6117 "BUG: trying to register unstarted host\n");
6118 WARN_ON(1);
6119 return -EINVAL;
6122 /* Blow away unused ports. This happens when LLD can't
6123 * determine the exact number of ports to allocate at
6124 * allocation time.
6126 for (i = host->n_ports; host->ports[i]; i++)
6127 kfree(host->ports[i]);
6129 /* give ports names and add SCSI hosts */
6130 for (i = 0; i < host->n_ports; i++)
6131 host->ports[i]->print_id = ata_print_id++;
6133 rc = ata_scsi_add_hosts(host, sht);
6134 if (rc)
6135 return rc;
6137 /* associate with ACPI nodes */
6138 ata_acpi_associate(host);
6140 /* set cable, sata_spd_limit and report */
6141 for (i = 0; i < host->n_ports; i++) {
6142 struct ata_port *ap = host->ports[i];
6143 unsigned long xfer_mask;
6145 /* set SATA cable type if still unset */
6146 if (ap->cbl == ATA_CBL_NONE && (ap->flags & ATA_FLAG_SATA))
6147 ap->cbl = ATA_CBL_SATA;
6149 /* init sata_spd_limit to the current value */
6150 sata_link_init_spd(&ap->link);
6151 if (ap->slave_link)
6152 sata_link_init_spd(ap->slave_link);
6154 /* print per-port info to dmesg */
6155 xfer_mask = ata_pack_xfermask(ap->pio_mask, ap->mwdma_mask,
6156 ap->udma_mask);
6158 if (!ata_port_is_dummy(ap)) {
6159 ata_port_printk(ap, KERN_INFO,
6160 "%cATA max %s %s\n",
6161 (ap->flags & ATA_FLAG_SATA) ? 'S' : 'P',
6162 ata_mode_string(xfer_mask),
6163 ap->link.eh_info.desc);
6164 ata_ehi_clear_desc(&ap->link.eh_info);
6165 } else
6166 ata_port_printk(ap, KERN_INFO, "DUMMY\n");
6169 /* perform each probe asynchronously */
6170 for (i = 0; i < host->n_ports; i++) {
6171 struct ata_port *ap = host->ports[i];
6172 async_schedule(async_port_probe, ap);
6175 return 0;
6179 * ata_host_activate - start host, request IRQ and register it
6180 * @host: target ATA host
6181 * @irq: IRQ to request
6182 * @irq_handler: irq_handler used when requesting IRQ
6183 * @irq_flags: irq_flags used when requesting IRQ
6184 * @sht: scsi_host_template to use when registering the host
6186 * After allocating an ATA host and initializing it, most libata
6187 * LLDs perform three steps to activate the host - start host,
6188 * request IRQ and register it. This helper takes necessasry
6189 * arguments and performs the three steps in one go.
6191 * An invalid IRQ skips the IRQ registration and expects the host to
6192 * have set polling mode on the port. In this case, @irq_handler
6193 * should be NULL.
6195 * LOCKING:
6196 * Inherited from calling layer (may sleep).
6198 * RETURNS:
6199 * 0 on success, -errno otherwise.
6201 int ata_host_activate(struct ata_host *host, int irq,
6202 irq_handler_t irq_handler, unsigned long irq_flags,
6203 struct scsi_host_template *sht)
6205 int i, rc;
6207 rc = ata_host_start(host);
6208 if (rc)
6209 return rc;
6211 /* Special case for polling mode */
6212 if (!irq) {
6213 WARN_ON(irq_handler);
6214 return ata_host_register(host, sht);
6217 rc = devm_request_irq(host->dev, irq, irq_handler, irq_flags,
6218 dev_driver_string(host->dev), host);
6219 if (rc)
6220 return rc;
6222 for (i = 0; i < host->n_ports; i++)
6223 ata_port_desc(host->ports[i], "irq %d", irq);
6225 rc = ata_host_register(host, sht);
6226 /* if failed, just free the IRQ and leave ports alone */
6227 if (rc)
6228 devm_free_irq(host->dev, irq, host);
6230 return rc;
6234 * ata_port_detach - Detach ATA port in prepration of device removal
6235 * @ap: ATA port to be detached
6237 * Detach all ATA devices and the associated SCSI devices of @ap;
6238 * then, remove the associated SCSI host. @ap is guaranteed to
6239 * be quiescent on return from this function.
6241 * LOCKING:
6242 * Kernel thread context (may sleep).
6244 static void ata_port_detach(struct ata_port *ap)
6246 unsigned long flags;
6248 if (!ap->ops->error_handler)
6249 goto skip_eh;
6251 /* tell EH we're leaving & flush EH */
6252 spin_lock_irqsave(ap->lock, flags);
6253 ap->pflags |= ATA_PFLAG_UNLOADING;
6254 ata_port_schedule_eh(ap);
6255 spin_unlock_irqrestore(ap->lock, flags);
6257 /* wait till EH commits suicide */
6258 ata_port_wait_eh(ap);
6260 /* it better be dead now */
6261 WARN_ON(!(ap->pflags & ATA_PFLAG_UNLOADED));
6263 cancel_rearming_delayed_work(&ap->hotplug_task);
6265 skip_eh:
6266 /* remove the associated SCSI host */
6267 scsi_remove_host(ap->scsi_host);
6271 * ata_host_detach - Detach all ports of an ATA host
6272 * @host: Host to detach
6274 * Detach all ports of @host.
6276 * LOCKING:
6277 * Kernel thread context (may sleep).
6279 void ata_host_detach(struct ata_host *host)
6281 int i;
6283 for (i = 0; i < host->n_ports; i++)
6284 ata_port_detach(host->ports[i]);
6286 /* the host is dead now, dissociate ACPI */
6287 ata_acpi_dissociate(host);
6290 #ifdef CONFIG_PCI
6293 * ata_pci_remove_one - PCI layer callback for device removal
6294 * @pdev: PCI device that was removed
6296 * PCI layer indicates to libata via this hook that hot-unplug or
6297 * module unload event has occurred. Detach all ports. Resource
6298 * release is handled via devres.
6300 * LOCKING:
6301 * Inherited from PCI layer (may sleep).
6303 void ata_pci_remove_one(struct pci_dev *pdev)
6305 struct device *dev = &pdev->dev;
6306 struct ata_host *host = dev_get_drvdata(dev);
6308 ata_host_detach(host);
6311 /* move to PCI subsystem */
6312 int pci_test_config_bits(struct pci_dev *pdev, const struct pci_bits *bits)
6314 unsigned long tmp = 0;
6316 switch (bits->width) {
6317 case 1: {
6318 u8 tmp8 = 0;
6319 pci_read_config_byte(pdev, bits->reg, &tmp8);
6320 tmp = tmp8;
6321 break;
6323 case 2: {
6324 u16 tmp16 = 0;
6325 pci_read_config_word(pdev, bits->reg, &tmp16);
6326 tmp = tmp16;
6327 break;
6329 case 4: {
6330 u32 tmp32 = 0;
6331 pci_read_config_dword(pdev, bits->reg, &tmp32);
6332 tmp = tmp32;
6333 break;
6336 default:
6337 return -EINVAL;
6340 tmp &= bits->mask;
6342 return (tmp == bits->val) ? 1 : 0;
6345 #ifdef CONFIG_PM
6346 void ata_pci_device_do_suspend(struct pci_dev *pdev, pm_message_t mesg)
6348 pci_save_state(pdev);
6349 pci_disable_device(pdev);
6351 if (mesg.event & PM_EVENT_SLEEP)
6352 pci_set_power_state(pdev, PCI_D3hot);
6355 int ata_pci_device_do_resume(struct pci_dev *pdev)
6357 int rc;
6359 pci_set_power_state(pdev, PCI_D0);
6360 pci_restore_state(pdev);
6362 rc = pcim_enable_device(pdev);
6363 if (rc) {
6364 dev_printk(KERN_ERR, &pdev->dev,
6365 "failed to enable device after resume (%d)\n", rc);
6366 return rc;
6369 pci_set_master(pdev);
6370 return 0;
6373 int ata_pci_device_suspend(struct pci_dev *pdev, pm_message_t mesg)
6375 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6376 int rc = 0;
6378 rc = ata_host_suspend(host, mesg);
6379 if (rc)
6380 return rc;
6382 ata_pci_device_do_suspend(pdev, mesg);
6384 return 0;
6387 int ata_pci_device_resume(struct pci_dev *pdev)
6389 struct ata_host *host = dev_get_drvdata(&pdev->dev);
6390 int rc;
6392 rc = ata_pci_device_do_resume(pdev);
6393 if (rc == 0)
6394 ata_host_resume(host);
6395 return rc;
6397 #endif /* CONFIG_PM */
6399 #endif /* CONFIG_PCI */
6401 static int __init ata_parse_force_one(char **cur,
6402 struct ata_force_ent *force_ent,
6403 const char **reason)
6405 /* FIXME: Currently, there's no way to tag init const data and
6406 * using __initdata causes build failure on some versions of
6407 * gcc. Once __initdataconst is implemented, add const to the
6408 * following structure.
6410 static struct ata_force_param force_tbl[] __initdata = {
6411 { "40c", .cbl = ATA_CBL_PATA40 },
6412 { "80c", .cbl = ATA_CBL_PATA80 },
6413 { "short40c", .cbl = ATA_CBL_PATA40_SHORT },
6414 { "unk", .cbl = ATA_CBL_PATA_UNK },
6415 { "ign", .cbl = ATA_CBL_PATA_IGN },
6416 { "sata", .cbl = ATA_CBL_SATA },
6417 { "1.5Gbps", .spd_limit = 1 },
6418 { "3.0Gbps", .spd_limit = 2 },
6419 { "noncq", .horkage_on = ATA_HORKAGE_NONCQ },
6420 { "ncq", .horkage_off = ATA_HORKAGE_NONCQ },
6421 { "pio0", .xfer_mask = 1 << (ATA_SHIFT_PIO + 0) },
6422 { "pio1", .xfer_mask = 1 << (ATA_SHIFT_PIO + 1) },
6423 { "pio2", .xfer_mask = 1 << (ATA_SHIFT_PIO + 2) },
6424 { "pio3", .xfer_mask = 1 << (ATA_SHIFT_PIO + 3) },
6425 { "pio4", .xfer_mask = 1 << (ATA_SHIFT_PIO + 4) },
6426 { "pio5", .xfer_mask = 1 << (ATA_SHIFT_PIO + 5) },
6427 { "pio6", .xfer_mask = 1 << (ATA_SHIFT_PIO + 6) },
6428 { "mwdma0", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 0) },
6429 { "mwdma1", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 1) },
6430 { "mwdma2", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 2) },
6431 { "mwdma3", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 3) },
6432 { "mwdma4", .xfer_mask = 1 << (ATA_SHIFT_MWDMA + 4) },
6433 { "udma0", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6434 { "udma16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6435 { "udma/16", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 0) },
6436 { "udma1", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6437 { "udma25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6438 { "udma/25", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 1) },
6439 { "udma2", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6440 { "udma33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6441 { "udma/33", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 2) },
6442 { "udma3", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6443 { "udma44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6444 { "udma/44", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 3) },
6445 { "udma4", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6446 { "udma66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6447 { "udma/66", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 4) },
6448 { "udma5", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6449 { "udma100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6450 { "udma/100", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 5) },
6451 { "udma6", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6452 { "udma133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6453 { "udma/133", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 6) },
6454 { "udma7", .xfer_mask = 1 << (ATA_SHIFT_UDMA + 7) },
6455 { "nohrst", .lflags = ATA_LFLAG_NO_HRST },
6456 { "nosrst", .lflags = ATA_LFLAG_NO_SRST },
6457 { "norst", .lflags = ATA_LFLAG_NO_HRST | ATA_LFLAG_NO_SRST },
6459 char *start = *cur, *p = *cur;
6460 char *id, *val, *endp;
6461 const struct ata_force_param *match_fp = NULL;
6462 int nr_matches = 0, i;
6464 /* find where this param ends and update *cur */
6465 while (*p != '\0' && *p != ',')
6466 p++;
6468 if (*p == '\0')
6469 *cur = p;
6470 else
6471 *cur = p + 1;
6473 *p = '\0';
6475 /* parse */
6476 p = strchr(start, ':');
6477 if (!p) {
6478 val = strstrip(start);
6479 goto parse_val;
6481 *p = '\0';
6483 id = strstrip(start);
6484 val = strstrip(p + 1);
6486 /* parse id */
6487 p = strchr(id, '.');
6488 if (p) {
6489 *p++ = '\0';
6490 force_ent->device = simple_strtoul(p, &endp, 10);
6491 if (p == endp || *endp != '\0') {
6492 *reason = "invalid device";
6493 return -EINVAL;
6497 force_ent->port = simple_strtoul(id, &endp, 10);
6498 if (p == endp || *endp != '\0') {
6499 *reason = "invalid port/link";
6500 return -EINVAL;
6503 parse_val:
6504 /* parse val, allow shortcuts so that both 1.5 and 1.5Gbps work */
6505 for (i = 0; i < ARRAY_SIZE(force_tbl); i++) {
6506 const struct ata_force_param *fp = &force_tbl[i];
6508 if (strncasecmp(val, fp->name, strlen(val)))
6509 continue;
6511 nr_matches++;
6512 match_fp = fp;
6514 if (strcasecmp(val, fp->name) == 0) {
6515 nr_matches = 1;
6516 break;
6520 if (!nr_matches) {
6521 *reason = "unknown value";
6522 return -EINVAL;
6524 if (nr_matches > 1) {
6525 *reason = "ambigious value";
6526 return -EINVAL;
6529 force_ent->param = *match_fp;
6531 return 0;
6534 static void __init ata_parse_force_param(void)
6536 int idx = 0, size = 1;
6537 int last_port = -1, last_device = -1;
6538 char *p, *cur, *next;
6540 /* calculate maximum number of params and allocate force_tbl */
6541 for (p = ata_force_param_buf; *p; p++)
6542 if (*p == ',')
6543 size++;
6545 ata_force_tbl = kzalloc(sizeof(ata_force_tbl[0]) * size, GFP_KERNEL);
6546 if (!ata_force_tbl) {
6547 printk(KERN_WARNING "ata: failed to extend force table, "
6548 "libata.force ignored\n");
6549 return;
6552 /* parse and populate the table */
6553 for (cur = ata_force_param_buf; *cur != '\0'; cur = next) {
6554 const char *reason = "";
6555 struct ata_force_ent te = { .port = -1, .device = -1 };
6557 next = cur;
6558 if (ata_parse_force_one(&next, &te, &reason)) {
6559 printk(KERN_WARNING "ata: failed to parse force "
6560 "parameter \"%s\" (%s)\n",
6561 cur, reason);
6562 continue;
6565 if (te.port == -1) {
6566 te.port = last_port;
6567 te.device = last_device;
6570 ata_force_tbl[idx++] = te;
6572 last_port = te.port;
6573 last_device = te.device;
6576 ata_force_tbl_size = idx;
6579 static int __init ata_init(void)
6581 ata_parse_force_param();
6583 ata_wq = create_workqueue("ata");
6584 if (!ata_wq)
6585 goto free_force_tbl;
6587 ata_aux_wq = create_singlethread_workqueue("ata_aux");
6588 if (!ata_aux_wq)
6589 goto free_wq;
6591 printk(KERN_DEBUG "libata version " DRV_VERSION " loaded.\n");
6592 return 0;
6594 free_wq:
6595 destroy_workqueue(ata_wq);
6596 free_force_tbl:
6597 kfree(ata_force_tbl);
6598 return -ENOMEM;
6601 static void __exit ata_exit(void)
6603 kfree(ata_force_tbl);
6604 destroy_workqueue(ata_wq);
6605 destroy_workqueue(ata_aux_wq);
6608 subsys_initcall(ata_init);
6609 module_exit(ata_exit);
6611 static unsigned long ratelimit_time;
6612 static DEFINE_SPINLOCK(ata_ratelimit_lock);
6614 int ata_ratelimit(void)
6616 int rc;
6617 unsigned long flags;
6619 spin_lock_irqsave(&ata_ratelimit_lock, flags);
6621 if (time_after(jiffies, ratelimit_time)) {
6622 rc = 1;
6623 ratelimit_time = jiffies + (HZ/5);
6624 } else
6625 rc = 0;
6627 spin_unlock_irqrestore(&ata_ratelimit_lock, flags);
6629 return rc;
6633 * ata_wait_register - wait until register value changes
6634 * @reg: IO-mapped register
6635 * @mask: Mask to apply to read register value
6636 * @val: Wait condition
6637 * @interval: polling interval in milliseconds
6638 * @timeout: timeout in milliseconds
6640 * Waiting for some bits of register to change is a common
6641 * operation for ATA controllers. This function reads 32bit LE
6642 * IO-mapped register @reg and tests for the following condition.
6644 * (*@reg & mask) != val
6646 * If the condition is met, it returns; otherwise, the process is
6647 * repeated after @interval_msec until timeout.
6649 * LOCKING:
6650 * Kernel thread context (may sleep)
6652 * RETURNS:
6653 * The final register value.
6655 u32 ata_wait_register(void __iomem *reg, u32 mask, u32 val,
6656 unsigned long interval, unsigned long timeout)
6658 unsigned long deadline;
6659 u32 tmp;
6661 tmp = ioread32(reg);
6663 /* Calculate timeout _after_ the first read to make sure
6664 * preceding writes reach the controller before starting to
6665 * eat away the timeout.
6667 deadline = ata_deadline(jiffies, timeout);
6669 while ((tmp & mask) == val && time_before(jiffies, deadline)) {
6670 msleep(interval);
6671 tmp = ioread32(reg);
6674 return tmp;
6678 * Dummy port_ops
6680 static unsigned int ata_dummy_qc_issue(struct ata_queued_cmd *qc)
6682 return AC_ERR_SYSTEM;
6685 static void ata_dummy_error_handler(struct ata_port *ap)
6687 /* truly dummy */
6690 struct ata_port_operations ata_dummy_port_ops = {
6691 .qc_prep = ata_noop_qc_prep,
6692 .qc_issue = ata_dummy_qc_issue,
6693 .error_handler = ata_dummy_error_handler,
6696 const struct ata_port_info ata_dummy_port_info = {
6697 .port_ops = &ata_dummy_port_ops,
6701 * libata is essentially a library of internal helper functions for
6702 * low-level ATA host controller drivers. As such, the API/ABI is
6703 * likely to change as new drivers are added and updated.
6704 * Do not depend on ABI/API stability.
6706 EXPORT_SYMBOL_GPL(sata_deb_timing_normal);
6707 EXPORT_SYMBOL_GPL(sata_deb_timing_hotplug);
6708 EXPORT_SYMBOL_GPL(sata_deb_timing_long);
6709 EXPORT_SYMBOL_GPL(ata_base_port_ops);
6710 EXPORT_SYMBOL_GPL(sata_port_ops);
6711 EXPORT_SYMBOL_GPL(ata_dummy_port_ops);
6712 EXPORT_SYMBOL_GPL(ata_dummy_port_info);
6713 EXPORT_SYMBOL_GPL(ata_link_next);
6714 EXPORT_SYMBOL_GPL(ata_dev_next);
6715 EXPORT_SYMBOL_GPL(ata_std_bios_param);
6716 EXPORT_SYMBOL_GPL(ata_host_init);
6717 EXPORT_SYMBOL_GPL(ata_host_alloc);
6718 EXPORT_SYMBOL_GPL(ata_host_alloc_pinfo);
6719 EXPORT_SYMBOL_GPL(ata_slave_link_init);
6720 EXPORT_SYMBOL_GPL(ata_host_start);
6721 EXPORT_SYMBOL_GPL(ata_host_register);
6722 EXPORT_SYMBOL_GPL(ata_host_activate);
6723 EXPORT_SYMBOL_GPL(ata_host_detach);
6724 EXPORT_SYMBOL_GPL(ata_sg_init);
6725 EXPORT_SYMBOL_GPL(ata_qc_complete);
6726 EXPORT_SYMBOL_GPL(ata_qc_complete_multiple);
6727 EXPORT_SYMBOL_GPL(atapi_cmd_type);
6728 EXPORT_SYMBOL_GPL(ata_tf_to_fis);
6729 EXPORT_SYMBOL_GPL(ata_tf_from_fis);
6730 EXPORT_SYMBOL_GPL(ata_pack_xfermask);
6731 EXPORT_SYMBOL_GPL(ata_unpack_xfermask);
6732 EXPORT_SYMBOL_GPL(ata_xfer_mask2mode);
6733 EXPORT_SYMBOL_GPL(ata_xfer_mode2mask);
6734 EXPORT_SYMBOL_GPL(ata_xfer_mode2shift);
6735 EXPORT_SYMBOL_GPL(ata_mode_string);
6736 EXPORT_SYMBOL_GPL(ata_id_xfermask);
6737 EXPORT_SYMBOL_GPL(ata_port_start);
6738 EXPORT_SYMBOL_GPL(ata_do_set_mode);
6739 EXPORT_SYMBOL_GPL(ata_std_qc_defer);
6740 EXPORT_SYMBOL_GPL(ata_noop_qc_prep);
6741 EXPORT_SYMBOL_GPL(ata_port_probe);
6742 EXPORT_SYMBOL_GPL(ata_dev_disable);
6743 EXPORT_SYMBOL_GPL(sata_set_spd);
6744 EXPORT_SYMBOL_GPL(ata_wait_after_reset);
6745 EXPORT_SYMBOL_GPL(sata_link_debounce);
6746 EXPORT_SYMBOL_GPL(sata_link_resume);
6747 EXPORT_SYMBOL_GPL(ata_std_prereset);
6748 EXPORT_SYMBOL_GPL(sata_link_hardreset);
6749 EXPORT_SYMBOL_GPL(sata_std_hardreset);
6750 EXPORT_SYMBOL_GPL(ata_std_postreset);
6751 EXPORT_SYMBOL_GPL(ata_dev_classify);
6752 EXPORT_SYMBOL_GPL(ata_dev_pair);
6753 EXPORT_SYMBOL_GPL(ata_port_disable);
6754 EXPORT_SYMBOL_GPL(ata_ratelimit);
6755 EXPORT_SYMBOL_GPL(ata_wait_register);
6756 EXPORT_SYMBOL_GPL(ata_scsi_queuecmd);
6757 EXPORT_SYMBOL_GPL(ata_scsi_slave_config);
6758 EXPORT_SYMBOL_GPL(ata_scsi_slave_destroy);
6759 EXPORT_SYMBOL_GPL(ata_scsi_change_queue_depth);
6760 EXPORT_SYMBOL_GPL(sata_scr_valid);
6761 EXPORT_SYMBOL_GPL(sata_scr_read);
6762 EXPORT_SYMBOL_GPL(sata_scr_write);
6763 EXPORT_SYMBOL_GPL(sata_scr_write_flush);
6764 EXPORT_SYMBOL_GPL(ata_link_online);
6765 EXPORT_SYMBOL_GPL(ata_link_offline);
6766 #ifdef CONFIG_PM
6767 EXPORT_SYMBOL_GPL(ata_host_suspend);
6768 EXPORT_SYMBOL_GPL(ata_host_resume);
6769 #endif /* CONFIG_PM */
6770 EXPORT_SYMBOL_GPL(ata_id_string);
6771 EXPORT_SYMBOL_GPL(ata_id_c_string);
6772 EXPORT_SYMBOL_GPL(ata_do_dev_read_id);
6773 EXPORT_SYMBOL_GPL(ata_scsi_simulate);
6775 EXPORT_SYMBOL_GPL(ata_pio_queue_task);
6776 EXPORT_SYMBOL_GPL(ata_pio_need_iordy);
6777 EXPORT_SYMBOL_GPL(ata_timing_find_mode);
6778 EXPORT_SYMBOL_GPL(ata_timing_compute);
6779 EXPORT_SYMBOL_GPL(ata_timing_merge);
6780 EXPORT_SYMBOL_GPL(ata_timing_cycle2mode);
6782 #ifdef CONFIG_PCI
6783 EXPORT_SYMBOL_GPL(pci_test_config_bits);
6784 EXPORT_SYMBOL_GPL(ata_pci_remove_one);
6785 #ifdef CONFIG_PM
6786 EXPORT_SYMBOL_GPL(ata_pci_device_do_suspend);
6787 EXPORT_SYMBOL_GPL(ata_pci_device_do_resume);
6788 EXPORT_SYMBOL_GPL(ata_pci_device_suspend);
6789 EXPORT_SYMBOL_GPL(ata_pci_device_resume);
6790 #endif /* CONFIG_PM */
6791 #endif /* CONFIG_PCI */
6793 EXPORT_SYMBOL_GPL(__ata_ehi_push_desc);
6794 EXPORT_SYMBOL_GPL(ata_ehi_push_desc);
6795 EXPORT_SYMBOL_GPL(ata_ehi_clear_desc);
6796 EXPORT_SYMBOL_GPL(ata_port_desc);
6797 #ifdef CONFIG_PCI
6798 EXPORT_SYMBOL_GPL(ata_port_pbar_desc);
6799 #endif /* CONFIG_PCI */
6800 EXPORT_SYMBOL_GPL(ata_port_schedule_eh);
6801 EXPORT_SYMBOL_GPL(ata_link_abort);
6802 EXPORT_SYMBOL_GPL(ata_port_abort);
6803 EXPORT_SYMBOL_GPL(ata_port_freeze);
6804 EXPORT_SYMBOL_GPL(sata_async_notification);
6805 EXPORT_SYMBOL_GPL(ata_eh_freeze_port);
6806 EXPORT_SYMBOL_GPL(ata_eh_thaw_port);
6807 EXPORT_SYMBOL_GPL(ata_eh_qc_complete);
6808 EXPORT_SYMBOL_GPL(ata_eh_qc_retry);
6809 EXPORT_SYMBOL_GPL(ata_eh_analyze_ncq_error);
6810 EXPORT_SYMBOL_GPL(ata_do_eh);
6811 EXPORT_SYMBOL_GPL(ata_std_error_handler);
6813 EXPORT_SYMBOL_GPL(ata_cable_40wire);
6814 EXPORT_SYMBOL_GPL(ata_cable_80wire);
6815 EXPORT_SYMBOL_GPL(ata_cable_unknown);
6816 EXPORT_SYMBOL_GPL(ata_cable_ignore);
6817 EXPORT_SYMBOL_GPL(ata_cable_sata);